
Accelerating nonlinear image
transformations with
OpenGL ES
A study on fish-eye undistortion
Vegard Øye

Master’s Thesis Autumn 2015

Accelerating nonlinear image
transformations with OpenGL ES

Vegard Øye

August 1, 2015

ii

Abstract

We study the use of OpenGL ES to achieve hardware acceleration
of nonlinear image transformations, in particular, performing fish-eye
undistortion. We outline a hierarchy of transformations and describe
interpolation methods. We compare several models of barrel distortion.
Our code compares five different implementation strategies. Time
measurements show that the best efficiency is achieved by accelerating the
transformation in the fragment shader. This is also the setup that provides
the greatest flexibility with regard to interpolation. We demonstrate an
adaptive interpolation strategy where the most suitable interpolation
kernel is chosen depending on to the distortion of the surrounding area. We
conclude that OpenGL ES is well suited for accelerating nonlinear image
transformations, and outline some ways in which greater speed may be
achieved with the use of a parallel computing framework such as OpenCL.

iii

iv

Contents

1 Introduction 1
1.1 The multi-core imperative . 2
1.2 OpenGL . 3
1.3 Other frameworks . 5

1.3.1 CUDA . 5
1.3.2 OpenCL . 6

1.4 Challenges . 6
1.5 Overview . 7

2 Image transformation 9
2.1 Types of transformation . 9

2.1.1 Scaling . 10
2.1.2 Linear transformations 11
2.1.3 Affine transformations 11
2.1.4 Projective transformations 12
2.1.5 Nonlinear transformations 13

2.2 Interpolation . 14
2.2.1 Reconstruction . 16
2.2.2 Antialiasing . 16
2.2.3 Adaptive interpolation 17

3 Models of fish-eye distortion 21
3.1 Polar coordinates . 22
3.2 Polynomial models . 23
3.3 Non-polynomial models . 26

3.3.1 Exponential model . 26
3.3.2 Trigonometric model 26
3.3.3 Division model . 27

3.4 Parameter estimation . 27

4 Implementation strategies 29
4.1 Implementation considerations 29

v

4.1.1 CPU or GPU . 29
4.1.2 Precomputed or dynamic 30
4.1.3 Forward mapping or backward mapping 30
4.1.4 Built-in or manual interpolation 31

4.2 Implementation strategies . 31
4.2.1 Strategy 1: CPFB . 31
4.2.2 Strategy 2: CPBB . 32
4.2.3 Strategy 3: GDFB . 34
4.2.4 Strategy 4: GDBB . 34
4.2.5 Strategy 5: GDBM . 35

5 Implementation with OpenGL ES 39
5.1 Qt . 39
5.2 Shaders . 40
5.3 Compilation . 42
5.4 Strategy 1: CPFB . 43
5.5 Strategy 2: CPBB . 45
5.6 Strategy 3: GDFB . 45
5.7 Strategy 4: GDBB . 46
5.8 Strategy 5: GDBM . 47

6 Results 51
6.1 Setup . 51
6.2 Measuring . 51
6.3 Results . 53
6.4 Vertex count . 55
6.5 Aliasing . 56
6.6 Adaptive interpolation . 57

7 Conclusion 61
7.1 Discussion . 62
7.2 Further work . 62

A Source code 65

B Matlab program 67

vi

Acknowledgments

I would like to thank my advisors Carsten Griwodz and Andreas Aardal
Hanssen for their help and support throughout the writing of this thesis.

Thanks to Bård Winter for help with LATEX typesetting.
Thanks also to my fellow students at the University of Oslo for making

my time there an enjoyable period of my life.
Finally, I would like to thank my family and friends – for being there

when I needed you.

Vegard Øye
July 2015

vii

viii

Chapter 1

Introduction

In the 21st century, video cameras are everywhere. Whether the technology
is used for communication or surveillance purposes, there is a growing
need for efficient processing of video data. Such processing may need to
be adapted to the resources that are available on a mobile device. With the
emergence of the multi-core imperative, parallel computing is increasingly
important.

A taxing post-processing task is performing high-quality barrel
undistortion. This well-studied problem crops up in several forms. At one
end of the spectrum, there is the regular lens, whose inherent imprecision
can be undistorted by means of careful calibration and a precise distortion
model. At the other end of the spectrum, there is the wide-angle lens, which
produces a characteristic “fish-eye” effect. This effect can undistorted in a
similar manner, although a stronger model is needed. With an efficient
implementation, this process may even be performed in real-time with
limited resources.

Videoconferencing is on the rise thanks to the emergence of wide-
spread, low-cost and high-capacity broadband connectivity, combined
with powerful graphics hardware and software. Such systems require
on-the-fly processing of video streams, placing severe constrains on the
implementation. With video, performance is vital: in a live video session, it
is expected that a well-functioning system can provide a steady stream
of 30–60 video frames per second. Any software performance issue
may cause frame skips, which disturbs the immersive video experience
that such technology is meant to provide. Performance and latency
requirements, therefore, place severe constraints on the implementation
of post-production effects.

Although most video cameras use regular lenses, wide-angle lenses are
also gaining traction in automatic systems. One example is rear-window

1

cameras in modern vehicles. The author took a bus equipped with such
a camera, whose feed was displayed on a curved screen in front of the
bus and also on rectangular screens spread throughout the bus. A more
sophisticated example is Nvidia’s Drive CX automotive system, which
stitches together data from multiple wide-angle lenses in order to provide
surround vision (Nvidia 2015).

The main topic of the thesis is the efficient undistortion of photographs
taken with fish-eye lenses, and we will look at various ways of modeling
such distortion. Barrel undistortion is an instance of a general class of
operations on an image: applying a geometric transformation to it, also
known as “warping” the image. Such an operation transforms the spatial
relationship between points in the image. In his seminal work on digital
image warping, Wolberg (1990) offers the following analogy:

Imagine printing an image onto a sheet of rubber. Depending
on what forces are applied to that sheet, the image may simply
appear rotated or scaled, or it might appear wildly distorted,
corresponding to the popular notion of a warp. While this
example might seem to portray image warping as a playful
exercise, image warping does serve an important role in many
applied sciences. Over the past twenty years, for instance, image
warping has been the subject of considerable attention in remote
sensing, medical imaging, computer vision, and computer
graphics. It has made its way into many applications, including
distortion compensation of imaging sensors, decalibration
for image registration, geometrical normalization for image
analysis and display, map projection, and texture mapping for
image synthesis.1

As the problem of image transformation is a general one, our findings can
be generalized to other types of transformation. We investigate how custom
methods of interpolation can produce smoother results when dealing with
complex transformations, and how graphics acceleration may help us in
this regard.

1.1 The multi-core imperative

In recent times, the focus has shifted from raw performance to performance
per watt expended. Although vendors will continue to fit more and more

1Wolberg (1990), chapter 1: “Introduction”, p. 1.

2

transistors onto a single die, they will compete on power efficiency instead.
This entails a transition to multi-core chips.

The multi-core imperative was first laid out by Chandrakasan et al.
(1995). The gist of their argument is as follows. The energy expended in
switching the gates in a processor is given by:

P = CV2 f (1.1)

Here, C is the capacitance, V is the voltage and f is the frequency. According
to their models, if we compare a single-core processor running at voltage
of V and a frequency f to a dual-core processor running at f /2, then the
capacitance for the latter increases by 2.2, while the voltage drops to 0.6V.
Therefore, the power in the dual-core case is 0.396 of the power in the
single-core case. In general, many cores running at lower frequencies are
fundamentally more power-efficient.

Power considerations are especially important on mobile devices.
Whenever maximizing performance per watt is essential, the general trend
will be towards multi-core and specialized processors. To reap the benefits
of this heterogeneous future, we must choose a well-supported framework.

1.2 OpenGL

OpenGL is a cross-language, multi-platform API for rendering graphics.
The API abstracts access to a graphical processing unit (GPU) in order to
achieve hardware-accelerated rendering. It enjoys the strong advantage
that it supports a wide range of platforms and hardware. It is maintained
by the non-profit technology consortium Khronos Group.

Current GPUs consist of a large number of programmable processors
called shader cores which run mini-programs called shaders. While each
core may be relatively primitive – having low throughput and typically
lacking advanced features like branch prediction – the GPU may contain
thousands of these cores (Sellers et al. 2014). This enables for very efficient
parallelization of program code.

Historically, OpenGL was structured around a fixed-function pipeline.
This allowed a variety of effects to be accomplished simply by referencing
built-in functions. However, this programming style is going out of favor
and is being replaced by a more “dynamic” approach, where everything is
computed by user-written shader programs.

3

There are several versions of OpenGL. The main series is henceforth
referred to as desktop OpenGL, to differentiate it from OpenGL ES, the mobile
version.

OpenGL ES is a new version of OpenGL, aimed at mobile devices.
It is the primary graphics library for handheld and embedded devices
with programmable 3D hardware including cell phones, personal digital
assistants (PDAs), consoles, appliances, vehicles, and avionics (Munshi
et al. 2014). It is a stripped-down and updated version that is simpler than
desktop OpenGL in some respects, and more advanced and flexible in other
respects. OpenGL ES can also be run on the desktop, and it provides the
underpinnings of WebGL, a web standard for browser-based 3D graphics.
As much as possible, OpenGL ES is designed with backward compatibility
in mind: applications written to the embedded subset of functionality in
OpenGL would also run on OpenGL ES.

OpenGL ES emphasizes the dynamic programming style; indeed, from
OpenGL ES 2.0 and onward, fixed-function techniques are no longer
available and must instead be implemented in terms of shaders. This
obliges the programmer to piece together the graphics pipeline from the
ground up by writing shader programs. There are two classes of shaders:
vertex shaders and fragment shaders. A vertex shader operates on a position,
which it may transform; a fragment shader is responsible for specifying
the color of a fragment, which determines the value of an output pixel.
In general, fragments and output pixels are not the same concept: in
multipass shading, for example, the fragment shader may be run multiple
times per pixel. However, our implementation does not employ such
techniques. Indeed, its pipeline is simple enough that for all practical
purposes, fragments and output pixels can be considered to be the same
thing. Shaders are written in a C-like language called GLSL (OpenGL
Shading Language). Figure 1.1 shows the general OpenGL ES pipeline; the
data flow of our implementation is described in chapter 4.

Both vertices and fragments are automatically shaded in parallel. This
gives rise to a significant performance boost while freeing the programmer
of the burden of coordinating parallel tasks. However, there are some
disadvantages. Shader instances cannot communicate with each other or
reuse previous computations, although some may be cached behind the
scenes. A shader program only specifies a mapping from its inputs to its
outputs; the rest is handled by OpenGL ES behind the scenes.

4

Figure 1.1: OpenGL ES pipeline

1.3 Other frameworks

OpenGL ES is not the only API for enabling hardware acceleration.
With the move from serial programming to parallel programming
and the widespread availability of GPU hardware, we have seen the
emergence of several libraries utilizing GPU hardware for general-purpose
programming.

Recall that in OpenGL ES, each shader runs in isolation and with little
knowledge of how it fits into the larger picture. Furthermore, OpenGL ES
offers limited support for profiling code. A motivation for using a general
library in place of OpenGL ES would be to gain more fine-grained control
over parallelized code. Indeed, as we will see in chapter 7, there are some
aspects of our implementation that may benefit from such control.

1.3.1 CUDA

CUDA (short for Compute Unified Device Architecture) is a parallel
computing API created and backed by Nvidia. It allows both the CPU
(the “host”) and the GPU (the “device”) to be programmed in regular
C. Parallel code is written in the form of “kernels” that are spawned on
the GPU and may intercommunicate. Furthermore, CUDA provides fine-
grained memory handling: computations may be cached and reused by
other threads. Threads are organized into thread blocks, which in turn are
organized into grids.

CUDA is currently officially executable only on CUDA-enabled Nvidia
hardware. It can be run on mobile devices powered by the Tegra chip,
such as the Shield and Google Nexus 9 tablets. While CUDA boasts great

5

efficiency, this speed is contingent on that the kernel code maxes out the
GPU’s resources. This leads to code that is often optimized towards specific
hardware and is not very portable.

CUDA enjoys a huge community, and there are some independent
efforts to make CUDA programming more heterogeneous. A compiler
from PGI makes it possible to use the same CUDA code on x86 processors,
Nvidia chips, or both (PGI 2010). It is also possible to combine CUDA with
OpenGL.

