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Abstract 

We propose to perform model check for the Cox and Aalen regression models using martin­
gale residual processes grouped after the risk score. Asymptotic distributions of the grouped 
martingale residual processes are deduced, so both formal and graphical model check can be 
performed. The method is validated by stochastic simulation. A data example with patients 
with primary biliary cirrhosis of the liver is discussed. 

1 Introduction 

Regression models, especially Cox' proportional hazards model, have become increasingly popular 
in survival analysis. Recently linear alternatives have been proposed; both nonparametric (Aalen, 
1980,1989) and semiparametric (Lin and Ying, 1994; McKeague and Sasieni, 1994). 

The available methods for checking model fit are, however, still insufficient, even for the Cox 
model. For linear normal models, residual methods are the primary tools in the assessment of 
the model fit, see Weisberg (1985) or Cook and Weisberg (1982) for a general treatment. For 
regression models in survival analysis diagnostic methods based on (martingale) residuals have 
been proposed, see e.g. Fleming and Harrington (1991), but the interpretation of the individual 
residuals is difficult. Aalen (1993) suggests to plot grouped martingale residual processes, a related 
method is due to Arjas (1988). Lin et al. (1993) propose methods to check the model based on 
the maximum deviation from the fitted model. General goodness of fit tests are given e.g. in 
Schoenfeld (1980) for the Cox model, and by Hjort (1990) for parametric proportional hazards 
models. 

In this paper we discuss methods for checking the overall fit of the regression models based on 
martingale residual processes grouped after the risk score. We consider both graphical methods 
and formal goodness of fit tests. By stochastic simulation, we study how well the methods are 
able to detect error in the model specification. The simulations are supplemented by a real data 
example of patients with primary biliary cirrhosis (PBC) of the liver (Fleming and Harrington, 
1991). 

2 Review of regression models for survival data 

We use standard counting process notation and results, see Andersen et al. (1993) for a general 
reference. For simplicity we only consider time-fixed covariates, and we assume only right censoring. 
Let individual i have covariate vector Zi = (zi 1 , ... Zip)T and at risk indicator Y;(t). Let further 
Ni(t) count the number of failures for individual i in [0, t]. 
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2.1 The Cox model 

The intensity process for N; (t) is 

>.;(t) = ho(t) exp(zf ,B)Y;(t). (1) 

The nonparametric form of the baseline h0 (t) gives the model a large flexibility even though the 
modelling of the effects of the covariates is quite restrictive. Notice however that the structure of 
the Cox model is not retained when covariates are excluded from the model. 

The parameter vector f3 is estimated by maximizing Cox' partial likelihood, and the cumulative 
baseline function H0 (t) = J; h0 (s)ds is estimated by the Breslow (1972) estimator 

fi t - rt dN.(u) 
o()- Jo S( 0 )(/3, u)' (2) 

where S( 0)(/3, u) = 2:::7=1 Y;(u) exp(zf /3) and N. (u) = 2:::7=1 N;(u). For a general reference see e.g. 
Cox and Oakes (1984) or Andersen et al. (1993, Sections VII.2-VII.3). 

2.2 Nonparametric linear model 

Introduce Yt(t) = Y;(t)(1,zT) = (Y;(t),zi1Yi(t), ... ,z;pY;(t)), and let Y(t) be the design matrix 
with rows YT(t). Aalen (1980,1989) proposes a nonparametric linear model with intensity process 

.A;(t) = Yf (t)o:(t) (3) 

for N;(t). In this model, o:(t) = (a 0 (t), ... , ap(t))T are regression functions, not parameters. Note 
that the linear structure does not guarantee that the intensities will be positive (see also Sections 
4 and 5). 

The vector of integrated regression functions A(t) is estimated by 

A(t) =fat y-(s)dN(s) 

where y- (s) is any generalized inverse of Y(s) and N(s) = (N1(s), ... , Nn(s)f. We will in this 
paper use only Aalen's original choice for inverse, y-(s) = (YT(s)Y(s))-1YT(s), though other 
inverses are possible, see Huffer and McKeague (1991). Inference is only possible when Y has full 
rank. 

