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Abstract 

The performance of tests in Aalen's linear regression model is studied using asymptotic 
power calculations and stochastic simulation. Aalen's original least squares test is compared 
to two modifications: a weighted least squares test with correct weights and a test where the 
variance is reestimated under the nullhypothesis. The test with the variance is reestimated 
provides the highest power of the tests for the setting of this paper, the gain is substantial 
for covariates following a skewed distribution like the exponential. It is further shown that 
Aalen 's choice for weight function with reestimated variance is optimal in the one-parameter 
case against proportional alternatives. 
Keywords: Aalen's linear regression model; stochastic simulation; survival analysis; weighted 
least squares; ordinary least squares. 

1 Introduction 

Aalen's (1980,1989,1993) linear regression model has proved to be useful both as a diagnostic tool 
for the more commonly used Cox (1972,1975) model and as an alternative model on its own. The 
Cox and Aalen models differ fundamentally in philosophy. The Cox model has a nonparametric 
baseline, but the effect of the covariates is modelled parametrically. The Aalen model on the 
other hand is completely nonparametric in the sense that functions, not parameters, are fitted. 
This means that the Cox model can use the whole time span in the estimation of the parameters, 
while the Aalen model only uses local information. Thus the Aalen model is more process oriented. 

The linear model falls naturally into the theory of martingales and stochastic integrals as de­
scribed by Aalen (1978), Fleming and Harrington (1991) or Andersen et al. (1993). Estimators 
and test statistics with asymptotic results are easily obtained without iteration. However the model 
has not been used much in practice, and the theory and diagnostic methods for the linear model 
are still being developed; see e.g. Henderson and Oman (1993) and Aalen (1989,1993) for recent 
contributions. 

This paper treats tests and this admits a quick evaluation of the methods by using the power 
function. Tests in the Aalen model was introduced already in the original paper (Aalen, 1980). We 
will use one of the test statistics proposed by Aalen (1989) and two small modification of this test. 
One of these modifications generalises the logrank test. The performance will also be compared to 
some local asymptotic power results, calculated by considering sequences of local alternatives. 

Our principal method of investigation will be stochastic simulation. The main simulation con­
sists of 200 realisations of full factorial experiments, where the factors are features known or 
suspected to influence the power, but also factors which by analogy to the linear normal case are 
not suspected to influence the power (see Section 4 for details). 
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Section 2 briefly outlines the model while Section 3 gives expressions for the local asymptotic 
power and discusses optimality. Section 4 describes the simulation experiment. In Section 5 the 
simulation results are presented. In that Section we also try to quantify how much we gain by the 
modified test statistics. Section 6 contains a brief discussion. 

2 The model 

The model and the statistical methods are here only briefly summarized. For details see Aalen 
(1980,1989,1993) or Andersen et al. (1993). For simplicity we will only consider right censoring and 
fixed covariates, but the setup can easily be extended to allow both general censoring and time­
dependent covariates. We observe counting processes Ni(t), i = 1, ... , n; counting observed event 
times. The intensity process of N; (t) takes the form Ai (t) = z[ ,B(t )Yi (t). Here z; = ( 1, Zil, ... , Zip f 
is a vector of covariates for individual i, J'i(t) is an "at risk" indicator process for this individual, 
and ,B(t) = (,60 (t), ... , ,Bp(t) )T is a vector of regression functions. The parameter functions ,Bj (t) are 
allowed to vary with time; this is different from the Cox model. 

Define the "design matrix" Y with element Yi1 = Zij 1'i and let N = (N1 , ... , Nn)T. An es­

timator for B(t) = I~ ,B(s)ds is B(t) = I~ J(s)Y-(s)dN(s), where y- is a generalized in­
verse and J(s) = I(Y(s) has rank p + 1) . This estimator is a multivariate generalization 
of the Nelson-Aalen estimator. One natural choice of y- is ordinary least squares inverse, 
y- (t) = (YT(t)Y(t))- 1YT(t), proposed by Aalen (1980). However, except for the one-sample 
case, the variances are not equal for all Ni, and theoretically better results should be obtained 
using weighted least squares inverse: y-(t) = (YT(t)W(t)Y(t))- 1YT(t)W(t), see Huffer and 
McKeague (1991). This resembles the linear normal case, see e.g. Weisberg (1985), but remark 
that here W(t) is a diagonal matrix with i-th diagonal element wi(t), inversely proportional to 
>.;(t)dt, the conditional variance of dN;(t). Thus the weights are functions of the unknown pa­
rameters and in practice they will have to be estimated. Inference in the Aalen model is only 
meaningful until the stopping timer, the first time where Y(s) loses full rank. 

