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Abstract 

If H is a Hilbert space we study regular abelian Banach 

subalgebras of B(B(H)), and mainly algebras generated by 

maps of the form x + axb with a and b belonging to 

an abelian c*-algebra. Main emphasis is put on the study 

of the Celfand transform of maps in these abelian Banach 

algebras; in particular two versions of positive definite-

ness of the transforms are shown to be important. 
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1. Introduction 

In recent years it has become apparent that spectral theory 

for linear maps of von Neumann algebras is intimately connected 

with Fourier analysis. The present paper is an attempt at obtaining 

a deeper understanding of this relationship. If B(H) denotes the 

von Neumann algebra of all bounded linear operators on the Hilbert 

space H into itself, we shall study abelian Banach subalgebras of 

B(B(H)) - the Banach algebra of bounded linear maps of B(H) into 

itself. Thus in the process we shall obtain some insight into the 

extremely complicated Banach algebra B(B(H)). The main difficulty 

encoundered in this Banach algebra is the bad behaviour of its norm. 

Recall that a theorem of Grothendieck [7] identifies B(B(H)) as a 

Banach space with (B(H) ® Sl)*, where ~is the trace class opera-

tors on H with the trace norm 7 and " ® is the projective tensor 

product of Banach spaces. We shall therefore try to avoid the norm 

as much as possible and shall restrict attention to maps which are 

ultraweakly continuous and which map the Hilbert-Schmidt operators 

dt into themselves, and as operators on d{ are normal operators. 

Such maps will be called operator norma~.· Furthermore we shall 

have to require that our abelian Banach algebras will have a well 

behaved Gelfand theory. We have partly for this reason and partly 

because this case contains most of the interesting examples, re-

stricted attention to regulaT' abelian Banach algebras of operator 

normal maps. Then the restriction to dt is a concrete isometric 

representation of the Gelfand transform. In particular it should 

be noted that since abelian c*~algebras are semi·-simple our abelian 

Banach algebras will automatically be semi-simple. 

With these preliminaries we are now ready to give an outline of 

the paper. If G ·is a locally compact abelian group represented as 
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*-automorphisrrts of a von Neumann algebra, Arveson, Borchers and 

Cannes [2,3,5] developed the theory of spectral subspaces. In 

§ 2 we shall generalize to regular abelian Banach algebras acting 

continuously on a locally convex topological vector space, much 

of that part of the theory of spectral subspaces which does not 

depend essentially on the group stru.cture of the dual group of G . 

In §3 we prove the basic general results on operator normal 

maps. We assume the operator normal map ~ is contained in a 

regular abelian Banach subalgebra of B(B(H)). Then it follows 

from §2 that the spectrum of ~ 1n B(B{H)) is the same as the 

spectrum of rp I d{ in BCJ{) , A consequence of this is that if 

the spectrum of ~ in B(B(H)) 

is contained in the unit circle and ~(1) = 1 then ~ is either 

a *-automorphism or a *-anti-automorphism. 

In §4 we give examples of regular and nonregular abelian 

Banach subalgebras of B(B(H)). If a,b E B(H) we denote by La 

and Rb the maps x + ax and x + xb respectively. Then L 

maps every c*-subalgebra of B(H) isometrically into B(B(H)). 

If we denote by a ® b the map· LaRb, we can imbed the algebi'aic 

tensor product of two abelian c*-algebras A and B into B(B(H)). 

The norm is a cross-norm 5 so the closure A ® B is a regular abel-

ian Banach subalgebr'a of B( B(H)) consisting of operator normal maps. 

If G 1s a locally compact abelian group and a a continuous 

representation of G into the automorphism group of B(H), and 

p E M(G) - the bounded Borel measures on 

a (x) = ( at(x)d"(t). Then the image of ll "'G ,.. ~ 

G, a E B(B(H)), where 
p 

L1 (G) has as closure in 

B(B(H)) a reg~lar abelian Banach algebra consisting of operator 

normal maps. However, the image of M(G) need not have regular 

closure. 
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If f is a complex function on a product space X x X we 

say f is positive definite if whenever y 1 , ••• ,yn EX then the 

nxn matrix (f(y.,y.)) lS positive. This concept is useful in 
l J 

order to study maps in A ® A~ where A is an abelian c*-algebra, 

because the spectrum Sp (A®A) can be identified with SpA x SpA . 

It is shown in § 5 that if l..P E A® A then lf.l is a positive map if 

and only if ~ is completely positive, and that this in turn is 

equivalent to the Gelfand transform of <.p being a positive 

definite function on SpA x SpA . In addition it is pointed out 

that if q> furthermore satisfies ~(1):; 1 then Tr(qJ(x)):; Tr(x) 

for all trace class operators x . The section is concluded by 

noting that the case A ® .A includes the examples a ( Ll (G)) exhi~-

bi ted in § 4, so that our results for <.p E A® A are applicable to 

maps of the form crf , f E 11 (G) • 

In the following two sections we study the converse type of 

problem, namely, given a map in B(B(H)), when can we conclude that 

it belongs to an algebra of the form A ® A ? In the infinite di-

mensional case we can only reach conclusions like the map belongs 

to the point-ultraweak closure of A ® A . Note that if H 1s 

finite dimensional, then every map in A ® A has a complete set 

of eigenvectors in the Hilbert~Schmidt operators 6( consisting of 

rank 1 operators. In §6 we show a converse to this result for 

positive maps. 

Since a positive map c.p E A® A lS completely positive it has 

a decomposition c.p :; V*TT V , Hhere V is a bounded linear map of H 

into a Hilbert space K , and TT is a *-representation of B(H) 

on K . In §7 we show that if ~(1) :; 1, q> restricted to A is 

the identity, and the above decomposition is in a suitably nice 

position, then {.[} is an average over automorphisms in A ® A , 



r 
t 
' 

- 5 -

hence ln particular ~ belongs to the point~ultraweak closure of 

A ® A. 

The l~st result is relevant in the study of a certain class of 

n x n matrices 5 namely the closed convex set Kn of matrices 

spanned by the positive rank 1 

"tv here !z1l = ••. = lz I= 1. n 

units for the n x n matrices 

matrices of the form cz.z.), 
l J 

Let (e .. ) denote the usual matrix 
l] 

M , so that if a = (a .. ) E M 
n lJ n 

then a = !:a .. e. . . Let D be the diagonal matrices. so D is 
lJ lJ n ' n 

spanned by e 11 "' ••• ,e . 
~ nn 'itJith a as above and 'a = :ra .. e .. ® e .. 

l] ll J J 

then a (b) = a * b ~ is the Hadamard product of a and 

the matrix b . In §8 we give characterizations for a matrix a 

to belong to K 
n 

in terms of properties of the Hadamard product 

with a and also in terms of the existence of certain positive 

definite functions on 7Zn , 

Finally, ln § 9 He show that a map <,p E A® A is of the form 

a described ln §4, where ~ is a Borel probability measure on a 
~ 

compact abelian group, if ({p(y. ,y. )) E K vJhenever y1 , ••• ,yn E SpA. 
l J n 

Thus this stronger form of positive definiteness implies the 

stronger result that rather than just positive. 

The author is happy to express his indebtness to J¢rgen 

Vesterstr¢m for pointing out serious errors in early versions of 

Proposition 8.1. 
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2. Spectral subspaces 

Let X be a locally convex topological cor-

Let A be a regular abelian semi-simple Banach 

complex numbers with an approximate unit consis-= 

whose Gelfand transfor'ms are real and with compc 

[13,1Lf]. We assume X is a left A-module via 

(a ,x) + ax , which is separately continuous and 

variables. Our typical example will be when A 

represented into the algebra of continuous linec:::: 

If s c: A and y c X we le·t 

s·t = {x EX ax= 0 for all a E S} 

v = {a E A ay = 0 for all y E Y} .J. 

Clearly Y J. is a closed ideal in A • We let 

maximal ideal space in A , identified with the 

characters on A • SpA is given the hull-kernE 

If a € A we denote by 

Z ( a ) = { y E SpA : y ( a ) = a ( y ) = 0 } 

If F c SpA is a closed subset we let 

j (F) = {a E A : Z(a) contains a neighborhooc: 

and support a. is compact} . 

\Ale recall from [ 1 3, 2 5 D] that j (F) 1s the smaL 

whose hull is F • ttJe. denote by 

X(A,F) = j(F).L. 

Then X(A,F) is a closed subspace of X , call~ 

subspace of F . Finally if x E X we denote 



Sp(x) = h( {x} J..) , 

the hull of the annihilator of x in A . Sp(x) lS a closed 

subset of SpA. Furthermore Sp(x) = 0 if and only if X = 0 

Indeed, h({x}l.) = 0 if and only if { x} .L = A [13,25D Corollary], t 

if and only if ax = 0 for all a E A ' if and only if X = 0 ' 
since the representation A x X -+ X lS faithful in both variables. 

Lemma 2 • 1 Let A and v be as above. Let F be a closed .!\. 

subset of A ' a € A and X E X • Then we have 

(i) If Z(a) contains a neighborhood of Sp(x) then ax = 0 . 

(ii) X € X(A,F) if and only if Sp(x) c F . 

(iii) If 
... 

c: F then ax € X(A,F) supp a 

Proof (i) By assumption h({x} J.) is contained ln ·the interior 

of Z(a) . By the assumption on approximate unit in A there is 
... 

b E A such that b has compact support and !lab-a!l < e: for given 

e: > 0 Then h({x}l.) is contained in the interior of Z(ab), so 

ab E j ( h ( {X} l.) ) . By [13, 25 D] abE {x}.l ~ l.e. abx = 0. Since 

e: > 0 is arbitrary and c -+ ex lS continuous on A , ax = 0 • 

Cii) Suppose Sp(x) c: F. If a € j(F) then Z(a) contains a 

neighborhood of Sp(x) so that ax = 0 by (i). Thus x € j(F).l = 
X(A,F) . Conversely, let x € X(A,F). Then {x}.l ::> (j(F).l)J.::> j(F). 

Thus h ( { x} .l) c: h ( j (F)) = F [ 1 3, 2 5 D]. 

(iii) Suppose y ( supp a. Then, since A is regular, there is 

b E A such that b(y) * 0 while ab = 0 Thus b(ax) = ba(x) = 0 

But then y ( Sp(ax) , so we have shown Sp(ax) C supp a . Now use 

(ii). 

We denote by ~ the algebra A with the identity map of X 
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adjoined, and we consider X as an l-module as well. Note that 

by [14, 2.7.3] A is regular, and we can consider SpA as a sub

set of SpA . 

Lemma 2. 2 Let F be a compact subset of SpA . Then 

(i) X(A,F') ::) X(A, F) • 

(ii) If a E A and aCy) = 1 for all y in a neighborhood 

of F ·then ax = X for all X E X(A,F) . 

Proof ( i) Let 

i(F) = {aEA: Z(a) contains aneighborhood of F}. 

Then i(F) :.l j(F), so i(F).L c j(F)l. . Let x E X(A,F), and 

a E i(F) . Th 0 b T ,.., 1 so x E 1" ( F )1. , and en ax = ' y ..... erruna L • 

1"(F).l -- J.(.,....r).L. H X(?! F) "(F).l · "' · owever, fi 5 ~ 1 s1nce supp a 1s 

compact 1n SpA for all a E A . 
(ii) Let l denote the identity 1n A • Then 

A A 

a - l is zero 

in a neighborhood of F • Let x E X(A,F) By (i) X E X(A,F) , 

so by Lemma 2.1 (a-t)x = 0 i.e. ax = x 

We say a subset Y of X is bounded if for each absorbing 

neighborhood V of 0 in X there is E > 0 such that EY c V • 

The following result is a generalization of [5, 2.3.5] . 

Proposition 2.3 Let V be an absorbing neighbourhood of 0 1n 

X , and let Y be a bounded subset of X such that a(Y) c II allY 

for all a E A Let Yo E SpA and a1' ••• ,an EA. Then there 

1s a compact neighborhood N of y 0 in SpA such that 

a . X - a . ( y 0 ) X E v for all X € y n X (A 'N ) ' 
l l 

i = 1 , .•• ,n . 
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Proof Since V is an absorbing neighborhood of 0 ln X and 

Y lS bounded, there exists e > 0 such that eY c V • Thus by 

our assumption on Y , a(Y) c V whenever !!all < E • Let N be 

a compact neighborhood of y 0 and a € A such that a(y) = 1 

for y E N 1 • For each i E {1, ... ,n} let b. E A be defined 
l 

by bi(y) = C3.i(y) -ai(y 0 ))a(y) Then bi(y 0 ) = o, and 

bi ( y) = ai ( y) - ai ( y 0 ) on N 1 • From the regularity of A there 

is c f A such that mc;txljbic!l < E and c(y) = 1 for all y in a 
l 

neighborhood N2 of Let N be a compact neighborhood of 

contained ln the interior of N 1 n N 2 • Let x E Y n X(A,N) • Now 

c(y) = 1 for y in a neighborhood of N , and N contains Sp(x) 

by Lemma 2 .1 . Thus ex = x by Lern.1na 2. 2 ~ and similarly ax = x • 

We thus have b . CX :: b . X = a . ax - a . ( yO ) ax = a . X - a . (yO ) X , l l l l l l 

xEYnX(A,N). Q.E.D. 

Thus a. X -a. (Yo )x E V for all 
l l 

Since 

If E is a Banach algebra we denote by crE(x) the spectrum 

of x as an element in E • 

Corollary 2.4 Suppose X is a Banach space and that the identity 

operator is in A • Let a E A . Then crB(X)(a) = {a(y): y ESpA} 

Proof Given e > 0 let V = {xeX: l!xll < e}, and let Y be the 

unit ball in X . If y 0 E SpA , then by Lemma 2 . 1 (iii) 

Y n X(A)N) =1= ( 0) for each compact neighborhood N of y 0 • Thus 

a(y 0 ) E crB(X) (a) by Proposition 2. 3. Since {a(y): y E SpA} = crA(a) 

The converse inclusion is imme-

diate, since we can consider A as a Banach subalgebra of B(X) 

containing the identity. 
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It should be remarked that just as in the theory of spectral 

subspaces of automorphisms we can introduce the auxiliary concept 

R(A,E), cf. [2] and then prove that X(A,E) = nRCA,V), where the 

intersection is taken over all closed neighborhoods V of E , 

see the proof of [2, Proposition 2.2). However, we shall not need 

this and shall therefore not include the proof. We shall rather 

prove another result which we snall not need technically, but which 

is of importance for our understanding of spectral subspaces. 