1.3.2 OpenCL

OpenCL is an open and cross-platform standard maintained by the non-
profit Khronos Group. Its parallelization framework is similar to CUDA’s,
although the precise terms differ. OpenCL is also more oriented towards
heterogeneous programming, and an OpenCL kernel can be run on both
the CPU and the GPU.

At first glance, as CPUs become more multi-core and “GPU-like”,
abstracting away their differences behind a common interface seems to
offer an elegant approach to parallel programming. In practice, it is still
necessary to optimize the code for the hardware it is running on.

Thus, with both OpenCL and CUDA, we run into the same paradox: the
development of GPGPU standards was motivated by an aim of uniformity
and portability. However, obtaining good results from parallelized code is
difficult without custom optimization; and optimization makes the code
hardware-specific. In general, it is not possible to create a low-level API
that is cross-platform and offers optimal efficiency at the same time.

Speed-wise, OpenCL is almost on par with CUDA. The hardware
support is broader, and includes mobile devices: OpenCL can be run on
a number of Android phones. The development environment is not as
uniform. There is no single company backing OpenCL, although AMD,
ARM and Intel have declared support for the standard.

As with CUDA, OpenCL can be combined with OpenGL ES, a task that
is outlined in section 7.2. However, this is a complex affair. All in all, little
compares to OpenGL ES in terms of mobile support and ease of use with
regard to graphical problems.

1.4 Challenges

In implementing and accelerating barrel undistortion using OpenGL ES,
we are met with several challenges:

6

• To model the distortion in a way that is both efficient and produces
precise results.
• To select an implementation strategy that is a good fit for the chosen

model.
• To exploit the parallelizable features of the problem to achieve good

execution speed.
• To provide high-quality interpolation, adapted to the characteristics

of the transformation.

We will reassess these challenges in chapter 7.

1.5 Overview

The structure of the thesis is as follows.

1. Chapter 1: Introduction. This chapter investigates the motivation
for accelerating image transformation, along with the available
technologies for doing so.

2. Chapter 2: Image transformation. The task of performing fish-eye
undistortion is indicative of a larger class of problems. In this chapter,
we outline a hierarchy of transformation problems and investigate
their challenges with regard to interpolation.

3. Chapter 3: Models of fish-eye distortion. Fish-eye distortion can be
modeled in different ways. We compare several models and their
pros and cons with regard to implementation.

4. Chapter 4: Implementation strategies. We outline five implementa-
tion strategies for accelerating fish-eye undistortion. We also describe
several interpolation methods.

5. Chapter 5: Implementation with OpenGL ES. The aforementioned
strategies are implemented with a combination of Qt and OpenGL ES.
We describe the class structure and give examples of shader code.

6. Chapter 6: Results. We compare the execution times of the
implemented strategies. We also give visual examples of the
interpolation results.

7. Chapter 7: Conclusion. We sum up which strategies give the best
results. We also highlight some weaknesses and suggest ways to
improve the efficiency even further.

7

Summary

Image transformation is a general problem that crops up in different forms.
A particularly well-studied form of the problem is barrel undistortion,
which can be used to correct for the inherent imprecision of regular lenses
or to reverse the “fish-eye” effect of photographs taken with wide-angle
lenses. This task raises interesting challenges with regard to precision,
efficiency and quality.

The demand for efficient post-procession of images and video streams
is increasing, as much of that procession takes place on mobile devices
with limited resources. The multi-core imperative has intensified the need
for code that runs fast in parallel.

There are several frameworks for achieving hardware-accelerated
rendering: OpenGL, CUDA and OpenCL. The most widely supported
standard is OpenGL. A recent version, OpenGL ES, is adapted towards
mobile devices and enjoys widespread support. This is the framework
chosen for our implementation.

8

Chapter 2

Image transformation

In this chapter we will provide a general discussion of how images can be
transformed. We will first look at how transformations can be expressed
mathematically, and then we will investigate the challenges with regard to
interpolation. In particular, we are interested in the following issues:

• How the problem of barrel undistortion fits into the larger picture,
and to which degree our findings can be generalized to other
transformations.

• How the challenges with regard to interpolation depend on the
complexity of the transformation. Much of the literature discusses
interpolation techniques in a context of 3D applications. Barrel
undistortion raises issues that are not addressed in this context.

• How these transformations can be expressed in OpenGL ES. The
shader language and its constructs lends itself well to the class of
transformations that can be expressed as matrix multiplication, but
barrel undistortion falls outside this class.

We will outline a simple hierarchy of transformations that is roughly
based on the terminology of Wolberg (1990). Then we will discuss various
interpolation techniques.

2.1 Types of transformation

Image transformations can be roughly ordered from simple, linear
transformations to complex, nonlinear transformations (figure 2.1). In the
following discussion, we will consider that each sample in the source image
has a coordinate [x, y], and it is our task to calculate the corresponding
position [x′, y′] in the transformed image. The problem of blending together

9

(a) Scaling (b) Linear transformation

(c) Affine transformation (d) Projective transformation

(e) Nonlinear transformation

Figure 2.1: Transformation types

samples in order to produce a smooth output image is postponed to our
treatment of interpolation in section 2.2.

Note that in the following discussion, the transformation takes us from
the untransformed coordinates of the source image to the transformed
coordinates of the output image. As we will see later on, it can also be
useful to go in the reverse direction. Many transformations are invertible
and can be expressed either way.

2.1.1 Scaling

At the lower end of the spectrum, we have scaling, probably the most
common way of transforming an image. It is very easy to implement and
accelerate, since the neat rows-and-columns shape of the problem lends
itself particularly well to implementation by basic data structures.

Mathematically, scaling can be expressed as multiplying the image
coordinates with a scalar k. If the operation is expressed as matrix
multiplication, then the scaling matrix has the form [k 0

0 k], or k times the
identity matrix: [

k 0
0 k

] [
x
y

]
=

[
kx
ky

]
(2.1)

Of course, scaling is invertible, since scaling by k can be undone by scaling
by 1/k.

10

2.1.2 Linear transformations

One step up from scaling, we have linear transformations, such as rotation,
reflection, and shearing. Intuitively, these transformations can be thought
of as ones where parallel lines remain parallel after transformation.

Mathematically, a transformation F(x) is linear if it preserves the basic
operations of addition and multiplication by a scalar k:

F(x + y) = F(x) + F(y) (2.2)

F(kx) = kF(x) (2.3)

Note that the transformation doesn’t shift the coordinate system – it maps
the zero coordinate onto itself:

F(0) = 0 (2.4)

Linear transformations can be expressed as multiplication by a two-by-two
matrix [m11 m12

m21 m22]. For all practical purposes, these matrices are invertible,
excluding a few corner cases which are meaningless in the context of image
transformation.

2.1.3 Affine transformations

An affine transformation is a linear transformation followed by translation,
i.e., shifting the coordinate system by offsets ∆x and ∆y. Translations cannot
be expressed by a two-by-two matrix, as equation (2.4) shows. However, if
we extend our two-dimensional coordinates with a “dummy” coordinate
z = 1, we can express translation as multiplication by a three-by-three
matrix:

1 0 ∆x
0 1 ∆y
0 0 1

x
y
1

 =

x + ∆x
y + ∆y

1

 (2.5)

An affine transformation can then be expressed as:
m11 m12 ∆x
m21 m22 ∆y

0 0 1

x
y
1

 =

m11x + m12y + ∆x
m21x + m22y + ∆y

1

 (2.6)

In actuality, the coordinate [x, y, z] is a homogeneous coordinate. OpenGL ES
provides built-in support for such coordinates, which extends the scope of
transformations that can be expressed as matrix multiplication.

11

2.1.4 Projective transformations

If the three-by-three matrix modifies the z coordinate, then the transforma-
tion is projective:

m11 m12 m13

m21 m22 m23

m31 m32 m33

x
y
z

 =

m11x + m12y + m13z
m21x + m22y + m23z
m31x + m32y + m33z

 (2.7)

In this case, the z value contains information. We map from homogeneous
coordinates to image coordinates by dividing by z:

1
z

x
y
z

 =

x/z
y/z

1

 (2.8)

By transforming the input coordinates with this two-step process – first
multiplying with an homogeneous matrix and then mapping back to two-
dimensional coordinates – we can express more advanced transformations,
for example perspective projection (figure 2.2). Any planar quadrilateral
can be transformed to any other quadrilateral.

In the case of nonplanar quadrilaterals, however, a more general
solution is necessary. The general quadrilateral-to-quadrilateral problem
can be expressed as a bilinear transformation:

[
a3 a2 a1 a0

b3 b2 b1 b0

]
xy
x
y
1

 =
[
a3xy + a2x + a1y + a0

b3xy + b2x + b1y + b0

]
(2.9)

For example, a photograph can be transformed from perspective
projection to orthographic projection by mapping a rectangle imaged as
a quadrilateral to a rectangle with the correct aspect ratio (Hartley and
Zisserman 2004).

Figure 2.2: Perspective projection

12

Because projective transformations do not distribute samples as
uniformly as simpler transformations do, they tend to present aliasing
issues. A textured surface rendered at an angle as shown in figure 2.2, for
example, may introduce artifacts in the distance. We’ll discuss how such
effects can be mitigated in our treatment of interpolation in section 2.2.

2.1.5 Nonlinear transformations

At an even higher level are the transformations that cannot be expressed
as matrix multiplication at all. We’ll refer to this amorphous class of
transformations as “nonlinear” transformations.

Barrel distortion, for example, belongs in this class. A coordinate is
skewed depending on its distance from the center. Coordinates near the
margins are moved together, while coordinates near the center are spread
apart. This gives rise to higher frequencies near the margins, which may
produce unwanted aliasing effects.

A nonlinear transformation is not necessarily costly to calculate. If it is,
however, then it might be preferable to compute it in advance and store it
as a table of [x, y]-offsets:

F(x11) F(x12) F(x13) F(x14) · · · F(x1n)

F(x21) F(x22) F(x23) F(x24) · · · F(x2n)

F(x31) F(x32) F(x33) F(x34) · · · F(x3n)

F(x41) F(x42) F(x43) F(x44) · · · F(x4n)

F(x41) F(x42) F(x43) F(x44) · · · F(x4n)
...

...
...

...
F(xm1) F(xm2) F(xm3) F(xm4) · · · F(xmn)

Since coordinate transformation is reduced to a single table lookup, this
is very efficient, at least for small tables. For large tables, cache misses
may outweigh the cost of computing the value directly. Note that if the
image resolution is not known beforehand (e.g., because of user-adjustable
resizing), then this approach requires us to calculate the table at some
sufficiently rich resolution, and then interpolate between table entries in
order to up- or downsample the table to the given image size. A simple
way to achieve this is to store the table as a texture and let OpenGL ES
interpolate between texel values.

In general, we are met with two challenges: how to express the
transformation precisely, and how to deal with aliasing effects. Both are
complex problems, and raise a trade-off between quality and efficiency.

13

2.2 Interpolation

Thus far, we have only considered how coordinates in the input image map
onto coordinates in the output image. When we work with images, we
encounter the practical problem that continuous coordinates may not map
precisely onto discrete pixels. There may be “clusters” and “gaps”: when
enlarging an image, for example, the samples are spread further apart,
leaving empty spaces in between. To produce a smooth output image, we
must perform interpolation.

In the abstract, interpolation can be decomposed into two general
problems: that of reconstructing a discrete image into a continuum, and that
of rasterizing the continuum into a discrete image again. Transformation is
performed in between. Adding an optional filtering step, the process can
be divided into four stages:

1. Reconstruction: The discrete input f (x) is reconstructed into the
continuous input fc(x) with the reconstruction filter r(x). This can
be expressed as convolution: fc(x) = f (x) ∗ r(x) = Σk f (x)r(x − k).
In informal terms, the surrounding samples are summed up and
weighed according to their relative distance to the reconstructed
position. A simple reconstruction filter may consider only the nearest
sample, while a more sophisticated filter may compute a weighted
average of the surrounding area (see section 2.2.1).

2. Transformation: The continuous input fc(x) is transformed to gc(x)
according to the transformation function F. In the case of backward
mapping, the transformation is defined as an inverse mapping:
gc(x) = fc(F−1(x)). It is also possible to perform this step as forward
mapping.

3. Filtering: Depending on the transformation, gc(x) may contain
arbitrarily high frequencies. To prevent aliasing, the result may
be bandlimited by a filter h(x). Since this step is performed in
the continuous domain, the convolution is defined as an integral:
g′c(x) = gx(x) ∗ h(x) =

∫
gc(t)h(x − t)dt. In informal terms, high

frequencies are smoothed out by passing each position through a
filter that weighs its surroundings.

