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Abstract

If H is a-Hilbert space we study regular abelian Banach
subalgebras of B(B(H)), and mainly algebras generated by
maps of the form x - axb with a and b belonging to
an abelian C*-algébra, ‘Main emphasis is put on the study
of the Gelfand transform of maps in these abelian Banach
algebras; in particular two versions of positive definite-

ness of the transforms are shown to be important.




1. Introduction

In recent years it haé become apparent that spectral theory
for linear maps of von Neumann algebras is intimately connected
with Fourier analysis. The present paper is an attempt at obtaining
a deeper understanding of this relationship. If B(H) denotes the
von Neumann algebra of all bounded linear operators on the Hilbert
space H into itself, we shall study abelian Banach subalgebras of
B(B(H)) - the Banach algebra of bounded linear maps of B(H) into
itself. Thus in the process we shall obtain some insight into the
extremely complicated Banach algebra B(B(H)). The main difficulty
encoundered in this Banach algebra is the bad behaviour of its norm.
Recall that a theorem of Grothendieck [7] identifies B(B(H)) as a
Banach space with (B(H) é'QT)*, where 9 is the trace class opera-
tors on H with the trace norm, and @ is the projective tensor
product of Banach spaces. . We shall therefore try to avoid the norm
as much as possible and shall restrict attention to maps which are
ultraweakly continuous and which map the Hilbert-Schmidt operators
X into themselves, and as operators on 3 are normal operators.

Such maps will be called operator normal. Furthermore we shall

have to require that our abelian Banach algebras will have a well
behaved Gelfand theory. We have partly for this reason and partly
because this case contains most of the interesting examples, re-
stricted attention to regular abelian Banach algebras of operatdr
normal maps. Then the restriction to 2L is a concrete isometric
representation of the Gelfand transform. In particular it should
be noted that since abelian C*-algebras are semi-simple our abelian
Banach algebraé will automatically be semi-simplé.

With these preliminaries we are now ready to give an outline of

the paper. If € 'is a locally compact abelian group represented as




*-automorphisms of a von Neumann algebra, Arveson, Borchers and
Connes [2,3,51 developed the theory of spectral subspaces. In
§ 2 we shall generalize to regular abelian Banach algebras acting
continuously on a locally convex topological vector space, much
of that part of the theory of spectral subspaces which does not
depend essentially on the group structure of the dual group of G.

In §3 we prove the basic general results on operator normal
maps. We assume the operator normal map ¢ 1s contained in a
regular abelian Banach subalgebra of B(B(H)). Then it follows
from §2 that the spectrum of ¢ in B(B(H)) is the same as the
spectrum of ®l¥ in B(). A consequence of this is that if

the spectrum of ¢ in B(B(H))

is contained in the unit circle and (1) = 1 then ¢ is either
a *-automorphism or a *-anti-automorphism.

In §4 we give examples of regular and nonregular abelian
Banach subalgebras of B(BtH)). If a,b € B(H) we denote by L,

and R the maps x + ax and x » xb respectively. Then L

b
maps every C*-subalgebra of ;B(H) isometrically into B(B(H)).
If we denote by a @ b the map’ LaRb’ we can imbed the algebraic
tensor product of two abelian C¥-algebras A and B into B(B(H)).
The norm is a cross-norm, so the closure A ® B is a regular abel-
ian Banach subalgebra of B(B(H)) consisting'of operator normal maps.
If G is a locally'compact abelian group and o a continuous
representation of G .into the automorphism group of B(H), and
p € M(G) - the bounded Borel measures on kG, o, € B(B(H)), where
au(x) = !G a (x)du(t). Then the image of L1(G) has as closure in
B(B(H)) a fegular abelian Banach algebra consisting>of operator

normal maps. However, the image of M(€) need not have regular

closure. -




If f 1is a complex function on a product space X xX we

say f is positive definite if whenever Yyoeeos¥y € X then the

nxn matrix (f(yi,yj)) is positive. This concept is useful in
order to study maps in A ® A, where A is an abelian C¥-algebra,
because the spectrum Sp(AeA) can be identified with SpA x SpA .
It is shown in §5 that if © € A®A then ¢ 1is a positive map if
and only if ¢ is completely positive, and that this in turn is
equivalent to the Gelfand transform ¢ of ¢ being a positive
definite function on SpA x SpA . In addition it is pointed out
that if @ furthermore satisfies @(1) = 1 then Tr(ep(x)) = Tr(x)
for all trace class operators x . The section is concluded by
noting that the case A @ A includes the examples a(L1(G)) exhi-
bited in §4, so that our results for © € A®A are applicable to
maps of the form a;, f € L1(G).