Pro;eosition 2. 5 Let B be a Banach subalgebra of A satisfying 

the same assumptions as A. Let r: SpA + SpB be the restriction 

map y + y I B . Suppose F is a compact subset of SpB such that 

r- 1 (F) is in 
-1 X(B,F) • compact SpA. Then we have X(A,r (F)) = 

Proof To our previous notation add the subscripts A or B to 

distinguish between A and B. Let x E X(B,F) Then by Lemma 

2.1 hB({x}.lnB) c: F hence 
-1 -1 

r (hB( {x} .l n B)) c r (F) . There-

fore we have that if J is the ideal in A generated by 
X 

{x}.lnB, then 

- { y E Sp A : ker y :> J } 
X 

= h(J ) 
X 

:::> h({x} .l) , 

-1 
·since Jx c {x}.l. Thus SpA(x) c r (F), hence by Lemma 2.1 

x E X(A,r- 1 (F)), and we have shown X(B,F) c: X(A,r- 1 (F)). 

-1 -1 
Conversely let x E X(A,r (F)); then hA({x}.l) c r (F). 

Let bE j 8 CF). Then ZB(b) => F. If y E r- 1 (F) then 
A 

r(y) E F so b(r(y)) = 0, hence bE ker(r(y)) = (kery)nB. 

Therefore b ( y) = 0 , so 
-1 

y E ZA (b) , and we have shown r (F)cZA(b) 
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Since F lS compact and ZB(b) contains a neighborhood of F 

there is a compact neighborhood N of F contained in Z8 Cb) 

Since r is continuous is a neighborhood of 
-1 r (F) , 

and by the above argument Thus is a 

neighborhood of 
-1 r (F), hence by the definition in Lemma 2.2 

-1 
b € iA(r (F)). From the proof of 

jA(r- 1 (F))~ = X(A,r- 1 (F)) Since 

that lemma iA(r- 1 (F))L = 

x E X(A,r- 1 (F)) it thus 

follows from Lerruna 2 .1 that bx = 0 . Since b was arbitrary 

in jB(F), we have shown X(A~r- 1 (F)) c: jB(F)L = XCB,F), and 

the proof is complete. 
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3. Operator normal maps 

Let H be a Hilbert space and CJ and i1f the trace class 

and Hilbert-Schmidt operators on H respectively. We denote the 

inner product on d{ by <x 5 y > = Tr ( xy*) and the norms in <:y- and 

(){ by !I 11 1 and II lb respectively. 

Definition 3 .1 Let <P E B ( B ( H ) ) . We say lP 1s operator normal 

if <.p is ultrav-Jeakly continuous and the restriction <PI ~ is a 

normal operator in B(}() . If moreover <.PI if( is self-adjoint v-1e 

say <P is operator hermitian. <P is said to be a regular operator 

normal map if <P is contained 1n a regular abelian Banach sub-

algebra of B(B(H)) consisting of operator .normal maps. 

~ve denote by II<P!I 2 the norm of <P !6{ whenever q) i (}-( E B CJ{) • 

Note that when <.p is ultraweakly continuous then its adjoint map 

restricts to a map ~* E B(~) with norm II ~* II = II <.p II • 
l II if 

Lemma 3. 2 Let lP E BmCH)) be regular and operator normal, and 

denote by ljJ the adjoint in B (a-£) of (!J! d{_ • Then ljJ I 'J = ~p* 

and II tpr I 2 ~ !I ~.PI! • 

Proof Let x € g- and y E Of.. Then <ljJ(x) ,y> = <x,q>(y)> = 

<tp * (X) , y > , S 0 ljJ (X ) = tp * ( X) • Let A be a regular abelian Banach 

subalgebra of B(B(H)) consisting of operator normal maps such that 

t.pEA. Let r denote the restriction map ljJ ~ $laf of A into 

B (.j{) Then r is continuous. Indeed, if (ljJn) is a sequence 

in A converging to ljJ 5 and r(ljJ ) converges to n 
ljJi in B(a{) 

then clearly ifJ(x) = ljJ' (x) for each X cO{ '- . Thus the graph of r 

18 closed, so r 1S continuous by the closed graph theorem. Since 

r is an isomorphism of A into BOe) it follows that 
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aA(c.p) => 0 B<lr0 ((j)) ' hence the spectral radius of tp in B(O{) is 

not larger than the SDectral radius s of lP in A. But !I lPil2 
equals the spectral radius of <.p 1n B(de) so lllPII 2 < s . By -
the minimality of the spectral radius norm in a regular abelian 

Banach algebra [ 14, 3. 7. 7 ] we have l!lPII 2 ~ s =: lltPii , Q.E.D. 

Theorem 3.3 Let A be a regular abelian Banach subalgebra of 

B(B(H)) consisting of operator normal maps. Then the map 

iP -+ tpla{ is an isometric isomorphism of {t$ : tp E A} onto 

{<PI~ : <.pEA} , which extends to an isomorphism of C(SpA) onto 

the closure of {<&>!of: lP E A} 1n BO{) , where C(SpA) denotes 

the continuous complex functions on SpA vanishing at infinity. 

Proof Let for ;.pEA. Then clearly is an 

isomorphism of {$: q> E A} onto {<PI X : lP E A} . Let r(<.p)=q>l<}{'. 

By Lemma 3.2 r is norm decreasing on A hence if x is a 

character on the norm closure of rCA) 1n B(a{) then x orE SpA . 

Thus for <.p E A we have 

illP!I 2 = sup I x o r(c.p)! S sup l Y (cp) I = II <PI! , 
X YE SpA 

and a is norm decreasing. However, !Ito!! is the spectral radius 

of lP in A so by the minimality of the spectral radius ft4,3.7.7], 

II ., 
< i.<PIJ 2 • Thus II " I' I' 'I , tfll! = d(JJli 2 , ana the theorem follows. 

Corollary 3. L} If tp is a regular operator normal map 1n B(B(H)) 

Proof ~ 1s contained in a regular abelian Banach subalgebra of 

B(B(H)) consisting of operator normal maps and containing the 

identity map. Thus the corollary follows from Corollary 2.4 and 

Theorem 3.3. 
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The next result will not be used in the sequel but is in-

eluded because its proof is a good illustration of the techniques 

and ideas involved. 

Proposition 3.5 Let ~ be a regular operator normal map in the 

unit ball of B(B(H)) such that Q:!( 1 ) - 1 
- I and such that its 

spectrum in B( B(H)) l.S contained in the unit circle. Then q> is 

either a *-automorphism or *-anti-automorphism of B(H) . 

Proof By Corollary 3. 4 the spectrum of I.P! ~ 1.n B (a{ ) is 

contained 1.n the unit circle 5 so I.P I 'X. normal implies tf> I )-e_ is 

unitary. particular, since 
·-1 B(B(H)) -1 is the In t.p E ' <.P I if 

adjoint of !.PI d{ Since I! (y II = 1 and tp ( 1 ) = 1 
' 

!.p is positive 

(i.e. a > 0 1.n B(H) implies q>(a) > 0) • Thus if x,y E g+ 
- -

- the positive cone in <J - then (,.,.,*(y) € <:T c .}(., so 

0 < <f.!)(x) ,y> = <x,<.P>:<(y) > = <x,q:)· 1 (y) >, 

hence Thus Since 
-1 

q> is norm 

continuous on B(H) , <..p-l : C(H)+ + C(H)+, where C(H) denotes 

the compact operators on H ' using that n-·+ 
J is norm dense in 

C(H)+. Let B be the c*-algebra ~1 + C(H) Then 
-1 

is . lP a 

positive linear map of B carrying 1 on itself. Since I.P is I 

operator normal, tp ?7-t + .:r{ , hence by continuity, !p: C(H) + C(H) 

Thus <..p is also a positive linear map of B into itself preserving 

the identity, so that {P is an order-isomorphism of B onto itsel~, 

hence is either a *-automorphism or a *-anti-automorphism [9]. 

By ultraweak continuity of <.P the desired result follows. 

We shall need the next result in the next section. 
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Lemma 3. 6 Let (~v)vEJ be a uniformly bounded net of regular 

operator normal maps, which converges poinwise ultraweakly to a 

map <P E B ( B (H) ) • Then we have: 

(i) q>!X E BCa-0. 

(ii) tp I J{ + (J)I Q{ Heakly ln B(Grf:) 
v 

(q\ !j-{ )* + (t,l')l.}()* weakly. 

so in particular 

(iii) If the pairwise commute then ~~~ is normal. 

(iv) If ~ + ~ ln norm then ~ is ultraweakly continuous. 
\.1 

Consequently, if (iii) and (iv) hold then ~ 1s operator normal. 

Proof Choose K > 0 such that llc.pv II :;: K for all v € J . By 

Lemma 3. 2 ll~;v !1 2 : llq>v I! ~ K , so (c.pv i d-{ ~ E J lS a uniformly 

bounded net 1n B( d{) Thus there is a subnet ( w a) aE I such thu:t 

(c.p Ide) EI converges weakly to an operator $ E B(~) i.e. a a 

for all 

1ng net 

if y E 

= lim<q> (x) ,y> 
a a 

= lim Tr(~ (x) y*) 
a a. 

x5y E&f . Now (tpa) aEI , being a subnet of the converg-

(<.p ) (T 
V V ·u 

converges pointwise ul traweakly to tp • 

s-
<$ (x) ,y> = lim Tr(tp a (x)y*) = Tr(<.p(x)y*) = <{!)(x) ,y> , 

a 

Thus 

and ljJ ( x) = t~'( x) for all x E :.rf , so c.p: d-e.+ }f. . Furthermore 

w pre 
v 

IJ{ + tp, .. weakly since each converging subnet does. Since I!!.Pv 11 2 :: K 

for all v ' IJ 'I K I i tPi 2 :: ' hence tp! d-{ € B(a{) . This proves (i) and (ii). 

Now assume all the c.p 
v commute5 and let McB(&\) be the abelian 

von Neumann algebra generated by all the maps (f.l I .1-f . Since w Ia\. + tal 'Of v . 'v . -

weakly, tpl}{_ EM • Since (q".lv! ·;X_)* + ((j)l '6( )* weakly, t-ve have by Lemma 3. 2 

that (l.pl)-0*1 <J = <r*. Since (<.pia{ )*EH, c.p!:a-t is normal, and Cii:i> follows. 

If tp + (p in norm 5 then wo(o + wo1.p ln norm fop each wE B (H)*; hence v v 

tu otp is ul trai-7eakly continuous for each wE B(H)*' and w is itself ultra-

weakly continuous. This con·ciudes the proof of (iv) and therefore ofthe lemma. 
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4. Examples of regular algebras 

The most easily obtained examPLes of regular abelian algebras 

of operator normal maps are of the form x + ax = L x and a 

x + xa = Rax , where a belongs to an abelian c*-algebra A. 

Both L and Ra are isometric isomorphisms since A is abelian. a 

When A is not abelian La is still an isometric isomorphism, so 

that every c*-algebra A c B(H) has a canonical isometric imbedding 

in B( B(H)) 

We denote the map LaRb = RbLa by a ® b for a,b E B(H) . 

Taking linear combinations we can in this way consider the algebraic 

tensor product B(H) 0 B(H) as a subset of B( B(H)) consisting of 

ultraweakly continuous maps~ which restrict to bounded operators ln 

BUr() . If x,y E Cr{, then <L x,y> = Tr(ax y*) = Tr ( x ( a* y ) * ) = a 

* <x,a y >, so L* = a L a* and similarly R* = R a* Thus the restric-a 

tion map B(H) (0 B(H) + B( }{) is *-preserving when B(H) 0 B(H) 

has the *-operation Note that since Rb 

is anti-isomorphic ln b the imbedding of B(H)() B(H) into 

B(B(H)) is not an algebraic isomorphism. However~ if A and B 

are abelian subalgebras of B(H) ~ then the imbedding of A G B ln 

B(B(H)) is a *-isomorphism. 

Lemma I+ .1 The norm on B(B(H)) restricts to a cross norm on 

B(H)G) B(H) • 

Proof Let a ,b E B(}I) • Then clearly II a® bJ! ~ I! a!! lib!! . To 

show the converse inequality let E > 0 and choose unit vectors 

I;, n E H such that !Ia t;!! ~ !Ia!! - £ and !Ibn I! ;: l[bll - t: • Let v be 

a partial isometry of rank 1 such that vbn = llbni! I; Then 

!lavbn II = II bnll II a~;!J ?.: <II bll- E HI! a!I-E) , hence lla®bl! ~ II alii I bll . 
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Proposition 4.2 Let A and B be abelian C*-subalgebras of 

B(H) . Then the closure A® B of AQ B in B(B(H)) is are-

gular abelian Banach subalgebra consisting of operator normal maps. 

Proof By Lemma 3.6 each map in A® B is operator normal. The 

rest is immediate from Lemma 4.1 and a result of Tomiyama [21 ]. 

Remark 4.3 By Proposition 4.2 each map of the form a® b with 

a and b normal, is regular in the sense of Definition 3.1. It 

can be shown that even more is true, namely that the Banach sub-

algebra of B(B(H)) generated by a® b is regular. 

If G is a locally compact abelian group we denote by M(G) 

its measure algebra, consisting of all bounded Borel measures with 

convolution as multiplication and *-operation ~(E) = l-1(-E) • We 

write multiplication in G and its dual G additivelyo I am 

indebted to G.Ko Pedersen for discussions which led to Proposition 

4 0 6 0 

Lemma 4.4 Let G be a locally compact abelian group and 

t + ut a continuous unitary representation of G on the Hilbert 

space H . Then for each 

ll E M(G) defined by a (x) 
]..1 

normal map such that ( o. I a{)* = 
ll 

= Jat(x)dlJ(t) 

a ..... l~. 
ll 

is an operator 

Proof It is easy to see that t + atld< is a continuous unitary 

representation, cf. [ 1 9] o Thus cxl-1 !,T( E B( a-f. ) • 

<all(x),y> = J<at(x),y>dll(t) 

= J<x,a_t(y~d]J(t) 

= J<x,at(y)>dlJ(-t) 

- <x,fat(y)dll(-t)> 

= <x ·ll a"' ( v) >" - ~~ ~ 

If x ,y E <r( we have 
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Thus Ca. i crO *' = a. .... !de. Since a. oa. ...... = 
~ ~ ~ ~ 

commutes with its adjoint, so a I~ 
~ 

Finally, it follows from [2] that a 
~ 

hence a. is operator normal. 
~ 

a~ *11 = a]:i'* ~ :: a]:i'o a.~ , a.l-l 

is a normal operator. 

is ultraweakly continuous, 

Lemma 4.5 Let G be a locally compact abelian group. Then the 

rna p T : M ( G ) + B ( L"" ( G ) ) defined by 

is an isometric isomorphism into. 