4. Rasterization: The continuous, transformed, bandlimited result g′c(x)
is sampled by s(x), the “comb function”, to produce the discrete
output g(x). The “comb function” is simply defined as 1 for discrete
positions and 0 otherwise, so that sampling can be expressed
as multiplication: g(x) = g′c(x)s(x). Note that the output isn’t
necessarily sampled at the same density as that of the input.

14

(a) Forward mapping (b) Backward mapping

Figure 2.3: Forward mapping and backward mapping

In practice, interpolation is usually expressed in more compact terms
(although there are promising efforts to bring a more “functional” style
into graphics).1 The main point, for our purposes, is that the transformation
is performed either through forward mapping or backward mapping. As we
will see in chapter 5, OpenGL ES lends itself well to both approaches. In
the case of a forward mapping implementation, we go from coordinates in
the input image to coordinates in the output image (figure 2.3a). This is
done by constructing a constructing a grid mesh, transforming it, and then
rasterizing the result. In the case of backward mapping, we go from output
coordinates to input coordinates (figure 2.3b). We therefore make use of
the inverse transformation F−1(x), rather than the original transformation
F(x). For example, if the application is scaling, then instead of scaling
coordinates in the input image by a factor of k, we scale coordinates in the
output image by a factor of 1/k.

Which approach is better is a question of context. A complex
transformation may be faster to compute in one direction than the
other. The geometry of the problem may also be exploited to increase
performance. When scaling an image, for example, the interpolation is
usually done in one direction and then in the orthogonal direction (e.g.,
first horizontally and then vertically): the first step produces a set of
intermediate values which are blended together in the second step. But
as complex transformations are not geometrically simple, it is difficult to
generalize techniques which depend on the rows-and-columns shape of
the problem. In section 2.2.3, we will outline an interpolation method that
is general enough to work well with any complex transformations, yet
flexible enough to be adapted to the parameters of the transformation.

1Heard (2008) explores Haskell’s monad concept in conjunction with graphics
processing, giving several examples of how the control flow can be abstracted away.

15

2.2.1 Reconstruction

Although interpolation has been expressed as convolution, it is usually
implemented in terms of evaluating the interpolation polynomial directly
at the resampling positions. For example, in the common case of bilinear
interpolation, the interpolation is performed first in one direction, and
then again in the orthogonal direction (thus the interpolation as a whole is
actually quadratic, not linear).

The choice of reconstruction filter has a huge impact on quality and
performance. The simplest filter is the nearest-neighbor filter, which simply
copies the value of the nearest sample to the reconstructed position. This
is very efficient (practically a “no-op”), but tends to yield a blocky and
jagged result. In the case of bilinear interpolation, the four (2 × 2) nearest
samples are considered, and a weighted average is computed according to
the proximity to each. Even smoother results can be obtained with bicubic
interpolation, although some sharpness of edges gets lost; this method
considers sixteen (4 × 4) samples and is more computationally intensive.2

OpenGL ES contains built-in support for bilinear filtering; other methods
can be implemented as shaders (Bjorke 2004).

2.2.2 Antialiasing

As we consider more complex transformations, we encounter a new prob-
lem: aliasing. Scaling, linear transformations and affine transformations
are uniform, so that the same quality of interpolation applies to the whole
image. If part of the image is jagged, the whole image is jagged; if part
of the image is smooth, the whole image is smooth. When we consider
projective transformations and beyond, this no longer holds true. Instead,
the “density” of the image may vary, giving rise to high frequencies that,
when undersampled, produce aliasing artifacts.

The ideal way to handle these frequencies would be to sample the
image at a higher resolution. Since this is often prohibitively expensive, the
alternative solution is to get rid of the higher frequencies by bandlimiting. A
crude approach would be to blur the whole image before transformation.
A smarter way is to blur adaptively: if we know where in the image the
high frequencies are clustered, we can single those areas out for adaptive
bandlimiting.

2An even more sophisticated choice for resampling is Lanczos interpolation, which
Turkowski and Gabriel (1990) considered the “best compromise in terms of reduction of
aliasing, sharpness, and minimal ringing”.

16

In 3D applications, this is often done with a prefiltering technique
known as “mip-mapping”.3 The same texture is stored in a range of
decreasing resolutions before use. For example, when a polygon is
rendered at an angle, high-resolution textures may be used for the close
parts of the polygon and low-resolution textures for the distant parts.
Anisotropic filtering builds upon mip-mapping by also downsampling
the texture to nonproportional resolutions.

Prefiltering techniques are optimized for the scenario where the same
image is stored once and rendered many times. When processing a stream
of images on-the-fly, this may not be viable. The following techniques
merge interpolation and antialiasing together in one step.

2.2.3 Adaptive interpolation

One such antialiasing technique is area sampling. We may consider each
pixel in the output image to be a square that is mapped to some shape in the
input image, called the “preimage”. By computing this area and blending
together the samples contained therein, we obtain a better value for the
output. That is, pixels with a large preimage (and therefore potentially high
frequencies) are sampled at a higher frequency than pixels with a small
preimage.

Computing the preimage raises issues on its own, however. As a
first approximation, the coordinates of the four corners of the pixel may
be transformed in reverse to produce the input coordinates of some
approximately quadrilateral shape. For more complex transformations, the
preimage may not be quadrilateral at all, and additional coordinates may
be necessary. There is also the recurrent problem that a “pixel is not a little
square” (Smith 1995). A pixel is, in fact, a point sample that is rendered
in the form of a little square. This complicates the matter of drawing the
line between samples that are “inside” the preimage and samples that are
outside it. In practice, some approximation is necessary.

The technique of supersampling sidesteps these geometrical difficulties
(figure 2.4). Instead of dealing directly with the shape of the preimage, the
preimage is merely “sampled” a number of times. The value of the output
pixel is computed on the basis of, say, nine (3× 3) positions that are overlaid
onto the pixel in the form of a uniform grid and then transformed to input
coordinates. These samples are then blended together.

Supersampling should not be confused with multisampling, which is a
built-in anti-aliasing technique provided by OpenGL ES. If multisampling

3“Mip” stands for “multum in parvo”, at Latin phrase meaning “many things in a
small place”.

17

Figure 2.4: Supersampling

is enabled, then each pixel at the edge of a polygon is sampled multiple
times at a slight offset that is smaller than the pixel size. The samples are
averaged together, producing a smoother edge. However, this does little
for the problem of image transformation, where aliasing artifacts are not
confined to polygon edges. We need to provide a more general method,
over whose implementation we can exert direct control.

As we will see in chapter 4, supersampling is simple to implement, but
has the cost of increasing the amount of computations by nine in this case.
If the input is a high-resolution image with lots of detail, then additional
samples may be necessary, making the method increasingly costly. More
efficient results can be obtained by adaptive supersampling. We may estimate
the size of the preimage on the basis of a transformed quadrilateral. Large
preimages are supersampled with a higher number of samples, while
small preimages need not be supersampled at all. In this way, adaptive
supersampling improves efficiency.

We can also adapt the way that the samples are blended together, and
thus improve interpolation quality. In the case of barrel undistortion, we
know that the “sampling density” depends on the distance from the center
of the image. By building this knowledge into our interpolation method,
we can employ a sharpening filter for “low-density” areas and a blurring
filter for “high-density” areas. Section 4.2.5 describes such a strategy.

Summary

Image transformations can be ordered by complexity. Some transforma-
tions can be expressed and implemented as matrix multiplications, while
others require higher-order math. While the former lends itself well to
OpenGL ES’ data structures, the latter may be costly to compute.

In general, the more complex a transformation is, the harder it is to
interpolate in a way that alleviates aliasing effects. Prefiltering methods
commonly used in 3D applications, where a texture is stored once and used
many times, don’t generalize well to the problem of image transformation.

18

Furthermore, nonlinear transformations may give rise to uneven aliasing
effects. When choosing an interpolation method, a trade-off between
quality and efficiency is raised.

Supersampling is a very adaptable method. The number of samples
used and the way they are blended together can both be adjusted on the
basis of knowledge of the behavior of the transformation.

In the following chapters, we will look at how we can implement
forward mapping and backward mapping in the context of OpenGL ES,
as well as how we can improve on OpenGL ES’ built-in interpolation with
a supersampling solution. First, however, we will take a closer look at the
problem of modeling barrel distortion.

19

20

Chapter 3

Models of fish-eye distortion

Wide-angle lenses produce a “fish-eye” effect, but all lenses exhibit some
degree of barrel distortion. By modeling the distortion precisely, it is
possible to undistort the image, producing a “pincushion” effect instead.
In this way, we can correct for the inherent imprecision of regular lenses,
as well as for the “fish-eye” effect of wide-angle images.

Barrel distortion and pincushion are illustrated in figure 3.1. Observe
that in the case of barrel distortion, the “density” of the lines increases
towards the edges. In the case of pincushion distortion, on the other hand,
the reverse is true: the center of the image has the highest “density”. It is this
area that is prone to aliasing effects when undistorting a high-frequency
image.

The main challenge is to model the distortion precisely. Mitigating the
“fish-eye” effect of a wide-angle lens can be done on the basis of known
lens parameters. Correcting for the inherent imprecision of a normal lens,
on the other hand, requires more fine-grained parameters measured by a
calibration routine. These parameters must then be fed into an equation that

(a) Barrel distortion (b) Pincushion distortion

Figure 3.1: Distortion

21

is precise enough to undo the distortion, without introducing additional
distortion of its own.

When we compare models, we encounter a trade-off between precision
and efficiency. If only approximate results are needed, then undistorting an
image requires little computing power, and can be modeled in many ways.
Precisely modeling the distortion is another matter. Not only are the precise
models more costly; unfortunately, they are also less mathematically
tractable than the simpler models.

3.1 Polar coordinates

Barrel distortion is most easily expressed in polar coordinates, with the
center of the lens at the center of the coordinate system. OpenGL ES,
however, uses Cartesian coordinates. Luckily, it is not necessary to perform
coordinate conversion to and from polar coordinates in order to calculate
the distortion. In this section, we will derive a displacement factor that lets
us compute the distortion in Cartesian space (figure 3.2).

If [x, y] are the Cartesian coordinates of a point, then the polar
coordinates [r,θ] represent the radius r and the angle θwith the positive x
axis. The relationship between Cartesian coordinates and polar coordinates
is:

[r,θ] =
[√

x2 + y2, atan2(y, x)
]

(3.1)

where atan2 is the arcus tangent function of two arguments y and x, which
expresses the quadrant of the angle accurately.1 The inverse relationship is
given by:

[x, y] = [r cosθ, r sinθ] (3.2)

(a) Cartesian coordinates (b) Polar coordinates

Figure 3.2: Displacement

1This is provided as the atan() function in OpenGL ES.

22

A model is a mapping from an untransformed coordinate [r,θ] to a
transformed coordinate [r′,θ′]. (It may map undistorted coordinates to
distorted coordinates or vice versa; for the time being, we ignore the
direction of the model and only concern ourselves with the mapping itself.)
Since the angle doesn’t change (i.e., θ′ = θ), the model can be expressed
more compactly as the relationship between the undistorted radius r and
the distorted radius r′:

r′ = F(r) (3.3)

We can avoid incurring the cost of the trigonometric functions in
equations (3.1–3.2). Let d be the displacement factor, expressed as the ratio
of the distorted radius to the undistorted radius:

d =
r′

r
=

F(r)
r

(3.4)

Then the relationship between undistorted polar coordinates and distorted
polar coordinates can be expressed in terms of this factor:

[r′,θ′] = [F(r),θ] =
[
F(r)

r
r,θ

]
= [dr,θ] (3.5)

Likewise, the relationship between undistorted Cartesian coordinates and
distorted Cartesian coordinates is given by:

[x′, y′] = d[x, d] = [dx, dy] (3.6)

This is easily verified by substituting equation (3.5) into equation (3.2). In
the rest of the chapter, we will consider distortion to be a function of the
radius.

3.2 Polynomial models

The classical distortion model is Brown’s model. In addition to radial
distortion, it also models tangential distortion, which occurs when the
lens is not aligned with the sensor. The model is commonly approximated
as a Taylor series:

xu = xd + (xd − xc)(κ1r2 + κ2r4 + κ3r6 + · · ·) +

[(ρ1(r2 + 2(xd − xc)
2) + 2ρ2(xd − xc)(yd − yc))(1 + ρ3r2 + · · ·)]

yu = yd + (yd − yc)(κ1r2 + κ2r4 + κ3r6 + · · ·) +

[(ρ1(r2 + 2(yd − yc)
2) + 2ρ2(yd − yc)(yd − yc))(1 + ρ3r2 + · · ·)]

(3.7)

23

where [xu, yu] is the undistorted image point, [xd, yd] is the distorted image
point, [xc, yc] is the center of distortion (i.e., [0, 0] under our assumptions),
κn is the nth radial distortion coefficient and r is the radius as defined in
equation (3.1). The part in brackets expresses tangential distortion, where
ρn is the nth tangential distortion coefficient.

