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Abstract

The primary goals of this thesis was to design and implement a hardware
friendly Zynq-based CGP algorithm and investigate the acceleration
potential. It was made several attempts to find out if it was possible to
increase the speed of the CGP algorithm by implementing single part of
algorithm as hardware component. The Zynq-platform is a unique blend
of two technologies, which includes a Dual ARM® Coretex-A9 Processer
System and 7-series Programmable Logic. This means that Zynq is able
to take advantage of software programming and in addition configure
programmable hardware both at the same time.
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Chapter 1

Introduction

This chapter introduces the thesis and starts with why research and work
inspired by Natural Evolution is important and interesting. Next up is the
inspiration and motivation behind my thesis, which includes successful
examples of earlier work within this field. Specific objectives of this thesis
and a chapter overview is presented at the end of this chapter.

1.1 Natural evolution to hardware development

In the last decades the complexity of electronic system have increased
drastically along with circuit density[31]. Generally we can observe that the
probability of failure and errors in electronic systems increases with higher
density and complexity. An important fact to consider is that majority
of biological systems are more complex compared to existing electronic
systems. In spite of high complexity, most biological systems seems to
be more tolerant to errors and failure. This thesis starts off with some
questions that have emerged out of curiosity for this field:

What makes biological systems more tolerant to errors and failure?

The answer lies in the way biological systems are developed and
designed. Every product of natural evolution has evolved through
adaptation to its specific environment. This evolutionary cycle has been
repeated over millions of generations and resulted in candidates who are
best suited to their environment. Some biological systems are also able to
rapidly change their behaviour and function according to changes in the
environment, a good example is the human immune system.

1



1.2. INSPIRATION AND MOTIVATION

Is it possible to mimic the concept of natural evolution to solve computer
problems?

This question was answered by some researchers as early as the 1940s
and 1950s[5], when the first ideas of Evolutionary Computing was created.
It was not until the 1960s that ideas of evolutionary computing had its
real breakthrough. Different Evolutionary Algorithms (EAs) was defined.
Since then, the development have proceeded fast forward in this field.
New technology have been created, providing new opportunities and
challenges.

Is it possible to use inspiration form natural evolution to design or evolve
digital hardware?

The answer to this question is yes! By using Evolvable Hardware(EHW)
as a design method, new and original solutions can be developed[7]. We
may find new and better solutions that no one ever thought about. The
most important lead is the ability to adapt to changes in environment by
improving behaviour in real time.

This thesis is an attempt to bring in recent technologies to evolve
nature-inspired architecture and investigate the potential for improvement.

1.2 Inspiration and motivation

The field of EHW combined with evolutionary methods is close to a great
breakthrough. This statement is justified by some examples mentioned
later in this section. As a result, we can expect higher circuit performance
and better functionality. We have already several successful examples of
work that has been done within this field with remarkable results. The
following sections address some notable and relevant work that have been
inspiration for this thesis.

A god example to start with is An evolvable combinational unit for
FPGAs[32] created by Sekanina and Friedl at Brno University of Tech-
nology. The combinational unit consists of a Virtual Reconfigurable Cir-
cuit (VRC) and EA, both described in VHDL (Figure 1.1). The VRC is a
hardware implementation of a significantly efficient and successful EA ap-
proach called Cartesian Genetic Programming (CGP). The most surprising
fact is that the unit was able to evolve the required function automatically
and autonomously only by interacting with the environment. They manage
to successfully evolve circuits, such as multiplexers, adders and encoders
directly into the FPGA.

2



1.2. INSPIRATION AND MOTIVATION

Figure 1.1: Hardware implementation of an evolvable combinational unit
for FPGAs[32]

Another similar example from Sekanina is An Evolvable Image
Filter[25] which was an experimental evaluation of a complete hardware
implementation in FPGA. This system managed to evolve image filters in a
few second according to given input images. Also here a CGP approach
and VRC was used to solve the problem. The combinational unit[32]
and image filter[25] proves that hardware is able to find solutions with
inspiration form evolutionary methods.

Ph.D thesis Design and Implementation of Scalable Online Evolvable
Hardware Pattern Recognition System[22] by Kyrre Glette focuses on
autonomous run-time adaptive digital EHW systems for solving large real-
world problems. Glette emphasize that the main challenges that prevents
achieving such a system is a combination of two things. The first challenge
is the lack in EAs scalability and the second challenge is designing adaptive
hardware architecture for evolution. To address the scalability challenge,
data-buses and high-level building blocks has been tested and combined
with incremental evolution. Based on these features, specialized high-
speed classifier architecture has been developed for online evolution. This
architecture is achieved by use of an on-chip processor. His work has
resulted in a flexible EHW based on-chip system capable of classifying
more advanced problems with higher accuracy and speed.

3



1.3. OBJECTIVES OF THIS THESIS

New and interesting development takes place in FPGA architecture
field. FPGA is regarded as a good platform for digital EHW systems.
According to Dobai and Sekanina the Xilinx Zynq-7000 All Programmable
System on Chip (Figure 1.2) platform has the potential to become the next
revolutionary step in evolvable hardware design[4]. The paper analyses
this platform from an evolvable hardware designers perspective and gives
useful results for developing real-world evolvable systems with the Zynq-
7000 platform. Details about the Zynq-7000 platform and why it is suitable
for EHW are discussed in Section 3.1.1.

Figure 1.2: Zynq-7000 All Programmable System on Chip[23]

1.3 Objectives of this thesis

The primary goal of this thesis it to design and implement a Zynq-
based evolutionary algorith and investigate the acceleration potential by
experimenting on different implementation levels. The Zynq-platform
is a unique blend of two technologies, which includes a Dual ARM®
Coretex-A9 Processer System and 7-series Programmable Logic. This means that
Zynq is able to take advantage of software programming and in addition
configure programmable hardware both at the same time. I want to find
out if it is possible to increase the speed of the evolutionary algorithm
by implementing single part or parts of the evolutionary operations as
hardware components and by using different implementation of EAs.

To achieve the main goal, the following tasks must be completed:

• Consider the different types of EAs to find which one best suit
Evolvable Hardware.

• Implement the selected EA solution in software. Verify functionality
and measure performance of the implemented software solution.

• Profile the software solution and consider potential bottlenecks in the
algorithm. Evaluate whether the bottlenecks can be eliminated by
implementing them as hardware modules.

• Design and implement hardware modules. Verify functionality and

4
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measure performance of the implemented partial hardware/software
solution.

• Design hardware-friendly solution and verify functionality and
measure performance.

• Compare the result measured on different implementation levels.

1.4 Chapter overview

Chapter 2 Background This presents an overview of the basic theory
and hardware relevant to this thesis. It begins with a brief introduction
to Evolutionary Computing and its origin. Followed by a detailed
overview of Evolutionary Algorithms(EA), which covers characteristics,
expressions and methodology. The Cartesian Genetic Programming(CGP)
approach is used throughout the thesis and presented in detail. The
selection of this approach is justified. Hardware is needed to realize the
theoretical background in the real world. FPGAs og microprocessors are
presented. These technologies are fundamental for creating Evolvable
Hardware(EHW), which is presented in the very end of this chapter.

Chapter 3 Development tools: Hardware and Software This chapter
covers the development tools that was used in this thesis. The tools
was mainly supplied by a well known technology company named Xilinx
Inc. Xilinx is known for programmable logic devices. Over the past few
years Xilinx have invested heavily in specialized software for hardware
development as well. Both hardware and software tools are briefly
introduced. The purpose of this chapter is to give the reader a basic
understanding of the tools.

Chapter 4 Implementation This chapter gives an overview of the work
done in this thesis. It start with introducing the chosen EA approach
followed by a detailed overview. The overview includes all significant
information the reader needs to understand the structure, parameters and
the purpose of the algorithm. Next up is the development of the embedded
Zynq design, which includes both software and hardware implementation.
The evolutionary algorithm was implemented, verified and profiled.

Chapter 5 Experiments and Result

Chapter 6 Conclusion and proposals for further work
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Chapter 2

Background

The objective of this chapter is to give the reader a foundation for under-
standing the field of Evolvable Hardware (EHW). This chapter presents an
overview of the basic theory and hardware relevant for this thesis. It be-
gins with a brief introduction to Evolutionary Computing and its origin.
Followed by a detailed overview of Evolutionary Algorithms(EA). The EA
overview covers characteristics, expressions and methodology. After the
theoretical part the focus moves on hardware technologies. FPGAs and mi-
croprocessors basic structure and usage are presented. These technologies
are fundamental for creating Evolvable Hardware(EHW), which is finally
presented in the very end of this chapter.

2.1 Evolutionary Computing

As mentioned in the introduction the first concepts about evolutionary
computing occurred in late 1940’s and 1950’s. Evolutionary computing
mimics the concept of natural evolution to solve computer problems.
In the 1950’s different implementations of the evolutionary computing
were developed at the same time but in different places[5, 6, 8]. In the
United States the researchers Fogel, Owens and Walsh developed a version
called Evolutionary Programming, while Holland called his version Genetic
Algorithm. In Germany Evolution Strategies was defined by Rechenberg
and Schwefel. The last and most important variant, at least for this
thesis, was defined in the early 1990s by Koza[21] and is known as Genetic
Programming. These four variants differ slightly from each other and have
defined unique steps, characteristics and procedure. Collective term for
these different implementations is Evolutionary Algorithms.

7



2.2. EVOLUTIONARY ALGORITHM (EA)

2.2 Evolutionary Algorithm (EA)

Evolutionary Algorithms (EAs) are inspired by natural evolution and fol-
lows Darwin’s theory of evolution by natural selection[3]. Darwin dis-
covered that evolutionary process make spices adapt to their environment.
The basic idea is that a given population of individuals are placed in a
closed environment, with limited resources. The competition for the re-
sources creates the basis for natural selection where the fittest individuals
survives. The variation operators, mutation and recombination, creates di-
versity within the population.

EAs are a set of computer algorithms mainly used in search and
optimization problems. It is important to emphasize that EAs are
based on a simplified model of the biological evolution. A problem
(environment) is defined and solutions (individuals) are introduced to
evolve. The individuals are population-based and have the ability to adapt
to environment. Each individual in a population represents one solution
to a problem. The population is consequently a set of possible solutions.
A fitness function measures the quality of each solution. Evolutionary
operators like selection, reproduction, recombination and mutation are applied
to evolve new solutions and create diversity. EA turns out to find good
or satisfying solutions to almost all types of optimization problems. The
main reason for this is that EA evolves solutions without making any
presumption about the actual environmental fitness.

8



2.2. EVOLUTIONARY ALGORITHM (EA)

2.2.1 Expressions used in EAs

Before we move forward to EAs in details it is appropriate to explain some
expressions, which is frequently used in EA context. It is common to use
expressions from biology. The most commonly used expressions and what
they stand for is presented in Table 2.1.

Expression: Explanation:
Environment The user-defined problem

Individual A(possible) solution to the problem
Population Set of possible solutions to the problem

Genotype
Set of parameters, which defines the

detailed(decoded) version of the individual.

Phenotype
An individuals genotype encodes its

phenotype, which is the expressive version
of the individual.

Gene
Set of parameters, which defines a specific

part of the of the genotype

Fitness
Real value indicating the quality of an

individual as a solution to the problem.

Selection
Policy for selecting one individual(parent)
from the population, often the individual

with highest fitness.

Recombination
Operation that merges the genotypes of two
selected parents, resulting in creation of new

offspring

Mutation
Operation that makes small random changes

to the genotype.

Table 2.1: Overview of expressions used in Evolutionary Algorithms

2.2.2 The evolutionary cycle

It is many different variants of evolutionary algorithms, but the underlying
idea is same. Figure 2.1 shows a enumerated cycle for a generalized EA and
the corresponding enumerated explanation to each step is described below.

1. Initialize population: The cycle start with initialization of the first
population. The first population is often initialized randomly, but
smart initialization with problem-specific knowledge is common and
may be beneficial.

2. Evaluation of population: Step 2 evaluates the population and is
the first step in the main loop. All the individuals(solutions) in the
population is evaluated and assigned a fitness score. The fitness

9



2.2. EVOLUTIONARY ALGORITHM (EA)

score indicates the quality of an individual as a solution to the
problem(environment).

3. Parent selection: The individual(s) with highest fitness score is
chosen as parent(s) in step 3. There are also used other criteria for
parent selection, but fitness based selection is the most common.

4. Recombination and(or) mutation: Various recombination and/or
mutation operators are applied to the selected parent(s) in step 4.
This step results in offspring (new individuals) originating from the
selected parent(s) from step 3.

5. Survivor selection: The new individuals are evaluated in a process
called survivor selection. The individuals with highest score have the
opportunity to be part of the next generation. It is also common to let
the selected parent(s) from step 3 and new individuals from step 4 to
compete in survivor selection.

6. Termination: The EA loop will run until a stop criterion is met. The
most common stop criterion is numbers of generation others are time
and age based. Some EA terminates when no improvements are
detected within a number of generations.

Figure 2.1: Generalized EA cycle

10



2.2. EVOLUTIONARY ALGORITHM (EA)

2.2.3 Different types of Evolutionary Algorithms

EA is divided into several subtypes. The most known are Genetic
Programming (GP) , Genetic Algorithms (GA), Evolutionary Programing
(EP) and Evolutionary Strategies (ES). The differences between them are
not clear and well-defined because they are based on the same idea. Table
2.2 from Introduction to Evolutionary Computing[5] is an excellent attempt to
divide up and summarize the different types of EAs. This overview shows
typical problems each of the types are suitable for. Search and optimization
problems are most common. There is great variation in how genotype is
represented. Choice of representation is often done based on what best
suits the problem. Mutation and recombination are evolutionary operators
and can be implemented in many different ways.

Table 2.2: Summary of different types of Evolutionary Algorithms[5]

The goal of investigating the different types EA was to find a type that
can be combined and integrated with hardware. The book Introduction to
Evolutionary Computing by Eiben and Smith[5] describes and explains all
EA types in detail. As mentioned before, all EA types are based on the
same idea of natural evolution and share several features. The four main
types were formed over time and the contents of the Table 2.2 is a simplified
and generalized projection. There are many versions of the main types that
are designed for specific purposes and applications. Selection of EA type
best suited for this task are introduced and explained in section 4.1 EA type
suited for this task.