T (f) = 1-1* f 
l-l 

for 

Proof It lS well known and easy that T is an isomorphism into 

B(LtG)) . 

T 
~ 

is a 

Moreover, it is shown in the proof of [12, 3.4.1] that 

continuous multiplier of L""(G) endowed with the weak-* 

topology induced by the elements in L1 (G), and furthermore that 

the adjoint map T* is a continuous multiplier of L 1 (G) . By 
]1 

[12, 0.1.1] I!Tjl = !!l-lll, hence IITJl!! = !11-1!!. 

Proposition 4.6 Let G be a locally compact abelian group and 

Then there is a canonical isometric isomorphism 

of M(G) into the operator normal maps ln B(B(H)) such that 

a,,.., I (;-( = ( a ! &( ) *. 
]1 ]1 

Proof. Let A be the regular representation of G on H, and 

let S be the *-isomorphism of Lro(G) into B(H) defined by 

By Lemma 4. 4 a is operator normal, and a.-1~ = (a I~)* 
~ ]1 l-l 

Furthermore, a.Jl(Sf) = a.~*f for each f E L""(G). Indeed, let 

g E L 2 (G) and s , t E G . Then vJe have, with gt(u) = g(u-t), u E G, 

Ca.t(Sf)g)(s) = (At(Sf(A_tg)))(s) 

= (At(Sfg-t))(s) = f(s-t) g(s) 

= (ftg)(s) = (Sftg)(s) 
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hence Let then we have~ us1ng the 

Fubini theorem, 

<a~(Sf)g,h> = J<at(Sf)g,h>d~(t) 

and a~(Sf) = S~*f 
1s clear that lia~ll 

= JJ<at(Sf)g)(s)hTSJ ds d~(t) 

= Jff(s-t)g(s)hTS) ds d~(t) 

= Jg(s)hTSJ Cf f(s-t)dlJ(t))ds 

= Jg(s)h(sTC~*f)(s)ds 

= <S * ..cfr ~h >, 
~ J. ~-

as asserted. From the definition of a 
~ 

However, we have just shown that 

By Lemma q .. 5 we thus have 

sup II a (Sf) II = 
ll sf II =1 . ~ I 

hence l!a~ll = 11~1! , and we are through. 

Corollary q .• 7 Let G be a locally compact abelian group and 

it 

Then there is a canonical isometric isomorphism of 

L1 (G) onto a regular abelian subalgebra of B(B(H)) consisting 

of operator normal maps. 

Proof Restrict 1n Proposition 4.6 to 1 L (G) , and use that 

L1 (G) is regular. 

If H is a finite dimensional Hilbert space it is obvious 

that every opera tor, normal rna p 1n B ( B (H) ) 1 s regular. However 5 

if H is infinite dimensional this appears to be false. 
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Corollary 4.8 If H is a separable infinite dimensional Hilbert 

space, there exists an operator normal map ~ 1n B(B(H)) such 

that the Banach subalgebra of B(B(H)) generated by ~ 1s non-

regular. 

Proof Let G be a nondiscrete locally compact abelian group 

such that L2 (G) is separable~ and identify L2 (G) with H . 

Then M(G) is a nonregular abelian Banach algebra, since G 1n 

its natural imbedding in SpM(G) is nondense, while the vanishing 

of of a Fourier transform 
A 

~ , J.l E M( G) , on 
A 

G implies ll = 0 • 

Let A be the isometric image of M(G) 1n BCB(H)) constructed 

in Proposition 4.6. Then A is nonregular, so by [14, 3.7.4] 

there exists an element ~ E A su~h that the Banach subalgebra 

of A generated by ~ is nonregular. 
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5. The algebra A® A 

For the rest of the paper we shall mainly study the regular 

abelian Banach subalgebra A® A of B(B(H)) where A is an 

abelian c*-algebra. Our results indicate that its relationship 

to abstract harmonic analysis is quite profound. In the present 

section we shall study maps in A ® A whose Gelfand transforms 

are positive definite, defined as follows. If X is a set and 

f a complex function on X x X we say f lS positive definite 

if ;;-Jhenever are n elements in X then the nxn 

matrix (f(y. ,y.)) is positive. 
l J 

Recall from [ 21] that SpA ®A can be identified with 

SpA X SpA . life shall therefore write elements in SpA ®A as 

pairs . (y,y 1 ) with y,y' E SpA. We denote by C (SpA ® A) the 

continuous complex functions on SpA ® A, vanishing at infinity 

if SpA ® A is noncompact, and by ~ the canonical isomorphism 

of C(SpA ®A) on·to the norm closure uf 

described in Theorem 3.3. We denote by 

of 

~+ 

{a!tte:aEA®A} 

and a{ the s.a. 

positive and self-adjoint Hilbert-Schmidt operators respectively. 

An operator a E B(~) is said to be positivity preserving 

(respectively hermitian preserving) if 

If C( SpA® A) has the 

cone of positive definite functions and 1y} the cone of positivity 

preserving operators we next show that the isomorphism ~ is an 

order-isomorphism. 

Theorem 5 . 1 Let A be an abelian c*-algebra acting on the 

Hilbert space H . Let ~ be the canonical isomorphism of 

C( SpA® A) onto the norm closure of {a !d'( :a E A® A} , and let 

f E C (SpA ® A) • Then f is positive definite if and only if 
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a(f) is a positivity preserving operator in B(i)-(). 

Lemma 5.2 Let f E C (SpA ®A) • Then if a(f) lS hermitian 

preserving then f(y,y') = f(y' ,y) for all y,y' E SpA. In 

particular, if y 1 , ••• >yn E SpA then the nxn matrix (f(yi'yj)) 

is self-adjoint. 

Proof Assume first a(f) is the restriction to d-e of a map 
n 

q) E A G A, say (jJ = I: a. 
i=1 

we have I:a·x*b. 
l l = <.,o(x*) = 

I:b>!' ®a? on X. But then 
l l 

l 
®b. ' 

a. ,b. E A. 
l l l 

lf)(x)* = I:b':'x*a'!< 
l l 

;, 

= (y,y')(I:b.*®a!) 
l l 

= I:Yf~ y' (ai) 

= (y',y)(I:ai®bi) 

so that f(y,y') = f(y 1 ,y) in this case. 

Then for X E &( 

so that I: a. ®b. 
l l 

= 

In the general case choose a sequence ( (j) ) 
n in A 0 A such 

that the restrictions to de converge to a (f) in B( ~) Say 

<Pn 

If 

=La. ®b. 1n J.n 

x E df:. then 

+ * * Let I.P = I: b . ® a. n ln ln 

llc.p~(x) -a(f)Cx>l! 2 = 

+ so that 1jln = ~(tr.>n+<.Dn) E A0 A 

!llPn(x*)*- c:(f)(x*)*ll 2 = 

Thus 1jJ + a(f) in norm 
n 

in B( a{) . By Theorem 3.3 $ + f in supnorm, so n 

f(y,y') =lim ~n(y~y') =lim~ (y',y) = f("( 1 ,y) .. 
n n n ' 

Q.E.D. 

Proof of Theorem 5.1 Assume a(f) is positivity preserving, and 

If B is the weak closure of A then 

every character of B restricts to a character of A and 

A® A c B ~ B as subalgebras of B(B(H)) • Thus 1n order to show 
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that the n x n matrix ( f( y. ~ y. ) ) is positive, ""7e may assume 
l J 

A = B, l.e. A is a von Neumann algebra. Let e: > 0 . Now 

a. (f) can be approximated in II ll 2~norm by restriction of maps 

in ACV A and each operator 1n A can be approximated in norm 

by linear combinations of mutually orthogonal projections. We can 

therefore find mutually orthogonal projections e , ... ,e , 
1 n 

e +l''''~e in A with sum 1 such that Y. (e.) = 1 ' i = 1 , ••• ,n n m l l 

and constants A •• 
l] ' l' J E {1o ••• ,m} 

' 
such that if 1/J deno·tes the 

restriction of I: A •• 
l] 

e.® e. 
l J 

to ;rf then 

( 1 ) il a.<£> -wll2 < e: • 

Furthermore, if we replace ljJ by !(1/J+ljl+), cf. Lemma 5.2, we 

may by that lemma assume ¢ is hermitian preserving. 

Let V. be the closed subset of SpA corresponding to e. 
l l 

under the Gelfand transform. By Proposition 2.3 there is a com-

pact neighborhood N .. 
l] 

of (y.,y.) 
l J 

in SpA ® A such that 

N . . c V . x V . , i , j E { 1 ~ ... , n} , and 
l] l J 

(2) llw<x>- ~(yi,yj >xll 2 < e: 

for all x E X(A ®A ,N .. ) with I! x 11 2 ::: 1 , where X = <r{. • Choose lJ 
compact neighborhoods \h/. of -y. such that H. x W. c N .. , 

l l l J l] 

i, j E { 1 , ••• 5 n} , and let f. be the projection 1n A correspon
l 

ding to the characteristic function of f,t,] • • 
l 

Let now 

be one of the projections f., e.-f., i = 1, ... ?n ~ and e. for 
l l l l 

i = n+1 , ... )m , and renumber them so that p. =f. 
l l 

for i = 1 , ••• ,n . 

We can thus write 

where ~~kl E {A. ij : i, j E { 1 ~ ... ~ m}} . 



Since 

that 

( 3) 

By Lemma 2 . 2 

~ 
supp P· ® P· 

l J 

i,j E {1, ... ~n}. 

Let q. < p. 
l - l 

and as above adding 
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ukkpk = 1/J(pk) = ~(yk,yk)pk. for k = 1 ' ... ,n. 

