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Abstract

Sport analytic systems have had an increasing interest in the past few years,
with advancements automatizing otherwise tedious and time consuming tasks.
However, these systems are still not able to perform semantic analysis of
video footage, such as in automatic activity labeling (for example "run" and
"walk") and performance analysis (for example reaction times). In this thesis,
we propose a prototype, within the Bagadus sport analytic system, allowing
to obtain action labels and athelete poses. With these, it is possible to
automatically annotate (label) activities and aid in analyzing the athletes
performances (e.g., identify wether they use the right technique when running)
as the athelete pose will be known.

Our prototype solves both the action recognition and pose estimation
problems as a content-based video retrieval problem, that is, we first obtain
athlete-centered video sequences and then compare these sequences against
an annotated database. The comparison utilizes a video similarity measure,
based on the motion occurring in the video sequences using optical flow. This
approach allows us to obtain additional semantic information, consisting of
action labels and poses and is suitable to the use-case of a soccer stadium
where cameras are located at a distance from the atheletes. To support the
proposed content-based video retrieval solution, a large set of athelete-skeletons
(placement of joint lications for an athelete within a frame) is annotated using
the crowdsourcing platform Microworkers. Using crowdworkers, we obtain
high qualtiy skeletons that are comparable to expert annotations within a short
period of time, which is achieved by iterating over several designs on the user
interface and utilizing different filtering techinques on the annotations.

The proposed method presents a good performance in terms of accuracy
and robustness for both action recognition and pose estimation, which correcly
classifies 78% of all the actions for a set of selected video sequences and
estimates poses with up to pixel-perfect results. This allows us to extend the
sport analytic system Bagadus capabilities by including semantic analysis of
actions and poses, but can also be used in entertainment applications such as
free-view rendering.

iii



iv



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Assumptions and Limitations . . . . . . . . . . . . . . . . . 3
1.2.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Bagadus 9
2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Camera Array . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 ZXY Tracking Sensor . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 System Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Field Coordinates to Camera Pixels . . . . . . . . . . . . . . . . . . 13
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work 15
3.1 Common Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Global Representation . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Local Representation . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Classification Algorithm . . . . . . . . . . . . . . . . . . . . 20

3.3 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Model-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Model-Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Pose Estimation with Depth Sensors . . . . . . . . . . . . . . . . . . 23
3.4.1 Time-of-Flight Algorithms . . . . . . . . . . . . . . . . . . . 23
3.4.2 Microsoft Kinect . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3.5 Relationship between Action Recognition and Pose Estimation . 25
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 System Overview 27
4.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Program Workflows . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Player Tracking 33
5.1 Player Tracking Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . 35
5.1.2 ZXY Player Positioning . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Gaussian Blurring . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Blob Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.5 Region Overlapping . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.6 Image Stabilization . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.7 Image Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.8 Size Normalization . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Bounding Box Overlap . . . . . . . . . . . . . . . . . . . . . 43

5.3 Remaining Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Video Annotation 51
6.1 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 The Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Source Frames . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Bounding Box . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 Skeleton Plotting . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.4 Motion Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4 Design Iterations - Pilot 1 . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Result Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4.2 SQL Injection Protection . . . . . . . . . . . . . . . . . . . . 56
6.4.3 Gold Standard Testing . . . . . . . . . . . . . . . . . . . . . 57
6.4.4 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Design Iterations - Pilot 2 . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.1 Majority Voting . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.2 Qualification Restrictions . . . . . . . . . . . . . . . . . . . . 62

vi



6.5.3 Aggregating Results . . . . . . . . . . . . . . . . . . . . . . . 64
6.5.4 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Design Iterations - Pilot 3 . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.1 Sequence Load Balancing . . . . . . . . . . . . . . . . . . . 65
6.6.2 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.7 Crowdsourcing Campaign and Results . . . . . . . . . . . . . . . . 66
6.7.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.7.3 Worker Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Action Retrieval 75
7.1 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.1.2 Region to Encode . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Action Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.1 Channel Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Channel Blurring . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.3 Channel Normalization . . . . . . . . . . . . . . . . . . . . . 82
7.2.4 Similarity Measuring . . . . . . . . . . . . . . . . . . . . . . 83
7.2.5 Kernel Convolution . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.6 Action Classification . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.7 Skeleton Reprojection . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.1 Classification Terms . . . . . . . . . . . . . . . . . . . . . . . 88
7.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.3 Reprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Implementations and Optimizations 97
8.1 External Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1.1 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.1.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.1.3 Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.1.4 FFmpeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.5 MeekroDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.6 Whammy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Player Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3 Video Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3.1 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.2 Database Layout . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.3.3 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . 104

8.4 Action Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.1 In-Memory Database . . . . . . . . . . . . . . . . . . . . . . 106

vii



8.4.2 GPU Optimization . . . . . . . . . . . . . . . . . . . . . . . . 107
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Conclusion 109
9.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2.1 Player Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.2.2 Video Annotation . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2.3 Action Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Index 113

viii



List of Figures

2.1 Overview of Bagadus and its systems. This includes the camera
array and ZXY tracker system, the capture pipeline and the
playback software. Playback supports both single-camera view
and panorama (stitched) view. . . . . . . . . . . . . . . . . . . . . . 10

2.2 Key coordinates for the ZXY tracking system. The camera array
is placed at the bottom center of the field, i.e., (52.42, 0) [39]. . 12

2.3 Synchronization between the video and ZXY inputs, with video
showed as frames with duration and ZXY as sample points. . . . 13

2.4 The mapping of ZXY coordinate system to the video image using
homography mapping, using the white lines as rulers. . . . . . . 14

3.1 Visual appearance and actual representation of a still image
in a computer, illustrating the problem of grouping connected
pixels to higher abstraction levels. Image taken from http://docs.
opencv.org/_images/MatBasicImageForComputer.jpg. . . . . . . . 16

3.2 The design of classification algorithms. . . . . . . . . . . . . . . . . 17
3.3 Space-Time volumetric figure of "jumping jack", "walk" and "run".

Image taken from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Representation of Space-time interest points as cubes, defining

both position and frame changes . Image taken from [42]. . . . . 19
3.5 Original image (left) with the mesh (center) and skeleton (right)

next to it. Image taken from [19]. . . . . . . . . . . . . . . . . . . . 22
3.6 Manifold learning results showing the walk pattern from differ-

ent angles. Image taken from [16]. . . . . . . . . . . . . . . . . . . 23
3.7 Pose estimation using TOF clouds, with leftmost an initial match,

the center showing the mapping between TOF cloud and pose
and rightmost the final adjusted pose. Image taken from [3]. . . 24

4.1 Entire workflow designed to obtain skeletons via content-based
video retrieval and crowdsourcing. . . . . . . . . . . . . . . . . . . 31

4.2 Crowdworker Quality Control Workflow. CSV Merged consists
of individual annotations, whereas CSV Merged consists of the
merged results from all the annotations. . . . . . . . . . . . . . . . 31

4.3 Workflow for obtaining skeletons, where red arrows indicate
intersection points where the skeleton can be verified. . . . . . . 32

ix

http://docs.opencv.org/_images/MatBasicImageForComputer.jpg
http://docs.opencv.org/_images/MatBasicImageForComputer.jpg


5.1 The player tracking pipeline, with data in white and CPU stages
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 A grayscale image of a player with the background removed, used
for computing optical flow. . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Foreground mask containing two blobs, with the leftmost (smal-
lest) being an error and the rightmost (largest) the player. . . . . 38

5.4 Median percentage overlap of bounding boxes compared to
expert, plotted with maximum and minimum bars. The optimal
overlap is 100%, marked with a dashed line. . . . . . . . . . . . . 45

5.5 Comparison between expert plotting and the tracker algorithm,
where the red bounding box represents the tracker, blue the
expert and green is the intersection between red and blue.
Optimal tracking should consists of only the green rectangle. . . 45

5.6 Percentage of bounding box overlap of the tracker compared to
an expert, with the red line indicating 100 percent overlap. . . . 46

6.1 Final version of the Online Training Tool with all controls
enabled. From left to right is the action preview window, the
annotation window and the annotation request window. Note
that naming of the joints are different to better define where to
click for the crowdworkers. . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Majority Vote Filtering for two clusters. The green point is the
centroid of all click-points and an acceptance radius is marked as
a red circle, calculated from the mean distance from the centroid
to all other points. Blue points are accepted click-points and red
rejected click-points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Majority Vote filtering with three iterations before obtaining the
final position. The green point is the centroid of all click-points
with the acceptance radius marked as a red circle found as mean
distance from center to all other points. Blue points are accepted
click-points and red rejected click-points. Orange is previous
iteration’s centroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Cases where predefined filters are used to remove noisy or
incorrect data. Blue points indicate click-points (joint) and red
lines are limbs connecting joints. . . . . . . . . . . . . . . . . . . . . 63

6.5 Mean difference between the merged crowdsourced joint place-
ments and an expert, measured as pixels, with maximum and
minimum bars. Everything below the acceptance threshold is
considered acceptable, but is only valid for these sequences. . . 69

6.6 Blue joint positions annotated by expert, with red circles showing
a 3-pixel margin of tolerable errors for crowdworkers. . . . . . . 69

6.7 Workers attempt at plotting an ambiguous right leg (more
precisely the hip) with the individual click-points marked with
orange points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



6.8 Skeleton obtained after Majority Vote Filtering, with blue points
marking joints and red lines marking connecting limbs. . . . . . 70

6.9 Images annotated by crowdworkers per day since start of the
campaign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.1 Example Optical Flow vector obtained for a moving circle across
five frames. Image taken from http://upload.wikimedia.org/
wikipedia/en/1/10/Optical_�ow_example_v2.png. . . . . . . . . . 77

7.2 Comparison of dense flow on the three different methods. . . . . 78

7.3 The complete pipeline for action classification and skeleton
reprojection, with data in white, CPU stages in blue and GPU
stages in green. The prerequisites are also included in here,
which consists of the Sequence Extraction and Optical Flow
Computation stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4 Rendered instances of the matrix S, using a convolution kernel
with N = 21 and σ = 0.05. Note that dissimilar is blurred,
and the best match have the clearest diagonal lines. The query
sequence is represented in the horizontal direction and the
annotation sequence in the vertical direction. . . . . . . . . . . . . 84

7.5 Visual Representation of kernel K with a temporal span of 21
(frames) and a diagonal variance of 0.05 (σ). . . . . . . . . . . . 85

7.6 Confusion matrices for a selection of kernels, with the number
defining the number of instances for that classification pair. . . . 90

7.7 Results from classification and skeleton reprojections. Blue
points marking joints and red lines marking connecting limbs. . 91

7.8 Skeleton reprojections compared to ground truth, with the
difference measured in pixels. The graph shows median values
with maximum and minimum bars. Everything below the
acceptance threshold is considered acceptable, but is only valid
for these sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.9 Joint reprojection error of Sequences S21 and S25, with the
difference measured in pixels. The graph shows median values
with maximum and minimum bars. Everything below the
acceptance threshold is considered acceptable, but is only valid
for these sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.10 Joint Reprojection error of Sequences 25’s Right Knee. The red
line is an acceptance threshold. . . . . . . . . . . . . . . . . . . . . 93

7.11 Examples of skeleton reprojections, with blue points marking
joints and red lines marking connecting limbs. . . . . . . . . . . . 94

xi

http://upload.wikimedia.org/wikipedia/en/1/10/Optical_flow_example_v2.png
http://upload.wikimedia.org/wikipedia/en/1/10/Optical_flow_example_v2.png


8.1 The factors determining the position of a click-point, which is
relative to each individual annotation. The makeup consists of
the tracker data (red), user selection (green) and click-point
(blue). Click-points are relative to user selection, which is
relative to the tracker data. . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 ER model of tables used in the Online Training Tool, using
XY suffix where two columns are present in the database for x
and y coordinates and 13 DoF a shorthand for all the individual
joint positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



List of Tables

6.1 List of video sequences used in the crowdsourcing campaign. . . 67
6.2 Comparison between a crowdworker and an expert. Images are

for the 1898 frames in the database and an image for what can
be done during an hour. Day and completion estimates are based
on eighth hour work days, with the results being approximate. . 71

7.1 Summarized classification accuracy for different kernel sizes and
sigma values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Comparison between an Intel CPU and nVidia GPUs and their
computational performance for our motion similarity algorithm.
The results show performance increase linearly with GPU CUDA
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



xiv



List of Code Snippets

5.1 Function for calculating bounding box overlap using OpenCV’s
Point2f class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Function to determine if a Golden Standard Test is to be given as
a task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1 Code for multiplying individual elements in two arrays together
running in parallel using OpenMP . . . . . . . . . . . . . . . . . . . 99

8.2 Registering of a new user in Online Training Tool using
MeekroDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Converting relative joint positions to absolute joint positions
using OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Original query for obtaining sequence load numbers . . . . . . . 105
8.5 Optimized query for obtaining sequence load numbers . . . . . . 105
8.6 View utilized in the optimized query for obtaining sequence load

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.7 Channel product with two OpenCV Matrices as vector product . 107

xv



xvi



Chapter 1

Introduction

1.1 Background

There has been an increased interest in analyzing sports using video and sensors
for tracking the atheletes [52] and annotating a match with key events (for
example every time an athelete scores a goal in a competition). To better
support and maintain large quantities of data and different recording systems,
sport analytic systems are created to automatize and simplify the process
of event logging and data management. For example, using video provides
showcases of performances, often right after a competition. With such a system,
a coach can faster and more precisely examine previous competitions and
improve the skills of the atheletes.

Bagadus [49] is a sport analytic system designed to automate common tasks
performed manually and experiment with new possibilities. With a camera
array, ZXY player tracking and manual annotating of key events, Bagadus
provides a large amount of data that can be used for any purpose. For example,
this data can quickly be retrieved for analyzing competitions in great detail or
for entertainment purposes. Additionally, Bagadus provides a panorama view,
stitched from an array of cameras, with the possibility of having a virtual camera
moving within this panorama view. However, this virtual view is limited to the
single position of the camera array.

What is missing in the Bagadus system is automatic semantic analysis of
the athelet’s performance, e.g., automatic key events logging and assert if the
movement technique is optimal. Having semantic information about actions
and poses can be used to obtain a more detailed picture of a game which can
then be used to tailor the training needed for the atheletes. Semantic analysis
is currently done manually or limited to the data available from the ZXY player
tracking system (position data on the field). To automate this process, we
require information of the action performed (e.g., "run" or "kick") and the pose
of the athelete (i.e., a skeleton with joint positions that defines an atheletes
pose). A technique based on analysing video sequences and not on Motion
Capture is therefore neccessary.
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A direct solution to obtain actions and athelete poses is to use systems that
attaches accelerometers or markers on the actor’s individual limbs and is then
recorded by specialized hardware, e.g., Motion Capture. Motion Capture is
used extensively in film and video games, as done in [36], where the actor
is placed with markers that are recorded synchronous with several cameras
covering different angles. However, this technique is not possible to use with
Bagadus, because it does not have a motion capture system. Installing it is not
an option either, because placing motion capture markers is far too intrusive to
be considered as an option.

1.2 Problem Statement

In this thesis, we aim to add semantic analyses in Bagadus by researching the
two problems of automatic action recognition and pose estimation from video
captured by the Bagadus system. Specifically, we want to have a complete game
annotated with action labels and poses, with the poses represented by skeletons,
for every single participating player.

1.2.1 Terminology

The problem solved in this thesis is first to infer semantic information from
video sequences. Specifically, identify the action performed and secondly to
obtain the corresponding pose for each frame for a given person. From the
taxonomy presented by Moeslund et al. [34], we are interested in performing
action recognition and pose estimation on an actor.

An actor is a person to whom the action or pose is to be obtained from, that
in our context is a soccer player. A player performs actions, where a single action
contains a sequence of atomic actions, which is then recognized by a program
that usually provides an action label (e.g., "walking") as output.

The atomic actions consists of a single joint rotation or movement and is the
smallest individual operation an actor can perform. For example, the action
"throwing a ball" consists of atomic actions that makes up the individual arm
movements in order to propel the ball forwards. Likewise, a set of actions can
form an activity. For example, the actions kicking, running and standing are
used to perform the activity of playing soccer.

Pose estimation is strongly related to action recognition as its goal is to obtain
the individual atomic actions and model them as a skeleton. A skeleton is a model
that describes the pose of an actor at a specific video frame and is commonly
created as a graph. The graph model then uses nodes to represent joints and
edges to represent limbs.
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1.2.2 Specific Problem

The two main problems addressed in this thesis are to:

1. Infer semantic information about which actions the players are perform-
ing, e.g., "run" or "side-jump", based on a video sequence.

2. Estimate a model that describes the human body-pose for a particular
frame, or in other words, estimate a two-dimensional skeleton of where
joints and limbs are located within a video frame.

Since approaches like Motion Capture are not available, a solution using
computer-vision techniques is therefore necessary and it must be able to infer
the actions and poses based primarily from recorded video sequences. In
essence, this involves isolating players on the field and analyse their movements
so that their actions can be determined and their poses can be estimated, with
video frames as the primary source of information. Using this techinque though,
comes with certain limitations.

1.2.3 Assumptions and Limitations

The assumptions for this thesis originates from both the Bagadus hardware
limitations and the scene of a soccer game. The hardware limitations typically
comes from the quality and the accuracy of the camera sensors and ZXY tracker
system, including video resolution. Additional limitations from the soccer game
scenario includes the action types and player consistency in movement and
appearance.

Assumptions

• A significant amount of noise is present in the video, consisting of motion
blur and acquisition noise.

• A lot of video data is available, with redundant and repetitive player
actions.

• The ZXY player tracking system has more data-entries than position,
but these data-entries are not usable because they are incorrect and
inconsistent.

• Bagadus can operate with other sports and events than soccer games and
because of this, the solution must be adaptable to other locations and
activities.

• Crowdworkers produce a varying degree of quality (including high and
low quality work) for the answers they provide for tasks.
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Limitations

• Players occupy only a small number of pixels, ranging from around 50
to 150 pixels in height, caused by camera-to-field distance and video
resolution.

• Videos are aquired from a single viewpoint (i.e., one camera array).

• Only video sequences without occlusion and frequently occurring actions
are used.

• Bagadus runs on commodity hardware and any new features or exten-
sions should do this as well.

• We only use a small portion of a full soccer game to implement and test
our proposed solution, as this makes the amount of data obtained and
used manageable.

1.2.4 Approach

On the basis of the assumptions and limitations presented above, our proposed
solution solves the two problems of inferring actions and estimating poses
by shifting them to a single problem, which is the one of content-based video
retrieval [46]. We do this because it allows us to solve two potentially
challenging problems as a matching problem and significantly reducing the
overall algorithmic complexity. Basically, content-based video retrieval systems
fetch content similar to a query sequence based on content represented as
a set of features such as shape, color or texture or other properties. In
this context, the similarity measure is a matching function that returns the
degree of similarity, i.e., how close two sequences resembles one another. An
advantage of using content-based video retrieval is that it can be automatized
to automatically encode video sequences as feature vectors, a vector containing
key elements to describe properties of video sequence or frame, and query
the information from a database. Video queries to a database returns similar
sequences along with their semantic information without requirering additional
metadata information (e.g., keywords) involving manual annotation.

Content-based video retrieval consists of two parts, namely an extraction
algorithm to obtain feature vectors and an a matching functions for similarity
measurement. The video retrieval system used in this thesis is the one proposed
by Efros et al. [15]: It uses optical flow for the feature vectors which is used to
compare the similarity of two sequences. Moreover, in [15], the authors solved
the action recognition problem under very similar assumptions as ours, i.e., a
soccer game with low resolution, high noise levels and a lot of motion blur
in the video input. Furthermore, they describe a pose estimation technique
that utilizes an annotated database of video sequences, along with 2D and 3D
skeletons for different soccer player actions, in order to either synthesize or
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replicate action sequences. We do not have access to this dataset and must
therefore create our own.

In short, solving the action recognition and pose estimation problems as a
content-based video retrieval problem based on the solution by Efros et al. [15]
consists in solving the three following procedures:

1. Player Tracking: Also referred to as video extraction, the goal of this step
is to obtain player-centered sequences of soccer players by tracking and
isolating individual persons from captured video. The resulting sequences
are then used to build up the annotated database.

2. Video annotation: The process of annotating a database of player-
centered sequences in order to obtain action labels and joint positions
for every frame.

3. Action retrieval: Apply the content-based video retrieval system to ob-
tain skeletons and action labels for query sequences from the annotated
database, where the most similar database sequence’s skeleton is repro-
jected onto the query sequence.

These three steps are the main topics covered in this thesis and represents
the proposed solution, with each procedure as a program that together forms
the following workflow:

1. Design and implement a robust player tracking algorithm that produces
size-normalized, player-centered video sequences from data captured by
the Bagadus system.

2. Develop a system allowing to distribute the annotation of action labels
and skeletons to hundreds of people through a crowdsourcing platform.
This is an uncommon task in the crowdsourcing community and we
provide additional algorithms for quality assessments and task manage-
ment.

3. Implement a parallel matching function for similarity comparisons and a
skeleton transfer algorithm, both based on the solution proposed by Efros
et al. [15].

4. Improve our implementation of the solution proposed by Efros et al. [15]
by porting the classification algorithm to CUDA, nVidias GPU computing
platform and Application Programming Interface (API).
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1.3 Contributions

The work performed in this thesis has resulted in a real-world running prototype
of an action recognition and pose estimation prototype. In short, the main
contributions are:

1. A prototype for action recognition and pose estimation, which includes:

• A complete solution consisting of everything from video extraction
to rendered skeletons. Essentially, our proposed solution is complete
and does not depend on other components to operate.

• Robust player tracking and centering with automatic recovery and
initialization: We obtain bounding boxes around players that are
perfectly matched to the player’s shape with the player perfectly in
center.

• Integration with the Bagadus system existing recording solutions
and data formats. This allows it to be moved along the Bagadus
system if it where to ever change or installed at a new location
without having to do additional setup.

• An annotation tool that is easy to use, reliable and secure. This
tool is used for both experts and crowdworkers and is customizable
depending on the annotation need.

• Obtained data can be used directly from our programs or exported
to other programs for external use. While the design is complete
integration with the Bagadus system, we also provide support for
external programs if desired.

2. We have run numerous experiments and validated the results, which
includes:

• Correctly classify 78% of all actions. This includes all types of
actions, i.e., both ambigious (e.g., "kick") and simple, cyclic actions
(e.g., "run"), as well as being able to distinguish between "walk",
"run" and "sprint".

• Obtain up to pixel-perfect estimation of poses. A 13-joint skeleton is
obtained for every single frame in a sequence and can be achived as
long as the query sequence’s action class is present in the annotated
database.

• Optimizations for the similarity measure which achieves a speedup
of almost nine times compared to the CPU. The speedup is compared
to a parallel CPU implementation using OpenMP.

• Filtering of crowdsourced annotated data to obtain results compar-
able with experts’ annotations, despite being an unusual scenario
for a crowdsourcing platform. Moreover, the crowdsourcing is both
cheaper and faster than hireing experts.
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1.4 Research Method

The research method employed in this thesis is the Design Paradigm specified
in ‘Computing As a Discipline: Preliminary Report of the ACM Task Force on
the Core of Computer Science’ [14]. This paradigm consists of four steps:
state requirements, state specifications, design and implement the system and
test the system. Stating requirements and specifications is done in Chapter 1
and Chapter 4, with design, implementation and tests presented and discussed
in Chapters 5 through 8. The result is a real prototype with an evaluation
consisting of a large set of experiments.

Two additional paradigms are presented in [14], namely Theory Paradigm,
consisting of theoretical modeling and proofing, and Abstraction (Modeling)
Paradigm, consisting of hypothesis construction and data analysis. Neither of
these paradigms are suitable to our problem, because we seek to implement
a functional prototype system, perform result validation and testing with
Bagadus.

1.5 Outline

We introduce the Bagadus system with its existing capabilities in Chapter 2,
including the camera array, ZXY tracker and the software useful for our video
retrieval problem. Next, we explore the state of the art related to our problem in
Chapter 3, where we discuss previous proposals to the action recognition and
pose estimations problems. After introducing Bagadus and related work, we
start by giving a deeper overview of the designed solution, presented as a series
of programs that together forms the proposed workflow in Chapter 4. Then,
in Chapter 5, the player tracking, including a frame normalization algorithm,
is presented in detail. This is followed by the video annotation system that
takes advantage of the crowdsourcing platform Microworkers in Chapter 6.
In Chapter 7, the action retrieval algorithm is presented, which solves the
problem of action recognition and pose estimation, and we present results
to both classification and skeleton reprojection accuracy at the end of the
chapter. Additional implementation details are then presented in Chapter 8,
which contains implementation issues and optimizations found in our proposed
solution, including the performance of the GPU port. We conclude the thesis
with a conclusion and summary in Chapter 9, which also holds a discussion
about future work and improvements that can be made to our solution.
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Chapter 2

Bagadus

Bagadus [49] is a sports analytic sys-
tem that combines camera images, sensor
data and user input to record and log a
soccer game. It aims at automating many
of the tasks associated with sports analytic,
including, but not limited to, player pos-
ition, key events logging, video capturing
and playback of all the obtained data syn-
chronously. Other sport analytic systems
exists, for example Interplay, ProZone and
STATS SportVU Tracking Technology, but
they usually require a lot of manual input.

Currently, Bagadus is installed at Ull-
evaal and Alfeim football stadiums, but it
is adaptable to any situation. Profession-
als can use it to review games and aid in
training, or consumers can use it for enter-

tainment with additional statistical content.
The primary features consists of panorama
stiching, a virtual camera (a camera that
can be moved withing a region of the pan-
orama view), and search for video based on
ZXY data and manual/expert’s logging of
key events. With its many capabilities and
its potential for new innovation, it makes
the perfect system for large scale testing for
this thesis.

This chapter describes the part of the

Bagadus sport analytic system necessary to

solve our problem of content-based video re-

trieval, which includes the camera array,

ZXY player tracking system and how these

are used together.
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2.1 Data Acquisition
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Figure 2.1: Overview of Bagadus and its systems. This includes the camera array and ZXY
tracker system, the capture pipeline and the playback software. Playback supports both
single-camera view and panorama (stitched) view.