11



2.3. FIELD-PROGRAMMABLE GATE ARRAY (FPGA)

2.3 Field-Programmable Gate Array (FPGA)

Field-Programmable Gate Array (FPGA) is an integrated circuit organized
as an array of logic blocks. Logical blocks are hardware resources,
which can be configured to perform different logical functionality. Similar
to how logical ports can be weird in many ways to perform different
logical functionality. The configuration is usually defined by Hardware
Description Language (HDL). Configuration includes the functional logic,
routing between the logic blocks and definition of input/output blocks.

2.3.1 Structure

Figure 2.2 shows a overview of a typical FPGA structure.
1. Top-level view of FPGA: A two-dimensional grid (array) of Configur-
able Logic Blocks.(CLBs)
2. Interconnection: Around the CLBs are the routing tracks, which makes
interconnection between other tracks, I/O cells and other CLBs.
3. Configurable Logic Block(CLB): The CLBs is the smallest unit of pro-
grammable logic. The content of configurable logic is defined (or achieved)
through static Look-Up Tables (LUTs) and multiplexers.
4. Look-Up Tables (LUTs): A LUT contains storage cells. A storage cell
can store a single logic value 1 or 0. Multiple cells combined are used to
implement logic function.

Figure 2.2: FPGA structure[20]
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Fuse technology was used to configure the logical blocks in the early
stages. This type of FPGAs is circuit-size friendly and fast, but the
drawback is that they can only be programmed one time. Today, however,
it is more common to use RAM or flash memory to store the desired
configuration. The main advantages of RAM/flash based design are that
FPGA can be reprogramed (reconfigured) and perform more complex
configurations.

The use and number of FPGAs have increased dramatically last 20
years. The reason is FPGAs flexibility to implement circuits with different
functionality and allows developers to configure it according to their
requirements after manufacturing(In the “field”). The overall performance
of FPGAs has increased too. Many FPGAs today have millions of logic
gates, several megabit of RAM, I/O ports which can operate on 10
GHz[35]. Many advanced FPGAs also have embedded microprocessor
cores onboard. Aforementioned improvements entail many advantages,
but new challenges as well. Timing verification problem is one challenge
in newer FPGAs, due to fast I/O and data bus speed.

2.3.2 FPGA advantages

• Flexible: Implement circuits with different functionality according to
our requirements after manufacturing. (In the “field”)

• Reliable: Errors in the configuration can be corrected in real-time and
new configuration updates implemented, while the rest of the FGPA
can continue to function.

• Performance: Embedded microprocessor cores onboard, millions of
logic gates, several megabit of RAM and I/O speed.

• Price/Cost: Can use less logic because the configuration can be
changed depending on the task.

• Power: Smaller size resulting in reduced power consumption.

2.3.3 Reconfiguration

FPGAs are, like mentioned earlier, reconfigurable. This is a great
advantage compared to its competitor, Application-Specific Integrated
Circuit (ASIC), which is unchangeable. ASICs are consequently far more
expensive to produce in small quantity than FPGAs. Many FPGAs
are capable to perform partially reconfiguration. Partial reconfiguration
allows us to reconfigure certain part of the FPGA. This feature reduces
the reconfiguration time dramatically. Some FPGAs are also able to
execute partially run-time reconfiguration. This feature allows us to
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reconfigure certain part of the FPGA in its operational state. Partially
run-time reconfigurable FPGAs can be made with less logic because the
configuration can be changed depending on the task. Less logic means
smaller boards which reduces the manufacturing cost. Another advantage
of smaller size is reduced power consumption. With partially run-time
reconfiguration errors in the configuration can be corrected in real-time and
new configuration updates implemented, while the rest of the FGPA can
continue to function.

2.4 Microprocessor

A microprocessor, also known as the Central Processing Unit (CPU), is the
brain and workhorse in all computers and numerous electronic devices[1].
A single microprocessor works sequentially and executes instructions. An
instruction is an order to perform an arithmetic or a logical operation. This
operation uses storage areas called registers. The instructions are usually
quite simple and primitive, such as add, subtract, copy and compare two
numbers. Based on this operation, microprocessor manage to execute
complex operation very efficiently.

The biggest advantage of processors is flexibility, as it can be used for
many different purposes. A microprocessors properties and performance
vary according to which instructions that can be executed, numbers of bits
in a single instruction(bandwidth) and the clock speed which determines
how many instructions the processor can execute. Over the past few
years, processors have become significantly faster, but in spite of this is
has become much smaller and cheaper.

2.5 Evolvable Hardware(EHW)

Evolvable hardware uses evolutionary principles and refers to hardware
that can change its architecture and behaviour dynamically and independ-
ently by adapting to the environment[7]. The hardware has been created
according to an EA. A basic EA produces a population where each indi-
vidual represents one circuit solution. These solutions are evaluated based
on a fitness score. This score indicates how well a circuit solution satisfies
the environmental conditions and specification. New generations are made
by applying some random changes to existing circuit solutions. The new
generations are, like earlier generation, evaluated. After repeating this al-
gorithm over many generations, we will get a circuit solution with good or
satisfying behaviour.

Computers can run a given algorithm to evolve circuits and represent
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them by simulation. Computer simulation is the most efficient and fast
way to evaluate circuits. Another option is to implement circuits physically
in hardware. The last option is often implemented with the help of
reconfigurable devices, such as FPGAs (Field-Programmable Gate Arrays).

EHW is an important part of this task. A specific EA have been used
to create specialized circuits without manual involvement. FPGA is an
important and essential tool in EHW, but in recent years there have been
introduced new technology that provide new opportunities: The Zynq
platform combines the flexibility of a microprocessor and performance of
a FPGA. This technology is introduced in the next chapter, where it is
explained why and how it can be useful in EHW development.
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Chapter 3

Development tools: Hardware
and Software

This chapter covers the development tools that was used in this thesis. The
tools was mainly supplied by a well known technology company named
Xilinx Inc. Xilinx is known for programmable logic devices. Over the
past few years Xilinx have invested heavily in specialized software for
hardware development as well. Both hardware and software tools are
briefly introduced. The purpose of this chapter is to give the reader a basic
understanding of the tools. Table 3.1 shows an overview of hardware tools
and Table 3.2 shows an overview of software tools that has been used.

Software - Vivado System Edition
Name Version

Vivado High-Level Synthesis (HLS) 2015.1
Integrated Design Environment (IDE) 2015.1

Software Development Kit (SDK) 2015.1

ModelSim
Student

Edition 10.3c

Table 3.1: Software - Vivado System Edition

Hardware
Name Unit description

ZedBoard Development Board
Dual ARM® Cortex™-A9 MPCore™ Processor

Xilinx 7 Series 28nm programmable logic FPGA

Table 3.2: Hardware
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3.1 Hardware: The ZedBoard

Figure 3.1: The ZedBoard

The ZedBoard(Figure 3.1) was chosen as the development platform for this
thesis. The reason for this choice was mainly the Zynq device on board
and its architecture. The Zynq architecture is described in the next section.
It was also considered that this board offers excellent connectivity and
great support online. The name ZEDBoard stands for Zynq Evaluation
and Development Board [2]. The ZedBorad is one of the most popular
development and evaluation board for working with Zynq. Reasons for its
popularity are low-cost, large number of peripheral interfaces and wide
community-based support online. ZedBoard is made in collaboration
between the three parties consisting of: Xilinx -the producer of Zynq
device, Avnet -the distributer and Digilent -the board manufacturer. The
main core of this board consists of a Zynq(XC7Z020) device. The board
offers 256Mbit flash memory and 512MB DDR3 memory. There are two
oscillator clock sources, one at 100MHz, and the other at 33.3333MHz[2].

All peripheral interfaces on the ZedBoard:

• GPIO: in total, 9 x LEDs, 8 x switches, 7 x push buttons

• Audio codec and headphone

• Video (HDMI)

• Video (VGA)

• Organic Light Emitting Diode (OLED) display
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• Pmod interfaces (x 5)

• Ethernet

• USB-OTG (peripherals)

• USB-JTAG (programming)

• USB-UART (communication)

• SD card slot

• FMC interface

• XADC header

• Xilinx JTAG header

3.1.1 Zynq-7000 All Programmable SoC

Figure 3.2: Zynq-7000 AP SoC - Simple block diagram

In 2011 Xilinx introduced Zynq-7000 All Programmable System on Chip. The
name Zynq originates from chemical element zinc(Zn)[2]. The chemical
element Zn can be mixed with other metals to form alloy with different
desirable properties. Like the chemical element Zn, the Zynq hardware
“element” can be applied to many different applications. Zynq is based on
the Artix-7 logic fabric, with a capacity of 13,300 logic slices, 220 DSP48E1s,
and 140 BlockRAMs.

Zynq is All Programmable (AP), which means that Zynq is able
to take advantage of software programming and in addition configure
programmable hardware[9]. System on Chip(SoC) means that this device
have all the common components of a computer(processing system)
integrated into a single chip[2]. Consequently, Zynq-7000 AP SoC is not
an ordinary FPGA, nor an ordinary microprocessor. It is a unique blend
of two technologies, which includes a Dual ARM® Coretex-A9 Processer
System (PS) and 7-series Programmable Logic (PL)[19]. The PS and PL, simply
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illustrated in Figure 3.2, have connections between which is known as
Advanced eXtensible Interface (AXI)[10]. AXI is industry standard interfaces,
which provides high bandwidth connection with low latency between the
PS and PL[2]. The compact architecture(Figure 3.3) of PS and PL with the
AXI interface allow Zynq users to combine software programmability of a
processor with hardware advantages of an FPGA. Other advantages of the
integrated design is lower power, lower cost and smaller form factor.

In the following paragraphs both PS and PL are described in detail.
The purpose of doing so is to prepare the reader for Chapter 4 Imple-
mentation where the main solution are explained. The goal is to combine
strengths of the PS and PL to create an architecture that draws the best of
both world.

Figure 3.3: Zynq-7000 AP SoC - Detailed block diagram[18]
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3.1.2 Processor System (PS) Dual-core ARM® Coretex-A9

The PS can roughly be divided into four major functional units[17]: Applic-
ation Processor Unit (APU), I/O peripherals(IOP), Datapath (interconnec-
tion and interfaces) and Memory resources.

Application Processor Unit (APU)

APU is the core of the PS (Figure 3.4). Main component in APU is the
Dual-core ARM® Coretex-A9 processors with dedicated cache and cache-
controllers. The Dual-core ARM Coretex-A9 processor is a so-called "hard"
processor meaning that it exists as a dedicated and optimized silicon
element on the card.

The letters in ARM stands for Advanced RISC Machines[24]. ARM
processor is based on RISC architecture which is designed to execute
computer instructions at high speed. The ARM Coretex-A9 processor can
operate up to 1GHz and each of the cores have dedicated 32KB level 1 cache
and cache-controllers. The cores share level 2 cache of 512KB. Both cores
include the NEON and VFP extensions for single instruction multiple data
and double-precision floating point operations respectively[30]. The Dual-
core ARM Coretex-A9 processor plays a key role in the main solution in
this thesis. The processor boots up first and controls the loading of the PL.
More details about the application and structure can be found in chapter 4
Implementation.

Figure 3.4: Application Processor Unit (APU)
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I/O peripherals(IOP)

The most common I/O peripherals is provided by Zynq with built-
in support (Figure 3.5). The supported peripherals are USB, Ethernet,
SD/SDIO interface, CAN, SPI, I2C, UART and GPIO[17]. There are tow
instance of each peripherals and four instance of GPIO. The Multiplexed
I/O (MIO) is used to map the peripheral ports to the pins out of the device.
The I/O peripherals are selected through an easy and straightforward GUI
provided by tools. Xilinx Design Tools are described in section 3.4. Which
peripherals and how they are used in this thesis is described in Chapter 4
Implementation.

Figure 3.5: I/O peripherals(IOP)

Datapath (interconnection and interfaces)

The AMBA(Advanced Microcontroller Bus Architecture) is responsible for
moving data between endpoints (Figure 3.6). The AMBA infrastructure is
the basis for the unique PS-PL solution offered by of Zynq. Without the
AMBA infrastructure the Zynq would be a twofold chip with an isolated
processor and FPGA without any interconnection between them or the
peripherals. AMBA can be divided in to two types of interconnections:

• Internal PS data interconnections:

1. Central interconnect enables other interconnectors to commu-
nicate.

2. IOP master/slave interconnects enables transfers of data to or
from specific I/O peripherals

3. OCM interconnect provides access to on-chip memory for APU.
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• AXI (PS-PL) data interconnections: The AXI(Advanced eXtensible
Interface) handles data between PS-PL and consists of three type.
Table 3.3 shows a summary of AXI interfaces between PS and PL.

1. Memory interconnect which enables data transfer between
PL and PS memory resources(DDR). Uses Accelerator co-
herency port(S_AXI_ACP) for cache and High Performance
ports(S_AXI_HP) for On Chip memory.

2. Master interconnect(PS master) which enables data transfer
between PS in master mode and PL in slave mode and uses
General Purpose master ports(M_AXI_GP0)

3. Slave interconnect(PS slave) which enables data transfer
between PS in slave mode and PL in master mode and uses Gen-
eral Purpose slave ports(S_AXI_GP0)

Figure 3.6: Datapath (interconnection and interfaces) and Memory re-
sources

AXI interfaces between PS and PL
Interface Name Interface Description Master Slave
M_AXI_GP0-1 General Purpose PS PL
S_AXI_GP0-1 General Purpose PL PS
S_AXI_ACP Accelerator Coherency Port PL PS

S_AXI_HP0-3 High Performance Ports PL PS

Table 3.3: AXI interfaces between PS and PL[17]

The datapath (interconnection and interfaces) are defined through GUI
provided by tools, this is described in the section 3.2 Xilinx Design Tools.
It should be revealed that the AXI data interconnections are a part of the
main solution of the thesis.
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Memory resources

It is On-Chip memory in PS which constitutes of 256KB SRAM, ROM for
boot code and BRAM. PS also have access to external memory through
tow integrated memory interfaces. DDRx dynamics memory controller are
used for DDR memory and Flash/static controller for SRAM, QSPI and
NAND/NOR Flash.