= supp x xx = w. xw., we have by Lemrna2.1 
~~~7· W· 1 J 

l J 

p.}{p. c X(A ®A,H. X \'1.) ' 
l J l J 

be a 1-dimensional projection, i = 1 , ..• ,n, 

p.-q. 
l l 

for 1 = 1, ... ,n, and for 

1 = n+1 , ... 5 m to the q. , we can write 
l 

where p E { A. •• : i , j E { 1 , ... , m} } , and q 1 , ••• , qn are 
rs lJ 

1-dimen-

sional. Choose partial isometries q of rank one with domain rs 

qs and range qr such that (qrs)l~r,s~n is a set of matrix 
n 

units, qrr = qr . Let q = L:·q 
r=1 r ' 

and let M denote the factor 

B(H)q of type In spanned by 

complex matrices, then the map 

hence an isometry of M onto 

Pro]· ection e = .1. I: q in M • 
n rs 

the 

I: a 

H n 

qrs · 

rsqrs -+ 

Let 

By (1) 

lla(f)(e) -~(e>ll 2 < e:, 

If M n lS 

(ars) lS a 

e be the 

hence, since ~(e) is self-adjoL~t, llxll :: l!xll 2 for x EX s.a 

a (f)(e) > 0 3 

(4) ~(e)+ e:q > 0 • 

By (2) and (3) 

Thus we have 

the nxn 

*-isomorphism, 

1-dimensional 

and 

(5) II 1 A 'I 1 I' A II 1 ~(e) ---I:~(y ,y )q !1 2 < -! 1\jJ(q ) - ~(y ,y )q 11.., < ne: . n r s rs ' - n · rs r s rs £. 

By Lemma 5.2 the operator I:~(yr,ys)qrs is self-adjoint. Thus 
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by (4) and (5) 

(6) 

If a= (a .. ) 1s a matrix in M then its norm is majorized lJ n 

Indeed, la .. l < 
I ]_J ' ·- !Ia II for all i 'j ' so we have 

:5 Tx,(a*a) =II ail~ -· < II a!!r 11 a .. J • - . . l] 
Thus from (1) 

we have 

!1Cf(yr,ys))-(0(yr,ys))i!:: :tjf(yr,ys)-0Cyr,ys)l 

:: n21! a(f) -1/JI! 2 < n2e: • 

If we combine this -vJith (6) we have since (f(yr,y 8 )) is self-adjoint 

Since e: is arbitrary (f(yr,ys)) > 0, and we have shovm f is 

positive definite. 

Convel'St.:"!ly, assume f is positive definite. Let B denote 

the weak closure of A and let y be the restriction to A of 

y E SpB . 

In order to show a(f) is positivity preserving it suffices 

to show a (f) ( p) > 0 for each 1 ~·dimensional projection p 1n 6{ 

For this it suffices to show that for each unit vector ~ in H 

and e: > 0 there is a nonnegative real number a such that 

( 7 ) i <a (f) ( p) ~ " F, > = a [ < e: • 

VIe let p,.; and e: > 0 be given. 

Choose mutually orthogonal projections e ..•. , e in 
1 ' · n B and 

A. •• , i, j E { 1 ) ... ,n} such that if 1/J is the restriction of 
l] 

:[:\... e. ®e. to 
l] l J 

that Y. (e.) ... 
l l 

~{ then ll1p-a(f)!i 2 < e:/2 . 
1 . Since a 

If'("' ""' ) ,~y.,y. 
l J 

~- A •• j 
l] 

is an isometry 

< e:/ 2 • 

Choose Y· E SpB 
l 

'\.,re have 

such 
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"' 
,..... 

d--f.. Let 1J I be the restriction of f(y.,y.)e. ® e. to Then ]_ J l J 

!laCf)-¢'/1 2 < !laCf)-wll 2 +I! 1/J-~~ 'I! 2 < £+£ :: e: • - 2 2 

Let t; . = eiF, and let Tl be a UI1it vector such that p lS the pro-
l 

jection on the subspace it spans. Then we have 

<1/J ' ( p ) I; ' E; > = L f (y. , y. ) <e . .1:-) e . €: , F, > 
l J l J. 

= :E f ( y · , y · ) <p s · , P ~ • > 
l J J l 

= r.: f ( y i , Y' j ) < < .; j , n >n , < ~ i , n >n > 

= I: f(yi,'yj )<~j ,.n><~i'n> 

> 0 

sinCe'~ (f(y.,y.)) > 0. 
l J -

If q is the 1-dimensional projection 

on the subspace spanned by E; then 

I <a (f) ( p).; ''~ >- <ij; l ( p).; '~ >I = I < (a (f)-¢ ' ) p 5 q >I 

: l!aCf)-w'1!2!!P!!z!lqll2 < e:. 

Thus with a ;: <¢ 1 (p)t; ~E;> the proof is complete. 

Recall that if ~ is a linear map from one c*-algebra M 

in·to another l'J then ~ is said to be positive if ~(x) ~ 0 

for each x > 0 in M . \P is said to be completely positive if 

<.p ® 1'1 + N ® 
n 

M .... !.n is positive for each n tv here lS 

the identity mRp on M 
n 

Corollary 5.3 Let A be an abelian c*-algebra acting on the 

Hilbert space H , Let z.o E A® A • Then the following conditions 

are equivalent: 

( . ) 
'l / \!) is positive. 

Cii) t.p is completely positive. 

( ... ' " positive defini·te SpA ®A ,lllJ Z!) lS on . 
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Proof (ii) * (i) lS trivial. Since ~ is ultraweakly 

continuous~ <piQ{ is positivity preserv1ng if and only if w is 

positive. Thus (i) ~(iii) is immediate from Theorem 5.1. To 

show (iii) • (ii) let n E W be given. Let ~ denote the 
n 

scalar operators in H 
n 

Then c.p ® 1 belongs to 
n 

(A ® ([; ) ® (A e C ) c: B (B(H ® ern) ) . 
n n 

\ 1Je can identify Sp(A®C) - n 
.............. 

with 

Sp A via y ® 1 + y • Thus ~®t lS positive definite if and . n 

only if is positive definite. 

positive. Q.E.D. 

By (i) ~ (iii) c.p ® l 
n 

lS 

Lemma 5 • 4 Let A be an abelian c*-algebra acting on the 

Hilbert space H , and let a denote the canonical isomorphism 

of C(SpA®A) onto the C*-subal~~ebra of B( Of.) generated by 

a I :tt· , a E A® A • Let q E A® A satisfy <.p( 1) = 1 ~ and let 

f be a continuous positive definite function on SpA® A such 

that f(y,y) = 1 for all y E SpA. Then we have: 

(i) tfJ(y,y) = 1 for all y E SpA. 

Cii) If ljJ is an operator normal map in B(B(H)) such that 

l)!li'J( = a(f), then ~J is positive and ~J(1) = 1. 

Proof ( i) Let y E Sp P_ , and let E > 0 • As in the proof of 

TheoPem 5. 1 there is 1J! = 1.: J. .• • e. ® e. 
l] l J 

such that !! 1)!-!.f.l!i < E , where 

(e.) is an orthogonal family of projections in the weak closure of 
l 

A v-1i th sum 1 such that y(e1 ) = 1 • 

By Lemma 3. 2 "live thus have 

!{vCy,y) -11 < l<f><y,y)- ~(y,y)! +I A1'1-1 i 
< II cp-1J!II + E < 2 E • 
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Since £ is arbitrary (i) follows. 

(ii) As 1n the proof of Theorem 5.1 we may assume A is a 

maximal abelian von Neumann algebra. Let f and ~ be as 1n Cii). 

Choose ~~ =:LA.. e. l:iil e. 
l] l J 

as above such that 

y. E Sp A s tisfv y. ( e . ) = 1 • Then for all 1 , 
l - l l 

s > if(y .• y.) _,'i',l(y.,y.)i ·· 1,1-A1• 1·1 
' l' l o/ l' l ' -

Thus II 1 ( ) I' - ! I II 1_ 1jJ 1 -1 11 -· i r. A. . e. -1, 1 < s . 
. . ll l 

Modifying ~~ 

A.. 
J.] 

= f(yi,yj) = ~~(yi,yj), and in particular 

Using Lemma 8 ,lJ. belmv it is immediate that 

A.. 
lJ. 

/\ 
~I I 

we can assume 

= 1 ' so 1/1 i ( 1 ) = 1 • 

is positive 

definite, hence by Corollary 5.3 ~~ is positive, and by construe-

tion 1jJ 1 (1) = 1. In particular I!~ 'J! = 1 [1 5]. Choose a sequence 

of such maps such tha·t llw _,,,q 
' · n o/t: 2 < 1 /n ' 111v 1 i = 1! ,r. c1 >1' 1 

'' n'· · '~'n 
= 1 . 

IV 

Let ~ be a point - u1 travJeak limit point in B( B(E)) of the 

sequence (l/Jn) , cf. (11 j, Then ';i: is positive~ ~(1) = 1 , 

Let E: > 0 and 1fn < s . Then 

;>.... and e .. 
l] l 

Let: e be a 1-dimensional projection) for suitable 

e < Then ~ (e) = e , 
n 

so ·that ~~~(e)-ell < s. .. "2 

ll~<e>-e!! < s , so !! ,,, ( e ) I ! > I ! e ! l - s = 1 - s . 
I! o/ I. I '' 

Thus if 

In particular 

C(H) denotes 

the compact operators on H then l!ifi l C (H >!I > 1 . But ';j;' ( 1 ) = 1 , 

so il~ll= 1 8s]. Therefore l!;lc<r-DI! ~ 1 Since ~Icon = ';p'j C(H) 

and is ultraweakly continuous 'I I' l: 1/1 !l < 1 , hence equal to 1 . 

Again by ultraweak continuity of 1jJ ~ is a positive map 

because is positive being equal to on con. Thus 

!!~<1 >II = !!1J!!i = 1 [ 1 5] . 

Let a E A ' X ( BO-I) then ~ (ax) = a~ (x) so that n n ~ 

'{j;(ax) = a ';j;' (x) . Thus if X E C (H) we have ~(ax) = '""< ) ~ ax. = 

a~ (x) -- a ~I (X) 
' and syrnrnetrically ~(xa) = ~(x)a . Since ~ is 

ul traHeakly continuous vJe therefore have ~· (a) = a ~ ( 1 ) = 1/J ( 1 ) a . 
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In particular 1jJ(1) E A' -A, since A lS assumed to be maximal 

abelian. 

Suppose 1jJ(1) * 1. Then there exists a nonzero projection 

e E A such that !!e¢(1 >II < 1 . We now apply the preceding part 

of the proof to Ae , B( eH) ~ 1jJ = 1JJ I Ae , e ' 1' = '1' ll'~.e .. '~'ne 't'n • - 1JJ e = -;1 Ae • 

Since the set of Hilbert-Schmidt operators on eH equals ed{ e 

and C(eH) = eC(H)e all the previous assumptions and arguments 

hold v;rhen ~,Je restrict attention to B( eH) as above. But then the 

previous argument shows !I,,, II = !I,, ( e ~I 
., 't'ert '· 't'e " = !!e 1H 1 >!! < 1 ,. .. 

while li~Jell = 11\te/i = 11';/i'e(e)j! = l!e';Ji'(e)i! =!lei! = 1, a contradiction. 

Thus 1jJ(1) = 1 as asserted. Q.E.D. 

Proposition 5.5 Let A be an abelian c*-algebra acting on a 

separable Hilber-t space H • Let <t> E A® A be positive and 1fl(1) = 1 • 

Then we have 

(i) <,ol J E BC:J) • 

r;-
(ii) Tr(<.p(x)) = Tr(x) for all x E .....~ • 

(iii) <t>* has a unique extension to a positive operator normal 

map 1p ::m B(B(H)) such that lfJ(1) = 1 • 

Proof We may assume A is a von Neumann algebra. From the proof 

of Theorem 5 .1 there is a sequence ( <Pn) of maps in A® A of the 

:L\ .. e.® e. 
lJ l J 

in 
conver&irg in nonn to tD 

the algebraic tensor product A 0 A 1 such that 

<t>n is positive, <t>n(1) = 1, and the ei's are mutually orthogonal 

projections. Let X E T be positive. Then c.p ( X ) + <.p ( X ) 
n uni-

formly. Since Tr is lower semicontinuous being the countable sum 

of vector states, and Tr(<.pn(x)) = Tr(x), we have 

Tr( tp( x)) < 1 im Tr C lP C x) ) = lim Tr ( x ) = Tr < x ) • 
n n n 
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Thus for 
r.:-+ 

X E ;] • By polarization 

<PIT E B(J .. ) and has norm less than or equal to 4 . 

-'1US (i) follotv~.,. 

Since lP! T E B( 0) , tp* has a unique extension to an ultra

vJeakly continuous map 1jJ ln B ( B (H)) such that y* = f.P! !J . 

Furthermore~ if f E C(SpA®A) is defined by f(y 9 y 1 ) = (p(y,y'), 

then f(y,y) = 1 for all y E SpA. If a. in the canonical 

isomorphism of C ( Sp A® A) onto the norm closure vcf of 

{p !-J · o E r. ""1\ 1 l·n !-{L,(,1{) ! (j!..__ " r .L.'l. 'Of .L.l..J then a (f) = 1JJ I a-t , because a. (f) is 

the adjoint of <.p! a{ J_n vf . In particular 1/J is operator normal. 

Thus f and 1/J satisfy the assumptions of Lemma 5.4 (ii), hence 

1/J ( 1 ) - .., 
- I and (iii) follows. But then, if X E 'J we have 

Tr ( <P ( x) ) = < 1 ~ q:> ( x) > = <ljJ ( 1 ) "x > = < 1 , x > = Tr ( x) so (ii) follows. 

Q.E.D. 

We conclude this section by showing how the obtained results 

are applicable to representations of locally compact abelian gPoups 

as automorphisms of B (H) . 

Lemma 5.6 Let G be a locally compact abelian group and t + u t 

a continuous unitary Pepresentation of G on the Hilbert space H . 

Let a.t(x) = ut xu; for x E BOD , and let A denote the abelian 

von Neumann algebra generated by {ut : t E G} 

f E J}(G); we have a.f E A®A. 

Proof Le-t e: > 0 and assume !if 1! 1 ::;, 1 . 

subset of G such that .kKifCt)idt < e:/4. 

Then for each 

Let K be a compact 

Let q:> = I: ai XE. be a 
l 

simple function with support in K such that II f.\1~· fli 1 < e: /2 , say 

0 
L ' From Stone's theorem we ca.n find mutually orthogonal 
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projections e 1 ' ••• 'er ln A and such that 

r ---,-
11 ut - r <y. , t> e ·II' < c: I 8 
' j=1 J J 

for t E K • 

Then for t E K we have 

I! at -r<yj ,t><yk:,t>ej ® ek:!l 

* ~ II Cut -r.<yj,t>ej) ®utll+l!l.<yj,t>ej ® (ut -r<yk,t>ek)!l < 

< E/ 4 , 

Thus we have for x e B(H) , with m(E) the Haar measure of a set 

E c G, 

II Jtp(t)at(x)dt -· .r (:L(a.fE <y. ,t><yk,t>dt))e. xek!l 
'k . l "' J J . J l l 

= II f ( .. +-II 1 ~a. E 'at(x)- .r <y. ,t><yk?t>e. xek)dL., 
l l i jk J J 

I '( 'I --- 11' < :t 1a.l: ·,'at(x)- :t<y.,t><yk,t>e.xek!at 
i l . - E i . j k J J ,. 

< t.!2Jixl! • 

Then we have 

< II f-q>i 11 + E I 2 

<t./2 +s/2 =E. 

Since lS ar•bi trary a,...EA®A. 
I 

Q.E.D. 

Let G be a locally compact abelian group~ and f a con-

tinuous complex function on G . If E is a closed subset of G 

we say f is positive definite on E if the n x n matrix 

(f(gi-gj )) is positive VJhenever g 1 ,, ••• ,gn E E. 
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Proposition 5.7 Let G be a locally compact abelian group and 

t ~ ut a continuous unitary representation of G on the Hilbert 

space H. Let Sp u deno-te the spectrum of t ~ ut in the dual 

" at(x) * group G 9 and let = ut x ut for X E B(H) . Then if 

f c L1 (G) the following three conditions are equivalent: '-

(i) a.f is positive 

Cii) a.f lS completely positive 

(iii) f lS positive definite on Sp u. 

Proof Let A0 denote the c*-algebra generated by 

{ U = r,.,. ( t) u d-'- · g ,. L 1 ( r) 1-;t:. t L. C .:J J • g 
Then Sp A0 = Sp u . Indeed, let P 

y 
~ 