In this paper we test the regression function ,Bp(t). The p parameter functions ,Bo(t), ... ,,6p_ 1 (t) 
are considered as nuisance parameter functions. We shall consider the hypothesis H 0 : ,Bp(t) = 0, 
for all t. The tests shown below are designed to be powerful against monotone alternatives, e.g. 
H 1 : ,Bp(t) > 0 for all t. A natural family of test statistics is based on Xp(r) = I; Lp(s)dBp(s) 
for some weight function Lp. In this paper we shall mainly consider the weight function Lp(t) = 
((YT(t)Y(t))(-l ))-1, the reciprocal of element (p,p) of(YT(t)Y(t))- 1 , suggested by Aalen (1989). p,p 
By convention Lp(s) is set to 0 whenever J(s) = 0. 

Define B*(t) = I~ J(s),B(s)ds and x;(t) = I~ Lp(s)dB;(s). Under mild regularity conditions, 

see Andersen et al. (1993, chapter V.2), Up(r) = _:p(r)-x;(r) 1 is asymptotically standard nor-
Var(Xp-X;)(r)> 

mal distributed. Here Var(Xp- x;)(r) is some estimator for the variance of (Xp- x;)(r). A 
variance estimator may be derived in two ways. To this end note first that the predictable variation 
process for the test statistic, evaluated at r, is 

(Xp- x;)(r) =for J(t)L;(t)d(B- B*)(p,p)(t) =for J(t)L;(t)(Y; (t))(diag>.(t)dt)(Y; (t))T (1) 

where diag>.(t) is the n x n diagonal matrix with ith diagonal element >.i(t), and Y;(t) is the 
last row of the generalized inverse y-(t). To estimate the variation process under H1, the vector 
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)..(t)dt in (1) is replaced by 
dN(t), (2) 

yielding the optional variation process [ Xp - x;] ( T). This is the original proposal of Aalen ( 1980). 
We will suggest a slightly different variance estimator obtained by reestimating under Ho. For this 
estimator the vector, )..(t)dt in (1) is replaced by 

(3) 

Here y(0l(t) denotes the design matrix with the last row ofY(t) deleted, and :B< 0l(t) is the estimate 
when y(0l(t) is the design matrix. Notice that with (2) the variance estimate is greatly simplified, 
at each failure time it only depends on the covariates of the individual failing at that time. For 
p = 1, (3) is 

(4) 

where y(o)(t) = (Y1 (t), ... , Yn(t))T, yielding the increment in the Nelson-Aalen estimator for each 
individual at risk. If then the covariate is dichotomous, and we use (3) in the variance estimator 
and Aalen's choice for weight function, we have the logrank-test for 2 samples. Using (2) in the 
variance estimator, the test statistic is slightly different from the logrank-test, see Andersen et al. 
(1993, Example VII.4.1). 

3 Local asymptotic power and optimality 

Let the setup be as in the previous section. Analogous to Andersen et al. (1993, Chapter V.2), 

we will define a sequence of local alternatives H~n) : f3(n)(t) = (f36n)(t), ... ,{3~'~\(t),{3~n)(t))T = 
(f3o ( s ), ... , f3p-1 (t), {3p(t)/ ..jnf. 