Bagadus consists of three data recording modules: a video module, body
sensors for all the players and user-entered event tags, as shown in Figure 2.1.
The video module is a set of cameras that covers the entire field from a single
array, with for every two cameras, there is a slight overlap to allow for stitching
when generating a panorama view. The slight overlap is necessary in order
to adjust the image from differences in viewing angles. Captured videos are
encoded into 90 frames long clips, with timestamps of when the clip starts plus
a clip number for that particular match.

Additionally, Bagadus has installed a player tracking module, which logs
player positions (sampled several times per second) during a match into a
database. Each sample has a timestamp that can be used together with the
video clip time to pair up the two systems. More details about the cameras and
positional system is described in Sections 2.1.1 and 2.1.2, respectively.

The third module is a manual logging tool. It allows coaches to take notes
and enter key events during a match for later review. However, this logging
system is of no direct use for our content-based video retrieval solution, but an
important piece for any sport analytic system.
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2.1.1 Camera Array

This section assumes knowledge about camera system and formats. It is
recommend to read Videologi by Jacobsen [26] if more information on this topic
is required.

The primary sensor module in the Bagadus system is an array of cameras,
mounted centered above the tribunes on one of the long sides of the field. The
camera array covers the entire field, with every camera placed in a semi-circle
with a shared center point. The configuration of this array have changed over
the years. We have used the setup consisting of three cameras with 1280×960
sensor resolution, but the setup is now updated to five cameras with 2.5K
sensor resolution, with the same lens and camera make and model used within
each array to maintain image appearance. The framerate differs between each
setup as well, with the first system having 30 Frames Per Second (FPS) and the
latest having 25FPS. Recording format is the same for all systems: planar YUV
4:2:0 or YV12 format compressed in a H.264 wrapper. The cameras delivers
higher original image quality at 12-bit Bayer pattern, but this format is too data
intensive and therefore requires compression. In this thesis, the older system
with three cameras are used, as data is readily available and presents a higher
demand for reliability and robustness to any algorithm to better test proposed
solutions caused by lower resolution video.

When using multiple cameras it is important to have them all capture each
frame at the same time. If not, then slight differences between camera pairs
causes tearing between the overlapping image area in the panorama view and
can potentially break the viewing experience. At the very least it causes cosmetic
unpleasantness. Bagadus solves this problem by using a custom designed
trigger-box that ensures synchronous capturing for every camera sensor [4].

2.1.2 ZXY Tracking Sensor

The radio tracking system is provided by ZXY Sport Tracking [61]. It uses
antennas placed around the field to communicate with a radio unit placed on
the belt of each player. The system captures each player at 20Hz, recording
positional information, as well as velocity and direction. Positional information
is recorded with three axes - X , Y and Z -, but the Z axis is ignored since players
do not move in this direction. The coordinate system follows the measurements
of the field itself, where one unit of ZXY data represents one meter on the field.
The exact field size and coordinates for some key elements are provided in
Figure 2.2. Moreover, ZXY is accurate to within one meter of its actual system,
making it extremely useful in many algorithms, including the ones developed in
this thesis. The most recent installation from ZXY has improved the correctness
of the tracking sensors down to 0.5 meters, but the older version is used in this
thesis.
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Figure 2.2: Key coordinates for the ZXY tracking system. The camera array is placed at the
bottom center of the �eld, i.e., (52.42,0) [39].

2.2 System Synchronization

In order to use ZXY data with video captured from the cameras requires the two
capturing systems to be synchronized. This synchronization must be performed
on the timecode, i.e., a timestamp found on every ZXY measurement and
video frame. However, these two systems do not operate at a frequency that
can be matched perfectly against one another, that is, there is no one-to-one
mapping between the ZXY timestamps and video frames. Instead, a 2 : 3 ratio
exists between the ZXY and video camera, meaning that interpolation would be
required, if it where not for the two different recording types that allows for a
non-interpolation method to be used.

Starting with ZXY, it takes, for every player, a new sample of its position,
velocity and so forth. This information is then stored in a database with the
exact timestamp when that sample was taken. The other system, video, is
slightly more complex because of shutter speed. Shutter speed determines the
exposure time (how long a frame is exposed) and is usually set to twice the
rate of the framerate or higher, leading to exposure times less that the duration
of a frame given a framerate. Even though this affects the amount of light
captured for a frame can be less then a frame’s duration, there is still a fixed
number of frames per second. As of such, and for the sake simplifying the
solution, a natural ordering of the two systems can be made: Every video frame
is ordered into a sequence of time intervals, where each frame corresponds to
1/ f ramerate of time, and the ZXY samples are plotted to the time-instance
they are recorded. This yields to the natural ordering in Figure 2.3 between
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Video

ZXY

Figure 2.3: Synchronization between the video and ZXY inputs, with video showed as
frames with duration and ZXY as sample points.

video frames and ZXY tracker data, without performing any interpolation or
testing for when a frame needs to be used twice.

This method would work correctly, if it were not for a processing delay on
the video, causing the video to arrive 3.4 seconds later that what the timecode
specifies. To resolve this, a 3.4 seconds delay is added to the ZXY timecode
to delay it (and thereby synchronizing the ZXY and video timecodes), because
adding time to a stream is far easier than removing it. Another time difference
could occur in earlier versions of Bagadus: It used separate computers for
recording the two systems, which could cause drift in the timecodes caused
by two different internal clocks. While this can be accounted for, as time drift
is usually constant, it is much harder to determine and correct than a constant
processing delay. Because of this, the current version of Bagadus performs both
video and ZXY capturing on the same machine.

2.3 Field Coordinates to Camera Pixels

ZXY data is captured according to the flat playing field in 2D, but the camera
observes the field from an angle. A 1-to-1 mapping from the ZXY data to camera
pixels is not possible and a mapping process that performs the required position-
to-pixel translation is required. One process to perform such an operation is
homography mapping: It takes a set of pixel coordinates and the corresponding
ZXY position, found by mapping the white lines on the field to pixel positions,
as shown in Figure 2.4. Using OpenCV library’s homography function to process
the point-pairs, a matrix is obtained which is applied to the tracker coordinate
tuple (consisting of x and y) to obtain final pixel positions. The homography
mapping computes over eight possible axis’s, which results in some errors
inside the mapping and consequently causing points positioned outside the
homography mapping to produce unreliable translations. However, once a
homography matrix is obtained, it can be used without being recomputed unless
the camera moves or another camera angle is used.

Despite the fact that the ZXY tracker is slightly inaccurate and that
homography mapping can be a bit off target, performing only homography
mapping works exceptionally well. Also, players have a height that could be
a problem, because the ZXY position is on the ground, but with the camera
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Figure 2.4: The mapping of ZXY coordinate system to the video image using homography
mapping, using the white lines as rulers.

array placement looking mostly down on the field makes this issue immaterial.
Bounding boxes can be drawn with the translated coordinate as the center, with
100 pixels in every direction. This bounding box will then encompass the player
in most circumstances with the size taking into account small inaccuracies from
both the ZXY data and homography mapping.

2.4 Summary

This chapter have described the Bagadus sport analytic system with its
capabilities and capture devices: A camera array and a radio tracking system.
The camera array consists of a set of cameras covering parts of the field, with
slight overlap between neighboring pairs. A full panorama view can be stitched
together or ZXY tracking position can be synchronized to overlay bounding
boxes over players. Synchronization is done using the two systems’ timecode
without any interpolation, despite taking 20 samples per second for the ZXY
tracking and having 30 frames-per-second in the video.

Bagadus is the system to which all captured player tracking data and video
streams are obtained from, with the proposed solution designed to work with
these systems. Consequently, the design of the player tracking algorithm must
operate correctly within this enviroment, as all the video source material is
obtained from Bagadus for use in both video annotation and classification.
Moreover, it has an impact of the choice of methods that can be applied, as can
be seen when looking into the state of the art in proposed solutions to action
recognition and pose estimation.
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Chapter 3

Related Work

The problem of identifying actions or
poses using video images or other sensors
have had an increase in interest in the past
few years, mainly due to the large poten-
tial in data analysis, interactive applica-
tions (entertainment), surveillance, identi-
fication and control systems [1]. While
most of the solutions to either of these prob-
lems are generally solved for a particular
application or scenario, few solutions exist
that attempt to solve the problem of action
recognition and/or pose estimation for gen-
eral usage scenario.

This chapter starts by briefly describing

some of the concepts used throughout action

recognition and pose estimation and contin-

ues with a discussion of proposed solutions

for action recognition and pose estimation.

At the end of this chapter, depth sensor based

methods are discussed, and we argue for

why this method cannot be used in Bagadus.

Because there exists a vast set of proposed

solutions, we mainly limit ourselves to de-

scribe the most recent works related to our

problem domain.
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3.1 Common Concepts

There are three concepts that are frequently used in action recognition and pose
estimation methods, namely Image Segmentation, Classification and Kinematic
Constraints. We therefore introduce these briefly here, before discussing the
state of the art in action recognition and pose estimation.

3.1.1 Image Segmentation

Image Segmentation is the process of obtaining information about an image at a
higher abstraction level than the one provided by the pixel values of the image.
These abstractions can either be properties in the actual image or on a semantic
level. For example, edge detection would define additional information found in
the image from pixel intensities and would be a property of the image, whereas
detecting cars would describe semantic information that is not available solely
on the pixel values. In other words, image segmentation is a process where
regions, e.g., a set of connected pixels, of an image are annotated with labels
that describes what that region portraits. Depending on the image data and
desired labeling, finding an object in a matrix of values is not necessary trivial,
as Figure 3.1 illustrates.

Figure 3.1: Visual appearance and actual representation of a still image in a computer,
illustrating the problem of grouping connected pixels to higher abstraction levels. Image
taken from http://docs.opencv.org/_images/MatBasicImageForComputer.jpg.

3.1.2 Classification

Classification is a sub-field of supervised Machine Learning (ML) and is used
to group input elements into different sets based on shared qualities or
characteristics. Classification consists of three components: a classification
algorithm, input data to classify and training data. The training data contains
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samples with ground truth, set by an expert in the field, to which the
classification algorithm attempts to determine the mapping between samples
and ground truths. After the classification algorithm has obtained a mapping
from the trained set, it can provide a suggestion class for any new inputs. The
solution is a suggestion rather than an absolute answer, since ML is a statistical
framework generally based on hand-engineered data representations.

Classification Trained Data

Input

Proposed Solution

Figure 3.2: The design of classi�cation algorithms.

A newer approach to classification, and other ML methods, are neural
networks. It consists of a statistical learning model, inspired by biological
neural networks and has proved to be both faster and more accurate on a
variety of computer vision tasks. For instance, Tompson et al. [53] performed
pose estimation using neural networks and estimated the pose faster and more
accurately, compared to ML methods that do not use neural networks.

3.1.3 Kinematic Constraints

Kinematic constraints adds restrictions to a skeleton to prevent ill-formed poses
from occurring in estimation results. Essentially, it applies rules to the joints’
and limbs’ degrees of freedom (DOF), i.e., the different ways these can be rotate
and how long they can be. Limiting the DOF prevents skeletons from having
a configuration that are physically not achievable by the human body. DOF is
also used to describe the number of joints a model consists of, with each DOF
modeling a single joint.

An example of a kinematic constraint and skeleton model that operates in
2D space, but which has the same movement limitations as if it were in 3D, is the
Scaled Prismatic Model (SPM) presented by Morris and Rehg [35]. The SPM is
built up as a series of chains with DOFs to both model and constrain individual
joints and thereby the entire body. It is well suited to pose estimation algorithms
that based on a single camera view that requires a model that complies with
three dimensions.

Including kinematic constrains to an algorithm is not required, but it reduces
the search space (possible poses) and generally improves the reliability and
quality of the found poses, and is used extensively through proposed solutions
in pose estimation.
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3.2 Action Recognition

Action recognition, the problem of identifying what activity an actor performs,
is considered as a classification problem, i.e., the one of obtaining a mapping
between video sequences and action labels. From the taxonomy presented
by Ronald Poppe [42], action recognition can be divided into two different
ways of representation and a classification algorithm. The two representations
are distinguished by the type of video descriptor they use (where a descriptor
describes charateristics of a feature): global representation utilize the image
data directly whereas local representation use interest points. Both global and
local representations extract descriptors, i.e., feature vectors, that can be used
by the classifier. The classification algorithm is independent of representation
and is used for mapping video sequences to actions.

3.2.1 Global Representation

Global representations utilize captured video to extract the spatial and temporal
information of an action. Consequently, a global representation is tightly
connected to image segmentation, where background subtraction and optical
flow vectors are good candidates for isolating and modeling the actor’s
movement.

Several proposed solutions for action recognition using global representa-
tions exists, such as the ones presented by Batra et al. [5] and Blank et al. [6].
These methods are almost identical and can be explained as follows: The in-
put video sequence is first segmented into background and foreground using a
background subtraction algorithm, keeping only the foreground elements. The
foreground elements are then stacked on top of each other to form a three-
dimensional volumetric space-time shape of the actor, with each layer repres-
enting a single frame and contains the spatial information and the layering tech-
nique encoding the temporal information (Figure 3.3). This shape can then be
compared against a trained database to find a closely resembling space-time
shape, and with it, obtain the query shape’s action label.

Our method is fast, does not require prior video alignment and
is not limited to cyclic actions. We demonstrate the robustness of
our approach to partial occlusions, nonrigid deformations, im-
perfections in the extracted silhouettes, significant changes in scale
and viewpoint, and high irregularities in the performance of an
action. Finally, we report the performance of our approach in the
tasks of action recognition, clustering, and action detection in a
low-quality video (Section 3).

A preliminary version of this paper appeared in ICCV ’05 [4].

2 REPRESENTING ACTIONS AS SPACE-TIME SHAPES

2.1 The Poisson Equation and Its Properties

Consider an action and its space-time shape S surrounded by a
simple, closed surface. Below, we generalize the approach in [14]
from 2D shapes in images to to deal with volumetric space-time
shapes. We assign each space-time point within the shape with the
mean time required for a particle undergoing a random-walk
process starting from the point to hit the boundaries. This measure
can be computed [14] by solving a Poisson equation of the form:
ÁUðx; y; tÞ ¼ À1, with ðx; y; tÞ 2 S, where the Laplacian of U is
defined as ÁU ¼ Uxx þ Uyy þ Utt, subject to the Dirichlet boundary
conditionsUðx; y; tÞ ¼ 0 at the bounding surface @S. In order to cope
with the artificial boundary at the first and last frames of the video,
we impose the Neumann boundary conditions requiring Ut ¼ 0 at
those frames [29]. The induced effect is of a “mirror” in time that
prevents attenuation of the solution toward the first and last frames.

Note that space and time units may have different extents, thus
when discretizing the Poisson equation we utilize space-time grid
with the ratio cts ¼ ht=hs where ðhs; htÞ are the meshsizes in space
and in time. Different values of cts affect the distribution of local
orientations and saliency features across the space-time shape and,
thus, allows us to emphasize different aspects of actions. In the
following, we assume cts is given. (See more discussion in
Section 3.1.)

contrast, we extract local shape properties at every space-time
point including internal points by using a 3Â 3 Hessian of the
solution U without any surface representation.

2.2 Extracting Space-Time Shape Features

The solution to the Poisson equation can be used to extract a wide
variety of useful local shape properties [14].We adopted some of the
relevant properties and extended them to deal with space-time
shapes. The additional time domain gives rise to new space-time
shape entities that do not exist in the spatial domain. We first show
how the Poisson equation can be used to characterize space-time
points by identifying space-time saliencyofmovingparts and locally
judging the orientation and rough aspect ratios of the space-time
shape. Then, we describe how these local properties can be
integrated into a compact vector of global features to represent an
action.

2.2.1 Local Features

Space-Time Saliency. Human action can often be described as a
moving torso and a collection of parts undergoing articulated
motion [7], [15]. Below, we describe how we can identify portions
of a space-time shape that are salient both in space and in time.

In the space-time shape induced by a human action, the highest
values of U are obtained within the human torso. Using an
appropriate threshold, we can identify the central part of a human
body. However, the remaining space-time region includes both the
moving parts and portions of the torso that are near the
boundaries, where U has low values. Those portions of boundary
can be excluded by noticing that they have high gradient values.
Following [14], we define

È ¼ U þ 3

2
krUk2; ð1Þ

where rU ¼ ðU ;U ; UtÞ
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Fig. 1. Space-time shapes of “jumping-jack,” “walk,” and “run” actions.

Fig. 2. The solution to the Poisson equation on space-time shapes of shown in

Fig. 1. The values are encoded by the color spectrum from blue (low values) to red

(high values).Figure 3.3: Space-Time volumetric �gure of "jumping jack", "walk" and "run". Image taken
from [6].
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The difference between the solutions in [5] and [6] is that [6] places the
foreground elements to form the 3D figure, whereas [5] uses shapelets, i.e.,
clusters of foreground elements grouped together by a defined threshold. In
comparison, it yields to the same figure-like shape as the space-time volumes,
but considerably bulkier. According to Batra et al., shapelets are more resistant
to noise and can be represented as histograms, which again can speed up the
classification process.

An alternative to volumetric shapes is optical flow. Efros et al. [15] rely on
the optical flow calculated from the video frame pairs and uses the resulting
vectors as the descriptors in the classification. With it, Efros et al. manage to
obtain action labels with high accuracy, despite significant noise in the video.

3.2.2 Local Representation

Local representations are obtained by computing spatio-temporal interest points
in a sequence of images. These points consists of spatial and temporal
parameters, with the temporal one defining the relative movement between
consecutive frames and spatial defining their locations within a single frame.
Additionally, interest points are designed to be invariant to noise and viewing
angles, which make them robust to challenging conditions. Moreover, being
resistant to noise is particularly important for local representations, because the
image is usually not segmented, e.g., foreground and background, that would
otherwise have limited the points to only encompass the actor of interest.

One solution of computing the interest points is proposed by Laptev and
Lindeberg [29]. The authors compute the interest points by detecting large
variations in intensities of neighboring pixels in a video frame and storing
the intensities’ centroid as the spacial position in a feature vector (modeled
as cuboids in Figure 3.4). The individual interest points’ temporal parameter
is obtained by finding the local maxima of points across frames, which also
removes interest points that do not describe the motion. Furthermore, Laptev
and Lindeberg locate the interest points by only using matrix operations and as
a result never has to know the exact content of the image, which also reduces
the required computational time and implementation complexity. Schuldt
et al. [43] present an algorithm using spatio-temporal interest points for
recognizing action, based on the interest points described in [29].

of the cuboid over multiple scales and locations in both space and
time. In related work by Scovanner et al. [126], the SIFT descriptor
[79] is extended to 3D. Wang et al. [151] compared local descrip-
tors and found that, in general, a combination of image gradient
and flow information resulted in the best performance.

Several approaches combine interest point detection and the
calculation of local descriptors in a feed-forward framework. For
example, Jhuang et al. [58] use several stages to ensure invariance
to a number of factors. Their approach is motivated by the human
visual system. At the lowest level, Gabor filters are applied to dense
flow vectors, followed by a local max operation. Then the re-
sponses are converted to a higher level using stored prototypes
and a global max operation is applied. A second matching stage
with prototypes results in the final representation. The work in
[96] is similar in concept, but uses different window settings.
Schindler and Van Gool [124] extend the work by Jhuang et al.
[58] by combining both shape and flow responses. Escobar et al.
[31] use motion-sensitive responses and also consider interactions
between cells, which allows them to model more complex proper-
ties such as motion contrasts.

Comparing sets of local descriptors is not straightforward due to
the possibly different number and the usually high dimensionality
of the descriptors. Therefore, often a codebook is generated by
clustering patches and selecting either cluster centers or the clos-
est patches as codewords. A local descriptor is described as a code-
word contribution. A frame or sequence can be represented as a
bag-of-words, a histogram of codeword frequencies (e.g. [95,125]).

2.2.3. Local grid-based representations
Similar to holistic approaches, described in Section 2.1.1, grids

can be used to bin the patches spatially or temporally. Compared
to the bag-of-words approach, using a grid ensures that spatial
information is maintained to some degree.

In the spatial domain, _Ikizler and Duygulu [56] sample oriented
rectangular patches, which they bin into a grid. Each cell has an
associated histogram that represents the distribution of rectangle
orientations. Zhao and Elgammal [180] bin local descriptors
around interest points in a histogram with different levels of
granularity. Patches are weighted according to their temporal dis-
tance to the current frame.

Nowozin et al. [98] use a temporal instead of a spatial grid. The
cells overlap, which allows them to overcome small variations in
performance. Observations are described as PCA-reduced vectors
around extracted interest points, mapped onto codebook indices.

Laptev and Pérez [74] bin histograms of oriented gradients and
flow, extracted at interest points, into a spatio-temporal grid. This
grid spans the volume that is determined based on the position and
size of a detected head. The distribution of these histograms is
determined for every spatio-temporal cell in the grid. Three differ-
ent block types are used to form the new feature set. These types
correspond to a single cell, a concatenation of two temporally
neighboring cells and a concatenation of spatially neighboring
cells. A subset of all possible blocks within the grid is selected
using AdaBoost. A larger number of grid types, with different spa-
tial and temporal divisions and overlap settings, is evaluated in
[73]. Flow descriptors from [27] are used by Fathi and Mori [35],
who select a discriminative set of low-level flow features within
space–time cells which form an overlapping grid. In a subsequent
step, a set of these mid-level features is selected using the Ada-
Boost algorithm. In the work by Bregonzio et al. [13], no local im-
age descriptor are calculated. Rather, they look at the number of
interest points within cells of a spatio-temporal grid with different
scales. This approach is computationally efficient but depends on
the number and relevancy of the interest points.

2.2.4. Correlations between local descriptors
Grid-based representations model spatial and temporal rela-

tions between local descriptors to some extent. However, they
are often redundant and contain uninformative features. In this
section, we describe approaches that exploit correlations between
local descriptors for selection or the construction of higher-level
descriptors.

Scovanner et al. [126] construct a word co-occurrence matrix,
and iteratively merge words with similar co-occurrences until
the difference between all pairs of words is above a specified
threshold. This leads to a reduced codebook size and similar
actions are likely to generate more similar distributions of code-
words. Similar in concept is the work by Liu et al. [76], who use
a combination of the space–time features and spin images, which
globally describe an STV. A co-occurrence matrix of the features
and the action videos is constructed. The matrix is decomposed
into eigenvectors and subsequently projected onto a lower-dimen-
sional space. This embedding can be seen as feature-level fusion.
Instead of determining pairs of correlated codewords, Patron-Perez
and Reid [106] approximate the full joint distribution of features
using first-order dependencies. Features are binary variables that
indicate the presence of a codeword. A maximum spanning tree
is formed by analyzing a graph between all pairs of features. The
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Fig. 3. Extraction of space–time cuboids at interest points from similar actions performed by different persons (reprinted from [71], � Elsevier, 2007).

R. Poppe / Image and Vision Computing 28 (2010) 976–990 981

Figure 3.4: Representation of Space-time interest points as cubes, de�ning both position
and frame changes . Image taken from [42].
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One great advantage that interest points have over volumetric shapes is
that they are invariant to camera movement and actor placement. Constructing
volumetric shapes requires a consistent camera placement to properly capture
the scene and maintain consistency, i.e., layering the frame correctly on top of
one another requires the camera to be stationary. Non-centered placement can
cause miss-classifications with volumetric figures, something that interest points
does not suffer from. However, interest points are calculated from differences in
video frames and could potentially find the wrong interest point in regards to the
action performed, e.g., track a bird flying past in the sequence. As a side note,
adding additional kinematic constrains could remove some of the incorrect
interest points. Regardless of the representation method, the classification
results deeply depend on the used classification algorithm.

3.2.3 Classification Algorithm

There are no restrictions to the classification algorithm to apply for a given
descriptor, as long as it is able to perform mapping between the descriptors and
the database entries. For example, in [5, 6, 15, 43], both Nearest Neighbor
algorithm and Support Vector Machines are used.

There is one drawback of using a supervised classifier though, which is the
database size limitation. The classifier will only work in the scenario it was
trained for, e.g., it cannot label tennis actions if it was trained with only soccer
players. However, the labels obtained for query sequences are usually quite
accurate (they get correctly labeled) in the above-mentioned papers.

Action recognition is a classification problem, where the quality of classific-
ation results mainly depends on segmentation and the classification algorithm,
whereas pose estimation requires more work in order to label every single joint
and limb for every single frame.

3.3 Pose Estimation

The already existing pose estimation solutions can be divided into two different
classes as presented in the taxonomy by Poppe [40]. The two classes are Model-
Based and Model-Free which are differentiated based on whether a human model
is used in the estimation or not. Specifically, model-based heavily relies on
having a human model before any estimation can be done, whereas model-free
builds a pose from the images without a human model.
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3.3.1 Model-Based

Model-based pose estimation requires a model of a human which is then
matched to an image. The human model can be defined with any number
of DOF and supports either 2D or 3D environments with optional kinematic
constraints. A frequently used model is the Scaled Prismatic Model (see
Section 3.1.3), that operates in 2D with 3D constraints and is a good solution
when using a single camera.

Another single-camera 2D pose estimation algorithm using rectangular or
trapezoid-shaped patches for modeling humans is proposed by Ramanan and
Forsyth [41]. Here, the authors segments the image into texture patches that is
kept in a list over possible limbs. With these patches, along with a human model
with kinematic constraints, a pose is constructed by connecting the patches into
human-like figures that defines the pose. One drawback with patches is that
they have a relatively bulky form, which at times might not be detailed enough
for certain applications. Furthermore, having the pose represented in 3D is
usually more desirable.

Performing pose estimation in 3D generally requires a set of cameras
recording the same scene from different angles and then having the body-model
placed in 3D space in a way that ensures it matches up with every single camera
view. Usually, every video stream is run through a background subtraction
algorithm to obtain a silhouette, which makes it easier to ensure the exact
placement of the actor in 2D/3D space [16, 19, 59]. The human model can
then be matched into the silhouette and adjusted accordingly for each frame.
Alternatively, the shape of the actor can be triangulated from the silhouette to
obtain a full outer hull, a method referred to as visual hull reconstruction [12],
that builds up the shape one voxel at a time. A voxel is a small cube that covers
a tiny amount of space with a color, not that dissimilar to a 3D pixel.