The linear model is still valid when covariates are omitted from the model, at least when the 
omitted covariate is independent of the others or if it follows a normal distribution, see Aalen 
(1989). However the interpretation of the baseline term changes. 

2.3 Semiparametric linear model 

Lin and Ying (1994) propose a semiparametric linear model 

>.; (t) = Yf (t) ( ao (t), o:)T = ( ao (t) + z;T a )Yi (t). (4) 

In contrast to (3), only the baseline is nonparametric. The estimators are deduced in a similar way 
as the Cox estimators, see Lin and Ying (1994), but we get an explicit solution for the parameter: 

n 100 I n 1oo a= L {z;(t)- z(t)}dN;(t) [L Y;(t){z;- z(t)} 2dt], 
1 0 1 0 

(5) 

where z(t) = 2:::7=1 Y;(t)z;/Y(t) with Y(t) = 2:::7=1 Y;(t), the total number at risk. Below we will 
use the model (4) only as a way to group the data according to 'risk scores' in an Aalen model, 
see Section 3.2, and the discussion below will only concern the Cox and Aalen models. 
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3 Model fit 

The model fit problem consists of determining the coding of the covariates, checking the link 
function and checking whether the effect of the covariates changes over time. Our method gives 
an overall model check. 

3.1 Martingale residuals, Grouped martingale residuals, the Arjas plot 

If .A;(s) is defined according to the models (1) or (3), 

M;(t) = N;(t) -lot .A;(s)ds 

is a martingale under the appropriate model. The martingale residual processes M;(t) are defined 
by replacing .A; ( s )ds with the respective estimates ciA; ( s), yielding respectively 

A 1t T A dN (s) 
M;(t) = N;(t)- Y;(s)exp(z; j3) ()·A 

0 s 0 (/3, s) 

and 

M;(t) = N;(t) -lot YT{s)Y-(s)dN(s) 

for the Cox and Aalen models. Put M; = M;(oo). 

(6) 

(7) 

Note that for the Cox model (1), the martingale residuals are only approximate martingales, 
while for the Aalen model (3) they are exact martingales, see Aalen (1993). Remark further that 
the sum of the martingale residual processes is equal to 0 for all t for both models (1) and (3). 

Fleming and Harrington (1991) discuss extensively the use of the individual martingale residu­
als M; in the analysis of model fit. Some smoothing procedure (like LOWESS, see Cleveland 
(1979)) may then be used to assess whether the covariate is appropriately coded. However, these 
martingale residual methods disguise the time or process aspect. Aalen (1993) proposes to group 
the residual processes M;(t). For this purpose, we introduce a g x n grouping matrix K where the 
element Kt,k is equal to 1 if individual k is in group l and 0 otherwise, thus 2:::1 Kt,k = 1 for all 
k. Now the grouped martingale residual process KM(t) can be graphed against time. A related 
method is to plot observed (KN(t)) against expected (KA(t)) number of events for the grouped 
individuals, see Arjas (1988). When the model is correct, the curves of the Arjas plot should 
approximately follow straight lines with unit slope, whilst the curves of the grouped martingale 
residual process plot should fluctuate around 0. 

The grouped martingale residual processes give the absolute model deviations and it is shown 
on a time scale. The Arjas plot gives the relative model deviations, and the scale is the number 
of failures. The two methods are thus supplementary. In the literature the grouping is typically 
done according to one covariate. A more systematic way, suggested in the next subsection, is to 
group after the risk score. 