Define as in Andersen et al. (1993): Rj(t) = l:i Yi1(t); Rjk(t) = l:i Yij(t)Yik(t); 
Rjkz(t) = l:i Yij(t)Yik(t)Yiz(t) and assume there exist Tj, Tjk, Tjkl the limiting expressions of 
~Rj, ~Rjk, ~Rjkl (the limit must be uniform in t). Write r(t) for the (p + 1) x (p + 1) ma­
trix with Tjk(t) as element jk. r(t) is assumed to be of full rank for all t. The inverse then 
exists and its element jk will be written rjl(t). Further assume that Lp(t)/dn converges to lp(t) 

uniformly in tin probability for a suitable sequence {dn}· Now: £-Xp(r) = £- J; Lp(s)d(Bp­

B~n)•)(s) + £- J; Lp(s)dB~n)• (s). The latter term converges in probability to J0
00 lp(s){3p(s)ds 

under the sequence of local alternatives H~n). The former term is a martingale, with predictable 
variation process: 

{5) 

(see Andersen et al., 1993, Chapter VII.4.2). Thus, under the local alternatives, fo-Xp(r)/dn 
converges to a normal distribution with mean J0

00 lp(s){3p(s)ds and variance equal to (5). The 
variance is the same as under H 0 . The standardized statistic Up( r) is then, for both choices of 
variance estimator, asymptotically Gaussian distributed with unit variance and expectation: 

(6) 
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The optimal choice of lp is the one which maximises the (limiting) expection term of the stan­
dardized variable, i.e. maximises (6). For p = 1, using a Cauchy-Schwarz argument, I'I :S 
forx> fc~j;)( )du, with equality if and only if h(s) proportional to f3 ({3)1 (•)1 ( )" Thereby Aalen's 

r 11 u au as r 11 u 

choice for weight function (see Section 2) is asymptotically optimal when f31 (s) and f30 (s) are pro­
portional for all s, in particular for the simulations in this paper (f3o and {31 are constant). For 
general p, we cannot find a general optimal weight without further restrictions on the covariate 
distribution. 

We can use (6) to estimate approximate power for the test, by replacing {3p by f3r/fo , see 
Andersen et al. (1993, page 376). Notice, however, that we then calculate the variance under H 0 , 

(6) therefore tends to overestimate the power. Better approximations can be obtained by including 
the f3r-term in the denominator of (6), see the Appendix for details. See also Section 5.3 for a 
comparison betweeen observed and asymptotic power. 

4 Simulations 

To assess the impact of the factors, we have performed a series of 200 full factorial experiments. 
This means that the experiment runs through all possible factor combinations. The factors are 
described in Table 1 and in Section 4.1. Each test has been dichotomized to whether it is signif­
icant or not on two sided asymptotically 5 %level (i.e. we reject if IUr(T)j > 1.96), and logistic 
regression has been used to evaluate the effect of the factors. The simulations have been performed 
on a PC using the programming system GAUSS (Aptech Inc). 

In addition to the full factorial design described above, we have performed some selected sim­
ulations to evaluate the difference between the methods as a function of {3p for selected factor 
combinations (see Figure 1 in Section 5.2). A comparison between obtained and asymptotic power 
follows in Figure 2 in Section 5.3. 

4.1 Choice of factors 

Table 1 summerizes the factors studied in this paper. They are divided into three groups: factors 
describing different methods of estimation, factors to evaluate the robustness of the test statistic 
and factors known to be important from the power function, see the previous Section and the 
Appendix. 
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Table 1: Factors used in the simulation 

Group 
Method factor 

Power function 

Robustness 

Factor 

method 

f3o 
{3p 
c (censoring rate) 
n (Sample size) 
Covariate distribution 

p (Nb of nuisance functions) 
Nuisance distribution 
Correlation 

(for explanation of the factors, see the text) 

Levels 

WLS, 0180 , OLS1 

1, 2 
0, 2.5, 5 
.5(f3o + .5{3p), 2(f3o + .5{3p) 
50, 100 
Dichotomous, Exponential 

2, 4 
Dichotomous, Exponential 
o, 0.5 

Method factor As described above, we will evaluate the impact both of weighted least squares 
(called WLS) and of reestimating the variance under Ho, (called 0180 : see equation (3)). The 
methods will be compared to Aalen's original ordinary least squares method (called OLS 1 , see 
equation (2)). WLS usually involves a two-step procedure where the weights are estimated by 
kernel smoothing. We have simplified the problem in these simulations by using "superweights" (i.e. 
the correct weights) and thereby indicating the maximum potential for the WLS. In applications 
the gain will of course be smaller due to the fact that the weights must be estimated. Notice 
that for WLS under H 0 , the weights should also be calculated under H 0 . In these simulations, 
with superweights and the nuisance parameters being set to 0, the weights are all equal, i.e. 
WLSo=WLSl. The two factors method and weighing have therefore been pulled together into one 
factor (called method), coded into 3 levels. 