The proposed solution by Zhang et al. [59] uses several cameras with visual
hull reconstruction from silhouette images to obtain a pose. They do this by
placing and adjusting a human model iteratively until it aligns perfectly with the
voxels and confines to the kinematic constraints. Gall et al. [19] take this one
step further and extend the model with a mesh that defines the surface of the
actor, as well as providing a 3D skeleton. In both [59] and [19], the algorithm
runs in two steps: First, they try to find all possible model configurations and
secondly they try to find the best model and adjust any small misalignments
that might be present. The result is a high-quality 3D skeleton and (optionally)
an outer mesh (Figure 3.5), but at a considerably high computational time as
the voxel shapes must be reconstructed for every single frame.

Having a model when performing pose estimation is beneficial because it
can be used for asserting correctness of a pose (e.g., the leg is a leg and not an
arm), discarding impossible poses, reducing the number of iterations needed
to match poses and images and prevent random objects in the video from
becoming limbs. Unfortunately, the model describing the human pose might not
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be fitting for all actors, e.g., [59] must adjusts the model for different people.
Using an approach without relying on a model can then be more desirable.

Figure 6. Input image, adapted mesh overlay, and 3D model with estimated skeleton from a different viewpoint respectively.
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mesh animation from multi-view silhouettes. ACM Trans.
Graph., 27(3):1–9, 2008.

1753

Figure 3.5: Original image (left) with the mesh (center) and skeleton (right) next to it.
Image taken from [19].

3.3.2 Model-Free

Model-Free solutions do not use a human body-model to obtain the pose, but
instead relies on a direct image-to-pose relation. Elgammal and Lee [16]
propose a model-free pose estimation algorithm that models the actor as a
silhouette, with every silhouette pixel having an additional value defining the
distance from the nearest silhouette edge. These distance values are then
modeled as a matrix that is processed using manifold learning. Manifold
learning locates the key interest points among the silhouette distance values
and encodes them into a lower dimensionality descriptor. This descriptor
is then used in a classification algorithm to obtain skeletons from a trained
database. Elgammal and Lee also use manifold learning to construct the trained
database skeletons, using the interest points as skeleton joints. An alternative to
manifold learning is use of Principle Component Analysis (PCA) [21], as it also
locates the key interest points and encodes them into a lower dimensionality for
classification. Figure 3.6 shows an example action from different views, where
the interest points are represented.

A simpler method is proposed by Efros et al. [15] where the authors use
a trained database to reproject skeletons with a similarity measure based on
optical flow to match trained and query sequences to reproject skeletons into
the query sequence.

As with the action recognition problem, and unlike model-based ap-
proaches, model-free approaches are limited to the scenarios where a same-
class entry can be found in the database. The database can be extended, but it
will still be limited to the existing and extended scenarios.
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Figure 2. Embedded gait manifold for a side view of the walker.
Sample frames from a walking cycle along the manifold with the
frame numbers shown to indicate the order. Ten walking cycles are
shown.

the back view as this is the least self occluding view (left
most manifold in figure 3). In this case, the manifold can be
embedded in a two dimensional space. For other views the
curve starts to twist to be a three dimensional space curve.
This is primarily because of the similarity imposed by the
view point which attracts far away points on the manifold
closer. The ultimate twist happens in the side view man-
ifold where the curve twists and possibly self intersect to
be a figure eight shape where each cycle of the eight (half
eight) lies on a different plane. Each cycle of the eight fig-
ure corresponds to half a walking cycle. The closest point
(cross point in case of intersection) represents the body pose
where it is ambiguous, from the side view, to determine
from the shape of the contour which leg is in front as can
be noticed in Figure 2. Therefore, in a side view, three-
dimensional embedding space is the least we can use to dis-
criminate different poses. Embedding a side view cycle in
a two-dimensional embedding space typically results in an
embedding where the two half cycles lie over each other.

4. Learning Mapping

4.1. Learning Mapping: Manifold-to-Input

Given a visual input (silhouette), the objective is to re-
cover the intrinsic body configuration by finding the point
on the manifold in the embedding space corresponding to
this input. Recovering such embedded representation will
facilitate reconstruction of the input and detection of any
spatial or temporal outliers.

Since the objective is to recover body configuration from
the input, it might be obvious that we need to learn map-
ping from the input space, Rd, to the embedding space, Re.
However, learning such mapping is not feasible since the

Figure 3. Embedded manifolds for 5 different views of the
walkers. Frontal view manifold is the right most one and back view
manifold is the leftmost one. We choose the view of the manifold
that best illustrates its shape in the 3D embedding space

visual input is very high-dimensional so learning such map-
ping will require very large number of samples in order to
be able to interpolate. Instead, we learn the mapping from
the embedding space to the visual input space with a mech-
anism to directly solve for the inverse mapping.

It is well know that learning a smooth mapping from ex-
amples is an ill-posed problem unless the mapping is con-
strained since the mapping will be undefined in other parts
of the space [19, 1]. We argue that, explicit modeling of the
visual manifold represents a way to constrain any mapping
between the visual input and any other space. Nonlinear
embedding of the manifold, as was discussed in the previ-
ous section, represents a general framework to achieve this
task. Constraining the mapping to the manifold is essential
if we consider the existence of outliers (spatial and/or tem-
poral) in the input space. This also facilitates learning map-
pings that can be used for interpolation between poses as we
shall show. In what follows we explain our framework to
recover the pose. In order to learn such nonlinear mapping
we use Generalized Radial Basis Function (GRBF) interpo-
lation framework [19]. Radial basis functions interpolation
provides a framework for both implicitly modeling the em-
bedded manifold as well as learning a mapping between the
embedding space and the visual input space. In this case,
the manifold is represented in the embedding space implic-
itly by selecting a set of representative points along the man-
ifold.

Let the set of input instances (silhouettes) be Y = {yi ∈
Rd i = 1, · · · , N} and let their corresponding points in
the embedding space be X = {xi ∈ Re, i = 1, · · · , N}
where e is the dimensionality of the embedding space (e.g.
e = 3 in the case of gait). Let {tj ∈ Re, j = 1, · · · , Nt}
be a set of Nt centers (not necessarily at data points) in
the embedding space where such centers can be obtained
using k-means clustering or EM algorithm. We can solve
for multiple interpolants fk : Re → R where k is k-th
dimension (pixel) in the input space and fk is a radial basis
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Figure 3.6: Manifold learning results showing the walk pattern from different angles.
Image taken from [16].

3.4 Pose Estimation with Depth Sensors

An alternative to using video cameras to capture an actor’s performance is using
depth sensors: non-intrusive devices that records depth information rather than
color intensities for every pixel. A Time-of-Flight (TOF) camera is a depth
camera that measures the distance between itself and the subject (e.g., actor)
by measuring the time light-waves spend on traveling between the camera and
the actor. The distance can then be found by converting the time info based on
the lightspeed.

Several solutions to pose estimation using TOF cameras have been proposed
and some of them are presented in this section. We will also mention the
Microsoft’s Kinect, a device for registering motion (i.e., pose estimation).
However, the solutions based on TOF cameras cannot be used with Bagadus,
because Bagadus does not have TOF cameras installed. Installation of TOF
cameras is not an alternative either, as cameras usually has a severely limited
range of four meters or less and resolution of QVGA or lower [25]. More
expensive systems exists with longer ranges and are used in avionics and space
applications [11]. Either way, TOF cameras are unsuitable for the Bagadus
system due to cost or hardware limitations, but when the technology eventually
improves it might become an alternative for the Bagadus system and is therefore
included here for comparison purposes.

3.4.1 Time-of-Flight Algorithms

TOF cameras’ aquired data can be modeled as a 3D cloud, with each distance
measurement defining a point in this cloud that can be restructured into a useful
shape for pose estimation (see Figure 3.7). Ganapathi et al. [20] propose a
statistical approach that models each depth measurement in the cloud as a
position and velocity pair into a graph. This graph is then used to compute the
most likely interest points using Dynamic Bayesian Network, with the highest
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probability points sent to a classifier. The classifier takes these interest points
and attempts to map them to limbs, and if a relatively certain mapping is
detected, it is marked as a found limb. This is then done until all limbs are found
or the data-points are exhausted, in which case remainder limbs are considered
obscured.

Another approach by Baak et al. [3] describes an algorithm that starts by
creating a path through all the sensor’s data points. Using weighted Dijkstra
algorithm to compute the outermost hull of the cloud, it constructs the first
pose hypothesis out of the most likely interest points found on the path. Then,
it queries a trained database with the most outlying points of the hull to obtain
the second pose hypothesis. The construction of the database is done with a
marker-based motion capture system, which is then normalized to make the
database match up to as many query sequences as possible. The two hypothesis’
are then fused together to provide the final pose, with the different hypothesizes
used to ensure quality and provide robustness to the random noise found in the
recorded TOF cloud.

Figure 2. From pose χ (left), correspondences for mesh vertices

in Cχ are estimated (middle). Local optimization using the corre-

spondences yields an updated pose χ′ (right).

of local optimization increases with the number of corre-

spondences. To overcome these shortcomings, we use a

predefined set Cχ ⊆ Mχ of mesh vertices (each body part

should be assigned some correspondences) and find corre-

spondences inMI for all v ∈ Cχ (Fig. 2). Using these corre-

spondences in an optimization framework similar to the one

in [24], we obtain updated pose parameters χ′.

3.2. Feature Computation

To obtain a sparse yet expressive feature representation

of the input point cloud MI , we revert to the concept of

geodesic extrema as introduced in [20]. Such extrema often

correspond to end effector positions, yielding characteristic

features of many poses, see Fig. 4. Following [20], we now

summarize how to obtains such features. Then, we intro-

duce a novel variant of Dijkstra’s algorithm that allows for

efficiently computing a large number of geodesic extrema.

We model the tuple of the first n geodesic extreme points

as En
I
≔ (e1

I
, . . . , en

I
) ∈ (MI)

n. To compute En
I
, the point

cloud data is modeled as a weighted graph where each point

inMI represents a node in the graph. To efficiently build up

the edge structure, we exploit the neighborhood structure in

the pixel domain Z2 of the underlying distance image as fol-

lows. For all neighbors q in the 8-neighborhood of p ∈MI ,

we add an edge between p and q of weight wpq ≔ ||p − q||2
if wpq is less than a distance threshold τ and q ∈ MI . In

our approach, in contrast to the method in [20], we need to

ensure that the obtained graph does not separate into more

than one connected component. In practice, however, the

obtained graph is not fully connected due to sensor noise

and occlusions (e.g. Fig. 4 (c) and (d)). Using an efficient

union-find algorithm [27], we compute the connected com-

ponents and discard all components that occupy a low num-

ber of nodes. The connected component with the largest

number of nodes is assumed to be the torso. Finally, all re-

maining components are connected to the torso by adding

an edge between the respective closest pair of pixels.

We now show how a large number of extrema can be

computed efficiently. To find the first geodesic extreme

point e1
I
∈ MI , we run Dijkstra’s algorithm [5] with the
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Figure 3. (a) Number of nodes visited and (b) running time in

milliseconds to find the nth geodesic extreme point for (black) the

unoptimized and (green) our optimized algorithm. Average values

and standard deviation bars for a sequence of 400 frames from the

data set of [10] are reported.

centroid point p̄ ∈ MI as source. The first pass of Dijkstra

stores the shortest geodesic distances from the source to any

other node in the graph in an array Δ of distances having

|MI | entries. After the first pass of Dijkstra, the node with

the largest distance in Δ is taken as the first geodesic ex-

treme point e1
I
. According to [20], the next step is to add

a zero-cost edge between p̄ and e1
I

and then to restart Dijk-

stra’s algorithm to find e2
I
, and so on. This leads to a run-

ning time of O(n ·D) for n extrema with D being the running

time of Dijkstra’s algorithm for the full graph. Note, how-

ever, that the second run of Dijkstra’s algorithm shows a

high amount of redundancy: the entries in the array Δ cor-

responding to all nodes in the graph that are geodesically

closer to p̄ than to e1
I

do not change. Therefore, to compute

the 2nd pass, we keep the distance values of the 1st pass and

set e1
I

as the new source. The value in Δ corresponding to

the new source is set to 0 and Dijkstra’s algorithm is started.

Then, we pick e2
I

as the point with the maximal distance in

the updated Δ. For the 3rd pass we set e2
I

as the new source,

set the value in Δ corresponding to the new source to 0, and

run Dijkstra. This way, in the 3rd pass, only nodes in the

graph that are nearer to e2
I

than to all other previously used

source nodes are touched, leading to drastic improvements

in running time for each pass, see Fig. 3. We proceed itera-

tively to compute the subsequent extreme points.

Using this computational scheme, end effector positions

are detected efficiently even in difficult scenarios where e.g.

a foot is bent to the back or where a hand occludes parts

of the body (Fig. 4 (b)), or the arms are outstretched to the

camera (Fig. 4 (c)). In poses where the end effectors are

very near to other parts of the body, the topology of the

graph may change and the detected extrema may not cor-

respond to the set of end effectors any longer (Fig. 4 (e)

and (f), right knee and left elbow are selected as e5
I
, respec-

tively). Note, however, that by means of following a com-

bined generative and discriminative approach our frame-

work can circumvent the influence of false detections.

3.3. Database Lookup

In this section, we show how to employ an efficient

lookup scheme that does not need a priori semantic labels

of the extracted geodesic extrema. The goal is to iden-
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Figure 3.7: Pose estimation using TOF clouds, with leftmost an initial match, the center
showing themapping between TOF cloud and pose and rightmost the �nal adjusted pose.
Image taken from [3].

3.4.2 Microsoft Kinect

Microsoft Kinect is designed as a home entertainment system to be paired with
an Xbox console. It obtains poses that can be used with games and other
interfaces and can be extended to other applications using the Kinect SDK.
Because the Kinect is a proprietary device, only the algorithm provided by
Microsoft is the topic of this section. The algorithm implemented by Microsoft
[45] is able to estimate poses in real-time using a combination of TOF sensors
and classification.

More specifically, the Kinect consists of a set of sensors, including a video
camera and a IR sensor and emitter that operate like a TOF camera [27]. Using
the IR emitter and video camera, a fast and robust pose estimation algorithm
based on classification has been developed. Because Kinect is assumed to
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operate as an entertainment device in a living room, Microsoft were able to
construct a complete classifier for any type of scenario and represent it internally
as a tree. A tree-structure for poses allows for both fast estimation and quick
validation of the pose. Without a doubt, the Kinect is probably one of the
more accurate and reliable pose estimation devices for commercial use, but
is unfortunately very limited in its use to living room sized scenes and only a
handful of people.

3.5 Relationship between Action Recognition and Pose
Estimation

The two problems of action recognition and pose estimation are quite similar,
with some approaches utilizing the same technique, e.g., background subtrac-
tion combined with classification. Moreover, they both seek to obtain an actor’s
performance, but with slightly different results, i.e., action label contra skeleton.
It is possible to solve one of the problems and thereby the other, in other words,
obtaining the skeleton and using it as input for action classification, and vice
versa. For example, Stone and Skubic [50] perform visual hull reconstruction
to detect when an elderly person is lying on the floor, which can be considered
as the two classes "on floor" and "not on floor". Also, Efros et al. [15] use ac-
tion classification as a first step towards obtaining the skeletons. In [15], query
sequences are classified based on motion and when the correct query action is
found in a trained database, it is used to reproject the skeleton onto the query
sequence. Inversely, in [54], the pose is first recovered which is then classi-
fied using a SVM to obtain actions. The proposed methods by [15] and [54]
are both robust and accurate, but also shows how similar the two problems of
action recognition and pose estimation are.

3.6 Summary

This chapter started by introducing different concepts commonly used when
discussing related works om action recognition and pose estimation. A variety
of proposed solutions exists for both problems, but without any definitive
solution that solves either of the problems.

Proposed solutions for Action recognition can be divided into two forms
of representations and also based on the classification algorithm used. The
two representations are either global representation or local representation,
depending on whether the video frames are used directly or not. An additional
classification algorithm is used to map representation to actions, for example
with KNN or SVM.

Likewise, the pose estimation problem can be divided into two classes:
model-based and model-free. In short, the model-based is heavily reliant on
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a human body-model (e.g., SPM) to perform model-matching into an image.
The results are robust and accurate, but suffers from excessive computational
time caused by having to reconstruct the 3D voxel shapes from camera angles
for every single frame. On the other hand, model-free does not rely on a body-
model at all, but instead utilizes statistical methods or direct frame-to-frame
similarity matching. However, the pose model-free solutions are usually limited
by the database they query for skeletons.

One do not need to use video cameras only, but motion capture devices and
markers are too intrusive, and therefore disregarded. Another type of sensor
exist for capturing depth, called Time-of-Flight cameras, but they are far too
limited in range, resolution and are too expensive to be usable in the Bagadus
use-case of a large soccer stadium.

There are many different solutions for both action recognition and pose
estimation, with some of them being quite similar to one another. Moreover,
some of the solutions attempts to solve both the action recognition and pose
estimation problems at the same time. The most notable of these are the one
by Efros et al. [15], which uses optical flow and a matching function for both
classification and skeleton reprojection.

Which one of these methods that are most suitable to our problem domain,
i.e., most suitable with the Bagadus system, depends on the limitations and
assumptions found in Bagadus (see Section 1.2.3). In short, the imporant
limitations are low resolution video, high levels of noise and only a single
camera array. The biggest consequence of having only a single camera array
makes visual hull reconstruction or any other model-based solution infeasable,
as they require more than one viewing angle. Using a model-free approach
is a better choice to obtain poses, as it does not require multiple camera
arrays. Moreover, this approach is quite similar to local representations for
action recognition, as they both rely on interest points, but obtaining good
interest points in the low resolution and noisy video for both problems might
be unsound. Inversely, by using a global representation and a classifier to first
obtain actions and then use the obtained action sequence to estimate poses
using a model-free estimation approach is much more viable, as this requires
only a single camera and can work with low resolution video sequences.

A solution based on a model-free and global representation is the solution
proposed by Efros et al. [15], which solves both the action recognition and
pose estimations problems, as discussed in Chapter 1, and briefly revised in this
chapter. Furthermore, the proposed method by Efros et al. addresses a very
similar problem compared to ours and we therefore chose this as the basis for
our proposed solution, presented in the next chapter.
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Chapter 4

System Overview

Before getting into the details of

content-based video retrieval, player track-

ing and the final pose estimation process

it is important to have a an overview of

the system which has been designed in this

thesis. This design consists of a workflow

of programs, with each program designed

to solve one of the problems described in

Section 1.2.4, as well as some programs to

either supplement or aid in data manage-

ment (particularly for crowdsourcing data).

This chapter covers the overview of the pro-

posed workflow, programs and its integra-

tion in Bagadus.
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4.1 System Layout

The designed layout is meant to work well together with the existing Bagadus
systems, as well as being reconfigurable and adaptable to any new changes
in algorithms or research results. The remainder of this chapter includes a
description of our proposed prototype solution and how it relates into solving
the three procedures defined in Chapter 1.2.4. For more implementation details
see Chapter 8 and for the source code check out [24].

4.1.1 Data Files

The data format used in this thesis consists of png images, csv files (Comma-
Separated Values), SQL files containing SQL queries and regular txt files for
additional program control. This is done in order to have consistent inputs and
outputs across all the different programs, but also because the original data
used in this thesis comes from CSV files [39]. The only file not being either an
image or a CSV file is the serialized file created by the Data Generator, which
is a binary packed vector field of optical flow vectors.

4.1.2 Programs

There are a few implementations required in order to realize a content-based
video retrieval prototype. We have decided to implement different programs,
with each program assigned a particular functionality. All of the programs listed
here and the Skeleton Estimation workflow (Section 4.1.3) are used to solve the
problems presented in Section 1.2.4, namely video extraction, video annotation
and action retrieval, and can be directly related with the following programs:

1. Video extraction is solved primarely by the Data Generator program,
as it is reused as a component in the Motion Classifier program when
it reads query sequences, and is described in detail in Chapter 5.

2. Video annotation is solved by the Online Training Tool, and is
described in detail in Chapter 6.

3. Action retrieval is solved by the Motion Classifier program, and is
described in detail in Chapter 7.

Data Generator

Extracting video sequences to be annotated or used in classification and skeleton
reprojection is done using the Data Generator program. The Data Generator
program takes as input a set of video clips (captured by the Bagadus system) and
a CSV file containing the exported ZXY database (ZXY file). It then produces
a set of images and an SQL file, specified by the ZXY file, for use with the
Online Training Tool. In addition, it computes the optical flow for the

28



exported images into a loss-less compressed file, which can be used by the
Motion Classifier program to obtain classes.

Online Training Tool

Unlike Efros et al. [15], we do not have access to skeleton data (joint positions)
for captured video sequences and must therefore annotate our own dataset.
This is done in an online tool, a web interface that is used for annotating the
images generated by the Data Generator program. The annotation task in the
online tool includes placement of joint positions and action labeling, as well
as selecting a bounding box around the player. All the data are stored in a
database, which can be exported to CSV files and feed the Result Checker
program.

Result Checker

The Result Checker program is an utility program that have several functions
for validating and visualizing data. It primary function is to assert and filter data
annotated with the Online Training Tool and merging them into a single
CSV file (as each image will have several annotations that must be fused to a
single point). This can be done by using either Gold Standard Tests or Majority
Voting, described in more detail in Chapter 6. Additionally, it can be used to
examine the intermediate CSV skeleton files or individual worker’s click-point
performance by rendering skeletons into images, which is used to obtain the
figures in Chapter 7.

Motion Classifier

The Motion Classifier program takes the output generated from the Data
Generator program plus the merged training data from the Result Checker
program and uses these to classify a query sequence to obtain a class label
and perform skeleton reprojection based on trained data. In other words, this
program contains our proposed solution for the content-based video retrieval
problem. The produced output is a video sequence with the skeleton projected
onto every frame and a CSV file with the exact joint positions.

Coordinate Translator

The Coordinate Translator can be used on the exported annotated data to
obtain absolute pixel positions for use with external programs (or with any
of the intermediate results produced by any of the other programs). It is
required to translate the trained joint locations (or any of the positions between
programs) to absolute pixel coordinates as they are given as floating point
numbers relative to the tracker region of interest (ROI) and worker-selected
bounding box. The only case where translation is not needed is with the final
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skeleton output, which already comes as absolute values. The exact details for
this translation can be found in Section 8.3.1.

4.1.3 Program Workflows

In this section, we present three main workflows combined using the different
programs listed in the previous section, with the individual pipelines for every
program described in Chapter 5 through Chapter 8. We differentiate between
workflow and pipeline based on the definition from [56] with slight adaptation
to the problem addressed in this thesis:

• Workflow: A set of programs processing a video sequence in order to
obtain a pose or an action label. Each program can be used zero or more
times in a workflow.

• Pipeline: A linear sequence of specialized stages that is used to build up
a program in order to solve a particular problem. Each stage must only
be used once in a pipeline.

The three primary workflows are named Skeleton Estimation, Crowdworker
Quality Control and Skeleton Validation. These workflows contain everything
from extracting bounding boxes to exporting skeletons, validating crowdwork-
ers performance and verifying skeleton outputs from different programs. Ad-
ditional programs can be inserted into the existing workflows, as long as they
comply with the input and output formats using CSV, or new workflows can be
created if required. However, these named workflows are the ones used to ob-
tain the results presented in this thesis and is presented here to give an overview
of how the different programs interact.

Skeleton Estimation

Skeleton estimation is designed to solve the problem of content-based video
retrieval of soccer players from video captured by the Bagadus system and
annotate them with an action label (the workflow is illustrated in Figure 4.1). It
utilizes almost every single program, starting with Data Generator to extract
images from a set of video sequences, recorded by Bagadus cameras and ZXY
tracking sensors. The exported images are then used in the Online Training
Tool to be annotated with skeletons and inserted into a database. This
database is then exported as CSV files, containing the annotations and frame
identification numbers. Using the Result Checker program, the crowdsourced
annotations get merged to produce a single skeleton per frame. By putting this
merged file together with the serialized file generated from Data Generator,
the Motion Classifier estimates the most similar annotated sequence for a
query sequence and exports the resulting skeleton to a CSV file. Optionally, a
rendering of the skeleton can be provided as a series of images. The annotated
CSV skeleton for the query sequence could then be fed to other computer
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algorithms to, e.g., perform scene reconstruction or to perform additional
semantic analysis and statistics.

DataGenerator Online Training Tool

ResultCheckerMotionClassifier

ZXY + Video SQL + Images

CSV + Video CSV + Video + ZXY

CSV

Figure 4.1: Entire work�ow designed to obtain skeletons via content-based video retrieval
and crowdsourcing.

Crowdworker Quality Control

Checking the quality, or accuracy, of the workers from the crowdsourcing
campaign is done in the Result Checker program. At the same time, the
merging of the training is calculated, and exported as an SQL file containing
the quality measure (dependent on merge type). This file can be used to accept
or reject the annotators’ effort, if the work is a paid contribution. The workflow
in Figure 4.2 displays both of the outputs generated from the Result Checker
program, as well as the workflow to obtain the skeletons in the first place. The
merged CSV file can be used to examine the combined effort of the annotators.

DataGenerator Online Training Tool

ResultCheckerMicroworkers

ZXY + Video SQL + Images

Approved Tasks

CSV Individual

CSV Merged

ResultChecker

Figure 4.2: Crowdworker Quality Control Work�ow. CSV Merged consists of individual an-
notations, whereas CSV Merged consists of the merged results from all the annotations.

Skeleton Validation

Many of the programs listed above outputs skeleton data as the only result or as
a result of some computation. These skeletons can be viewed using the Result
Checker program to perform manual inspection and validation of the joint
positions. The program can be used as illustrated with red arrows in Figure 4.3.

31



It is particularly useful in viewing the skeleton annotated by crowdworkers, as
it will help in identifying problems, but also for analyzing reprojected skeletons
from Data Generator.

DataGenerator Online Training Tool

ResultCheckerMotionClassifier

ZXY + Video SQL + Images

CSV + Video CSV + Video + ZXY

CSV

Figure 4.3: Work�ow for obtaining skeletons, where red arrows indicate intersection
points where the skeleton can be veri�ed.

