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ABSTRACT. This paper proposes and discusses several Bayesian attempts 
at nonparametric and semiparametric density estimation. The main cate­
gories of these ideas are as follows: ( 1) Build a non parametric prior around 
a given parametric model. We look at cases where the nonparametric part 
of the construction is a Dirichlet process or relatives thereof. (2) Express 
the density as an additive expansion of orthogonal basis functions, and 
place priors on the coefficients. Here attention is given to a certain robust 
Hermite expansion around the normal distribution. Multiplicative expan­
sions are also considered. (3) Express the unknown density as locally being 
of a certain parametric form, then construct suitable local likelihood func­
tions to express information content, and place local priors on the local 
parameters. 
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1. Introduction and summary. Lindley (1972) noted in his review of general 
Bayesian methodology that Bayesians up to then had been 'embarrassingly silent' in 
the area of nonparametric statistics. Bayesian nonparametrics has enjoyed healthy 
progress since then, but the sub-field of curve and surface estimation, nonparametric 
regression, semiparametric estimation problems, density and hazard rate estimation, 
and statistical pattern recognition, seems as yet to be not fully developed. This 
contrasts with the rapid growth and widespread routine use that can be witnessed 
in the frequentist corner of this area. 

It is difficult to be a purist Bayesian in problems with many parameters, since 
setting the simultaneous prior is hard and parameter interactions can have unfore­
seen consequences. Such difficulties are even more prominent in the nonparametric 
case, where the parameter space is infinite-dimensional, and the possibilities for 
construction of prior distributions are so unlimited. One must therefore expect a 
broader range of possible solutions, as opposed to the relatively clear-cut strategies 
for the parametric cases. One must also expect difficulties on the technical level, 
in that posterior calculations quickly become complicated. Furthermore, Diaconis 
and Freedman (1986a, 1986b) and others have given serious warnings about lurking 
dangers for nonparametric Bayesian constructions in the form of large-sample incon­
sistency, so performance properties of the resulting Bayes estimators, once derived, 
should also be investigated. 

The present article is about non- and semiparametric density estimation. For 
recent accounts of many standard methods, see Scott (1992) and Wand and Jones 
(1994). Again, the vast majority of these are non-Bayesian, in the sense that they 
do not (explicitly) utilise any prior information about what general shapes or what 
degree of smoothness are more likely than others. We intend to propose and discuss 
several Bayesian approaches to the problem. 
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One can perhaps argue that Bayesian methods are never quite as fullbloodedly 
nonparametric as some of the frequentist ones, in that they after all require some 
prior knowledge and prior distributions as input. Some of the estimators we discuss 
are indeed semiparametric in nature, in that they in various ways build on 'non­
parametric uncertainty' around given parametric models. These estimators should 
have better performance properties than traditional nonparametric ones in a broad 
nonparametric neighbourhood around the parametric base model. Other methods 
are not geared towards any such parametric home grounds and are therefore more 
naturally thought of as simply nonparametric. The methods to be discussed fall 
into three categories. Sections 2 and 3 treat estimators that build on Dirichlet pro­
cesses in various forms, Sections 4 and 5 consider placing priors on coefficients in 
expansions, while Sections 6 and 7 discuss non- and semiparametric methods that 
use locally parametric approximations. Some final remarks are offered in Section 8. 

1.1. THREE GROUPS OF IDEAS. The first such group of ideas has the Dirichlet 
process as basic building tool. The unknown distribution can be modelled as coming 
from a straight Dirichlet process or from one of various related forms. The variants 
given attention to in Section 2 and 3 are smoothed Dirichlets, mixtures ofDirichlets, 
and pinned-down Dirichlets. Parts of the material of Section 2 are presumably known 
to workers in the field, but has been included since ready references do not seem 
to be available, since some of the later material in the paper builds on observations 
made here, and since it is of interest to see that some of the Bayes solutions also pop 
up in the quite different framework of Section 6. There is new material in Section 
2.4 and Section 3, on attempts at smoothing and pinning down the Dirichlet. 

The second general approach is to place priors on the coefficients of series ex­
pansions. In Section 4 we focus on additive orthogonal expansions for the densities 
themselves. These could for example be in terms of cosines or Legendre polyno­
mials in situations where the density is supported on a finite interval. Particularly 
attractive from a semiparametric point of view are models of the form a normal 
density times an expansion in Hermite polynomials, since this allows modelling of 
uncertainty around the normal. In particular we discuss a special model of this 
sort which is more robust than the more immediate Hermite expansion. There are 
certain computational problems with additive expansions of densities since the like­
lihood function quickly becomes a very large sum of products, leading us to outline 
a simplifying recursive computational scheme. In Section 5 we also consider additive 
expansions of the log-densities, that is, multiplicative expansions of the densities. 
This avoids some of the obstacles that face the otherwise attractive additive expan­
sions of Section 4, and should also be easier regarding computations. 

The third general class of methods we discuss, in Sections 6 and 7, is based 
on using locally parametric approximations to the true density, and then placing 
priors on these local parameters. For a fixed z we might for example view f(t) = 
a exp{ b( t - z)} as a convenient approximation to the density for t in the vicinity 
of z, and one can place prior distributions on local level a and local slope b, and 
perhaps even on the width of the local window inside which the approximation is 
expected to be sufficiently adequate. The problem is to establish an adequate local 
likelihood function that makes it possible to compute the posterior distribution for 
the local parameters given the local data. For this we partly rely on methods recently 
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developed in Hjort and Jones (1994). It is seen in Section 7 that this general locally 
parametric approach leads to a long list of appealing special cases. 

1.2. OTHER WORK. Bayesian density estimation means placing priors on large 
sets of distributions, and it is only to be expected that this can be fruitfully done in 
many more ways than developed or mentioned in the present article. Here are some 
quick glances at other categories of such constructions. 

Building such priors via general P6lya urn schemes was first treated system­
atically in Ferguson (1974). The Dirichlet again occupies a special place. Some 
specialisations lead to continuous densities with probability 1, but often tiny details 
of the construction have too much influence on the posterior distribution. There has 
been recent renewed interest in some of the branches of P6lya trees, see Mauldin, 
Sudderth and Williams (1992) and Lavine (1992). In particular Lavine shows how 
to construct a P6lya tree with a given predictive density, and how mixtures of them 
can model uncertainty around a parametric model. 

Mixtures of Dirichlet processes were first studied by Antoniak (1974). Using 
such models along with hierarchical and otherwise generalised versions for density 
estimation is a current growth area; see references noted in Section 2.3. Modelling 
the logarithm of the density as a stochastic process is done in Section 5; see references 
there, and further references in Lenk (1993). 

Maximum penalised likelihood and several similar methods, such as splines 
smoothing, can be viewed as Bayesian. See Good and Gaskins (1971, 1980) and 
the discussion in Silverman (1986, Section 5.4), for example, in addition to remarks 
given in Section 2.4 below. The estimators discussed in llissanen, Speed and Yu 
(1992) based on stochastic complexity also have Bayesian overtones. 

2. Dirichlet process prior with smoothing. This section discusses vari­
ous approaches based on the Dirichlet process or some of its smoothed and mixed 
relatives. 

2.1. BINNED DATA AND THE DIRICHLET SMOOTHED HISTOGRAM. Divide the 
interval where data fall into k cells Ct, ... , C~c, and let Nj be the number of data 
points falling in C3. These form a multinomially distributed vector with parameters 
(Pt, ... ,p~c), where P3 = F( C3). Suppose (Pt, ... ,p~c) is given a Dirichlet prior dis­
tribution with parameters (apo,t, ... ,apo,~c), where Po,1 , ... ,po,k are 'prior guesses' 
for the k probabilities and a is the 'strength of belief' parameter: Pj has mean 
Po,j and variance Po,j(1- Po,j)/(a + 1). The posterior is the easily updated Dirich­
let ( apo,t + Nt, ... , apo,k + N ~c). If the underlying probability density is viewed as 
approximately constant over the Cj interval, with length say h3, then the Bayes 
estimate is 

!'"'(:c) = E{ Pj I data} = .!._ apo,j + Nj = WnPO,j + (1 - Wn) Nj , E C (2 1) 
h · h · a + n h · nh · :z: 3' · 3 3 3 3 

where Wn = a/(a + n). 
Equation (2.1) is our first and simplest Bayesian density estimate, and its struc­

ture is typical also for more advanced methods to come. It is a convex combination 
of the prior guess of the density and the histogram estimate N 3j(nh3), with weights 
respectively Wn = aj(a + n) and 1 - Wn = n/(a + n). The estimate can perhaps 
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be considered parametric or semiparametric or nonparametric, depending on the 
fine-ness of the binning, that is, the number of cells compared to the number of data 
points. A smoother estimate than the simple histogram-type version above emerges 
when a cell is placed symmetrically around the temporarily fixed z. With such a 
moving cell C(z) = [z- ih,z + ih] the result is 

[(z) = Wnh- 1 { fo(t) dt + (1- Wn)fn(z), 
Jo(z) 

(2.2) 

say, in terms of a prior guess density fo and where fn(z) = n-1 2::~= 1 h-1 I{lzi-zl ~ 
ih} is the kernel estimator with a uniform kernel. And if the cell around z is 
determined dynamically by the requirement that it should contain at least r data 
points, then fn is a r-nearest-neighbour estimate. 

2.2. THE DIRICHLET PROCESS PRIOR. Ferguson (1973, 1974) introduced the 
Dirichlet process, which in the present context allows one to carry out analysis like in 
the previous subsection more easily and more generally, without having to discretise 
the sample space into cells. Let the distribution F which governs the data points have 
such a Dirichlet process prior with parameter aF0 , where F0 is a fixed distribution 
and a is positive. The definition is that for each partition B1 U · · · U Bk of the sample 
space, (F(Bt), ... , F(Bk)) is Dirichlet with parameters (aFo(Bt), ... , aFo(Bk)). A 
basic result is that F given the data is still a Dirichlet with updated parameter 
aFo + 2::~= 1 6(zi) = aFo + nFn, where 6(zi) is unit point mass at Zi, and Fn is the 
empirical distribution function. 

This can be used to find a natural Bayesian density estimator. Consider /( z) = 
h-1 F[z - ih, z + ih], to be thought of, for small h, as an approximation to the 
density at z. Its posterior distribution is given by the result quoted, and the Bayes 
estimate is found to be exactly as in (2.2), with fo being the density of Fo. A 
smoother version of this argument is to use /(z) = J Kh(t- z) dF(t) instead, where 
Kh(z) = h-1 K(h-1 z) and K is a given probability density symmetric around zero, 
referred to as a kernel function. Its posterior mean is 

[{z) =I Kh(t _ z) adFo(t) + ndFn(t) 
a+n 

= Wn I Kh(t- z)fo(t) dt + (1- Wn)fn(z), 
(2.3) 

where fn(z) now signifies the more general n-1 2::~=1 Kh(zi-z). This is the classical 
nonparametric density estimator. The simpler version (2.2) corresponds to a uniform 
kernel on [- i, i]. 