3.1.3 Programmable Logic (PL) 7-series FPGA

PL stands independently from PS and has separate on-chip power plane,
memory, clock and reset management (Figure 3.7). A set of JTAG ports
are provided in the PL for independent programming and debugging. PL
is based on Xilinx Artix device and consists primarily of general purpose
FPGA logic fabric(28 nm). Structure and content of general purpose FPGA
logic fabric is explained earlier in Chapter 2 Background, section Field-
Programmable Gate Array (FPGA). What distinguishes PL from ordinary
FPGAs is special communication interfaces. GTX transceivers are a high-
speed communication interface block which are embedded into the PL.
They are able to support a number of standard interfaces including PCI
Express, Serial RepidIO, SCSI and SATA[2].

Figure 3.7: Programmable Logic (PL) 7-series FPGA
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3.2 Software: Xilinx Design Tools

Designing hardware and implementing software are both challenging
tasks. However connecting the two parts together so they function as one
system is even more challenging and complicated. Xilinx has developed
tools (Figure 3.8) to simplify and streamline the hole process. This section
addresses the various software tools that are used in this thesis and
explains their purpose and function. Chapter 4 Implementation addresses
the detail about what was done in each of the tools.

Figure 3.8: Xilinx Design Tools

3.2.1 Vivado Design Suite System Edition

Vivado Design Suite is a collection of development tools provided by
Xilinx. The Vivado collection consists of several specialized tools and
are designed to address various tasks at many stages of embedded
development. The System Edition version was used in this thesis and an
overview of the functions are listed in Table 3.4.

Vivado Design Suite System Edition
Pillars of Productivity Features

Implementation
Synthesis and Place and Route

Partial Reconfiguration

Verification

Vivado Simulator Vivado Device
Programmer Vivado Logic Analyzer
Vivado Serial I/O Analyzer Debug

IP (ILA/VIO/IBERT)

Integration
Vivado High-Level Synthesis System

Generator for DSP

Table 3.4: Vivado Design Suite System Edition[14]
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3.2.2 Vivado Integrated Design Environment (IDE)

Vivado Integrated Design Environment provides a range of powerful
features and have an intuitive Graphical User Interface (GUI). Everything
that is done by using the GUI, can also be done using Tool Command
Language (TCL) format where commands are entered directly into a TCL
terminal or by running TCL script from file. In this thesis Vivado IDE
was used to synthesize/compile the design, examine RTL diagrams, timing
analysis and design simulation. In other words: all the HW structure for
ZYNQ were defined and built through the Vivado IDE.

Most important features supported by Vivado IDE[15]:

• Register-transfer level (RTL): Design in VHDL, Verilog, and System-
Verilog. Used to describe hardware design.

• Intellectual property (IP) Integrator: Integration for predefined
Xilinx Targeted Design Platforms building blocks[12].

• Vivado Simulator: Behavioral simulation.

• Vivado implementation for place and route: Pin- and device-
planning and visualisation facilities.

• Vivado Synthesis: Synthesis tool for 7 series and subsequent devices.

• Vivado Power Analyser: For evaluating the power consumption of
designs operating on a target device.

• Vivado serial I/O and logic analyser For debugging.

• Static timing analysis and Bitstream generation

3.2.3 Xilinx Software Development Kit (SDK)

Xilinx Software Development Kit (SDK) is a complete embedded software
development environment. Xilinx SDK is based on standard Eclipse
IDE which provides a well known intuitive GUI. Unlike ordinary Eclipse
IDE, Xilinx SDK is highly specialized embedded software development
environment for Xilinx embedded processors including Zynq.

Most important features supported by Xilinx SDK[13]:

• C/C++ code editor and compilation environment with error naviga-
tion

• Project management and archiving
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• Source-level debugging and profiling of embedded targets

• Reference software applications

• Xilinx Microprocessor Debugger (XMD), used to communicate with
Xilinx embedded processors using JTAG.

• SoC programmer, used to program the Xilinx SoC with bitstream.

• Flash programmer and First Stage Boot Loader(FPBL) generator, used
for automatically bootloading embedded software applications from
Flash.

• Linker script generator for mapping application image across the
hardware memory space.

Xilinx SDK supports bare-metal and operating system-based applic-
ations. GCC compilers and GNU GDB Debugger are included and pre-
configured for bare-metal application. Xilinx SDK provides directly inter-
face to Vivado embedded hardware design environment. Other advant-
ages of using Xilinx SDK are embedded development plug-ins, Xilinx-
specific tools and source code libraries. Xilinx SDK is a complete package
making embedded software development easier and more seamless than
previous development tools.

Another key feature of the Xilinx SDK is profiling. Profiling is
a form of program analysis that is used to aid the optimisation of a
software application[2]. Profiling gathers information about memory
usage, execution time of function calls, frequency of function calls and
instruction usage. Profiling results are used to identify bottlenecks in the
code execution and is an important tool to accelerate an algorithm on Zynq.

3.2.4 Vivado High-Level Synthesis (HLS)

In previous paragraphs, it was emphasized that Vivado IDE focuses on
hardware creation and Xilinx SDK focuses on software development.
Vivado High-Level can be placed between the Vivado IDE and Xilinx
SDK. Vivado HLS transforms C, C++ or System C designs into RTL
implementations. Vivado HLS design flow is displayed in Figure 3.9. The
RTL implantation can be synthesized and implemented directly into Xilinx
AP devices without the need to manually create RTL[16]. In other words,
HLS accelerates IP creation process. HLS performs interface level and
functionality level design analysis. The interface analysis addresses top-
level connections of the design. The functionality analysis addresses the
algorithms that is implemented.
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Figure 3.9: Vivado HLS Design Flow[2]

3.2.5 ModelSim

ModelSim is a powerful simulation tool provided by Mentor Graphics.
The hardware languages VHDL, Verilog and SystemC are compatible
languages. MoselSim is highly flexible and can be used to simulate
virtually any FPGA design. The user have many different options
to analyse and interpret simulation results. Simulation can either be
run through Graphical User Interface(GUI) or run automatically using
commands/scripts.
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Chapter 4

Implementation

This chapter gives an overview of the work done in this thesis. It start
with introducing the chosen EA approach followed by a detailed overview.
The overview includes all significant information the reader needs to
understand the structure, parameters and the purpose of the algorithm.
Next up is the development of the embedded Zynq design, which includes
both software and hardware implementation. The evolutionary algorithm
was implemented, verified and profiled.

4.1 EA type suited for this task

The goal of investigating the different EA types in the Background chapter
was to find a EA that can be combined and integrated with hardware.
A specialized version of GP called Cartesian Genetic Programming(CGP),
was the result of this investigation. It should be mentioned that CGP also
was recommended by supervisor. CGP is a highly efficient and flexible
form of GP. CGP was originally developed for evolving digital circuits[28]
and earlier work[25, 32] could confirm that this approach was the right
choice.

The software implementation og the CGP algorithm is added to the
Appendix. The different part of CGP algorithm presented is the main
focus in this section. The CGP approach is used throughout the thesis
because it provides some special benefits in the development of hardware
architectures. The last statement will be justified and presented clearly in
the following sections.
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4.2 Cartesian Genetic Programming(CGP)

Cartesian Genetic Programming (CGP) is a form of Genetic Programming
(GP) proposed in 2000 by Julian F. Miller[28]. Miller originally invented
CGP as a method for the purpose of evolving digital circuits. The candidate
solutions are represented in the form of directed acyclic graphs[29]. These
graphs are two-dimensional grid of computational nodes. The simple
structure of two-dimensional graphs is versatile and can represent many
computational structures including mathematical equations, computer
programs, natural networks and digital circuits[33]. Since CGP was
originally developed to evolve digital circuits, one can assume that the two-
dimensional graphs was inspired by classic FPGA block structure. Figure
4.1 is an attempt to illustrate the similarities between (1) a two-dimensional
CGP graph, (2) a digital circuit and (3) FPGA block structure. The basic
idea is that a given instance of CGP graph can be implemented as an
reconfigurable circuit in the FPGA.

Figure 4.1: 1) A two-dimensional CGP graph. 2) Phenotype for a digital
circuit evolved by CGP. 3) Generalized FPGA block structure.
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All the parameters in the implemented CGP algorithm was selected
to fit the specific task/problem and was continuously adjusted during
the development phase. These parameters form the basis for the two-
dimensional graph and varying the different parameters results in different
kinds of graph topologies (Figure 4.2).

These parameters are number of columns(Nc), the number of rows(Nr) and
level-back(l). The two-dimensional grid of computational nodes consists of
Nc ∗ Nr nodes(Ln). Node inputs are connected to either the output of a
node in a previous column or the top-level program(graph) inputs. These
restrictions in node connection do not allow feedback and results in an
acyclic graph form. The program inputs are given the addresses form 0 to
N minus 1, where N is the total number of graph inputs. Outputs from
nodes are given addresses in increasing order along with the columns,
starting from ni to ni + Ln − 1, where Ln is total number of nodes in the
graph. Each node can perform one predefined primitive function F. The
level-back parameter l controls the connectivity of the nodes. Level-back
regulates which columns a node can get its inputs from. In the scenario
where l = 1, a node can only get its inputs from a node in the first left
column. With l = 2 a node can get inputs from nodes in the first left and
second left column. l can be set to number of columns(Nc) if the user wants
to allow nodes to connect any nodes on their left. Varying the different
parameters; number of columns(Nc), the number of rows(Nr) and level-
back(l) results in different kinds of graph topologies.

Parameters in the implemented CGP algorithm:

1 // CGP parameters :
2 i n t inputs ;
3 i n t outputs ;
4 i n t c o l s ;
5 i n t rows ;
6 i n t lback ;
7 i n t nodeinputs ;
8 i n t nodeoutputs ;
9 i n t nodefuncs ;

Figure 4.2: Two-dimensional grid of computational nodes
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4.2.1 Genotype and Phenotype

The genotype consists of all information about CGP solutions. The genes
that make up the genotype are bit-values (Figure 4.3). We encode the
genotype to acquire the phenotype, which is the actual representation of
the CGP solution. During the decoding process, of genotype to phenotype,
some genes and their corresponding nodes are ignored. They are ignored
because the node outputs are not used in any calculation of output data.
These nodes and their genes are referred as non-coding and will not appear
in the phenotype. This means that CGP solutions are carrier of unknown
information (properties) and characteristics. This phenomena is often
referred as neutrality because the non-coding nodes have a natural effect on
the fitness[28]. The influence of neutrality in CPG have been investigated
in detail by Julian F. Miller, the inventor of CGP[27, 28, 34]. The results of
these experiments have confirmed that neutrality is extremely beneficial
to the efficiency of the evolutionary process. In one experiment Miller
showed that percentage of inactive nodes could be as high as 95%[27]. In
an other experiment Miller is able to clearly illustrate the importance of
neutrality[34]. The results from this experiment is shown in Figure 4.4. In
the first set of runs(3) neutral drift was allowed and in the other set of
runs(+) neutral drift was not allowed. The result of the fist case was 27
successfully evolved solutions. Without neutral drift no solutions was able
to meet the minimum condition of a successful solution.

Figure 4.3: Example of a population with genome(encoded). The first(1)
solution is a parent and four(2-5) children.

Figure 4.4: Experiment that illustrates the importance of neutrality[34]
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4.2.2 The genome: Structure and constraints

The genes that make up the genotype are integers of fixed structure and
length. The genotype is made up by connection genes, function genes and
output genes[26].

• The function genes(F) represent integer addresses of functions(F) in
a look up table. Programmable nodes perform the corresponding
function(F) on its input data.

• The connection genes(C) represent integer addresses which are used
to describe the interconnection between all the programmable nodes.

• The output genes(O) are addresses of nodes where the program
output is taken from. Output genes are added to the end of the
genotype.

Figure 4.5: General CGP genome structure

The genotype representation is highly constrained and these con-
straints must be obeyed under genome initialization and mutation[26]. The
function genes(F) must represent valid look-up table addresses. Function
look-up table contains n f numbers of primitive functions defined by the
user. Consequently F must obey:

0 ≤ F ≤ nr (4.1)

Like function genes(F), connection gene(C) must also follow some
restrictions. If we have a node in a column j and j is grater or equal to
the user defined level-back parameter l, then C values must obey: (If j ≥ l)

ni + (j − 1)nr ≤ C ≤ ni + jnr, (4.2)

where ni is the number of program input and nr is number of rows.

If column number, j, is smaller than level-back parameter l, the C
values must obey: (If j < l)

0 ≤ C ≤ ni + jnr (4.3)
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Finally, the output genes O which can connect to any node or input. O
can therefore have a value from 0 to number of inputs(ni) plus number of
nodes in the graph(Ln):

0 ≤ O ≤ ni + Ln (4.4)

A single Functional Unit with function gene, connection gene and
output gene:

1 // Funct ionalUnit :
2 // Genom : [ ’ F1 ’ , ’ F2 ’ , ’C ’ ]
3 // B i t : [ ’ [0−5 ’ , ’ 6 ’ , ’ 7−14 ’ ]
4 /*
5 __________________________________________________________
6 | ________________ _________________________ |
7 X−|−| P = X i f F1 = 0 \___P___| i f F2 = 0 then ( P >= C) |__|__t ( 1 )
8 Y−|−|_P_=_Y i f F1_=_1_/ | i f F2_=_1 then_ ( P_<=_C ) _| | f ( 0 )
9 | | | | |

10 | F1 F2 C |
11 |_______|___________________________|_____________|______|
12 F1 F2 C = C1C2C3
13 *///////////////////////////////////////////////////////////
14 s t r u c t FU {
15 i n t F1 [F1_LENGTH ] ;
16 i n t F2 ;
17 i n t C[CONSTANT_LENGTH] ;
18 } ;

4.2.3 The phenotype: Representation of a digital circuit

As mentioned in the introduction CGP can represent many different kinds
of computational structures. CGP was originally developed to evolve
digital circuits. The genome, introduced in the previous section, can easily
be encoded to a digital circuit. The most distinct way to illustrate the
encoding from genotype to phenotype is by an example[26]. In Figure
4.7 we have the evolved genome of a two-bit multiplier and Figure 4.8
represents the corresponding phenotype. Figure 4.6 is a help figure to
explain and illustrate the order of genomic elements: connection genes(C),
function genes(F) and output genes(O).

