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The autopsy data of a coherent system is the pair (T, I), where Tis the time 
to failure of the system, and I is the set of components failed by that time. A 
basic question is under which conditions the distribution of the autopsy data 
determines the simultaneous life distribution of the components. This prob
lem has been studied under various distributional and structural assumptions 
(always under the assumption of independent component life distributions) 
by Meilijson (1981), Nowik (1990) and Antoine et al.(1993). In this paper 
we study the same problem in the situation when the autopsy data is sup
plemented with data from lifemonitoring and conditional lifemonitoring of 
some components, as introduced by Meilijson (1994). 

1 Introduction 

Let ( E, ¢) be a coherent system, with components E = { 1, ... , n}. The 
state of the ith component at time t is denoted by Xi(t) (Xi(t) = 1 if the 
ith component functions, Xi(t) = 0 otherwise). The state of the system is 
given by ¢(X1(t), ... , Xn(t)) = ¢(X(t)) = 1 if the system functions, and 0 
otherwise. Define Ti = inf{t!Xi(t) = 0} =the lifetime of the ith component. 
Failed components are not repaired, so Xi(t) = 0 if t ;::: Ti. The Ti's are 
assumed to be independent with distribution functions Fi, i = 1, ... , n. The 
lifetime of the system is given by T = inf{ti¢(X(t)) = 0}. Denote by I the 
set of components that have failed by timeT, i.e. I= {il7i :::; T}. I is the 
socalled diagnostic set, and the pair (T, I) is called the autopsy data of the 
system. The autopsy data arise when the system is observed from time 0 
until system failure, after which it is examined to find out which components 
have failed and which have survived. 

The question of identifiability of the system, i.e. whether the distribution 
of the autopsy data determines the life distributions of the components, has 
been addressed by Meilijson (1981), Nowik (1990) and Antoine et al. (1993). 
The latter paper contains an excellent introduction, motivating the problem 
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and summarising the main results. We give here a short review of the basic 
definitions and results needed in the present paper. 

The incidence vector of a subset A of E is the vector (1(1 E A), ... , I(n E 

A)). A cut set of (E, ¢>) is a subset K c E such that the incidence vector 
x of K satisfies ¢>(1- x) = 0. A minimal cut set is a cut set with no other 
cut set as a proper subset. A fatal set of (E, ¢>) is a subset A c E such 
that the intersection of all minimal cut sets contained in A .is nonempty, and 
this intersection is called the critical set of A and is denoted by CA. Under 
quite general conditions, and in particular, if Fi is continuous and strictly 
increasing for each i, A is fatal if and only if P(I = A) > 0, and i E CA if 
and only if P((I = A) n (Ti = T)) > 0. We denote by A= {A1, .•. , Am} 
the set of fatal sets, and by M, D, C the minimal, fatal and critical incidence 
matrices respectively; i.e. the matrices whose rows consist of incidence vec
tors of the minimal cut sets, the fatal sets and the corresponding critical sets 
respectively. If B is any of these matrices, and A is a subset of E, we denote 
by BAthe submatrix consisting of the columns corresponding to the indices 
in A. 

The distribution of the autopsy data is defined through the equations 

P((T:::; t) n (J =A))= Gi(t) = 

= ],' ;eA.!Jc., F;(s) ;!!: F;(s)d(;!J,. F;(s)) (1) 

where Fi(t) = 1- Fi(t). The question of identifiability of the system reduces 
to the question of whether these equations determine F1, .•. , Fn as functions 
of G1, .•. , Gm. For some components the problem is easy, as pointed out by 
N owik ( 1990). Define 

J = {ilthere existj,k E {1, ... ,m}such that 

i E Ai, Ak = Ai- {i} andCA; = CAk} 

If i E J, with i,j, k satisfying (2), we clearly have from (1) 

(2) 

(3) 

Thus, the components in J are trivially identifiable. As an illustration, sup
pose that (E, ¢>) consists of two modules in series. Thus, E is the disjoint 
union of subsets E1, E2, and ¢>(x) = ¢>(1E2 , x)¢>(1E11 x), where (lEz, x) de
notes the vector whose coordinates are 1 corresponding to Et, l = 1, 2, and 
coincide with x otherwise. If i E E 1 is not in series with the rest of the 
system, and K 2 is a minimal cut set contained in E2 , the definition is satis
fied with Ak = K2 and Ai = K2 U {i}, so the ith component is identifiable. 
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Combining this fact with the fact that any series system is identifiable (which 
follows from the main result of Meilijson (1981), see below), it is easy to see 
that (E, ¢) is identifiable. This generalises proposition 4 of Antoine et al. 
(1993), which assumes analytic distribution functions. 