The parameter a of the prior is ideally set by the practising statistician, in 
collaboration with the experts of the relevant field of application. The form of the 
posterior, and of the Bayes estimates derived above, suggest that a has interpretation 
as 'prior sample size' or strength of belief in the prior. The likelihood function for a, 
based on observed data, can be derived, but it leads to a quite artificial estimator due 
to special features of the unconditional distribution of data sampled from a Dirichlet 
process. The exact number of distinct data points, Dn, is a sufficient statistic 
for a, and one can prove that the maximum likelihood estimator is asymptotically 
equivalent to Dn/ log n. Results like this are more helpful in certain hierarchical 
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constructions. Some data-based empirical Bayesian methods for setting a value of a 
are briefly discussed in Hjort (1991b ). 

How should the smoothing parameter h be chosen? This is the topic of hundreds 
of non-Bayesian papers in the literature. It is not obvious how one should set up a 
Bayesian criterion for the selection of this parameter, which in the present context at 
least is an algorithmic parameter of an estimation method rather than a statistical 
parameter of a model. Note that h plays a role both for both terms in (2.3). It 
should not be too large since /( :z:) otherwise is too far away from the real parameter 
of interest; in general, if F has a smooth density f, then f ( :z:) above is equal to 
J Kh(t- :z:)f(t) dt ~ f(:z:) + tu}ch2 f"(:z:), where cr}c is the variance of the kernel. 
In particular the prior guess used is about equal to fo + tu}ch2 !6' rather than the 
preset fo itself. Neither should h be too small. An explicit formula for the conditional 
variance of /( :z:) can be worked out, and is of the form 

- 1 n 2 1 ~ 1 1 ))2 
Var{f(:z:)idata}= nh(n+a)(n+a+ 1)n~h- K(h- (:z:i-:z: 

+ smaller order terms, 

and the average of h-1 K(h- 1 (:z:i- :z:))2 is of stable size as h --t 0, namely about 
R(K)/(:e), where R(K) = J K 2 dz. Thus the posterior variance is essentially of 
order (nh)- 1 and the squared bias involved is of order h4 • Based on these facts 
various Bayesian criteria can be put up, leading to preferred size of order n-1 / 5 for 
h. This agrees with standard results from the frequentist perspective. 

The choice of the kernel K is generally less crucial than that of h. Minimising the 
approximative posterior variance plus the squared bias, hinted at above, or for that 
matter the approximate risk function for the estimator, gives a result proportional 
to {uKR(K)}415 , which is minimal for the Yepanechnikov kernel K(z) = i(l-
4z2)+ (scaled here to have support [-t, t]). West (1991) starts out from a certain 
marginalisation consistency criterion and shows that strict adherence to this implies 
that K is of double exponential form. 

2.3. SMOOTHED AND MIXED DIRICHLET PRIORS AS PRIOR. Above we gave F 
a Dirichlet process prior and then smoothed the posterior F around a given :z: to 
produce the Bayesian density estimate (2.3). This approach makes perfect sense, as 
does the answer. Nevertheless it is perhaps disturbing that the density f itself has 
not been directly modelled, and indeed under a Dirichlet prior it does not properly 
exist; the random F is with probability 1 a discrete distribution (with infinitely 
many random jumps at an infinite collection of random locations). 

This motivates another approach, which is to 'smooth the prior first', modelling 
f as f(:z:) = J Kh(t- :z:) dG(t) for a Dirichlet process G, say with parameter aGo. 
This assures a well-defined random and continuous density, if only K is continuous. 
Such a density can also be represented as a countably infinite mixture, as per the 
remark above; see Ferguson (1983). The posterior distribution for /, given a set 
of observations coming from this f, has been worked out and characterised via a 
mixture of Dirichlet processes by Lo (1984) and by Ferguson (1983). The exact 
posterior mean is however an enormous sum over all possible partitions of the data 
set, and its computation accordingly quite difficult for all but very small sample sizes. 
This problem can be dealt with, for example via a simulation-based method due to 
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Kuo, see Ferguson (1983) and Kuo (1986), or via an iterative resampling scheme 
developed by Escobar, see Escobar and West (1994). There are still difficulties with 
the approach. The choices of G0 , a and h are problematic, and the performance 
properties of the resulting estimators are less understood than those of(2.3). Further 
progress and more general hierarchical versions of these schemes are discussed in 
Florens, Mochart and Rolin (1992), West (1992), and Escobar and West (1994). 

2.4. GENERALISED DIRICHLET PRIORS. In many situations there is some 
knowledge of the smoothness of the underlying distribution for data. This points to 
an inadequacy of the Dirichlet prior; it is almost 'too nonparametric' in its lack of 
contextual smoothness. Considering the discrete framework of Section 2.1 again, for 
example, it is clear that the ordering of the p3s is immaterial under a Dirichlet prior, 
whereas one's prior knowledge often would suggest neighbouring p3s to be close with 
high probability (assuming the cell widths in that setting to be the same). Again 
this motivates trying to construct smoothed Dirichlet distributions, to be used as 
more adequate priors in smoothing problems. The following is another route towards 
achieving this, complementing the mixtures framework indicated above. 

Consider the following way of building a prior for a probability vector p = 
(Pt, ... ,pk): Let (Yi, ... , Yk) be positive random variables, let Pj = exp( -Yj), and 
condition on their sum being equal to 1. A calculation shows that the density of 
(P1, ... ,Pk-d becomes 

where Pk = 1-Z:~:: P3, in terms of the density h(y1, ... , Yk) of the }'is. As a special 
case of this construction, consider 

k 

Y = (Y1, ... , Yk)"' canst. { IJ O:i exp( -aiYi)} go(Y1, ... , Yk), (2.4) 
i=1 

for a suitable positive function go. In this case the distribution for the Pi's becomes 
proportional to pr1 - 1 · · ·p~"-1 g(p1, ... ,pk), where g(p1, ... ,pk) = go( -logp1, ... , 
-logpk)· In particular independent exponentials for the }'is, corresponding to go = 
g = 1, give the familiar Dirichlet distribution. Agree therefore to call this the 
generalised Dirichlet distribution, with parameters 0:1, ... , O:k and g, and write p = 
(P1 , ... , Pk) "' y'D( a:1 , ... , a:k; g) to indicate this. 

The idea is to use particular g0 or g functions to push the Dirichlet in certain 
directions, so to speak. A generally useful form is g(p) = exp{ -Ail(p )}, that is, 

where small values of .6.(p1, ... ,pk) means that a certain characteristic of interest 
is present, and where the penalty parameter A dictates the extent to which the 
characteristic is manifest; a large value of A forces realisations of p to have small 
values of .6.(p ). Some examples of such .6.(p) functions are 

k-1 k-1 k-1 

~)PH1 - P3 )2 , L)PH1 - 2pj + P3-d2 , ~)logp3+1 - logp3 )2 • 

j=1 j=2 j=1 
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Using g functions with these Ll functions leads to 'smoothed Dirichlet priors', forcing 
successive p3s to be closer to each other with higher probability than under standard 
Dirichlet conditions. Even a wish for unimodality can be built into a suitable Ll( ·) 
function. 

It turns out that these generalised Dirichlet distributions are still conjugate 
priors for multinomial models. In fact, in the setting of Section 2.1, if (p1 , ... , Pk) is 
Q'D(apo,t, ... ,apo,~c;g), then p given data is Q'D(apo,l + Nt, .. . ,apo,k + N~c;g). For 
most choices of g it is not possible to find explicit expressions for expected values, 
and if required these would have to be found by simulation or numerical integration. 
The mode is however reasonably easy to compute. The posterior mode (pi, ... ,pl;) 
here, which is the Bayes solution under a sharp 0-1 loss function, is the maximiser 
of 

k 

'L)apo,j + N3 -1)1ogpj- ALl(p1 , .. . ,p~c), (2.6) 
j=l 

under the sum to 1 constraint. This amounts to a further smoothing of the orig­
inal Dirichlet-smoothed histogram (apo,j + Nj- 1)/(a + n- k), making sure that 
Ll(pi, ... ,pl;) is not large. With the second Ll-function mentioned above this would 
be quite similar to splines smoothing, for example. 

We have phrased the estimation problem in Bayesian terms, starting with the 
(2.5) prior. If the Po,jS are equal and a = k, then the criterion to maximise is 
L:;=l Nj logp3 - ALl(p ), which is the penalised log-likelihood. Other authors have 
used this as the starting point, wishing to smooth the simple maximum likelihood 
estimates across cells, perhaps without being particularly Bayesian about it. The 
maximum penalised likelihood method can always be rephrased in Bayesian terms, 
as explained here. Relevant references in the present context of histogram smoothing 
and density estimation include Good and Gaskins (1971, 1980), Simonoff (1983) and 
Silverman (1986, Section 5.4). 

Notice that when n is large compared to a and A, then the Ll-term does not 
matter much, and the estimators become asymptotically equivalent to the ordinary 
histogram counts N3jn: the scaled differences ..jn(pj- N3jn) tend to zero in prob­
ability, regardless of a and the ALl(p) function (unless a or A is allowed to increase 
with nat a Vii rate or faster). The situation is more delicate when the number of 
cells increases with n, as should typically happen in the density estimation context. 
Simonoff (1983), who essentially worked with the third Ll(p) function mentioned 
above, studied this sparse cells framework. Results will not be given here, but we 
mention that methods developed in Hjort and Pollard (1994) are quite well suited 
to study properties of estimators defined by maximisation of (2.6), also when the 
number of cells increases with n. 

The remarks and the construction given here relate to the discrete framework 
with binned data. The point raised about lack of ordering information and lack of 
smoothness is also pertinent for the Dirichlet process case; witness its representation 
as the normed version of a Gamma process with independent increments. It is 
therefore of interest to study continuous analogues of the distributions above, to be 
used, if possible, in the continuous data situations of Sections 2.2, thereby by-passing 
the details of binning and so on. One possibility is to study limits in distributions of 
the discrete processes, say as the maximal binwidth tends to zero. This is not an easy 
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problem, and some requirements must be placed on the ~ function in order to assure 
a well-defined limit process. The existence problem is made easier by the fact that 
the generalised Dirichlet distribution, as defined above, is closed under combination 
of cells, in the following sense: Suppose (p1, ... ,p~c) is QV(a1, ... , a~c; g), and let q1 

be the sum of the first j1 of the PjS, q2 the sum of the next h of the pjs, and so 
on, up to qm, the sum of the last im of the PjS. Then, working with (2.4) or the 
(2.5) version, (q1, ... , qm) can be shown to be QV(L:;~;, 1 ar, L:;~;,j~~1 ar, ... ; g*), for 
a certain g*(q1, ... , qm) function. This generalised Dirichlet processes topic is not 
pursued here, however. 

2.5. FIRST SEMIPARAMETRIC FRAMEWORK. Let there be a 'background pa­
rameter' e with some prior 1r( e), and assume that F for given e is a Dirichlet aF0 ( ·, e). 
The Fo could be a normal, for example, and then this models nonparametric uncer­
tainty around the normal model. 

For given e it follows from previous comments that F given data is a Dirichlet 
aF0 ( ·,e)+ nFn, and the arguments of Section 2.2 can be repeated to give a density 
estimator of type 

f(z, e)= E{/(a:) I data, e} = Wn I Kh(t- z)fo(t, e) dt + (1- wn)fn(z), 

where fo ( ·, e) is the density of F0 ( ·, e). The final estimate is therefore of the form 

f(z)=E{f(a:,e)ldata}=wn I Kh(t-z)k(t)dt+(1-wn)fn(z), (2.7) 

where k(t) = E{k(t, e) I data} is the predictive parametric density. What needs to 
be found is the distribution of e given data. 

