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Abstract 

It has been formally proved that the number of failures of a highly 
available monotone system is asymptotic Poisson distributed if the lifetime 
distributions are exponentially distributed. Intuitively it seems clear that 
it is possible to generalize this result to the non-exponential case as long 
as the components are highly available. But formal asymptotic results 
are rather difficult to establish. Strict conditions have to be imposed to 
establish the results, to the system structure and the component lifetime 
and downtime distributions. So further research is needed to obtain general 
results. This paper reviews the literaure in the field and restructures and 
simplifies the so-called Szasz approach for proving the asymptotic Poisson 
limit. 

1 Introduction 

We consider a binary, monotone system <1> comprising n independent components, 
observed in the time interval [0, oo ). Each component generates an alternating 
renewal process. The distribution of the number of system failures, and the 
probability of no failures in particular, is an informative performance measure 
from a safety and operational point of view. The computation of this measure has 

therefore been given much attention in the literature. It is however very difficult 
to establish exact formulae for these measures. Therefore much focus has been 
placed on asymptotic analysis. Assuming exponential lifetime distributions and 
using the theory of regenerative processes, it has been shown that the number of 
system failures, suitably normalized, converges in distribution to a homogeneous 
Poisson process, see e.g. [1, 2, 4, 8, 9, 16]. Different normalizing factors are used, 
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including the asymptotic failure rate of the system, Aq,. In [4] the accuracy of the 
Poisson (exponential) approximation is studied for different normalizing factors. 

Monte Carlo simulations and results obtained for phase type distributions 
indicate that the number of failures are approximately Poisson distributed also 
for non-exponential lifetime distributions as long as the components are highly 
available, cf [1], Section 4.7.1. But formal asymptotic results are rather difficult 
to establish, see for example [1, 10, 11, 12, 14, 17]. Strict conditions have to 
be imposed to establish the results, to the system structure and the component 
lifetime and downtime distributions. Also the general approach of showing that 
the compensator of the counting process converges in probability, is difficult to 
apply in our setting, cf. Section 3 below. 

Szasz [14, 15] formulated conditions for when a Poisson process is an asymp­
totic limit for a parallel system of two identical components with general lifetime 
distributions. The lifetime distributions are fixed, whereas the repair times con­
verge to 0. His approach for establishing the desired result seems promising, 
but we have not yet been able to formulate a general result using this approach. 
Szasz's original proofs are rather complicated and it possible to restructure the 
results and proofs such that it is easier to see what are the critical assumptions. 
This new structure is presented in Section 3 of the present paper. Hopefully, 
this formulation and the paper as a whole can provide a useful basis for further 
research in the field. At the end of the paper we give a remark concerning the 
critical assumptions made in Section 3. First we present the model and state 
some basic results to be used in Section 3. 

2 Model and some basic results 

In this section we introduce the set-up to be used in the asymptotic analysis in 
Section 3. We also state some basic results from alternating renewal processes 
and counting process theory. See [1] for proofs of these results. 

Let Xt( i) be a binary stochastic process with right-continuous sample paths 
representing the state of component i, i = 1, 2, ... , n; Xt(i) = 1 if component i 
is functioning at time t and Xt(i) = 0 if component i is not functioning at time 
t. We assume that all components are functioning at time 0, i.e., X 0 (i) = 1. The 
process Xt(i) is an alternating renewal process. Let Tim, m = 1, 2, ... , represent 
the length of the mth operation period of component i, and let Rim, j = 1, 2, ... , 
represent the length of the mth repair time for component i, see Figure 1. For 
i = 1, 2, ... , n we assume that (~m), m = 1, 2, ... , and (Rim), m = 1, 2, ... , 
are i.i.d. sequences of positive random variables. We denote the probability 
distributions of Tij and Rij by Fi(t) and Gi(t), respectively, and assume that 
they have finite means: 