Meilijson (1981) considers the reduced system consisting of the equations 
(1) corresponding to minimal cut sets (which are of course also fatal sets). 
His main result is that the system is identifiable if M has full rank (i.e. rank 
n), provided that the F;.'s are continuous with the same essential extrema. 
Hence, a series system is identifiable if the distributional conditions are sat
isfied, M being the identity matrix. Nowik (1990) shows that if CJc has 
full rank, and if the Fi 's are mutually absolutely continuous with common 
extrema, and with positive atoms at the common infimum, the system is 
identifiable. The rank condition is shown to be equivalent to the condition 
that at most one component is in parallel with the rest of the system. This 
latter condition is shown by Antoine et al. (1993) (theorem 2) to be equiva
lent to the condition that D has full rank. An application of this rank result 
is that any k-out-of-n system with k > 1 is identifiable (the system functions 
if at least k components are functioning). Indeed, D has full rank since k =1- 1, 
and we have M = D since each fatal set is a minimal cut set. Identifiability 
then follows from Meilijson's theorem (this result is proved directly in Meil
ijson (1981)). The rank condition is clearly necessary for identifiability, no 
matter what assumptions that are made on the distributions. Based on com
putational studies, Antoine et al. (1993) conjectured that it is also sufficient 
(at least when the distribution functions are analytic), but were not able to 
prove this. They give, however, a stronger sufficient condition, assuming that 
each Fi is analytic, with ri the smallest power in the power series expansion, 
and aiO the corresponding coefficient (theorem 4 of Antoine et al. (1993)). 
From the proof of this theorem it follows that if D has full rank, then ri and 
aiO are determined for each i, covering many important parametric classes of 
distributions. The theorem states that the system is identifiable if the matrix 
RD + pC has full rank for p = 1, 2, ... and all possible choices of R, where R 
denotes the diagonal matrix whose ith diagonal entry is r 1<;1 + · · · + TnCin, 

where Cij are the entries of C. 
In the present paper we study identifiability in a more general model, 

where the autopsy data is supplemented with data from partial observation 
of specific components. Components are monitored according to a particular 
observation plan, specifying a set of lifemonitored components (i.e. compo
nents i that are monitored from time 0 untilTi/\T), and a set of conditionally 
monitored components (i.e. components i that are monitored from an inspec
tion time Ti determined by the observed history, or, to be more precise, the 
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history that would have been observed, had there been no observation of the 
system failure timeT, and had not observation of the system been censored 
at T). We require P( Ti ::;: T) > 0 for the ith component to be considered 
as conditionally monitored. The concepts of lifemonitored and conditionally 
monitored components were introduced in Meilijson (1994), where algorithms 
for maximum likelihood estimation of the Fi 's are discussed (assuming para
metric distributions). In Gasemyr and Natvig (1994) the exact likelihood 
function for such data is derived, making Baysian estimation of the life dis
tributions possible. Precise definitions are given in section 2, where we define 
two types of observation plans, differing with respect to the way the inspec
tion times Ti arise. We denote by Ro and M0 the set of lifemonitored and 
conditionally lifemonitored components respectively. We denote by D the 
data arising from the observation plan, and by F the distribution of this 
data. D consists of the following variables: 

(i) ('Ji 1\ T, I(1i ::;: T) for i E Ro 

(iii) (1i 1\ T, I(1i ::;: T) if Ti ::;: 1i 1\ T, i E Mo 

(iv) The autopsy data (T, I) 

We show in section 2 that under the same assumptions as in the main 
theorem of Meilijson (1981) the life distributions of alllifemonitored compo
nents are identifiable. Assuming, in addition, that the distribution functions 
are strictly increasing, the life distributions of the conditionally monitored 
components are shown to be identifiable under certain assumptions on the 
observation plan. The reason we have to make such assumptions, is the de
pendence of 1i on the event Ti < T for a conditionally monitored component 
i. The assumptions we make, are related to a condition in Gasemyr and 
Natvig (1994) which greatly simplifies the likelihood expression. In section 
3 we specialise to analytic distribution functions and relate the results of 
section 2 to the results of Antoine et al. (1993). 