If we substitute [xc, xc] = [0, 0] and remove the tangential part, the
model simplifies to:

xu = xd(1 + κ1r2 + κ2r4 + κ3r6 + · · ·)

yu = yd(1 + κ1r2 + κ2r4 + κ3r6 + · · ·︸ ︷︷ ︸
d

) (3.8)

where d is the displacement factor we defined in equation (3.4). Since the
polynomial d = f (r) must be symmetric in r, only the coefficients of even
powers of r will be nonzero. Higher-order terms contribute very little,
so equation (3.8) can be approximated by a finite expression where the
coefficient κ1 controls the general behavior of the distortion:

d = f (r) = 1 + κ1r2 (3.9)

The coefficient κ2 needs only be added if a first-order approximation is
insufficient:

d = f (r) = 1 + κ1r2 + κ2r4) (3.10)

However, for larger distortions (i.e., wide-angle lenses), at least three terms
are needed:

d = f (r) = 1 + κ1r2 + κ2r4 + κ3r6 (3.11)

Brown’s model is a mapping from distorted positions to undistorted
positions, i.e., a relationship of the form [xu, yu] = F(xd, yd). This allows
us to determine where any point in the distorted image would appear
if there was no lens distortion. Applied as a forward mapping image
transformation, it produces a “pincushion” effect (the opposite of barrel
distortion). However, lens undistortion can also be implemented in terms
of the reverse relationship, [xd, yd] = F−1(xu, yu), provided we substitute
backward mapping for forward mapping. Table 3.1 shows the relationships
between interpolation method, model direction, and the produced effect.

If we want to implement a backward mapping image transformation
in terms of the inverse relationship, we encounter the problem that
equation (3.11) has no closed-form solution. If precision is less of a concern,
we can precompute the mapping and store the values in a table, as outlined
in section 2.1.5. However, methods like supersampling are likely to request

24

Interpolation Model Effect

Forward mapping [xu, yu] = F(xd, yd) Pincushion
Backward mapping [xu, yu] = F(xd, yd) Barrel
Forward mapping [xd, yd] = F−1(xu, yu) Barrel
Backward mapping [xd, yd] = F−1(xu, yu) Pincushion

Table 3.1: Forward mapping and backward mapping

a position that is not stored in the table, requiring us to interpolate between
table entries.

Another approach is to compute the inverse by an iterative method
such as Newton–Raphson approximation:

xn+1 = xn −
f (xn)

f ′(xn)
(3.12)

To approximate a value for r corresponding to a displacement d, we rewrite
equation (3.11) on the form f (r) = 0:

f (r) = 0 = 1 + κ1r2 + κ2r4 + κ3r6
− d (3.13)

The derivative of this polynomial is:

f ′(r) = 2κ1r + 4κ2r3 + 6κ3r5 (3.14)

Substituting equations (3.13–3.14) into equation (3.12) gives us:

rn+1 = rn −
1 + κ1r2 + κ2r4 + κ3r6

− d
2κ1r + 4κ2r3 + 6κ3r5 (3.15)

This is an iterative equation for finding better and better estimates of r
such that f (r) = d. Since the equation is considerably more complicated
than the forward relationship, we would like to reduce the number of
iterations to a minimum. Note that the approximation converges towards
better estimates depending on how good the previous estimate was. Thus,
by combining Newton–Raphson approximation with precomputed values
in a table, the number of iterations can be reduced. The initial estimate
is picked from a precomputed table T, and subsequent iterations refine it.
Algorithm 1 illustrates this approach.

In general, Brown’s model is cheap in one direction, but costly in the
other direction. That makes it a less than optimal choice for backward
mapping implementations with advanced interpolation methods, since in

25

Algorithm 1 Newton–Raphson approximation

r← T(d) . initial estimate from table
for n = 0 to N do

r← r− 1+κ1r2+κ2r4+κ3r6
−d

2κ1r+4κ2r3+6κ3r5 . refine estimate
end for
return r . final estimate

addition to the cost of interpolation, we also get the cost of approximating
the model’s inverse. If precision is less of a concern, then an alternative is
to use a less precise model which is easier to invert. There are several such
models to choose from.

3.3 Non-polynomial models

3.3.1 Exponential model

Schwarz (1980) showed that the relationship between the distorted radius
rd and the undistorted radius ru can be approximated by the following
exponential equation:

ru = (erd/s
− 1)/λ (3.16)

where s is a scaling factor and λ is the amount of distortion. The inverse
relationship is given by a logarithmic equation:

rd = s ln(1 + λru) (3.17)

Basu and Licardie (1995) compared this model with a polynomial model,
and found it to produce good results.

3.3.2 Trigonometric model

Devernay and Faugeras (2001) proposed an alternate approximation:

ru = 1
ω atan(2rd tan ω

2) (3.18)

rd =
tan(ruω)

2 tan ω
2

(3.19)

where ω is the field-of-view of the corresponding ideal wide-angle lens.

26

3.3.3 Division model

Fitzgibbon (2001) described a fast inverse model called the “division
model”:

rd =
1

1 + κr2 ru (3.20)

This model is about as good an approximation as the first-order Taylor
expansion in equation 3.9, but in the opposite direction.

3.4 Parameter estimation

The coefficients of the models can be fitted to a curve using the least
squares method. In the case of polynomial models, Basu and Licardie
(1995) showed that the resulting set of linear equations can be solved by
an analytical method such as Gauss–Jordan elimination.

In the case of non-polynomial models, there is no simple relationship
between the parameters of one model and the parameters of another.
Therefore, analytical methods are not applicable. Instead, the parameters
can be estimated with successive evaluation techniques such as Newton–
Raphson approximation.

Using Matlab’s fitnlm() function, we obtained the following coefficients
for Brown’s model:2

d = f (r) = 1− 3.5778r2 + 7.1946r4 + −3.9842r6 (3.21)

For the exponential model:

ru = (erd/0.76
− 1)/3.8342 (3.22)

rd = 0.76 ln(1 + 3.8342ru) (3.23)

For the trigonometric model:

ru = 1
0.95617 atan(2rd tan 0.95617

2) (3.24)

rd =
tan(0.95617ru)

2 tan 0.95617
2

(3.25)

For the division model:

rd =
1

1− 0.29948r2 ru (3.26)

2The complete Matlab code is given in Appendix B.

27

Summary

Fish-eye distortion can be modeled in various ways. Polynomial models
offer high precision, and are a good choice for forward mapping imple-
mentations. In the case of backward mapping implementations, however,
polynomial models are expensive to invert, requiring precomputed tables
in combination with interpolation methods or iterative approximation. If
loss of precision is acceptable, then non-polynomial models are a better fit
for backward mapping implementations.

While there are no straightforward relationships between the param-
eters of one model and another, the coefficients can be estimated with
nonlinear regression.

28

Chapter 4

Implementation strategies

So far, we have considered how image transformation can be expressed
mathematically, the challenges it raises with regard to interpolation, and
what models we may use to express fish-eye distortion. In this chapter,
we will consider various strategies for implementing such distortion using
OpenGL ES.

4.1 Implementation considerations

There are several factors to consider:

1. CPU or GPU: Whether we want to calculate the distortion on the
CPU, or accelerate it with the GPU.

2. Precomputed or dynamic: Whether we want to store the transforma-
tion in a lookup table, or compute it mathematically.

3. Forward mapping or backward mapping: Whether we compute
output coordinates in terms of input coordinates (forward mapping),
or input coordinates in terms of output coordinates (backward
mapping).

4. Built-in or manual interpolation: Whether we rely on OpenGL ES’
built-in interpolation methods, or implement our own.

Let us discuss each of these items in detail.

4.1.1 CPU or GPU

An OpenGL ES pipeline uses both the CPU and the GPU to some extent
(figure 4.1). However, the brunt of the workload can be computed by the
CPU, or it can be accelerated by the GPU.

The transformation may be programmed in C (or in our case, in C++)
and computed entirely by the CPU. If a vertex mesh is used to transform

29

Figure 4.1: Data flow

the image, this mesh needs only be computed once, and can be reused
many times. The task of OpenGL ES is then to apply a texture to this mesh
and interpolate the result.

Alternatively, the transformation may be programmed in shader code
and computed by the GPU. Since each coordinate can be transformed
without relation to the others, the whole task is “embarrassingly parallel”,
and easy to code in terms of shaders. Furthermore, this approach is more
flexible in that it can be combined with a custom interpolation technique.

4.1.2 Precomputed or dynamic

There are several ways of caching the computations for later use.
Transforming a vertex mesh entirely on the CPU is one strategy. Hybrid
approaches are also possible: the CPU may compute a lookup table which is
used by the shader. To obtain continuous values, the shader may interpolate
between table entries, or use the closest table entry to seed an estimation
method such as Newton–Raphson approximation.

4.1.3 Forward mapping or backward mapping

If the image is transformed by applying a texture to a grid mesh,
there is a mapping between vertex positions and texture coordinates.
A forward mapping implementation transforms the vertex positions; a
backward mapping implementation transforms the texture coordinates.
This transformation can be computed by the CPU or in the vertex shader.

Alternatively, a backward mapping implementation may be imple-
mented in the fragment shader. In such an implementation, each pixel in
the output image is computed by determining the corresponding position
in the input image and sampling it.

30

Acceleration: Computation: Mapping: Interpolation:
CPU/GPU Precomputed/Dynamic Forward/Backward Built-in/Manual

1 C P F B
2 C P B B
3 G D F B
4 G D B B
5 G D B M

Table 4.1: Implementation strategies

4.1.4 Built-in or manual interpolation

OpenGL ES provides built-in bilinear interpolation. This option is very
fast and yields reasonable results. It also simplifies the implementation;
all that needs to be coded is the mathematical relationship of the image
transformation.

Alternatively, more sophisticated means of interpolation can be
implemented manually, at the cost of more code and more computations.
We will explore how interpolation can be performed in the fragment shader.

4.2 Implementation strategies

As we can see, we have several options when implementing image
transformation. Table 4.1 lists some possible interpolation strategies – that is,
ways of combining these options. Some options tend to go together with
other options, but the table is not exhaustive; many other combinations
are possible. In this section, we will focus on a selection of implementation
strategies to illustrate the possibilities.

4.2.1 Strategy 1: CPFB

The first strategy computes the transformation on the CPU (C),
precomputes the transformation before use (P), employs forward mapping
(F), and uses OpenGL ES’ built-in interpolation (B). This is done by loading
the image as a texture which is projected onto a transformed grid mesh.
The crucial insight is that the mesh needs only be transformed once, and
can be reused many times (e.g., when transforming a video sequence). If
the image size is known in advance, the mesh need not even be computed
when running the program; it can be stored as precomputed data.

The strategy uses forward mapping, since the shape of the mesh is
transformed directly. We can think of it like this: we create a grid mesh of,
say, 10× 10 vertices. Each vertex is mapped to a corresponding coordinate

31

in texture space: the bottom-left vertex is mapped to the bottom-left corner
of the texture, the upper-right vertex is mapped to the upper-right corner,
and so on. Then the positions of the vertices are transformed by means of
the chosen model. In consequence, the texture is warped.

As illustrated in figure 4.2, the transformation is a mapping from
regular rectangles (the undistorted grid) to quadrilaterals (the distorted
grid). Although the vertex positions have changed, the texture coordinates
still map to the undistorted grid.

The strategy leaves interpolation to OpenGL ES. The smoothest results
are achieved by OpenGL ES’ GL_LINEAR option. Some versions also supports
multisampled anti-aliasing, although this is considerably more expensive.
However, since the strategy is very efficient in the first place, the impact
may be negligible.

4.2.2 Strategy 2: CPBB

The second strategy is like the first, but employs backward mapping
instead (B). This is done by transforming the other end of the
mapping between vertex positions and texture coordinates. That is, while
the forward mapping strategy transformed the vertex positions and
held the texture coordinates constant, the backward mapping strategy
transforms the texture coordinates and holds the vertex positions constant
(McReynolds and Blythe 2005).