To simplify the presentation, we also assume that Fi(t) is a continuous distribu­
tion, i.e., Fi has a density function fi and failure rate function Ai· We denote by 
Ai(t) the availability of component i at time t, i.e., Ai(t) = P(Xt(i) = 1), and 
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Figure 1: Time evolution of a failure and repair process for component i 
starting at time t = 0 in the operating state. 

by~ the limiting availability of component i, i.e., 

A. _ f.1Fi . -
/1Fi + f.J,ai 

Let Nt(i) denote the number offailures of component i in [0, t], and let Mi(t) = 

ENt(i) denote the mean value function. It can be shown that 

(1) 

where JL = 1 - Ai and * denotes convolution. Note that we also have 

00 

M(t) = LF * (F * G)i- 1 . (2) 
i=l 

The counting process Nt( i) has a stochastic intensity process 

where f3t(i) is the backward recurrence time at time t, i.e., the relative age of 
component i at timet. If Mi(t) has a density mi(t), then 

and 
(3) 

(4) 

Let <I>: {0, 1}n---+ {0, 1} be the structure function of the system. We assume 
that this function is monotone, i.e., <I>(x) (where x = (x1 ,x2 , ... ,xn)) is a non­
decreasing function in each argument Xi, and 1>(1) = 1 and 1>(0) = 0 where 
1 = (1, 1, ... , 1) and 0 = (0, 0, ... , 0). 

At time t the states of the components are given by 
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If t is fixed we often simplify the notation and omit the t. We assume the n 
processes are independent. The reliability function of <P is denoted h(p), where 
p = (p1,p2, ... ,Pn) and Pi= P(Xi = 1). We have h(p) = E<P(X) = P(<P(X) = 

1). The reliability function when it is given that xi= Xi, is denoted h(xi,P), 
i.e., h(xi, p) = E[<P(X)/Xi =xi]· 

Let Nt denote the number of system failures in [0, t]. It is well-known that 

lim ENt = t h(1i, A)- h(Oi, A) = A<I> (5) 
t-HXJ t i=l f.LFi + /LGi 

where the last equality is given by definition and A = (AI, A2, ... , An). We 
refer to A<I> as the system failure rate. The counting process Nt has a stochastic 
intensity A<I>(t) given by 

n 

A<I>(t) = L[<P(1i, Xt)- <P(Oi, Xt)]7Jt(i). 
i=l 

In the following we write bin place of 1- b for any quantity b taking values 
in [0, 1], and B for a vector (B1,B2, ... ,En)· 

3. Asymptotic Analysis 

We consider now for each component i a sequence (Fij, Gij), j = 1, 2, ... , of 
distributions satisfying certain conditions. We will formulate conditions which 
ensure that (Ntf>.q,) converges in distribution to a Poisson process with intensity 
1. To simplify notation, we normally omit the index j. 

To prove that (Ntj>.q,) converges in distribution to a Poisson process with 
parameter 1, it is sufficient to show that the compensator Atj>.q, of Ntj>.q, converges 
in probability to t, i.e., 

[tf>.q, [tf>.q, n . p 

Atj>.q, = Jo A<I>(s)ds = Jo ~[<P(1i,Xs)- <P(Oi,Xs)l7Js(2)---+ t. 

This follows by applying a general result from Daley and Vere-Jones [7], p. 552. 
Thus to establish the asymptotic Poisson limit result for our model, it is 

sufficient to show that E/Atf>.q, - t/ ---+ 0. This leads however to some conditions 
which are rather difficult to meet. It seems easier to use a more direct approach 
similar to the one carried out by Szasz [14, 15] and Kaplan [10] for a parallel 
system of two identical components. 

Let Si<I> denote the time of the ith system failure. Assume the following 
limiting results hold true 

ENtf>.q, ---+ t (6) 

sup /E[Ntj>.q,/SI<I> = s/A<I>]- [1 + (t- s)J/---+ 0 (7) 
sE[O,t] 

sup /E[Ntj>.q,- Nsj>.q,/Sk<I> = s/A<I>]- (t- s)/---+ 0 (8) 
sE[O,t] 

sup /E[Ntf>.q, - Nsf>.q, /Sk<I> = s/ A<J?, S(k+I)<I> = uj A<J?] (9) 
uE[s,t] 

-[1 + (t- u)]/---+ 0. 