In the following two sections we study the converse type of
problem, namely, given a map in B(B(H)), when can we conclude that
it belongs to an algebra of the form A ® A? In the infinite di-
mensional case we can only reach conclusions like the map belongs
to the point-ultraweak closure of A ® A. Note that if H is
finite dimensional, then every map in A ® A has a complete set
of eigenvectors in the Hilbert-~Schmidt operators X consisting of
rank 1 operators. In §6 we show a converse to this result for
positive maps.

Since a positive map 9 € A®A 1is completely positive it has
a2 decomposition ¢ = V*rV , where V is a bounded linear map of H
into a Hilbert space K, and « 1is a *-representation of B(H)
on XK. In 57 we show that if (1) = 1, @ restricted to A is
the identity, and the above decomposition is in a suitably nice

position, then ¢ 1is an average over automorphisms in A e A,




b

heﬁce in particular ¢ belongs to the point-ultraweak closure of
A e A, '

The last result is relevant in the study of a certain class of
nxn matrices, namely the closed convex set Kn of matrices
spanned by the positive rank 1 matrices of the form (ziﬁj) )
where lz;| = ...=Jz_| = 1. Let (eij) denote the usual matrix
units for the nxn matrices 'Mn , 80 that if a = (aij) € Mn
then a = zaij eij . Let Dn be the diagonal matrices, so Dn is

. With a as above and % = Xo.

spanned by e;,;... i3€1i1 ® €33

>®nn
€ D eD . then a(b) = a*b, is the Hadamard product of a and
the matrix b. In §8 we give characterizations for a matrix a
to belong to Kn in terms of properties of the Hadamard product
with a and also in terms of the existence of certain pogitive
definite functions on Z".

Finally, in §9 we show that a map ¢ € A®A 1is of the form
N described in §4, where u is a Borel probability measure on a
compact abelian group, if (@(Yi,vj)) € X whenever yl,”.,YHGESpA.
Thus this stronger form of positive definiteness implies the
stronger result that o = o, rather than just positive.

The author is happy to express his indebtness to Jgrgen

Vesterstrmym for pointing out serious errors in early versions of

Proposition 8.1.




2. Spectral subspaces

Let X be a locally convex topological cor—
Let A be a regular abelian semi-simple Banach
complex numbers with an approximate unit consis—
whose Gelfand transforms are real and with comp=
[13,14). We assume X 1is a left A-module via
(a,x) » ax , which is separately continuous and
variables. Our typical example will be when A
represented into the algebra of continuous line=

If S= A and Y « X we let

S“L = {x€X:ax=0 for all a€sS}

Y, = {a€A:ay=0 for all yevY}

1

Clearly YL is a closed ideal in A . We let
maximal ideal space in A, identified with the
characters on A ., SpA is given the hull-kerne

If a € A we denote by

7Z(a) = {y €SpA : y(a) =a(y) =0} .

If F < SpA is a closed subset we let

J(F) = {a€A :Z(a) contains a neighborhooc=

and support & is compact} .

We recall from [13, 25 D] that Jj(F) is the smal_
whose hull is F . We denote by

X(A,F) = ()t .

Then X(A,F) 1is a closed subspace of X, calle

subspace of F . TFinally if x € X we denote




Sp(x) = h({X}L) R

the hull of the annihilator of x in A. Sp(x) 1is a closed
subset of SpA . Furthermore Sp(x) = ¢ if and only if x = 0.
Indeed, h({X}L) = A4 if and only if {X}L = A [13, 25D Corollaryl,
if and only if ax = 0 for all a € A, if and only if x = 0,

since the representation AxX » X 1is faithful in both variables.

Lemma 2.1 Let A and X be as above. Let F be a closed

subset of A, a € A and x € X. Then we have
(1) If Z(a) contains a neighborhood of Sp(x) then ax = 0.
(ii) x € X(A,F) if and only if Sp(x) < F.

(iii) If supp @ « F then ax € X(A,F).

Proof (i) By assumption h({X}l) is contained in the interior
of Z(a) . By the assumption on approximate unit in A there is

b € A such that b has compact support and [lab-al| <e for given
e > 0. Then h<{X}L) is contained in the interior of Z(ab) , so
ab € j(h({x}l)) . By [13,25D] ab € {x}-L , i.e. abx = 0. Since
e > 0 1is arbitrary and c¢ + ¢x 1is continuous on A, ax = 0.

(ii) Suppose Sp(x) « T, If a € j(F) then Z(a) contains a
neighborhood of Sp(x), so that ax = 0 by (i). Thus x € j(F)l =
X(A,F) . Conversely, let x € X(A,F) . Then {x}, > (J(F)1) > 3(F) .
Thus h({x}l) < h(j(F)»=F {13, 25D].