To explain this transformation in detail, we need to give an overview of
OpenGL ES’ coordinate spaces. By itself, OpenGL ES contains a mapping
between two coordinate spaces: vertex positions [x, y] in the range [−1, 1]
and texture coordinates [s, t] in the range [0, 1]. The default mapping is

Figure 4.2: Transformation grid

32

given by the equation: [
s
t

]
=

[
x/2 + 1/2
y/2 + 1/2

]
(4.1)

This is an affine transformation, where vertex space is centered around
[0, 0]. It is translated and scaled to texture space, which is centered around
[1/2, 1/2]. Using the conventions established in chapter 2, we can express
the translation in matrix form:

s
t
1

 =

x
y
1

1/2 0 1/2

0 1/2 1/2
0 0 1

 (4.2)

Or in tableaux form:

[
s
t

]
=

[0, 0] if [x, y] = [−1,−1]

[0, 1] if [x, y] = [−1, 1]

[1, 0] if [x, y] = [1,−1]

[1, 1] if [x, y] = [1, 1]

[1/2, 1/2] if [x, y] = [0, 0]

. . .

[x/2 + 1/2, y/2 + 1/2]

(4.3)

The inverse relationship is of course given by:[
x
y

]
=

[
2(s− 1/2)
2(t− 1/2)

]
(4.4)

The utility of equations 4.1–4.4 is evident when we want to transform
texture space. The transformation equations assume that the coordinate
space is centered around [0, 0], not [1/2, 1/2]. Therefore we must translate
the coordinates before and after conversion, as shown in algorithm 2.

Algorithm 2 Coordinate conversion

[x, y]← [2(s− 1/2), 2(t− 1/2)] . convert to vertex space
[x′, y′]← F([x, y]) . transform coordinates
[s′, t′]← [x′/2 + 1/2, y′/2 + 1/2] . convert to texture space

Aside from these caveats, the implementation is straightforward and
yields comparable results to the first strategy. The additional computations
introduced by the coordinate conversion in algorithm 2 are negligible and
do not contribute much to the overall cost. Which is the better choice? It

33

depends. If all necessary parameters are known beforehand so that the
whole mesh can be stored as precomputed data, it doesn’t really matter
whether we choose one or the other. However, if the image size is not
known and the mesh needs to be computed as least once when the program
is initialized, then backward mapping may be preferable over forward
mapping if the chosen model is faster in that direction. As we saw in chapter 3,
models differ in this regard: a model well-suited for a forward mapping
strategy may be a poor choice for a backward mapping strategy, or vice
versa. If there is an “impedance mismatch” between model and strategy,
we should change one or the other.

4.2.3 Strategy 3: GDFB

The previous strategies have left little work to be performed by the GPU.
For anything to be rendered, OpenGL ES requires us to at least write
a simple vertex shader that passes the vertex data through unchanged
(assuming that the input coordinates matches the screen coordinates),
and a fragment shader that samples the color of the texture at the given
coordinate.

We can move the transformation into these very shaders. As before,
we first create a regular grid mesh of, say, 10 × 10 vertices. Then we pass
each vertex to the vertex shader, letting the vertex shader compute the
transformed position. The end result is the same as when performing
forward mapping on the CPU, but the transformation is expressed in
shader code instead.

If this approach is applied to a video sequence, the consequence is that
the transformation is re-computed for each frame. To avoid this, the grid
may be transformed by a separate vertex shader that is run only once and
whose results are saved for later use. OpenGL ES 3.0 allows the output of a
shader to be captured in a buffer object. The rendering itself is performed
by a simple pass-through shader, as in the CPU case.

4.2.4 Strategy 4: GDBB

Backward mapping can also be done on the GPU. Whereas forward
mapping was performed by the vertex shader, backward mapping is more
appropriately performed by the fragment shader. The reason is that in this
case, we don’t need a 10 × 10 grid mesh – a simple quadrilateral of four
vertices will suffice. The task of the fragment shader, which is run once
per output pixel in this case, is to transform the corresponding texture
coordinate before sampling the texture at that coordinate.

34

As in the CPU case, we must perform coordinate conversion before and
after the transformation. We must also check if the transformation returns
a position that is out of range: if so, we return a blank color (e.g., white).
Section 4.2.4 describes the implementation of such a coordinate check.

4.2.5 Strategy 5: GDBM

All the previous strategies have relied on built-in interpolation. However,
the last strategy, which performs backward mapping on the GPU, can be
combined with supersampling as a custom interpolation step. Instead of
sampling a single color value, which will have been interpolated for us by
OpenGL ES’ GL_LINEAR option, we can sample multiple values and blend
them together ourselves. If we know that the length and height of an output
pixel is l, then the positions of the corners are given as follows:

[x, y]ul = [x− 1
2 l, y + 1

2 l] (4.5)

[x, y]ur = [x + 1
2 l, y + 1

2 l] (4.6)

[x, y]ll = [x− 1
2 l, y− 1

2 l] (4.7)

[x, y]lr = [x + 1
2 l, y− 1

2 l] (4.8)

These four coordinates plus the original coordinate can then be
transformed to input coordinates that are sampled to compute an average
of five values. Alternatively, we can overlay a grid of 3 × 3 positions over
the pixel and sample the input at nine different positions. This gives us
four more positions to compute:

[x, y]um = [x, y + 1
2 l] (4.9)

[x, y]ml = [x− 1
2 l, y] (4.10)

[x, y]mr = [x + 1
2 l, y] (4.11)

[x, y]lm = [x, y− 1
2 l] (4.12)

An unweighed average produces a smooth, if somewhat fuzzy result. We
can achieve a different filtering effect by adjusting the coefficients – that is,
by computing a weighed average. A weighed average can be expressed a
two-dimensional dot product with a weight matrix (or “kernel”) divided
by a normalization value (Bjorke 2004):

1
d

wul wum wur

wml wmm wmr

wlr wlm wlr

 ·

cul cum cur

cml cmm cmr

clr clm clr

 = 1
d(wulcul + wumcum + · · ·+ wlrclr)

(4.13)

35

(a) Box filter (b) Gaussian filter

(c) Sharpening filter

Figure 4.3: Filtering methods

A brief discussion of a few very simple filters follows. For example, the
previously mentioned average of nine samples can be expressed as a matrix
of 1’s divided by 9 (figure 4.4b). This is also known as a box filter, since it
weighs the neighboring samples equally (figure 4.3a). Such a filter removes
much of the noise in the original image by averaging samples together; but
it also removes a significant amount of detail that isn’t noise.

In this regard, better results are typically achieved by a Gaussian filter
(figure 4.3b). Filtering with such a filter produces a blurring effect similar
to that of the box filter, but the priority is on the central sample and the
samples adjacent to it. The Gaussian kernel (figure 4.4c) gives most weight
to the center position, less weight to the closest neighbors, and least weight
to the corners. Thus, the filter keeps more of the differences between one
sample and the next. As such, the Gaussian filter is a compromise between
the unfiltered image and the deep blurring effect produced by the box filter.

Instead of reducing the difference between samples, we can also
accentuate it. A sharpening filter works in the opposite way to the previous
filters: instead of adding the values of the neighboring samples, the
sharpening filter subtracts them from the central sample (figure 4.3c). If
the central sample has the same value as the surrounding samples, then
the filtered value is equal to the original (figure 4.4d). But if the central
sample has a greater value than the surrounding samples, then the filtered
value is magnified significantly. Note that as a sharpening filter magnifies
noise along with other details in the image, it can be a good idea to apply
a blurring filter, such as the Gaussian filter, prior to sharpening.

These are only some of the image effects that can be expressed in terms of
3× 3 filter kernels. As we will see in section 5.8, one benefit of such filters is

36

1
5

1 0 1
0 1 0
1 0 1

(a) 5-point
box filter

1
9

1 1 1
1 1 1
1 1 1

(b) 9-point
box filter

1
16

1 2 1
2 4 2
1 2 1

(c) Gaussian

filter

−1 −1 −1
−1 9 −1
−1 −1 −1

(d) Sharpening

filter

Figure 4.4: Interpolation kernels

that they are easy to represent with OpenGL ES data structures. Since their
dimensionality is the same, it is easy to swap out one filter in preference
of another under an adaptive strategy. More sophisticated filters can be
implemented, but fall outside the scope of this thesis. An examination of
current film renderers performed by Wexler and Enderton (2005) showed
a wide variety of supported filters (sinc, Gaussian, Carmull-Rom, Lanczos,
Mitchell and more) and default filter radii of 2 to 5 samples.

If the supersampling approach is combined with OpenGL ES’ GL_LINEAR
option, the result is a “two-step” interpolation method. Each color value
is interpolated by OpenGL ES when it is sampled, and then it is
blended together with neighbor samples by the fragment shader. Adaptive
supersampling is also possible: for example, we could compute the final
value on the basis of one, four, five or nine samples depending on the
distance to the center and the resulting sampling density. In this way, we
could improve the efficiency of the shader.

More interestingly, the kernels listed in figure 4.4 can be interchanged
adaptively in order to improve interpolation quality. Recall from chapter 3
that as barrel undistortion produces a “pincushion” effect, the center of
the image has the highest frequency, while the outer areas are often blurry
because the samples are spread apart. This suggests that while a blurring
kernel should be employed in the center to mitigate aliasing effects, it may
be swapped out in preference of a sharpening kernel when the outer parts
of the image are dealt with.

37

Summary

We have outlined five different implementation strategies for accelerating
image transformation with OpenGL ES. Two of the strategies perform
the transformation on the CPU, the others perform in on the CPU.
Two strategies cache the computations, while the others compute it
dynamically. Two strategies use forward mapping and three strategies
use backward mapping. Finally, four strategies uses OpenGL ES’ built-in
bilinear interpolation, while one strategy performs manual interpolation
in the shader.

The strategies vary by complexity. For the CPU strategies, the
transformation is done prior to any rendering, and the OpenGL ES pipeline
is very simple. For the GPU strategies, transformation is either done by
means of a forward mapping vertex shader, or a backward mapping
fragment shader. The latter can be augmented by increasingly complex and
sophisticated methods for custom interpolation, such as supersampling.

Our supersampling strategy makes use of 3 × 3 interpolation kernels,
which, although simple, offer a variety of effects and are easy to implement
in OpenGL ES. They can be replaced with more sophisticated filters, but
that falls outside of the scope of this thesis.

In the next chapter, we will take a detailed look at the implementation
of these strategies.

38

Chapter 5

Implementation with OpenGL ES

In this chapter, we describe our implementation of the strategies outlined in
chapter 4. We have written a test program that runs each strategy multiple
times and measures the execution time. We describe the general structure
of this program, the data flow of the shaders, and our implementation
of the grid mesh and the interface for transforming it. Then we turn to
transformation on the GPU, illustrated by snippets of shader code.

For instructions on how to obtain and compile the code, refer to
appendix A.

5.1 Qt

The OpenGL ES API does not specify how a rendering context is created or
attached to the native windowing system. There are various frameworks
for creating an OpenGL ES application – e.g., EGL, GLUT, and Qt (which
builds upon EGL). For our implementation, we have chosen Qt, which is
written in C++. This affords us the opportunity to structure the code in an
object-oriented way.

Qt is a cross-platform application framework maintained by Qt
Company. Applications written in Qt can be compiled and run on
Windows, Linux and OS X, as well as mobile platforms. Qt provides
the QGLWidget class as an abstraction layer for OpenGL ES (Qt 2015). By
subclassing this class, we can draw onto the current rendering context by
invoking standard OpenGL ES functions.

OpenGL ES is for the most part a subset of desktop OpenGL, with
the exception of a few precision qualifiers (highp, mediump and lowp). In
fact, most OpenGL ES code can easily be run on desktop OpenGL by
prefixing the shaders with definitions of these qualifiers, and avoiding
variable names with special meanings. Qt encourages the writing of such

39

Figure 5.1: UML diagram

“portable shaders”, and so do we: all the code is backward compatible with
desktop OpenGL.

The basic structure of the application is shown in figure 5.1. A
QApplication is instantiated with a Window (main.cpp). Window instantiates a
GLWidget (window.cpp). GLWidget is a subclass of QGLWidget, and it sets up
and runs OpenGL ES code in its initializeGL() and paintGL() functions
(glwidget.cpp). The OpenGL ES code is structured in a number of
“strategies” inheriting from a base class (strategy.cpp), using the Template
Method pattern (Gamma et al. 1995).

5.2 Shaders

Each strategy invokes a vertex shader and a fragment shader. Since
OpenGL ES lacks a fixed-function pipeline, we must at the very least
specify a pass-through vertex shader and a texture sampling fragment
shader in order to render anything at all.