4 



Then (Ntj>-.;p) converges in distribution to a Poisson process with parameter 1. 
To see this, note first that the family (Ntj>-.;p) is relatively compact (tight), since 

1 
supP(Ntf>-.;p 2: k) :S -k s~pENtf>-.;p· 

J J 

Thus each subsequence j' of j has a subsubsequence j" such that (the finite 
dimensional distributions of) (Nj'',tj>-.;p) converge weakly to (the finite dimensional 
distributions of) Wt (say) as j"---+ oo (cf. Daley and Vere-Jones, [7]). We must 
show that (Wt) is a Poisson process with parameter 1. To this end, let wi denote 
the time of the jumps of the process W, and consider the identity 

lot E[Ntf>-.;piSI<P = si>.<P]dP(SI<P :S s) 

lot{E[Ntf>-.;piSI<P = si>.<P]- [1 + (t- s)]dP(SI<P :S s) 

-lot[1 + (t- s)]dP(S1iP::; s). 

Letting j"---+ oo, and using (6) and (7), we obtain 

Let L(x) denote the Laplace transform of the distribution of w1 , i.e., 

Then by taking the Laplace transform of both sides (10), we get 

1 1 
- = L(x) + -L(x), 
X X 

(10) 

which means that L(x) = 11(1 + x). We can conclude that w1 is the exponential 
distribution with parameter 1, i.e., P(w1 ::; s) = 1- e- 8 • 

To obtain the distribution of w2 , lett 2: s. Then we obtain 

E[Ntj>-.;p - Nsj>-.;p IS~iP = sl AiP] 

= lot E[Nt; Ap - Nsj)..;p ISliP = s I Ap' s2iP = y I Ap ]dP( s2iP ::; y I Ap I sliP = s I Ap). 

Taking the limit as j" ---+ oo, we obtain 

and this gives that w2 - w1 is independent of w1 and has the same distribution. 
By induction we can show that wi - wi-I are i.i.d. and the desired result is 
proved. 

Below we give sufficient conditions for when (6) holds true. We shall restrict 
attention to a parallel system of two components. 
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Parallel System of Two Components 

First we introduce some necessary notation. 
Let i, i' E {1, 2}, i =J. i', denote different component indices, and let 

Hence we can write 

Let 
;..: = sup )..i(t). 

O~t~s 

We have the following result. 

Theorem 1 Consider a parallel system <P of two components. Assume that for 
all s < oo, 

2 

I:. A: /-lGi ----+ 0 (j ----+ 00). (11) 
i=l 

Assume also that there exist a decomposition Mi = Mi1 + Mi2 for j 2:: j 0 , i = 1, 2, 
such that 

a) The measures Mi1 are bounded, and relatively compact (tight), i.e., for every 
E > 0 there exists a constant c1 such that 

sup Mil[c1, oo) <E. 
j?_jo 

b) Mi2 is absolutely continuous with a bounded density mi2 , i.e., 

and 

sup sup mi2(t) < oo, 
j?_jo t 

Furthermore, assume that for i = 1, 2 and x > 0, 

where ox(1) ----+ 0 as j----+ oo. Then as j----+ oo 
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Proof. Let c be a positive constant. Then we can write 

It follows that 

2 

IENtj>.q. - tl < ENe + L Mii[c, 00) 
i=l 

Let E > 0 be given. Choose c and j so large that Mil [c, oo) :::; E and 

1 
(JJFi + JJaJ sup lmi2(t)- I :::; t. 

t?_e /1Fi + /1Gi 

Then we obtain 

lim sup IENtj>.q.- tl < limsupENe + nE 
j-+oo j-+oo 

Thus the conclusion of the theorem, (13), holds if 

ENe ---+ 0 (j ---+ oo) 

2 it/ >.q. 1 
~ e gi(A(s)) /1Fi + /1Gi ds---+ t, 

First we establish (14). From (4) we have .tt(s) :::; AfJJai. This gives 

ENe = t, foe gi(A(s)) dMi(s) 