2 Identifiability of lifemonitored and condi
tionally lifemonitored components 

Throughout this section, assume that the component life distributions are 
continuous and have common essential extrema. Not surprisingly, the case 
of lifemonitored components is quite straightforward: 
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In the second type of observation plan several "inspection rounds" may 
be performed at each observed component failure time Zk. 

Definition 3 (Type 2 observation plan (several inspection rounds)) 
Put Q0 = 0. Suppose that Rs, Qs and K(s) are defined for s ~ l. Suppose 

also Zr is defined for r ~ k = K(l). If Rt = 0, the observation plan is 

terminated. Otherwise, we have two separate cases. 

Case 1: H(Rt,Qt) # 0. Define Ht+l = H(Rt,Qt) K(l + 1) = K(l) = k 
Ti = Zk for j E Ht+l Yj = Xi(Tj), j E Ht+l Rt+l = Rt U {j E Ht+IIYJ = 1} 

Ql+l = Ql u {j E Ht+IIYJ = 0} 

Case 2: H(Rt, Qt) = 0. Define K(l + 1) = K(l) + 1 = k + 1 Zk+l = 
min{7ili E Rt} h+I = i if 1i = Zk+l Ht+l ~ H(Rt- {h+I}, Qt U {Jk+I}) 
Tj, Yj as in case 1 Rt+l = (Rt- {h+I}) U {j E Ht+IIYJ = 1} Ql+I = 
Q1 U {h+I} U {j E H 1+IIYJ = 0}. We then say that the inspection times Tj 

define an observation plan of type 2. 

The type 2 observation plan clearly gives greater control over the risk 
set (the set of monitored components). For both plans it is assumed that 
the inspection procedure and installation of monitoring equipment takes 0 
time (time may be taken as operational time). It does not follow from the 
definitions that P(Tj ~ T) > 0 for each j E M0 , but if this is not the case, 
Mo may be redefined. 

The observed history arising from an observation plan contains infor
mation about T. For any component i, 1i and T are dependent, so Ti is 
stochastically dependent on the observed history in general. In particular, if 
component i is conditionally monitored, 1i is dependent on the history prior 
to Ti· For any such history satisfying Ti ~ T, F determines the conditional 
distribution of 1i given the history, but this may differ from the unconditional 
distribution in general. In the following proposition, conditions are given, in 
terms of the existence of certain types of histories, that eliminate this depen
dence problem. The event A appearing in the proposition, represents (part 
of) such a history prior to Ti (the clue being the choice icHt+I- H). Special 
cases are given in the subsequent corollaries. 

Proposition 1 Suppose Fp is continuous and strictly increasing for each 

p E E. Assume i E M0 . Suppose there exists an event A of one of the 

following two forms: 

(i) A= (n~=l(Is =is) n (nmEH.(Ym = Ym))) n ((It+l = j) n (nmEH(Ym = 

Ym))), with H C Ht+I, arising from an observation plan of type 1 
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(ii) A= (n~=l(nmEH.(Ym = Ym))) n (n~~+l)(Ir = ir)) n (nmEH(Ym = Ym)), 
where H C Hl+l, and iK(l+l) = j, arising from an observation plan of 
type 2 

satisfying P(A) > 0, such that i E H1+1 - H, and such that one of the 
following two conditions is satisfied: 

(a) A implies T ~ T; 

{b) An (7i ~ 7j) implies T ~ T;, and Fp is determined by F for all p such 
that the pth component is involved in the definition of A 

Then Fi is determined by F. 

Proof: We first consider part (a). If A is of the form (i) or (ii), put A(t, dt) = 

A n (t - dt < T; < t). Since all Fp's (p E E) are strictly increasing, 
P(A(t, dt)) > 0 for all tin the common essential support, and for all dt > 0. 
Moreover, A(t, dt) is observed if it occurs, since A implies T ~ T;. Hence, 
P(A(t, dt)) is determined by F. Obviously, the event A(t, dt))n(1i > T;) also 
implies T ~ Tj, so the probability of this event is determined by F as well. 
Hence F determines P(1i > T;IA(t, dt)). But we have P(1i > T;IA(t, dt)) = 

P(Ti > tiA(t, dt)) + P(t- dt < 7j < 1i ~ tiA(t, dt)). Since A(t, dt)) is de
fined by Tp's for p =I i, 1i is independent of A(t, dt), and the first summand is 
P(1i > t) = .Fi(t). The second summand is less than P(t-dt < 1i ~ t) (using 
independence again), which approaches 0 as dt tends to 0 by the continuity 
of Fi. This proves part (a). Part (b) is proved similarly, the only difference 
being that P(A(t, dt)) is determined by F because of the identifiability of 
the components defining A. 