Figure 4.6: CGP genome with the different genes
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Figure 4.7: CGP genotype represents two-bit multiplier

The user-defined parameter in this example is set to ten columns
(nc = 10), one row (nr = 1) and the level-back parameter is set to ten
(l = 10). The latter allows nodes to connect to any other node on their left.
It is defined four logical functions and their corresponding addresses(F) in
a look-up Table 4.1. A two-bit multiplier multiplies two two-bit numbers
together and results in a four-bit number, which means that the CGP graph
requires four inputs and four outputs. In the evolved genome we have
some nodes that are marked with gray dotted line (Figure 4.7). These nodes
are referred as non-coding nodes because the node outputs are not used in
any calculation of circuit output. During the encoding process these nodes
are ignored, but in this example included with gray dotted lines.

Function gene(F): Logical function:
0 AND
1 NAND
2 XOR
3 OR

Table 4.1: Function lookup table for CGP example

Figure 4.8: CGP phenotype represents two-bit multiplier

The algorithm for genotype-encoding works recursively from the
outputs throughout the the graph to the inputs. The process begins with
analysing the output genes. The output genes contains addresses of active
node. The respective (active) nodes are evaluated to find other active nodes
their genome require. This step is repeated until all the active nodes are
found in the graph. The process is complete when addresses of input
genes are found. This decoding algorithm does not evaluate non-coding
(inactive) nodes, thus they will not be translated to the phenotype.
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4.2.4 Mutation

Point mutation was used in CGP algorithm. This type of mutation implies
that different part of the genotype(connection-, function-, and output-
genes) can randomly be chosen and changed to another valid random
value. The various parts are treated slightly differently when they are
chosen to be mutated:

• Mutation of the function genes(F): If a function gene is chosen for
mutation, then a valid address from the function lookup table is
chosen as a replacement. The new address is selected randomly.

• Mutation of the connection genes(C): If a connection gene is chosen
for mutation, then there are two possibilities. Connection gene can
either be replaced by a valid address of a randomly chosen node
output or a randomly chosen address of a program input.

• Mutation of the output genes(O): Mutation of output gene is
managed at the same way as the connection gene.

The mutation rate (µr) is a percentage of total number of genes. There
is no definitive answer to what the ideal mutation rate should be. It often
requires some experimentation and trailing to find the optimal mutation
rate for a specific problem. As a rule of thumb, one should use about 1%
mutation if a maximum of 100 nodes are used[26].

4.2.5 Recombination

Recombination or crossover operators was not used in CGP algorithm.
The reason for this was the strict genome constraints and structure. The
genome consists mostly of addresses. Combining two addresses will
most likely not result in a new valid address. In order to have a valid
and functional genome, all the addresses must be valid. Switching two
complete connection genes would be complicated because swapping can
easily lead to violations of conditions set by level-back parameter(l). Taken
this outcome into consideration, recombination has not been implemented
in this thesis.

4.2.6 Fitness

The quality of a solution or individual is measured with a fitness score.
Fitness score is calculated by at fitness function that estimates how close
the a solution is to a given goal or an optimal solution. Calculation of
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fitness score is a process which is divided in two. The first part consists
of decoding CGP chromosome in terms of Function genes(F), Connection
gene(C) and Output gene(O). The second part tests the quality of the
solution with respect to the training vectors. The fitness function returns
a fitness score for each solution. Fitness function can be studied in the
attached code.

4.2.7 Population(1+ λ) and parent selection

1+ λ population is commonly used in the CGP evolutionary algorithm. In
this thesis λ was set to 4 which means that each population consists of
five individuals(1+4). This is a reasonable size in terms of computational
power needed to evaluate the population and adds sufficient variation in
a population. The parent is derived from the previous generation and
four children originating from the same parent. The offspring with higher
fitness scores than the parent is chosen as the parent of the next generation.
To create more redundancy in CGP genotypes and increase the influence of
neutrality a new criterion was added for selecting the next parent (see line
10). An offspring with same fitness score can replace the current parent.
The effect of neutrality is described in section 4.2.1.

The main loop CGP algorithm:

1 i n t h ighes t = 0 ;
2 makeRandomStartIndividuals ( ) ;
3 evalRandomStartIndividuals ( ) ;
4 makeFirstGeneration ( ) ;
5 unsigned long long gen = 0 ;
6 f o r ( gen = 0 ; gen < 10000 ; gen++) {
7 gen = gen + 1 ;
8 eval ( ) ;
9 makeNewGeneration ( ) ;

10 i f ( globScore > highes t || globScore == highes t ) {
11 highes t = globScore ;
12 rep laceParent ( globScore ) ;
13 }
14 p r i n t f ( " Score : %d (%d ) GEN: %d\n" , globScore , highest , gen ) ;
15 p r i n t f ( " Score : %d (%d ) \n" , globScore , h ighes t ) ;
16 }
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4.3 Zynq design

The implemented CGP algorithm was tested, integrated and accelerated on
Zynq. This section addresses the the work that has been done in order to
realize the Zynq embedded design. Most of the work has been done within
the Xilinx environment that follows a distinctive development flow. Zynq
development flow is quite different from the traditional way to develop
embedded systems. The following two subsections will briefly describe
the main differences. The purpose is to give the reader an overview of the
development method that has been used in this thesis.

4.3.1 Traditional embedded design flow

In traditional or standard embedded systems, the development flow of
software and hardware design is usually isolated from each other (Figure
4.9). After the software and hardware designs are successfully developed
they are merged together in to a two-chip solution. Software is usually
implemented on a standalone processor and hardware design on costume
Application-Specific Integrated Circuit (ASIC) or FPGA. In a typical two-
chip solution the main drawback is limited connectivity between hardware
and software processor. Isolated hardware and software development-
flow may also result in longer development time due to time spent on
integration and optimization between two separate entities.

Figure 4.9: Traditional/standard embedded design flow
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4.3.2 Zynq embedded design flow

The integration of processing system with programmable hardware on one
single-chip presents unique advantages over standard embedded two-chip
systems. Unlike a traditional processor, the Zynq PS has a configurable
set of built-in peripherals and direct access to the the PL. This is in
particular important during the development phase. Xilinx provides
powerful software tools to streamline the development flow (Figure 4.10).
Xilinx Design Tools introduced in section 3.2 is used in this thesis. The
main advantages of these tools is that software and hardware can be
coordinated early in development phase and time spent on integration and
optimization is reduced significantly.

Figure 4.10: Design flow using Zynq-7000 AP SoC

4.4 Zynq Hardware

Vivado IDE was used to configure, design and build the Zynq hardware
platform. This hardware platform defines how the ARM PS is configured
and provides customize hardware design for the PL. The hardware
platform was exported out of Vivado for use in Xilinx SDK when
successfully build.
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4.4.1 ARM Processing System

The first step was to create a new RTL-project in Vivado and target the
Zynq device, which in this case was the ZedBoard XC7Z020CLG484. The
IP Integrator was used to create a new block design. An embedded ARM
processor core with IP-name ZYNQ7 Processing System (Figure 4.11) was
added to the project. In the following paragraphs, PS will be configured so
it meets the requirements for this thesis.

Figure 4.11: ZYNQ7 Processing System

4.4.2 I/O Peripherals

Zynq PS have configurable set of built-in peripherals. The required
peripherals was enabled through GUI(Figure 4.12) that appears when one
double-click the PS block. UART peripheral was enabled and mapped.
UART was added for communication with PS and baud rate was set to
115200. Bank voltages was set to LVCMOS 3.3V for Bank 0 and LVCMOS
1.8V for Bank 1. Other required peripherals that were enabled was USB
and GPIO. SD card and Ethernet was also enabled, but was not used in this
thesis.

Figure 4.12: Zynq Block Design.
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4.4.3 Memory and System clocks

System clocks and memory must be configured correctly before the Zynq
PS can run software applications. System clocks was defined in the Clock
Configuration menu. Input frequency was set to 33.33 MHz, CPU frequency
to 666.66 MHz and DDR frequency to 533.33 MHz. The PL fabric clock
was enabled and set to 100 MHz. These clock frequencies were set upon
recommendation from Zynq data sheets and claims to give the Zynq design
the most optimal speed.

DDR(3) memory was enabled and configured in the DDR Configuration
menu. Memory settings and parameters must be specified for ZedBoard
that was used in this experiment. The memory part on ZedBoard was
MT41J128M16HA-15E. Other parameter was automatically updated after
memory part was selected. The DRAM Bus With was set to 32-bit and
read/write functions was enabled.

4.4.4 AXI interconnect

AXI Interconnect blocks was added for interaction and communication
between PS and PL. Two instances of AXI Interconnect blocks were selected
from IP directory. The PS and AXI Interconnect blocks must be customized
in order to be connected together. AXI blocks were configured to have
one master interface and one slave interface. For PS, general purpose
AXI master interface(M_AXI_GP0 and M_AXI_GP1) was enabled in PS-PL
Configuration menu. The missing ports of the PS-block appeared after the
customization and then all blocks was successfully wired together (Figure
4.13).

Figure 4.13: Zynq Block Design with AXI Interconnect blocks
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4.4.5 MicroBlaze Soft Processor

MicroBlaze is a soft-core processor which means that it is entirely imple-
mented in the general-purpose memory and logic fabric (PL) of FPGAs. It
is based on a RISC architecture and support a variety of embedded applic-
ations. A MicroBlaze processor was added to an new block design. AXI
interconnect was added to allow PS-PL connectivity. Other vital blocks
were automatically added and connected using auto connection function
in Vivado.

Figure 4.14: MicroBlaze Block Design

4.4.6 Building and exporting the hardware platform

The Zynq hardware platform was successfully validated with integrated
auto validation function. Zynq hardware platform was ready to be
exported to Xilinx SDK for software development. A top-level HDL
Wrapper was created in Vivado. HDL Wrapper is the Zynq hardware
platform defined in a Hardware Description Language, which in this case
was VHDL. The design was synthesized and bitstream was successfully
generated. Hardware was exported to Xilinx SDK and bitstream was
included. The directory structure of Zynq Hardware platform contains
some specific files. Overview of file names and what they contain are found
in Table 4.2.
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File name Description:

ps7_init.c
Defines all the register settings required for

initialize the ARM processing system
(C-format)

ps7_init.h Header file used by ps7_init.c

ps7_init.html
Readerfriendly information file that

describes the ARM processing system

ps7_init.tcl
Defines all the register settings required for

initialize the ARM processing system
(TCL-format)

design_1.xml Customized hardware specification file
design_1_wrapper.bit PL configuration bitstream

Table 4.2: Zynq hardware platform file overview

4.5 Zynq Software

The complete Zynq hardware platform was exported directly to Xilinx SDK
and appeared in the Porject Explorer(Figure 4.14). SDK uses the concept
of workspaces to hold information about the software development work.
Workspace hold on to SDK settings, software project files, and logs. The
next sections addresses further development and implementation of Zynq
software in Xilinx SDK.

4.5.1 Standalone Board Support Package(BSP)

First step in Xilinx SDK is to create a Standalone Board Support Package
(BSP). Standalone environment provides basic features such as standard
input/output functions and access to processor hardware. BSP is a
collection of libraries and drivers that will form the lowest layer of the
application software [11]. BSP must be crated first because the software
application runs on top of it.

4.5.2 Application Project

Next step was to crate a new Application Project and link it to the previously
made BSP. The CPG algorithm, described in section 4.2, was imported as
source to the Application Project. Figure 4.15 shows the Project Explorer
window in Xilinx SDK. Here we can see the (1)Zynq embedded hardware
design, (2)C/C++ software application and the (3)BSP. Figure 4.16 is a
graphical illustration of the SDK application development flow. CGP
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algorithm was built and tested through many iterations. Several changes
in the algorithm were made to achieve optimal results.

Figure 4.15: Xilinx SDK Project Explorer

Figure 4.16: SDK Application Development Flow

4.5.3 Programming the Zedboard

Zedboard was connected to the host computer in order to enable the
embedded ARM processor and run software applications. Two micro-
USB cables was connected to the JTAG(pin:J17) and UART(pin:J14) on the
ZedBoard. The jumpers was set to JTAG mode and the board was powered
up. Baud rate was set to 115200bps and 8 bits data. Serial connection
was established via COM-port for the USB-UART. The purpose of the
serial connection was to track the processor activity. After the set up, the
programming was done through Xilinx SDK. The Zynq design (bitstream)
was programmed into the PL and the ARM processor was configured. The
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ELF-file was created and software application was successfully executed
by the ARM processor.

4.6 Measuring Performance

The CGP algorithm was implemented as software-only solution. The
aim was to accelerate this solution, but before that could be done it was
necessary to measure system performance. Vivado Analyser tools was
used to confirm that the algorithm was properly executing and determine
if the software was meeting the performance specification.

4.7 Profiling

In order to accelerate the solution an analysis was carried out. The analysis
consisted of identifying software bottlenecks using profiling. A bottleneck
is the same as the critical path. This is defined as the path in which the
longest amount of time is spent.

Profiling was perform in Xilinx SDK (Figure 4.17). The Build Settings
for CGP application and BSP was modified to enable profiling. The CGP
algorithm needed several modifications in order to get the best profiling
results. The purpose of profiling was to find which part(function) or
parts(functions) of the code was taking the longest amount of time to
execute. Xilinx SDK saves the profiling results in a file called gmon.out.
The result of profiling was evaluated and a candidate was selected for
moving to a hardware accelerator (PL). Hardware accelerator was realized
by making a custom IP in Vivado HLS, this is described in the next section.