To this end, for simplicity order the distinct data points as a:1 < · · · < z~c, 

and suppose the multiplicities are it, ... ,j~c. Let A be the event that Xi E [z1 -
~e,a:1 + ~e] for the first it observations, that Xi E (z2- ~e,a:2 + ~e] for the next h 
observations, and so on, where e is small. Then 

Pr{e E (eo- ~de,e0 + ~d()],A} ~ 1r(e0 )de I Pr{AIF}Dir(aF0 (·,e0),dF) 

1 1 . 1 1 . 
= 7r(eo) deE{F[z1 - 2e, Z1 + 2ej31 ••• F[zk- 2e, Zlc + 2ej3• I eo} 

,...., 7r(eo)de r(a) r(afo(z1,eo)e +it) r(afo(z~c,eo)e + i~c) 
- r(a+n) r(afo(z1,e)) r(afo(z~c,e)) 

by a formula for product moments in a Dirichlet distribution. Since r(b + j)jr(b) = 
b( b + 1) · · · ( b + j - 1) this shows that the posterior for e is 

1r( e I data) = canst. 1r( e) IT fo ( Zi, e), (2.8) 
distinct 

the product being over the distinct data values only. IT in particular the data points 
are distinct, as in all proper continuous cases, then the sophisticated extra nonpara­
metric randomness does not enter the result; the posterior is then exactly the same as 
the traditional one under the parametric model (which also is the one corresponding 
to the a parameter in the Dirichlet prior being equal to infinity). 
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This fills in the missing ingredient of the (2.7) estimator. Explicit formulae can 
be worked out for the case of a normal kernel, a normal start family for Fo, and for 
traditionally used conjugate priors for (p,, u). 

2.6. SECOND SEMIPARAMETRIC FRAMEWORK: ESTIMATING THE RESIDUAL 
DENSITY. It is often useful to think of data as location plus noise, and then modelling 
these terms separately. This is done in regression contexts, of course, but can also 
be done for a homogeneous sample. Let in general Xi = Tt~(ei), where the eis are 
a sample from a common distribution G, say, and 0 is an unknown p-dimensional 
parameter in the transformation T. This is taken to be a continuous increasing 
transformation for each given 0 with inverse ei = T9- 1(Xi)· We think of the eis as 
residuals or normalised residuals. A simple example is Xi = J.L + uei and ei = (Xi­
J.L) / u. The framework now will be to have some prior density for 0 and in addition 
letting the nonparametric G have a distribution in the space of all distributions, 
centred at a suitable G0 , for example the standard normal. Note that F( :z:) = 
G(T9- 1(z)), and the present Bayesian semiparametric setup has priors on both the 
G part and the T9- 1 ( :z:) part. 

Assume that G is a Dirichlet with parameter aG0 • We are interested in/(:~:)= 
J Kh(t- z) dF(t), now with dF(t) = dG(T9- 1(t)), and can at least proceed as 
earlier for each given 0, since then G given data is a Dirichlet with parameter aGo+ 
L:?=t 6(T9- 1 (zi)). One finds 

E{/(:z:) I data, 0} =I Kh(t- z) adGo(Til(t)) + ndFn(t) 
a+n 

= Wn I Kh(t- z)fo(t, 0) dt + (1- Wn)fn(z), 

where f0 (t,O) = g0(T9- 1(t))I8Ti 1(t)j8tl is the parametric density of Xi under the 
idealised G = Go conditions. This gives exactly the same density estimator as in 
(2.7), involving the predictive density E{f0 (t, 0) I data}. It further turns out that the 
posterior distribution of 0 is exactly as in (2.8). This is really because the present 
model, which is defined in a somewhat roundabout manner as far as the Xis are 
concerned, is the same as in Section 2.5, with F0 (t, 0) = G0 (T9- 1(t)). 

One does, however, get interesting results of a different nature for the estima­
tion of the residual density. The mean of G(y) given both data and 0 is a convex 
combination of Go(Y) and n-1 L:?=t I{T9-

1(zi) :::; y}, and the Bayes estimate is 
n 

G(y) = WnGo(Y) + (1- wn) n-1 L Pr{T9- 1 (zi):::; y I data}. 
i=l 

The point is that this is a smooth estimate with a density, in spite of the fact that 
G under the stated prior model does not have a continuous distribution. Typically, 
0 given data is approximately a normal centred at the Bayes estimator (or for that 
matter the maximum likelihood estimator), say of the form Np{O, V jn}. Thus 
T9- 1(zi) given data is approximately a normal with mean equal to the estimated 
residual, which we for typographical reasons write as fi = T-1 (:z:i, 0), and variance 
sayvf/n. This leads to approximatingPr{T11- 1 (:z:i):::; y I data} above with ~(yln(y­
ei)/vi), and the density of 8 becomes 

1 ~ 1 (Y- fi) r;;: g(y) ~ Wngo(Y) + (1- Wn)n- L..J -,;::4> -h-.- where hi= vifyn. 
i=l ' ' 

(2.9) 

Bayesian density estimation 9 March 1994 



The second term uses a variable kernel density estimate for the estimated residuals 
with a normal kernel and hi = Vi/ fo for the bandwidths. A result of similar nature 
is in Bunke (1987). 

It is remarkable that the present natural semiparametric Bayesian framework 
leads to such explicit advice for both the kernel form and in particular the band­
widths. In the case of Xi = JL + uei with fixed u the vis are equal and the estimator 
is a kernel estimate with smoothing parameter v / fo, and this also happens to be 
the only allowed size in a treatment of West (1991), using a certain marginalisation 
coherence criterion. This amounts to smoothing somewhat less than the standard 
recommendation O(n-116 ) that falls out from traditional mean squared error theory. 
For the case of Xi = JL + uei with both parameters unknown, and a normal model 
as null model, the hi is approximately equal to {1 + t(zi- /i)/u2PI2 ffo, advicing 
more smoothing outside the central area than in the middle. 

While (2.9) used a large-sample approximation for the posterior of (), exact 
calculations, for the derivative of the exact G(y), are also available for many cases 
of interest, for example when Xi = JL + uei, G0 is the standard normal, and (J.L, u) 
has a conjugate prior. We also point out that the apparatus here is easily extended 
to regression contexts with covariate information, say with Xi = T9 (zi, ei)· The 
obvious special case is Xi = b'zi + uei, with normalised residuals coming from a 
Dirichlet process G centred at the standard normal. There is a mildly unpleasant 
surprise for the situation with higher-dimensional data; see Section 8.7. 

3. Pinned-down Dirichlet processes. There are other generalisations of the 
Dirichlet process worth studying in connection with density estimation. Such studies 
are potentially of interest since the final estimators are often useful, of course, but 
also since models using these kind of infinite-dimensional priors serve as test-beds 
for general Bayesian methodology. Doss (1985a, 1985b ), Diaconis and Freedman 
(1986a, 1986b ), Hjort (1986, 1987, 1991a) and others have shown that some of these 
constructions lead to estimators that are inconsistent, to mention one aspect of 
importance; see also Section 8.7 below. In the present section we look at density 
estimation with certain pinned-down Dirichlet priors, for the straight distribution of 
data themselves or for the residuals. Still other situations worth exploring, but not 
pursued here, include the invariance-constrained Dirichlet priors of Dalal (1979). 

3.1. DENSITY ESTIMATE WITH A PINNED-DOWN DIRICHLET. Let F be a 
Dirichlet process aFo, conditioned on having fixed values F(B3) = z3 on certain 
control sets B1, ... , Bk, where these form a partition of the sample space. This 
typically amounts to having preset values for certain quantiles. One can prove that 
this pinning down of F amounts to splitting the Dirichlet process into k different 
independent Dirichlet processes, F = ZjFj on the set B3, where F3 is Dirichlet with 
parameter (az3)(Fo/ z3); see Hjort (1986). Furthermore, Fj given the full data set 
has the same distribution as Fj given only the data values that fall in B3, that is, a 
Dirichlet with parameter aFo + 2::~= 1 8(zi)I{zi E Bj}· 

This makes it easy to compute the mean of F given data. If A lies within Bj, 
then 

E{F(A) I d } _ 
0 
aFo(A) + 2::~= 1 I{zi E A} _ 

0 
aFo(A) + nFn(A) 

ata - z3 ~n { } - z3 ( ) • aZj + L..ti=1 I Zi E Bj aZj + nFn Bj 
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If z is an inner point of B;, therefore, the Bayes estimate of the /(z) = J Kh(t­
z) dF(t) parameter, which is close to the density, is 

[{z) = Zj a J K(z)fo(z + hz) dz + nfn(z). 
azj + nFn(Bj) 

(3.1) 

If a is small compared ton this is close to {zi/Fn(Bj)}/n(z), which is the traditional 
density estimate times a correction to account for the known location of a set of 
quantiles. 

3.2. SEMIPARAMETRIC MODEL WITH PINNED-DOWN DIRICHLET. In the frame­
work of Section 2.6, let there be a prior 1r( 0) for the parameter and suppose the resid­
ual distribution G for ei is given a Dirichlet process prior aG0 , but pinned down 
to have G(Bj) = Zj on certain control sets B1 , ••. ,Bk, as in Section 3.1. Again, 
fo(z, 0) is the parametric density for Xs under the ideal G = G0 condition. As a 
simple example of this setup, envisage Xi as J.L + uei where the normalised residuals 
eis come from a distribution G with probability mass 0.90 on [ -1.645, 1.645] and 
0.05 on each of ( -oo, -1.645) and (1.645, oo) (1.645 being the familiar upper 5% 
point of the standard normal). Estimating parameters in this model, rather than in 
the unconstrained model that makes no such restriction on G, aims at having ap­
proximately 90% offuture data points in [j:L- 1.645 u, jl + 1.645 u]. Thus the general 
control sets apparatus is useful in connection with predictive analysis. 

Finding the posterior density for the parameters involves calculations that be­
come more complicated than those of Sections 2.5-2.6. The result was worked out 
in Hjort {1986), and is of the form 

1r( 0 I data) = canst. 1r( O)Ln( O)Mn( 0), (3.2) 

where 
m 0;(9) 

Ln(O) = .IJ /o(zi, 0) and Mn(O) = J1 r(az~i+ C ·(O)), (3.3) 
d1shnct 3=l 3 3 

writing Cj(O) = nFn(Te(Bj)) for the number of ei = T9- 1 (zi) that fall in Bj. In the 
example above, taking G0 to be the normal, the posterior becomes 

7r(J.L, 0' I data) = canst. 7r(J.L, 0') 1n exp {- t t ( Zi - 2 J.L )2 
} 

0' i=l 0' 

0.05°1(1-',0") 0.90°l(J.',O") 0.05°3(1-',0") 

r(0.05 a+ C1 (J.L, u)) r(0.90 a+ C2 (J.L, u)) r(0.05 a+ C3 (J.L, u)) 

(assuming the data points to be distinct), where Cj(J.L, u) is the number of ( Zi- J.L)/ 0' 

falling in respectively ( -oo, -1.645), [-1.645, 1.645], {1.645, oo ). A simpler special 
case is the model where G is taken to have median zero, with control sets ( -oo, 0] 
and (0, oo) and Zt = z2 = t. This, with known u, is the situation discussed in 
Doss (1985a, 1985b ). Thus (3.2)-(3.3) is a broad generalisation of the posterior 
distribution found in Doss {1985a). 