The crucial condition A implies T ~ T; is obtained for a very interesting 
type of inspection function. 

Definition 4 The inspection function H is said to be cause controlling if 

{i) whenever R U (Mo- Q) is a path set {i.e. a set intersecting each cut 
set), we also have that R U H(R, Q) is a path set. 

{ii) If R U (Mo- Q) is not a path set, then H(R, Q) = M0 - (R U Q). 

If such an inspection function is applied in an observation plan of type 2 
and Ro is chosen as a path set as well, the set of monitored components will 
always be sufficiently large to ensure that the system is functioning, as long 
as this is possible. The name is motivated by the fact that the component 
failing at the same time as the system (i.e. the immediate cause of system 
failure) is always identified, provided it belongs to RoUM0 . If His applied in 
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an inspection plan of type 1, these statements are true in the event that all 
inspected components are found to be functioning at the time of inspection; 
an event which has positive probability. A special case of a cause controlling 
inspection function is the case when H(R, Q) URis a path set unless Q is a 
cut set (which follows from the definition if Ro U M 0 =E), which is shown in 
corollary 5.4 in Gasemyr and Natvig (1994) to give a very simple likelihood 
function compared to the general case. 

Corollary 1 Suppose an observation plan of type 1 or 2, with Ro chosen as 
a path set, is determined by a cause controlling inspection function H, and 
that the Fp 's are continuous and strictly increasing for each p E E. Then Fi 
is determined by F for each i E M0 • 

Proof: We only consider the type 1 observation plan, the type 2 can be 
treated almost identically. Let {B1},l = 1, ... , L be a sequence of events 
arising from the observation plan until at Z L all components in M0 have 
been inspected, of the form Bl = n~=l((Js =is) n (nmEHa(Ym = 1))). Thus, 
B1 = n~=1Bs,l = 1, ... , L, and P(BL) > 0. Since His cause controlling, it 
is seen that B1 implies T ~ Z1+1 for each l ::; L - 1, and also that i E H1 for 
some l ::; L. By taking A as the event B1_ 1 n (!1 = i 1), the corollary follows 
from proposition 1, part (a). 

Note that at least two components in parallel with the rest of the system 
are definitely not identifiable from pure autopsy data, since any component in 
parallel with the rest of the system belongs to every fatal set, and the autopsy 
data therefore necessarily contains exactly the same information on all such 
components. Therefore, the following corollary is a particularly interesting 
application of proposition 1 and corollary 1. The observation strategy in part 
(a) is to sequentially monitor the components that are in parallel with the 
rest of the system, one at a time. 

Corollary 2 Suppose each FP is continuous and strictly increasing. Let P = 

{1, 2, ... , k} be the components that are in parallel with the rest of the system, 
i.e. P is contained in every cut set, and put S = E - P. 

{a) Define Ro = {1}, H(0, {1, ... ,j}) = {j + 1},j = 1, ... , k- 1. (H may 
be left undefined for other values of R, Q). Then Fi is determined by 
F for each i E P. 

{b) Suppose that P C Ro U M0 , and that Fp is determined by F for each 
p E S n Mo. Then Fi is determined by F for each i E P. If in addition 
FP is determined by F for each p E S- (M0 U Ro), then (E, ¢>) is 
identifiable. 
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Proof: Part (a) follows from corollary 1, since clearly Ro = { 1} is a path 
set and His cause controlling (alternatively, part (a) may be considered as 
a special case of part (b)). To prove part (b), define the ordered inspection 
times T(I) < T(2) < . . .. Choose i E P. If i E Ro, the identifiability of 
Fi follows from theorem 1. Suppose that i E M0 and P( Ti = T(I)) > 0. 
This implies that there exists an event A as in proposition 1, defined only in 
terms of components whose life distributions are determined by F (in fact, 
components in Ro), with 1j denoting the last observed failure time, such that 
Ti = 1j. Since Ti 2:: Ti then implies T 2:: 1j, the identifiability of Fi. follows 
from proposition 1, part (b). To prove the result for arbitrary i, we may 
proceed by induction on the smallest integer r such that P(ri = T(r)) > 0. 