Figure 4.17: Profiling result
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4.8 Building the Hardware Accelerator

This was an attempt to build a hardware accelerator to improve the
performance of CGP (high-level) algorithm. This process aims to take out
a part of the CGP algorithm and replicate it into a custom IP. This section
explains how the hardware accelerator was built in Vivado HLS.

4.8.1 Accelerator Construction in Vivado HLS

It is not possible to realize all type of code in HW and for that reason Vivado
HLS have impose some restrictions to the high-level function. Various
changes had to done with the selected function in order to be moved out to
HW as a custom IP. For example, memory allocation and system calls was
not allowed. Recursive calls in the high-level function had to be replaced.
These are typical examples that can not be implemented in HW. Vivado
HLS also require a test program(testbench) that tested the functionality of
the selected function.

A new project was created in Vivado HLS. Source files, the function
and test program, was imported. Function name and board information
was provided in the creation. The next step was to run the test program
to verify that the expected results appeared. The purpose of testing
functionality, before custom IP generation, was to ensure which results was
to be expected after hardware acceleration.

The high-level function was synthesized and translated into auto
generated RTL source files. Synthesis report was generated and gave useful
hint about the final accelerated design. The report contained information
about performance, area estimates and latency (Figure 4.18).

4.8.2 Co-simulation and export of the IP core

After synthesis, Co-simulation (Figure 4.19) was performed to check
whether the synthesis was proceeded correctly and to check that the
generated RTL code have the expected functionality. The same test
program was used and expected results was returned by the generated RTL
code.

The last thing that was done in Vivado HLS was exporting the RLT
as an IP core (Figure 4.20). Programming languages was set to VHDL and
the rest of the IP core exporting was straight forward and easy task since
Vivado HLS handled the rest.
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Figure 4.18: Synthesis report

Figure 4.19: Cosimulation report

Figure 4.20: Exported IP core Vivado IP catalogue
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4.9 Integrate the Custom IP with Embedded System

Work continues in Vivado IDE. The purpose was to integrate the custom
IP with rest of the embedded system. HLS project from previous section
was targeted and the custom IP was imported to the IP-catalogue by using
the Project Manager. The custom IP was added to the block design. Zynq
PS block and AXI Interconnect was added and customized. The Zynq
embedded system was connected and functionality verified(Figure 4.21)
Performance was measured and system was profiled in the same way as
described in Section 4.7.

Figure 4.21: Custom IP with Zynq Embedded System

New block design was created for the Microblaze embedded system.
Figure 4.22 shows the first attempt to build the Microblaze design in the
same way as the accelerated Zynq design. Unfortunately, MicroBlaze
design could not synthesize because of some connectivity errors. It was
made several attempts to get a working system, but due to shortage of
time, it was not completed. It should be noted that it may not be possible
to combine/accelerate a MicroBlaze system with a custom IP.

Figure 4.22: Custom IP with Microblaze Embedded System (Unsuccessful
attempt)
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Chapter 5

Experiments and Result

5.1 Experiments

A CGP algorithm was created to investigate the acceleration potential by
implementing and running it on different hardware levels. The algorithm
was exactly the same through all experiments. It is also important to
emphasize that the number of generations, EA parameters and final result
of the algorithm was same for all experiments.

These experiments were conducted:

1. MicroBlaze Soft Processor: Soft-core processor implemented on the
PL part of the Zynq device.

2. ARM Cortex-A9 (PS): Hard-core processor on the PS part of the Zynq
device. One ARM core was used to execute CPG algorithm (singe
thread).

3. i7-Q740 CPU: 64-bit Quad-Core i7 CPU on Sony laptop. One single
core was used to execute CPG algorithm (singe thread).

4. MicroBlaze and Custom-IP (PL): Soft-core processor implemented
on the PL part and a (accelerated) custom-IP. The algorithm was not
execute on this design because it was not successfully implemented.
Se section 4.9.

5. ARM Cortex-A9 (PS) and Custom-IP (PL): Hard-core processor on
the PS part and a (accelerated) custom-IP on the PL.
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5.1.1 Comparison

EXPERIMENTAL RESULTS

Experiments: Time(s):
Acceleration

(1)
MicroBlaze Soft Processor 4,236 1

ARM Cortex-A9 (PS) 2,396 1,8
i7-Q740 CPU (laptop) 1,253 3,4

MicroBlaze and Custom-IP (PL) XX XX
ARM Cortex-A9 (PS) and Custom-IP (PL) 0,515 8,2

Table 5.1: Experimental results

5.1.2 Profiling results

MicroBlaze Soft Processor:

Figure 5.1: Profiling results: MicroBlaze Soft Processor

ARM Cortex-A9 (PS)

Figure 5.2: Profiling results: ARM Cortex-A9 (PS)
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ARM Cortex-A9 (PS) and Custom-IP (PL)

Figure 5.3: Profiling results: ARM Cortex-A9 (PS) and Custom-IP (PL)

5.2 Discussion

The results of the profiling (Figures 5.1 and Figures 5.2) shows that
calc_fitness function was a major bottleneck in the CGP algorithm.
Calc_fitness function uses up to 75% of execution time. This bottleneck was
resolved by moving the calc_fitness function into hardware as a custom IP
core. Figure 5.3 shows the profiling results of the accelerated solution. Here
the calc_fitness function uses (only) 33% of execution time. This means 42%
reduction.

The results in Table 5.1 clearly shows that hardware acceleration gave
good results. The accelerated solution was 8 time faster than the other Zynq
implemented solutions.

The execution time of the algorithm on the laptop(i7 CPU) was
measured differently than others. Gettimeofday function was used to
measure the execution time on i7 CPU whereas the other measurements
were measured by Xilinx tools. Due to this difference measurement I assert
that the i7 CPU should have higher acceleration than the value(3,4) in the
table.

The unfinished and untested MicroBlaze accelerated solution was
placed between i7 CPU and ARM accelerated solution in Table 5.1.
My assumption is that this solution should be faster than i7 CPU
implementation, but somewhat slower than ARM accelerated solution.
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Chapter 6

Conclusion and proposals for
further work

6.1 Conclusion

The primary goals of this thesis was to design and implement a hardware
friendly Zynq-based CGP algorithm and investigate the acceleration
potential. It was made several attempts to find out if it was possible to
increase the speed of the CGP algorithm by implementing single part of
algorithm as hardware component.

The Zynq-platform is a unique blend of two technologies, which in-
cludes a Dual ARM® Coretex-A9 Processer System and 7-series Program-
mable Logic. This means that Zynq is able to take advantage of software
programming and in addition configure programmable hardware both at
the same time. PL runs heavy data path algorithms and take advantage of
HW parallelism. PS controls and updates elements of the CGP algorithm.
This thesis shows that it is possible to increase the speed of the CGP al-
gorithm by implementing single part or parts of the evolutionary opera-
tions as hardware components.

6.2 Further Work

Xilinx Zynq-7000 AP SoC platform has the potential to become the next
revolutionary step in evolvable hardware design.

The most important future work for this thesis is to complete
MicroBlaze accelerated solution and confirm my assumptions. It is also
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Specific tasks for further work:

- Use multiple cores on ARM processor.

- Implement a own IP core and compare it up to automatically generate
the IP core
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Appendix A

CGP algorithm code

1 # include " h _ f i l e . h "
2 # include " f i t n e s s . h"
3

4 //Global v a r i a b l e d e c l a r a t i o n s
5 i n t BIT [ ] = { 0 , 1 } ;
6 i n t globScore ;
7 char genom [ 5 ] ;
8 char genom2 [ 1 5 ] ;
9 char genom3 [ 9 0 ] ;

10 char population [ SIZE_OF_POP ] [ s i z e o f ( genom3 ) ] ;
11 char f i r s t _ p o p [ SIZE_OF_POP ] [ s i z e o f ( genom3 ) ] ;
12 unsigned char sonarDataOriginal [NUM_VECTORS] [NUM_POINTS ] ;
13 unsigned i n t vectorsOutOrig inal [NUM_VECTORS] ;
14

15 //unsigned char sonarData [NUM_VECTORS] [NUM_POINTS−1];
16 // i n t k l a s s e [NUM_VECTORS] ;
17

18 //Function d e c l a r a t i o n
19 void makeRandomStartIndividuals ( ) ;
20 void evalRandomStartIndividuals ( ) ;
21 i n t c a l c _ f i t n e s s ( const char * a ) ;
22 i n t decodeBinary8ToDecimal ( i n t a [ ] ) ;
23 i n t decodeBinary6ToDecimal ( i n t a [ ] ) ;
24 void makeFirstGeneration ( ) ;
25 void eval ( ) ;
26 void makeNewGeneration ( ) ;
27

28 / * * * * * * * *
29 * Generates f i v e random s t a r t i n g i n d i v i d u a l s .
30 * Saves the genome in the array f i r s t _ p o p
31 */
32 void makeRandomStartIndividuals ( ) {
33

34 # i f d e f PRINT_FUNCTION_CALL
35 p r i n t f ( " @@makeRandomStartIndividuals ( ) \n" ) ;
36 # endi f
37 i n t i , j ;
38 f o r ( i = 0 ; i < SIZE_OF_POP ; i ++) {
39 f o r ( j = 0 ; j < s i z e o f ( genom3 ) ; j ++) {
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40 f i r s t _ p o p [ i ] [ j ] = BIT [ rand ( ) % BIT_ARRAY_SIZE ] ;
41 }
42 }
43

44 # i f d e f PRINT_GENOM
45 i n t k = 0 ;
46 i n t l = 0 ;
47 p r i n t f ( " RandomStartIndividuals : " ) ;
48 f o r ( k = 0 ; k < SIZE_OF_POP ; k++) {
49 p r i n t f ( "\n %d " , k + 1) ;
50 f o r ( l = 0 ; l < s i z e o f ( genom3 ) ; l ++) {
51 p r i n t f ( "%d" , f i r s t _ p o p [ k ] [ l ] ) ;
52 }
53 }
54 p r i n t f ( "\n" ) ;
55 # endi f
56 }
57

58 / * * * * * * * * *
59 * Evaluates the f i r s t randomly generated i n d i v i d u a l s ( f i r s t _ p o p ) .
60 * S e t s the indiv idua l with the highes t score as the i n i t i a l

parent .
61 */
62 void evalRandomStartIndividuals ( ) {
63 # i f d e f PRINT_FUNCTION_CALL
64 p r i n t f ( " @@evalRandomStartIndividuals ( ) \n" ) ;
65 # endi f
66 //Computes f i t n e s s score and save the s c o r e s in the array

score [ ]
67 i n t i , j ;
68 i n t t = 0 ;
69 i n t score_row [ 6 ] ;
70 char * temp_pop ;
71

72 // S p l i t s up i n d i v i d u a l s in a genome
73 //and sends each of them to the f i t n e s s funct ion
74 f o r ( i = 0 ; i < SIZE_OF_POP ; i ++) {
75 j = 0 ;
76 t = 90 * j ; //next genom
77 temp_pop = f i r s t _ p o p [ i ] ;
78 temp_pop = temp_pop + t ;
79 score_row [ i ] = c a l c _ f i t n e s s ( temp_pop ) ;
80 j ++;
81 //score [ i ] = f i t n e s s ( f i r s t _ p o p [ i ] ) ;
82 # i f d e f DEBUG
83 p r i n t f ( " # Pointer_addr :%x " , temp_pop ) ;
84 p r i n t f ( " #NR:%d # Score :%d \n" , i + 1 , score_row [ i ] ) ;
85 # endi f
86 }
87

88 //Find the indiv idua l with the highes t score
89 i n t pos = 0 ;
90 i n t k , max_score ;
91 i n t temp_score [ SIZE_OF_POP ] = { 0 , 0 , 0 , 0 , 0 } ;
92 max_score = 0 ;
93 # i f d e f PRINT_SCORE
94 p r i n t f ( " ScoreBoard :\n" ) ;
95 # endi f
96 f o r ( k = 0 ; k < 6 ; k++) {
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97 # i f d e f PRINT_SCORE
98 p r i n t f ( " %d " , score_row [ k ] ) ;
99 # endi f

100 temp_score [ k ] = temp_score [ k ] + score_row [ k ] ;
101

102 i f ( temp_score [ k ] > max_score ) {
103 max_score = temp_score [ k ] ;
104 pos = k ;
105 }
106 }
107 # i f d e f PRINT_RESULT
108 p r i n t f ( "\nRESULT : Max score : %d on pos : %d \n" , max_score , pos

) ;
109 # endi f
110

111

112 //S e t s the indiv idua l with the highes t score as the i n i t i a l
parent .