< t, foe Ai'(s) dMi(s) 

2 2 

< (L .\~ JJaJ L Mi (c)) 
i=l i=l 

which converges to 0 as j ---+ oo in view of (11) and the fact that 

liT?- sup Mi(c) < oo. 
J---+00 
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It remains to show (15), or alternatively v(t)---+ t as j---+ oo, where 

From (2) we obtain 

L ( ) = Lpi (x) 
Mi x 1- Lpi(x)L0 Jx)' 

and using that Ai = Mi- Gi * .Nfi (remember (1)) we obtain by taking Laplace 
transform 

Lv(x) 

Now letting j ---+ oo, we get 

using assumption (12). Hence 

noting that 

1 
Lv (X) ---+ - , 

X 

v(t) ---+ t, 

r= e-xs ds = ~-
lo x 

The conclusion of the theorem follows. • 
Similar results can be established for (7)-(9) but it is more complicated. We 

will just indicate the arguments for slip = s I )..ip. Given slip = s I )..ip and the 
state vector x with component i inducing system failure, we can consider a new 
process X 0 starting at s I )..ip with the state of the components being represented 
by alternating renewal processes, with consecutive interarrival distributions 

Gi, Fi, Gi, ... , 

G?,, Fi', Gi', ... , 

where G?, is the conditional downtime distribution of component i' given that the 
first system failure occurs at sl )..ip and is caused by component i. The uptimes 
and downtimes are all independent. 

Let Mi0 denote the renewal failure process associated with component i and let 
A?(t) denote the corresponding availability at timet. If component i did not cause 
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system failure, we have Mi0 = Mi * G? and hence Mi(t)- M?(t) = (Mi * G?)(t). 
Furthermore A?(t) = (~ * G?)(t). Thus 

If component i caused system failure the above equations hold with G? replaced 

by Gi· 
Now assume the same conditions as in Theorem 1. We will state sufficient 

conditions for ENt~>..q, -----+ 0 as j -----+ oo. We obtain, writing gi( s) instead of 

gi(A(s)), and g?(s) instead of gf(A(s)), 

Thus, in view of Theorem 1 and its proof, we need to prove that 

(16) 
(17) 

(18) 

(19) 

In the special case below we will study these conditions closer. Note that the 
convergence of EN~j>..q, is uniform in u E [0, t] since EN~j>..q, is a non-decreasing 
function in u and its limit u is continuous. 
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Special Case 

Assume that Fi is fixed and not depending on j, and the distributions Gij(t) vary 
such that P,ei -+ 0 as j -+ oo. This means that Gi(t) -+ 0 for all t > 0 noting 
that Gi(t) :::; P,ejt. 

From Szasz [14, 15] and Kaplan [10] we know then that a decomposition 
Mi = Mil+ Mi2 exists satisfying the conditions a) and b) of Theorem 1. Assuming 
that Fi is a spread out distribution, i.e., there exists an a E {1, 2, ... } such that 
we may write Fr = PiFil + qiFi2 where Pi> 0, Pi+ qi = 1, and Fil has a density 
which is continuous and vanishes outside a finite interval, we have 

a-1 oo 

Mil Fi * (L)Fi * Gi)*r) * (L qi(Fi2 * c;a)*1) 
r=O 

00 

Mi2 = Fi * (piMil * c;a * Fil) * (L(Fi * Gi)*a1• 

l=O 

We omit the proof since it is very long and technical. Using the Laplace transform 
technique it is however not difficult to show that we do in fact have Mi = Mil+ Mi2 
in this case. Also Mil(-oo,oo) = ajpi and as j-+ oo 

a-1 oo 

Mil(x)-+ Fi * (2:Ft) * (Lq~Fi;1 )(x) 
r=O l=O 

uniformly in x. For the full proof, reference is made to [10, 14, 15]. 
Thus for satisfying the conditions of Theorem 1 it remains to prove that the 

condition (12) holds true. Using Taylor's formula on exp{ -xs.A.<I>} in the Laplace 
transforms LFi and Lei) we can prove (12), assuming that 