4.2 Summary

In this chapter, we have presented the programs and workflows designed to
solve the problem of content-based video retrieval. The set of programs are
made to solve each of the three procedures introduced in Chapter 1.2.4. With
these, we create a modular workflow that can easily be incorporated into the
existing Bagadus system, by using a common input/output data structure with
CSV files. An additional set of utility programs and workflows aid in managing
and verifying results produced during the different stages, as well as performing
quality control on annotated training data.

In the following chapters we present the three procedures/programs for
Player Tracking/Data Generator in Chapter 5, Video Annotation/Online
Training Tool in Chapter 6 and Action Retrieval/Motion Classifier in
Chapter 7 with additional implementation details in Chapter 8.
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Chapter 5

Player Tracking

Encoding video sequences of soccer play-
ers as feature vectors for classification re-
quires a tracking algorithm that isolates
and size-normalizes the individual players.
Isolating individual players are required in
order to ensure a successfull comparisons of
actions independent of where the player is
located on the field.

This chapter presents the pipeline for

tracking soccer players and extracting small

player-centered images based on back-

ground subtraction and data from the ZXY

module. Additionally, the pipeline con-

structs precise bounding boxes around the

player that far exceeds the current system

implementations. The pipeline for tracking

players solves the video extraction problem,

but not for any given situation. Therefore,

we also discuss further and future improve-

ments and open issues at the end of this

chapter.
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5.1 Player Tracking Pipeline

Background 
Subtraction

Gaussian 
Blurring

Blob Detection

Region 
Overlapping

Image 
Stabilization

Image Creation

Size 
Normalization

Input 
Sequence

Output 
Sequence

CPUStorage

ZXY Player 
Positioning

Figure 5.1: The player tracking pipeline, with data in white and CPU stages in blue.

There exists several other tracking algorithms for identifying objects and
follow them during a game [57], but because we have access to player position
data (from the ZXY sensors, see Section 2.1.2) we can use this data instead of
having to find the players on the field first. Subsequently, by using the ZXY
data, tracking players and exporting normalized images is then equivalent to
finding the region on the field that a player occupies, refered to as the Region of
Interest (ROI), and center the player within this ROI. ROIs can be viewed as a
bounding box (rectangle) surrounding soccer players on the field and are used
interchangeably in this chapter. With an obtained ROI, the player within this
ROI is size-normalized to better support comparisons. The final ROI is exported
as a grayscale image with background removed in order to support OpenCV’s
optical flow algorithm and to remove uninportant data (e.g., grass). All of these
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steps (i.e., tracking, centering, background removal etc.) are implemented as
stages in a pipeline, each of them being presented in two parts describing how
it is used and how it is done. A complete overview of the pipeline is shown in
Figure 5.1. Each of the steps are explained in the subsequent sections.

5.1.1 Background Subtraction

The first stage in the pipeline performs background subtraction on the entire
video frame to define which pixels is located on an imaged soccer player.
Background subtraction is performed on the full frame, rather than on the
region on interest, to prevent the white lines on the field from being marked as
foreground. The white lines would be marked as foreground if the ROI is used,
as the lines will appear to move across the frame and thereby be considered
foreground.

How it is Used

The goal of background subtraction is to separate an image into two planes:
foreground and background, where the foreground encompasses all the pixels
that are of interest (as in Figure 5.2). The foreground plane is also referred to
as a mask, since it marks out the pixels of interest. In our case, the interesting
pixels consists of the soccer players. Visually, background subtraction gives
a filled outline of every player, as shown in Figure 5.3 on page 38, and is
particularly useful when there is a need to identify objects in a scene where
the background is irrelevant. Consequently, the foreground mask is used
several times through the player tracking algorithm to obtain the region of
interest. Other ways of finding the players in a video sequence exists, e.g.,
edge detection or Hough Transform, but a background subtraction algorithm is
the most suitable in this use-case: It provides a per-pixel object separation and
high quality masks because we have a static camera and it is used with great
success with other solutions in the Bagadus system [2].

Figure 5.2: A grayscale image of a player with the background removed, used for
computing optical �ow.
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How it is Done

Every background subtraction algorithm has the same basic idea: An initial
picture is set to define the static background and every succeeding image
is then compared to this one. If a pixel differentiates in intensity or color
compared to the static background, it will be considered as foreground. More
advanced algorithms extends the basic concept to be more robust to changes
and noise, such as adaptive algorithms than learns the difference in foreground
and background as time progresses. For instance, a more robust approach to
background subtraction is proposed by Cheung and Kamath [13].

The applied method to subtract the background in this thesis is the MOG2
algorithm, provided by the OpenCV library. It uses an implementation of
Gaussian mixture-based background/foreground segmentation, a configurable
and adaptive algorithm. It must be tweaked to every lightning condition, but
doing so makes it easier to obtain the correct mask. MOG2 has been used
since first installment of the Bagadus system and have proved both accurate and
adjustable to the environmental challenges provided by an outdoor stadium [2].

What is particularly interesting with MOG2 is its ability to learn changes in
the background. Every consecutive frame processed for background subtraction
is also added at the front of the learned background history. In short: the
newer the image is, the more it affects the decision on which pixels are
foreground and background. This history replaces the single static initialization
image and offers an advantage over other algorithms when the scene slowly
changes. MOG2 also applies a Gaussian Filtering of pixels for a given
foreground/background computation, making it more tolerant to noise. This
is extremely useful for Bagadus, with outdoor matches having clouds changing
the ambient light slowly but regularly. The conjuction of learned history and
Gaussian filtering makes MOG2 also able to distinguish out shadows to a certain
degree. While potentially useful, shadow detection is not used in this thesis.

5.1.2 ZXY Player Positioning

Background subtraction produces a set of foreground shapes (a set of connected
foreground pixels that marks out a soccer player) that marks the location of all
the soccer players. However, only a single soccer player is to be extracted at a
time and a selection of one of the foreground shapes must be made.

How it is Used

The ZXY sport tracking module found in the Bagadus system contains a
radio tracking device for every soccer player and can be used to identify the
foreground mask objects. Over the course of a soccer game, a single player can
be pointed out in the video based on ZXY data, which is used to obtain an initial
ROI. Other algorithms for following a player’s silhouette can be used, but the
ZXY data provides a consistent and accurate tracking.
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How it is Done

By performing homography mapping (Section 2.3) between the camera view
and ZXY coordinate system, a position within the video frame is obtained for a
player’s position that can be used to create a rough bounding box. This is the
existing solution for identifying players, but it has a much a larger headroom in
the bounding box compared to an optimal bounding box. Although, it is a good
starting point for narrowing the box based on the foreground mask provided by
the MOG2 algorithm.

5.1.3 Gaussian Blurring

The MOG2 background subtraction is not perfect and will produce foreground
masks for background pixels (also called false positive, see Section 7.3.1). Such
errors can be divided into two different types that we refer to as single pixel
errors and blob errors. Single-pixel consists in a single foreground pixels not
connected to any other foreground pixel and usually occurs in large changes
in the grass. Blob errors is a group of foreground pixels connected together
to form a larger silhouette. In this pipeline, single-pixel errors are removed by
applying Gaussian Blur (i.e., Gaussian Filter).

How it is Used

A single pixel error is a single pixel marked as foreground, while it is actually
a background object. It is usually a result from slight pixel variance on the
playing field caused by moving grass or similar. This error is removed by
applying a standard Gaussian Filter to the obtained foreground mask. It even
comes with a desirable side-effect: the silhouette’s edge of a player object
gets a margin of error. Because a single pixel can contain both a player and
background elements, it becomes uncertain whether the pixel is foreground
or background. Having the margin ensures all of these border-type pixels are
included as foreground, which ensures as much as possible of the small players
are included in the image creation later on in the pipeline.

How it is Done

Gaussian blur is one of the simplest operations in image processing: Its function
results in blurring an image by combining the values of neighboring pixels via
convolution with a Gaussian Kernel (a matrix defining the blurring size and
weights). Despite its simplicity, it is extremely useful in combination with other
algorithms. Its uses extending from noise removal to softening high contrast
values (edges) and more. Noise removal is particularly important, both in terms
of poor quality images and output values. Even the most sensitive cameras
are subject to noisy measures and Bagadus’ camera array is no exception. By
applying Gaussian filter, it is possible to reduce the noise at the cost of slightly
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less sharp image and information loss caused by merged values. Secondly,
image processing algorithms can introduce new or additional noise in the
output, to which a Gaussian Filter can be applied to reduce the error factor.
Unfortunately, it cannot blur away erroneous foreground blobs.

5.1.4 Blob Detection

Using the foreground mask and initial ROI provided by the ZXY trackers, the
ROI can be compressed tightly around a player. Given that no blob errors
are present, it would be a decent bounding box. When that is not the case,
a selection must be made to cut out the stray blobs.

How it is Used

Blobs consists of larger collections of foreground connected pixels, often coming
from the shadow of players. The MOG2 algorithm attempts to some degree
to deal with shadows, but is not always correct. Filtering out blobs is more
difficult compared to single-pixel errors, as it could potentially be a player, but
can be done using a blob detection algorithm. Observed instances of video
sequences shows that the erroneous blobs are smaller than the ones for the
players and the smaller blobs are weakly connected, if connected at all, to other
blobs (see Figure 5.3). This can be exploited by running the frame through a
blob detection algorithm and calculate the blobs’ area. Whichever blob that is
largest is assumed to be the player (which is almost always the case) and the
remainder small blobs can be erased. Using this approach have the advantage
of only having to count pixels rather than analyzing them, which both speeds
up and reduces complexity of the tracking algorithm.

Figure 5.3: Foreground mask containing two blobs, with the leftmost (smallest) being an
error and the rightmost (largest) the player.
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How it is Done

Blob detection consists in segmenting the frame into different regions of
connected foreground pixels and group them together, or simplified as the
problem of finding outlines of shapes. OpenCV provides a function to detect
contours (i.e., outlines), which is equivalent to finding the edges around each
blob. It does this by finding a foreground mask pixel placed at the border of
a blob and then follows the border pixels around the blob until it arrives back
at where it started. This process is repeated for every single blob in the image,
resulting in a set of blob contours. The blob with the largest areal, based on
the contour, is selected and a bounding box is placed around it, unless several
players (large blobs) are in the image.

5.1.5 Region Overlapping

If two or more players are present, then there is a problem to decide which
one of them to track. Although sequences can be selected from a game to only
have one player in the ROI, it is not always feasible, because the ROI provided
by the ZXY homography mapping is required to be large (i.e., 200×200 pixels)
making it nearly impossible to avoid the presence, if only parts of, other players.

How it is Used

Desciding between, e.g., two players, inside a single region of interest could be
done by querying the ZXY tracker data and figure out which of these players to
track, e.g., by knowing which is to the left and which is to the right. In this way,
a selection can be made based on the placement of the players within the ROI,
but this solution is not always feasable. For instance, the player on the opposite
team do not, in our dataset, have ZXY motion sensors on them. Furthermore,
an experiment with making the ROI closer to the ZXY tracker position gave the
bounding box a tendency to jiggle at random times, contradicting the desire for
a stable image. Instead, under the assumption that a player cannot move faster
than the limits of the previous frame’s bounding box, we check that the next
selection we are attempting to find does overlap as much as possible with the
previous ROI. With enough overlap, one can be certain (under our assumption
of movement speed never exceeds the ROI) that the two ROIs encompasses the
same player. In short, a player is tracked by having sticky bounding boxes, i.e.,
bounding boxes that prefers to move as little as possible.

How it is Done

By keeping a record of the previously calculated bounding box (i.e., the one for
the previous frame), it is possible to calculate the overlap area between boxes.
By iterating through all the detected blobs found in the previous pipeline stage
and calculating the overlap between these and the previous frame’s bounding
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box, the closest ROIs can be identified. The region closest to the previous one
can then be assumed to be the one containing the player to track.

5.1.6 Image Stabilization

At this point in the pipeline a close to perfect ROI with the player inside is
computed, although the player itself might not be centered perfectly inside the
bounding box. This offset is a result of arms or legs stretched out in a motion
that is not symmetrical, e.g., kicking the ball. On the other hand, running
produces symmetrical distances from the center, with one foot in front and the
other out back. Therefore, an analysis of the foreground mask is made to center
the player.

How it is Used

Examining the player shape and then deciding where the center of the torso
is enables the player to be perfectly tracked regardless of outer motion of
the limbs. The problem is then how the center can be located, which in our
case cannot be done with video image (caused by a lack of frame resolution).
However, the silhouette of the player can be used and the torso is found by
computing the center of mass (i.e., the foreground mask with the centroid
weighted) of the silhouette. This allows the player’s torso to be consistently
located in the center of a frame, with the ROI expanding or subtracting
depending on the action.

How it is Done

In order to take into account cases where limbs extends from the center torso,
the mean foreground mask is computed. The placement where the mean of the
foreground is should more or less always be the center of the body, because the
torso is the most significant region of the foreground. Moving the ROI center to
the mean foreground region results in an near perfect center. One could extend
this approach by dividing the image into smaller tiles, say three-by-three inside
the ROI. The sum of foreground elements within each region is computed and
the one with most weight (largest sum) is the center. Fortunately, only using
the mean calculation is sufficient to obtain a proper center that can be used to
create the final image.

5.1.7 Image Creation

Three components are now computed: the foreground mask, the normalized
image and region of interest. The second to last stage is to take these
components and create a new image that is to be used with the calculation
of optical flow.
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How it is Used

While each of the individual stages in the pipeline work over the same original
frame, they each consume and produce different data types. Particularly,
each stage either filters out or narrows down noise elements and the ROI
respectively. The task then boils down into using the noise-free masks and
smallest ROI to extract a portion of the original video frame to get a centered
soccer player sequence. The way this differentiates from the previous stage,
image stabilization, is the fact that image stabilization only computes the center
and nothing more. As a result, an additional creation stage is required.

How it is Done

Images are created by first converting the original frame to grayscale and then
copying the grayscale pixels from the frame defined by the foreground mask.
Any foreground elements within the stabilized image but outside the region of
interest is ignored. The location in which the player-pixels are copied to are
specified by the image stabilization stage and the result is a centralized image
of one player in grayscale, exported as a frame sequence (a set of images to
create a sequence, rather than frames to create a video sequence).

5.1.8 Size Normalization

Although the image is now stabilized to the center, it is still lacks consistency in
size, which needs to be normalized.

How it is Used

This requirement come from the fact that soccer player sizes varies across the
field, caused by the distance from the camera. If the size difference between two
sequences of the same class are to be classified, it might not correctly place the
query sequence because the size makes the optical flow descriptors too different
for the sequences to appear the same. Becayse of this, every frame sequence is
normalized according to the median height of the player within a sequence.

How it is Done

To normalize the size, the median player height over all images within a
sequence is computed. This factor is then applied to every image in the
sequence to zoom in on the center, essentially up-scaling the player without
changing the image size. This makes the image consistent across sequences
and Figure 5.2 on page 35 illustrate the final result. Additionally, to prevent up-
scaling the image too much and remove as much as possible of empty ROI areas,
we resize to only half of the ROI and crop out the remainder. The resulting ROI
is then 100× 100 pixels in size, but contains the same amount of information
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as the original ZXY ROI size of 200×200. As a result of changing the size of the
final ROI we also reduces the computational time required when performing
frame-to-frame similarity measuring in Chapter 7.

5.2 Results

It is important to have a proper tracking of the players, because a poor
implementation here would lead to inaccurate results in the optical flow and
later on during the classification. Additionaly, the proposed tracking algorithm
relies heavily on the background subtraction being correct, which means that it
must be as accurate as possible. We therefore need to test the accuracy on both
of these two results, but objectively asserting the quality of image processing is
a potentially challenging problem. Research by Wang et al. [55] briefly covers
the different methods of evaluating the quality, but also why automatic testing
is difficult. The primary reason for the difficulty is that common algorithm
comparisons work primarily on color intensities, but do not include structure in
a sufficient degree. Structure is especially important when tracking individual
objects, as without structure it is not possible to tell which part of an image
is the objects of interest. In essence, verifying object tracking can only be
done manually with experts, which itself can be costly, but more importantly,
subjective.

In order to objectively verify the tracker results, two assessments are made:
The first one is a manual inspection of the background subtraction with margins
and the second one is a comparison of the extracted bounding box (tracking
result) compared1 to a manual plotting made in the Online Training Tool.

5.2.1 Background Subtraction

To objectively assert the background subtraction algorithm we set up two
criteria to define a pass or fail label to the computed mask. The other option
would be to manually compare every single pixel and foreground mask, which
is a tasked deemed unfeasible. The criteria are:

1. Only players should be foreground

2. Player foreground should be whole

The definition of a whole player is a connected foreground mask that
encompasses the entire player (i.e., one blob covers the player entirely) without
cutting out the head, arms or similar and not extending past the player.

Several iterations over the different parameters available to the MOG2
algorithm were attempted before the optimal result was obtained. For every
iteration, the aim was to improve the two criteria, and was done mostly out

1Comparing results to an expert on the field is commonly referred to as Gold Standard Testing,
see Section 6.4.3
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of trial and error. Considering the image of the player alone, the background
subtraction algorithm fulfills both criteria (cf. Figure 5.2), but not always.

Usually, a couple of frames are required by the MOG2 algorithm to learn the
proper definition between foreground and background, resulting in a failure
of the first criteria. But, with sequences spanning several seconds, this is
considered an acceptable error. On the positive side though, the second
criteria is almost always correct with only a single observed instances where
the player is broken into two foreground blobs. In the end, visual inspection
of background subtraction is encouraging, as being able to correctly identify
foreground elements most of the time.

The background subtraction is only part of the tracker algorithm though,
with the actual desired tracking being a ROI of a soccer player. Fortunately,
determining the accuracy of the ROI is much easier than verifying the
foreground mask and can be done using an overlap test.

5.2.2 Bounding Box Overlap

To re-wrap the requirement for a successful tracking of a player, a bounding
box is to be found that is no larger or smaller than the player in question
with the player perfectly placed in the center. Centering of the player depends
completely on the placement of the ROI and is therefore not necessary to check
the quality of the centering directly. To properly verify the computed ROI, a
selection of sequences from three different actions are manually annotated with
bounding boxes around the player, which is then compared against the tracking
algorithm’s bounding boxes and calculate the percentage overlap where the
result is expressed as the percentage of overlap (which abstracts away the
changing players sizes and required bounding boxes).

The overlap computation is described in Code Snippet 5.1 which, in short,
computes the intersection between the tracked and annotated bounding boxes.
If the tracking box is larger than the annotated, a percentage above 100 is
given. If larger tracked bounding box is computed, but it does not encompass
the entire annotated bounding box, then the coverage is computed from the
overlap area alone. The Code Snippet 5.1 includes the calculations required
and uses OpenCV’s Point2f class, which contains the two variables x and y
that represents a position in 2D space.
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Code Snippet 5.1: Function for calculating bounding box overlap using OpenCV’s Point2f class

1 float boxPercentageOverlap(Point2f start_expert, Point2f end_expert,
2 Point2f start_tracker, Point2f end_tracker)
3 {
4 if (fmaxf(start_expert.x, start_tracker.x)
5 > fminf(end_expert.x, end_tracker.x)
6 || fmaxf(start_expert.y, start_tracker.y)
7 > fminf(end_expert.y, end_tracker.y))
8 return 0;
9

10 Point2f start_intersect
11 = Point2f(fmaxf(start_expert.x, start_tracker.x),
12 fmaxf(start_expert.y, start_tracker.y));
13 Point2f end_intersect
14 = Point2f(fminf(end_expert.x, end_tracker.x),
15 fminf(end_expert.y, end_tracker.y));
16

17 float areal_expert = (end_expert.x - start_expert.x)
18 * (end_expert.y - start_expert.y);
19 float areal_tracker = (end_tracker.x - start_tracker.x)
20 * (end_tracker.y - start_tracker.y);
21 float areal_intersect = (end_intersect.x - start_intersect.x)
22 * (end_intersect.y - start_intersect.y);
23

24 if (areal_intersect == areal_expert)
25 areal_intersect += areal_tracker - areal_intersect;
26

27 return (areal_intersect * 100.0f) / areal_expert;
28 }

Measurements are taken with six sequences of the actions "run", "side-jump"
and "kick" for sequence S5, S20 and S21 respectively2. The tracking algorithm
is set to operate with a small margin, to account for small errors from MOG2,
which means that each sequence is run with both 0 and 6 pixels margins. The
median results are given in Figure 5.4 for all three sequences, labeled with
sequence number first and an M if 6 pixels of margin is used. It also contains
maximum and minimum error bars for the smallest and largest percentage
overlap found within the sequence.

First of all, the pixel margin of 6 pixels is a necessity to ensure sufficient
coverage, as discovered during extensive manual testing and verification, and
as observed in Figure 5.4. While a small bounding box as possible is desired,
having it too large is better than too small, as it prevents a soccer player from
being cropped. With two out of three sequences’ average overlap coming close
to the 100% mark it makes the tracking a success, with a few remarks.

The most important remark is that the annotated video sequences might
not be properly set, that is, correctly setting the bounding box manually is still
a subjective task prone to under- or over-provisioning of the box. Secondly, the

2Taken from the classification skeleton transfer sequences, see Section 6.7
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Figure 5.4: Median percentage overlap of bounding boxes compared to expert, plotted
with maximum and minimum bars. The optimal overlap is 100%, marked with a dashed
line.

added margin to the player tracking algorithm is slightly larger than required,
but it is set to ensure no player cropping occurs regardless of the situation,
resulting in larger than 100% overlaps. If examined more closely though, this
massive overlap is actually not more than a few pixels (as shown in Figure 5.5),
which is a tolerable difference.

Figure 5.5: Comparison between expert plotting and the tracker algorithm, where the
red bounding box represents the tracker, blue the expert and green is the intersection
between red and blue. Optimal tracking should consists of only the green rectangle.

Looking closer at two of the sequences, S5M and S20 in Figure 5.6b and
Figure 5.6a respectively, another couple of observations can be made: Sequence
5, with 6 pixels margin, has the most common action performed during a game
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(running). Yet, it too consists of a high fluctuation on the overlap coverage
of about ±20 percentage points compared to the 100% mark. Although,
checking each frame’s bounding box individually with the tracking data results,
we actually consider it to be better than the manually annotated bounding
box, possibly hinting at inconsistencies from the annotator. Perhaps more
important is the fact that even a single pixel difference between the tracking
ROI and annotated ROI will cause large percentage differences. A better
approach to measure the difference could be to examine the number of pixels
the two bounding boxes deviates from one another, but that in itself does not
describe the player coverage differences, which is what we are interested in.
For example, 1 pixel offset could mean both over and under 100% coverage,
unless signed numbers are used in the offset. Even then there is a problem of
combining the difference for all four edges into one number that describes the
offset between the two ROIs.
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Optimal Overlap

80

100

120

140

0 10 20 30 40 50
Frame

O
ve

rla
p
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Figure 5.6: Percentage of bounding box overlap of the tracker compared to an expert,
with the red line indicating 100 percent overlap.

The other sequence, S20, has one single data entry that shows what happens
to the player tracking algorithm when background subtraction fails to produce a
proper foreground mask, causing the dips in Figure 5.6a. This drop occurs both
at sequence start and during the actual kicking of the ball and is considered less
than optimal tracking results.

However, the accuracy and consistency of the tracking results rely on the
background subtraction, which has already been approved. The same applies
here: While the player tracking algorithm has some fluctuations and failures in
some special cases, it still manages to produce acceptable ROIs in almost every
single image and sufficiently accurate for our proposed solution. Moreover,
having a bounding box slighly larger compared to an expert’s selection is better,
as having it too small might cut out player limbs, which is not desirable.
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5.3 Remaining Issues

The initial results are promising for use with selective video sequences where
tracking can be guarantied to always work, but there exists cases where
the current tracking implementation fails to properly track a player. This
section covers the cases that causes tracking failure and presents potential
improvements for future works that are required for a fully functional system.
The list provided here is not necessarily complete, but provides the most
frequently observed problems and gives a brief explanation of why they occur,
starting with the most common behavior: overlapping players.

Overlapping players

The problem of overlapping players occurs when they either interact with one
another or the players are standing in a line. The background subtraction
algorithm correctly segments out both of the players, but the foreground mask
has the two player blobs connected as a single blob. Consequently, the ROI will
then encompass both of the players, despite only one of them being the player
of interest. Additionally, it offsets the bounding box center to the center of both
players, an undesirable effect. Interacting players can possibly be separated
with an image segmentation stage that cuts the single, large player blobs into
two smaller ones.

The problem of overlapping players extends to players crossing paths as
well, but a possible solution to this is to attempt every possible tracking when
a crossover occurs. For instance, the tracking algorithm could in this case
keep a list of all the players participating in the crossover and then attempt
to follow a single player from this list. If the tracked player is lost (either by
being outside the ZXY ROI or the ROI suddenly jumpts to another position),
the system rewinds and attempts to follow another player in the list. Using
this technique could result in better tracking of the soccer players, but real-
time execution speed and number of possible tracking branches could become
too high. Furthermore, this techinque might not work when players cluster
together.

Cluster of players

Clustering of players is an extension to the scenario of overlapping players and
is a more severe and probably more difficult problem to resolve. It typically
occurs at long distances from the camera array, where each player is not large
enough to completely occupy the ROI alone. The most notably case are when
all the players are defending/attacking at the same spot. If this happens, then
the algorithm tracks in a seemingly random fashion, often jumping between
players.
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Animated advertisements

A separate problem to the background subtraction is the issue of the animated
advertisement found around the edges of the field. These moving images
alter their pixel intensity and is as a result mapped as foreground. A quick
fix would define these pixel points as background, but the players would
also be mapped as background when they cover the advertisement strip. An
additional segmentation step to separate advertisements and players would
then be required.

Obstructions

Anything blocking the line-of-sight between the player and the camera is a
potential problem for the tracking system. While it remains to be mostly a
camera placement issue, there is still cases that are a real challenge to overcome.
Rain, while not blocking the perceived line-of-sight, does add a significant
noise to the image and essentially obscures the view required for a perfect
tracking. Even worse if it hails, which has an even larger blocking effect that
water droplets, which in theory would invalidate any background subtraction
algorithm. Although more of an extreme case and can probably be disregarded,
it is still an issue considering the fact that the Bagadus system operates with
outside stadiums.