Both shaders take a number of data entries as input and return a number
of data entries as output. The vertex shader (figure 5.2a) takes a number
of input attributes and outputs a number of varyings. The fragment shader
(figure 5.2b) takes the varyings as input and outputs a color.

Constant data used by shaders are globally available as uniforms. A
special type of uniform is the sampler, which represents a texture. It is used
by the fragment shader for looking up the color of a texture coordinate. As
of OpenGL ES 3.0, texture lookup operations are also possible in the vertex
shader (Munshi et al. 2014).

40

(a) Vertex shader

(b) Fragment shader

Figure 5.2: OpenGL ES shaders

41

In the CPU-computed strategies, a pass-through vertex shader takes
the texture coordinate and position of each vertex and outputs them
unchanged as a varying and the OpenGL ES attribute gl_Position. A
texture sampling fragment shader takes the texture coordinate as input
and outputs the color of the texture at that position.

In the GPU-accelerated strategies, transformation is performed in the
shaders. In the case of the vertex shader, the vertex position is transformed
before it is output to gl_Position. In the case of the fragment shader, the
texture coordinate is transformed before sampling the texture.

5.3 Compilation

When the implementation is initialized, the shaders are read from a file on
disk, parsed and compiled into a shader object in memory. The shader objects
are then attached to and linked into a program object that performs the
rendering (figure 5.3). At this stage, vertex positions, texture coordinates
and textures can be allocated and bound to the program object.

OpenGL ES does not specify a binary format for program objects. This
is left to the vendor, which means that the format may change from one
driver version to another. If the glGetProgramBinary() and glProgramBinary()
functions are available, then a binary representation can be saved to the
file system to be reused later. In this way, the cost of online compilation is
avoided.

Figure 5.3: Shader compilation

42

Our implementation does not cache the compilation step. Instead, time
measurements are postponed until after OpenGL ES has been successfully
initialized.

5.4 Strategy 1: CPFB

When computing the transformation on the CPU, we need to create a
grid mesh of M × N vertices – a higher number means a more precise
transformation. This task is handled by the Grid class (grid.cpp). The
class encapsulates three arrays: an array of vertex positions, an array of
associated texture coordinates, and an array of indices for drawing the
triangles of the mesh. For example, a grid of ten rows and ten columns
is instantiated with Grid(10, 10), while a simple square of four corners is
created with Grid(2, 2).

The mesh is constructed as a GL_TRIANGLE_STRIP, with alternating
orientations of the inner triangles so that the whole strip can be drawn in
one pass (figure 5.4a). Observe that each point has a pair of coordinates
associated with it: a vertex position in the range [−1, 1] and a texture
coordinate in the range [0, 1]. The grid may be transformed by transforming
the vertex positions and holding the texture coordinates constant, or by
transforming the texture coordinates and holding the vertex positions
constant.

To perform a forward mapping transformation, we iterate through
each vertex position in the grid, transform it, and update the position.
To this end, the Grid class provides an abstract interface (figure 5.4b). The
transform() method takes a functor class as input. A functor class, in this

(a) Grid mesh (b) Class interface

Figure 5.4: Grid class

43

context, is merely a wrapper class for a function on vertex positions.1 By
implementing the transformation as such a class, we can pass it to the
Grid class to perform transformation. (The vertex positions themselves are
represented by a Point class with an x attribute and a y attribute.)

After the grid has been transformed, it is ready for use and can be
textured by the input image. Its vertex positions and texture coordinates are
loaded as vertex attribute arrays, and become available as input attributes
for the vertex shader. Since we are not using the GPU to accelerate the
transformation, a simple a pass-through vertex shader (listing 5.1) and a
texture sampling fragment shader (listing 5.2) suffice.

In OpenGL ES, if no default precision is specified, then the default
precision is highp (the highest precision). It is possible that the shaders may
run faster or with a better power efficiency at a lower precision. However,
OpenGL ES does not require the vendor to support multiple precisions,
so it is perfectly valid for an implementation to ignore all qualifiers and
perform the calculations at the highest precision level.

Listing 5.1: Pass-through vertex shader
1 attribute vec2 a_texcoord;

2 attribute vec4 a_position;

3 varying vec2 v_texcoord;

4

5 void main() {

6 gl_Position = a_position;

7 v_texcoord = a_texcoord;

8 }

Listing 5.2: Texture sampling fragment shader
1 varying vec2 v_texcoord;

2 uniform sampler2D s_texture;

3

4 void main() {

5 gl_FragColor = texture2D(s_texture , v_texcoord);

6 }

1Our functor classes are implemented as function objects, that is, they overload the
operator() operator. C++11 also provides support for anonymous functions in the form
of lambda expressions (Stroustrup 2013), but these are difficult to compose in the way
outlined in section 5.5.

44

Figure 5.5: Functor composition

5.5 Strategy 2: CPBB

In the second CPU-computed strategy, we perform backward mapping
instead of forward mapping. That is, we hold the vertex positions constant,
and transform the texture coordinates instead.

To this end, the Grid class provides the iTransform() method, which
iterates through the grid’s texture coordinates. Recall that texture space’s
range of [0, 1] differs from vertex space’s range of [−1, 1], so the method
implements algorithm 2 and converts between coordinate spaces before
and after transformation.

In this regard, our Functor interface comes in handy. Coordinate
conversion, after all, is just another transformation, and can be encap-
sulated in a functor class of its own. By defining a chain() method for
composing functor classes, we can build more complex transformations out
of simpler transformations. Transformation in texture space, for example,
can be defined as the composition of coordinate conversion and vertex
transformation, composed with reverse coordinate conversion (figure 5.5).
Likewise, when we initialize the grid, we employ functor classes to
normalize vertex positions within the [−1, 1] range and texture coordinates
within the [0, 1] range.

As before, once the grid has been transformed, it stays transformed.
The shaders are the same as for the previous strategy (listings 5.1–5.2).

5.6 Strategy 3: GDFB

The third strategy is a modification of the first strategy, but the
transformation is performed on the GPU instead. As before, we instantiate
an object of the Grid class, but we don’t invoke the transform() method.
Instead, we leave it to the vertex shader to map each vertex to the
transformed position.

Listing 5.3 outlines the structure of the vertex shader. The transform()
function implements our choice of distortion model. Note that texture
coordinates are passed through unchanged.

Listing 5.3: Transformation in the vertex shader

45

1 attribute vec2 a_texcoord;

2 attribute vec4 a_position;

3 varying vec2 v_texcoord;

4

5 / / f i s h − e y e t r a n s f o r m a t i o n

6 vec4 transform(vec4 pos) {

7 ...

8 }

9

10 void main() {

11 gl_Position = transform(a_position);

12 v_texcoord = a_texcoord;

13 }

5.7 Strategy 4: GDBB

In the backward mapping case, we transform the texture coordinates
instead. This step can be performed in the fragment shader prior to
sampling the texture. Since the fragment shader’s texture coordinate is
the interpolated value between the vertices surrounding the fragment’s
position, we don’t need to create a detailed mesh beforehand – a “grid”
consisting of four corners suffices. Listing 5.4 shows how the texture
coordinate is passed to transform() before texture2D().

Listing 5.4: Transformation in the fragment shader
1 varying vec2 v_texcoord;

2 uniform sampler2D s_texture;

3

4 / / t e x t u r e c o o r d i n a t e s t o v e r t e x p o s i t i o n s

5 vec2 texcoordtopos(vec2 tex) {

6 ...

7 }

8

9 / / v e r t e x p o s i t i o n s t o t e x t u r e c o o r d i n a t e s

10 vec2 postotexcoord(vec2 pos) {

11 ...

12 }

13

14 / / f i s h − e y e t r a n s f o r m a t i o n

15 vec2 fisheye(vec2 pos) {

16 ...

17 }

18

19 / / t r a n s f o r m a t i o n f u n c t i o n

20 vec2 transform(vec2 tex) {

46

21 return postotexcoord(fisheye(texcoordtopos(tex)));

22 }

23

24 void main() {

25 gl_FragColor = texture2D(s_texture , transform(v_texcoord));

26 }

As in the CPU case, we must perform coordinate conversion before
and after transformation. This is done by the functions texcoordtopos()
and postotexcoord(). The transform() function encapsulates the invocation
of these functions and the fisheye() function, which performs the actual
transformation.

Depending on the model parameters, it may be wise to check if the
transformed coordinate is within the [0, 1] range, and return a blank color
if it isn’t. This can done by substituting a custom color() function for the
direct invocation of texture2D() (listing 5.5).

Listing 5.5: Texture sampling function
1 vec4 color(sampler2D texture, vec2 pos) {

2 if(pos.x < 0.0 || pos.y < 0.0 ||

3 pos.x > 1.0 || pos.y > 1.0) {

4 return vec4(1.0, 1.0, 1.0, 1.0); / / w h i t e

5 } else {

6 return texture2D(texture, pos);

7 }

8 }

9

10 void main() {

11 gl_FragColor = color(s_texture , transform(v_texcoord));

12 }

5.8 Strategy 5: GDBM

The final strategy builds upon the previous to include custom interpolation
in the form of supersampling. This is done by sampling the texture not
once, but multiple times, and blending the values together. The first task
of the main() method is to compute the neighbor coordinates according to
equations (4.5–4.12):

Listing 5.6: Neighbor coordinates
1 vec2 v0 = vec2(v_texcoord.x - px/2.0,

2 v_texcoord.y + px/2.0);

3 vec2 v1 = vec2(v_texcoord.x,

4 v_texcoord.y + px/2.0);

47

5 ...

6 vec2 v8 = vec2(v_texcoord.x + px/2.0,

7 v_texcoord.y - px/2.0);

Here, px is the normalized size of a fragment (i.e., 1 divided by the
number of fragment rows or columns). The next step is to transform these
coordinates:

Listing 5.7: Transformed coordinates
1 v0 = transform(v0);

2 v1 = transform(v1);

3 ...

4 v8 = transform(v8);

We sample the texture at the transformed positions:

Listing 5.8: Transformed coordinates
1 vec4 c0 = color(s_texture , v0);

2 vec4 c1 = color(s_texture , v1);

3 ...

4 vec4 c8 = color(s_texture , v4);

Then we can compute our interpolate value by blending these colors
together. For example, if blend9() is a custom function computing an
unweighed average, then we can call blend9(c0, c1, ..., c8).

We can also calculate a weighed average, expressed in terms of the kind
of 3 × 3 kernel described in section 4.2.5. The mat3 data type is well suited
to representing such a kernel. First we write a general filter9() function
which takes a set of colors, a kernel, a divisor, and returns a weighed
average:

Listing 5.9: Filtering function
1 vec4 filter9(vec4 c1, vec4 c2, ..., vec4 c9,

2 mat3 kernel, float div) {

3 return (c1 * kernel[0][0] +

4 c2 * kernel[0][1] +

5 ...

6 c9 * kernel[2][2]) / div;

7 }

To this function we can for example pass a Gaussian kernel (figure 4.4c):

Listing 5.10: Filtering function
1 vec4 gaussian9(vec4 c1, vec4 c2, ..., vec4 c9) {

2 mat3 kernel = mat3(1.0, 2.0, 1.0,

3 2.0, 4.0, 2.0,

48

4 1.0, 2.0, 1.0);

5 return filter9(c1, c2, ..., c9, kernel, 16.0);

6 }

This will typically produce a crisper result than the unweighed average.
The choice of kernel can be determined adaptively by specifying a way

to classify the image into concentric regions. For example, classifying on
the radius describes a circular area, while classifying on the maximum
transformed width or height describes a “pincushion”-shaped area
(illustrated in figure 6.8):

Listing 5.11: Distance measure
1 / / r a d i u s

2 float distance() {

3 return length(texcoordtopos(v_texcoord));

4 }

5

6 / / m a x i m u m t r a n s f o r m e d w i d t h / h e i g h t

7 float distance2() {

8 vec2 vx = abs(fisheye(texcoordtopos(v_texcoord)));

9 return max(vx.x, vx.y);

10 }

The appropriate kernel can be selected according to a given threshold:

Listing 5.12: Adaptive interpolation
1 float r = distance();

2 if(r > 0.8) {

3 gl_FragColor = sharpen9(c0, c1, ..., c8);

4 } else {

5 gl_FragColor = gaussian9(c0, c1, ..., c8);

6 }

See section 6.6 for the visual results of adaptive interpolation.