Remark 1 In the verification of the hypothesis of identifiability of Fp for 

p E S in part (b) of corollary 2, the other results of this section may be 
helpful. Note also that if at least one component is in pamllel with the rest 
of the system, every cut set is a fatal set. This makes it potentially easy to 
identify components as members of J. For instance, suppose that i E S does 
not belong to any path set of length 2 contained in S. Then the coherent 

structure function ¢(1i, 0 p, x), defined on the components in S- { i}, defines 

a system with no components in pamllel with the rest of the system, and hence 
with no components in the intersection of all minimal cut sets. It follows that 
the fatal sets E and E- { i} of the original system have the same critical set, 
namely P, and hence that i E J. 

Remark 2 A slightly different version of corollary 2 part (b) can be given. 
Assuming Fp is identifiable for all p E S, we may allow one component in P, 
say component 1, to be left out from RoUMo, provided P(nteMonP(Tt::; T)) > 
0. Then the observation plan may, with positive probability, result in an event 

of the form B1 = n~= 1 ((/s =is) n (nmeH.(Ym = Ym))) n (it E P- {1})n the 
observation plan is terminated at TiJ with P - {1} c Ro U H0 , where H0 

denotes the set (U~=l Hs), the set of components that have been inspected. B 1 

is observed if it occurs, and therefore F determines the probability G(t) of 

the event B1 n (Ti, < t). Likewise, the event B 2 = B1 n (Ti, < T) n (I = E) 
has positive probability and is observed if it occurs, so that F determines 

Go(t) = P(B2 n (T::; t)). But on B2 we must necessarily have T = T1 , and 
hence 

Go(t) =lot G(s) IJ Fi(s)dF1(s) 
O jES-(RoUHo) 

Since by assumption Fi is determined by F for all j E S, the integmnd is 
determined by F. Also, the integmnd is clearly strictly positive, and hence 
F1 can be obtained from this equation. Finally, by replacing S by S U {1} we 
can prove identifiability of (E, ¢) by the proof of corollary 2 part (b). 
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Note that if P = {1}, the hypothesis is vacuously satisfied, and the con
clusion is that the system is identifiable if the components of 8 are. For 

instance, this applies to the system (E,¢>) withE = {1,2,3,4},¢(x) = 
max{ X1, X2X3X4}. 

Theorem 2 Let (E, ¢>) be a coherent system with the components in P = 

{ 1, ... , k} in parallel with the rest of the system. Suppose that the system 

(8, '1/J) defined by 8 = E- P, '1/J(xk+l, ... , Xn) = ¢>(0, ... , 0, Xk+l, ... , Xn) is 

identifiable. If P = Ro U Mo, and P(nleM0 (Tt ::; T)) > 0, then (E, ¢>) is 
identifiable. 

Proof: Put B = nleM0 (Tt ::; T). By hypothesis, B has positive probability. 
Furthermore, B is observed if it occurs. Therefore, G(t) = P(B n (max{Til 
j E P}) < t) is determined by F. Let A be a fatal set of (8, '1/J). We then 
also have that G0 (t) = P(B n (max{Tilj E P} < T) n (I= AU P) n (T::; t) 
is determined by F. We then have 

Go(t) = Jot G(s)dGi(s) 

where Gi is as in (1), referring to the system (8,'1/J). Thus, Gi is determined 
by F. Since i was arbitrary, all G/s corresponding to different fatal sets are 
determined. But this is precisely the information needed to determine Ft for 
each l E 8, by the identifiability of (8, '1/J). Now we can argue as in corollary 
2 part (b) to see that F1 is determined by F for l E P. Hence ( E, ¢>) is 
identifiable. 

For instance, the system (E, ¢>) defined by E = {1, 2, 3} and ¢(x) -
max{x~, x2x3 } is identifiable if component 1 is lifemonitored. 

Corollary 3 Let E, ¢>, P be as in theorem 2, and suppose P(nleM0 (Tt < 
T)) > 0. Suppose in addition that 8 = E- P contains at most one com

ponent in parallel with the rest of the system, and that T, is exponentially 

distributed for each l E 8. Then (E, ¢>) is identifiable. 

Proof: By theorem 2 of Antoine et al. (1993) the fatal matrix of (8,'1/J) 
(where '1/J is defined as in theorem 2) has full rank, and by theorem 6 of the 
same paper, (8, '1/J) is identifiable. Hence, the corollary follows from theorem 
2. 