Factors from the power function The baseline function ({30 ( s)), censoring function ( c( s)) and 
the covariate function ({3p ( s) are constants in the simulations. Notice that the censoring rate is 
calculated as 0.5 or 2 times f3o + ( E Zip ){3p to ensure that the number offailure is about halffor high 
censoring compared to low censoring. Here EZip is the expected covariate value. Furthermore, 
the sample size (n) is included as factors. 

The covariate distributions were standardized to have the same expectation (.5) and variance 
(.25). We have chosen to have one distribution with high probability of extreme covariate values 
(exponential), and one distribution with stable covariates (dichotomous). One should therefore 
expect a reduced power if these extreme covariate values from the exponential influence the esti­
mation heavily, by analogy to ordinary linear regression (see Cook and Weisberg (1982) or Weisberg 
{1985)).0n the other hand, for dichotomous covariates we are expected to lose some information 
because the design matrix will in mean lose full rank with more individuals at risk. 

Robustness factors McKeague and Sasieni {1994) assert that the full Aalen model is "too 
nonparametric" to provide good estimates for many covariate/nuisance functions. By varying 
the number of nuisance parameters, we can evaluate the impact of estimating unnecessary func­
tions. The nuisance factors (Zf1, Z, 2 ... ,, Zi,p-l)T are drawn either from the exponential or from 
the dichotomous distribution. We then correlate the covariate with the nuisance factor Zf1 by 
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transforming (Zip, Zi 1 )T = A(Z~, Zf1f such that Corr(Zip, Zil) E {0, .5} and the first row of 
A = (1, 0) (i.e Zip has the same distribution as Z~). The correlations Corr(Zii• Zik) = 0 for 
all other combinations j, k. Now (Zib ... , Zip)T is the covariate vector we are working on. The 
robustness factors are not included in the (approximated) power function (6). In ordinary linear 
regression inference is quite robust to these factors, at least when the nuisance parameters are not 
too extremely distributed. The idea is to see if the same applies here. 

5 Simulation results 

5.1 Logistic regression analysis 

We can not expect the same effect of the factors for different values of the parameter {3p. Separate 
logistic regression analyses have therefore been performed for the three values of {3p. The results 
are reported in Tables 2-4. It is worth noting that this is not a standard statistical analysis where 
the aim is to assess whether the factors are "significant". We can have any factor (and any in­
teraction term) "significant" at any level by increasing the number of simulations sufficiently. We 
shall therefore rather focus on the real impact of the factors. The logistic regression has been done 
with indicator coding of the independent variables with the lowest value as reference. This means, 
for instance, that the fraction of rejections if all the independent variables have the lowest value is 
exp( -3.07)/(1 + exp( -3.07)) = .044 if {3p = 0 (see the estimate of the constant term in Table 2). 

Table 2. Log odds ratios obtained in the multiple logistic regression for {3p = 0 
Factor Value Estimate SE 
Method WLS 0 

OLS1 -.010 .040 
OLSo .029 .039 

f3o 1 0 
2 -.001 .032 

Censoring Low 0 
High .065 .032 

Covariate distribution Dichotomous 0 
Exponential .199 .032 

Sample size (n) 50 0 
100 .031 .032 

Nb of nuisance parameters (p) 2 0 
4 -.025 .032 

Nuisance parameter distr Dichotomous 0 
Exponential .038 .032 

Correlation 0 0 
.5 .044 .032 

Constant -3.07 .052 

When {3p = 0 (Table 2), WLS (with superweights) and OLS1 reduce to the same test, whilst 
OLS0 is slightly different. The nominal and actual levels agree quite well for all three methods. 
Remark the impact of the factor covariate distribution. Exponentially distributed covariates give 
a higher achieved level (6.40 %) than dichotomous covariates (4.62 %), indicating that the asymp­
totics is inferiour for the exponential covariates. (See Section 5.2 for a comment on the skewness 
of the test statistic). 
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Table 3. Log odds ratios obtained in the multiple logistic regression for {3p = 2.5 
Factor Value Estimate SE 
Method WLS 0 