113 i n t m = 0 ;
114 f o r (m = 0 ; m < s i z e o f ( genom3 ) ; m++) {
115 population [ 0 ] [m] = f i r s t _ p o p [ pos ] [m] ;
116 }
117 }
118

119 / * * * * * * * * * * * * * * * * * * * *
120 * Decode 6−b i t Binary To Decimal .
121 */
122 i n t decodeBinary6ToDecimal ( i n t a [ ] ) {
123 i n t C_sum = 0 ;
124 C_sum = ( a [ 0 ] * 3 2 + a [ 1 ] * 1 6 + a [ 2 ] * 8 + a [ 3 ] * 4 + a [ 4 ] * 2 + a [ 5 ] ) ;
125 re turn C_sum ;
126 }
127

128 / * * * * * * * * * * * * * * * * * *
129 * Decode 8−b i t Binary To Decimal
130 */
131 i n t decodeBinary8ToDecimal ( i n t a [ ] ) {
132 i n t C_sum = 0 ;
133 C_sum = ( a [ 0 ] * 1 2 8 + a [ 1 ] * 6 4 + a [ 2 ] * 3 2 + a [ 3 ] * 1 6 + a [ 4 ] * 8 +
134 a [ 5 ] * 4 + a [ 6 ] * 2 + a [ 7 ] ) ;
135 re turn C_sum ;
136 }
137

138

139 void makeFirstGeneration ( ) {
140 # i f d e f PRINT_FUNCTION_CALL
141 p r i n t f ( " @@makeFirstGeneration ( ) \n" ) ;
142 # endi f
143 i n t i , j ;
144 f o r ( i = 1 ; i < SIZE_OF_POP ; i ++) {
145 f o r ( j = 0 ; j < s i z e o f ( genom3 ) ; j ++) {
146 population [ i ] [ j ] = population [ 0 ] [ j ] ;
147 i f ( ( rand ( ) % MUT_RATE) == 1) {
148 population [ i ] [ j ] = ! population [ i ] [ j ] ;
149 }
150 }
151 }
152 # i f d e f PRINT_GENOM
153 i n t k = 0 ;
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154 i n t l = 0 ;
155 p r i n t f ( " F i r s t generat ion : " ) ;
156 f o r ( k = 0 ; k < SIZE_OF_POP ; k++) {
157 p r i n t f ( "\n %d " , k + 1) ;
158 f o r ( l = 0 ; l < s i z e o f ( genom3 ) ; l ++) {
159 p r i n t f ( "%d" , population [ k ] [ l ] ) ;
160 }
161 }
162 p r i n t f ( "\n" ) ;
163 # endi f
164 }
165

166 void makeNewGeneration ( ) {
167 # i f d e f PRINT_FUNCTION_CALL
168 p r i n t f ( " @@makeNewGeneration ( ) \n" ) ;
169 # endi f
170 i n t m, n ;
171 f o r (m = 1 ; m < SIZE_OF_POP ; m++) {
172 f o r ( n = 0 ; n < s i z e o f ( genom3 ) ; n++) {
173 population [m] [ n ] = population [ 0 ] [ n ] ;
174 i f ( ( rand ( ) % MUT_RATE) == 1) {
175 population [m] [ n ] = ! population [m] [ n ] ;
176 }
177 }
178 }
179 # i f d e f PRINT_GENOM
180 i n t i = 0 ;
181 i n t j = 0 ;
182 p r i n t f ( "NEW generat ion : " ) ;
183 f o r ( i = 0 ; i < SIZE_OF_POP ; i ++) {
184 p r i n t f ( "\n %d " , i + 1 ) ;
185 f o r ( j = 0 ; j < s i z e o f ( genom3 ) ; j ++) {
186 p r i n t f ( "%d" , population [ i ] [ j ] ) ;
187 }
188 }
189 p r i n t f ( "\n" ) ;
190 # endi f
191 }
192

193

194 void eval ( ) {
195 # i f d e f PRINT_FUNCTION_CALL
196 p r i n t f ( " @@eval ( ) \n" ) ;
197 # endi f
198

199 i n t i , j ;
200 i n t t = 0 ;
201 i n t score [ SIZE_OF_POP ] [ 6 ] ;
202 i n t score_row [ 6 ] ;
203 char * temp_pop ;
204 f o r ( i = 0 ; i < SIZE_OF_POP ; i ++) {
205 j = 0 ;
206 t = 90 * j ;
207 temp_pop = population [ i ] ;
208 temp_pop = temp_pop + t ;
209 score_row [ i ] = c a l c _ f i t n e s s ( temp_pop ) ;
210 j ++;
211 # i f d e f DEBUG
212 p r i n t f ( " # Pointer_addr :%x " , temp_pop ) ;
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213 p r i n t f ( " #NR %d # Score : %d \n" , i + 1 , score [ i ] [ j ] ) ;
214 # endi f
215 }
216

217 //Find the indiv idua l with the highes t score
218 i n t pos = 0 ;
219 i n t k , l , max_score ;
220 i n t temp_score [ SIZE_OF_POP ] = { 0 , 0 , 0 , 0 , 0 } ;
221 max_score = 0 ;
222 # i f d e f PRINT_SCORE
223 p r i n t f ( " ScoreBoard :\n" ) ;
224 # endi f
225 f o r ( k = 0 ; k < 6 ; k++) {
226 # i f d e f PRINT_SCORE
227 p r i n t f ( " %d " , score_row [ k ] ) ;
228 # endi f
229 temp_score [ k ] = temp_score [ k ] + score_row [ k ] ;
230

231 i f ( temp_score [ k ] > max_score ) {
232 max_score = temp_score [ k ] ;
233 pos = k ;
234 }
235 }
236 globScore = max_score ;
237

238 # i f d e f PRINT_RESULT
239 p r i n t f ( "\nRESULT : Max score i s : %d on pos : %d \n" , max_score ,

pos ) ;
240 # endi f
241 i n t m = 0 ;
242 f o r (m = 0 ; m < s i z e o f ( genom3 ) ; m++) {
243 population [ 0 ] [m] = population [ pos ] [m] ;
244 }
245 }
246

247 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
248 *
249 * * * * * * * * * * * * * * * * * * * * * * *
250 i n t main ( void ) {
251 // Genom : [ ’ F1 ’ , ’ F2 ’ , ’C1 ’ , ’C2 ’ , ’C3 ’ ]
252 // [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ ]
253 // [ ’0−1 ’ , ’0−1 ’ , ’0−1 ’ , ’0−1 ’ , ’0−1 ’ ]
254 /*FU :

________________________________________________________
255 | ________________ _________________________

|
256 X−|−| P = X i f F1 = 0 \___P___| i f F2 = 0 then ( P >= C) |

__|__true ( 1 )
257 Y−|−|_P_=_Y_if_F1_=_1_/ |_ i f _ F 2 _=_1_then_ ( P_<=_C ) _|

| f a l s e ( 0 )
258 | | | |

|
259 | F1 F2 C

|
260 |_______|___________________________|_____________|

______|
261 F1 F2 C =

C1C2C3
262 */
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263 // p r i n t f ( "%c\n" , genom [ 0 ] ) ;
264

265 // Genom : [ ’ F1 ’ , ’ F2 ’ , ’C ’ ]
266 // B i t : [ ’ [0−5 ’ , ’ 6 ’ , ’ 7−14 ’ ]
267 /*FU :

________________________________________________________
268 | ________________ _________________________

|
269 X−|−| P = X i f F1 = 0 \___P___| i f F2 = 0 then ( P >= C) |

__|__true ( 1 )
270 Y−|−|_P_=_Y_if_F1_=_1_/ |_ i f _ F 2 _=_1_then_ ( P_<=_C ) _|

| f a l s e ( 0 )
271 | | | |

|
272 | F1 F2 C

|
273 |_______|___________________________|_____________|

______|
274 F1 F2 C =

C1C2C3
275 */
276 //////////////////////////////////////////////////////////
277 i n t i , j ;
278 //sonarData
279 f o r ( i = 0 ; i < NUM_VECTORS; i ++) {
280 f o r ( j = 0 ; j < NUM_POINTS − 1 ; j ++) {
281 sonarDataOriginal [ i ] [ j ] = sonarData [ i ] [ j ] ;
282 // p r i n t f ( "%d" , sonarDataOriginal [ i ] [ j ] ) ;
283 }
284 // p r i n t f ( "\n" ) ;
285 }
286 //sonarData c l a s s
287 f o r ( i = 0 ; i < NUM_VECTORS; i ++) {
288 f o r ( j = 0 ; j < NUM_POINTS; j ++) {
289 i f ( j == 60) {
290 // p r i n t f ( " %c " , sonarDataOriginal [ i ] [ j ] ) ;
291 vectorsOutOrig inal [ i ] = sonarData [ i ] [ j ] ;
292 }
293

294 }
295 // p r i n t f ( "%d\n" , vectorsOutOrig inal [ i ] ) ;
296 }
297

298 f o r ( i = 0 ; i < SIZE_OF_POP ; i ++) {
299 f o r ( j = 0 ; j < s i z e o f ( genom3 ) ; j ++) {
300 population [ i ] [ j ] = 0 ;
301 f i r s t _ p o p [ i ] [ j ] = 0 ;
302 }
303 }
304 //Makes a new seed f o r the random funct ion
305 srand ( time (NULL) ) ;
306 i n t h ighes t = 0 ;
307 makeRandomStartIndividuals ( ) ;
308 evalRandomStartIndividuals ( ) ;
309 makeFirstGeneration ( ) ;
310 unsigned long long gen = 0 ;
311 f o r ( gen = 0 ; gen < 10000 ; gen++) {
312 gen = gen + 1 ;
313 eval ( ) ;
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314 makeNewGeneration ( ) ;
315 i f ( globScore > highes t || globScore == highes t ) {
316 highes t = globScore ;
317 }
318 // p r i n t f ( " Score : %d (%d ) GEN: %d\n" , globScore , highest ,

gen ) ;
319 // p r i n t f ( " Score : %d (%d ) \n" , globScore , h ighes t ) ;
320 }
321

322 p r i n t f ( "LAST generat ion : " ) ;
323 p r i n t f ( " Score : %d (%d ) GEN: %d\n" , globScore , highest , gen ) ;
324 p r i n t f ( " Score : %d (%d ) \n" , globScore , h ighes t ) ;
325 i n t k = 0 ;
326 i n t l = 0 ;
327

328 f o r ( k = 0 ; k < SIZE_OF_POP ; k++) {
329 p r i n t f ( "\n %d " , k + 1) ;
330 f o r ( l = 0 ; l < s i z e o f ( genom3 ) ; l ++) {
331 p r i n t f ( "%d" , population [ k ] [ l ] ) ;
332 }
333 }
334

335 p r i n t f ( "\n" ) ;
336 p r i n t f ( " Score : %d \n" , globScore ) ;
337

338

339 re turn 0 ;
340 }
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Appendix B

Custom IP code

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include < a s s e r t . h>
4

5 # include <ap_axi_sdata . h>
6 # include <ap_int . h>
7

8

9 # def ine F1_LENGTH 6
10 # def ine CONSTANT_LENGTH 8
11

12 s t r u c t FU2 {
13 i n t F1 [F1_LENGTH ] ;
14 i n t F2 ;
15 i n t C[CONSTANT_LENGTH] ;
16 } ;
17

18 i n t c a l c _ f i t n e s s ( char a [ 9 0 ] ) {
19 # def ine NUM_VECTORSX 208
20 # def ine NUM_POINTSX 61
21

22 i n t pos ;
23 i n t p ;
24 i n t FU_nr = 0 ;
25 //Copy genome i n t o a s t r u c t u r e of FU
26 s t r u c t FU2 FU_0 , FU_1 , FU_2 , FU_3 , FU_4 , FU_5 ;
27 f o r ( pos = 0 ; pos < 9 0 ; ) {
28 f o r ( p = 0 ; p < 6 ; p++) {
29 i f ( FU_nr == 0 && p < 6) {
30 FU_0 . F1 [ p ] = a [ pos ] ;
31 i f ( p == 5) {
32 FU_0 . F2 = a [ pos + 1 ] ;
33 pos = pos + 9 ;
34 }
35 }
36 i f ( FU_nr == 1 && p < 6) {
37 FU_1 . F1 [ p ] = a [ pos ] ;
38 i f ( p == 5) {
39 FU_1 . F2 = a [ pos + 1 ] ;
40 pos = pos + 9 ;
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41 }
42 }
43 i f ( FU_nr == 2 && p < 6) {
44 FU_2 . F1 [ p ] = a [ pos ] ;
45 i f ( p == 5) {
46 FU_2 . F2 = a [ pos + 1 ] ;
47 pos = pos + 9 ;
48 }
49 }
50 i f ( FU_nr == 3 && p < 6) {
51 FU_3 . F1 [ p ] = a [ pos ] ;
52 i f ( p == 5) {
53 FU_3 . F2 = a [ pos + 1 ] ;
54 pos = pos + 9 ;
55 }
56 }
57 i f ( FU_nr == 4 && p < 6) {
58 FU_4 . F1 [ p ] = a [ pos ] ;
59 i f ( p == 5) {
60 FU_4 . F2 = a [ pos + 1 ] ;
61 pos = pos + 9 ;
62 }
63 }
64 i f ( FU_nr == 5 && p < 6) {
65 FU_5 . F1 [ p ] = a [ pos ] ;
66 i f ( p == 5) {
67 FU_5 . F2 = a [ pos + 1 ] ;
68 pos = pos + 9 ;
69 }
70 }
71 pos ++;
72 }
73 FU_nr++;
74 }
75

76 FU_nr = 0 ;
77 f o r ( pos = 0 ; pos < 9 0 ; ) {
78 f o r ( p = 0 ; p < 8 ; p++) {
79 i f ( p == 0) {
80 pos = pos + 7 ;
81 }
82 i f ( FU_nr == 0 && p < 8) {
83 FU_0 .C[ p ] = a [ pos ] ;
84 }
85 i f ( FU_nr == 1 && p < 8) {
86 FU_1 .C[ p ] = a [ pos ] ;
87 }
88 i f ( FU_nr == 2 && p < 8) {
89 FU_2 .C[ p ] = a [ pos ] ;
90 }
91 i f ( FU_nr == 3 && p < 8) {
92 FU_3 .C[ p ] = a [ pos ] ;
93 }
94 i f ( FU_nr == 4 && p < 8) {
95 FU_4 .C[ p ] = a [ pos ] ;
96 }
97 i f ( FU_nr == 5 && p < 8) {
98 FU_5 .C[ p ] = a [ pos ] ;
99 }
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100 pos ++;
101 }
102 FU_nr++;
103 }
104

105

106

107 //Decode 6−b i t Binary To Decimal .
108 i n t C_sum [ 6 ] ;
109 C_sum [ 0 ] = ( FU_0 .C[ 0 ] * 1 2 8 + FU_0 .C[ 1 ] * 6 4 + FU_0 .C[ 2 ] * 3 2 + FU_0

.C[ 3 ] * 1 6 + FU_0 .C[ 4 ] * 8 +
110 FU_0 .C[ 5 ] * 4 + FU_0 .C[ 6 ] * 2 + FU_0 .C [ 7 ] ) ;
111 C_sum [ 1 ] = ( FU_1 .C[ 0 ] * 1 2 8 + FU_1 .C[ 1 ] * 6 4 + FU_1 .C[ 2 ] * 3 2 + FU_1