3 Identifiability with analytic distribution 
functions 

As stated in the introduction, Antoine et al. (1993) gives in theorem 4 a suf
ficient condition for identifiability, assuming analytic distribution functions. 
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The main merits of their result are that, at the cost of making this restric
tive distributional assumption, they are able to reprove the main theorem 
of Meilijson (1981) in a much more elementary way (theorem 5 of Antoine 
et al. (1993)), and that as a consequence of their proof, they can give the 
strongest possible identifiability result when restricting to certain parametric 
classes of distributions. Note that all the results of section 2 can be proved to 
be valid for analytic distribution functions, which are automatically strictly 
increasing, only on the basis of their result. 

In this section, we show that the results of Antoine et al. (1993) can 
be pushed a little further. However, we have not been able to find any 
applications of this that can not be treated by means of the results of section 
2. 

Throughout the rest of the paper, suppose Fi is analytic for each j E E. 
We can write each Fj in the form 

00 

Fi(t) = ai0tri(1 + L:(ajptP)) (4) 
p=l 

Let B be the set of components that are known to be identifiable without 
using rank properties of the minimal, critical or fatal incidence matrices; 
i.e. B includes J (the components satisfying (2)) and Ro (the lifemonitored 
components); and also the set of i E M0 (the set of conditionally monitored 
components) satisfying the condition of proposition 1. Put A= E- B. For 
any x E Rn, let XA and xs be the vectors with components Xi, i E A, xi, j E B 
respectively. 

Theorem 3 The system is identifiable if for any diagonal m x m matrix 
R whose diagonal entries are positive integers, and for each non-negative 

integer p, the matrix RD A + pC A has full mnk (i.e. equal to the cardinality 
of A). 

Proof: Clearly, for each i E { 1, ... , m} the function G~ = gi (the density 
function corresponding to the ith fatal set, cf. (1)) is analytic. As in eq. 11 
of Antoine et al. (1993) we write gi in the form 

00 

gi(t) = bwtdi(1 + L(biptP)) (5) 
p=l 

In the proof of theorem 4 in that paper it is shown that Dr = d+ 1. Here, r = 

(rl, ... 'rn), d = (dl, ... 'dm), 1 = (1, ... '1). Hence, DAr A= d + 1- Dsrs. 
Since ri is determined by F for j E B, it follows that r is determined by F if 
DA has full rank. Put 3p = (a1p, ... , anp), p = 0, 1, 2, .... Applying the same 
argument as above to eq. 15 in Antoine et al. (1993), i.e. to the equation 
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D(log(ao)) = (b1, ... , bm), where bi = (log(bi0)/('L.j=1 (rjCij)) (recall that the 
Cij 's are the entries of C), it follows that ao is determined by F if D A has full 
rank. Let R be the diagonal matrix with diagonal entries rii = 'L.j=1 (riCii)· 
Antoine et al. (1993) prove that the vector Cp = (RD + pC)3.p is determined 
by F together with the coefficients ai1, l < p and the integers ri,j = 1, ... , n. 
If in addition aiP is known for j E B, 3.p can be determined if RD A + pC A 

has full rank. Hence the theorem follows by induction. 

Theorem 4 Suppose that for each j E A, Fi is known to be of one of the 

following two forms: 

(a) Fi(t) = Fi(t;Bi), where eitherai orri is a one-to-one function of(}i 

{b) Fi(t) = Fi(t;aj,[3j), where (ai,ri) is a one-to-one function of(ai,[3i) 

Then the system is identifiable if D A has full mnk. 

Proof: By the proof of theorem 3, ai and ri are determined by F if D A has 
full rank, and the theorem follows. 

As pointed out in connection with the analogous theorems 6 and 7 in 
Antoine et al. (1993), the class of distributions satisfying the hypothesis 
of the theorem includes the exponential and half-normal distributions, and 
the Weibull and gamma distributions with integer shape parameters. To 
illustrate how theorem 4 can be used, we give an alternative proof of a special 
case of corollary 3. 

Corollary 4 Suppose that the components {1, ... , k} are in pamllel with 

the rest of the system. Define an observation plan by Ro = {1} and H(0, 
{1, ... ,j}) = {j + 1} for j::; k- 2 (cf. corollary 2 part (a)}. Suppose Ti is 

exponentially distributed for j = k, ... , n. Then the system is identifiable. 

Proof: According to the described observation plan, R 0 U M0 = { 1, ... , k -1}. 

Hence by corollary 2 A C A' = {k, ... , n}. The components in A' form a 
subsystem (module) with only one component in parallel with the rest of the 
system. The corresponding fatal incidence matrix coincides with D A', and 
has full rank by theorem 2 of Antoine et al. (1993). Hence D A has full rank, 
and the corollary follows from theorem 4. 
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