OLS1 -.281 .021 
OLSo .377 .021 

f3o 1 0 
2 -1.343 .018 

Censoring Low 0 
High -1.274 .018 

Covariate distribution Dichotomous 0 
Exponential -1.056 .018 

Sample size (n) 50 0 
100 1.472 .018 

Nb of nuisance parameters (p) 2 0 
4 -.096 .017 

Nuisance parameter distr Dichotomous 0 
Exponential .004 .017 

Correlation 0 0 
.5 .029 .017 

Constant 1.608 .028 

Table 4. Log odds ratios obtained in the multiple logistic regression for {3p = 5 
Factor Value Estimate SE 
Method WLS 0 

OLS1 -.440 .025 
OLSo .383 .025 

f3o 1 0 
2 -1.176 .022 

Censoring Low 0 
High -1.601 .023 

Covariate distribution Dichotomous 0 
Exponential -1.543 .022 

Sample size (n) 50 0 
100 1.929 .024 

Nb of nuisance parameters (p) 2 0 
4 -.124 .021 

Nuisance parameter distr Dichotomous 0 
Exponential .009 .021 

Correlation 0 0 
.5 .006 .020 

Constant 3.171 .037 

Tables 3 and 4 give similar results, and will therefore be discussed together. The factors cen­
soring and sample size determine the number of events, and it is no surprise that these influence 
the power heavily. A high value of the factor {30 is "washing out" the covariate effect, and therefore 
has an equally strong influence. Notice that the reduction in power for exponential co variates is of 
the same order as these other factors. This is due to the fact that with exponential covariates the 
high risk individuals will in mean fail earlier, and for the remaining individuals, the difference in 
covariate values will be lower. The big difference in poser is confirmed by asymptotic results, see 
Figure 2 and the Appendix. 
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We see that the OLSo give higher power than WLS, both for /3p = 2.5 and /3p = 5. The gain, 
however, differs for the two covariate distributions. For illustration, consider /3p = 2.5, stratified 
on the covariate. For dichotomous covariates the estimates for OLS 1 and OLS0 are -.051 and .100 
respectively, for exponential covariates -.484 and .597. This illustrates that the three methods are 
quite similar for dichotomous covariates. For exponential covariates, however, a quite substantial 
improvement in power is obtained by OLS0 versus WLS, and by WLS versus OLS1 . A more de­
tailed assessment of the real impact of the factor 'method' is done in Section 5.2. 

The robustness factors do not influence the power much, and except 'p' they are even within the 
random variation. This is comparable to the experience with ordinary linear regression. Therefore 
we may use the case without nuisance parameters as an adequate approximation for the case with 
nuisance parameters in the asymptotic power calculations (see the Appendix). 

5.2 What is the impact of the factor 'method'? 

In Figure 1 we compare the estimated power functions for the three methods described in this 
paper. 5000 simulations have been performed for each value of /3p and each of the the methods. In 
the simulations the covariate distribution and the censoring rate are varied, and the other factors 
are left constant as: f3o = 1; n = 50; no correlation; p = 2; the distribution of the confounders is 
exponential. With n = 50, one could expect about 17 and 33 failures for high and low censoring 
respectively. The asymptotic power may therefore be inadequate, at least for high censoring. 

The simulations confirm that for dichotomous covariates, the difference between the methods is 
negligable, even with high censoring. For the combination high censoring and exponential covari­
ates, however, the difference between the methods is astonishingly high, even for quite low values of 
/3p· This is partly due to the heavy left skewness of these test statistics for exponential covariates. 
The skewness also explains why the lowest power is obtained for /3p > 0 for the methods OLS 1 

and WLS. Note also that OLS0 is right skewed for exponential covariates, but the skewness here 
is much less pronounced. 

Further analysis of the test statistics (not displayed) shows that there is a substantial difference in 
the empirical standard deviation (SD) of the three tests outside H 0 . Both OLS 1 and WLS have 
empirical SD decreasing with /3p (as low as .55 for OLS1 and /3p = 5); whilst OLS0 have empirical 
SD consistently just above 1. The low SD for OLS1 and WLS may be due to dependence in the 
estimation of the nominator and denominator of the standardized test Up (see Section 3). 