Background Subtraction

Both the strength and weakness of the tracking algorithm is the background
subtraction. While it is durable enough to compute correct foreground masks
with the current installment of the Bagadus system, it must still be tuned for
optimal results. If lightning conditions, player outfit or weather type changes,
it can cause tracking failures. As an example, the background subtraction
configuration used in this thesis manages to map the white and red players
with high accuracy, but the opposing team is frequently mapped as background.
Even worse is the case of players standing completely still, as they slowly fades
into background, caused by the learning history found in the MOG2 algorithm.
When a player is faded into the background, the tracking algorithm either stops
working or jumps to track another player. To solve these problems, either
a multitude of background subtaction algorithms must be used or a better
configuration for the parameters to MOG2 must be applied.

Low pixel density

Even with a perfect configuration for MOG2 background subtraction algorithm,
there are still problems with ambiguity caused by video resolution, noise
and compression. The video sources used in this thesis have a relatively
low resolution, considering the 50 to 150 pixels player heights, to have the
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foreground mask successfully computed to all the corners of the field. While
strictly speaking not an issue, a camera sensor with higher resolution could
potentially decrease the amount of ambiguity for background subtraction and
increase the detail in players to allow for player separation in clusters and
overlaps. In short, a higher resolution camera can reduce, remove or at least
aid in resolving the issues mentioned in this section.

5.4 Summary

Player tracking is part of the content-based video retrieval extraction process,
where imaged soccer players are extracted and exported as small video
sequences. Specifically, the tracking algorithm is a pipeline that uses ZXY
position data and a background subtraction to find, isolate and center soccer
players within a small frame. By taking noise and small margins of errors into
account, the tracking algorithm can produce results quite similar to a human’s
perception of the region of interest a player occupies.

Even though the tracking algorithm operates within acceptable parameters
for our prototype, there are still issues that needs to be resolved before a
full system can be finalized. These issues mostly concern the precision of
the background subtraction, occlusions and noise in the video image and the
separation of the players. If these issues are solved, then the tracker can, for
any given scenario, successfully identify and center the soccer players found in
the Bagadus system.

The tracking algorithm is used for extracting video (video extraction) from
a soccer game to obtain small sequences of players. These sequences are then
to be annotated in a crowdsourcing platform or classified in the action retrieval
and pose estimation algorithms.
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Chapter 6

Video Annotation

Content-based video retrieval for pose
estimation requires a database of annotated
sequences that contains skeletons. The an-
notations to obtain consists of a set of points
that specify where in a frame the joints of
a soccer player is, which is used to com-
pose the skeleton, and annotating the ac-
tion class. The annotation must be done
manually, because no motion capture data
is available. Annotating hundreds of im-
ages using hired experts, people who an-
notate every skeleton without any errors,
can be costly and doing it ourselves would
require weeks of effort. We therefore em-
ploy a crowdsourcing platform where people
around the world are asked to annotate
frames for a small fee. The difficulty is
then how to obtain accurate data from non-
experts (i.e., inaccurate and abberant an-
notations), which we attempt to resolve by
using quality control mechanisms and hav-

ing each frame annotated several times to
then have all the contributions for a single
frame merged into a single skeleton. In or-
der to support annotation of soccer play-
ers, an Online Training Tool has been
developed that can register and store user
inputs.

This chapter contains an explanation

on what the crowdsourcing platform is and

what crowdsourcing is generally used for.

Then, the datapoints to be annotated in

the Online Training Tool program (see

Section 4.1.2) is presented. With the data

fields defined, a set of design iterations are

made over the Online Training Tool to

maximize system usability and reliability,

as well as defining filtering and validation

functions to get the best skeleton data from

the user annotations.
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6.1 Crowdsourcing

6.1.1 Terminology

We use the terminology for crowdsourcing as presented in [8] by Brabham and
this is used for the remainder of the thesis. Brabham defines crowdsourcing
as using a large group of people (a crowd), connected over the internet to
collectively solve problems ranging from coming up with ideas to producing
content. People, or crowdworkers (workers for short), participate with their
different skills and knowledge to usually solve small individual tasks, where
a single task is later combined into a larger solution. Furthermore, these tasks
can be provided by anyone from big companies to hobbyists and private persons.
The direct opposite of crowdsourcing is to hire an expert, a paid worker that
possesses all information and skills to provide perfect answers to any task in a
particular field, which can be slow and extremely costly.

Structuring workers and tasks is done using a platform. A platform is
essentially just a website that provides functionality to hire and pay registered
workers and starting campaigns. A campaign can consists of any tasks, but the
tasks should be as small as possible, for workers to actually be willing to solve
it and as individual as possible, i.e., each task is independent of other tasks to
achieve maximum scaling. Additional safeguards and quality controls are also
a necessity for campaigns, because workers may attempt to cheat the system to
earn money or simply provide low quality work.

The crowdsourcing platform used in this thesis is Microworkers [33]. It is
one of many platforms to connect employers (task providers) with workers. An
employer simply needs to create a new campaign and specify the necessities,
like an instruction manual and the time each user is expected to use on the
task to finish. Microworkers also provides task result ratings, but we need to
verify user productiveness in our online training application according to our
own requirements. Alternatives to Microworkers exists, for example Amazon
Mechanical Turk, a rather successful crowdsourcing platform used in many
different research projects.

6.1.2 Related Work

Crowdsourcing platforms have had an increase of use in everything from
scientific research, text translation to creative work [22]. Particularly, scientific
research has access to a large user base of people, without having to manage
worker registration and payment. Neither do they have to advertise for the
research in order to get users to sign up in the first place, as everything is already
provided by crowdsourcing platforms, e.g., Amazon’s Mechanical Turk.

Using Amazon’s Mechanical Turk, Loni et al. [31] attempted to use
crowdworkers to aid in the labeling (or titling) of images, a quite common
task to use with crowdsourcing. Additionally, workers were also tasked with

52



verifying other workers’ labels to provide quality controls. With this technique,
Loni et al. were successful at increasing the accuracy of the labels compared to
only using the crowdworkers for labeling.

Another interesting problem with crowdsourcing is whether they can be
used to solve more complex tasks and still perform to the same level as
experts. Hsueh et al. [23] investigated this by having the workers group
text segments as positive or negative for a politician, a considerably more
challenging problem than defining a title for an image’s content. By properly
filtering the crowdsourcing data, the authors were able to achieve reasonable
accuracy, showing that crowdsourcing can be used to solve complex tasks.

Even more interesting is the use of crowdsourcing to solve tasks that
are not a simple selection between good or poor quality, but requires direct
interaction for the crowdworkers. Su et al. [51] used a crowdsourcing platform
to obtain bounding boxes around objects. With their near-perfect results,
and our similar problem of obtaining player skeleton positions, makes the
crowdsourcing platform a viable option for this thesis to obtain joint positions
for soccer players.

6.2 The Task

The task each worker is assigned to consists of entering and annotating a set of
points that define player joints, a bounding box that defines the player ROI and
the action class. The annotation tasks operates with individual images obtained
by exporting frames from video. Consequently, a frame and an image are used
interchangeably for the remainder of this chapter, with both describing a single
frame of a video sequence that is to be annotated with a skeleton and action
label.

Optionally, instead of providing a full-length video clip (e.g., a soccer game),
a set of selected sequences can be entered into the annotation tool. If the action
class of these sequences are known, then it is possible to configure the tool to
only require the skeleton annotation and bounding box selection. Action class
selection and player count inside the bounding box is then disabled. In the case
that an entire game should be trained, the functionality should be activated.

6.2.1 Source Frames

All the video footage of soccer players used for annotation comes from an earlier
archived game from the Bagadus system, available online at [47]. Using the
mapping technique described in Section 2.3, we can obtain a small Region
of Interest (ROI) for each player and export this region as an image that is
uploaded to a web server with a unique identification number. A website is then
provided with a user-interface to support entering of data elements. Workers
are then asked to annotate soccer players using this tool, with each worker
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assigned a random frame. Randomization is done for two reasons: The first
is to provide variation for workers, as annotating the same second can be too
repetitive. Secondly, by evenly distributing high and low quality work across all
frames should provide a decent overall average quality. This process is done
for every frame of every player for all video sequences, resulting in tens of
thousands of annotated skeletons.

6.2.2 Bounding Box

When a worker is presented with an image to annotate, they have the option
to select a bounding box (ROI) around a soccer player. If a worker do select a
bounding box, then the selection is enlarged to assist the worker in annotating
the joint locations. Since bounding boxes is not a primary source for the
skeleton, but merely an aid to the workers, it is not kept when merging the
results. Furthermore, the workers must also define the number of players
present in the bounding box or full frame if no ROI is selected. This is done
to be able to filter out any sequences with more than one player in the ROI, but
is never utilized in this thesis and can be added to the merging of the results if
desired.

6.2.3 Skeleton Plotting

After an optional bounding box is selected, the worker is to annotate a skeleton
for the soccer player, consisting of 13 joint locations: one for each head,
shoulder, elbow, hand, hip, knee and feet, covering both left- and right-side
limbs. Typically, more than 13 joint locations are used e.g., [10, 19, 59], but 13
allows for accurate placement of all limbs given the resolution of the source
frames (e.g., annotating the neck would be unfeasible). In the rest of this
chapter, a worker’s annotation for a single joint position is referred to as a click-
point.

6.2.4 Motion Labels

Before submitting the annotated skeleton, the worker must define the action
being performed from a set of predefined classes. Determining the action from
a single frame is impractical and a short video sequence of the frames before
and after the current frame is presented to the user. The server already stores
these frames which are then used to create the video clip.
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6.3 Design Considerations

One of the biggest concerns when using a crowdsourcing platform is the large
variety of the individual workers’ background and expertise. It is therefore
important to have the task clearly defined, but also have a system that handles
the many types of answers (e.g., everything from correct ones to hackers)
elegantly to ensure maximum reliability. Additionally, with an almost infinite
number of possible click-points in the task, ensuring precision and consistency
in the dataset can become a serious problem.

Schulze et al. [44] presents five quality assurance mechanisms for use with
crowdsourcing: Qualification Test, Qualification Restriction, Gold Standard
Test, Majority Voting and Validating Review. Two of these cannot be applied to
our system, namely Qualification Test and Validating Review, as a qualification
test might discard too many workers and validating review is not feasible with
the amount of distributed tasks. The remaining three mechanisms are discussed
in the design iteration they are implemented in.

To ensure both system reliability and user friendliness, a set of design
iterations were made. The goal with each of these iterations are to ensure
support for a full-scale crowdworker campaign, but also to address any observed
issues. To this end, the design iterations are directly linked with pilots:
test campaigns set out to iterate over designs using real-world data and
feedback. The following sections contains the three pilots used, with each one
describing the goal of the pilot, any new algorithms or issues resolved and initial
results from the design iteration, resulting in the final Online Training Tool
program shown in Figure 6.1.

Figure 6.1: Final version of the Online Training Tool with all controls enabled. From
left to right is the action preview window, the annotation window and the annotation
request window. Note that naming of the joints are different to better de�ne where to
click for the crowdworkers.
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6.4 Design Iterations - Pilot 1

The first pilot was primarily a test to see if it was even possible to give a point-
and-click scenario of skeleton annotation to a non-expert and still obtain usable
results. However, before the pilot could be run, a set of precautions and quality
systems were developed into the Online Training Tool. The test sequence
used in this pilot consists of a single player performing the action "run" without
any other players visible in the ROI and has a length of 113 frames.

6.4.1 Result Filtering

Obtaining the data is only one part of the entire process of using a crowd-
sourcing platform to gather data. Before the first pilot was run, a set of filters
and functions were implemented to both validate results and protect the sys-
tem from malicious workers. Filtering of the results that do not conform to a
desired accuracy or correctness keeps the resulting data set accurate and reli-
ably [23]. Moreover, considering that crowdsourcing can be a paid labor, as in
this thesis, there are cases where a worker attempts to maximize profit while
minimizing the work required, e.g., by entering random data. Some workers
may even go so far as to attempt to break down the system completely rather
than performing any useful work.

The system requires protection against the two types of malicious workers,
namely cheaters and system breakers, as well as being able to identify work that
do not meet the desired quality. In the case for this thesis, the quality measure is
how accurate and correct the placement of every click-point are within an image
compared to an expert’s. Section 6.4.2 describes how the system is design to
protect against system breakers and Section 6.4.3 describes how to filter out
cheaters and validate results.

6.4.2 SQL Injection Protection

SQL injection occurs when a user actively aims at altering a query to either
delete or obtain information in a database. Since the data used in this campaign
does not store any sensitive or personal information, it makes information
gathering attacks less of a concern. Deletion, on the other hand, becomes
extremely important. Because every worker is paid, loosing any of the entered
data costs both time and money to reproduce. A couple of operations must
therefore be taken before any database-related operation occurs.

How it is Used

The first step is to provide input verification: No input can never be trusted in
online applications, be it with URL arguments, cookies or HTML forms. The
implementation in this thesis utilizes cookies to transfer information between
the host and the server and makes this the primary source for SQL injections. As
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a result, every cookie key/value pair must be checked for both its existence, to
make sure crashes do not occur with missing values, and that it has the correct
data type input. Any worker who attempts to break the system in any way will
have its work effort rejected and has its entries in the database removed.

How it is Done

In short, every data entry point is type-checked and verified to ensure the
values are within expected values. For example, verifying integers could involve
checking the signedness of the number, and for strings, escape special characters
and prevent embedded SQL statements in the string from executing. PHP, the
server-side language used in this thesis, have prepared sentences that can be
used for type-checking and automatic string character escaping, but requires a
lot of code. Therefore, a library called MeecroDB is used to simplify query type-
checking and perform input validation in PHP. With SQL injection protections,
malicious workers are unable to break our system.

6.4.3 Gold Standard Testing

Rejecting users who do not conform to the desired accuracy can be done by
comparing a worker’s click-points against a ground truth, set by an expert,
and measuring the distance between the expert and worker. Furthermore, it
keeps the resulting dataset reliable, because no click-point can be farther away
from the ground truth that what is defined by the threshold. The process of
performing ground truth tests is also called Gold Standard Testing and is one of
the mechanisms presented by Schulze et al. [44].

How it is Used

Throughout a task, a worker is at random times assigned an image that is
annotated by an expert, i.e., gold standard test. There are no differences in the
training tool between a gold standard test and normal annotation and appears
as a normal annotation request. This ensures consistency in both the results and
gold standard tests with the worker performing the same quality of work for all
images. On the system side, however, the annotations made for gold standards
are instead measured and entered into a separate list as accepted/rejected
entries. This allows for real-time validation of worker accuracy and is used to
accept or reject contributions in the Microworkers platform on task completion.

The gold standard testing mechanism is not completely perfect though, as
only a handful of frames are checked which is then used to create a verdict on a
worker’s performance. Distributing more ground truth tests during a task would
definitively increase the baseline for making a worker quality assessment, but it
would also decrease the amount of productive work (i.e., annotations for new
images) as it is desirable to have the images annotated per task relatively low,
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e.g., around 15 to 30. In despite of this shortcoming, gold standard testing
proved sufficient, as the first pilot displayed a consistently high or low quality
effort for all the frames a worker annotated, with the quality measured in
distance from ground truth. Additionally, all workers attempting to perform
the task quickly, i.e., to earn as much money as possible, will end up failing all
the gold tests and not get paid.

How it is Done

The test against ground truth is done by measuring the euclidean distance
between worker input and ground truth on a per-joint basis. Whenever a single
joint location is farther away than a specified threshold from the ground truth,
a golden test failure is logged in the system. A worker who do not pass a certain
amount of gold tests then gets its work effort rejected, meaning, the annotated
work is not included in the final result dataset and the worker does not get paid.

Unfortunately, it is not enough to provide e.g., two gold standard tests at
the beginning of each task. The reason being that a user can become more tired
at the end, and therefore do far worse than at the beginning, or the other way
around and perform better. A more important argument for having a proper
distribution of gold tests is that workers can discover which images of a task are
the gold standards and then only do these properly while solving the remainder
of tasks as fast as possible. Microworker’s workers also comments on the tasks,
which makes the revival of the gold standard tests even more likely. However,
by randomizing when a ground truth sample is to be tasked to a worker, and
have a large enough ground truth set to not have too many repetitions, greatly
decrease the chances of finding these tests.

The function that determines whether a task should be a gold sample
or not cannot be a pure randomization, because random selection could in
theory make a worker never have to do a ground truth test image or only
having to do them. Additional constraints that ensure an approximately, even
random distribution is therefore preferred and the gold samples should not be
distributed to a worker more than the minimum required gold samples, because
it reduces the amount of new skeleton annotations.

Code Listing 6.1 implements the PHP function to determine if a gold
sample is to be tasked to a worker. It uses two global configuration variables
training_max and control_times that defines the total number of training
images per worker and the number of gold samples to be distributed per training
set respectively. The variable control gives the number of gold samples already
processed and index is the number of images (non-gold samples) that have
been annotated. The function randomizes when golden standard tests are
administered, but also has a distribution guarantee. This guarantee ensures
at least every t raining_max/cont rol_t imes image is a ground truth test with
no more than cont rol_t imes ground truth tests per task.
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Code Snippet 6.1: Function to determine if a Golden Standard Test is to be given as a task.

1 function shouldBeGoldSample() {
2 global $training_max;
3 global $control_times;
4 $control = $_SESSION[’control_count’];
5 $index = $_COOKIE[’training_idx’] + 1;
6

7 if ($control >= $control_times || $control_times <= 0) {
8 return false;
9 }

10

11 $interval = intval($training_max / $control_times);
12 $expected = intval(ceil($index / $interval));
13

14 if ($control < $expected && $index % $interval == 0) {
15 return true;
16 }
17

18 return rand() % $training_max == 0;
19 }

6.4.4 Initial Results

Although the first pilot proved that crowdsourcing can be used for annotation
of soccer skeletons and that the user-interface, input checking and validating
operates as expected, it still has several shortcomings that needed to be
addressed. The most significant of those is the lack of sufficient logging of
non-position elements, like gold sample click-points. Because gold sample log
entries are computed on the server and then updates a counter for how many
failures a worker has, it is impossible to derive the main reason for any failure.
With the fact that every user who completed a task failed all the gold samples
truly underlines the need for logging gold standard tests’ click-points. Although,
a theory for these failures may come from the acceptance threshold being far
too strict, a theory supported by a new implementation of the gold standard
tests.

Instead of measuring the individual click-points’ distance from ground truth,
the mean of click-point distances are computed and an acceptance deviation
threshold is set to 25. 25 pixels is chosen to allow one or two far-off joint
annotations while still maintaining a high quality for the skeletons. This
new implementation resulted in about half the tasks being accepted, which is
equivalent to the number of accepted tasks determined by an expert. With all
the issues resolved, a new pilot was submitted to the Microworkers platform.
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6.5 Design Iterations - Pilot 2

The second pilot’s key issues were to address the logging of user activity and
test how many images a worker is willing to annotate. Because the logging
requirements were designed and implemented before Pilot 2, only a verification
was needed to test if it operates correctly. Additionally, users were encouraged
to guess the location of partially obscured limbs in an attempt to reduce the
number of joints marked as obscured. To test the willingness of workers to
annotate soccer player skeletons, every task was configured to have 40 images
and 8 gold standard tests, with the option to stop the task halfway, i.e., after 20
images and 4 gold samples. All the images and gold standard tests are from the
same sequence used in the first pilot, i.e., a video sequence of a single player
running from left to right across the field.

A new worker task validation process was also implemented, which utilizes
majority voting to further improve the filtering and to address the issues present
with pure gold standard testing. As observed in Pilot 1, the gold standard
proved to be too restrictive with its per-pixel offset and small sequence coverage,
but is included in this pilot as well to compare it against majority voting.

6.5.1 Majority Voting

Majority voting is the second quality control mechanism presented by Schulze et
al. [44]. Essentially, the workers validate themselves, rather than by an expert,
by only accepting the answer that at least half the workers agree on. This relies
heavily on the crowd having a consensus, which is present in the scenario found
in this thesis (e.g., everyone agrees that a "leg" is a "leg" and not an "arm"). If
the understanding of the body was subjective, then relying on majority voting
for result filtering might not have worked.

How it is Used

Majority voting uses the data provided by the workers to identify inaccurate
click-points. Specifically, the correct joint location is the one pixel in an image
the majority of the workers click on. Any click-points not having the same
position as the majority is then considered incorrect. Unfortunately, joint
locations cannot be determined solely on pixel position, because even the most
identifiable joints locations’ can have small pixel differences from one worker
to another. Instead, the center of all the click-points is used as the final, correct
placement and any click-points that are not within a certain limit are rejected.

Comparing the majority vote and the improved gold standard testing
mechanisms resulted in the two performing within the margin of error of
one another, indicating that majority voting can be successfully applied to
a relatively ambiguous scenario of skeleton annotation. Consequently, and
because majority vote filtering is faster, cheaper and easier to use, made
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it the filtering mechanism of choice for performing task validation on the
crowdworkers.

How it is Done

First, the centroid of all the click locations is calculated and a mean deviation is
found by computing the mean distance of all click-points to this centroid. Every
click-point placed outside this distance would then be considered unacceptable.

Calculating the centroid for use with majority voting assumes that only a
single cluster is present in a frame, to which we define a cluster as a set of click-
points grouped together with a close proximity, but when there exists more
than one cluster of click-points a problem arises (see Figure 6.2). Typically, two
clusters occur when the workers disagree of which joint is the left and right and
is resolved by adding the previous centroid’s location as a click-point to skew
the centroid closer to either of the clusters. This does not necessarily resolve
the disagreement between left and right entirely, but prevents any in the middle
positions from occurring in the dataset.

Figure 6.2: Majority Vote Filtering for two clusters. The green point is the centroid of all
click-points and an acceptance radius is marked as a red circle, calculated from the mean
distance from the centroid to all other points. Blue points are accepted click-points and
red rejected click-points.

In an attempt to improve the majority voting algorithm even further, a
weight was added to every click-point when computing the centroid. The
weight is calculated as the inverse distance from the centroid, which must be
computed once before the majority vote filtering can be applied. It slightly
improved the accuracy when clusters occurred, but the average accuracy of all
the points decreased. Unfortunately, it did not solve the left-right ambiguity
either, and is therefore not included in the final algorithm.

To better deal with more than one cluster occurring, and improve the final
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joint position’s accuracy, several iterations with the majority vote filtering are
run. For each iteration, inaccurate click-points are removed and the iterations
are run until convergence (i.e., the center moves with less than a pixel after
each iteration), shown in Figure 6.3.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

Figure 6.3: Majority Vote �ltering with three iterations before obtaining the �nal position.
The green point is the centroid of all click-points with the acceptance radius marked
as a red circle found as mean distance from center to all other points. Blue points
are accepted click-points and red rejected click-points. Orange is previous iteration’s
centroid.

6.5.2 Qualification Restrictions

One challenge with majority voting is bad data that is so far off the actual
joint location that it negatively affects the result of the correct plotting, with
a set of examples provided in Figure 6.4. While majority voting will in most
cases handle these inaccurate annotations just fine, it is still desirable to remove
these cases from the set of click-points for a joint before running the majority
filter. Another reason for this is to remove bad worker contributions right away,
rather than having them present in the merged result. Because of this, we
add Qualification Restrictions, the last of the quality mechanism presented by
Schulze et al. [44], to prevent improper work from entering the result set.
Specifically, we seek to remove from our dataset the worker contributions where
the entire skeleton for a single frame either forms clusters, lines or is completely
random.

Cluster Detection

Cluster detection is used to remove the annotated frames where every point is
either in a single location or marked as obscured. These two kind of clusters
are annotated by a worker who attempts to click through every single image
without actually performing any work. It is faster than creating a line and,
fortunately, is quite easy to detect.

By measuring the maximum distance between every joint position, a cluster
can be defined as present when the maximum distance between all click-points
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(a) Cluster (b) Line (c) Random

Figure 6.4: Cases where prede�ned �lters are used to remove noisy or incorrect data.
Blue points indicate click-points (joint) and red lines are limbs connecting joints.

is less than a given threshold. For the sequences used in the campaign, a four
pixel radius tested to be a good value. With obscured points stored as the point
(−1,−1), it also detects images with all joints marked as obscured. Marking
every joint obscured is faster than placing click-points, but not correct (usually
at least some body-part is visible).

Line Detection

Another form of speeding through the task is creating lines, but this is much
more challenging to detect than clusters. Lines occur when a user clicks across
the image, starting from any location, and moving the mouse to the opposite
edge. A couple of different approaches can be used for line detection, but they
all come with their own drawbacks.

The first approach attempts to draw a line between the points furthers apart
from one another. With this line, each click-points’ distance from this line is
calculated and if every point is less than a given threshold, it is considered a
line. An additional benefit of this is that users who only click a couple of joints
is also identified as a line, which is desirable. Unfortunately, a line can have a
greater curve than the given threshold or a player might be validly annotated
with a line skeleton if he is standing upright in portrait. Both of these cases
makes the first line detection attempt to strict and potentially harmful to the
end result.

The second one attempts to define a left-of or above-of of other click-points.
It works by taking every point and check if they are placed in such a way that all
other points after the current point, decided by the click-point order specified
in the training tool, is either above itself, to the left, right or below. If every
click-point have, e.g., all other click-points to the right, it would be a line.
Unfortunately, workers do not necessarily create lines in an orderly fashion,
and this method was discarded as well.

Because a proper solution to line detection was not found, it is not included
in the crowdsourcing filtering process, but left as a future improvement.
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Problems in detecting lines is both in being able to define a line from a set
of points, and not have it be filtered out as a line when a player is standing
upright in profile. An additional test to check if every crowdworker annotated
lines could be made, and if every worker annotates a line it could be considered
correct. However, we rely on the majority vote filtering with iterations to reject
the click-points on the line which is too far away the actual joint location.

Detecting Randoms

The last type of speed-through of tasks are workers that are clicking randomly
across the entire frame. One could remove these points that lay outside
the bounding box, or create a ellipsis region where the most click-points
resides. The problem with both methods though, is identifying the ones clicking
randomly inside the bounding box. The best way would probably be testing
the full skeleton for every frame against a kinematic constraint model (see
Section 3.1.3) that would most likely remove random annotations, but creating
a kinematic constraint model is outside the scope of this thesis.