3.2 Checking deviations from the Cox model 

Lin et al. (1993) propose a goodness of fit test for the Cox model based on the risk score z[ /3. 
They consider the process 

W(x) = ·LJ(z[ j3:::; x)M;. (8) 
i=i 

If the model holds, W(x) will fluctuate around 0. In order to check graphically whether the ob­
served fluctuations are compatible with the model, they compare W ( x) to some realizations of the 
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Gaussian limiting process when the model holds. More formal goodness of fit tests (Kolmogorov­
Smirnov like tests) can be performed similarly. 

When f3 is one-dimensional, (8) just gives a method of checking the coding of the covariate. When 
f3 is of higher dimension we check the overall model fit. If the link is other than proportional this 
should be detected. However W(x) does not account for the dynamic aspect, so it will not detect 
whether a covariate effect becomes weaker (or disappears) with time. 

As a simple modification of (8), we therefore propose an approach similar to the one used for 
logistic regression (Hosmer and Lemeshow, 1989). The idea is to group the individuals after the 
risk score, i.e. replacing I(zT j3 ~ x) with I(zT /3 E Jt) in (8) for some interval J1 (below Jt will 
be the quartile groups). Further we consider the martingale residual process M;(t) in the place of 
the martingale residual M;. For this purpose, we introduce a g x n grouping matrix K where Kt,k 

equals I(zf /3 E Jt). 

Because the regression parameters have to be estimated, the martingale residuals for the Cox model 
are only approximately martingales. The asymptotic distribution is deduced in the Appendix. Un­
der the model (1) and under mild regularity conditions, the grouped martingale residual process 
He(·) = KM(-) properly normalized converges to a mean zero multivariate Gaussian process. 
Further the covariance between the components H J; ( s) and H Ji (t) of He (.) can estimated by 

(9) 

where 

, (t· ') -1 SI (f3,u) o - SJ (f3,u) dN( ) t (0) ' ( (0) ' ) 

rPIJ ,{3- o S(D)(/3,u) IJ S(D)(/3,u) . u, 

~ (t-{3) = 1 SJ (~,u)- SJ (,B,u)~ (f3,u) dN(u) 
t ( (1) ' (0) ' (1) ' ) 

J ' o S(0 )(f3,u) (S(D)(,B,u)) 2 · 

and I(/3) is the observed information matrix at /3, S(0)(/3, u) = 2::7=1 Y;(u) exp(zT /3), s(ll(/3, u) = 
n ' (0) ' (1) ' 2::;=1 Y;(u)z;exp(zTf3), and SJ (f3,u), SJ (f3,u)) are the same entities summed over the subset 

J of {1, · · ·, n}. Remark that l:J, HJ.(t) = 0, so we will have to omit one of the elements to make 

a test. So with i::(t) = {O";j(t, t)}f,j~ 1 , 

, -1 T 
Te(t) = (HJ1 (t), ... , HJ._Jt))~ (t)(HJ1 (t), .. ·, HJ._ 1 (t)) 

is approximately X~- 1 distributed when the model (1) holds. Below, we will write Te for Te(oo). 

3.3 Checking deviations from the nonparametric linear model 

For the nonparametric linear model, A(t) depends on t, and the grouping method above cannot 
be implemented directly. At least two modifications are possible. Either we can choose one t 0 and 
group according to the corresponding zT A(t0 ), or we can fit the semiparametric linear model (4) 
and group after the size of zT a. The latter method will be adopted below, and the process will be 
denoted HL(s) = KM(s) where K is the grouping matrix. 

Writing (7) on matrix form, we get 

M(t) =lot (I- Y(s)Y- (s))dN(s). (10) 

Here I is the n x n identity matrix. When model (3) holds this is a vector valued martingale with 
predictable variation process 

(M)(t) =lot (I- Y(s)Y- (s))diag (A(s)ds)(I- Y(s)Y- (s)) (11) 
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(see Aalen, 1993). Here diag of a vector a is the diagonal matrix with a on the diagonal. Aalen's 
original proposal for variance estimator is the optional variation process, replacing .X( s )ds in (11) 
by 

dN(s). (12) 

Other variance estimators are possible (Hjort, 1993; Gr¢nnesby, 1996), and will be discussed briefly 
in Section 6. 