5.3 Simulated and asymptotic power functions 

In Figure 2 the actual and nominal power for OLS1 has been plotted as functions of /3p for the same 
factor setup as in Figure 1. As nominal power, we have considered both the local asymptotic power 
(called 'local' below) and the formula including the /3p-term in the denominator (called 'asymp­
totic' below). For both. we have used the simplified versions in formulas (8,9), which omit the 
nuisance parameters except the baseline, even if the simulations include one additional nuisance 
parameter. This is because we found in Section 5.1 that a few more nuisance parameters does not 
affect the power much. The power (8,9) has been calculated numerically. 
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Figure 1: Power functions for the three test statistics OLSo(+) OLS 1 (-)and WLS (.) 
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Here, the local power is generally substantially overestimating the power, because the variance 
is underestimated when the /Jp-term is neglected. The asymptotic formulas (i.e. 8,9), on the 
other hand, approximate the observed power well. Remark that the asymptotic power is slightly 
underestimated for big values and slightly underestimated for small values of fJp· 

6 Discussion 

This paper suggests that Aalen's original OLS1-statistic can be improved both by using WLS meth­
ods and by modifying the variance estimator, yielding OLS0 • The simulations indicate that, at 
least for some situations, there is more to gain by changing the variance estimator than weighing. 
The potential gain of weighing is theoretically most pronounced when the interindividual difference 
in hazard is big. 

In practice, the weights have to be estimated, and that the gain displayed here is overoptimistic. 
Huffer and McKeague (1991) suggest that weights should be determind by nonparametric kernel 
estimation. As an alternative one could estimate more robust weights by fitting the semi parametric 
or partly parametric models (see Lin and Ying (1994) and McKeague and Sasieni (1994)) in a first 
step, and then use these weights in the second step. 

We have in this paper only considered individual processes (i.e. Yi(t) E {0, 1}). In many prac­
tical situations the covariates are categorical (or grouped) and it can be useful to consider the 
aggregated data such that Ni counts the number of events and Yi the number at risk in group i. 
This will speed up the computation, and will also enable analyses which would not be possible 
with the traditional setup because of memory problems. Here we should use Yi as weighing factor. 
Remark in particular that some simplifications in the expressions for local and asymptotic power 
from Section 3 no longer are possible. 

Appendix: Asymptotic power function for p = 1 

The asymptotic power function is complicated for general p. However the number of nuisance 
parametes does not seem to be very influencial for the power, at least when /)1 = ... = fJp-l = 0 
(see Section 5.1). We will therefore do calculations for p = 1 and use this as an approxima­
tion (upper limit) for general p. We will only consider Aalen's choice for weight function, i.e. 

Lp(t) = Rpp(s)- 1 = ((YT(t)Y(t))(-1 ))-1(t). For p = 1 the limit is : l1 (t) = ~((tt))' where 
p,p roo 

.6.(s) = ru(s)roo(s)- ri0 (s). 

Using (6) and including the /)1-term (see Section 3) we get: 

_ y'nj !J1(s)~ds 

1'1 - {j ~:~:~ (r~o(~))/Jo(s) + cJcs)(ru1(s)r50 (s) + do(s)- 2ru(s)rw(s)roo(s))!Jl(s))ds} ~. 
(7) 

This expression depends heavily on the covariate distribution. Simplifications of (7) can be made 
when {J0 (s),{J1(s) and c(s) are constant, yielding: 

• Dichotomous covariates: 

1'1 = { 1 roo e-(tlo+c)•) 1 (.1 roo e (tlo+c)• }1.. 
2/Jo Jo (1+etl1•)2 ds + 21-'1 Jo (t+etll•)(l+e t11•) ds 2 

(8) 
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• Exponential covariates: 

(9) 
'Yl = {/Q roo 2e (Po+•)• d + {3 roo 6e (Po+•)• d }.!. . 

1-'0 Jo (13,•+2)• 5 1 Jo (!3 1 •+2)• 5 2 

The expressions (8- 9) have been calculated numerically in Figure 2 . 
In separate analyses (not displayed) one sees that the predictable variation tend 
the variance under H1. 

to overestimate 
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