Because of this random click-points is not removed by a qualification
restriction filter, but let to the majority voting to handle it. Click-points far
outside the location for most other click-points causes an additional iteration of
the majority filter to be run, but does not affect the final results. It is when the
points is placed near, but not correct, that they negatively affects the merged
results. Even though they are not removed, it would still be better to filter them
out to reduce noise in the aggregated result-set.

6.5.3 Aggregating Results

By now, it is assumed that only good results remain in the dataset, where
poor positions are removed by gold standard tests or majority voting. The
final filtering step is then to merge the results into a single value that can
be used in the classifier. In line with majority voting, the centroid of all the
accepted workers’ clicked-points are found and exported as the solution [30].
An interesting observation to be made here is that the final centroid location
is more accurate1 than any of the individual users. However, for a proper
crowdworker filtering, a sufficiently large number of worker entries per image
is required to ensure reliable and precise final merged joint positions.

The same majority voting approach is used for every joint to decide whether
it should be annotated as obscured or not. A vote for being visible is represented
by a clicked position and if the number of votes for visible is larger or equal to
half of the click-points for that particular point, it remains visible. Otherwise, it
will be considered not visible, i.e., obscured.

1Compared to a ground truth set by an expert.
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6.5.4 Initial Results

First of all, encouraging workers to plot joint positions, even though it is
not necessarily directly visible, had a positive outcome. The number of
obscured points annotated by the workers matched more closely to the expert, a
promising improvement. For the logging system, it operated as expected and a
particularly useful addition is the worker start and end times that gives the time
a worker spent on the task, but also the effort required. It took a surprisingly
short amount of time to complete the second pilot: 20 to 40 minutes for the
workers who completed the full 40 frames.

Despite the large effort from some workers though, there is still an apparent
difficulty with limbs placement as observed in the first pilot. While the legs
are mostly, if not always, labelled correctly workers have a tendency to swap
the left and right limbs. The annotations for arms does not contain the same
amount of accuracy from the workers as the legs does: Clicked values vary
between spot on and seemingly random. With proper result aggregation, it is
possible to handle the varying degree of accuracy for arms, but it would still
be more useful if the click-points were more accurate in the first place. The
head, though, seems to be the only location all users tend to agree on, with
the difference being smaller than the width of a pixel. All of this information is
obtained through the logging of the gold samples as well as the majority voting
filtering. As already concluded in Section 6.5.1 majority vote filtering produces
the same acceptance percentage as gold standard testing, but is much simpler
and faster in use making it the preferred mechanism for worker validation for
this thesis.

While the second pilot is also considered successful, a third pilot was run
in order to ensure annotating of more than a single sequence is correctly
distributed among the workers.

6.6 Design Iterations - Pilot 3

The last pilot was run to ensure the system is stable and support multiple
sequences with annotation load-balancing. It was also used to test the
annotation limitations of the workers by including a variety of different
sequences.

6.6.1 Sequence Load Balancing

To ensure all sequences get tasked to workers and that every sequence gets
an equal amount of workers, an algorithm was developed to distribute the
workload. This algorithm operates by counting the number of annotated frames
within a sequence N and dividing it on the sequence length L, i.e., N/L
and produces a workload number, which we refer to as the sequence load
number. This number presents the completion rate, and can be multiplied by
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100 to obtain percentage. If a sequence is annotated more than once, then
the sequence load number will have a number larger than one, describing the
number of complete sequence annotations in the digit and partial completion
in the decimals.

When a worker logs on an request a task, the sequence with the lowest
sequence load number is administered. Also, within this sequence, images
are randomly chosen from the least annotated frames. Utilizing this selection
algorithm ensures that no sequence starvation occurs (i.e., not worked on due to
a bad randomization algorithm) and the workers are evenly distributed across
the entire dataset.

6.6.2 Initial Results

All the workload balancing algorithms worked without any issues, but the more
interesting part is the result from the three different sequences used. While pilot
1 and 2 used a single, straightforward to annotate video sequence, pilot 3 used
three sequences of different types. The first sequence is similar to the one used
in the previous pilots, the second is a sequence with several players in the ROI
and, the last one a sequence overshadowed by the tribune and is located near
the camera array.

The labeling results gave a broader understanding of the different levels of
difficulty when annotating frames. Although the set is small, having the workers
perform similarly bad or good on the same frames is a good indicator for ease of
plotting. Ignoring the usual swapping of left and right labels, the results were
best if the image is bright with as little motion blur as possible. Images with
higher resolution also makes it easier to annotate, although the overshadowed
sequence close to the camera has a lot of random click-points (even compared
to the sequence with multiple players in it), despite having more resolution
than the other sequences. This indicates that brightness of the video affects the
annotation difficulty, but more testing is required to determine if this is the case.
In the case of multiple players, there is a consistency issue where the different
workers decide to plot different players.

With the different levels of sequence types in mind and no other issues with
the Online Training Tool present, the full-scale crowdsourcing campaign
was set up and run.

6.7 Crowdsourcing Campaign and Results

With all the design iterations complete (i.e., the three pilots), the campaign
containing the full dataset was started. Based on the feedback and results from
the first three pilots, the task distributed to the workers consisted of 24 images
to annotate without any gold standard tests. They did not have to label the
action type, as that was predefined from the set of chosen sequences.
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For this campaign, a total of 27 sequences (labeled S0 through S26) was
chosen from the center camera in the array, with each sequence having the
action class predefined. All of these sequences are selected to prevent tracking
failure or annotation ambiguity from the workers, resulting in sequences that
should be solvable for crowdworkers and possible for the player tracker to
follow the player. Table 6.1 lists the sequences, as well as their action label
and length.

The final dataset should have each image annotated nine times, although
it was ended at approximately five times due to an optimization problem (see
Section 8.3.3). Even with a smaller than desired result set, it proved to be
sufficient based on the assessments made over the results.

Sequence Motion Frames

S0 run 36
S1 run 154
S2 sprint 57
S3 walk-backwards 60
S4 walk-backwards 88
S5 run 56
S6 sprint 49
S7 walk 168
S8 sprint 52
S9 run 115

S10 walk 66
S11 run 48
S12 walk 163
S13 side-jump 47
S14 run 63
S15 run 90
S16 walk 131
S17 side-jump 29
S18 run 44
S19 kick 18
S20 side-jump 32
S21 kick 25
S22 run 54
S23 kick 30
S24 run-backwards 51
S25 run-backwards 46
S26 walk 126

Table 6.1: List of video sequences used in the crowdsourcing campaign.
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There are two primary aspects and one secondary aspect to look at when
assessing the results of a crowdsourcing campaign for scientific work [58,
60], where the primary aspects consists of accuracy and efficiency, with
the secondary aspect on how the crowdworkers’ perception of the tasks is.
The combination of these factors determines whether using a crowdsourcing
platform is better or worse than to hire experts. The first and most important
aspect is what we define as accuracy, which compares the precision and
similarity between the workers and an expert. Secondly, given the accuracy
provided by the workers, we evaluate the crowdsourcing platform as a viable
alternative to experts, i.e., if crowdsourcing is better in terms of Cost and Time.
Indirectly affecting accuracy and efficiency results is how the crowdworkers
think about the tasks, as an engaging task is more likely to be done better. The
crowdworkers perception are presented briefly at the end of this chapter.

6.7.1 Accuracy

Testing the accuracy of the workers is best done by comparing the click-points
against an expert’s, similar to what is done with gold standard testing in
Section 6.4.3, but with a few differences. Firstly, three sequences from the
crowdsourcing campaign was chosen instead of the randomly chosen images in
the gold standard test:

• Sequence S5 with action "run"

• Sequence S20 with action "side-jump"

• Sequence S21 with action "kick"

Secondly, the filtered and merged set of the workers click-points are used
instead of that from individual workers. This should ensure the best annotations
the workers can collectively provide and is also more correct, because the joint
positions obtained here are the ones actually used in the annotated database
for skeleton reprojection.

Figure 6.5 shows the three sequences S5, S20 and S21. The y-axis
displays the mean eucludian pixel distance, with maximum and minimum bars.
The mean is computed for the non-obscured click-pints in a sequence for a
particular limb (which can be seen with HandLeft in sequence S20, which is zero
because all click-points for this limb are obscured). Additionally, an acceptance
threshold is also present to define what would be an acceptable accuracy, with
anything above this line being unacceptable. The threshold is set to three
pixels, a value determined by inspecting the video sequences’ individual images
and measure the area under which a click-point can be considered correct,
demonstrated in Figure 6.6. Note, however, that this value is only valid for the
selected sequences, with other sequences having a lower or higher acceptance
radius.
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Figure 6.5: Mean difference between the merged crowdsourced joint placements and an
expert, measured as pixels, with maximum and minimum bars. Everything below the
acceptance threshold is considered acceptable, but is only valid for these sequences.

Figure 6.6: Blue joint positions annotated by expert, with red circles showing a 3-pixel
margin of tolerable errors for crowdworkers.

Overall, the mean accuracy of the workers is rather good and a lot better
than anticipated. Remember that a pixel-perfect match against the expert is
impossible, simply because pin-pointing the exact joint position in the up-scaled
training images requires no more than a two pixel deviance from the expert
before being in a different location. A small variance between the expert and
the workers is expected and everything below three pixels is considered correct.
The results are also highly dependent on the level difficulty of annotating a
player, with "side-jump" (S20) being the simplest as the player is always facing
the camera with all limbs clearly visible and indistinguishable.

When limbs are harder to tell apart, the maximum distance increases. The
most notable example is S5’s feet, which suffers from a mix-up of which one
is left and which one is right, causing a large difference between the workers
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and expert. Actually, most of the maximum error distances measured are from
either disagreement between the workers themselves or hard to determine joint
locations. For example, in Figure 6.7, the workers disagree on the exact location
of the right leg, making the merged joint location more of a random guess rather
than an actual estimate. On the other hand, the minimum shows that it is
possible to have great accuracy, if not even better than what the expert plotted,
as shown in Figure 6.8.

Figure 6.7: Workers attempt at plotting
an ambiguous right leg (more precisely
the hip) with the individual click-points
marked with orange points.

Figure 6.8: Skeleton obtained after Ma-
jority Vote Filtering, with blue points
marking joints and red lines marking
connecting limbs.

A lot of these results depends on the quality of the filtering and merging of
individual click-points. As discussed in Section 6.5.1, placing weights on the
click-points could probably reduce the maximum distance error on the feet in
sequence S5. Adding additional constrains, like a kinematic constraint model
(see Section 3.1.3) or make filtering utilize temporal information across frames
may further improve the average and maximum distances from the expert. Even
though the maximum errors can be reduced, we do not attempt to improve it
further, as the mean results are already within tolerable margins.

To summarize: The accuracy of the crowdworkers are rather decent
compared to an expert, although, it would be nice to have it even closer to
the expert. Most notably is the left-right annotation ambiguity that makes the
distances from the experts far too large and would greatly increase the overall
accuracy for all joints and sequences if it was not the case. Having more entries
per joint per image could possibly improve the results even more, but we were
limited to approximately five to seven click-points per image. Yet, with the total
mean deviance from expert being 2.66 pixels for the three sequences makes
it barely adequate enough to attempt using it in pose estimation and skeleton
transfers in Chapter 7.
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6.7.2 Efficiency

To determine if a crowdsourcing platform is a viable alternative to experts for
annotating skeletons depends not only on accuracy, but also efficiency. We
define efficiency as being both faster and less expensive compared to an expert.

Time

For reference, an expert can annotate 30 to 60 images per hour (depending on
difficulty) with an average of about 50 images per hour. In addition, an expert is
expected to get paid 200NOK to 1000NOK (25USD to 128USD2) per hour. This
section evaluates the crowdworkers performance in both of these categories.

In our crowdsourcing campaign, a worker is paid 1.10USD per task, with
each task consisting of 24 images and an expected completion within 30 or 40
minutes. A summary is given in Table 6.2 which shows how a single worker or
expert is estimated to perform. The table also includes an estimation of how
much time a single worker or expert would need to completely annotate all the
frames in the campaign, called completion estimate.

Worker Expert

USD/hr 2.20 25−128
USD/image 0.13 0.50−2.56
images/hr 1−48 50
images/day 1−384 400
Completion Estimate hrs 1898−40 38
Completion Estimate days 1989−6 5

Table 6.2: Comparison between a crowdworker and an expert. Images are for the
1898 frames in the database and an image for what can be done during an hour. Day
and completion estimates are based on eighth hour work days, with the results being
approximate.

An expert can manage to annotate 400 images in the course of an 8 hour
work day. While this number is significantly larger than a single worker average
of about 192, it does not represent the actual images per day correctly. One
of the key components in using crowdworkers is that they are a crowd of
people ready to solve problems. Figure 6.9 shows the number of images
annotated per day since the start of the campaign, with the crowdworkers
greatly outperforming the expert in terms of annotated images, but not by that
much. Because every image is annotated several times results in the actual
annotated images per day are only a fraction of the actual count. In our case, it
would be only one-fifth of the actual count, as each image is tasked an average
of five times. Even then, though, they still exceeds the expert performance.

2Conversion rate from Google Search 2015-6-9
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Figure 6.9: Images annotated by crowdworkers per day since start of the campaign.

Righteously, more experts can be hired, but they are far more difficult to hire,
making the crowdsourcing platform both faster and easier to get the images
annotated compared to experts.

Another interesting observation in the efficiency (time-consumption) in
Figure 6.9 is a quick drop of images annotated after day 3. While a small decline
is expected as workers either gets tired or complete their tasks, it should not be
that dramatic. The reason for this is actually the query from Section 6.7 that
slows down the system3. After optimizing this, the images per day went up to
a more normal completion number.

Cost

Despite the large number of annotated images per day and low time consump-
tion for the crowdworkers, they are actually a rather cheap workforce. With
a total of 1937 solved tasks and 1267 accepted tasks in the campaign, and a
total campaign cost of 1393.70USD, means that it is costing only slightly more
than the cheapest expert (25USD ∗ (1989/50) = 950USD). This makes crowd-
sourcing an good alternative, especially considering the most expensive expert
coming closer to 4900USD in salary. And, if not for the cost, at least for the
completion time.

3The exact details can be found in Section 8.3.3
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6.7.3 Worker Feedback

Feedback from the crowdworkers are indirectly tied to the resulting accuracy
and efficiency for the annotated skeletons, as worker who enjoy or like
the task are more likely to form proper work. Based on the workers who
provided feedback, there is apparently a great interest in our campaign:
The workers found the task to be original, interesting and even calling it a
game. Some workers also participated in several of the pilots and in the
final campaign, sometimes solving more than one task as well. Moreover, the
workers understood the concept of using low resolution and noisy images, but
they would still prefer more resolution to make annotation easier and less
ambiguous. In short, the crowdworkers are more than happy to annotate
skeletons, making it possible to continue use of a crowdsourcing platform for
this type of tasks.

6.8 Summary

This chapter contains how annotating of skeleton joints for a annotated data-
base are done using the Online Training Tool program and a crowdsourcing
platform. By alleviating the workforce available in a crowdsourcing platform, a
lot of work can be achieved with little cost and time. However, getting the best
results from seemingly random people requires good filtering and merging of
the results, referred to as quality mechanisms. The quality mechanisms in this
chapter includes Gold Standard Test, a direct way to test worker effort against
experts, and Majority Voting, which lets the worker themselves vote out poor-
performing workers. With ours and others’ experience in using crowdsourcing,
and both obtaining results close to experts, makes using a crowdsourcing plat-
form a very good approach to obtaining data that can only be set by actual
people. With it, we have obtained skeletons for all the sequences designed to
be used in the skeleton transfer, as part of the next chapter, Action Retrieval.
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Chapter 7

Action Retrieval

The problem of performing action re-
cognition and pose estimation in the
Bagadus system are solved as a single
content-based video retrieval problem. By
using the data obtained from Chapter 5 and
Chapter 6, a classification algorithm using
a motion similarity measure is implemen-
ted to map query sequences to annotated se-
quences and thereby obtaining the action la-
bel and poses by reprojecting the annotated
sequence’s data.

Based on the approach proposed by
Efros et al. [15], we model the action, or
motion, of tracked player sequences using
optical flow vectors and uses these in the mo-
tion similarity measure. The measure rep-
resents the similarity on a frame-by-frame

basis that determines how similar two video
sequences are.

This chapter starts with a description

of the optical flow algorithm, one of many

ways to obtain the motion of a video se-

quence. Then, the classification algorithm

used to map query sequences to annotated

sequences is described, including the motion

similarity measure. The most similiar se-

quence obtained from the classification is

then used to obtain the action class and a

skeleton by reprojecting it from the most

similar sequence to the query sequence. Re-

projection of the skeletons are described to-

wards the end of this chapter, with the res-

ults presented at the very end.
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7.1 Optical Flow

In Section 1.2.4, content-based video retrieval is presented with its two parts:
video extraction and a matching function (discussed later in this chapter).
The extraction of video sequences consists of tracking players, as described in
Chapter 5, and encoding these sequences into feature vectors. Because we are
interested in classifying actions and obtaining poses, the feature vector should
represent the action.

As proposed by Efros et al. [15], the video sequences are encoded as
optical flow vectors. Optical flow models the motion occurring between two
consecutive frames, based on pixel movement. Other approaches exists to
obtain motion of a figure, for example Kalman Filter, but Efros et al. discuss
how similar optical flow is to the human’s perception of movement found in
the retina. Efros et al. also mention that optical flow itself is not suitable to use
with noisy video, such as the one in Bagadus, but that it can work by performing
additional steps to normalize and account for the noise to a certain degree, and
that it is sufficient to successfully compare video sequences.

7.1.1 The Algorithm

Optical flow is the chosen method to obtain descriptors from the video
sequences, which is then used by the similarity measure (matching function).
Its goal is to represent the movements that a soccer player carries out.

How it is Used

There exists a multitude of optical flow implementations to estimate the
apparent motion, depending on what kind of motion that is to be obtained,
e.g., car movement, actions or camera tilting. Nevertheless, they all work on
the same basic formulation [18]: A pixel at (x , y) has an intensity I at given
time t. The motion, or optical flow, has the movement (∆x ,∆y) for a time
difference∆t, which describes the pixel movement. Calculating the movement
is done by taking the starting pixel and match it against several different pixels
in the subsequent image and the two pixels are said to match when the following
brightness constancy constrain holds: I(x , y , t) = I(x +∆x , y +∆y , t +∆t).
t can be greater than one, but real-time scenarios or consecutive video frames
have it set to 1. The main differences between all the optical flow algorithms is
how they estimate (∆x ,∆y).

To summarize, optical flow models motion as vectors by tracking pixel
intensities, working under the assumption that intensity for a single pixel found
in two different images is the same, on the same object, in both images, as
illustrated in Figure 7.1.
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Figure 7.1: Example Optical Flow vector obtained for a moving circle across �ve
frames. Image taken from http://upload.wikimedia.org/wikipedia/en/1/10/Optical_
�ow_example_v2.png.

How it is Done

Optical flow can be estimated with many different kinds of algorithms and input
sources, but the choice of algorithm also depends on the type of desired output,
i.e., a per-pixel or per-feature basis [28]. The first type, per-pixel, estimates the
optical flow vector for every single pixel in the image and is commonly referred
to as dense optical flow. On the other hand, per-feature, or sparse flow, is found
by using a set of distinct features found within an image. These features can
be anything from randomly selected areas (hard to estimate the movement of)
to particular patches of color or edges (easy to estimate the movement of). A
per-feature approach also calculates a vector for every feature, but the result
set is sparse. Because it is desirable to obtain a dense optical flow, as it better
models all the atomic actions, and use of the optical flow algorithms provided
by the OpenCV library is necessary, it narrows the algorithm choice down to
two candidates: Lucas-Kanade and TV-L1. Experimenting with both candidates
gave a clear indication that TV-L1 matched best with the current video source,
which is a discrepancy from Efros et al. [15] who uses Lucas-Kanade.

The implementation used here uses OpenCV’s Duali t y Based T V -L1 optical
flow function. The papers defining the algorithm can be found in the API
and can be summarized quite nicely: TV-L1 is a shorthand notation for Total
Variation Manhattan Distance. The algorithm is based on the pixel intensity
variation of an image (hence the T V ) with Manhattan distance (L1), but utilizes
additional unknown variables to increase the method’s noise tolerance and
ambiguous pixels handling, i.e., it attempts to add regularity (consistency) into
the equation. These two unknown variables that must be solved is what makes
the algorithm a duali t y . Despite attempting to force regularity into the result
vectors, by abstracting away some noise, this also causes it to be too restrictive.
To prevent this problem, it allows for a slight error in the computation. The
end result is an optical flow algorithm that is robust to illumination changes,
occlusions and noise, which is ideal for the Bagadus system.

The alternative algorithm, Lucas-Kanade, while not as robust as TV-L1, still
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performs well in most circumstances. Its inner workings is not that far from the
original optical flow algorithm specification, but takes into account neighboring
pixels instead of just one. It is capable of computing both dense and sparse
optical flow vectors, where the sparse set can even be specified as a set of specific
features. Using a set of specific features is quite useful when tracking objects,
but not as much when attempting to estimate the whole motion occurring in a
video sequence.

7.1.2 Region to Encode

How optical flow is applied has a large impact on the type of data the resulting
vectors contain. The three different ways are listed below, where the primary
difference being whether a player’s intrinsic action or movement across the
screen is most important:

1. To the original captured video frame (full frame, Figure 7.2a)

2. To the player of interest (player cut-out, Figure 7.2b)

3. To the player of interest with background removed (Figure 7.2c)

(a) Full frame (cropped to
selection)

(b) Region of the frame (c) Region of the frame
with background removed

Figure 7.2: Comparison of dense �ow on the three different methods.

Option 2 is not usable at all, because whenever a player crosses any of the
white lines on the field, the line is included in the optical flow estimation. This
occurs because the Region of Interest (ROI) is moving across the field with the
player, causing the background to move across the frame. Optical flow then
computes the flow for the background as well, including the white marker lines,
which results in abberrant feature vectors regarding our problem and option 2
is therefore discarded.

The remaining options 1 and 3 both gives correct optical flow vectors,
but with a slight difference. Option 1 gives the flow of the entire frame, but
also contains the movement of the player across the field. That is, both limb
movement and location difference is included in the vector.
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On the other hand, option 3 only consists of the internal movement
difference between two frames. It discards the additional movement caused
by physical movement. One could potentially add the positional difference
between previous and current frame, but it is not guaranteed to obtain the same
results as option 1. However, only option 3 is used as the intrinsic movement is
the desired output for the motion descriptors.

The selected region to apply the optical flow estimation also underlines the
need for the player tracking algorithm presented in Chapter 5. Moreover, many
other reasons are found in the action classification itself.

7.2 Action Classification

Sequence 
Extraction

Annotated
Database

Input 
Sequence

Channel 
Blurring

Channel 
Splitting

Optical Flow 
Computation

Channel 
Normalization

Similarity 
Measuring

Kernel 
Convolution

Action 
Classification

Output 
Sequence

GPUCPUStorage

Skeleton 
Reprojection

Figure 7.3: The complete pipeline for action classi�cation and skeleton reprojection,
with data in white, CPU stages in blue and GPU stages in green. The prerequisites are
also included in here, which consists of the Sequence Extraction and Optical Flow
Computation stages.
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The second part of content-based video retrieval is a matching function that
maps query sequences to annotated sequences. This matching function consists
of measuring the similarity between two sequences, based on the optical flow
result and computing the frame-to-frame similarity. This solution is based on
the proposal by Efros et al. [15], but the authors do not include all details
and because of this additional experimentation is required to complete the
classification algorithm. The most similar video sequence in the annotated
database is then used to define the query action class and used to reproject
the skeleton.

The action classification algorithm is designed as a pipeline which is shown
in Figure 7.3. The pipeline requires that the query sequence is normalized
according to Chapter 5 and has its optical flow vectors computed. Secondly,
an annotated database, as the one obtained in Chapter 6, containing video
sequences encoded as optical flow vectors with a corresponding action class and
skeletons for every frame is used to reproject skeletons into query sequences.

The rest of the pipeline starts with taking the input flow vectors and
transforming them into a matrix format. It then uses the transformed matrices
to obtain frame-to-frame similarity of all frame combinations and a kernel is
then applied to get the temporal information encoded into the similarity. Based
on a Nearest Neighbor algorithm, the highest scoring sequence is found and is
used to obtain the action label and pose for the query sequence. Because both
optical flow and the original video frames are used frequently in this pipeline,
we differentiate between frames from video sequences and the encoded optical
flow vectors for a frame in a matrix by using frames for the original frames and
flow fields for optical flow vectors.

7.2.1 Channel Splitting

The first step is to split the flow fields into four separate channels. Each channel
consists of the absolute magnitude of a vector at a particular pixel and holds only
vectors having the same range of directions and the channel.

How it is Used

It is important that motion in a flow field is compared with motion of same
direction, not with opposing direction. If the flow field is not split into
the different channels, then comparison of the optical flow vectors would
result in false positives during classification, because the opposing vectors
would neutralize one another. It is, of course, possible to take this into
consideration when computing the frame-to-frame similarity later on, but it
would increase the complexity of the algorithm compared to splitting up the
channels. Therefore, the flow field is split into four channels to prevent negative
flow vectors from being present.
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How it is Done

The flow field is modeled as a two dimensional array, whose every entry in the
array is an array with two scalars (i.e., x and y). The element array defines
the optical flow vector as the number of pixels required to traverse in order to
get to the next position the pixel occupies (current position is origin, everything
else is relative to this). The directions are then divided into 90-degree partitions,
where each pair of positive and negative values of x and y denote the direction,
resulting in the four channels F++, F+−, F−+ and F−−. Every channel has the
same size as the initial flow field and channels that contains negative values are
inverted to obtain positive values. Alternatively, more than four directions can
be used, for instance 45-degree separation, but the 90-degree provides ample
sparsity and prevents calculations with negative values (i.e., prevent scalar
product between two vectors to be null). Sparsity is important in order to get
distinguishable values that can be used for comparison.