Since the sum of the grouped martingale residual processes is zero for all t, we introduce ih (t) as 
the vector of the g -1 first terms. ih(t) will be an asymptotic Gaussian martingale with estimated 
vanance process 

i:L(t) = VARih(t) = KVARl\1(t):kT. (13) 

Here VARM(t) is calculated by putting (12) into the formula (11). Now 

is asymptotically X~- 1 -distributed. Below, we write n for n ( oo ). 

4 Simulation of the goodness of fit methods 

In this section, the methods described in Section 3 are explored in simulation experiments. We 
simulate random censoring with constant rate such that 50 % fail. 

When the Cox and linear models are fitted to the same dataset, it is not at all obvious that 
the same covariate coding gives the best fit for both models. In addition to the original covariate 
coding, we therefore also show results for transformed covariates in the tables below. 

One evident way to choose cutpoints for the grouping after risk score is to assign approximately 
the same number of individuals in each group. Below we will divide into g = 4 groups. In the 
analyses of the power of TL and Tc, the nominal level of the tests will be 0.05. All entries in the 
tables are based on 1000 simulations. 

4.1 Simulated Cox data 

The simulations are done with constant baseline h0 (t) = 1, and 2 standard normally distributed 
covariates and covariate effect /31 = /32 = {3. Figure 1 displays a typical outcome of the HL­
and He-processes, pointwise confidence intervals for the lower quartile risk score group and the 
corresponding Arjas plot for j3 = 1 and n = 100. Since the rates are constant, i.e. the survival and 
censoring times are exponential, there will be some extreme (censored) survival times. All figures 
therefore only show the processes until 10% remain at risk. 

The grouped martingale residual processes and the Arjas plot clearly show that the linear model 
does not fit, at least fort :::; 0.4. The true intensities are underestimated for the groups with high­
est and lowest risk score, as one could expect. Note in particular from the Arjas plot the initial 
negative number of expected failures, and thereby negative estimated integrated intensity, for the 
lowest risk score group for the linear model. For this dataset, more than half of all failures before 
0.4 are due to the highest risk score group and the intensity from these high covariate values are 
extrapolated to lower values. The linear structure of the Aalen model has no restrictions to force 
the data only to admit positive intensities. The insufficient fit for the linear model is confirmed by 
the goodness of fit tests TL = 11.98 (p-value = .007) and Tc = 2.38 (p-value = .497). 

Table 1 shows the simulated power for TL and Tc for different values of {3. For the fit of the 
linear model, both untransformed and exponentially transformed covariates are displayed. 
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Figure 1: Cox data with 2 normal covariates fitted as linear (left) and Cox (right). Upper curves: 
estimated grouped martingale residual (H.) processes (All 4 categories). Lower curves: the corre­
sponding Arjas-plot. Middle curves: estimated H.-processes for group I with confidence interval. 
Legend for the upper and lower figures. Solid: group I (lowest risk score); dotted: group II; stipled: 
group III; dotted/stipled: group IV 
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Table 1: Simulated power for TL and Tc for some Cox datasets 

n = 100 n = 200 
(J Cox Linear Linear transformed Cox Linear Linear transformed 
0 .064 .037 .037 .053 .049 .049 
.1 .059 .048 .039 .051 .051 .051 
.25 .065 .051 .058 .066 .065 .089 
.5 .060 .103 .050 .059 .200 .095 
.75 .064 .290 .063 .060 .616 .096 
1 .071 .571 .072 .050 .953 .120 
2 .061 .999 .422 .046 1.000 .628 

The obtained level for Tc is slightly too high, but still the approximation is fair. Simulations 
where we fix the cutpoints to the correct covariate fractiles (not displayed) reduce the achieved 
level, but it is still higher than the nominal. 