.C[ 3 ] * 1 6 + FU_1 .C[ 4 ] * 8 +
112 FU_1 .C[ 5 ] * 4 + FU_1 .C[ 6 ] * 2 + FU_1 .C [ 7 ] ) ;
113 C_sum [ 2 ] = ( FU_2 .C[ 0 ] * 1 2 8 + FU_2 .C[ 1 ] * 6 4 + FU_2 .C[ 2 ] * 3 2 + FU_2

.C[ 3 ] * 1 6 + FU_2 .C[ 4 ] * 8 +
114 FU_2 .C[ 5 ] * 4 + FU_2 .C[ 6 ] * 2 + FU_2 .C [ 7 ] ) ;
115 C_sum [ 3 ] = ( FU_3 .C[ 0 ] * 1 2 8 + FU_3 .C[ 1 ] * 6 4 + FU_3 .C[ 2 ] * 3 2 + FU_3

.C[ 3 ] * 1 6 + FU_3 .C[ 4 ] * 8 +
116 FU_3 .C[ 5 ] * 4 + FU_3 .C[ 6 ] * 2 + FU_3 .C [ 7 ] ) ;
117 C_sum [ 4 ] = ( FU_4 .C[ 0 ] * 1 2 8 + FU_4 .C[ 1 ] * 6 4 + FU_4 .C[ 2 ] * 3 2 + FU_4

.C[ 3 ] * 1 6 + FU_4 .C[ 4 ] * 8 +
118 FU_4 .C[ 5 ] * 4 + FU_4 .C[ 6 ] * 2 + FU_4 .C [ 7 ] ) ;
119 C_sum [ 5 ] = ( FU_5 .C[ 0 ] * 1 2 8 + FU_5 .C[ 1 ] * 6 4 + FU_5 .C[ 2 ] * 3 2 + FU_5

.C[ 3 ] * 1 6 + FU_5 .C[ 4 ] * 8 +
120 FU_5 .C[ 5 ] * 4 + FU_5 .C[ 6 ] * 2 + FU_5 .C [ 7 ] ) ;
121

122 //Decode 8−b i t Binary To Decimal
123 i n t addr [ 6 ] ;
124 addr [ 0 ] = ( FU_0 . F1 [ 0 ] * 3 2 + FU_0 . F1 [ 1 ] * 1 6 + FU_0 . F1 [ 2 ] * 8 + FU_0

. F1 [ 3 ] * 4 + FU_0 . F1 [ 4 ] * 2 + FU_0 . F1 [ 5 ] ) ;
125 addr [ 1 ] = ( FU_1 . F1 [ 0 ] * 3 2 + FU_1 . F1 [ 1 ] * 1 6 + FU_1 . F1 [ 2 ] * 8 + FU_1

. F1 [ 3 ] * 4 + FU_1 . F1 [ 4 ] * 2 + FU_1 . F1 [ 5 ] ) ;
126 addr [ 2 ] = ( FU_2 . F1 [ 0 ] * 3 2 + FU_2 . F1 [ 1 ] * 1 6 + FU_2 . F1 [ 2 ] * 8 + FU_2

. F1 [ 3 ] * 4 + FU_2 . F1 [ 4 ] * 2 + FU_2 . F1 [ 5 ] ) ;
127 addr [ 3 ] = ( FU_3 . F1 [ 0 ] * 3 2 + FU_3 . F1 [ 1 ] * 1 6 + FU_3 . F1 [ 2 ] * 8 + FU_3

. F1 [ 3 ] * 4 + FU_3 . F1 [ 4 ] * 2 + FU_3 . F1 [ 5 ] ) ;
128 addr [ 4 ] = ( FU_4 . F1 [ 0 ] * 3 2 + FU_4 . F1 [ 1 ] * 1 6 + FU_4 . F1 [ 2 ] * 8 + FU_4

. F1 [ 3 ] * 4 + FU_4 . F1 [ 4 ] * 2 + FU_4 . F1 [ 5 ] ) ;
129 addr [ 5 ] = ( FU_5 . F1 [ 0 ] * 3 2 + FU_5 . F1 [ 1 ] * 1 6 + FU_5 . F1 [ 2 ] * 8 + FU_5

. F1 [ 3 ] * 4 + FU_5 . F1 [ 4 ] * 2 + FU_5 . F1 [ 5 ] ) ;
130

131 # i f d e f DEBUG
132 i n t Dim_Cons = 0 ;
133 f o r ( Dim_Cons = 0 ; Dim_Cons < 6 ; Dim_Cons++) {
134 p r i n t f ( " #Dimensjon:%d # Constant :%d \n" , addr [ Dim_Cons ] ,

C_sum[ Dim_Cons ] ) ;
135 }
136 # endi f
137

138 //Dataset conta ins 60 dimensions .
139 // I f addr i s g r e a t e r than 60 then 0 ( Score ) w i l l be returnd .
140 i f ( addr [ 0 ] > NUM_POINTSX) {
141 re turn 0 ;
142 }
143

144 unsigned char sonarDataOriginalX [NUM_VECTORSX] [NUM_POINTSX ] ;
145 unsigned i n t vectorsOutOriginalX [NUM_VECTORSX] ;

67



146 unsigned char sonarDataX [NUM_VECTORSX] [NUM_POINTSX] = {
147 { 1 2 , 7 , 15 , 32 , 45 , 48 , 56 , 19 , 31 , 51 , 24 , 63 , 56 , 81 ,

85 , 84 , 70 , 75 , 75 , 44 , 83 , 97 , 89 , 137 , 133 , 114 , 136 , 135 ,
99 , 88 , 104 , 118 , 142 , 146 , 162 , 192 , 176 , 157 , 137 , 143 , 165 ,

122 , 95 , 71 , 50 , 62 , 45 , 43 , 19 , 6 , 6 , 2 , 3 , 4 , 1 , 3 , 4 , 3 ,
8 , 11 , 0 } ,

148 { 5 , 9 , 10 , 5 , 24 , 25 , 39 , 40 , 79 , 53 , 41 , 40 , 57 , 16 , 16 ,
57 , 79 , 76 , 129 , 122 , 147 , 129 , 110 , 141 , 171 , 163 , 181 , 206 ,
173 , 98 , 33 , 66 , 130 , 192 , 217 , 216 , 170 , 155 , 126 , 69 , 13 ,
72 , 72 , 108 , 67 , 35 , 26 , 34 , 9 , 8 , 5 , 0 , 1 , 4 , 1 , 4 , 4 , 2 , 2 ,
0 , 1 } ,

149 { 3 3 , 59 , 78 , 108 , 102 , 45 , 47 , 1 , 49 , 56 , 74 , 57 , 79 , 84 ,
93 , 100 , 111 , 119 , 134 , 95 , 57 , 50 , 110 , 166 , 129 , 71 , 106 ,
151 , 133 , 106 , 94 , 60 , 22 , 36 , 73 , 116 , 94 , 85 , 96 , 106 , 91 ,
69 , 42 , 49 , 71 , 57 , 48 , 38 , 16 , 4 , 3 , 9 , 5 , 3 , 4 , 0 , 2 , 3 , 4 ,
5 , 0 } ,

150 { 1 1 , 13 , 21 , 17 , 30 , 65 , 54 , 88 , 85 , 73 , 125 , 167 , 176 ,
198 , 190 , 240 , 255 , 226 , 204 , 199 , 132 , 103 , 100 , 99 , 82 , 81 ,
83 , 70 , 112 , 51 , 96 , 75 , 50 , 59 , 33 , 106 , 97 , 26 , 46 , 50 , 42 ,
14 , 35 , 41 , 15 , 5 , 13 , 18 , 10 , 1 , 3 , 2 , 2 , 1 , 2 , 4 , 3 , 1 , 1 ,
1 , 1 } ,

151 { 1 6 , 27 , 38 , 31 , 36 , 30 , 22 , 23 , 53 , 91 , 139 , 132 , 130 ,
137 , 167 , 221 , 249 , 238 , 201 , 188 , 176 , 98 , 17 , 12 , 69 , 72 ,
56 , 48 , 10 , 64 , 50 , 48 , 62 , 49 , 68 , 34 , 27 , 51 , 45 , 5 , 33 , 45 ,

39 , 41 , 18 , 3 , 20 , 19 , 2 , 1 , 6 , 2 , 6 , 2 , 3 , 4 , 5 , 1 , 2 , 3 ,
0 } ,

152 { 6 , 14 , 28 , 27 , 24 , 58 , 61 , 96 , 142 , 157 , 161 , 180 , 141 ,
135 , 165 , 176 , 172 , 192 , 227 , 219 , 203 , 171 , 109 , 93 , 135 , 61 ,

129 , 217 , 153 , 217 , 217 , 128 , 47 , 69 , 107 , 77 , 155 , 172 , 137 ,
120 , 118 , 65 , 54 , 56 , 53 , 4 , 34 , 18 , 3 , 2 , 0 , 5 , 4 , 2 , 4 , 6 ,

8 , 4 , 2 , 1 , 1 } ,
153 { 1 4 , 30 , 32 , 38 , 36 , 14 , 21 , 17 , 34 , 59 , 81 , 108 , 132 ,

125 , 151 , 184 , 230 , 232 , 222 , 195 , 186 , 133 , 78 , 80 , 57 , 41 ,
44 , 46 , 52 , 42 , 70 , 79 , 86 , 113 , 128 , 71 , 42 , 67 , 81 , 49 , 23 ,
11 , 19 , 18 , 10 , 14 , 27 , 29 , 19 , 6 , 5 , 8 , 2 , 2 , 4 , 3 , 0 , 2 , 5 ,
3 , 0 } ,

154 { 2 , 4 , 15 , 5 , 5 , 9 , 27 , 32 , 15 , 32 , 22 , 50 , 4 , 57 , 44 , 54 ,
17 , 58 , 103 , 101 , 69 , 94 , 141 , 123 , 80 , 136 , 134 , 64 , 53 , 90 ,
159 , 187 , 156 , 89 , 100 , 76 , 137 , 224 , 251 , 233 , 156 , 127 , 81 ,
81 , 109 , 93 , 67 , 40 , 17 , 7 , 6 , 3 , 0 , 3 , 2 , 1 , 1 , 1 , 1 , 2 , 1 } ,

155 { 4 , 6 , 6 , 9 , 16 , 12 , 26 , 35 , 15 , 34 , 75 , 121 , 144 , 145 ,
163 , 190 , 229 , 255 , 247 , 230 , 195 , 178 , 169 , 152 , 94 , 23 , 12 ,
22 , 26 , 43 , 83 , 117 , 100 , 128 , 123 , 89 , 59 , 102 , 93 , 38 , 18 ,
35 , 39 , 9 , 16 , 11 , 6 , 5 , 4 , 1 , 3 , 1 , 2 , 5 , 5 , 1 , 0 , 2 , 1 , 0 ,
0 } ,

156 { 1 9 , 16 , 12 , 10 , 15 , 16 , 30 , 62 , 90 , 113 , 105 , 100 , 108 ,
105 , 115 , 135 , 186 , 157 , 51 , 118 , 105 , 109 , 146 , 137 , 80 , 58 ,
178 , 255 , 185 , 120 , 130 , 139 , 73 , 25 , 49 , 106 , 117 , 82 , 72 ,
61 , 50 , 62 , 47 , 21 , 17 , 13 , 9 , 2 , 5 , 1 , 3 , 0 , 1 , 2 , 2 , 0 , 1 ,
1 , 2 , 2 , 1 } ,

157 { 1 0 , 14 , 18 , 15 , 30 , 38 , 39 , 9 , 15 , 2 , 32 , 63 , 76 , 95 ,
115 , 137 , 167 , 181 , 193 , 221 , 214 , 203 , 213 , 237 , 218 , 157 ,
105 , 83 , 79 , 65 , 85 , 113 , 127 , 130 , 132 , 117 , 107 , 111 , 109 ,
113 , 94 , 84 , 65 , 64 , 54 , 45 , 25 , 13 , 11 , 3 , 0 , 3 , 4 , 2 , 1 , 3 ,
2 , 2 , 2 , 1 , 0 } ,

158 { 8 , 24 , 33 , 35 , 42 , 43 , 18 , 35 , 53 , 89 , 45 , 16 , 13 , 95 ,
138 , 138 , 131 , 108 , 51 , 107 , 196 , 248 , 239 , 141 , 134 , 174 ,
145 , 138 , 55 , 54 , 148 , 161 , 75 , 47 , 75 , 131 , 156 , 109 , 139 ,
156 , 127 , 60 , 49 , 44 , 33 , 15 , 28 , 26 , 12 , 4 , 4 , 5 , 6 , 3 , 1 , 3 ,
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2 , 3 , 0 , 2 , 1 } ,
159 { 6 , 1 , 8 , 20 , 26 , 19 , 36 , 29 , 11 , 24 , 28 , 21 , 18 , 50 , 67 ,

106 , 128 , 171 , 202 , 213 , 223 , 240 , 255 , 253 , 244 , 220 , 183 ,
147 , 126 , 124 , 104 , 62 , 45 , 63 , 89 , 95 , 74 , 58 , 80 , 90 , 95 ,
113 , 83 , 50 , 22 , 43 , 50 , 31 , 16 , 8 , 6 , 5 , 6 , 4 , 0 , 1 , 3 , 1 , 1 ,

1 , 0 } ,
160 { 1 3 , 13 , 21 , 8 , 29 , 23 , 26 , 15 , 37 , 72 , 71 , 78 , 67 , 96 ,

143 , 111 , 66 , 30 , 170 , 239 , 199 , 136 , 173 , 233 , 194 , 209 , 226 ,
155 , 75 , 28 , 33 , 15 , 25 , 102 , 93 , 26 , 48 , 100 , 109 , 64 , 29 ,

55 , 47 , 36 , 54 , 60 , 28 , 6 , 7 , 4 , 1 , 2 , 3 , 1 , 3 , 2 , 2 , 1 , 1 , 1 ,
1 } ,

161 { 1 1 , 12 , 17 , 26 , 35 , 38 , 37 , 19 , 29 , 42 , 71 , 84 , 102 , 109 ,
136 , 137 , 175 , 205 , 234 , 233 , 255 , 254 , 231 , 201 , 170 , 135 ,