7.2.2 Channel Blurring

After the optical flow vectors for a frame has been divided into four separate
channels, they all need to be softened by blurring. Blurring is achieved
by applying a Gaussian Filter to each of the four channels individually.
This is another reason for wanting to divide the four channels: to avoid
smoothing across negative and positive values, which could potentially result
in magnitudes being smoothed out to the point where they become zero.

How it is Used

When the blurring is applied, it reduces the hard borders between each value,
creating a larger surface of magnitude values instead of a few points. The flow
field channels are then more tolerable to small misalignment in actions. Without
the blurring, small misalignment in the flow fields can cause the matching to
reject a pair, because the vectors did not align up perfectly. In other words,
the channels becomes less absolute and will potentially match with more query
sequences (i.e., positive matches). With more positive matches one gets a higher
change of finding a matching sequence if the query sequence proves difficult to
classify with the given trained data. Minor differences becomes tolerable, while
still having the best matches getting the best score. This holds true, because a
single vector that matches exactly between two channels still do so even if the
channels where to be blurred with an equal amount.

How it is Done

The Gaussian Blur is described in Section 5.1.3 and is therefore not described
here. Instead, we focus on the balance concerning the amount of blur to apply.
In context with the Gaussian Filter, it can be translated to how large the blurring
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matrix should be. If the matrix is too large, then the amount of detail vanishes.
Without details, the similarity certainty between any two pair of sequences
becomes more questionable, and, with enough blur indistinguishable. On the
other hand, if not enough blur is applied, then the effect of smoothing out
values makes it less tolerable to slight differences and noise. In a nutshell,
it comes to a compromise between being able to tolerate errors and offset and
completely wash out distinguishable features, with discrete features being the
most important for the frame-to-frame similarity comparison. By experimenting
with different sizes with the default Gaussian filter provided in OpenCV, we
ended up with a matrix size of 5×5.

7.2.3 Channel Normalization

The different flow field channels contains a varying range of values, i.e., the
optical flow vectors have different magnitudes, depending on the pace and the
action being performed. While different actions are to be grouped into separate
classes, it is desired to not have the pace of the action affect the choice of the
class. Because of this, channel normalization is required.

Normalization could be applied at a stage in the pipeline: over the input
flow field before they are split into channels, after they have been split into the
channels, or after the channels have been blurred. However, because blurring
causes changes in the magnitude of the vectors, it is best to do normalization
after blurring the individual flow channels.

How it is Used

There are two reasons to normalize channels: The first reason is to avoid
sequences with large optical flow magnitudes from always being measured
as the most similar. Because the similarity measure (later in the pipeline)
computes the scalar product between two unit vectors, it will always have the
sequence with the largest magnitudes for the optical flow vectors be the best
matching (i.e., highest scoring). The magnitues are a result of how fast a
motion of a limb is, which can vary within the same action (e.g., kicking the
ball can be done with different strengths). Since actions of the same class is
to be classified together, independent of the pace the action is performed, it
requires normalization. The second reason is to have the similarity measure
later on to be in the interval [0,1].

How it is Done

Normalization is done by calculating the mean magnitude of a channel and
dividing it by this value, and it is done for every flow field for every frame in
sequence. Alternatively, the mean could be computed from all of the flow field
channels (i.e., F++, F+−, F−+ and F−−) in a frame, but because one channel
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typically has more movement than the others (any limb can only move in one
direction at a time), it would result in key features of the other channels reduced
to almost nothing. Another alternative would be to calculate the mean for a
single channel across all the frames, but with most flow field magnitudes being
close to zero, it would introduce a lot of noise.

7.2.4 Similarity Measuring

At this stage, the video sequences (both a query sequence and an annotated
sequence) have had their optical flow descriptors normalized and are ready to
be compared. The comparison is done using a similarity measure, which is
implemented as a scalar product between two flow fields.

How it is Used

The feature matching function is designed to calculate a score for every single
frame pair between the query and annotated sequences, resulting in a matrix
where the number of rows and columns is equal to the sequences’ lengths. This
matrix will then, in a later stage of the pipeline, be used in a classification
algorithm to determine, out of all the annotated sequences, which sequence
is the most similar to the query sequence. Calculating a single point, or frame
pair, in this matrix is done by using the motion similarity presented in [15].

How it is Done

The frame-to-frame similarity formula is given in Equation 7.1. It computes
the scalar product of the flow fields for every frame pair (i, j), with the ranges
defined in I , to obtain the frame-to-frame similarity matrix S f f . It comprises
the sum of the channel product between two channels a and b, corresponding
to one of the flow channels (e.g., F++). However, because the flow fields are
modeled as matrices, a small transformation is required to have the matrices
described as vectors. This is done by taking each column in a matrix and
stitching them underneath one another to form a single vector. The scalar
product between a and b is then expressed as Equation 7.1.

S f f (i, j) =
4
∑

c=1

∑

x ,y∈I

ai
c(x , y)b j

c(x , y) (7.1)

The resulting matrix S f f only takes into account the temporal and spatial
information of a single frame and not on the entire action. Since two identical
frames can come from different actions, with the only way of distinguish them
is by looking at the previous and next frames, it is required to also include
neighbors’ frames information to S f f . This is done in Equation 7.2 and results
in the matrix S having a temporal span (neighbor frames’ spatial and temporal
information) of T .
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S(i, j) =
∑

t∈T

4
∑

c=1

∑

x ,y∈I

ai+t
c (x , y)b j+t

c (x , y) (7.2)

This can be improved further, as Efros et al. [15] point out: The similarity
between two sequences occur along the diagonals. This similarity is a result of
how the matrix S f f is constructed of (i, j) flow fields, i.e., frame pairs. Iterating
though both the sequences i and j at the same time (i.e., increment i and
j on every iteration), it is the same as traversing the matrix S f f diagonally.
Therefore, instead of accumulating the values of all the neighboring flow
channels (frame pairs), only the ones in a direct diagonal is used. However,
there are times when the action occurs at slightly steeper or slopier angles than
to the diagonal, to which a slight offset of the diagonal should be included in
the temporal span computation.

7.2.5 Kernel Convolution

Kernel convolution in computer vision is an operation used for altering the data
of an image (we have already described one of these, namely the Gaussian
Filter). Using this same technique, the temporal information of diagonals (i.e.,
the diagonal and slightly offsets from the center diagonal) can be specified as
a matrix and applied to the matrix S f f , resulting in the similarity matrices in
Figure 7.4.

(a) Similar classes, but not
same class

(b) Different classes (c) Same classes

Figure 7.4: Rendered instances of the matrix S, using a convolution kernel with N = 21
and σ = 0.05. Note that dissimilar is blurred, and the best match have the clearest
diagonal lines. The query sequence is represented in the horizontal direction and the
annotation sequence in the vertical direction.

How it is Used

There is one large advantages to using kernel convolution compared to statically
define the temporal span. The reason is that it is straight forward to change
the rules that defines the extent temporal information to be added to the
similarity matrix. This is particularly useful, because this makes it easier to
experiment with a large number of kernels. Since there exists no definitive
way of identifying the exact kernel configuration it means that a large set of
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kernels must be tested to find the one most suited to the Bagadus system. In
more detail, the different kernels consists of changing the temporal span, i.e.,
number of frames to check, and how tolerable it is to offsets from the diagonal,
i.e., how much difference there can be in the pace. Whichever kernel produces
the most accurate action classification is the one deemed most suitable.

How it is Done

A kernel K is created by taking two parameters: N and σ. N defines the range
of the temporal span to include, i.e., the number of previous or following (a
Gaussian law of standard deviation σ) frames to include into the computation
with σ defines the offset from the diagonal that is to be included in the kernel.
The construction of the kernel then constitutes of creating a N ×N matrix and
then produce lines across the diagonal in this matrix. The lines have a common
center point in the center of the matrix, with each line being a few degrees offset
from the diagonal, with the amount specified by σ. These lines contains the
weight of the matrix elements, with lines closer to the diagonal weighted higher
than the ones further away. Overlapping lines’ value for a given matrix element
are then combined and when all the lines are created, the matrix is normalized
so that the sum of all the elements equals to one. Optionally, Gaussian blur can
be added. A kernel with N = 21 and σ = 0.05 is rendered in Figure 7.5, which
includes Gaussian blur.

Figure 7.5: Visual Representation of kernel K with a temporal span of 21 (frames) and a
diagonal variance of 0.05 (σ).

7.2.6 Action Classification

Using the matrix S, a score for a given comparison between the query sequence
and an annotated sequence is obtained. Using the Nearest Neighbor Algorithm
for classification, the annotated sequence with the highest computed score is
the one that is the most similar to the query sequence.
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How it is Used

The classification uses the frame-to-frame similarity matrix S to produce a score
consisting of the sum of all the matching frames. In result, the optical flow
vectors are directly used to define the similarity which, in itself, consists of
the action performed in a frame. Consequently, if either the resulting optical
flow vectors or player tracking normalization obtained do not obtain enough
distinctive features, the classification will fail. For example, the action standing
does not have any motion, which results in a series of empty flow fields for every
frame. In this case, the classification behavior is impredictable (i.e., random).
Whichever annotated sequence has the highest similarity score ends up being
the sequence to which the action label is obtained from and the skeleton used
in the reprojections.

How it is Done

A sequence is already compared against another sequence through the kernel
K , with the comparison results (i.e., similarity measure) in matrix S. Choosing
the most similar video sequence in the annotated database is then done by
finding the maximum value M in S for every sequence in the database and then
take the sequence with the largest M value. This sequence, found by a max-of-
max computation, is then used to define the action for the query sequence and
reproject the skeletons into the query sequence’s frames.

However, there are two shortcomings in the max-of-max approach. Firstly,
the comparison is only valid for the same temporal span as T and not across
the entire sequence (although, the classification accuracy is more or less the
same as the one we propose in the next section). Secondly, as a result of only
using the maximum in S, the skeletons for reprojection at a later stage might not
achive the best result: Because skeletons are reprojected i.e., transfered directly
from the annotated sequence onto the query, they depend on the most similar
frame to be as similar as possible to obtain the most accurate skeleton. With
max-of-max, only the maximum accuracy of a single frame/skeleton is chosen,
however, we want to maximize the number of similar frames found across all
frames in a sequence to have as many high-accuracy skeletons as possible.

We use a similarity score that is computed from the highest matching frames
for every row in the matrix S. This is done instead of summarizing the entire
row, because the sum of every row can result in an overall better score than
just using the highest matching frames. In other words, we are only interested
in cases where the motion is indisputably similar and ignore motion that is
approximately similar, but not exact. Once the score has been summarized, it is
normalized by dividing the score with the length of the annotated sequence.
The final classification score then ensures only the most similar sequences
are classified together and that the length (number of high matching frames)
does not affect the overall score. The scoring is given in Equation 7.3, with I
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containing the number of rows and J containing the number of columns.

Score(S) =
1
I

∑

i∈I

max
j∈J

S(i, j) (7.3)

The Nearest Neighbor algorithm can be extended to use n best matches
results instead of using a single, best scoring sequence. The action labels that
most of these n sequences have then becomes the final action class (but only the
highest scoring among them can be used for skeleton reprojection). This could
improve the classification results, but it also requires a sufficiently large dataset.
In the case of n sequences, at least n/2+1 annotated sequences of every action
should be present to guarantee that every action can have the majority (a proof
by induction that we do not include here, as it is not used). Alternatively,
weights can be applied to the voting to account for multiple suitable classes
and cases with too-little data.

7.2.7 Skeleton Reprojection

From the most similar annotated sequence it is possible to extract the skeleton
and transfer it into the query sequence. The skeleton is chosen from the
annotated frame that has the highest optical flow similarity with the novel
frame. This is found by checking each element in matrix S for highest scoring
values.

How it is Used

The annotated sequence with the highest score has been obtained because it
has optical flow vectors with similar directions at the approximate same place
and time within a sequence. Moreover, the individual frames with the highest
similarity score has the most equal motions in that particular time interval.
Since these two frames are closely resembling one another it means that the
skeleton, or pose, found in the annotated sequence can be used to define the
pose for the query sequence. In essence, the annotated sequences’ skeletons are
reprojected onto the most similar frames found in the query sequence.

How it is Done

The skeleton reprojection works by taking the skeleton annotations, which
consists of pixel coordinates according to the tracked ROI, and place these joint
locations in the query sequence. To correctly align the skeleton onto the query
sequence, the annotated and query frames are placed on top of each other so
that the center of each ROI is in the same location. After that, the joint positions
can be directly transferred to the query frame. We also adjust the height of the
reprojected skeleton, by scaling it uniformly around the center. Specifically, the
scaling factor is found by computing how much the annotated frame’s ROI must
be up-scaled or down-scaled to match the query ROI.
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Even though a pose has been obtained for the query sequence, it is a best-
match and not a perfect match search, meaning that there will be discrepancies
between the frame and the pose. Additional adjustments of the transferred
skeleton is required to obtain a precise pose, but is left as a later improvement,
because it requires additional segmentation of the video frames to correctly
adjust the skeleton. Although, the results could be improved somewhat by
moving every joint outside the foreground mask the minimum amount of pixels
required to be inside the mask. This should improve situations where the
skeleton is slightly different in size (caused by difference in field positions when
captured), but is not done due to the inconsistency issues from the background
subtraction. Overall, the final skeleton sequence can be exported to any data
format required.

7.3 Results

There are two sets of results obtained from the classification: action labels
and skeletons. Before discussing any of the results, a couple of measurement
methods is presented in order to properly define the classification results.

7.3.1 Classification Terms

When operating with classification, there are five terms that needs to be
understood: false positives, true positives, true negatives, false negatives and
confusion matrix. Each of these terms describes how correct a particular
classification is compared to the correct solution.

Accuracy Measurements

The first four terms are used for computing the accuracy, or correctness, of a
classifier. The first, true positive, is an instance that is successfully placed in
its belonging class. The main goal of every classifier is to have all the input
queries classified entirely as such. However, there are times when false positives
occur in the result. These are instances where the input query is rejected from
a class, despite the fact it should be included. Not to be confused with false
negatives, which is an included sequence even though it should not. The last
one, true negatives, are instances that are not to be included in the class and
successfully rejected as such. With all of these terms, it is possible to discuss
upon a classifier to describe the quality of the algorithm and in which aspects
it succeeds or fails. The most common quality measure is accuracy, computed
from the formula (t rue_posi t ives + t rue_negatives)/total_elements. The
higher this score is close to one, the better. There is a second type of statistics,
called recall, but it offers no usable information to this thesis. The reason being
that it measures the amount of sequences found in the dataset compared to the
actual available, but considering we run through all the sequences, it makes this
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measure useless. The same goes for t rue_negatives, which does not provide
any useful statistics than what t rue_posi t ives already provides.

Confusion Matrix

True positives, false positives, true negatives and false negatives are best used
with a two-class classification problem. When more that two classes are
considered, a confusion matrix is a better way to both visualize and evaluate
classification results. A confusion matrix is a two-dimensional table with
expected classes along one axis and actual classification results on the other.
For a perfect classification algorithm, all the classification results should be
along the diagonal from top left to bottom right (i.e., every classification
result is a true positive). The benefit of using this matrix over the regular
accuracy measurements above, is that in addition to showing t rue_posi t ives
it shows f alse_posi t ives in an equal degree. Identifying the instances of
f alse_posi t ives can aid in determining the factors involved in a failing
classifier, as we can see in the next section.

7.3.2 Classification

To determine the accuracy of the classifier presented in this chapter, we extend
the set of sequences used in Section 6.7 with an additional 42 sequences. Also,
because Efros et al. [15] do not specify clearly the kernel configuration, and to
better adjust the similarity measure to our scenario, we run the classifier with a
combination of kernel sizes sigma values. Table 7.1 displays an approximately
accuracy measure, calculated from t rue_posi t ives/total_elements, obtained
from the different kernel configurations.

N\σ 0.0 0.2 0.5

9 76% 70% 70%
13 76% 72% 72%
15 74% 72% 70%
21 78% 72% 70%

Table 7.1: Summarized classi�cation accuracy for different kernel sizes and sigma values.

With a relative large variance in kernel sizes and sigma values, a larger
variance in the table was expected. The small variance may result from using
the same player for all sequences in the dataset, which also leads to consistency,
i.e., the speed an action is performed at remains consistent between different
sequences of the same class. Alternatively, the consistency can come from the
selected test-set, as it contains only those sequences which can be certain to
produce proper tracking results (and thereby also nice optical flow vectors).
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In other words, the sequences found are already matching really well to one
another, independent of the kernel used.
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(b) Confusion Matrix for N = 21 and
σ = 0.05

Figure 7.6: Confusion matrices for a selection of kernels, with the number de�ning the
number of instances for that classi�cation pair.

Another factor that limits the accuracy for every kernel configuration could
be the expert labeling of the sequences. This is especially true for the "run"
and "sprint" actions, which are only distinguished by the leg strides and visual
speed across the frame rather than an actual metric, e.g., calculated velocity
of a player for consecutive frames using ZXY positional data. Small subjective
differences can cause accuracy loss due to miss-labeling, but considering that
most of the time these actions are correctly classified makes it sounds more
plausible in an error from the classification algorithm. In particular, the channel
normalization stage in the pipeline can cause miss-classifications. While it is
designed to allow mapping of similar actions to the same class independent of
pace, it might negatively affect the distinction between "run" and "sprint", as
magnitude information is lost during the normalization.

Looking into one of the best and one of the worst confusion matrices in
Figure 7.6b and Figure 7.6a respectively, a few more observations can be
made. First of all is the class distribution of sequences: with running being
predominately the most common action in our dataset and is also the most
common in most, if not every, soccer game. This causes other, non-running
actions to be classified as false positives, i.e., as running. An example for
this is "side-jump", which is commonly mis-classified as "run", or, the inverse:
"run" being classified as "side-jump", e.g., Figure 7.7a. A possible explanation
for this is how optical flow is calculated: It does not take the direction the
player is facing into consideration and with both side-jumping and running
performing a lot of scissor-like leg movements, while remaining relatively still
with the remainder of the body, it can end up having very similar optical flow
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vectors. The observed camera angle may also have an effect here, making
the two actions appear similar with a given perspective. Similarly, "side-
jump" is often put in cases where "kick" would be the proper class, caused
by the same leg-movement spread e.g., Figure 7.7b, which has incorrect class
and thereby incorrect reprojection of the skeleton and even fails to scale the
skeleton correctly, although the latter is caused by player tracking failure due
to background subtraction not being correct.

(a) "Walk" classi�ed and with skeleton
reprojected using a "side-Jump" class.

(b) "Kick" classi�ed and with skeleton
reprojected using a "side-jump" class.

Figure 7.7: Results from classi�cation and skeleton reprojections. Blue points marking
joints and red lines marking connecting limbs.

On the other side, though, the "walk backwards" action is rarely confused
with its regular "walk" (forwards) class, despite having very similar vectors
when facing direction is ignored. Still, human legs do not move in the same
manner both ways and this might be just enough for it to be distinguishable by
the similarity measure. Also, an accuracy of 78% might not be a bad percentage
if the final reprojected skeletons are accurate. However, even if the skeleton
reprojection is spot on, there might be an issue for programs using the class
label for statistics. In short, if the action classification without the skeleton
transfer is desired to be used in automatic annotation of the players during a
match, a much higher accuracy is desired.

While still a lot more research and development is necessary to firmly define
the causes for all the miss-classifications, and solutions for correctly classifying
the remainder 22% of the video sequences, it is far from a random guessing of
the correct class, which shows that the chosen action classification algorithm
works to a certain degree.
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7.3.3 Reprojection

Since the best accuracy is achieved with a kernel of 21× 21 and σ = 0.0, it
is used as the only kernel when obtaining the skeleton reprojections results.
By comparing the reprojected skeletons obtained with the classification and
reprojection pipeline towards to the same sequence’s annotated skeleton, the
eucludian distance between the joints can be computed, measured in pixels,
and the reprojection error can be plotted. Figure 7.8 presents this plotting,
by first finding the mean of every frame in a sequence and then display the
median, maximum and minimum value for all the frames. Additionally, the
graph ignores any obscured points. The graph also includes the classification
fail/pass results for comparison. Because only sequences annotated by the
crowdworkers are used, the number of sequences are limited to only 27.
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Figure 7.8: Skeleton reprojections compared to ground truth, with the difference
measured in pixels. The graph shows median values with maximum and minimum bars.
Everything below the acceptance threshold is considered acceptable, but is only valid for
these sequences.

In order to have any meaningful way to speak of accurate or inaccurate
reprojection results, we define an accuracy threshold of 3 pixels. 3 pixels
deviance is within visually correct placement of joints of the 27 sequences used
(cf. Figure 6.6 on page 69), but other sequences may or may not have a smaller
or larger deviance threshold.

With a accuracy threshold in mind, one quickly observes that the reprojec-
tion results are not as precise as we would like them to be, but they are not
that far off either. Looking at Figure 7.9 of best and worst-case representa-
tions, a few observations can be made. Firstly, almost every joint location of
the correctly classified sequence has at least one frame in which the joint is
no more that one pixel from its correct placement. Moreover, the mean repro-
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Figure 7.9: Joint reprojection error of Sequences S21 and S25, with the differencemeasured
in pixels. The graph shows median values with maximum and minimum bars. Everything
below the acceptance threshold is considered acceptable, but is only valid for these
sequences.

jection error remains quite consistent for all joints. However, what eventually
makes the overall precision of the skeleton transfer being low is caused by large
fluctuations in distance of joints during a sequence. For example, Figure 7.10
shows both close and far-off (greater than 3 pixels) reprojections compared to
the correct placements (the single dip is caused by the joint being obscured).
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Figure 7.10: Joint Reprojection error of Sequences 25’s Right Knee. The red line is an
acceptance threshold.
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A couple of factors affects the results and causes the accuracy of the
reprojected skeleton to be lower, namely the classifier itself and the fact that
no adjustments are made. With the classifier, despite that it finds the correct
action most of the time, does not take orientation of the players and distance
from camera into account. Orientation is important, because the optical flow
can appear very similar, but, for example, a 45-degree difference in running
direction results in misalignment on the torso and arm, but not on the legs
as shown in Figure 7.11a. This could potentially be resolved by adjusting the
skeleton after reprojection, as currently the skeleton is only copied from the
annotated sequence with only size-adjustments (which at times fails to correctly
resize the reprojection to the new image). Modifying the skeleton after initial
transfer is done in several other algorithms, e.g., Zhang et al. [59] uses a
two-step design with the second step being a refinement process, and should
definitively improve, or at least reduce, the small misalignment. Increasing the
number of sequences in the annotated database with a greater variety should
in theory provide sequences with closer similarity than the ones currently used.

Even without a large database of annotated sequences, orientation-
conscious classification and post-adjustments of skeletons, the reprojections can
at time be quite accurate. Figure 7.11b shows a best-case scenario of skeleton
transfer and is a perfect exsample for showing the viability of using content-
based video retrieval and a classification algorithm for obtaining skeletons, with
the initial results being quite promising. However, without an attempted 3D re-
construction, deciding if the skeletons obtained can be used in an eventual,
e.g., freeview application, makes it difficult to determine for sure how good the
skeletons are, but that is outside the scope for this thesis.

(a) Skeleton reprojected with a 45-
degree facing direction error.

(b) A pixel-perfect skeleton reprojec-
tion.

Figure 7.11: Examples of skeleton reprojections, with blue points marking joints and red
lines marking connecting limbs.
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7.4 Summary

In this chapter, we have described the optical flow algorithm used to obtain the
motion descriptors for every frame. Using these descriptors and the algorithm
proposed by Efros et al. [15], a motion similarity function has been implemented
that matches input sequences with a database of actions. Matching sequences
is then used to transfer, or reproject, the skeleton and class label onto the query
sequence. The skeleton is also exported and usable by other applications, for
example in use in digital scene reconstruction or analytic engines. With this
approach, 78% of all sequences were correctly classified and up to pixel-perfect
poses were estimated (i.e., reprojected). Although inital results are promising,
more research is required to determine if this process is suitable for use in the
Bagadus system.
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Chapter 8

Implementations and
Optimizations

Implementing the programs described
in Chapter 4 is done using C++, the
primary language found in the Bagadus
system. Yet, developing everything from
scratch is both time-consuming and error-
prone, therefore a set of C++ libraries that
contains the required functionality are used
that greatly reduces both complexity and de-
velopment time. The set of libraries used in
this thesis extends from simple pre-processor
commands for multithreading, to serializa-
tion and image processing. Additional lib-
raries are also used in a lesser degree for the
Online Training Tool, which consists of
javascript and PHP code.

Even with an extensive set of librar-

ies that exists for C++, there is still a lot

of development needed for the individual

programs. Most if this code is close to

or equal to the described pipelines found

in their respective chapters, with only the

most notable implementation details de-

scribed here. We emphasizes important as-

pect of the implementation and explore ex-

ecution speed and optimizations. In sum-

mary, this chapter includes a listing of the

external libraries included to support the fi-

nal pipeline and programs, as well as cover-

ing some parts of implementation and op-

timization problems, organized according

to the respective chapters. All the source

code can be found at [24].
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8.1 External Libraries

Quite a few of the algorithms and techniques described in this thesis can be time
consuming to implement from scratch. Using libraries that have the desired
functions already present is a reliable approach to implementing these functions
and some of these libraries are also optimized, saving time in both code writing
and execution speed. This chapter covers all of the libraries used in this thesis
for the development of the programs listed in Chapter 4.

8.1.1 OpenCV

Open Source Computer Vision Library (OpenCV) [38] is an open source BSD
licensed library initially developed by Intel as a research project, but is now
self-supporting. The library aims at providing both common and state-of-the-
art functions for machine learning and image processing, with options for ac-
celeration on graphics processors and multicore systems, with a varying degree
of optimizations. OpenCV is available in several languages, including Python,
MATLAB and C++, which makes it suitable to any development environment.
Additionally, the online API provides references to the implemented algorithm,
which is extremely helpful for research projects.

OpenCV comes with many other benefits that are useful when working with
video and image systems. With its large set of predefined classes for math and
image representations, it greatly reduces the amount of new classes that needs
to be written. More importantly, these classes are useful in scenarios not tied
directly to OpenCV usage. A prime example is the cv::Mat class, which contains
all required information of a single image, that can later be used on the GPU,
drawn upon, displayed or computed with any of OpenCV’s functions or ones
written separately. The cv::Mat class can also be used for general matrices,
and makes it very easy to display the values with color-coding, something that
can be a tedious task in regular C++. As a side-note, all of the figures present
in this thesis is created using OpenCV and its rendering functionality.