For small (3, the linear and proportional models are quite similar, even for untransformed co­
variates. So the power of TL is monotonously increasing with (3, but is still dquite low, even when 
the sample size is 200. With (J as high as 1, the fitted models are quite different, because the 
hazards between the individuals differ so much. 

Exponentially transformed covariates yield substantially better fit of the linear model, i.e. lower 
power of TL. Only for very high (3, the fit is unsatisfactory. Exponential transformation brings the 
covariates 'on the same scale' in the two models, so the differences between linear and proportional 
models are smaller, and the negative estimated intensities are avoided for moderate (3. 

4.2 Simulated linear data with constant effects 

In this subsection, the data are drawn from the linear model ( 4) with a 0 , a 1 , a 2 constants, and 
further a 1 = a 2 = a. It then suffices to vary the baseline because we get essentially the same 
model by scaling up all the effects, so a is set to 1. 

The simulation in Figure 2 is done with two standard lognormally distributed covariates and 
n = 100. We put a 0 (t) = 0 to maximize the deviation between linear and Cox models. Again we 
display the grouped martingale residual processes, pointwise confidence interval for the lowest risk 
score group and Arjas plot. 

Here Tc = 7.83 (p-value = .050) and n = 2.22 (p-value = .528), but for the fitted Cox model 
only the martingale residual process for the lowest risk score group seems to deviate consistently 
from 0. The Cox model initially overstimates the intensities for the lowest risk score group. This 
is consistent with the findings in the previous subsection. 

As an alternative to the asymptotic interval for H c based on (9) one could bootstrap the pointwise 
confidence intervals, either parametrically or nonparametrically. These confidence intervals yield 
similar results as the asymptotic ones and are therefore not displayed. 

Table 2 shows the power of the tests when the Cox and linear models are fitted to simulated 
linear data with different values of ao, and otherwise the setup as in Figure 2. We have also fitted 
a Cox model with log-transformation of the covariates. 
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Figure 2: Data are linear with 2 standard lognormal covariates fitted as linear (left) and Cox 
(right). Upper curves: estimated grouped martingale residual (H.) processes (All 4 categories). 
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with confidence interval. 
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Table 2: Simulated power for TL and Tc for some linear data 

n = 100 n = 200 
ao Linear Cox Cox transformed Linear Cox Cox transformed 
0 .045 .282 .082 .043 .628 .052 
.25 .037 .223 .072 .051 .485 .062 
.5 .048 .178 .080 .048 .408 .052 
.75 .038 .158 .086 .049 .316 .068 
1 .040 .143 .078 .052 .270 .075 

The achieved level of the TL-test is systematically slightly below the nominal level. Table 2 further 
indicates that the Cox model fits well with logtransformed covariates, even with untransformed 
covariates the fit is fair when n = 100. 

4.3 Simulation of a true linear data with vanishing effects 

One advantage of the linear model is that it permits time varying covariate effects. The model is 
therefore particularly useful when the effect of covariates vanish after some time. The standard 
Cox model with time-fixed covariates does not cover this situation, but if the model is extended 
to time-dependent covariates, the Cox structure can be restored. In practice, however, it is often 
difficult to detect time-dependent covariate effects for the Cox model. 

We choose to let the effect of the first covariate vanish at about the median failure time, and 
the results are displayed in Figure 3 for a 0 = 0 and in Table 3 for different values of a 0 . 

Table 3: Simulated power for TL and Tc for some simulated linear data sets with effect of the first 
covariate vanishing after some t 0 • 

n = 100 n = 200 
ao Linear Cox Cox transformed Linear Cox Cox transformed 
0 .029 .323 .072 .053 .692 .046 
.25 .033 .234 .055 .046 .490 .064 
.5 .042 .189 .078 .045 .374 .076 
.75 .048 .145 .088 .040 .302 .071 
1 .041 .115 .073 .049 .245 .105 

The difference from Section 4.2 is surprisingly small; one could expect a higher power for Tc 
because the Cox model does not allow a change in the relative risks. But we only achieve higher 
simulated power for the smallest values of a 0 . The Cox model still fits very well for logtransformed 
covariates. Some of the reason for the low power for the largest a 0 values is that fewer are at risk 
after t 0 than in Section 4.2. 