The posterior density (3.2) is unusual and interesting on several accounts. The 
Ln(O) term is largest around the maximum likelihood estimators, while Mn(O) is 
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largest in areas where C;(O) is close to z; for each j. These are sometimes conflict­
ing aims, and the Bayes estimators in effect try to push the maximum likelihood 
estimates so as to better achieve the z1 , ... , Zm balance. The unusual feature is that 
the data do not wash out the prior when n grows; the Mn(O) term is about equal in 
strength to Ln(O); see Hjort (1986, 1987) for further results and discussion. 

Let us first concentrate on estimating the density of the Xs. Let A = [~ -
tTJ, ~ + tTJJ be a short interval containing a given~. IT 0 is such that Te- 1 (~) E B;, 
then F(A) = G(Te-1(A)) = z;G;(Te-1(A)), and 

Hence 

E{F(A) I data, 0} = z; aGo(Te-l(A)) + F~-1 I~~e-l(~i) E Te-l(A)} 
az; + l:i=l I{Te (~i) E B;} 

~ 1 afo(~, 8)17 + nFn(A) 
E{F(A)Idata}~L...Jzi . F. (T.(B·)) 1r(Oidata)dO, 

j=l D;(a:) azJ + n n e 3 

where D;(~) is the set of 0 for which Te- 1 (~) E B;. The Bayes estimate of/(~)= 
J Kh(t- ~) dF(t) is therefore at least close to 

f(~) = fz; / a/o(~,O)+nfn(~)11'(0ldata)d0, 
j=l }D;(a:) az; + nFn(Te(B;)) 

where /0 (~, 0) = f Kh(t- ~)f0 (t, 0) dt. In cases where T-1 (~, 0) lies safely inside a 
B i set, and the posterior distribution is not too spread out, then 1r( 0 I data) gives 
most of its probability mass to a singleD;(~), and a further approximation is 

!~( )"' .aE{/o(~,O)Idata}+nfn(~) 
~ - ZJ ( ) ' az; + nGn B; 

~ E T(B;,O), 

where nGn(B;) is the number of estimated residuals in B;. 
Next we attend to the problem of estimating the residual density, as in Section 

2.6. For subsets A of B;, 

E{G(A) I d 0} _ . aGo(A) + l:~=l I{Te- 1 (~i) E A} _ . aGo( A)+ nFn(Te(A)) 
ata, - z3 n 1 - z3 ( ( )) • az; + l:i=l I{Te- (~i) E B;} az; + nFn Te B; 

This must then be averaged with respect to the (3.2) distribution. By results of 
Hjort (1987), 0 is approximately a normal centred at the Bayes estimate 0 and 
with a certain variance matrix of form V jn. Hence Te- 1 (~i), given data, can be 
represented as being approximately equal to €i + ViN /Vii, where N is a standard 
normal. This is similar in structure to what we saw. in Section 2.6, but the present 
posterior distribution is much more complicated than there, as is the calculation of 
the Bayes estimate and the estimated residuals. Nevertheless, for y an inner point 
of B;, 
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for small values of 11· The random summands appearing in the denominator are 
mostly equal to 1 with high probability, if ei is in B;, or equal to 0 with high 
probability, if ei is outside B3. An approximation to the Bayes estimate of the 
density for the residuals is accordingly 

~( ) ago(Y) + ngn(Y) 
g y = Zj ( ) ' az3 + nGn Bj 

(3.4) 

where Gn is the empirical distribution for the estimated residuals, so that nGn(Bj) 
is the number of ei E B3, and where Un(Y) = n-1 Z:~= 1 hi1 l/>(hi1(y- ei)) is a 
variable bandwidth kernel estimate with explicitly given bandwidths, hi = vi/ yn. 
Again, this is quite similar to (2.9), but with differently defined estimated residuals 
and bandwidths, as noted above. Also note that the estimator is intent on having 
probability mass close to Zj on B3, as the prior requests. 

3.3. GENERALISATIONS. The framework above can be generalised to regression 
contexts and to multidimensional data, essentially since the (3.2)-(3.3) result holds 
in such models. It is up to the statistician to choose control sets, for example for 
prediction purposes. We also point out that the general treatment leads to quantile 
estimates of interest, one possibility being as follows. Suppose the pth quantile 
F-1 (p) is to be estimated for a distribution which is thought to be not very far from 
the normal, for which the exact result is J.t + ucp, say, where ~( cp) = p. Use control 
sets ( -oo, cp] and ( cp, oo) with z1 = p and z2 = 1-p, compute the posterior density 
using (3.2), and in the end use the Bayes estimate Ji, + ucp. This will typically be 
closer to the correct p-1 (p) than say the maximum likelihood solution. 

4. Additive Hermite expansions. This section discusses Bayesian density 
estimators based on certain additive expansions. These expansions are valid for 
broad classes of densities, and can as such be viewed as nonparametric or semipara­
metric, depending on whether the number of terms used is allowed to be infinite 
(or very large) or moderate. The methods we give are valid for all the familiar ex­
pansions in terms of orthogonal basis functions, for example cosine expansions and 
Legendre polynomial expansions for densities with support on a finite interval. We 
focus here on expansions that use Hermite polynomials to 'correct on the normal'. 
These also lead to frequentist density estimates of interest in their own right; see 
Fenstad and Hjort (1994). The present Bayesian programme is to place priors on 
the coefficients in these expansions and work out posterior moments. 

4.1. THE STRAIGHT HERMITE EXPANSION. The Hermite polynomials are de­
fined via the derivatives of the standard normal density, l/>(j)(~) = ( -1)3 H3(~ )4>(~ ). 
Thus Ho(~) = 1, H1(~) = ~, H2(~) = ~2 - 1, Ha(~) = ~3 - 3~, H4(~) = 
~4 - 6~2 + 3, and so on. They are orthogonal with respect to the normal density, 
J HjH~elf>d~ = j!I{j = k}. For an arbitrary density/, consider approximations 
of the form fm = 4> Z:i:0('·u/ j!)H3. The best approximation, in the sense of min­
imising J {f /4>- Z:d=o(··u/ j!)H3P d~, emerges when 1'3 = J H3f d~. Thus 'Yo = 1, 
1'1 = EtX, 1'2 = Et(X2 - 1), 'Ya = Et(X3 - 3X), and so on. 

This approximation can be expected to be most effective if f at the outset 
is not too far from the starting point ¢. It therefore helps to pre-transform to 
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Y = (X- J.L)/u, writing Jl and u for mean and standard deviation, develop the 
approximation on that scale, and back-transform. The result is 

(4.1) 

where 1j = EtHj((Xi- J.L)/u). Note that 1o = 1, 11 = 0, 12 = O, while 

are equal to the skewness, kurtosis, pentakosis and so on. The normal density is the 
one having each 1j = 0 for j ~ 3. A natural Bayesian semiparametric scheme is to 
put priors on (J.L,u) and the 1a,14 , ••• coefficients, and then calculate the posterior 
mean of ( 4.1). This amounts to Bayesian modelling of uncertainty around the normal 
density. 

This quickly becomes quite cumbersome due to the prohibitively large number 
of terms involved, in principle (m+ 1)n, when the likelihood product f(zt) · · · f(zn) 
is expanded as a sum. Some progress is nevertheless possible. Assume at this stage 
that Jl and u are known quantities, which we may then take to be 0 and 1. Consider 
a prior density of the form 7r(;a, ... , 1m)· The key step to simplification of the 
problem is to note that the likelihood can be written as being proportional to 

lin {~ 1j } ""'(1o)ko (1m)km L..J --=-j"Hj(Zi) = L..J Or · · · - 1 Sn(ko, · · ·, km), 
i=l j=O J · C(n) · m. 

(4.2) 

where C ( n) is the set of all nonnegative ( ko, ... , km) with sum n, and Sn ( ko, ... , km) 
is the sum of all products Hj1 (zt) · · · Hj,. (:en) for which exactly ko of the iis are equal 
to 0, exactly k1 of the jis are equal to 1, and so on. A given Sn(ko, ... , km) is the 
sum of n!/(ko! · · · km!) such terms, but they can be obtained recursively instead, via 

m 

Sn(ko, ... , km) = 2: Hj(Zn)Sn-t(ko, ... , kj- 1, ... , km)· 
j=O 

Here a Sn term is set to zero if one or more of its indices is -1, and the computations 
start out from S1(0, ... ,1, ... ,0) = Hj(zt). The rearrangement (4.2) reduces the 
number of terms from the astronomical ( m + 1 )n to the hopefully manageable ( n + 
1) · · ·(n + m + 1)/(m!). 

Let 

M(ko, ... , km) = E(~~) ko · · · (::;) km, 

computed relative to the prior distribution. Then 

::Yj _ { 1j } _ l:c(n) M(ko, ... , kj + 1, ... , km)Sn(ko, ... , km) 
·r - E ·r I data - 2: M(k k k )S (k k ) ' J. J. C(n) o, ... , j, ... , m n o, ... , m 

(4.3) 
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and this defines the Bayesian density estimator fm(z) = </>(z) ~7:0 (93/j!)H;(z). 
All terms with k1 2: 1 and/or k2 2: 1 drop out since 11 = 12 = 0. Note also that 
further simplification is possible when 13 , ... , lm are taken independent in the prior, 
as would often be reasonable; see Remark 4.1 below. Observe finally that the full 
density curve f( z) is available once the m- 2 estimates 93 , ... , 9m have been arrived 
at. 

The scheme thickens further when uncertainty about (J.L, u) is taken into ac­
count. The Bayes solution is the posterior mean of ( 4.1). Formulae for the exact 
solution can be written down following the route above, but quickly become in­
tractable. The simplest practical solution is perhaps as follows: The procedure 
above gives a way of computing fm ( z I J.L, u) for each fixed (J.L, u) (pre-transform to 
(zi- J.L)/u, use the above, and back-transform). Then average this over a suitable 
and separately obtained posterior distribution for these parameters. In practical 
terms, this would mean simulating perhaps 100 values of (J.L, u) from the posterior 
distribution, and then compute the average of the fm(z IJ.L,u) curves. See (4.8) 
below for one possibility. 

REMARK 4.1. The method is quite general, of course, and does not rely on the 
specifics of the Hermite expansion. Another attractive framework, for example, this 
time for densities on [0, 1], uses 

m 

fm(z) = 1 + l:cj.J2cos(j7rz) with Cj = Etvl2cos(7rjX), (4.4) 
j=l 

with individual or simultaneous priors placed on the collection of CjS. It should also 
be realised that as long as the order m is fixed the underlying orthogonality struc­
ture does not matter much either, as far as the mathematical and computational 
details are concerned; the Hermite expansion ( 4.1) is for example nothing but an 
mth order polynomial in (z- J.L)/u, and can be represented as such. Nevertheless 
the orthogonal structure is appealing, since we get explicit representations of the 
coefficients in terms of the underlying density; they would otherwise change in value 
and interpretation when going from order m to order m+ 1, say. This representation 
in terms of coordinates for orthogonal basis functions also invites the user to think in 
terms of independent prior distributions for each coefficient, or perhaps a joint prior 
with a simple dependence structure. This translation of prior knowledge into sepa­
rate priors for coordinates would sometimes be too forced and not relevant enough, 
of course, but it greatly simplifies the task as well as the resulting mathematical 
structure. 