8.1.2 OpenMP

Open Multi-Processing (OpenMP) [37] is a library that allows for parallel
programming using compiler directives (known as preprocessor directives
in C/C++, e.g., #define and #include). Owned by OpenMP ARB, it is
designed to be powerful yet a simple way to make code run in parallel and
can be included in everything from simple embedded systems to multicore
architectures. The library, or compiler directives, can be both run-time and
compile-time configured and can also automatically scale the number of cores
to use if left unspecified. gcc (and g++) supports its use by adding #pragma
directly to related code and linking with the OpenMP library, making coding
fast and reliable.
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Code Snippet 8.1: Code for multiplying individual elements in two arrays together running in
parallel using OpenMP

1 void channelProduct(float *result, float *a, float *b, size_t length)
2 {
3 #pragma omp parallel for
4 for (size_t i = 0; i < length; i++)
5 result[i] = a[i] * b[i];
6 }

The most notable application for OpenMP is to parallelize for loops in
existing code, as Code Listing 8.1 shows. It can be configured to a specific
machine and its use-case, but most of the time it is sufficient to parallelize
the workload of the outermost loop across all available cores. OpenMP
automatically handles thread creation, merging and work division (using
pthreads for POSIX systems), a task usually prone to errors when implemented
manually.

8.1.3 Boost

Boost [7] is a collection of libraries created to extend and enhance the
already existing C++ standard libraries. The collections include everything
from containers not present in the C++ STL to utility math functions and
serialization. Each library is created as a module that can be included as needed
and appears non-intrusive in the code. Unlike many other libraries, Boost’s
collections are included more and more in the actual C++ standard, making it
a de-facto choice for any applications requiring any of its featured libraries. The
two library packages used in this thesis are serialization and iostreams.

With a large enough dataset it is not possible to contain it in system memory
and usage of storage devices becomes a necessity. The same applies to this
thesis, where the length of all the annotated sequences exceeds the available
RAM capacity. The Boost library serialization is utilized to precompute the
required data once and store it in a file that can be read on demand, reducing
both running time and RAM usage. Boost also supports OpenCV classes natively,
which allows for using cv::Mat class directly in the serialization.

The iostreams is used to get access to zlib compression, a loss-less
compression than reduces the filesize of the optical flow serialization to
approximately one-half or as much as one-third of the original filesize.
Compression reduces file-size, but also reduces I/O time. Smaller file-sizes are
inherently faster to read and decompression on modern CPU’s take little to no
time at all, making use of compression an easy choice.
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8.1.4 FFmpeg

FFmpeg is an open-source cross platform library for recording/capturing,
streaming and encode/decode video [17]. It is also offered as a stand-alone
program, but we use the library and include it directly into source code. FFmpeg
support most, if not all, video and audio codecs available and manages to do this
by combining other libraries (e.g libavcodec for h.264) with its own contribution
to obtain the final FFmpeg library. As a result of the many libraries used, it
provides several approaches to the same solution depending on need.

FFmpeg is not as good as it could be though, with inconsistent API calls
and deprecated functions that must still be called. Moreover, its functionality
has a lot to be desired, especially when dealing with cross-platform video
exports: Attempting to encode h.264 AVI in FFmpeg resulted in improperly
generated container headers and is not possible to view without FFmpeg. It
could also improve handling of double frames and empty frames, which at times
is desired to be left in place. Despite all this, it performs well, utilizing all
available resources on the computer to achieve fast encode and decode speeds.
Its extensive API allows it to be integrated into any development environment
and with implementations for reading and writing video already present in the
Bagadus system makes it an ideal choice.

8.1.5 MeekroDB

MeekroDB [32] is a library for PHP (the language used for server-side
development in this thesis) that aims at removing the unnecessary code while
maintaining the same security level as if it were to be manually implemented,
with additional security against all types of injection attacks. MeekroDB’s
syntax has a small learning curve before it can be used properly, but that
additional effort pays off. First off, it automatically handles the connection to
the database, which at times can be difficult with the many different execution
paths and query order, removing a lot of housekeeping source code. Secondly,
large queries with a multitude of input values remains both manageable and
readable at later times, with each query having an array association between
SQL columns and PHP variables (see Code Snippet 8.2).

Code Snippet 8.2: Registering of a new user in Online Training Tool using MeekroDB.

1 DB::insertIgnore(’crowdworker’,
2 array(’sessionId’ => $_SESSION[’session_id’],
3 ’username’ => $_SESSION[’username’],
4 ’startTime’ => DB::sqleval(’CURRENT_TIMESTAMP’),
5 ’goldErrors’ => DB::sqleval(’NULL’)));
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Database interactions is extremely common with any web service, but can
at times become a tedious process, especially when including typechecking
of input and prevent harmful values from entering the system (i.e., strings
containing SQL commands). PHP provide prepared SQL statements, but
requires a lot of work: It starts with a regular SQL query string which it compiles
to a binary format, then it binds all the input/output variables and finally
executes the actual result. We use MeekroDB to aid in the development of the
server-side for the Online Training Tool. It is also particularly useful when
registering the click-points into the database, as it makes the code maintainable
and easy to read compared to prepared statements.

8.1.6 Whammy

Whammy is a client-side video processing library that takes a set of images and
exports them to a HTML5 video element. Unfortunately, the library has only
proper support for Google’s web browser Chrome, making it locked into only
one web browser vendor.

The Whammy library is used when providing an action preview video
in the Online Training Tool, consisting of images exported from the Data
Generator program and removes the need for a tremendous amount of pre-
encoded videos. This video is then used by the annotator to help judge the
position of joints and to determine the action class.

8.2 Player Tracking

There is not a large difference between the algorithm described in Chapter 5
and the actual implementation, except in two occasions. First, the Gaussian
Blur is applied to the input video frame before computing the foreground
mask. This is done to prevent blurring of the actual foreground mask (which
should only consists of foreground/not-foreground pixels and not halfway in
between foreground/background), but the end results are the same. Secondly,
to improve the overall performance of the classifier, a serialized file (using
Boost) with the optical flow vectors is created at the same time the images
are extracted (players tracked). Not only does this reduce the overall compute
requirement of the classifier, by not only having to re-compute the optical flow
on every run, but also the time it takes to read in the actual video. With a pre-
defined serialized file with contents corresponding directly to the tracked video
sequences, it is possible to read the serialized file with the indexes provided by
the SQL export file, without ever having to read in original video frames.
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8.3 Video Annotation

The Video Annotation chapter (Chapter 6) contains the details of how the
skeleton data is obtained. However, because the Online Training Tool
(and subsequent programs) uses a different coordinate system than absolute
positions, it means that a conversion is required. Secondly, with a large
amount of workers and tables exceeding 10000 entries, it is a necessity to have
optimized queries to prevent the system from slowing down under the load.
Fortunately, only one query was found to be under-performing and is the one
covered here.

8.3.1 Coordinate System

The coordinate system used in the CSV files containing either the individual
crowdworker’s click-points or the merged result uses a relative coordinate
system. It is relative because it depends on the selections made during
annotation of a frame, with determining factors being the first upscale, the
bounding box selection and its secondary up-scaling. The first upscale is a
constant one of 2.5 times the original size. Then a bounding box is selected
and an up-scaling based on this is performed. Because every worker selects a
slightly different bounding box, it involves recomputing the joint positions for
every new annotation of a frame found in a CSV file. The makup of the relative
coordinate system is illustrated in Figure 8.1.

Figure 8.1: The factors determining the position of a click-point, which is relative to each
individual annotation. The makeup consists of the tracker data (red), user selection
(green) and click-point (blue). Click-points are relative to user selection, which is relative
to the tracker data.
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All the programs presented in Section 4.1.2 operates on these files by
translating the relative coordinates to absolute coordinates internally. External
programs can use the program Coordinate Translator to obtain absolute
positions, which is obtained performing the steps in Online Training Tool in
reverse. The steps the Online Training Tool performs to annotate a skeleton,
which is also how the coordinate system is defined throughout the programs in
this thesis and consists of the following steps:

1. Upscale the square input image of size pixels to 500 pixels to fill the
canvas

2. Select a bounding box in this image, with upper-left position stored in
bb_start and bottom-right in bb_end

3. Upscale the selected bounding box region to fill half of the canvas size of
500 pixels, ensuring no region is scaled outside the canvas and up-scaling
factor never is below 1

4. Annotate joint positions (click-points) in the image up-scaled twice and
store them in pos

The reverse process, to translate the relative coordinates to absolute, consist
of performing the same steps but having the up-scaling factors define down-
scaling instead. Code Snippet 8.3 shows a function that takes the variables in
the steps above and translates pos into absolute pixel values, with the upper-left
corner being origo.

Code Snippet 8.3: Converting relative joint positions to absolute joint positions using OpenCV

1 Point2f relativeToAbsolute(int size, Point2f bb_start,
2 Point2f bb_end, Point2f pos)
3 {
4 // C a l c u l a t e a b s o l u t e bounding−box p o s i t i o n s

5 float initial_scale = 500 / size;
6 float bb_x1 = bb_start.x / initial_scale;
7 float bb_y1 = bb_start.x / initial_scale;
8 float bb_x2 = bb_end.x / initial_scale;
9 float bb_y2 = bb_end.x / initial_scale;

10

11 // C a l c u l a t e second s c a l i n g

12 float bsx = 500 / (bb_x2 - bb_x1);
13 float bsy = 500 / (bb_x2 - bb_x1);
14 float zoom_scale = fmaxf((fminf(bsx, bsy) / 2) , 1);
15

16 // C a l c u l a t e a b s o l u t e p o s i t i o n s

17 float px = pos.x / (zoom_scale * initial_scale) + bb_x1;
18 float py = pos.y / (zoom_scale * initial_scale) + bb_y1;
19 return Point2f(px, py);
20 }
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8.3.2 Database Layout

Figure 8.2 describes the database layout used for the Online Training Tool.
The most important tables are trainingdata, which contains the images to be
trained and worker annotated images, and crowdworker, which keeps track
of worker sessions and links them to the annotated images. goldLogs has the
same definition as trainingdata, but is used to log Gold Sample Tests only (See
Section 6.4.3). The last view, sequenceframes, is used in the optimized version
of the sequence load-balancing query. The layout is included here for reference,
as it makes it easier to describe the performance problem caused by one of the
queries presented in the next section.
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feedbackgoldLog
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frameID
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players

control

processed

motion

sequenceNo
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Figure 8.2: ER model of tables used in the Online Training Tool, using XY suf�x where
two columns are present in the database for x and y coordinates and 13 DoF a shorthand
for all the individual joint positions.

8.3.3 Query Optimization

The query found to be far too slow is the one used in Section 6.6.1 to perform
load-balancing on video sequences. Originally, it was designed to operate as
a single query without the need for additional tables or views, as shown in
Code Snippet 8.4. However, when the trainingdata table started to reach 10000
entries, the query failed to produce a result within reasonable time. Because of
this, the optimized query in Listing 8.5 was constructed, along with the view
definition in Listing 8.6, as views can greatly increase the performance of queries
[48]. Both queries obtain the same result, a number defining the number of
times a sequence has been completely annotated, but the optimized version
have no problems with large tables.
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Code Snippet 8.4: Original query for obtaining sequence load numbers

1 SELECT sequenceNo
2 FROM
3 (SELECT processed.sequenceNo, (processed.frames / lengths.frames) AS

trained
4 FROM
5 (SELECT DISTINCT(sequenceNo), COUNT(sequenceNo) AS frames
6 FROM trainingdata WHERE sessionID = 0 GROUP BY sequenceNo)
7 AS lengths,
8 (SELECT DISTINCT(sequenceNo),
9 (SELECT COUNT(frameID)

10 FROM trainingdata t2 WHERE t2.sequenceNo = t1.sequenceNo AND
sessionID != 0)

11 AS frames
12 FROM trainingdata t1)
13 AS processed
14 WHERE lengths.sequenceNo = processed.sequenceNo)
15 AS workload
16 ORDER BY trained ASC, RAND()
17 LIMIT 1;

The main issue with Code Snippet 8.4 is its frequent use of GROUP BY
statements and it is also used in sub-queries, both of which are factors in
slowing the system down. Additionally, the way it counts the frames in
inefficient: it finds sequences and counts frames, rather that simply counting
frames and processed times and grouping them to sequences afterwards, as
done in Code Snippet 8.5. Not only is the optimized version easier to read and
maintain, but it does not suffer from repeated GROUP BY statements, as the view
is created no more than once per use of the optimized query (or less if caching
is involved [48]).

Code Snippet 8.5: Optimized query for obtaining sequence load numbers

1 SELECT sequenceNo, SUM(trainedframes)/COUNT(sequenceNo) AS workload
2 FROM sequenceframes
3 GROUP BY sequenceNo
4 ORDER BY workload, RAND();

Code Snippet 8.6: View utilized in the optimized query for obtaining sequence load numbers

1 CREATE VIEW sequenceframes AS
2 SELECT sequenceNo, frameID, COUNT(frameID) - 1 AS trainedframes
3 FROM trainingdata WHERE sequenceNo IS NOT NULL
4 GROUP BY sequenceNo, frameID;
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8.4 Action Retrieval

The Action Classification program have two different ways of operations, one
being direct in-memory database and the other using the serialized file created
by the Data Generator program. While both options are still present in code,
utilizing the serialized file is preferable, both due to memory consumption and
running time. In addition, to further reduce the run-time of the classifier, the
algorithm computing the similarity between two sequences was ported to the
GPU.

This section covers briefly the consumption requirement of the in-memory
database (which also underlines the decision for creating a pre-computed
optical flow serialized file) and the GPU performance improvement.

8.4.1 In-Memory Database

The first implementation for the Action Classifier read in all video sequences and
stored them in main memory. It would store the full video frame, background
mask and optical flow for every frame in a video sequence. With a 1280×960
frame size using OpenCV’s CV_8UC3 format, i.e., 24-bits per pixel, it consumes
∼3.69MB of memory. The background mask is smaller, requiring only one byte
per pixel1, resulting in 1.22MB. Finally, the flow vector is constructed out of two
32-bit floating point numbers per pixel, containing values for the x and y axis.
It uses a total of 9.8MB of memory per frame. Adding these numbers up results
in a minimum memory usage of ∼14.71MB per frame. Considering a default
system memory capacity of a computer, as of writing this is 8GB (although only
about 6− 7GB can be used due to OS and other programs), a maximum of
approximately 400 frames or 13 seconds of video can be stored in memory at
any time. Without a doubt, it is not possible to store every sequence with all its
data in memory.

Because of the memory limitation, the optical flow for each of the files gets
precomputed during image creation in Data Generator. When the Motion
Classifier program runs, it reads a video sequence from serialized data,
compute over it and removes it from memory before reading the next sequence.
This technique gave a large reduction in I/O operations and a slight reduction
in time consumption. The compute time can be reduced even further by
implementing the action classification algorithm on the GPU.

1This is how OpenCV implementation works. A more optimal solution would use a bitmask
instead.
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8.4.2 GPU Optimization

GPU optimization consists of utilizing the massive data-parallel computational
capabilities of a Graphics Processing Unit (GPU) (graphics card). Because a GPU
is designed to calculate and process millions of individual pixels per second, it is
ideal when processing the frame-to-frame similarity measure used in this thesis.
Also, GPUs support massive parallel computing with particularly good speedups
for machine learning applications with vector and matrix computations [9],
making it suitable for running the action similarity measure. A port of the
classification algorithm was made to CUDA, nVidias GPU’s computing platform
and Application Programming Interface (API).

Other than porting the code to CUDA, there are no additional optimizations
on CPU or GPU implementations, apart from improving the channel product
computation described in Section 7.2.4 and running code in parallel using
OpenMP on the CPU. Also, instead of turning the matrices into vectors with
stitching and by transposing one of the stitched vectors, direct matrix as a vector
computation can be made, which speeds up the computations and simplifies
kernel convolution. More precisely, both matrices are computed as if they were
vectors and has the same result, but with using a matrix multiplication method
as shown in Code Snippet 8.7.

Code Snippet 8.7: Channel product with two OpenCV Matrices as vector product

1 float channelProduct(Mat &trained, Mat &sequence)
2 {
3 float product = 0.0;
4 for (int y = 0; y < trained.rows; y++)
5 for (int x = 0; x < trained.cols; x++)
6 product += trained.at<float>(y, x)
7 * sequence.at<float>(y, x);
8 return product;
9 }

Additional optimizations can be added later on, e.g., SSE or AVX instructions
on the CPU and ensuring memory coalescing and asynchronous memory
transfers on the GPU, but this is outside the scope of this thesis.

To determine the performance on both the CPU and GPU, we measure the
time it takes for either of the implementations to compute the motion similarity
matrix (with kernel convolution) for every possible combination of the 58
sequences used in the classifier using the leave-one-out testing methodology,
resulting in 3306 motion similarity matrices of variable sizes to be computed.
Table 8.1 lists the final results, computed on the hardware available during the
development of this thesis.

A final note on the results, though: The speedup obtained on the GPUs are
highly dependent on the GPU architecture. The architecture limits how many of
the CUDA cores that can perform double-precision (FP64) calculations, which
is used while performing the channel normalization. Unlike the CPUs FPU,
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i5-4590 GTX 750 GTX 760 GTX 780Ti

Total 1615s 578s 454s 181s
Speedup 1x 2.79x 3.56x 8.92x

Table 8.1: Comparison between an Intel CPU and nVidia GPUs and their computational
performance for our motion similarity algorithm. The results show performance increase
linearly with GPU CUDA performance.

which performs computations of both single and double precision, the GPU
have only a fraction of FP64 units compared to FP32 units that support single-
precision floating point operations. Additionally, CPUs have a small number of
cores that usually ranges between 4 to 6, while the number of CUDA cores
can vary greatly, being 512 on the GTX 750 and 2880 on the GTX 780Ti.
The way FP64 CUDA cores translates to computational performance is roughly
equivalent to the number of compute-iterations the card must process. If the
length of a sequence does not exceed the number of FP64 units available, it will
be computed in a single iteration, but exceeding this, several iterations must
be done. This greatly affects the speedup achieved, as can be observed of the
performance in Table 8.1.

8.5 Summary

This chapter contains a list of the different libraries used to implement our
solution, spanning from database interfaces to parallel preprocessor commands
and most important, the OpenCV library for image processing. With these
libraries, a quicker and more correct implementation is achieved, which allows
for more experimentation where needed. Also, porting the motion similarity
computation on the GPU allowed for an almost nine times the speedup without
any additional optimizations, in other words, a higher speedup is possible.

Another optimization is done on a query that significantly slowed down
the server, but a cleaner and faster query was successfully applied. Another
implementation detail presented in this chapter, albeit not an optimization, is
the coordinate system used throughout all our programs, including both how
this coordinate system is laid out and how to translate the relative coordinates
to absolute image pixels.
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Chapter 9

Conclusion

9.1 Summary and Conclusion

In this thesis, we have proposed a solution for inferring action labels and per-
forming pose estimation in the Bagadus system from video (see Section 1.2.2),
to support extensions to the Bagadus system with more analytical capabilities
and new entertainment applications. Our proposed solutions solve these two
problems by a content-based video retrieval problem. Based on the solution
proposed by Efros et al. [15], we developed a prototype workflow of programs
that obtains action labels and skeletons in the three procedures of player track-
ing, video annotation and action retrieval (see Section 1.2.4).

Running the player tracking algorithm in the Bagadus system results a highly
precise bounding box around the player, with a near-perfect centering of the
torso. Even more, the tracking remains consistent across different types of
sequences and actions, with only a few exceptions that does not affect our
prototype. A good player tracking algorithm lays the basis for good classification
results and directly affects the action classifiaction and skeleton reprojection
results.

Using the crowdsourcing platform Microworkers, over 10000 video frames
got annotated with skeletons with an unexpected degree of precision (accuracy)
from the workers, despite being an unusual scenario for a crowdsourcing
campaign. The merged contribution of all the workers were within tolerable
margins, making our tool and the crowdworkers effort comparable to an expert.
All the frames were annotated in the course of about one week, making the
crowdsourcing platform both time and cost effective as well.

A combination of the results of the player tracker and video annotation
is used in the action retrieval to obtain the action labels and poses for
query sequences in the Bagadus system. By using a similarity measure and
classification as proposed by Efros et al. [15], we measure the motion similarity
between two sequences using optical flow and find their similarity score.
With this score, the best matching annotated sequence, compared to a query
sequence, is used to transfer the annotated sequence’s action label and skeleton
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onto the input sequence.

With our proposed prototype, we were able to correctly classify the actions
78% of the time, which is a rather good result given the low resolution and
noisy video sequences. Additionally, classes with only one representative class
in the annotated database did also get classified correcly, which indicates
that this approach can be sufficiently precise (i.e., accurate) to be used in
the Bagadus system. The classification algorithm were also ported to the
GPU, giving an almost nine times speedup compared to our parallel CPU
implementation, with even more potential left in the GPU. Moreover, high
accuracy on skeleton reprojections were achieved, with at times pixel-perfect
placement of all the joints. The skeletons were obtained using a crowdsourcing
platform, and with our filtering techniques and quality assurance mechanisms,
we obtained skeletons comparable to an expert’s annotations. Although, the
skeleton reprojection was not as accurate as desired, but considering that
the reprojected skeletons were simply a transfer, shows the viability of this
approach. If additional tweaking to the obtained skeletons, or poses, are added,
then having pixel-perfect skeletons on every query sequence can be possible.

9.2 Future Work

There is always room for improvements, for example Chapter 5 has a list of
remaining issues related to the tracking algorithm and image segmentation.
Likewise, the classification algorithm can be further tweaked to improve
accuracy and a larger dataset should be used. For the crowdsourcing platform, a
proper study of filtering algorithms, task sizes and action classes should increase
the reliability of the workers and the final skeletons obtained from them. With
the many possible improvements and further developments that can be made,
we provide a list of the most relevant and interesting problems for future work,
grouped to the three procedures presented in this thesis: player tracking, video
annotation and action retrieval.

9.2.1 Player Tracking

Background Subtraction

The accuracy of the player tracking algorithm relies heavily on the precision
of the background subtraction algorithm. The algorithm for background
subtraction is not perfect and requires a lot of manual tweaking. Improving the
parameters and subtraction results will improve the tracker. Likewise, obscured
players, camera resolution and animated advertisement should all be isolated
out of the tracker, as they all cause tracking failures at times. Because the
sequences selected in this thesis were chosen based on action and clarity (i.e.,
good optical flow results), the tracker is good enough for the prototype system.

110



Overlapping Players

Another feature to add would be to track and differentiate between overlapping
players. Managing to separate and follow the correct soccer player out of two
players requires a tracking algorithm that can identify merged foreground mask
blobs and be able to tell the difference between overlapping limbs. Because
being able to separate players within the same frame is not necessary in order
to solve action recognition and pose estimation problems, we have limited
ourselves to not include these scenarios in our prototype. However it would
be necessary to solve this for a full-scale system.

9.2.2 Video Annotation

Crowdworker Filtering and Merging

The current implementation of filtering and merging of the crowdworker effort
is done using Majority Votes. Although this system works with acceptable
results, there are still potential for improvements: The most significant
improvement would be to resolve the left-right ambiguity that occurs with
disagreement among the workers, causing more than one cluster of annotated
points to occur in a frame. Currently, when clusters occurs, the merged joint
position have a tendency to end up in the middle, which obviously is not correct,
as it should be the centroid in one of the clusters. In general, improving the
filtering and merging of the crowdworker results, as well as being able to
better remove cheating workers, should give better annotated skeletons in the
database, which makes crowdsourcing a truly viable option.

Improving Annotation Tools

Improving the filters and merging of all the workers effort can increase the final
skeleton accuracy, but increasing the accuracy of individual workers’ accuracy
is also an improvement that should result in better skeletons. Most notably
is the occasions where limbs and joints are ambiguous, causing disagreement
and poor final skeletons. Improving this is not required for our prototype, but
a necessity for a full-scale system. Further developing the Online Training
Tool to better support and aid annotating ambiguous and difficult frames
should make it easier to use sequences in the database that consist of more
complex actions.
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9.2.3 Action Retrieval

Improve Accuracy

The accurate results in this thesis have some to be desired (i.e., a higher accur-
acy would be better for both action classification and skeleton reprojection/pose
estimation), including increasing it up from approximately 78 percent and dis-
cover why chaining the convolution kernel does not affect the classification res-
ult. Both of these problems can be caused by our selection of sequences, which
is based on a single isolated player whom performs only common actions. Ad-
ditionally, testing other classifiers and similarity measures could be interesting
for comparisons of methods, but outside the scope for this thesis.

Add Kinematic Constraint

Our implementation is based on Efros et al. [15] and because of this it does not
include any skeleton reprojection adjustments nor kinematic constraint checks.
Although we do adjust for height differences between sequence reprojections,
we do not adjust small misalignment issues. The primary reason for not
performing any further skeleton adjustments is because we desired to test the
direct reprojection accuracy without additional steps, but as observed, it is a
necessity for more accurate results. Moreover, adding kinematic constraints
to both crowdworker filtering and reprojections of the skeletons should also
increase accuracy is several different parts, but due to the complexity of a
kinematic constraint model this means that it is outside the scope of this thesis.

Optimizations

The two prototype implementations provided by this thesis includes a parallel
OpenMP implementation and a CUDA GPU port. Both are created to speed up
testing and explore the potential for real-time processing. However, because
our system is a proof-of-concept prototype, it does not need to run in real-time
for the classification. On the other hand, if it were to be implemented as a real-
time system, then a great amount of effort must be made into optimizing the
source code. In other words, there is a great potential for optimizations on both
CPU and GPU code, with the possibility of reaching real-time performance.

9.3 Final Words

Although our system is only a prototype to explore action retrieval and pose
estimation in the Bagadus system, it provides exceptionally accurate and robust
results, despite the large number of limitations. If the improvements listed
in Future Work are added, then there is a good likelihood that our proposed
solution can be used with the Bagadus sport analytic system to add more
analytic capabilities or other entertainment features.
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