Summary

Our implementation uses Qt for its surrounding framework, and is a
mixture of C++ and shader code. The CPU strategies leverages the object
orientation of C++ in order to structure the code. Both the grid mesh and
the transformation code are encapsulated in composable classes.

The GPU strategies rely on shader code, which is not as structured.
Forward mapping is done in the vertex shader and backward mapping is
done in the fragment shader. In the latter case, no vertex grid is necessary
and a simple rectangle of four corner suffices.

49

When performing manual supersampling in the fragment shader,
OpenGL ES’ matrix data types can be used to represent filtering kernels.
By measuring the distance from the center, the image can be divided into
regions which are interpolated differently.

In the next chapter, we will measure the efficiency of these strategies
and compare their visual output.

50

Chapter 6

Results

In this chapter, we compare the efficiency of the implementations. We also
compare built-in interpolation against manual interpolation.

6.1 Setup

The code was executed on a MacBook Air 13′′ 2011 model with a 1,7
GHz Intel Core i5 processor, 4 GB 1333 MHz DDR3 RAM, and a Intel HD
Graphics 3000 graphics card with 384 MB memory, running OS X Yosemite
10.10.4.

Our test image is a photograph of 700 × 700 pixels (figure 6.1).1 It
has a grid-like structure, which makes it easy to gauge the effects of the
transformation. It is also rich in detail, which makes it possible to spot
aliasing effects.

Our model of choice is the exponential model with s = 0.76 and
λ = 3.8342 (section 3.3.1). We will use equation (3.22) for forward mapping
and equation (3.23) for backward mapping, which produces a strong
pincushion effect when applied to a regular image (figure 6.2). In other
words, our setup would undistort a photograph exhibiting a large degree
of barrel distortion.

6.2 Measuring

Execution time was measured with the Qt class QElapsedTimer, which
attempts to use monotonic clocks if possible. Its nsecsElapsed() method
returns the elapsed time in nanosecond resolution if available. Although

1Figure 6.1 is an excerpt from the picture “Many Lovers” by Thomas Hawk,
which is released under Creative Commons at http://www.flickr.com/photos/thomashawk/
102065939/.

51

http://www.flickr.com/photos/thomashawk/102065939/
http://www.flickr.com/photos/thomashawk/102065939/

Figure 6.1: Test image

this precision is available on the MacBook Air, our measurements are all
in the millisecond range. We execute each strategy 1000 times. Then we
compute the average and the standard deviation of the measurements,
which are stored in a designated class Measurements (measurements.cpp).
For each execution, we reload the test image into memory, forcing
recomputation (listing 6.1). The image is loaded in GL_RGBA format; some
GPUs may prefer a different format (e.g., GL_BGRA), which forces the driver
to perform an automatic conversion.

We measure the CPU strategies somewhat differently from the GPU
strategies. For the CPU strategies, the main work is done prior to the
rendering, when initializing the grid; the rendering itself is cheap. For the
GPU strategies, the opposite is the case: grid initialization is negligible,

Listing 6.1: Reloading the image
1 GLuint id = 0;
2 glDeleteTextures(1, &id);
3 glTexImage2D(GL_TEXTURE_2D , 0, GL_RGBA,
4 img.height(), img.width(),
5 0, GL_RGBA, GL_UNSIGNED_BYTE ,
6 img.constBits());

52

Figure 6.2: Transformed image

and all the work is done during rendering. For the former, we time grid
transformation and rendering; for the latter, we time first-pass rendering
and subsequent rendering.

To achieve parity between the CPU strategies and the GPU strategies,
the grid is 700× 700 vertices and the rendering surface is 700 × 700 pixels.
These dimensions make the number of vertices equivalent to the number
of fragments. Of course, since the GPU strategies are processed in parallel,
we should expect them to outperform the linear CPU strategies. However,
a less fine-grained grid suffices in order to get good results, and we
will experiment with lowering the vertex count in section 6.4. For the
backward mapping strategies on the GPU, a simple rectangle of four points
is substituted for the grid.

6.3 Results

The results are listed in table 6.1. For the CPU strategies, initializing and
transforming the grid is considerably more costly than rendering, but this
operation needs only be done once. Initialization is more costly for the
backward mapping strategy than for the forward mapping strategy. This
goes to show that the exponential equation (3.23) is more costly to compute
than the logarithmic equation (3.22). Thus, in this context, the exponential
model is not a good choice for backward mapping.

For the GPU strategies, forward mapping on the GPU is considerably
faster than on the CPU, as we expected. This suggests that the optimal
design for a forward mapping implementation would be to transform the

53

Strategy Average Std. deviation

1 (CPFB) grid transformation 69.3 ms 7.8 ms
rendering 28.3 ms 11.6 ms

2 (CPBB) grid transformation 89.8 ms 6.4 ms
rendering 35.2 ms 5.6 ms

3 (GDFB) first rendering 25.5 ms
next renderings 28.2 ms 3.6 ms

4 (GDBB) first rendering 33.4 ms
next renderings 3.5 ms 0.9 ms

5 (GDBM) first rendering 293.8 ms
next renderings 5.8 ms 9.1 ms

Table 6.1: Time measurements

0 ms	

20 ms	

40 ms	

60 ms	

80 ms	

100 ms	

120 ms	

1	 2	 3	 4	 5	

(a) Strategy 1 (CPFB): grid
transformation

0 ms	

20 ms	

40 ms	

60 ms	

80 ms	

100 ms	

120 ms	

140 ms	

160 ms	

180 ms	

1	 2	 3	 4	 5	

(b) Strategy 2 (CPBB): grid
transformation

0 ms	

5 ms	

10 ms	

15 ms	

20 ms	

25 ms	

30 ms	

35 ms	

1	 2	 3	 4	 5	

(c) Strategy 3 (GDFB): rendering

0 ms	

5 ms	

10 ms	

15 ms	

20 ms	

25 ms	

30 ms	

35 ms	

40 ms	

1	 2	 3	 4	 5	

(d) Strategy 4 (GDBB): rendering

0 ms	

50 ms	

100 ms	

150 ms	

200 ms	

250 ms	

300 ms	

350 ms	

1	 2	 3	 4	 5	

(e) Strategy 5 (GDBM): rendering

Figure 6.3: Time series

54

grid with a special “initialization shader” that is run only once and whose
results are saved for later use. The rendering time is the same as for the
CPU strategies.

For the backward mapping strategies on the GPU, an interesting pattern
emerges: the first rendering pass takes a long time, but subsequent passes
are very efficient. This pattern is illustrated in figure 6.3, which shows the
five first measurements from a test run of the strategies. For strategies 1–3,
the measurements are in the same range, but for strategies 4–5, there is a
sharp drop-off after the first pass. In other words, the computations are
cached, even when the texture is reloaded.

The first pass of strategy 5 (GDBM) is about an order of magnitude
more costly than the first pass of strategy 4 (GDBB). This is what we
would expect, since supersampling multiplies the workload with a factor
of nine. However, subsequent passes are an order of magnitude cheaper
for strategy 4, and two orders of magnitude cheaper for strategy 5. In other
words, strategy 4 and strategy 5 perform in the same range after the initial
pass. Even more interestingly, this range is an order of magnitude cheaper
than the other strategies, including strategy 3, which is also done on the
GPU.

6.4 Vertex count

The impact of vertex count on rendering time is illustrated in figure 6.4,
which plots time measurements of strategy 3 (GDFB). It is not until the

0 ms	

5 ms	

10 ms	

15 ms	

20 ms	

25 ms	

30 ms	

10²	 50²	 100²	 200²	 300²	 400²	 500²	 600²	 700²	

Figure 6.4: Strategy 3 (GDFB) rendering time versus grid size

55

(a) Bilinear interpolation (b) Gaussian supersampling

Figure 6.5: Interpolation

grid resolutions falls below 100 × 100 vertices that the efficiency becomes
comparable to that of the other two GPU strategies.

Moreover, the measurements of the CPU strategies in table 6.1 show
that a high vertex count has a significant impact on rendering time in and
of itself, even when the transformation is precalculated.

However, it is not necessary to employ a high-resolution grid in order
to see good results. Even a grid of as 50× 50 vertices produces adequate, if
less precise results.

6.5 Aliasing

The impact of manual interpolation depends on the frequencies in the test
image. Figure 6.5 compares OpenGL ES’s built-in bilinear interpolation
against strategy 5 with a Gaussian kernel for a detail of the test image.
Manual interpolation produces a slightly smoother result.

Aliasing effects can be brought to the fore by substituting a high-
frequency test pattern for the test image (figure 6.6a). In this case,
pronounced aliasing effects are unavoidable (figure 6.6b).

The effects are mitigated by supersampling (figure 6.7). The softest
output is produced by supersampling with an averaging kernel of five
values (figure 6.7a) or nine values (figure 6.7b). Gaussian supersampling
produces a somewhat sharper result (figure 6.7c). A sharpening kernel
retains the crispness of the lines, but pronounces the aliasing effects,
particularly in the center of the image (figure 6.7d).

56

6.6 Adaptive interpolation

To smooth out the aliasing effects in the center of the image while mitigating
the blurriness in the outer parts, we classify the image into different regions.
In figure 6.8a, we classify based on the calculated radius, which produces
a number of concentric, circular regions. In figure 6.8b, we classify based
on the maximum transformed width or height, which produces a number
of concentric, transformed rectangles.

Figure 6.9 shows the result with the maximum transformed width or
height as a distance measure, using gaussian supersampling for the center
of the image and sharpening supersampling for the outer parts of the
image. Regular bilinear interpolation is used as a compromise between the
two.

Summary

The GPU strategies outperform the CPU strategies, and the backward
mapping GPU strategies outperform the others for repeated rendering
passes. Calculating the transformation in the fragment shader is faster
than calculating it in the vertex shader, even when the number of vertices
is lowered.

Supersampling adds an initial cost, but the efficiency is similar for
repeated passes. The visual impact depends on the image. In the case of a
photograph, supersampling a photograph produces a smoother result. In
the case of a test pattern, the aliasing effects are more pronounced, and the
smoothness depends on the choice of kernel.

Adaptive supersampling divides the image into regions that are
interpolated differently. This allows us to apply a smoothing filter to

(a) Stripes image (b) Bilinear interpolation

Figure 6.6: Stripes

57

(a) 5-point supersampling (b) 9-point supersampling

(c) Gaussian supersampling (d) Sharpening
supersampling

Figure 6.7: Supersampling results

(a) Radius (b) Maximum transformed
width or height

Figure 6.8: Distance measures

58

oversampled areas and a sharpening filter to undersampled areas. Such an
interpolation strategies directly addresses the nonlinear characteristics of
a transformation such as barrel undistortion.

In the last chapter, we will sum up our findings and look into further
areas of investigation.

Figure 6.9: Adaptive interpolation

59

60

Chapter 7

Conclusion

In this thesis, we have studied and compared various approaches for
accelerating image transformation using OpenGL ES. Our case has been
the undistortion of fish-eye distortion, a problem that can be modeled
in different ways. However, our results can be generalized to other
transformations as well.

In fitting a transformation model to an implementation strategy, we can
identify the following trade-offs:

1. Precision: Does the model produce accurate results? Is it a good fit to
the error margins of the application, or does it introduce significant
distortion of its own?

2. Speed: Is the model faster in the forward direction or in the backward
direction? Is its efficiency offset by the chosen implementation
strategy?

3. Quality: What interpolation method should be used? Does the input
exhibit high frequencies that are prone to introduce aliasing effects?
Should these effects be mitigated?

Weighing these factors against each other, the best results by far are
produced by the backward-mapping strategies 4 (GDBB) and 5 (GDBM).
Even though the exponential model is slower in the backward direction
(and this is even more the case for other models, such as the polynomial
model), this is more than offset by the efficiency of the strategies and the
flexibility with regard to interpolation.

In other words: the model would have to be significantly faster in the
forward direction than in the backward direction in order to warrant
a forward-mapping strategy over the backward-mapping strategies
mentioned above.

61

7.1 Discussion

In chapter 1 we identified a number of challenges: choosing a good
model, selecting a fitting implementation strategy, writing parallel code
and achieving high-quality interpolation. What is our assessment of these
challenges?

• Among the several distortion models that are available, many deliver
approximate results at low cost, but higher precision requires a
more sophisticated model. Some models, like the polynomial model,
can be orders of magnitude more expensive when applied in the
reverse direction. The exponential model is a good compromise with
comparable efficiency in both directions.