REMARK 4.2. The recursive method outlined above leads to exact estimates 
(4.3). Of course even this method can be too cumbersome or too slow, if (n + 
1) · · · ( n + m + 1) / ( m!) is very large. A different way of computing ( 4.3) is to stick 
to the left hand side of (4.2), multiply with the prior density, and carry out the 
necessary numerical integrations in the (13 , •.. ,/m) space, perhaps via simulation. 
-Yet another numerical approach can be based on statistical methods from survey 
sampling theory. Both numerator and denominator consists of ( m + 1 )n terms 
(although many of them are zero), each of which is easy to compute once selected. 
Terms can be sampled from these large sets, leading to estimates of numerator and 
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denominator. Good sampling regimes are those that catch big terms with high 
probability. 

These comments, and indeed the method that led to ( 4.3), are also relevant for 
the problem of computing Bayes estimates in parametric mixture models. 

4.2. THE ROBUST HERMITE EXPANSION. There are some difficulties with the 
(4.1) expansion. The 'Yj coefficients are not always finite, and estimates, whether 
frequentist or Bayesian, are quite variable. Another and perhaps more serious dis­
advantage surfaces when one rewrites the underlying loss function that led to the 
( 4.1) approximation as J(!- fm) 2</>- 2 dz, that is, integrated weighted squared error 
with weight function proportional to exp{(z- J..L) 2 /u2}. This would mean caring too 
much about what happens outside the mainstream area. 

Another Hermite expansion that in several senses gives more robust estimation 
is developed in Fenstad and Hjort (1994). This robust parallel to (4.1) is 

(4.5) 

where 

Note that the function being averaged is bounded, so all coefficients automatically 
exist, and robust estimation is unproblematic. The normal density has Do = 1 and 
Dj = 0 for j ~ 1. A Bayesian model for a random density is once more to place a 
prior distribution for (Do, ... , Dm), for example having independent Djs, and perhaps 
having distributions concentrated around zero to model a density in the vicinity of 
the normal curve. The reasoning of the previous subsection can now be applied with 
the necessary modifications to give a method for computing the Bayes estimate, the 
posterior mean of ( 4.5). See below for some of the details. 

4.3. SPECIAL CONSTRUCTION. Results and examples in Fenstad and Hjort 
(1994) provide more information on typical sizes of D3s, and hence on how priors for 
them should be selected. To give a reasonably concrete example we focus on creating 
a nonparametric model 'around' the normal distribution. The functions that when 
averaged as in ( 4.6) produce DjS are all bounded, so there is a maximal interval 
[aj, b3] in which Dj must lie. This interval is [0, v'2J for j = 0 and is symmetric 
around zero for j odd, say [-bj, b3], and since the average values are typically closer 
to zero anyway a natural simplification is to place a symmetric smooth prior on say 
[ -cj, c3] for each j ~ 1, where Cj = min{lajl, bj}· These are bounded (by 1.213, 
in fact) and go slowly towards zero as j increases. One reasonable scheme is to 
let Dj = Cj(2Bj - 1) for j ~ 1 where the B3s are independent symmetric Beta 
variables with decreasing variances, say B3 I"V Beta(,B3,,B3); see Remark 4.1 again. 
Choose ,83 = (kj 2 - 1)/2, where k is a parameter determining the amount of prior 
uncertainty; the variance of Dj is cj/(kj2). In addition there should be separate 

priors for (J..L, u) and for Do around 1 in [0, y'2]. Altogether this models a random 
density around the normal, which is the limiting case of a large k. Symmetry means 
Dj = 0 for j odd, so approximate symmetry could be modelled by tighter B3s for j 
odd than for j even. 
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The computation of the Bayes estimate for f is as follows. For given (JL, u ), let 

(4.7) 

where 

~ l:o(n) M(ko, ... , kj + 1, ... , km)Sn(ko, ... , km I JL, u) 
5j(JL, u) = 2:: ( k ) (k k I ) ' O(n) M ko, ... ' kj, ... ' m Sn o, ... ' m JL, 0' 

where Sn(ko, ... , km I JL, u) is the sum of all products 

with k0 cases of ji = 0, k1 cases of h = 1, and so on, and where M(ko, ... , km) = 
E5~0 • • ·5~m. The M(·)s are easily found, and the Sn(·)s are to be computed recur­
sively as explained in Section 4.1. A high portion of the terms are zero, namely those 
where there is an odd j for which kj is odd. In the end the ( 4. 7) estimator is aver­
aged over say 100 realisations of (JL, u) drawn from a separately obtained posterior 
distribution for these. 

One possibility for this particular ingredient of the scheme is 

(4.8) 

in which JL*, u*, /a and 14 are the usual (frequentist) estimates for mean, standard 
deviation, skewness and kurtosis. This is based on the approximate binormal sam­
pling distribution for (JL*,u*) given (JL,u), and (4.8) results from starting with a 
flat reference prior for (JL, log u). It is still valid as an approximation with any other 
continuous positive prior, if n is large. The traditionally obtained posterior in a nor­
mal model, based on a normal-Gamma start for (JL, 1/ u2), is like in ( 4.8) above, but 
with skewness and kurtosis parameters equal to zero, since then the normal-model 
likelihood has been used. Thus ( 4.8) is the robust modification of the traditional 
posterior. 

5. Log-linear expansions. The Bayes methods of the previous section ended 
up being quite cumbersome computationally, due to the large number of possible 
combinations when the likelihood was expanded. There are also mild problems 
related to the fact that the resulting estimates occasionally may give negative values 
and may not integrate to precisely 1. The present section develops some theory for 
Bayesian estimation of multiplicatively expanded densities instead. 

5 .1. BASIC FRAMEWORK. Assume observations fall in a given bounded interval. 
For a fixed set of continuous basis functions 1/Jt, ,P2 , ,P3 , ... on this interval, consider 
densities of the form 

m 

f(z, c)= a(c)-1 exp{L Cj,Pj(z) }, (5.1) 
j=l 
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where a( c) = J exp{E:f=1 eppj( z)} dz. IT m is small this is nothing but an ordinary 
parametric model for f, but our intention is to let m be potentially large and even 
possibly infinite. The model corresponds to an additive expansion of the log-density 
in terms of the basis functions. Our Bayesian programme is to start out with prior 
distributions for all the ej coefficients and compute the posterior distribution of 
f(z,c), given a sample X1, ... ,Xn· 

For a simple concrete example of such a setup, suppose the data are scaled to 
fall in [0, 1], and let 1/Jj{z) = zi for j ~ 1. Then (5.1) amounts to expanding the 
log-density as a polynomial. To model uncertainty around a normal density, say 
scaled so as to have at least 0.999 of its probability mass on [0, 1), we would have 
suitable priors on e1 and e2 (and e2 would have to be negative) and in addition have 
priors concentrated around zero for e3 , e4 , •••• 

Note that any continuous density can be approximated uniformly well in this 
way, as a consequence of the Stone-Weierstrass theorem. This happens also in many 
other situations, with a suitably engineered system of basis functions. We may also 
assume without loss of generality that these are uniformly bounded (since scale 
factors can be moved from 1/Ji to ej)· Thus (5.1) defines a bona fide density also 
in the infinite case provided 2:~1 JejJ is finite. In the fully nonparametric case we 
should therefore make sure that this series is convergent with probability 1 under 
prior model circumstances. 

The comments made in Remark 4.1 about representation and interpretation of 
the coefficients are valid in the present framework too. It aids our understanding 
of the parameters, and therefore of the structure of the prior distribution to be 
set, if the basis functions are made orthogonal. IT they have been chosen to satisfy 
J 1/Ji'I/Jk dz = I {j = k }, then ej = J 1/Ji( z) log f( z) dz, and any given density can 
be expanded as in (5.1) with coefficients determined from this. This also suggests 
using a prior for these where the ejs are either independent or obey some simple 
dependence structure. 

5.2. THE POSTERIOR MODE. We now proceed to discuss general technical 
matters related to the calculation of the Bayes estimate. Let 'jij = n-1 2:~= 1 1/Jj{Xi) 
be the empirical 1/Jj mean and let 

JLj( e1, ... , em) = J 1/J;( z )f( z, c) dz = Ec'I/Jj{X) 

be the theoretical mean, under the assumption of the model. The log-likelihood of 
the data is 

m 

n L ej'jij- nlog a( e1, ... , em), 
j=1 

which is easily shown to be a concave function of the parameters. The maximum 
likelihood estimators ci , ... , em are the unique solutions to 

Jij = JLj{e1, ... ,em), j = 1, ... ,m. (5.2) 

Now consider a prior distribution 1r( e1, ... , em) for the e;-parameters. The 
posterior distribution is then proportional to 
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m 

1r(e1, ... , em) exp{ n L ej'jij- nloga(e1, ... , em)}· 
j=1 

18 

(5.3) 
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In several situations it would be possible to simulate from this posterior distribution, 
thus allowing us to compute the conditional mean of the ( 5.1) density for each z, for 
example. In general, rather than computing this squared-error loss Bayes estimate, 
it is simpler to go for the mode of (5.3), giving the Bayes estimate c* of c under a 
sharp 0-1loss function, and then use f(z, c*) in the end. 

Finding the mode of (5.3) posterior density can be cumbersome when m is large, 
but one is helped by the fact that its logarithm is often exactly or approximately 
concave, which means that even simple-minded numerical optimisation schemes, like 
Newton-Raphson, will work. The log of (5.3) is exactly concave when log1r(c) is 
concave and otherwise approximately concave if n is larger than m. 

5.3. A QUADRATIC APPROXIMATION. An approximation which also sheds light 
on the structure of the solution emerges by Taylor expanding the log a( c) term of 
(5.3) around the maximum likelihood estimator c. One finds 

( ) ~ ~ aloga(c) ~ 1 ""'a2 loga(c) ~ )( ~) 
loga c ~ loga(c) + L..J ac· (cj- cj) + 2 L..J ac-ac (cj- Cj Ck- Ck 

j=1 3 j,k 3 k 

1 ""' a 3 log a(c) ( ~ )( ~ )( ~) + G L..J a a a Cj - Cj Ck - Ck Cz - Cz . 
. Cj Ck Cz 

3,k,l 

Furthermore, as a consequence of the exponential form of (5.1) one also has 

aloga(c) _ E ft'··(X) _ ·( ) 
- C'f'3 - f.£3 C l 

aci 
a 2 loga(c) 

a a = covc{'l/;j(X),'f/;k(X)} = Wj,k(c), 
Cj Ck 

a 3 loga(c) 
a a a = Ec{'l/;j(X)- J.Li(c)}{'l/;k(X)- J.Lk(c)}{'l/;z(X)- p,z(c)} = /j,k,z(c). 