be the projection valued measure on G such that by Stone's 

theorem ut=JG<y,t>dPY Let gEL1 CG). Then ug=JGg(y)dPY 

so !I ugll = !! g I Sp u!l"". By density of the Fourier transforms in C (G) 

we obtain a *-isomorphism of A 0 on C(Sp u) , and the assertion 

follows. By Lemma 5. 6 crf E A®A 
' 

where A lS the weak closure 

of Ao . T..c 
-·.l. g E C(G) let 

,..... 
E C(GxG) g be defined by g(y,y') 

A 

g(y-yl) Then '+ is immediate tha-t f is positive definite on . l~ 

~ 

Sp u if and only if f is positive definite on Sp u x Sp u . In 

= 

particular it follows from Corollary 5.3 that if is positive 
~ ~ 

then f is positive definite on SpA® A , hence by restriction f 

" 1s positive definite on Sp Ao ® Ao , and so f is positive definite 
A 

on Sp u . Conversely, if f is positive definite on Sp u then 

f is positive definite on Sp Ao ® Ao • From the proof of Theorem 

5.1 we see that a~ is positive, and so completely positive by 
.L 

Corollary 5.3. Thus (iii)~ (ii), and the proof is complete. 
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6. Maps with pure point spectra 

In this section we shall study the case when an operator 

normal map has pure point spectrum when restricted to the trace 

class operators Sl. In the finite dimensional case the result 

is a characterization of those identity preserving positive maps 

which belong to an algebra of the form A® A • 

Theorem 6.1 Let ~ be an operator normal positive map in B(B(H)) 

such that ~.p(1) = 1. Suppose q:> I tJ is a bounded operator on s-·· 
such that the eigenvectors of c.pl C:f of rank 1 form a total set 

in 
r--
::..1 0 Then is completely positive, and there is a totally 

atomic maximal abelian von Neumann algebra A on H such that 

q> belongs to the point-ul travJeak closure of A® A • 

We divide the proof into some lemmas. The first has the 

same conclusion as Proposition 5.5 and shows in particular that 

1n the finite dimensional case Tr(tp(x)) = Tr(x) whenever tp is 

an operator normal map such that wC1) = 1. 

Lemma 6.2 Let ~ be an operator normal map in B(B(H)) such 

that f.P( 1 ) = 1 . Suppose I.P I ~J E B ( 'J') and that the eigenvectors 

of tO I-T form a total set in :J' . Then Tr(<.p(x)) = Tr(x) for 

all 
r;-· 

X E .j 

Proof Let s be a total set of eigenvectors of 
~ 

<PI 'J • For 

each x E S , x E ,)( and is an eigenvector for tp and thus for 

•n* , since •nl ·,P · s o al '+' '~-" <T-- l n rm · . If {J)(x) = AX then ~<x,1 > = 

<tp*(x),1> = <x,tp(1)> = <x,1>, hence <x,1> = <tp(x),1> = 0 if 

A * 1 , and <x, 1 > = <q>( x), 1 > if A = 1 

Thus <x,1> = <<.p(x) ,1> for all x ln the linear span 
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T of S. Since T is dense in CJ' by assumption and 

<.'liTE B(~J) , <x~1 > = <<P(x) ,1 > for all x E g- . Q.E.D. 

Lemma 6.3 Let ~ be as in Theorem 6.1 and let S be a total 

set in Sl consisting of eigenvectors of rank 1 

e is a projection in B(H) such that ~(e) = e 

for 4)! CJ- . If 

then {exe: x€8} 

lS a total set of eigenvectors of rank 1 for 

Proof FT'om an unpublished result of Braise it follows that 

cp(exe) = ec.p( x) e for all X E B(H) . A simple proof ln our case 

goes as follm,Js: Let p be a state of B(H) with support ln e . 

Then p 0 tp is a state of B(H) with support in e . Thus 

p(lo(x)) = p(l!)(e xe)) for all X E B(H) . Since this holds for 

all such p , ec.p(x)e = e,p(e x e) 

Let x E B(H), <.p(x) = A.x 5 then <.p(e xe) = etp(x)e = A.e xe, 

so e x e is an eigenvector for q) • Finally, since S is to<lial 

in 
r'i-" 
;_! , and the map y + eye is norm decreasing on 'J' , it is 

clear that the set { e x e : x E S} is total in e !J-e . 

Lemma 6.4 Let tp be as in Theorem 6 .1 . Suppose x lS a rank 1 

operator with llx!! = 1 such that <P(x) = x. Then either x is 

a scalar multiple of a projection, or x is a partial isometry 

such that the C*-algebra M generated by X is isomorphic to 

the complex 2 x 2 matrices, and <.p restricted to M is the iden-

tity map. 

Proof If x is a scalar multiple of a normal operator then, 

s1nce x is of rank 1 , x is already a scalar multiple of a 

projection. He may thus assume x is a partial isometry such 

that p = x*x * xx* = q , and p and q are 1-dimensional pro-

jections. 
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From Kadison 1 s Schwarz inequality [ 1 0 J applied to x + x* 

and i(x-x*) v:Je have, cf. [18, Lemma 7.3] 

q)( p+q) = q( x*x+xx*) > q)( x) *q>( x) + q>( x )<.P( x) * 

= X* X + XX* = p + q , 

From Lemma 6.2 v:Je have Tr(tp(p+q)) = Tr(p+q) , hence by the 

faithfulness of the trace, q>( p+q) = p + q • Since x lS of rank 1 

and p =t- q the C*-algebra 11 generated by X is isomorphic to 

the complex 2 x 2 matrices. rurthermore, the identity of H is 

e = p v q • Thus there exist positive constants a and a such 

that e < a(p+q) < se. In particular, if x > 0 lS ln the unit 

ball of M, then 0 < tp(x) :: q>(e) :S at.p(p+q) = a(p+q) :s aSe. 

Thus ~.P(x) E M ' since ~1 = B(H) 
' e and ~IM lS a positive linear 

map of M into itself of norm 1 . In particular 0 < q>( e) :: e , 

and again by Lemma 6.2 tp(c) = e . Thus ~ preserves the identity 

of H. 

Now x,x* , and e are linearly independent in M • For if 

there are complex numbers y, o such that yx + ox* = e , then 

multiplication of this equation respectively from the left and 

right by x yields the equations yx 2 + oxx* = x , and yx2 + ox*x = x . 

Thus * * oxx = ox x , so that 0 = 0 and * x,x , e are linearly 

independent as asserted. Since they all are eigenvectors for lP 

with eigenvalue 1 , it follows that the eigenspace N c M for the 

eigenvalue 1 is at least of dimension 3 . 

Suppose <.PIM is not the identity, then dim N = 3 . Since 

S is total in Y the set {eye : y E S} is a total set of eigen-

vectors J.n M by Lemma 6. 3. Since ;.pI M is operator normal, there 

is thus y E S such that eye =t- 0 and tp( eye) = A. eye with A * 1 . 

We have thus found an eigenvector z for q> I M of rank 1 , I! z II = 1 , 
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and <P ( z ) = A z , A * 1 Now z* 1s an eigenvector with e1gen-

value A If z 1s not a scalar multiple of z* they span a 

subspace of l'1 of dimension 2 , which is or-thogonal to N • This 

is impossible since dim 1'1 = IJ. • We may thus assume z is self-

adjoint, hence a scalar multiple of a projection; hence we may 

assume z is a projection. Since e-z is orthogonal to z in 

H , e-z E N • Thus e-z = tp(e-z) = l,O(e) -(,f)(z) = e-Az 5 and we 

have shown A = 1 , contrary to assumption. Thus <PIM is the 

identity. Q.E.D. 

Lemma 6.5 Let lP be as in Theorem 6.1. Then there exists a 

1-dimensiona.l projection p such that <.p(p) = p. 

Proof Let S be a total set of eigenvectors for q> I 8'"' of rank 1 . 

If no eigenvector in S has eigenvalue 1 then for all x E S , 

q>(x) = AX with A =I= 1 . Then by Lemma 6.2 ATr(x) = Tr(w(x)) = 

Tr(x) , so Tr(x) = 0 • In particular Tr(x) = 0 for all x in 

the linear span R of S . But S is assumed to be total in .y 

so R is dense 1n CJ . But then Tr( x) = 0 for all x E T, 

which is a contradiction. Thus there is x E S with c.p(x) = x. 

An application of Lemma 6.4 completes the proof. 

Proof of Theorem 6.1 

family 

that 

(p.). E r of 
J J u 

c.p(p.) = P· . 
J J 

We first show that there is an orthogonal 

1-dimensional projections with sum 1 such 

By Zorn's lemma let (pj)jEJ be a maximal 

such family. By LeiTh"Tl.a 6.5 it is nonempty. Let q = 1- l: P· . 
jEJ J 

Since tp is ul traweakly continuous c.p(q) = q • If q =I= 0 , t;O 

restric-ted to B01) has by Lemma 6. 3 exactly the same properq 

ties as lP has as a map 1n B( B01)) . Thus by Lemma 6.5 there 

1s a 1-dimensional projection p ~ q such that c.p(p) = p. 
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This con·tradicts the maximality of the family (pj )j EJ , so q = 0 , 

and :L P· = 1 . 
• J I J E -' 

Let A denote the totally atomic maximal 

abelian von Neumann algebra generated by For each 

I: P· 
j EI J 

Then the net is finite subset I c J let qi = 

monotone increasing, so qi + 1 ul trastrongly, and dim qi =card I 

We show belongs to is the finite 

dimensional algebra generated by pj , j E I • 

For every pair pi * Pj , i,j e I , there are x,y 1n S 

such that p. x p. * 0 and D. y p. * 0 • Let e = p. +p. . Then 
l J ~] l l J 

in particular e x e =1= 0 * e y e , and by Lemma 6. 3 ex e and eye 

are rank 1 eigenvectors for ,n! B(H) . 
'¥ e Vle have thus found four 

eigenvectors of rank 1 for <..Oi B(H)e, and q>(e) = e. Since two 

of them are p. and p. , and the other ·two are scalar multiplies 
l J 

of partial isometries between them, we have shm,;rn that if we multi-

ply the chosen eigenvectors e x e and e y e by sui table scalars 

for all pairs i,j E I, we have found a set of eigenvectors for 

consisting of a complete set of matrix units for B(H)q . 
I 

is of the form 

<~ I B(H)q = !: A. •• pi®pjEAI®A:r . 
I i,j E I l] 

Since AI® AI c. A flJ A and qi + 1 ultrastrongly, qi xqi + X 

ultrastrongly, so ultraweakly for all X ( B(I-I) . Furthermore 

((£>!B(H)qi) oqi®qi E A®A. Thus we have by the above formula 

<.p(x) = l:F <.p(qixqi) = l:ft (((> i BCH)qt(qi xqi) 

and <.p belongs to the point-ul traweak closure of A® A . Note that 

since is positive and belongs to AI ®AI it is com-

pletely positive by Corollary 5.3. Thus <.p, being the point-ultra-

weak limit of completely positive maps, is itself completely posi-

tive. The proof is complete. 
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Remark 6. 6 The last theorem gives a necessary condition for an 

operator normal positive map <.p to be completely positive in 

terms of spectral properties. It might be belived that there is 

a converse to the theorem. HovJever, the following example shows 

that a regular operator normal completely positive map <.p such 

that tp( 1 ) = 1 need not have a basis of eigenvector's of rank 1 • 

Let 2 
H = <C ' let b = ( 1 0 ) 

\ 0 -1 and 

<.() = ~(a®a + b®b) • Since a and b are self-adjoint unitaries, 

<.p is operator hermitian and completely positive, being the convex 

sum of two *-automorphisms. An orthogonal basis of eigenvectors 

is 

1 0) ( 1 0 ) ( 0 1 ) (0 -1 ) xl = x2 = x3 ::: 

' x4 = ' 0 1 0 -1 1 0 1 0 

with <.p(xl) = xl <.p(x4) = -x4 ~ c.p(x2) = !p(x3) = 0 Thus the 

eigenvalues ±1 have multiplicities 1 and every eigenvector 

with eigenvalue ±1 has rank 2 . 
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7. Some completely positive maps 

If t9 is a completely positive map of a c*-algebra H 

into B(H) then there exist a Hilbert space H 1 , a bounded 

linear map V of H into H1 , and a *-representation w of M 

on H' such that ~(x) = V*w(x)V for all x EM [17]. We say 

v*nv is a Stinespring decomposition for ~ . If M and N are 

von Neumann algebras we denote Dy M ® N their von Neumann 

algebra tensor product. 

Theorem 7.1 Let H be a separable Hilbert space and c.p E B( B(H)) 

ultraweakly continuous, positive, and c.p(1) = 1 • Let A be a 

maximal abelian von Neumann algebra acting on H . Then the 

following two conditions are equivalent: 

(i) There exist a probability space (X~8 ,~) and a measurable 

map u of X into the unitary group of A such that 

x E B(H) . 

(ii) l.iJ(x) = x for all x E A;; and <p ls completely positive 

with a Stinespring decomposition V*wV v-lith TI normal such that 

there exist a Hilbert space K and an abelian von Neumann algebra 

B acting on K with the following properties: 

(1) V:H+H' =H®K 

(2) n(B(H)) c= B(I-I) ® B 

(3) n(B(H))' n (B(H)@B) = (C ® B 

(4) VV*EQ-;@B(K) 

{5) w(A) = A®C 

In particular, if the above conditions are satisfied then 

<.P belongs to the point-ul traweak closure of A® A . 
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Proof (ii) • (i). Assume Q satisfies the conditions in (ii). 

Since rr 1s normal rr(B(H)) is a von Neumann algebra isomorphic 

to B(H) • Let N denote the von Neumann algebra generated by 

rr ( B ( H ) ) and Q: ® B • ~ve show N = B(H) ® B • Indeed, by condi-

tion (2) N' n (B(I-I)®B) = Q:®B. Since B(H) ® B is of type I 

it is a normal von Neumann algebra [ 6, ch. III, 7 ~ ex. 1 3] • Since 

N c B(H) ® B and N contains the center If ® B of B(H) ® B , 

we have 

-N = (N' n (B(H) ® B)) 1. n (B(H) ® B) 

= (~®B)' n (B(H) ®B) 

= B(H) ® B 

as asserted. 