The underestimation of the level for TL is slightly clearer than for Table 2. 

5 Real data example: the PBC data 

312 patients with primary biliary cirrhosis (PBC) of the liver participated in a double-blind ran­
domized clinical trial at the Majo clinic comparing survival of patients receiving D-penicillamine or 
placebo. Liver transplantation was regarded as censoring. Since the drug proved to be ineffective, 
we can consider the data to provide a description of the 'natural history' of PBC. The data have 
been extensively analysed using Cox regression by Fleming and Harrington (1991), and we use 
the data as cited there with corrections for individuals 107 and 253 (explained in op. cit., pages 
186-89). We will only consider the covariates of their final model: age, albumin (a protein in 
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Figure 3: Model is linear with one vanishing effect and 2 standard lognormal covariates fitted as 
linear (left) and Cox (right). Upper curves: estimated grouped martingale residual (H. )-processes 
(All 4 categories). Lower curves: the corresponding Arjas-plot. Middle curves: estimated H.­
processes for group I with confidence interval. 
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group IV (highest risk score) 10 



PCB data fitted as Linear Arjos plot PCB data fitted as Linear 

...... _._ 
-.r 

./ .... 
.; .. ~--~ ~;··_·,:..:/:···,;· / 

flo, ... ,,.· .... \ .... ~ .... -'<' 

30 40 70 

Years Observed failures 
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Grouped martingale residual process. Right: Arjas plot. 
Legend. Solid: group I; dotted: group II; stipled: group III; dotted/stipled: group IV 

the blood), bilirubin (liver bile pigment), edema (swelling caused by excess fluid in subcutaneous 
tissue) and prothrombin time (time until the blood sample starts coagulation, will be denoted 
protime). Edema is categorical (0 no edema and no diuretic therapy; 1 edema despite diuretic 
therapy; .5 either edema without diuretic therapy or edema resolved with diuretic therapy), while 
the other covariates are continuous. 

We first fit a nonparametric linear model covariatewise, and then discuss the fit of the final linear 
and proportional models. 

5.1 Covariatewise fit for nonparametric linear model 

The fitting of the covariates protime and albumin turns out to be difficult. Both the original 
coding, and various covariate transformations have been tried out. All these models yield nega­
tive estimated intensities for the lowest risk group. As an illustration, we display in Figure 4 the 
grouped martingale residual processes and the Arjas plot when a linear model with only protime 
untransformed is fitted and grouped into quartile groups by protime. 

The numbers of deaths during the first 2 years are 1, 0, 4 and 28 in the four protime groups respec­
tively. Thus there are far too many failures for the individuals with highest protime values, and 
the initial rate is estimated almost exclusively from these high covariate values. As in Section 4.1, 
there is an initial underestimation of the rates for the lowest and the highest protime values, for 
group 1 we even have negative estimated intensities. These negative estimated intensities persist 
for the lowest risk scores when other covariates are included in the model. After about 2 years, 
the linear model fits quite well. 

For the final linear model, the covariates age and bilirubin are as given originally; and edema 
dichotomized ( .5 pooled together with 0). Further albumin is coded as zero for the highest half, 
and then linear; protime is zero for the lowest half, then linear. We have also included a first order 
interaction term between protime and albumin. 