Cj Ck Cz 

Disregarding additive constants, the log-posterior density is therefore approximately 
equal to 

log7r(c)- ~n(c- c)'n(c)(c- c)- ~n L /j,k,z(c)(cj- Cj)(ck- ck)(cz- cz), 
j,k,l 

where n(c) is the covariance matrix for the '1/;j(X) variables. To illustrate further, 
suppose the prior distribution for c is multinormal with mean c0 and precision matrix 
no, i.e. covariance matrix n 01 • In cases where n is moderately large, compared 
perhaps to the number of CjS with significantly spread-out prior distributions, the 
basic quadratic approximation will be satisfactory and we can shave off the third 
order terms. The posterior mode c* is then close to the minimiser of 

t(c- co)'no(c- co)+ tn(c- c)'n(c)(c- c), 

that is, 
c* ~{no+ nn(c)}-1{co + nn(c)c}. (5.4) 

5.4. SPECIAL CONSTRUCTION. Suppose f0(z) is some prior guess density and 
that its log-expansion is 2:j:1 co,j'l/;j(z) -loga(c0 ). IT m is allowed to be infinity 
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and the system of basis functions is rich enough this expansion would be the exact 
logfo(z). Then write 

!( ) _ exp{2:j:1 co,j1/;j( z)} exp{2:j:1 ( Cj - co,j )1/;3( z)} _ ., ( ) ( ) 
z, c - ( ) ( )I ( ) - JO z r z, c . aco ac aco 

This rewriting in terms of a prior guess times a correction function is conceptually 
helpful but not of mathematical importance for the final estimation method. The 
idea is to take c1, c2 , ••• independent and place a prior on each coefficient, as per 
comments made at the end of Section 5.1. A simple strategy is to have something like 
c3 "" .A! { c0 ,j, T 2 I j 2}, where T is a fixed parameter determining the amount of prior 
uncertainty. The Bayesian density estimate is f(z, c*), where ci, c2, ... maximise 

f { -~j2 (c3 - c0 ,3)2 IT2} + n f CjjLj- nlog J exp{f c31f13(z)} dz. 
j=l j=l j=l 

This is again a concave function with a unique maximum. An approximation is 
provided by (5.4). Note that cj becomes close to co,j for all large j because of the 
increased precision j2 I T 2 • 

This scheme can with some efforts be generalised to a more semiparametrically 
inspired strategy, with a parametrical fo ( z, e) as initial description, and a non para­
metric correction function r( z, e, c) to estimate. This is not pursued here. 

We have not been very specific about the number m of terms to include. It 
is neat from a puristic nonparametric point of view that the apparatus can handle 
m = oo, but then the priors used for CjS for large js need to have small variances. 
The observation made above, about closeness of cj to co,j, suggests that even in cases 
with an infinity of priors, stopping at a moderate m could constitute a satisfactory 
numerical approximation. One natural scheme is to compute estimates for a numbers 
of ms, perhaps for m up to the sample size n, and then select one of them according 
to a suitable criterion. Such a criterion is the Bayesian information criterion of 
Schwarz (1978), choosing the model that maximises 

m 

SIC(m) = n LCjjLj- nloga(cl, ... 'em)- (tJogn)m. 
j=l 

Here c1, ... , em are the maximum likelihood estimates again, but the arguments 
used in Schwarz' proof of his main result also allow these to be replaced by the 
Bayesian mode estimates ci, ... , c~. The information criterion siC(m) is really based 
on large-sample approximations, and it should also be possible to work out useful 
finite-sample modifications in the present situation. The SIC criterion is similar 
to but more 'stingy' than the often used Akaike information criterion; Schwarz's 
criterion is less willing to allow many parameters. 

The normal prior specification above gives an exponent function which is a 
Gaufiian process. As such the method outlined here is related to the ones worked 
with in Lenk (1991, 1993), in spite of having a different starting point. See also 
Leonard (1978) and Thorburn (1986) for similarly spirited approaches. Lenk (1991) 
starts with such a Gaufiian process for the exponent and uses Karhunen-Loeve rep­
resentations to translate this into a specific form of (5.1), with a simple form for the 
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simultaneous prior for the coefficients. The present framework and methods are in 
several ways more general than in Lenk (1993), since non-normal priors easily can 
be used for the coefficients. The idea of building uncertainty around the normal 
density, for example, in the situation where the log-density is expanded like a poly­
nomial, would typically require having non-normal priors for at least some of the 
coefficients. 

6. Local priors on local parametric approximations. The basic idea of 
a semiparametric approach to (non-Bayesian) density estimation recently developed 
by Hjort and Jones (1994) is to work with parametric models, but only trusting them 
locally. That is, a parametric vehicle model f(t, 9) is used fort in a neighbourhood of 
a given z, and the final density estimate is of the form f( z, 0( z)), where 0( z) is based 
only on data local to z. This aims at the best local parametric approximation to 
the true density. In this section semiparametric Bayesian analogues are developed, 
the idea being to use local priors on the local parameters. 

6.1. LOCAL LIKELIHOOD FOR DENSITIES. Let f(t, 9) be a suitable paramet­
ric class of densities. The ordinary likelihood is of course I1?=1 f( Zi, 9). But this 
conveys the information content of the data only when the model can be trusted 
fully. Suppose the density is modelled only locally, say f(t) = f(t, 9) for t in the 
window cell C ( z) = [ z - i h, z + i h]. The simplest modification of the likelihood 
would be to only include terms with Zi E C ( z), but this is not correct; examples 
illustrate that this is an inadequate measure of information content, and that its 
maximiser is an unsatisfactory estimator of the parameter. A more appropriate 
modified likelihood is the likelihood that only uses information about Xis to the 
right of z- ih and what happens to these during [z- ih, z + ih]. In other words, 
the appropriate distribution is the conditional one given Xi ~ z - ih, which is 
f(t,9)/S(z- ih,9) fortE C(z), in terms of the survival functionS= 1- F, and 
with probability of further surviving z + ih equal to S(z + ih, 9)/ S(z- ih, 9). 
Using S(z, 9)/ S(a, 9) = exp[- faa: {f(t, 9)/ S(t, 9)} dt], valid for z ~a, this leads with 
further manipulations to 

where Sn = 1- Fn is the empirical survival function. This is at the moment the 
exact likelihood of all data with Xi ~ z- ~h, using information about what happens 
during [z- ~h, z + ~h], and satisfactory Bayesian and non-Bayesian methods can 
be developed with Lo,n as basis, see Hjort (1994a). This machinery tends to work 
better with hazard rates than for densities, however, and it turns out to be fruitful 
to work instead with a convenient approximation. This approximation emerges by 
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replacing the model-based S(t, 0) with the nonparametric Sn(t), giving the local 
likelihood for the local data in [z- th, z + thJ, 

(ignoring a multiplicative factor not dependent on the parameter). This can also be 
written 

Ln(z, 0) = {IT f( Zi, O)K"(h-l(z;-z))} exp{ -n J K(h - 1 (t- z ))f(t, 0) dt}, (6.2) 
i=1 

where K(z) = 1 on [-t, tJ and zero elsewhere. Note that the scaled version 
K(h- 1(t- z)) has support [z- th,z + thJ. We shall also use (6.2) with more 
general kernel functions K(z), only requiring that they are smooth around zero and 
have 'correct level' K ( 0) = 1. This also translates into K ( h - 1 ( t - z)) close to 1 for t 
near z. Typically K(z) = K(z)/ K(O) for a symmetric unimodal probability density 
kernel function K. 

These matters are further discussed in Hjort (1994a) and Hjort and Jones 
(1994), including other reasons favouring (6.1) and (6.2) for density estimation. 
See also Loader (1993). We call (6.2) the kernel smoothed local likelihood at z, and 
view it as carrying the local information on the local parameter 0. The argument is 
that it is a natural smoothing generalisation of (6.1) and that the local parametric 
model built around z is sometimes trusted a little less a little distance from z than 
at z itself. The requirement about 'correct level' forK is important. A scale factor 
in K does not matter for estimation theory based on maximisation of such local 
likelihoods, see Hjort and Jones (1994), but Bayesian consequences in what follows 
rest on the fact that if1r(O) is a prior for 0, then the simultaneous density for 0 and 
local data is approximately proportional to 7r(O)Ln(z, 0). Note also that when his 
large the local kernel smoothed likelihood becomes U1~=1 f(zi, 0)} exp( -n), which 
is the usual full likelihood (apart from the exp( -n) factor which is independent of 
the parameter). Thus ordinary parametric likelihood methods, whether frequentist 
or Bayesian, simply correspond to the large h case. 

Before passing to the Bayesian consequences we note that, for the case of K(z) = 
K(z)j K(O), 

n n 

i=1 i=1 
n 

gn(z) = n-1 Lh-3(zi- z)K(h-1(zi- z)) (6.3) 
i=1 

n 

= K(O)(nh3 )-1 L(zi- z)K(h-1(zi- z)). 
i=1 

Here fn(z) is the classical kernel estimator already encountered in equation (2.3) 
and later on, while gn( z) similarly is a K -based kernel type estimator for the density 
derivative f' ( z) times the constant u}c (the variance of K). When the kernel used 
is K =</>,the standard normal, gn(z) is simply the derivative of fn(z). 
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6.2. LOCAL BAYES ESTIMATES. Whereas Hjort and Jones (1994) maximise 
these local likelihoods and develop theory and special cases for the resulting /(~, 
B( ~)) estimators, the present aim is to develop Bayesian estimators of the form 

1(~) = E{f(~,O) I local data}. (6.4) 

The posterior distribution in question is taken to be 7r(O)Ln(~, 0)/ J 7r(O)Ln(~, 0) dO, 
where 1r(O) is the prior density for 0. A fuller verbal description of (6.4) could be 'a 
locally parametric nonparametric Bayesian density estimator', and another informa­
tive mouthful is 'a nonparametric Bayesian estimator of the locally best parametric 
approximant to the true density'. The approximation in question here is in terms 
of a localised form of the Kullback-Leibler distance, see Hjort and Jones (1994). 
When his large the local likelihood becomes the ordinary one and (6.4) is the famil­
iar predictive density. When h is small the estimator is essentially nonparametric in 
nature. 

Note that 0 changes interpretation with~; for each new and temporarily fixed 
~ there is a new parametric approximation to f near ~ and a new prior for the best 
fitting parameter 0 = O:D. See also Section 8.5. 

It is also fruitful to generalise this method of local parameters to one with both 
global and local parameters present, in the spirit of two-stage priors or hierarchical 
Bayesian methods. One such framework is to model the density as/(~, e, 0), where 
e is a global 'background' parameter with prior 7ro(e) and 0 is local to ~- For each 
e the method above applies and gives 1(~,e) = E{f(~,e,o) llocal data}. The final 
estimator is then to average this over the posterior density for e, say 

1(~) = E{l(~,e) I all data} 

=I {j t(~, e, 0)11"(0 I local data) dO} 7ro(e I all data) de. 
(6.5) 

Some of the examples below are of this sort. 

7. Locally parametric Bayesian density estimators: Special cases. 
The development above, ending via the local likelihood (6.2) in the (6.4) and (6.5) 
estimators, is of course quite general, and there is a variety of different specialisations 
of the method. Below is a partial list of interesting special cases. We stress again 
that the estimators have nonparametric intentions, in spite of the fact that they 
use local parameterisations. When the smoothing parameter is large we are back to 
ordinary Bayesian fully parametric methods. 