Let e be a minimal projection in B(H) Then rr(e) 1s 

an abelian projection with central carrier 1 in B(H) ® B . 

Indeed, let ( e ) E'T>-r be an orthogonal sequence of minimal pron n a~ 

jections in B(H) with 

Since e ,... e for all 
n 

"" sum 1 such that e 1 = e Then :E rr(e ) -· 1 . 
n= 1 n 

n as projections in B(H), rr(e) .... rr(e ) 
n 

for all n. In particular their central carriers are equal, so 

must be the identity. 

b. E B, i = 1) ... ,n 
l 

n(e)a7T{e) = 

= 
= 

E 

n 
Let a = l. rr(x. )(1 0 b.) E N with x.E B(H) 

i= 1 l l l 

Then we have 

:r: '!T(e)rr(x. )1f(e)(1 ®b.) 
l l 

L.: '!T(ex.e)(1 ®b.) 
l l 

rr(e) I: Tr(xie)1 ® bi 

rr(e)(lt ®B) . 

Since by the preceding paragraph operators like a are ultra

weakly dense 1n B(H) i B 

rr(e)(B(H) ® B)rr(e) = rr(e) (~®B) , 

so that. rr(e) is an abelian projection as asserted. 
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For each n E IN let v be a partial isometry in B(H) 
n 

such that v*v n n v v*= e, n n and 

is an abelian projection with central carrier 1 J.n 

Since e ® 1 

B(H) -® B 

and 1T (e) is the same by the preceding paragraph~ 1T (e) ,..., e ® 1 

in B(H) e B [6, Ch. TII ~§3, Lemme 1]. Let u be a partial 

isometry in B(H) ® B such that u*u = e ® 1 uu * = 1T (e) . Let 

where the convergence is in the strong topology. Since the 

supports of the vn ® 1 and the ranges of the 1T(v*) 
n 

are pair-

wise ortho9;onal for different n' s and both span the whole space 

it is easy to see that U J.s a unitary operator J.n B(H) ~ B • 

Furthermore, a straightforward computation shows U(en®1)U* = 1T(en), 

and Since the *-algebra generated by the 

and the v is ultraweakly dense in B(H) , and 1T is ultraweakly 
n 

continuous, U(x®1 )U* = 1T(x) for all x E B(H) . 

By [16,1.18.1] there exists a localizable measure space 

(X,63,v) such that B can be identified with L~(X,v) acting 

2 on L (X,v) by pointwise multiplication. By [16,1.22.13] we can 

identify B(H) ® B with L~(X?v,B{H))- the Banach algebra of all 

essentially bounded weakly-* v-locally measurable functions on 

(X,v) into B(H) via the map (a®f)(s) = f(s)a, where f is 

identified with the function f ( r;) on X , and a E B(H) . 

Furthermore .L00 (X,v,B(H)) acts on 2 L (X,v,H) - the Hilbert space 

of H-valued L2 -functions on X , with inner product 

<~,n> = f <t;(r;),nCs)>dv(r;), 
X 

and action is pointwise; (f~)(s) = f(s)t;(r;) In particular, 

since U E B(H) ® B , U can be identified with the function 



By condition (4), VV* E G;®B(K). Since 4)(1) = 1, V is 

an isometry, hence there is a projection p in B(K) such that 

TJV* = 1 ~ ® p . We show dim p = 1 For this note that since V 

is an isometry, V*B(H')V = B(H) Thus 

V B(H)V* = (1 ® p)(B(H) ® B(l<) )( 1 ® p) = B(H) ® p B(K) p , 

and the map x + V x V* is an isomorphism of B 0-1) onto 

B(H) ; pB(K)p. By condition ( 5) 'IT (A) = A® t , so there exists 

a ~~automorphism a of A such -that TI(a) = a(a) ® 1 for a EA. 

Hence, if a E A, then ~(a) = a by assumption, so that 

V a v* = \Tlp(a)V* = VV*(a(a) ® 1 )VV* = a( a)® p. 

Consequently - * A® ~p = VA V Since by assumption A is a max-

imal abelian subalgebra of B(H) , A ® ~p is maximal abelian in 

VB(I--I)V* = B(!:I) ® pB(K)p . But this lS only possible when dim p = 1 . 

Let be a unit vector in K such that p~ 0 = ~ 0 If 

~ E H then V~ = V' F;. ® F;. 0 ~ where V' is a unitary operator in 

B(H), as 1s trivially verified. Recall that (~®.; 0 )(~;;) = F;. 0 C~;;H 

if ~ E H • Thus if x E B(H), ~,n E H, we have 

and 

<V*'IT(x)V~,n> = <7T(x)V'I;®t;; 0 3 V'n®i; 0 > 

tl)( X) 

= <U (X ® 1 ) U * ( V 1 t; ® I; O ) , V 1 11 ® ~ Q > 

= ~<W(r;;) xH(r;;)*t; 0 (~::)V'!;, F;. 0(r;;)V'n >dv(~::) 

= ~ <V'*w(r;) x w(?;;)*V' ~ ~n>! !; 0 ( r;;) l2dv( r;) 

Therefore all that rema1ns 1n order to complete the proof of (i) 



- 43 -

is to show u(z.;) is a unitary operator in A a.e. (J..l). 

Since U is unitary and V1 is unitary it ls clear that u(~;;) 

is unitary a.e. (J..l) Let q be a projection in A , and let 

t; E H be a unit vector. Then we have 

Since 0 ~ /ju(z;)q u(~;;)*t;ll < 1 a.e. (J..l) it follows that if sfq(H) 

then <qs,t;> = 1, hence l!uC~;;)q u(z;;)*sll = 1 a.e. (p), hence 

t; E u(z.;)q u(z.;)*(}I) a.e. (]..1). Since this holds for all I; E q (H) 5 

q < u(r;)q u(z.;)* a.e. (]..1). If t; € (1-q)(H) then 0 = <qt;~l;>; 

and u ( r;) q u ( r; >*t; = 0 a. e. ( 11 ) • As above then, 1-q < 1-u(r;)qu(r;)* 

a.e. (td. Consequently q = u(~;;)q u(r;)* a.e. (].J) for each projection 

a in A • Since H ls separable~ A is countably generated, so that-

u(z.;)xu(~;;)* = x for all x E A and all 1;; EX outside a set of 

]..1-measure 0 • Thus u ( r,;) E A' = A a. e. ( J.1) , and the proof of 

(ii) • (i) is complete. 

(i) ~ (ii). Let (X,dj,J..l) and u be g1ven so that (i) holds. 

Let 2 
K = L (X,J.l), and let 

2 2 
H' = .H®L (X,J.!) = L (X,J..l,H), 

where the identification of H ® L 2 (X, 11) and 2 
L (X,J..l,H) is via 

Define a linear map V : H + H' by 

(Vt;)(z.;) = ,;, t; E H, 

and define a map ~ of B(H) into operators on H' by 

(1T(x)f)(z;) = u(t)xu(z.;)*f(z.;), xEB(H), fEH'. 

Then we have 

111T ( X ) fll 2 = f~ I u ( I;; ) X u (I;; )* f ( r; ) 11 2 d ]..l ( z; ) 

< II xll 2 fx lite z; >1! 2 d1-1 c c > 

= llxl! 2 ilfll 2 , 
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so that 111T(x)ll _: llxl! • Since it is trivial to verify that 1T 

lS *-preserving, linear, multiplicative~ and 1T ( 1) = 1 , 1T is a 

*-representation of B(H) on Hi • Let ~, n E E • 

<V*1T(x)V~,n> = fx<(1T(x)VF,)(z;;)~(Vn)(z;;)>dJ..1(1;;) 

= fx<u(z;;)xu(z;;)*t,,n>dl-l(z;;) 

= <4> ( x ) F, , n > , 

Then we have 

so tha·t V*1TV lS a Stine spring decomposition for (y • 

vJe let B = L""CX~l-1) and verify conditions (1)- (5). 

( 1) is trivial by definition of V • 

(2) By definition, if x E B(I-I) , f E HY then (1T(x)f)(z;;) = 

u(i;)x u(z;;)*f(z;;). Thus 1T(x) E Lco(X~l-l,B(H)), which equals 

B(H) ® L"'CX,]..I) t:y [16, 1.22.13], and (2) follows. 

(3) Suppose y E 1T(B(H))'n (B(H) ®B). Then y E L""(X,]..I,B(H)), 

so y(z;;) E B(H) for z;; EX, z;;-+ y(z;;) is measurable and 

ess. supl!yCz;)!l = IIYII. Since y E 1T(B(H))~, if x E B(H) 

y(z;)u(l';)xu(z;;)* = u(z;)xu(z;;)*y(z;;), a.e. ]..1. 

Since x + u(z;)xu(l';)* is a *-automorphism of B(H) a.e. (l-1), 

y(~;;)w = wy(~;;) for all wE B(H) , i.e. y(z;) is a scalar a.e. (]J). 

Thus y(z;;) = f(z;;)1 for some f E L00 (X,]..I) > i.e. y E Q::®B and 

(3) is proved. 

(4) If f E H', F, E H we have 

hence 
v*f = f fCr;)dJ..l(z;;). 

X 

Let x E B(H), f,g E H 1 • Then we have 

<W*(x®1)f,g> = f <(V*(x®1)f)(z;),(V*g)(z;)>dl-l(z;;) 

= <Jxf(z;;) d]J(z;;),Jg(z;;)d]J(r;)> =<xV*f,V*g>. 
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Similarly we have 

<(x®1)VV*f,g> = <V*f,V*(x*e1)g~ = <V*f~x*V*g> 5 

hence (x®1 )VV* = VV*(x®1) for all x E B(H) ~ and (4) follows. 

(5) By assumption u(z;) E A a.e. (~) Hence for x € A and 

f € H' we have 

Crr ( x) f) ( 1;; ) = u ( 1;; ) x u ( r;) * f ( z; ) = x f ( 1;: ) = ( ( x~ 1 ) f)( z.; ) 

SO 1T(X) = X®1 and (5) follows. Thus (i) ~ (ii) is proved. 

Finally if (i) or Cii) is satisfied then it is straightfor-

ward from (i) to show that ~ belongs to the point-ultraweak 

closure of A® A • Q.E.D. 

In the finite dimensional case part (ii) of the above theorem 

has a much simpler form. Recall that if n is a natural number 

we denote by Mn the complex n x n matrices and 

n x n matrices. 

D the diagonal 
n 

Corollary 7.2 Let ~ E B(M ) be a positive map. Then the follow
n 

ing two conditions are equivalent. 

(i) There exist a probability space (X,6 ,~) and a measurable 

map u of X into the unitary group of 

tp(x) = f u(z;;)xu(r;;)*d~(z;;), ·x 

D n 
such ·that 

xEM 
n 

( ii) tp( x) = x for all x E Dn , and <c> lS completely positive 

with a Stinespring decomposition V*1rV satisfying the following 

three conditions: 

( 1 ) There exists a Hilbert space K such that V : ern + ~n ® K • 

(2) There exists an abelian von Neumann algebra B on K such 

that 1T(x) E l'1n ® B for all x E Mn 

( 3) VV* E <r ® B ( K) . 



- 46 -

Proof ( i) "* ( ii) is immedia:te from Theorem 7. 1 . In order to 

show the converse we have to show that conditions (3) and (5) in 

Theorem 7.1 are redundant when H lS finite dimensional. 

Let (e .. ) be the natural matrix units 1n 1'1 so that e .. 
l] n ll. 

lS a projection in D of dimension 1 . Let f .. = TI(e .. ) . Then n l] lJ 

f .. ...... f11 1n M ®B 
' 

and !: f .. :: 1 so each f,. has central 
::Ll n ll. 

carrier 1 . Let 1jJ denote the canonical center 

so 

[ 5 . Ch . ill , § 4 , Theor~me 3 ] • Then 1jJ (f .. ) = 
ll 

f .. ,...., e .. 
ll JJ 

for all In particular f .. 
ll 

l::L 

valued trace on 

1 In 1 = 1h ( e . . ® 1 ) . 
I ll ' 

lS an abelian 

projection in M ® B 
n 

for each i . From the proof of Cii) ~ (i) 

in Theorem 7 • 1 there is a unitary operator U E M ® B n such that 

U ( X ® 1) U* :: '1T (X) for X E M 
11 

In particular U(M ®~)U* = w(M ), 
n n 

so that 

Tir:H ) 1 n(M®B) = U01 ®tt)'U*n(M®B) , n n n n 

= U(C®B(K) )U* n(M ®B) 
n 

= U((~@B(K)) n(M ~B))U* 
n 

= U(tr®B)U* 

= (C®B' 

and (3) follows. 

To show ( 5) we notice that vv* = 1 ® p for a projection p 

1n B(K) • Since V is an isometry, n dim p = dim(1®p) = dim VV* 

= n hence dim p = 1 . Then it follows as in the proof of (ii) 

:¢ (i) in Theorem 7.1 that tp(x) = Ju(r;;)xu(r;;)*d]l(r,) ttJi th u(r;; ) E Dn 

a.e. (]..1). 

for x E D 
n 

In particular, U E (D ®~)' = D ®B(K) and TI(x) = x®1 n n 

Thus (5) follows. Q.E.D. 
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8. Hadamard products of matrices 

As before we 

If a = (a •. ) and 
l] 

12roduct is defined 

let l'1 n denote the 

b = ( s .. ) 
lJ 

belong 

as 

a*b=(a .. (3 •• ). 
l] l] 

complex nxn matrices. 

to t-1n their Hadamard 

We refer the reader to [20] for a survey on this matrix product. 

If D n denotes the diagonal matrices 1n M 
n we shall first see 

that the study of maps in Dn ® Dn is the same as that of the 

Hadamard product. Then we shall characterize a certain class of 

matrices by means of their Hadamard product. 

Let (e .. ) 
l] 

denote the usual matrix units in t1 
n so if 

a = (a .. ) 
l] 

E t1 then 
n 

a= :La •• e •. 
lJ l] 

Let 
..... 
a denote the map 

a = I: a . . e .. ®e. . 1n D ® D , considered as a subalgebra of B(H ) • 
lJ 11 J J n n n 

Then if b = Cs .. ) EM we have 
lJ n 

a(b) = I:a .. e .. be .. =I: ct • • s .. e .. =a *b. 
l] ll J J lJ l] l] 

If we identify with the set 

whenever 
A 

c = I: y . e . . E D , then for 1 11 n 
" 

{1, ..• ,n}, 

a and 

so that c(i) = y. 
l 

as above we have 

aCi,j) = a .. • 
lJ 

Thus a is a positive definite function on 

Sp D J Sp D if and only if a is positive. It is then clear n · n 

that Theorem 5.1 1s the infinite dimensional analogue of the classi-

cal result that a > 0 if and only if a * b > 0 for all b > 0 

[ 2 0 , Theorem 3 • 1 ] • 

In the next section we shall give an abstract characterization 

of maps in A ® A of the form ct 
].1 

cf. § 4. For this we shall need 

a stronger property than positive definiteness, namely we shall 

need that the matrices (~(yi,yj)) considered in§ 5 belong to a 

restricted class of positive matrices. We next give some equivalent 

definitions of this class of matrices. 
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Proposition 8.1 Let a= (aij) be a positive matrix in Hn 

such that a. . = 1 , i = 1 , .•. ,n . 
ll 

Then the following four con-

ditions are equivalent: 

(i) a E comi { ( z . z . ) € H : I z I = • • • = I z I = 1 } • 
1 J n 1 n 

(ii) There exist a continuous unitary representation u of 

the n-dimensional torus Tn into the diagonal matrices 

and a Borel probability measure on 

a* b = f u(z)b u(z)*d]..!(Z) , 
Tn 

such that 

bEM n 

D 
n 

(iii) The map b -+ a * b in B(M ) 
n 

is completely positive with 

a Stinespring decomposition satisfying the conditions in Corollary 

7.2 (ii). 

(iv) There exists a positive definite function f on Lln such 

that 

f((o. -o. , ... ~0· -o. )) :::a .. ' 
11 J 1 1n Jn lJ 

where okl ::: 0 if k =1= 1 and 1 if k = 1 • 

8.2 Notation \tJe denote by Kn the closed convex hull of the 

rank 1 

Proof of Proposition 8.1 We show ( i) ..,. ( ii) <> (iii) => ( i v) ...:. ( i). 

(i) =-> (ii). Let a E K 
n 

Let u be the continuous unitary 