5.2 Overall fit 

The final Cox model is as in Fleming and Harrington (1991) with albumin, bilirubin and protime 
logtransformed. The fit of the linear model and the Cox model is evaluated in Figure 5 by the 
martingale processes and the Arjas plots. The risk score is divided into quartile groups. 
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Figure 5: Linear (left) and Cox (right) models fitted to the PCB data. 
The grouped martingale residuals (upper) and the Arjas plots (lower) are shown. 
Legend. Solid: group I; dotted: group II; stipled: group III; dottedjstipled: group IV 

Measured by the martingale residuals alone, the fit of both models is good (Figure 5). The goodness 
of fit tests take the values Tc = 4.68 (p-value = .197) and TL = 6.90 (p-value = .075) respectively. 
Note, however, that the linear model suffers from the negative estimated intensities for the indi­
viduals with the lowest risk scores. 

The martingale residual processes for the Cox model are in the same order of magnitude as the 
ones for the linear model. The asymptotic pointwise confidence intervals (not displayed) do not 
initially contain 0 for the two highest risk score groups, which indicate that the fit is not perfect. 
For the second group, the lack of fit persists over almost the whole timespan. We have not pursued 
this, but it may be due to the fact that for two of the covariates (edema and log(protime)), the 
assumed proportionality is questionable, see above. 

Figure 6 displays the estimated integrated regression functions of the final Aalen model. 
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Figure 6: The cumulative regression functions with confidence interval for the final linear model 
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Note in particular that the effect of protime and the interaction term albumin by protime seem to 
be vanishing after about 2 years. There is a similar tendency for edema (though less clear), but 
note that only a very few individuals with edema despite diuretic therapy are left beyond 2 years. 
This may explain the lack of proportionality for protime and edema in the Cox model, noted by 
Fleming and Harrington (1991, page 191). 

6 Discussion 

The martingale residual processes and Arjas plots grouped after the risk score seem promising for 
checking the model fit for regression models in survival analysis. To group into equal size as we 
have done, may be suitable for a general model check without specific alternatives in mind. There 
may, however, be better ways to select the cutpoints. In particular for discriminating between 
semiparametriclinear and proportional models, an alternative may be to estimate a linear baseline 
function and then choose two cutpoints such that the linear and proportional intensities are equal. 
As an alternative to the omnibus chisquared test proposed here one could consider weighted tests. 
For g = 4 groups an example is the weighted test L_j=l w;H; for the weights (1, -1, -1, 1). 

For moderate covariate effects, it may be difficult to discriminate between the models. The models 
can therefore be used as supplementary analysis for each other. If we are doing a Cox analysis, 
an alternative linear model can be used to detect nonproportionality and timedependent effects of 
the covariates. This point was also noted by Mau (1986). 

The negative estimated intensities obtained when the data sets in Sections 4.1 and 5 are fitted 
by a nonparametric linear model is an unpleasant feature which reduces the applicability of the 
latter model. OneAnother problem with the linear model, is that we do not have a deviance type 
measure for comparing the fit for different linear models. On the other hand the estimates and 
the model fit can be interpreted locally, so contrary to the Cox model the initial behaviour is not 
compensated by the behaviour at later times. When the Cox model is fitted, it can be difficult to 
detect model deviations. 

The negative estimated intensities also creates problems in using alternative variance estimators 
to the optional variation process, see Section 3.3. In the spirit of Gr¢nnesby (1996), we could use 
Y(t)dA(t) in the place of (12) into the equation (11) and hope for better results. However, this 
method yields negative estimated variation process for the martingale residuals for those individ­
uals with negative estimated integrated hazards. 

Appendix: Asymptotic distribution of the grouped martin­
gale residual processes for the Cox model 

The regularity conditions will not be stressed here, they are the same as for the asymptotic nor­
mality of the Cox estimator and are given in Andersen et al. (1993). We write: 

S(o) ((3, u) = L_~=l Y;(u) exp(zt (3), s(ll((3, u) = L_~=l Y;(u)z; exp(zt (3) and analogously S}0l ((3, u) 
and S~1 )((3, u) for the same entities summed over a subset J of {1, ... , n}. Further define 

A;((3, t) = J; exp(zt (3)Y;(u)dHo(u), where Ho(u) is the Breslow-estimator (2). Similar notation is 
used when the true value (3 of the regression parameters is replaced by its estimator /:3. 