1. Fi has finite second order moment, i.e., ETl < oo, i = 1, 2. 

2. The square coefficient of Ri is bounded, i.e., 

ER? 
sup~ <oo. 

j fkei 

3. Gi has the NBU property, i.e., Gi(t + u) :::; Gi(t)Gi(u) for all t, u 2: 0. 

Use of Taylor's formula gives 

LFi (xA<t>) 

Lei (xA<t>) 

and furthermore 

laoo e-sx>.q,dFi(s) = 1- XA<t>P,Fi0(1) 

fooo e-sx>.q,dGi(s) = 1- XA<t>Jkei0(1) 
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where0(1) is a bounded function in j. Hence 

LpJx.A.p)(1- LaJx.A.p)) 
1- Lpi(x.A.p)LaJx.A.p) 

Thus (12) holds true. 

1 + Jla.!JlF.· A.p0(1) 
• • 

Ai[1 + 11~ . .A.p(ERi + J.LaJ0(1) . 

Ai[1 + o(1)]. 

It remains to show (16)-(19). From the NBU assumption it follows that 

We have 

g~ ( t) = A? ( t) = 1 - (A * G?) ( t) = c? ( t) + Ai ( t) - ( Ai * G?) ( t) 

and 
Mi0 (t) = (Mi * G?)(t) ~ Mi(t). 

Also Mi~(t) has the same asymptotic limit as Mi1(t) when j __,. oo. So clearly, 
Mi~ is relatively compact. 

From (3) we have mi(t) ~ >-L and using this inequality we obtain 

Consequently, (17) holds true if A?( s) __,. 0 as j __,. oo. By observing that G?(t) ~ 
Gi(t) __,. 0 and 

we have proved ( 17). 
To establish (18), we will show that m?2 has the same properties as mi2 · We 

have m?2 = mi2 * G? and thus we only need to show that 
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We obtain for t 2': c' > a > 0, 

0 ( 1 lmi2 t)- I 
f.l-Fi + f.l-Gi 

< I ft(mi2(t- s)- 1 )dG~(s)l + G~(t) 1 
Jo f.l-F; + {J-Gi f.l-Fi + {J-Gi 

< fa lmi2(t- s)- 1 ldG~(s) 
Jo {J-Fi + {J-Gi 

+1t lmi2(t- s)- 1 ldG~(s) + G~(a) 1 
a ~+~ ~+~ 

1 
< sup lmi2(u)- I 

u2c'-a f.l-Fi + f.l-Gi 

+[sup{mi2(s)} + 1 JG?(a) + c?(a) 1 , 
s f.l-Fi + f.l-Gi f.l-Fi + f.l-Gi 

which proves (20). Hence (18) follows if we can prove (19). We know that 

g?,(s)- gi'(s) = A~(s)- ~(s) = G?(t)- (Ai * G?)(s) 

and the desired conclusion follows by noting that G?(s) ::=; Gi(s), 

ERj --+ 0, fc=(l/ s2) ds < oo, and using the Laplace transform method on (Ai * 
G?)(t). From the proof of Theorem 1 it is seen that we simply has to multiply the 
transform established there by (1- Laa(xA<f>)), which converges to 0. The same 

holds true if replace G? by Gi. Thus w~ have proved that all conditions are met, 
and we can conclude that (Ntj>.;p) converges to a Poisson process with intensity 
1. 

Remark 1 We would like to extend to above result in two directions; to a general 
monotone system and situations where the repair time distributions Gi are fixed 
and the life time distributions Fi vary. However, this seems very difficult. We 
have so far not been able to obtain general results in these directions. One problem 
is related to the limit ( 15). It seems difficult to generalize this result to more 
general systems than a parallel system of two components. If the repair time 
distributions are supposed to be fixed and the uptime distributions vary we need to 
decompose Mi in another way than used above and then probably a new approach 
is required. 
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