representation of Tn with values 1n D 
n given by u(z) = tz.e .. , 

l ll 

where z = ( z , • • • , z ) E Tn . 
1 n , Since M is finite dimensional n 

and Kn is convex and compact, its extreme boundary aKn is closed. 

Furthermore, since each matrix 

are all in aK 
n 

Consequently 

( z. z. ) , z E Tn is of rank 1 , they 
l J 

a K = { ( z . z . ) : z E Tn} From con-
n 1 J 

vexity theory [1, 1 .4.8 ] there is a Borel probability measure v 
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a = £Ksdv(t;). 
n 

r,7e map Tn onto '"'K · th ( ) ( - ) vv, an v1a e map z = z 1 , ••• ,zn ~ zizj . 

Since the map b = (p .. )-+ L:f3 •• e .. ®e .. =b is a continuous isomor-
lJ lJ ll JJ 

phism of M 
n 

given the Hadamard product and D ® D it follows n n 

easily that there exists a Borel probability measure 

such that 

a = I u(z) ® u(z)*d)l(Z) ' 
Tn 

hence (ii) follows. 

(ii) ~(iii). This is immediate from Corollary 7.2. 

on 

(iii) ~(iv), By Corollary 7.2 there exists a probability space 

(X,£ ,Jl) such that 

where 1; ~ u(r;) is a measurable map of X into the unitary group 

of D 
n 

For each 1; E X let fr; denote the function on zn 

defined by 

f t; ( m 1 , • • • , mn ) 

n 
where u ( r; ) = 1.: u ( r; ) . e . . . 

i=l l ll 
Since we have chosen u so that 

u(l;) is unitary for each r;, f is a character of :;zn . 

Furthermore 

" 
a<i,j) = a. •. 

l] 
= fxu<r;>iu1T)jd)l(r.) 

= Ix f « oll. - o .1 , ••• , o . - o . ) )d11 c r;) • s J m Jn 

Thus the function f on ~n defined by 

f(m 1 , ••• ,mn) = fxfl; (m 1 , ••• ,mn)d]l(r;), 

lS the required function. 
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be a positive definite function on ~n satis-

fying (iv). By Bochner's theorem [12,36A] there exists a Borel 

probability measure ll 
"n n on n = T such that 

n m.-J<:. 
= J TT z. 1 1 dlJ(Z) 

Tn i=l 1 

where z = ( z , •.. , z ) , and m. , k. E ZG • 
1 n 1 1 

In particular we have 

dlJ(Z) = f z. z. dlJ(Z). 
Tn 1 J 

Thus a E K , and the proof is complete. 
n 

A positive n x n matrix a= (a .. ) 
lJ 

such that a. . = 1 
ll 

is 

often called a correlation matrix, see [20]. In a forthcoming 

paper J.P.R. Christensen and J. Vesterstr¢m [4] give another 

characterization for a correlation matrix to belong to K 
n 

Furthermore they show that K 
n 

is properly contained in the set 

of correlation matrices when n > 4 . The latter result was also 

known to U. Haagerup, at least for some n . I am much indebted 

to Vesterstr¢m for pointing out mistakes in early versions of 

Proposition 8.1. In the sequel we shall need the following results 

on K 
n 

Lemma 8. 3 -
all l,J . 

Proof If 

let z. = l 

Let 

Then 

1 < n -

a 1 i · 

a = (a .. ) 
l] 

E M be n positive and I a. ·I = 1 for 
l] 

there exists z E Tn such that a .. = z.z. 
l] l J 

< 2 the lemma lS trivial. Assume n > 3 and - -
Since a lS positive, so is the 3 X 3 matrix 

! 1 z, z. \ 
I l J \ 

I z . 1 a .. ) l l] 

I 
\ z-; a .. 1 I 

\ - lJ 
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-2 +2Re(z.z.a .. ) is nonnegative since the 
l J l] 

Since I z. I = I z. I = I a .. I = 1 , a . . = z. z. 
l J l]. l] l J 

Lemma 8.4 Let a = (a .. ) E M • Let l.T. be a finite set with 
lJ n 1 

r. elements, i 
l 

= 1, ... ,n such that the integers {1,2, ..• ,r} 
n 

where r = :t r. 
' is the disjoint union of the J. . Let bt-H .. r 

i=l l l 

be the matrix (Skl) where 8kl = a .. if k E J. ' 1 E J. . 
l] l J 

Then b is positive if a is positive, and bEK if aEK r n 

Proof Assume a positive. Let (~ 1 , ... ,F;r) E Q:r. Then 

= 

:t S F; ~ 
(k,l) E J .xJ. kl k 1 

l J 

r a .. ( r sk>< r s1) 
ij lJ k EJ. 1 EJ . 

l J 

which is nonnegative since a is positive. Thus b is positive. 

If a E K then by Proposition 8.1 there is a Borel proba
n 

bility measure on such that 

a . . = f z . z . d 11 ( z) . For each 
lJ Tn 1 J 

matrix Csk1Cz)) with z.z. 
l J 

a: f (z.z.)d]J(Z), 
Tn 1 J 

let b(z) be the 

hence 

rxr 

if k E J. , 
l 

1 € J .. Then 
J 

b = fnb(z)dlJ(z) . Since 

skl (z) = 
b(z) is positive by the first part of 

T' 
the proof, it is in K by Lemma 8. 3. Thus b E K by Proposition 8.1. 

n n 

It is a well known and a very useful fact that a self-adjoint 

n x n matrix is positive if and only if all its submatrices symme-

tric about the diagonal have nonnegative determinants. A natural 

analogous problem is: Find an integer k depending on n and 

complex functions f 1 , ••• ;fk 1n n 2 variables such that a corre-

lation matrix a = (aij) belongs to K 
n if and only if 
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9. A Bochner theorem for positive maps 

In this section we study the problem of when a map c.p E A ®A 

is of the form a 3 cf.§4~ where ll is a Borel probability 
\..1 

measure on a locally compact abelian group. For this we shall need 
,.. 

a stronger condition of positive definiteness of w than the one 

used in §6. Recall from 8.2 that 

= conv{ ( z. Z. ) E M : z = ( z 1 , o e • , z ) E Tn} 
1 J n n 

Definition 9. 1 Let X be R set and f a complex function on 

XxX. We say f is strongly positive definite if whenever 

Y1 , ... ,yn EX then the matrix 

1s a a-finite measure space 

(f(y.,y.))EK. If 
1 J n 

we say f E L oo (X x X, v x v) 

(X,(}t,v) 

is 

essentially strongly positive definite if there is a set N E at 
of v-measure zero such that f is strongly positive definite on 

(X-....N) X (X-....N). 

In the above definition we have intrinsically assumed that 

f(y,y) = 1 for all (respectively almost all) y E X. However 

from Lemma 5.4 we knovJ that if <!' E A ®A 1s positive then 

" 
~(1) = 1 if and only if ~(y~y) = 1 for all y E SpA 

Remark ~1. 2 If A and B are abelian C*"·~algebras such that 

A c: B and <P E A ®A 1s such that <$ € C ( Sp Ax SpA) is strongly 

positive definite then 
,.. 
([) considered as a function in C(Sp B x Sp B) 

is also strongly positive definite. Indeed~ let t denote the 

inclusion map of A ® A into B ® B . Then its adjoint map re-

stricts to a continuous map r of Sp B ® B into Sp A® A such 

that if f E C(Sp A® A) then t(f)(y)=f(r(y)) for yESpB®B. 
,.. 

If {P considered as a function in C ( Sp A® A) is strongly posi-

tive definite it is thus clear that t (1$) , which is 6 considered 
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as a function in C(SpB~B) is also strongly positive definite. 

A consequence of this remark is that we may always assume A is a 

von Neumann algebra in order to study maps in A ® A which have 

strongly positive definite Gelfand transforms. 

If (X,(J{.,v) is a a-finite measure space and f~g E L 00 (X,v) 

we identify the function f ® g in the c*-tensor product 

(lO * 00 L (X,v) ® L (X,v) with the function (f®g)(y,y') = f(y)g(y') 1n 

L 00 (XxX,vxv) , and thus imbed L 00 (X,v) ~ Lco(X,v) isometrically into 

We consider this imbedding as an inclusion, so we 

can talk about functions in L00 (X,v) ~ Lco(X,v) as essentially 

strongly positive definite. 

Proposition 9.3 Let A be a countably generated nonatomic 

abelian von Neumann algebra. Let Tw be the compact abelian 

group which is the countable infinite product of the circle group 

T with itself. Let Cx,m,v) be a a-finite measure space such 

that A is identified vJith Lco(X, 0"1,v). Let (lO * 00 f E L (X,v) ® L (X,v) 

be essentially strongly positive definite. Then we have: 

(i) There is a continuous unitary representation S of Tw 

into the unitary group 1{(A) of A such that the function 

u-+ <y,S(u)> ( = S(u)(y)) is measurable for each y E X. 

Cii) There is a state w on the abelian * C -algebra of bounded 

measurable functions on Tw such that 

f ( y ~ y' ) = w ( <y, S ( u )> <y ' , S ( u) >) a. a. y,y' E X. 

Lemma 9.4 \tJi th the assumptions and notation of Proposition 9. 3 

let N be a measurable set of v-measure zero such that f 1s 

strongly positive definite on (X'-l'J) x (X'-N). Then there exist 

I 

I 

1 
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a sequence ( f' n) of measurable partitions of X'- N a.nd a 

sequence in with the following properties: 

(i) OJ = {PC ) e: . E { 0 , 1 } } 
. n e: l' • . • ' e:n l 

(ii) p 'l p 
( e: 1 ' • • • 'e:n ' 0 ) t_ ( e: 1 ' • • • 'e:n' 1 ) 

for all 

(iii) 

(iv) If 

are strongly positive definite, where xE ® x F denotes the 

characteristic function of ·the set E x F c X x X • 

(v) P~·f -fll + o . . n ·oo 

e: • • 
l 

Proof Let o > 0 • Considering X' N instead of X we may 

assume f is strongly positive definite. Since the algebraic 

tensor produc·t L00 (X,v) 8 L00 (X,v) is norm dense in 

L00 (X,v) ~ L00 (X,v) and each function in L00 (X,v) is a norm limit 

of simple functions, we can find a measurable partition 

i,j = 1, ... ,n 

of X of sets of positive measure and 

such that if 1jJ ' = I: A. . Xp ® Xp , then 
l] . . 

l J 

A. .. E C , 
l] 

Deleting a set of measure zero we may assume 

sup I f ( y, y 1 ) - 1/J ' ( y , y' ) j < o I 2 . Thus if y. E P. then 
l l 

jf(y.,y.) -A. .. j <o/2. 
l J l] 

Let 1jJ =I:f(y.,y.)xp ®Xp. 
l J i j 

triangle inequality yields !I \); -f II""< o Since f is 

Then the 

strongly 

positive definite an easy application of Lemma 8.4 shows that 1jJ 

is strongly positive definite. Furthermore we may split up the 

sets P 1 , ... ,P so we may assume n .. n = 2m for some m . A stan-

dard induc·tive argument now yields the sequences ( tj'J ) and ( fn) n 
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ln the lemma:' using the assumption that A J_s nonatomic. Q.E.D. 

Proof of Proposition 9.3 Let iPn and f be constructed as ln 
n 

Lemma 9.4. Let " *{o 1} d y n""{o 1} < -- {0,1 :it·J) • :r. n = '1'. " an . = 11 J ' : Let 

be the continuous imbedding 

8 : 'j7_ + '-·' by a ( -- -- ) - ( -- ,.. n o ) · n - n L ~-'n c:..l 5 • ' ' '"'n - "'1 ' • • • '"'n) ~ ~ ' · ' · ' 

Let H = TI Ty ' 
tvherc T = T is the circle group, and let 

n vL"'v y 
- ~-·-n 

Hn have the product topology. Let H = TIT 7 ' 
also with the 

yEY :y 
product topology. Define a continuous imbedding a : H + H bv 

J n n 

Let Y : H + H by v (u) = uoe n n 'n n 
so that yn(u)(e:l, ••• ,r::) = 

-- n 
Then tve have 

y (a (u)) = u n n for u E Hn 

'\1-le define a map 

T (u) = 
n 

T :H + 'L(CA) 
n n 

by 

r u x 
(e: ~ ... ,e:) (e:l, ••• ,e:) p( ) 

1 n n e: 1 , ••• ,e:n 

t.vhere we note that t{.CA) is identified with the L""-functions 

on X into the circle group T . Then u. + u ln H implies 
l n 

T (u.) + T (u) pointwise as L""-functions, or equivalently Tn 
n 1 n 

is continuous, Hhen H11 has the product topolo,rw and '({_(A) the 

strong topology. 

Define the map S : H + (,{(A) 
n 

by S = T •y • n n n 
Then s n 

is continuous and easy computations show they are extensions of 

each other in the follm-Jing sense: if n > m and u=a. (v), 
m 

vEH 
m 

then S (u) = T (v) m m 

He now define a map S ~ H + 1;t(A) which extends all the Sn 

Let u E H . Now (a (H )) E~J is an increasing sequence of sub
n n n -11' 
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groups of H with union dense in H and ·-= un = a (y (u)) 
' 

1.L n n 

then n 
E an (}In) and n H Let E X. From the u u + u 1n 0 y 

construction of the partitions p there is a sequence n 

(E 1 ,e:: 2 , ••• ) 1n Y such th2t yEP( ) for all n. A 
E l , . , , , En 

straightforv;rard computa-tion shows that Sn ( un) ( y) = 

u( 0 C , , so that Sn(un)(y) + u., , • Define 
E l , , , , , E11 5 o J J , , , ; , \. E l ; E 2 , , • • , ) 

S ( u) as the pointwise limi·t of the functions Sn (u11 ) • If we 

write the value of S(u) at y, as <y,S{u)> we have shown 

that <y~S(u)> = lim<y,S (a (y (u)))>, hence the function n n n 

u + <y,S(u)> is a pointwise limit of continuous functions on H 

for each y E ,, 
li., 

Furthermore, since 

In particular it is a measurable function on 

pointvJise, 

Thus if 2 
F;~n € L (X,v) ~ 

S (un) + S(u) 
n 

<S (u11 )F;,n> + 
n 

1n 

H . 

the strong topology. 

<S(u)s,n> for all u hence the function u + <S(u)~,n> is the 

pointHise limit of continuous functions hence is measurable. 

Since L00 (X,v) is countably generated L2 CX,v) is a separable 

Hilbert space. Also it is clear from their definitions that 

and Tn are multiplicative~ hence so is Sn Thus S being a 

pointwise limit of the S is multiplicative, hence S 
n 

is a measur-

able unitary representation of H on the separable Hilbert space 