• The cost of a precise model can be offset by an implementation
strategy that is cheap, just like an imprecise model frees up resources
for an expensive strategy. For the polynomial model, for example,
a forward mapping strategy would be a better fit than a backward
mapping strategy. For a model that is comparably efficient in both
directions, such as the exponential model, a backward mapping
strategy is superior in both efficiency and flexibility.

• OpenGL ES is eminently well suited to exploiting the parallelizable
features of the problem. Data-parallel computing is achieved by
implementing the transformation in terms of a vertex shader or
fragment shader.

• Although OpenGL ES’ built-in bilinear interpolation produces
good results by itself, better results can be achieved by means of
supersampling in the fragment shader. Such a method has the added
benefit that it can be adapted to the transformation.

We conclude that OpenGL ES is a good fit to the problem of accelerating
barrel undistortion, that the implementation adapts well to the challenges
raised, and that it is well supported by the hardware of today.

7.2 Further work

The multisampling shader makes nine texture accesses, most of which are
shared by the surrounding fragments, as shown in figure 7.1. This means
redundant accesses and coordinate transformations, which are “hopefully
cached by the GPU”, in the words of Bjorke (2004).

Sigg and Hadwiger (2005) have presented a method for third-order
texture filtering which performs cubic filtering by building on linear texture

62

Figure 7.1: Overlapping samples

fetches, which considerably reduces the number of input texture fetches.
This could be used to optimize the supersampling method presented in
this thesis.

Furthermore, Wexler and Enderton (2005) have described a supersam-
pling technique for rendering images of arbitrary resolution with arbitrarily
wide user-defined filters and high sampling rates. The image is divided
into constant-size rectangular tiles in order to support large supersampling
rates and large final images.

To accelerate the code beyond what is possible with OpenGL ES, we
may look into other frameworks. Scarpino (2012) goes into detail on how
to combine OpenGL with OpenCL in order to implement a sharpening
filter. In this setup, the filter is computed in parallel by an OpenCL kernel,
whose output is communicated to OpenGL by means of a pixel buffer
object. OpenGL is then used for rendering.

As OpenCL provides fine-grained memory handling where worker
threads may share data, this approach would make it possible to
eliminate the redundancy mentioned earlier. Indeed, it is similar to our
CPU strategies, except that the computations are not performed on the
CPU, but by a designated parallelization framework. However, such an
implementation would become considerably complex. As Scarpino puts
it:

OpenCL and OpenGL are both powerful toolsets, but no one
has ever called them simple. Getting the two to work together
is one of the most complex programming tasks I can think of . . .
I can’t think of a harder topic related to OpenCL.1

There is also the consideration that OpenCL is not as widely supported,
especially on mobile devices. A combined setup may pose serious
restrictions on portability and development environments.

1Scarpino (2012), chapter 16: “Textures and renderbuffers”, p. 349.

63

Summary

We have found OpenGL ES to be well suited to the problem at hand.
The gains of parallelization are impressive, and a custom supersampling
strategy offers results above and beyond the standard interpolation options.
The supersampling strategy we have outlined is simple, but adaptable.

The simplicity of OpenGL ES comes with a disadvantage: it offers
little control over the parallelization. There is some redundancy in the
supersampling strategy that could be reduced by sharing memory between
worker threads. One way of exploring this possibility would be to rewrite
our OpenGL ES shaders into OpenCL (or CUDA) kernels.

64

Appendix A

Source code

The source code is freely available from a Git repository. To obtain the code,
run the following command:

$ git clone https://epsil@bitbucket.org/mpg_papers/thesis-2015-vegard.git

To compile and run the code, run the included compilation script:

$./compile.sh

This will generate a Makefile (using qmake), run the Makefile, and then execute the
resulting application.

The code is freely available under the MIT License.1

1http://opensource.org/licenses/MIT.

65

http://opensource.org/licenses/MIT

66

Appendix B

Matlab program

Matlab program for estimating model parameters:

1 %% Nonlinear regression

2

3 %% Barrel distortion: r_d = f(r_u)

4

5 % Reference

6

7 barrel = @(x) x - 0.5 * x.^2;

8 x = linspace(0,1)';

9

10 logRef = @(b,x) b(1) * log(1 + b(2) * x);

11 logNlm = fitnlm(x,barrel(x),logRef ,[1.0 1.0])

12

13 % Logarithmic model

14

15 % s = 1.0;

16 % lambda = 1.7;

17 s = logNlm.Coefficients.Estimate(1);

18 lambda = logNlm.Coefficients.Estimate(2);

19 logModel = @(x) s * log(1 + lambda * x);

20

21 % Polynomial model

22

23 pModel = @(b,x) b(1) + b(2) * x + b(3) * x.^2 +

24 b(4) * x.^3 + b(5) * x.^4;

25 pNlm = fitnlm(x,logModel(x),pModel ,[0.5; 1.0; 0.01; 0.001; 0.0001])

26

27 % Trigonometric model

28

29 trigModel = @(b,x) tan(b(1) * x) / (2 * tan(b(1) / 2));

30 trigNlm = fitnlm(x,logModel(x),trigModel ,[0.1])

31

32 % Division model

33

67

34 divModel = @(b,x) 1 ./ (1 + b(1) * x.^2) .* x;

35 divNlm = fitnlm(x,logModel(x),divModel ,[1.0])

36

37 %% Pincushion distortion: r_u = f(r_d)

38

39 % Reference

40 pincushion = @(r) abs(-sqrt(1.0 - 2.0 * r) + 1.0);

41

42 % Exponential model

43 expModel = @(x) (exp(x / s) - 1) / lambda;

44

45 % Polynomial model

46

47 pModelInv = @(b,x) x .* (1 + b(1) * x.^2 + b(2) * x.^4 +

48 b(3) * x.^6);

49 pNlmInv = fitnlm(x,expModel(x),pModelInv ,[1.0; 1.0; 1.0])

50

51 % Trigonometric model

52

53 omega = trigNlm.Coefficients.Estimate(1);

54 trigModelInv = @(x) 1/omega * atan(2 * x * tan(omega/2));

55

56 %% Plot models

57

58 plot(x,x,x,barrel(x),x,pincushion(x),x,logModel(x),x,expModel(x),

59 x,predict(pNlm,x),x,predict(pNlmInv,x),x,predict(trigNlm,x),

60 x,trigModelInv(x),x,predict(divNlm,x));

61 legend('x','barrel','pincushion','logModel','expModel','pModel',

62 'pModelInv','trigModel','trigModelInv','divModel');

63 axis([0.0 1.0 0.0 1.0]);

68

Bibliography

Anup Basu and Sergio Licardie. Alternative models for fish-eye lenses. Pattern Recognition
Letters, 1995.

Kevin Bjorke. High-quality filtering. In Randima Fernando, editor, GPU Gems. Addison-
Wesley, 2004.

A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W. Brodersen. Optimizing
power using transformations. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(1), 1995.

Frederic Devernay and Olivier Faugeras. Straight lines have to be straight: Automatic
calibration and removal of distortion from scenes of structured environments. Machine
Vision and Applications, 2001.

Andrew W. Fitzgibbon. Simultaneous linear estimation of multiple view geometry and
lens distortion. Technical report, The University of Oxford, Department of Engineering
Science, 2001.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2 edition, 2004.

Jeff R. Heard. Beautiful code, compelling evidence: Functional programming for
information visualization and visual analytics. Technical report, University of North
Carolina, 2008.

Tom McReynolds and David Blythe. Advanced Graphics Programming Using OpenGL.
Morgan Kaufmann Publishers, 2005.

Aaftab Munshi, Dan Ginsburg, and Dave Shreiner. OpenGL ES 3.0 Programming Guide.
Addison-Wesley Professional, 2014.

Nvidia. Drive px from nvidia tegra automotive, 2015. URL http://www.nvidia.com/object/
drive-px.html.

PGI. Pgi cuda-x86: Cuda programming for multi-core cpus, 2010. URL https://www.pgroup.
com/lit/articles/insider/v2n4a1.htm.

Qt. Qt documentation: Qglwidget, 2015. URL http://doc.qt.io/qt-4.8/qglwidget.html.

69

http://www.nvidia.com/object/drive-px.html
http://www.nvidia.com/object/drive-px.html
https://www.pgroup.com/lit/articles/insider/v2n4a1.htm
https://www.pgroup.com/lit/articles/insider/v2n4a1.htm
http://doc.qt.io/qt-4.8/qglwidget.html

Matthew Scarpino. OpenCL in Action. Manning, 2012.

E. L. Schwarz. Computational anatomy and functional architecture of striate cortex: a
spatial mapping approach to perceptual coding. Vision Research, 20:656–669, 1980.

Graham Sellers, Richard S. Wright, and Nicholas Haemel. OpenGL SuperBible:
Comprehensive Tutorial and Reference. Addison-Wesley, 2014.

Christian Sigg and Markus Hadwiger. Fast third-order texture filtering. In Matt Pharr,
editor, GPU Gems 2. Addison-Wesley, 2005.

Alvy Ray Smith. A pixel is Not a little square, a pixel is Not a little square, a pixel is Not a
little square! (and a voxel is Not a little cube). Technical report, Microsoft, 1995.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 4 edition, 2013.

Ken Turkowski and Steve Gabriel. Graphics Gems I, chapter Filters for Common
Resampling Tasks, pages 147–165. Academic Press, 1990.

Dan Wexler and Eric Enderton. High-quality antialiased rasterization. In Matt Pharr,
editor, GPU Gems 2. Addison-Wesley, 2005.

George Wolberg. Digital Image Warping. Columbia University, 1990.

70

List of Figures

1.1 OpenGL ES pipeline . 5

2.1 Transformation types . 10
2.2 Perspective projection . 12
2.3 Forward mapping and backward mapping 15
2.4 Supersampling . 18

3.1 Distortion . 21
3.2 Displacement . 22

4.1 Data flow . 30
4.2 Transformation grid . 32
4.3 Filtering methods . 36
4.4 Interpolation kernels . 37

5.1 UML diagram . 40
5.2 OpenGL ES shaders . 41
5.3 Shader compilation . 42
5.4 Grid class . 43
5.5 Functor composition . 45

6.1 Test image . 52
6.2 Transformed image . 53
6.3 Time series . 54
6.4 Strategy 3 (GDFB) rendering time versus grid size 55
6.5 Interpolation . 56
6.6 Stripes . 57
6.7 Supersampling results . 58
6.8 Distance measures . 58
6.9 Adaptive interpolation . 59

7.1 Overlapping samples . 63

71

72

List of Tables

3.1 Forward mapping and backward mapping 25

4.1 Implementation strategies . 31

6.1 Time measurements . 54

73

74

List of Listings

5.1 Pass-through vertex shader . 44
5.2 Texture sampling fragment shader . 44
5.3 Transformation in the vertex shader . 45
5.4 Transformation in the fragment shader . 46
5.5 Texture sampling function . 47
5.6 Neighbor coordinates . 47
5.7 Transformed coordinates . 48
5.8 Transformed coordinates . 48
5.9 Filtering function . 48
5.10 Filtering function . 48
5.11 Distance measure . 49
5.12 Adaptive interpolation . 49
6.1 Reloading the image . 52
regression.m . 67

75

76

List of Algorithms

1 Newton–Raphson approximation . 26
2 Coordinate conversion . 33

77

	Introduction
	The multi-core imperative
	OpenGL
	Other frameworks
	CUDA
	OpenCL

	Challenges
	Overview

	Image transformation
	Types of transformation
	Scaling
	Linear transformations
	Affine transformations
	Projective transformations
	Nonlinear transformations

	Interpolation
	Reconstruction
	Antialiasing
	Adaptive interpolation

	Models of fish-eye distortion
	Polar coordinates
	Polynomial models
	Non-polynomial models
	Exponential model
	Trigonometric model
	Division model

	Parameter estimation

	Implementation strategies
	Implementation considerations
	CPU or GPU
	Precomputed or dynamic
	Forward mapping or backward mapping
	Built-in or manual interpolation

	Implementation strategies
	Strategy 1: CPFB
	Strategy 2: CPBB
	Strategy 3: GDFB
	Strategy 4: GDBB
	Strategy 5: GDBM

	Implementation with OpenGL ES
	Qt
	Shaders
	Compilation
	Strategy 1: CPFB
	Strategy 2: CPBB
	Strategy 3: GDFB
	Strategy 4: GDBB
	Strategy 5: GDBM

	Results
	Setup
	Measuring
	Results
	Vertex count
	Aliasing
	Adaptive interpolation

	Conclusion
	Discussion
	Further work

	Source code
	Matlab program