7.1. LOCAL CONSTANT WITH A GAMMA PRIOR. Let the local model simply 
be a constant, f(t, 0) = 0 for t in a neighbourhood around ~- This is unrealistic 
as a fine description of the density, but makes sense locally; the main aim is to get 
hold of the 'local level' for f. Let furthermore 0 have a Gamma prior {cfo(~), c}, 
say, with prior mean fo(~) and prior variance fo(~)fc. Via (6.3) the local likelihood 
(6.2) is seen to take the form 

onhf,.(:D)/ko exp{ -nhO/ko}, 

Bayesian density estimation 23 March 1994 



writing for simplicity k0 = K(O). It follows that 0 given the local data is Gamma 
{cfo(:v) + nhfn(:v )/ko, c + nh/ko}, leading to 

i{:v) = cfo(:v) + nhfn(:v)/ko, 
c + nh/ko 

(7.1) 

a weighted average of prior guess and kernel estimator. This is exactly as in (2.3), 
if the value for the prior strength parameter c used is ah/ko. 

7.2. LOCAL CONSTANT WITH A TWO-STAGE PRIOR. To generalise, let us keep 
the constant level model f(t, 0) = 0 fort near :v, but let us employ a two-stage prior 
for 0: 0 given a certain background parameter e is a Gamma { cfo( :v, e), c }, and e has 
a separate background prior ?ro(e). We think of f 0 (:v,e) as the background model, 
which is next to be corrected on by the data. We have 

c nh/ko 
E{f( :v, 0) I local data, 0 = h/ k fo( :v, e)+ h/ k In( :v ), 

c+n 0 c+n o 

and the final Bayes estimator is 

~ c I nh/ko 
f(:v)= h/k /o(:v,e)?ro(eldata)de+ h/k fn(:v). 

c+n o c+n o 
(7.2) 

This linearly combines the predictive estimator of the parametric prior guess density 
and the nonparametric kernel estimator, and is quite similar to the (2.7) estimator 
that was derived in a quite different framework. It is not difficult to find the first 
term explicitly when the background model is Gaufiian and the (JL, 1/u2 ) is given 
the conjugate normal-Gamma prior, for example. 

7.3. LOCAL LEVEL AND LOCAL SLOPE. Another generalisationis to incorporate 
both local level and local slope in the vehicle model, say f(:v, 0, {3) = 0 exp{f3(t- :v)} 
fort close to :v. Let f3 have a prior 1r(f3) reflecting prior beliefs about the local slope 
at :v, and let 0 be a Gamma {cf0 (:v),c} (where the c parameter could depend on {3). 
The local likelihood can be written 

onhfn(:x:)/ko exp{ -nhO,P(f3h)/ k0 } exp{f3nh3 9n( :v )/ ko}, 

in view of (6.3) again, and where ,P(f3h) = J K(z) exp(f3hz) dz. Thus 

0 I local data, f3 ,..., Gamma{ cfo(:v) + nhfn( :v )/ ko, c + nh,P(f3h)/ ko}, 

and 
cfo(:v) + nhfn(:v)/ko 

E{f(:v, 0,{3) I local data,/3} = c + nh,P(f3h)/ko . 

The Bayes solution f( :v) is to average this over the posterior distribution for f3 given 
the local data. 

The local posterior for (/3, 0) is proportional to 

1r(f3) ocfo(:x:)+nhfn(:x:)/ko-1 exp[-O{c + nh'I/J(f3h)fk0 }] exp{nh3 f3gn(:v)/ko}. 
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Integrating out 0 the result is proportional to 

exp{ nh3 f3gn( :z:) I ko} 
1r(/3) {c + nh'if;(f3h)lko}cfo(:t!)+nhf,.(:c)/ko' 

If K = <P, then 'if;(f3h) = exp(tf32h2 ), and an approximation gives 

Supposing c to be small compared to nh, and letting the prior for f3 be a normal 
(/30 , 1 I w~), the resulting local posterior for f3 is approximately proportional to 

that is, 

f3Jl al d "'.A!{ w~f3o + nh3 fn( :z: ){gn( :z: )I fn( :z:)} I ko 1 } 
oc ata"' w~+nh3fn(z)lko 'w~+nh3 fn(z)lko · 

(7.3) 
Note that the mean is a convex combination of /30 and the natural nonparametric 
estimate of the log-derivative of the density. To a fust order approximation the f3 
given local data is a normal with mean Un(:z: )I fn(z) and variance {nh3 fn(:z: )lko} -l. 
The final approximation for the density estimate itself becomes 

where jl and u2 are the newly found posterior parameters for /3. This is similar to 
what Hjort and Jones (1994, Section 5.2) found for the maximum local likelihood 
density estimate for this local log-linear model. 

7.4. LOCAL LEVEL, SLOPE AND CURVATURE. With efforts the previous example 
can be generalised to a model for local level, local slope and local curvature. That 
is, employ Oexp{f3(t- :z:) + t1(t- :z:) 2 } as vehicle model fort near :z:, give (/3,/) a 
normal prior, and let 0 be a Gamma centred at some fo ( :z:) again. The calculations 
are as above but become more complicated, and in addition to fn(z) and Un(:z:) they 
will involve an estimate of the second derivative of f. The end result is a Bayesian 
parallel to the maximum local likelihood density estimator found in Hjort and Jones 
(1994, Section 5.3) for the local log-quadratic model. 

These constructions can also be generalised to the situation where the prior 
guess density involves a background parameter, just as estimator (7.2) generalised 
estimator ( 7.1). 

7.5. PRIOR GUESS TIMES A LOCAL CONSTANT. This time write the density 
as a prior guess times a correction function which must then be locally estimated. 
With a local constant for this purpose this means using f( t, 0) = fo ( :z: )0 for t near :z:. 
Let 0 have a Gamma distribution around 1, say with parameters ( c, c) (in particular 
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this means that f(z,9) is seen as a Gamma with {c,clfo(z)}, and a differently 
structured variance than in 7.1 above). The local likelihood is 

Ln(z, 9) =IT {fo(zi)9}K(h- 1(:u;-:u)) exp{ -n9 I K(h- 1(t- z))fo(t) dt} 
i=1 

=IT {fo(zi)}K(h-l(:u;-:u)) 9nhf,.(:u)/ko exp{ -nh9 I K(z)fo(z + hz) dz}, 
i=1 

which leads to a different type of posterior for 9 than in special case 7.1, namely 

9Jlocal data"' Gamma{ c + nhfn(z)lko, c + nh I K(z)fo(z + hz) dzlko }· 

The density estimator becomes 

j fi c + nhfn(z)lko 
(z) = o(z) c + nh J K(z)fo(z + hz) dzlko · (7.4) 

This pushes the kernel estimator downwards in regions where fo is convex and 
upwards in regions where fo is concave. 

Again extensions are possible, to two-stage priors with a global parameter in 
!o( z, e), and to the local log-linear model for ! 1 !o with a local slope parameter in 
addition to 9. 

7.6. A BETTER. COR.R.ECTION FACTOR. FUNCTION. Again write f(t, 9) = fo(t)9 
for a prior guess density fo and a local correcting constant, but this time consider 
using the alternative kernel function K ( z) = k0 1 K ( z) fo ( z) I fo ( z + hz), that is, 
K(h-1(t- z)) = k01hKh(t- z)fo(z)lfo(t) fort near z. Then the local kernel 
smoothed likelihood becomes proportional to 

9nhfo(:u)r,.(:u)/ko exp{ -n9 I fo(t)K(h- 1(t- z))7o~~j dtlko} 

= 9nhfo(:u)r,.(:u)/ko exp{ -nh9fo(z)lko}, 

where rn(z) = n-1 2:~= 1 Kh(zi- z)lfo(zi) is the natural nonparametric kernel 
estimator ofthe correction factor function r( z) = f( z) I fo ( z). The Bayesian density 
estimator becomes 

[(z) = fo(z) c + nhfo(z)rn(z)lko. 
c + nh fo ( z) I ko 

This is close to fo( z )rn( z ), which is the simplest form of a class of density estimators 
recently developed by Hjort and Glad {1994), all of the form initial parametric start 
estimate times nonparametric correction factor. 

An extension of the above is to write f(t) = f(t, e)9 for t near z, where 9 is 
local to z and e is a global parameter, as with (6.5). The f(t, e) could for example 
be a normal with a prior on (J.L, q). This leads to an estimator of the form 
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where rn(z,e) = n-1 2:?=1 Kh(zi- z)/f(zi,e). If in particular c goes to zero, 
arguably corresponding to a noninformative prior for the local constant, then 

f(z) = j f(z,e)rn(z,e)11'o(eldata)de 

= n-1 t. Kh(zi- z) E{ J(~i',~) I data}· 

(7.6) 

This is simply the classical kernel estimator when the prior model f( z, e) is flat and 
noninformative, and otherwise aims to correct the kernel estimator so as to have 
smaller bias in a broad neighbourhood of the parametric model. The (7.5) and (7.6) 
estimators are Bayesian predictive versions of the f(z,l)rn(z, [)type estimator. In 
Hjort and Glad (1994) these semiparametric estimators have been shown to have 
frequentist properties generally comparable to and often better than those of the 
kernel estimator. 

7. 7. A RUNNING NORMAL DENSITY. This time let us try to estimate a 'running 
normal density'. The local model is now a normal (JL, u 2), and the density estimate 
is 

~ 1 //1 f(z) = .../2-i ~ exp{ -Hz- JL) 2 /u2} 1r(JL, 0' I local data) dj.tdO'. (7.7) 

To illustrate without too many technicalities we take 0' known. Using the standard 
normal kernel the local likelihood is proportional to 

Note again that a large h gives back the ordinary full likelihood, maximised for 
JL = :V, the mean of the data. Using (6.3) again this is proportional to 

in terms of o = JL- z. If the local JL is given a normal (JLo,T2) prior, for example, 
then this gives the posterior density. The (7.7) estimator is in the end found from 
numerical integration. 

8. Supplementing remarks. This final section gives various additional re­
sults and remarks, several of which point to questions for further research. 

8.1. FINE-TUNING OF PARAMETERS. Several of the estimators arrived at in 
the paper depend on one or more parameters, to be decided on for each application. 
Some of these parameters relate to specification of the prior distribution and others 
are 'smoothing parameters'. Parameters in the prior should ideally be set via the 
infamous 'prior considerations', perhaps explicitly involving previous data of similar 
nature, but can otherwise sometimes be estimated in an empirical Bayes manner. 
Using a hyper-prior and averaging over its posterior is another method, and this 
should usually be quite robust. It is also of interest to consider 'noninformative' 
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reference type priors. For the estimators of Sections 2 and 3 the natural version 
of this is to let the prior strength parameter a tend to zero. This leads to the 
traditional kernel estimator itself for cases (2.3) and (2.7), to a variable bandwidth 
kernel estimator using residuals in (2.9), to kernel estimators corrected for level in 
Section 3, and to a version of maximum penalised likelihood in (2.6). In particular 
this lends some Bayesian support to the kernel estimator and to the other limiting 
versions mentioned. Similarly, for the schemes in Section 7 that use Gamma priors 
with strength parameter c, the natural reference prior corresponds to letting c tend 
to zero. Again this is seen to lead to the kernel estimator for cases (7.1), (7.2), and 
to interesting competing versions for cases (7.4), (7.5), (7.6). 