2 
L (X,v). But then S is strongly continuous [8, p. 347]. Thus the 

proof of part (i) in the proposition is complete. 

To shm-J ( ii) vile v.rri te e: for the element ( e:: 1 , ••• , En) in Y11 

Then fn defines a strongly positive definite function gn on 

y 
n 

xY 
n 

by g = n 
I: f(y ,y )0 ®o , where 8 
~Y E n e: n E 

E~n·--n 
measure with value 1 at E • By Proposition 8 .1 

Borel probability measure 'J n 
on H 

n 
such that 

<E .u><·n ~u>dv (u) , . n 

is the point 

there 1s a 



If y E P , 
E 

<y, T ( u) > , 
n 

y' E p 
n 

then 
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<n, u > = <y ' . T C u) > • - n 

and 

Thus t-7e have 

f 11 ( y ~ y' ) = I <y, T ( u) ><y 1 , T ( u) >d v ( u) . 
H n n n 

n 

<E, U > = 

Let 
-1 

v' = \) oa 
n n n 

Then \) y 

n 
lS a Borel probability measure on 

If y E P and 
(El'''''En)' 

u E Hn then 

<y, S (a ( u)) > = <y ,S (a (u) )> = <y , T ( u) :> • 
n n n n 

Thus 

Let be the state 

w (f) = Jf(u)dv' (u) 
n H n 

H . 

on the abelian c*-algebra JY of bounded Borel measurable functions 

on H • Let w be a w*-limit point of the sequence (w ) 
n in the 

state space of v4 , say the subnet (wn ) converges to w in the 
a 

w*-topology. Since the functions u + <y,S(u)> belong to rk we 

have for almost all y,y' E X, 

f(y,y') =lim fn (y,yv) 
a a 

= lim1J<y,S(u)><y',S(u)>dv' (u) 
a u na 

=lim wn (<y,S(u)><y',S(u)>) 
a. a. 

= w(<y~S(u)><y',SCuY>) 

Since H can be identified with Tw we are through. 

Corollary 9.5. Let X be a separable compact Hausforff space and 

v a finite nonatornic regular Borel measure on X with support X . 

Let f € CCX x X) be strongly positive definite. Then there are a 



continuous unitary representation S of T00 with values in 

L"'(X,v) and a state w on the abelian c*-al~Sebra v4- of bounded 

measurable functions on T00 such that the functions u + <y,S(u)> 

are in A for all y E X and such that 

Proof 

L00 (X,v) 

f(y,y') = w(<y,S(u)><y' ,S(u)>) a.e. (v). 

Since support v 1s X,C(X) is isometrically imbedded in 

and f considered as an element of L oo (X x X, v x v) is 

strongly positive definite. If A is the abelian von Neumann 

algebra. L""(X,v) acting on L2 (X,v) by multiplication, then an 

application of Proposition 9.3 yields the desired result. 

Remark In Proposition 9.3 and Corollary 9.5 we have assumed that 

the abelian von Neumann algebra in question is nonatomic. Thw is 

not important. The general case can be taken care of as in the 

proof of Theorem 9.6 below. 

We are now in position to prove the main representation 

theorem for positive normalized maps in A ® A which shows that 

such maps VJhich are strongly positive definite, are of the form 

a as in Lemma 4. l+, where the group is a closed subgroup of the 
11 

infinite dimensional torus Tw . This result is an answer to our 

initial problem, namely to obtain a deeper insight into the rela-

tionship between spectral theory of linear maps of B(H) and 

Fourier analysis. It shows in particular that function calculus 

for such a map c.p E A ®A corresponds to function calculus for 

measures in the measure algebra M(G) . We denote by Ad u the 

automorphism u ® u• of B(H) when u is a unitary operator. 
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Theorem 9.6 Let A be an abelian von Neumann algebra acting on a 

" separable Hilbert space H.. Let r.p E A® A , and assume lP lS strongly 

positive definite. Then there are a compact abelian group G, a 

continuous unitary representation S of G with values 1n A 

and a Borel probability measure ~ on G such that 

c.p = f Ad S ( u ) d 11 ( u ) . 
G 

Proof We first asswne A is nonatomic, and v.1e identify the Gelfand 

transform map of A ® A on SpA® A with the canonical imbedding 

If A is identified with L co (X, v) for some cr·-fini te 

measure space (X,m,v) an easy argument using Lemma 9.4 shows 

that ;$ considered as an element of L""(X x X,v x v) is essentially 

strongly positive definite. Thus by Proposition 9.3 there are a 

state w on the abelian c* -·algebra v4 of bounded measurable 

functions on Tw and a continuous unitary representation S on 

Tw with values in A such that 

( 8 ) ~(y,y') = w(<y,Su><y' ,S(u)>) a . a. y , y 1 E X • 

Let by the Riesz representation theorem p be the Borel probability 

measure on Tw such that 

w (f) = 



•• 6 0 -· 

for f a continuous function on Tw . We shall show that for 

each p E B(H)* , x E B(I-1) we have 

( 9) p(q;(x)) = f wp(SuxSu*)d].i(u). 
T 

n 
Suppose first ~ 1s of the form q> = I: A·· e.®e. 

i,j=1 lJ l J 
with 

e 1 , .•• ,en an orthogonal family of projections in A with sum 1 • 

Let B be the abelian C*-algebra they generate. Then B lS a 

finite dimensional subalgebra of A • From the proof of Proposition 

9.3 we see that the formula (8) is an integral 

{p(y,y') = f <y,Su><y 1 ,Su>d].I(U), 
Tw 

where the support of ].1 is in a closed subgroup Hm of Tw iso·

morphic to a finite product of T with itself. Thus (8) can be 

rephrased as 

X (c.p) = 

for all characters x 

(B®BY*, and (B®BYf 

1n to B ® B 

w(l;?) = 

for all w C (A®A)* • 

f x(Su ® Su*)dj.i(u) 
Tw 

of B ® B • Since the characters span 

1s the set of restrictions of functionals 

it follows that 

f w(Su ® Su* )d].i(u) 
Tw 

If w(~) = p(~(x)) we see that (9) holds. 

For ~ as 1n the theorem we can just as 1n Lemma 9.4 find a 

sequence (<Pn) of positive maps 1n A~ A of the form 

l,l) = !: A~. e~ ® e~ , such that A~. = 1 , and II q>n·-c.p!l ~ 0 • 
n lJ 1 J ll 

Let ... 

a.a. y,y'EX. 

As 1n the proof of Proposition 9.3 there lS a subnet (].in ) of 
(Y, 



( , ' ,..n' vJhich converges to Jl 

- 61 -

ln ~;-v* ·-topology. Thus if p€B(H)* 

and x E BOD , u + p ( Su x Su*) is continuous on Tw ~ hence 

= f p(SuxSu*)dJ.l(u) 
.,w 
J_ 

In the general case when A may have minimal projections 

let K be a separable infinite dimensional Hilbert space and B 

a nonatomic abelian von Neumann algebra acting on K . Then the 

von Neumann algebra tensor product C = A® B of A and B acts 

on H ® K , and is a nonatomic abelian von Neumann algebra. If A 

is identified with the subalgebra A® ([: of C we have 

tp € C 0 C c: B ( B ( H® K ) ) 

probability measure 

By the first part of the proof there is a 

on such that q> = f Ad S ( u ) d p ( u ) , 
Tw 

where Ad Su E Aut B(H®K). In order to complete the proof of the 

theorem we first show that S(u) E A for each u E Tw except £or 

a set of 1.1-measure zero. If not there is a measurable set E c Tw 

of positive measure such that u E E implies Su ~ A , and there 

is a one dimensional projection p on K such that Su(1 ®p) Su* =t: 1 ®p 

for all u E E • Let F = {u E Tw : Su(1®p)Su* =I= 1®p} . Then F => E 

and is measurable with positive measure. Let w be a faithful 

normal state on B(I-I) and p be the vector state on B(K) , 

p ( x) = <xt;, l; > , where pl; = I; If u E Tw and w ®p(Su(1®p)Su*) = 1, 

then Su(1 ®p)Su* ~ supp(w®p) = 1 ® p , so if u E F 
' 

then 

Su(1®p)Su* > 1 ®p Therefore two possibilities may occur. Either 

w ® p(Su(1®p)Su*) < 1 for u in a subset r1 of F '\.\Tith positive 

measure, or if not Su ( 1 ®P) Su* > 1 ® p for all u E F except on a 

set of zero measure. Since 1..? E A® A c C ® C and 1 ® p belongs to 

the commutant of A , <.p( 1 ®P) = 1 ® p . Thus in the former case 



- 62 -

1 = w ® p C 1 ®P) = w ® p ( c.p ( 1 ®p) ) 

= f w ® p ( s u ( 1 ®p) s u * ) d ]..1 ( u) 
Tw 

a contradiction. In the latter case He may find a nornal state n 

on B(H®K) such that n(Su(1®p)Su*) > n(1®p) on F except on a 

set of zero measure. Since n(Su(1®p)Su*) = n(1®p) for u E ~- F 

we have 

= f n(Su(1®p)Su*)d]1(u) 
Tw 

a contradiction. Thus Su E A for 11-almost all u E Tw . Let 

G = s- 1 ('1{_ (A)) • Then G lS a compact abelian group and S!G is 

a continuous unitary representation of G into '1((A) • Since 

supp 11 c G r..;,e are through. 

Remark 9.7 We have not succeeded in proving a direct converse to 

Theorem 9 • 6 , i.e. if t? E A ® A is of the form a with 
1l 

Borel probability measure on a compact abelian group G , then 

a 

is strongly positive definite. The reason for this is that it is 

not clear \>Jhether 

( 1 0) 

It is clear that if 

then 

,.. 
a ]1 

J & cr,r')d].J(g). 
G g 

is of this form and 

c& Cy. ,y. )) = 
]1 l J 

CJ a (v,. ,y. )d].J(o-)) = 
0" l" J 0 

f c& <Y· ,y. ))dlJ(g) , 
G g l J -Go 



and since each matrix 

- 6 3 -~ 

ca cr.,y.)) 
g l J 

"' 

ia an extreme point of 

(a (y.,y.)) E K 
Jl J_ l n 

hence a. is strongly positive definite. 
Jl 

K 
n 

Conversely, if <PEA®A is such that 0 is strongly positive 

definite 5 so by Theorem 9.6 <.p = a. , then ( 1 0) holds. 
Jl 

Indeed, we 

assume A nonatomic, and leave it to the reader to use the tech~ 

niques of the proof of Theorem 9.6 to extend the argument to the 

general case. Then from the proof of the theorem there exists a 

sequence n n n :LA. •• e.®e. 
l] l J 

in the algebraic tensor product A ®A 

q>n = a. = 
ll n 

hence by the first paPt of 

0nCy,y') = 

Let f ,(g)= & (y,y') 
y,y g 

on G • Since a subnet 

w*-topology, 

r 
.i 

n CA. .. ) E Km for some m . 
l] 

a. dlln(g) ' cr 
b 

the proof of the theopem 

Furthermore 

fagcy ,y,) dll (g) 
n 

Then is a continuous function 

converges to 1l in the 

., ( ! 
'.Pn y,y) 

(3 
= f f 1 ( g ) d J.l TI ( g ) -+ f f"( ' v 1 ( g ) d ll ( g ) • y,y lB I 

Since also 0n (y)y 1 )-+ Q(y,y'), (10) follows as assepted. 
(3 

Corollary 9. 8 Let A be an abelian c*-algebra acting on the separable 

Hilbert space H . Let r.p E A® A be such that is strongly 

positive definite. Then ~ is an extreme point of the convex 

set K = {lj!EB(B(H)): 1/J is positive, ¢(1) =1} if and only if 

<.p is a *--automorphism of B(H) . 

Proof It follows from [18] that every *-automorphism is an ex-

treme point of K . The converse is an immediate consequence of 

Theorem 9. 5 and the fact that if ll is a point measure then 4? is 

a *-automorphism. 
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Corollarv 9.9 - ~ 
Let A be an abelian c*-algebra acting on the 

separable Hilbert space H . Let <.P E A® A be such that " <.p is 

strongly positive definite. Thus q:> has a St inespring decompo-

sition satisfying the conditions of Theorem 7.1 (ii). 

10. Comments 

There are several problems left open in the previous para-

graphs. Some we have not touched because we feel they are outside 

the scope of the paper. To this class of problems belong the study 

of unbounded maps and the problem of maps of general von Neumann 

algebras into themselves, rather than B(H) . For the latter 

problem there are two obvious approaches. One is first to perform 

an analogous study of maps of semi-finite von Neumann algebras 

using the trace in a way similar to ours, and then to try to use 

Tomita theory to modify this approach to type III algebras. 

Another approach is to follow the line of the present paper and 

then to consider the von Neumann algebras in question as invariant 

subspaces of the maps. This approach has the drawback that it 

makes it only possible to study maps in B(M) , M a von Neumann 

algebra, which have nice extensions to maps in B(B(H)). 

There is one concrete problem we have left open. In both 

Proposition 5.5 and Lemma 6.2 we have results to the effect that 

if $ lS operator normal and ~(1) = 1 then Tr(~(x)J= Tr(x) for 

all x C Sl . Is this true for all (regular) operator normal maps 

Q? such that q>(1) = 1 and Q!::TE B(8""')? A possible approach lS 

to generalize the result in [19 J and then approximate 1 ultra-

weakly by Hilbert-Schmidt operators x such that 0Cx) -x is 

"small 11 • 
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The problem of computing norms seems to be extremely difficult. 

If ~ is positive, regular, operator normal, and ~(1) = 1, then 

by Corollary 3. 4, hence by Lemma 3. 2 !I r.p I! 2 = l!lP II= 1 . 

It is clear from Corollary 5.3 how this is related to the fact that 

if f € 1 1 (G) and f is positive definite, then !!fl! 1 =II flloo 
For other maps, it is as for Fourier transforms of functions, diffi

cult to know the norm of c.p if ll ~ 11 2. is knmm. A consequence of 

this is the limited set of functions we can use if we want to do 

functional calculus for an operator normal map <.p • 
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