The standardized martingale residuals aggregated over a set J may then be written 

1' 1""'' 1""' ' 1""'' ' ' VnMJ(t) = Vn L.t M;(t) = Vn L.t {N;(t)- A;((3, t)} + Vn L.t {A;((3, t)- A;((3, t)} 
iEJ iEJ iEJ 
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1 n t ( S}0 )(f3,u)) 1 t (S}0 )({3,u) S}0\{3,u)) 
= Vn t; Jo JiJ- S(O)(f3,u) dM;(u) + Vn Jo S(O)(f3,u)- S(OJ({3,u) ~dN;(u). (14) 

Here JiJ = 1 if i E J, else J;J = 0. 

By a first order Taylor expansion, the second term in (14) is asymptotically equivalent with 

.,fii(j3 _ f3f 1t S(1l(f3, u)S}0l(/3, u)- S(0l(f3, u)S~1 )(/3, u) dN.(u) 
n o S(O)(f3,u)2 n . 

We introduce s(O) and s(l) for the uniform limits in probability of 1/n times s(o) and s(l)' s~O) 
and s~1 ) are defined similarly. Then this is again asymptotically equivalent with 

r.::(~ _ r.t)T 1t s(ll(f3, u)s~0)(f3, u)- s(0l(f3, u)s~1 )(/3, u) (o)(r.t )h ( )d 
yntJ tJ (O)(r.t )2 s fJ>u au u. 

0 S fJ>U 

But .,fii({3 - /3) is asymptotically equivalent with 

-1 1 n r)Q ( s(l)(f3,u)) 
~/3 Vn t; Jo z;- S(O)(f3, u) dM;(u) 

where ~/3 is the asymptotic information matrix for the Cox model (see Andersen et al., 1993, p 
497), so it follows that )nMJ(t) has the same asymptotic distribution as 

where 

. _ ( (s~1\f3,u) _ s~0)(f3,u)s(ll(f3,u)) (O) 
'1/JJ(t,/3)- Jo s(O)(f3, u) (s(O)(f3, u))2 s (/3, u)ho(u)du. 

The data are partitioned into g groups. For any groups I, J: 

( Jn ~ /, (o"- ~::~:: :~) dM;(u), Jn t, /, (o;J -1;:1~"::;) dM;(u)) (t) = 

11ts}oJ(f3,u)( s}o)(f3,u)) (o) 'P 
;;: o S(O)(f3, u) JIJ- S(O)(f3, u) S (/3, u)ho(u)du-+ 

s 1 fJ>U SJ ,u (O) 1t (O)(r.t ) ( (0)({3 )) 

0 s(O)(f3, u) JIJ- s(0)(/3, u) s (/3, u)ho(u)du = ¢IJ(f3, t). 

Here JIJ = 1 if I= J, else JIJ = 0. 

Further: 

( 1 n 1· ( S}0l(f3,u)) 1 n 1· ( s(1l(f3,u)) ) 'P Vn t; o J;r- S(O)(f3, u) dM;(u), Vn {; o Zj- S(O) (/3, u) dMj(u) (t)-+ '1/Jr(t; /3). 
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From the above results it follows that n- 112 (JvfJ1 , ... , MJ9 )T converges to a mean zero multivari­
ate Gaussian process U = (U1 , ... , Ug)T. The covariance matrix between U(s) and U(t), denoted 
~ ( s, t) has ( i, j)-th entry: 

<Tij(s, t) = Cov(U;(s), Uj(t)) = c/JJ;Ji(s 1\ t;f3) -1/JJ;(s;f3f~(3- 1 1/JJi(t;f3). (16) 

For estimation of the covariance matrix, replace s(k)(f3, u) by S(k)(/3, u)jn; s(k)(f3, u)h0 (u)du by 
dN.(u)/n and ~(3 by n- 1I((3), where I(/3) is the observed information matrix at j3. 
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