91 , 63 , 80 , 96 , 80 , 43 , 74 , 133 , 151 , 138 , 115 , 86 , 81 , 55 ,
42 , 67 , 75 , 51 , 29 , 23 , 22 , 5 , 9 , 3 , 3 , 3 , 1 , 6 , 3 , 2 , 5 , 8 ,
3 , 1 , 0 } ,

162 { 5 , 9 , 12 , 12 , 16 , 15 , 19 , 2 , 17 , 37 , 29 , 42 , 97 , 91 , 43 ,
28 , 8 , 96 , 188 , 253 , 249 , 226 , 171 , 109 , 86 , 187 , 245 , 187 ,
123 , 40 , 76 , 104 , 80 , 84 , 86 , 55 , 62 , 69 , 42 , 71 , 65 , 44 , 54 ,
28 , 25 , 32 , 37 , 29 , 19 , 11 , 1 , 3 , 3 , 3 , 1 , 1 , 1 , 2 , 1 , 0 , 1 } ,

163 { 7 , 15 , 16 , 5 , 21 , 42 , 29 , 27 , 34 , 45 , 50 , 73 , 83 , 96 ,
106 , 128 , 157 , 204 , 237 , 239 , 236 , 240 , 212 , 198 , 178 , 156 ,
148 , 113 , 94 , 73 , 55 , 43 , 91 , 100 , 73 , 61 , 92 , 84 , 95 , 121 ,
103 , 93 , 59 , 36 , 25 , 28 , 16 , 6 , 6 , 4 , 2 , 3 , 4 , 4 , 1 , 1 , 1 , 0 ,
1 , 2 , 0 } ,

164 { 4 , 4 , 8 , 1 , 4 , 17 , 26 , 17 , 24 , 6 , 20 , 26 , 32 , 22 , 5 , 28 ,
72 , 82 , 82 , 110 , 154 , 195 , 234 , 247 , 234 , 192 , 211 , 227 , 186 ,
175 , 148 , 125 , 79 , 7 , 6 , 28 , 40 , 34 , 17 , 11 , 15 , 36 , 40 , 35 ,
9 , 17 , 22 , 13 , 2 , 5 , 3 , 2 , 5 , 4 , 2 , 1 , 0 , 0 , 1 , 1 , 1 } ,

165 { 2 , 8 , 7 , 9 , 33 , 45 , 48 , 43 , 47 , 43 , 56 , 79 , 105 , 131 ,
136 , 130 , 164 , 186 , 208 , 225 , 252 , 255 , 223 , 220 , 231 , 221 ,
197 , 168 , 143 , 102 , 59 , 29 , 27 , 10 , 15 , 49 , 54 , 82 , 104 , 74 ,
48 , 43 , 25 , 38 , 36 , 27 , 29 , 24 , 17 , 7 , 5 , 3 , 2 , 6 , 4 , 1 , 1 , 1 ,

2 , 1 , 0 } ,
166 { 0 , 1 , 3 , 8 , 7 , 7 , 10 , 6 , 8 , 11 , 12 , 25 , 36 , 30 , 16 , 23 ,

30 , 36 , 31 , 28 , 47 , 94 , 111 , 145 , 169 , 190 , 195 , 218 , 247 ,
235 , 191 , 183 , 197 , 154 , 128 , 114 , 100 , 109 , 112 , 95 , 50 , 13 ,
20 , 32 , 39 , 17 , 10 , 13 , 5 , 1 , 1 , 1 , 3 , 1 , 1 , 2 , 1 , 0 , 1 , 0 ,
1 } ,

167 { 9 , 12 , 7 , 5 , 35 , 48 , 34 , 41 , 43 , 36 , 50 , 54 , 73 , 91 , 101 ,
111 , 136 , 160 , 178 , 189 , 213 , 220 , 229 , 240 , 243 , 255 , 243 ,

248 , 228 , 183 , 139 , 80 , 64 , 50 , 55 , 39 , 18 , 38 , 44 , 58 , 33 ,
26 , 50 , 43 , 47 , 30 , 19 , 12 , 12 , 4 , 6 , 2 , 4 , 1 , 2 , 1 , 1 , 2 , 1 ,
0 , 0 } ,

168 { 2 , 2 , 1 , 6 , 8 , 13 , 13 , 24 , 25 , 31 , 27 , 30 , 47 , 86 , 82 ,
69 , 100 , 164 , 185 , 221 , 246 , 251 , 241 , 204 , 174 , 130 , 78 , 21 ,
102 , 59 , 48 , 31 , 43 , 59 , 63 , 93 , 86 , 40 , 25 , 27 , 26 , 21 , 35 ,
20 , 17 , 16 , 30 , 17 , 3 , 6 , 4 , 4 , 3 , 2 , 2 , 0 , 1 , 1 , 1 , 0 , 1 } ,

169 { 6 , 6 , 5 , 19 , 34 , 38 , 33 , 42 , 47 , 51 , 73 , 93 , 89 , 89 , 110 ,
137 , 159 , 175 , 186 , 206 , 214 , 220 , 223 , 244 , 247 , 232 , 218 ,

224 , 196 , 145 , 108 , 72 , 79 , 52 , 29 , 4 , 33 , 63 , 41 , 28 , 54 , 51 ,
48 , 34 , 35 , 7 , 9 , 15 , 10 , 4 , 3 , 5 , 4 , 3 , 0 , 3 , 1 , 0 , 0 , 0 ,

0 } ,
170 { 2 , 1 , 6 , 12 , 30 , 40 , 35 , 25 , 24 , 48 , 48 , 64 , 103 , 76 , 73 ,

135 , 102 , 40 , 77 , 99 , 90 , 113 , 163 , 117 , 153 , 221 , 212 , 195 ,
129 , 117 , 137 , 137 , 98 , 91 , 188 , 197 , 98 , 17 , 93 , 155 , 89 , 58 ,

55 , 77 , 49 , 40 , 12 , 13 , 3 , 1 , 4 , 1 , 2 , 4 , 2 , 3 , 4 , 1 , 4 , 2 ,
1 } ,

171 } ;
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172

173 i n t i , j ;
174 //sonarData
175 f o r ( i = 0 ; i < NUM_VECTORSX; i ++) {
176 f o r ( j = 0 ; j < NUM_POINTSX − 1 ; j ++) {
177 sonarDataOriginalX [ i ] [ j ] = sonarDataX [ i ] [ j ] ;
178 }
179 }
180 //sonarData c l a s s
181 f o r ( i = 0 ; i < NUM_VECTORSX; i ++) {
182 f o r ( j = 0 ; j < NUM_POINTSX; j ++) {
183 i f ( j == 60) {
184 vectorsOutOriginalX [ i ] = sonarDataX [ i ] [ j ] ;
185 }
186 }
187 }
188

189

190 /*−C a l c u l a t e s the score .
191 * 1 . Checks funct ion ( F2 ) t h a t determines comparison

operat ion .
192 * 2 . The point i s compared with the constant (C) .
193 * 3 . Find out what c l a s s the point belongs to .
194 * 4 . Checks a g a i n s t the c l a s s t h a t i s s p e c i f i e d in the data

s e t .
195 * 5 . I f c l a s s matches , add +1.
196 */
197 i n t c l a s s 0 = 0 ; // Class 0
198 i n t c l a s s 1 = 1 ; //Class 1
199 i n t c l a s s ; //Given c l a s s from genom
200 i n t points = 0 ; //++ i f a l l score in one row i s 1 ( match )
201 i n t score [ 6 ] = { 0 , 0 , 0 , 0 , 0 , 0 } ;
202 f o r ( i = 0 ; i < NUM_VECTORSX; i ++) {
203 i f ( FU_0 . F2 == 1) {
204 i f ( sonarDataOriginalX [ i ] [ addr [ 0 ] ] <= C_sum [ 0 ] ) {
205 c l a s s = 1 ;
206 } e l s e {
207 c l a s s = 0 ;
208 }
209 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
210 score [ 0 ] = 1 ;
211 }
212 } e l s e i f ( FU_0 . F2 == 0) {
213 i f ( sonarDataOriginalX [ i ] [ addr [ 0 ] ] >= C_sum [ 0 ] ) {
214 c l a s s = 1 ;
215 } e l s e {
216 c l a s s = 0 ;
217 }
218 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
219 score [ 0 ] = 1 ;
220 }
221 }
222 i f ( FU_1 . F2 == 1) {
223 i f ( sonarDataOriginalX [ i ] [ addr [ 1 ] ] <= C_sum [ 0 ] ) {
224 c l a s s = 1 ;
225 } e l s e {
226 c l a s s = 0 ;
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227 }
228 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
229 score [ 1 ] = 1 ;
230 }
231 } e l s e i f ( FU_1 . F2 == 0) {
232 i f ( sonarDataOriginalX [ i ] [ addr [ 1 ] ] >= C_sum [ 0 ] ) {
233 c l a s s = 1 ;
234 } e l s e {
235 c l a s s = 0 ;
236 }
237 i f ( c l a s s == vectorsOutOriginalX [ i && c l a s s == c l a s s 0

] ) {
238 score [ 1 ] = 1 ;
239 }
240 }
241 i f ( FU_2 . F2 == 1) {
242 i f ( sonarDataOriginalX [ i ] [ addr [ 2 ] ] <= C_sum [ 0 ] ) {
243 c l a s s = 1 ;
244 } e l s e {
245 c l a s s = 0 ;
246 }
247 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
248 score [ 2 ] = 1 ;
249 }
250 } e l s e i f ( FU_2 . F2 == 0) {
251 i f ( sonarDataOriginalX [ i ] [ addr [ 2 ] ] >= C_sum [ 0 ] ) {
252 c l a s s = 1 ;
253 } e l s e {
254 c l a s s = 0 ;
255 }
256 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
257 score [ 2 ] = 1 ;
258 }
259 }
260 i f ( FU_3 . F2 == 1) {
261 i f ( sonarDataOriginalX [ i ] [ addr [ 3 ] ] <= C_sum [ 0 ] ) {
262 c l a s s = 1 ;
263 } e l s e {
264 c l a s s = 0 ;
265 }
266 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
267 score [ 3 ] = 1 ;
268 }
269 } e l s e i f ( FU_3 . F2 == 0) {
270 i f ( sonarDataOriginalX [ i ] [ addr [ 3 ] ] >= C_sum [ 0 ] ) {
271 c l a s s = 1 ;
272 } e l s e {
273 c l a s s = 0 ;
274 }
275 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
276 score [ 3 ] = 1 ;
277 }
278 }
279 i f ( FU_4 . F2 == 1) {
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280 i f ( sonarDataOriginalX [ i ] [ addr [ 4 ] ] <= C_sum [ 0 ] ) {
281 c l a s s = 1 ;
282 } e l s e {
283 c l a s s = 0 ;
284 }
285 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
286 score [ 4 ] = 1 ;
287 }
288 } e l s e i f ( FU_4 . F2 == 0) {
289 i f ( sonarDataOriginalX [ i ] [ addr [ 4 ] ] >= C_sum [ 0 ] ) {
290 c l a s s = 1 ;
291 } e l s e {
292 c l a s s = 0 ;
293 }
294 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
295 score [ 4 ] = 1 ;
296 }
297 }
298 i f ( FU_5 . F2 == 1) {
299 i f ( sonarDataOriginalX [ i ] [ addr [ 5 ] ] <= C_sum [ 0 ] ) {
300 c l a s s = 1 ;
301 } e l s e {
302 c l a s s = 0 ;
303 }
304 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
305 score [ 5 ] = 1 ;
306 }
307 } e l s e i f ( FU_5 . F2 == 0) {
308 i f ( sonarDataOriginalX [ i ] [ addr [ 5 ] ] >= C_sum [ 0 ] ) {
309 c l a s s = 1 ;
310 } e l s e {
311 c l a s s = 0 ;
312 }
313 i f ( c l a s s == vectorsOutOriginalX [ i ] && c l a s s == c l a s s 0

) {
314 score [ 5 ] = 1 ;
315 }
316 }
317 i f ( score [ 0 ] == 1 && score [ 1 ] == 1 && score [ 2 ] == 1 &&

score [ 3 ] == 1 && score [ 4 ] == 1 && score [ 5 ] == 1) {
318 points = points + 1 ;
319 }
320 i n t temp ;
321 f o r ( temp = 0 ; temp < 6 ; temp++) {
322 score [ temp ] = 0 ;
323 }
324 }
325 re turn points ;
326 }
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Appendix C

h file

1 # include < s t d i o . h>
2 # include < s t d l i b . h>
3 # include < s t r i n g . h>
4 # include <errno . h>
5 # include <time . h>
6

7 # def ine NUMBER_OF_POINTS 40
8 # def ine X_Y_CLASS 3
9 # def ine TEST_POINTS 5

10 # def ine SIZE_OF_POP 5
11 # def ine MUT_RATE 5
12 # def ine MUT_RATE_2 4
13 # def ine BIT_ARRAY_SIZE 2
14 # def ine CONSTANT_LENGTH 8
15 # def ine F1_LENGTH 6
16 # def ine NUM_VECTORS 208
17 # def ine NUM_VECTORS_HALF 104
18 # def ine NUM_POINTS 61
19

20

21 /////////New S t r u c t /////////
22 typedef s t r u c t {
23 //ES parameters
24 unsigned long i n t maxgenerations ;
25 i n t popsize ;
26 i n t mutations ;
27

28 // CGP parameters
29 i n t inputs ;
30 i n t outputs ;
31 i n t c o l s ;
32 i n t rows ;
33 i n t lback ;
34 i n t nodeinputs ;
35 i n t nodeoutputs ;
36 i n t nodefuncs ;
37 } tparams ;
38

39 /////End NEW S t r u c t ////////
40 s t r u c t FU {
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41 i n t F1 ;
42 i n t F2 ;
43 i n t C1 ;
44 i n t C2 ;
45 i n t C3 ;
46 } ;
47

48 s t r u c t FU2 {
49 i n t F1 [F1_LENGTH ] ;
50 i n t F2 ;
51 i n t C[CONSTANT_LENGTH] ;
52 } ;
53

54

55

56 } ;
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