The h of Sections 2 and 3 is an example of an external smoothing parameter, 
perhaps more appropriately seen as an algorithmic parameter governing the amount 
of smoothing than a parameter of a statistical model. Bayesian versions of cross 
validation criteria can be invented for the purpose. The h of Sections 6 and 7 is 
also such a smoothing parameter, but it can also be interpreted in the context of a 
Bayesian model; if the kernel K in question is scaled so as to have support [- t, t], 
for example, then [:c- th, :c + thJ is the interval around :c in which the parametric 
approximation is believed to be adequate. As such the length of this interval of 
adequacy can be given a prior, and so on. If a data-driven method is wished for it 
is perhaps more natural, however, to use a suitable local goodness of fit criterion; 
the interval is stretched until the parametric model bursts, and this defines the h 
to be used for the given :c. For an example, suppose a 'local constant' method is to 
be used, as in Sections 7.1, 7.2, 7.5 or 7.6. If the true density is constant over an 
interval [a, b], then process convergence 

..;n{ Fn[a, :c] - :c- a} ~d wo (:c- a)/ F[a, b]l/2 for a~ :c ~ b 
Fn[a, b] b- a b- a 

can be demonstrated. Here Fn[a, :c] is the relative number of data points in [a,:~:], 
and so on, and W 0 is the Brownian bridge. One can prove from this that the test 
which accepts [a, b] as an interval of constancy of the underlying density, whenever 

Fn[a, b] 112 ""' I Fn[a, Zi] _ Zi- a I < 9 
r,;: LJ F. [ b] b - - 0.4 9, 

v ·~ a<m·<b n a, a 
- ·-

has significance level about 10% (the 0.499 number is the upper 10% point of the 
distribution of J0

1 IW0 (t)l dt). This can now be used for :c ± ih intervals (with h 
above a suitable minimum). In the end the resulting ha: values, for the chosen :cs at 
which the final estimator is to be computed, should be post-smoothed. 

8.2. PERFORMANCE. With various starting constructions we have been able 
to give recipes for the computation of Bayes estimates. Non- and semiparametric 
Bayesian constructions are often so technically complicated that even this is some­
times an achievement. The question of performance analysis is typically even harder, 
and is presumably the reason why this aspect of the method is too often neglected. 
Different Bayesians might perhaps wish to stress different aspects of performance, 
but 'analysing performance' in the present context could for example mean study­
ing exact or approximate risk functions under pointwise or integrated squared error 
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loss, that is, frequentist behaviour for given candidate densities. This might involve 
(a) assessing approximate biases and variances; (b) comparing these with those of 
standard estimators like the kernel method, for densities that are likely and not so 
likely under the prior; (c) proving or disproving large-sample consistency and nor­
mality; (d) assessing the reduction, if any, in terms of Bayes risk, compared to that 
of standard methods, both under the ideal prior that led to the estimator in question 
but also under other priors. These comments also point to simulation as a natural 
tool. 

Most estimators derived in Section 2 can be analysed like this, at least for 
large n and small h. These estimators are typically asymptotically equivalent to 
appropriate kernel estimators, if the prior is held fixed, and the large sample theory 
for kernel estimators is very well developed. Estimators from Section 3 can also 
be analysed with suitable extensions of standard tools. Some but not all of the 
estimators from Section 6 and 7 can be analysed, for moderate to large n and small 
h, using methods of Hjort and Jones (1994). The estimators that rely on both global 
and local parameters would require more delicate tools for their analysis. 

Estimators from Sections 4 and 5 are not so easily analysed. The task is not 
terribly hard if the expansion order m is fixed and small compared to n, but otherwise 
we find ourselves in need of more theory, particularly when m is allowed to be 
infinite. To illustrate, let us pose a 'typical question' about such estimators: For 
the (4.4) model mentioned in Remark 4.1, with m infinite, place independent priors 
Cj = J2(2Bj - 1) on the Cjs, where the Bjs are symmetric Beta variables with 
decreasing variances, say Var Cj = k/ j2. This assures convergence of the infinite 
expansion with probability 1. What is the behaviour of the resulting Bayes estimator 

1 + 2:~1 cjJ2 cos(j1r:c) ? 

8.3. BAYESIAN HAZARD RATE AND REGRESSION CURVE ESTIMATION. Many of 
the methods and results presented here have parallels in the problem of estimating 
hazard rates in survival analysis and in more general counting process models for life 
history data. See Hjort (1991a, 'third general method') and Hjort (1991b, Section 8) 
for two frameworks involving nonparametric randomness around parametric models, 
the latter also extending to such Bayesian uncertainty around the semiparametric 
Cox regression model. In these settings, which are analogous to the present paper's 
Sections 2 and 3, Beta processes, a generalised class of hazard function relatives of 
the Dirichlet (Hjort, 1990), play the natural role. A Bayesian locally parametric 
approach for hazard rates estimation, analogous to Sections 6 and 7, should not 
be difficult to develop, with the local likelihood machinery already present in Hjort 
(1994a). 

The local likelihood machinery of Sections 6 and 7 also has natural parallels in 
Bayesian nonparametric regression; model the unknown regression curve as being 
locally linear, place normal priors on the local line parameters, and compute the 
posterior given local data using local likelihood. The noninformative prior versions 
of this scheme correspond to recently developed local polynomial regression methods 
that have been shown to have very good performance properties, see for example 
Fan and Gijbels (1992). Empirical Bayesian and hierarchical Bayesian schemes can 
be developed as well, and these could easily perform better than standard methods 
in situations with several covariates. See Hjort (1994b ). 
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8.4. FURTHER PROBLEMS. Standard density estimation methods work reason­
ably well in all reasonably populated areas. That is, they perform well in dimensions 
1 and possibly 2, but often not at all in higher dimensions (the curse of dimension­
ality is precisely that no areas are well populated in higher dimensions), and often 
not well in the tails. These problems have not been focussed on in the present 
paper, but are presumably areas where the Bayesian method might improve signifi­
cantly on standard methods. One needs a broader range of prior distributions that 
reflect various notions of what are likely and not so likely densities. Challenges in­
clude building Bayesian methods that are geared towards for example approximate 
unimodality or approximate bimodality (and for this mixtures approaches would be 
appropriate). Grander problems, where the Bayesian viewpoint is well worth explor­
ing to a fuller extent than hitherto, include statistical pattern recognition, non- and 
semiparametric regression (particularly with many covariates), and neural networks. 

8.5. FULL BAYESIAN MODELS FOR LOCAL PARAMETRIC ESTIMATION. Our 
locally parametric method requires a local model and a local prior around each :ll. 
A full global model for the complete density curve requires in addition a description 
of how these underlying local parameters change with :zJ, but this was not necessary 
as far as the computation of the estimate is concerned. It is nevertheless of interest 
to build such a fuller stochastic process framework, which also would be valuable 
when it comes to estimation of prior parameters, and for performance evaluation, 
cf. comments made in 8.1 and 8.2 above. This is not an easy task. To illustrate, 
take the simplest of the special cases considered, that of Section 7.1. Take the 
local constant ()z to be the result of a smoothed Gamma process with independent 
increments, say ()z = T(:ll- td:zJ,:zJ + td:zJ)/d:zJ with a certain small smoothing 
resolution d:zJ, where T(a, b) is Gamma distributed with parameters {coFo(a, b), co} 
for each given (a, b) interval. There is such a process by Kolmogorov's consistency 
theorem and the additive property of Gamma variables with equal shape parameter. 
Hence ()z is approximately a Gamma with parameters {cofo(:ll) d:zJ, c0 d:zJ}, with mean 
fo ( z) and variance fo ( z) / (co d:zJ). This fits in with the treatment in Section 7 .1. 
There are alternative constructions of interest and relevance, and the other special 
cases in Section 7 require various extensions. 

8.6. THE LINEAR SEMIPARAMETRIC ESTIMATOR. Results (2.3), (2. 7) and 
(7.1)-(7.2) give Bayesian support to estimators of similar form that were considered 
in non-Bayesian frameworks by both Schuster and Yakowitz (1985) and Olkin and 
Spiegelman (1987). Jones (1994) and others have pointed to certain difficulties with 
such estimators, primarily because the mixing parameter is somewhat imprecisely 
defined and difficult to estimate. In the present Bayesian framework the mixing 
parameter has a clear interpretation, however. For the case of (7.2), for example, 
a natural suggestion is to estimate c by empirical Bayesian techniques and choose 
h by a suitable local goodness of fit criterion. We leave the finer details for future 
work. 

8. 7. INCONSISTENT ESTIMATES OF RESIDUAL DENSITY IN HIGHER DIM EN­
SIONS. The semiparametric framework in Section 2.6 for data that were parametric 
transformations of residuals can be generalised to situations with multidimensional 
data. One such situation of interest is Xi = J.L + 'E1 12 ei, say in dimension d, where J.L 

is location vector and 'E is a symmetric and positive definite matrix, and where the 
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eis come from a residual distribution Gin !Rd. Now give (J.L, IJ) a prior and let G be 
a Dirichlet with parameter aG0 • Just as in Section 2.6 one finds the Bayes estimate 

n 

G(y) = wnGo(Y) + (1- wn) n-1 L Pr{IJ-112(:z:i- JL) ~ y I data}, 
i=l 

where t ~ y means t1 ~ Yt, ... , td ~ Yd· Again, using the analogue of (2.8), the 
exact or approximate posterior for (J.L, IJ) is typically a multinormal centred close to 
the maximum likelihood estimators and with covariance matrix proportional to 1/n 
(assuming continuous data with no ties). The point to be made now is that this 
translates into a density estimate g(y) for the residual density, the derivative of G(y), 
which as its main term has a multivariate variable kernel density estimate that is 
not consistent. This is since the bandwidths hi become proportional to 1/ y'n, which 
is too small; the estimator smooths too little. In the case of a known IJ matrix and 
a standard d-dimensional normal for Go, for example, the his are all equal to 1/ y'n, 
and the variance of the kernel estimator is equal to R( K)d f( :z:) / ( nhd) plus smaller 
order terms, where again R(K) = J K 2 dz. The bias is proportional to h2 • This 
means that there is ordinary consistency for d = 1, a stable variance that does not 
go to zero for d = 2, and a variance going towards infinity for d ~ 3. Statisticians 
using the exact g( ·) with no ties are using estimates with enormous variances, if 
d ~ 3. 

The face of the Dirichlet is sort of saved, however. A more careful scrutiny 
shows that the posterior for the parameter is really approximately multinormal with 
covariance matrix proportional to 1/ Dn, the number of distinct data vectors among 
the n. And a somewhat artificial facet of the Dirichlet process is that it produces 
data vectors that have lots of ties; in fact, Dn increases quite slowly as alogn, as 
shown by Korwar and Hollander (1973). Hence the bandwidths above are really of 
size const./(logn)112 , theoretically speaking, that is, if the data vectors really are 
sampled from a Dirichlet process. And this is a large enough size for consistency of 
g(y). 
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