(iii) Suppose vy € supp &. Then, since A is regular, there is
b € A such that D(y) # 0 while ab = 0. Thus b(ax) = ba(x) = 0.
But then vy € Sp(ax) , so we have shown Sp(ax) C supp 4. Now use
(ii).

We denote by A the algebra A with the identity map of X




adjoined, and we consider X as an A-module as well. Note that

by [14, 2.7.31 X 1is regular, and we can consider SpA as a sub-

Lemma 2.2 Let F Dbe a compact subset of SpA . Then
(i)  X(&,F) o X(A,F) .,

(ii1) If a € A and &a(y) =1 for all vy in a neighborhood

of F then ax = x for all x € X(A,F) .

Proof (i) Let
i(F) = {a€A :7(a) contains aneighborhood of F}.

Then i(F) = 3(F), so i(F)r ¢ (MY . Let x € X(A,F), and

a € i(F) . Then ax = 0 by Lemma 2.1 so x € iyt , and

it = 5t . However, X(X,F) o i(F)t since supp &4 is
compact in SpA for all a € X.

(ii) Let 1 denote the identity in A . Then a-1 is zero

in a neighborhood of F. Let x € X(A,F). By (i) x € X(&,F),

so by Lemma 2.1 (a-i1)x = 0, i.e. ax = x.

We say a subset Y of X 1is bounded if for each absorbing
neighborhood V of 0 in X there is € > 0 such that €Y o V.

The following result is a generalization of [5, 2.3.5] .

Proposition 2.3 Let V be an absorbing neighbourhood of 0 in

X, and let Y Dbe a bounded subset of X such that a(Y)ec | al|ly

for 2all a € A. Let vy, € SpA and a ceen@y € A. Then there

1 b

is a compact neighborhood N of Yo in SpA such that

aix-éi(yo)x €V forall x € YNX(A,N), i=1,...,n.




Proof Since V 1is an absorbing neighborhood of 0 in X and
Y is bounded, there exists € > 0 such that €Y « V. Thus by
our assumption on Y, a(Y) ¢ V whenever |[la]l< e. Let N be

a compact neighborhood of y, and a € A such that aty) =1

for y € N, . For each 1 € {1,...,n} let bi € A be defined
A _ A —,\ ' ) ~ -
by bi(y) = (ai(y) ai(yo))axy) . Then bi(yo) = 0, and
Bi(y) = éi(y)-éi(vo) on N, . From the regularity of A there
is ¢ € A such that max”bicH <e and c{y) =1 for all y in a
i

neighborhood N, of vy,. Let N be a compact neighborhood of 0
contained in the interior of N, AN, . Let x € YNX(A,N). Now

~

c(y) =1 for vy in a neighborhood of N, and N contains Sp(x)

by Lemma 2.1. Thus ¢x = X by Lemma 2.2, and similarly ax = X.

We thus have bicx = bix = aiax-ai(yo)ax = aix-ai(yo)x . Since
(Y) " .X - a.

IIbsell < e, b;e¥) @ V. Thus a;x-a;(yy)x € V for all

x € YNX(A,N) . Q.E.D.

If E 1is a Banach algebra we denote by UF(X) the spectrum

£

of x as an element in E.

Corollary 2.4 Suppose X 1s a Banach space and that the identity

operator is in A. Let a € A. Then OB(X}(a) = {&(y) :y €SpA}

= UA(a).

Proof Given e > 0 let V = {xe€X:|lx]|<e}, and let Y be the
unit ball in X. If Yo € SpA , then by Lemma 2.1 (iii)
YNX(A,N) # (0) for each compact neighborhood N of Y, - Thus
é(yo) € GB(X)(a) by Proposition 2.3. Since {a(y):y€SpA} =0A&ﬂ .
we have shown UB(X)(a) =) cA(a) . The converse inclusion is imme-
diate, since we can consider A as a Banach subalgebra of B(X)

containing the identity.
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It should be remarked that just as in the theory of spectral
subspaces of automorphisms we can introduce the auxiliary concept
R(A,E) , cf. [2] and then prove that X(A,E) = NR(A,V) , where the
intersection is taken over all closed neighborhoods V of E,
see the proof of [2, Proposition 2.2]. However, we shall not need
this and shall therefore not include the proof. We shall rather
prove another result which we snall not need technically, but which

is of importance for our understanding of spectral subspaces.

Proposition 2.5 Let B be a Banach subalgebra of A satisfying

the same assumptions as A. Let » :SpA + SpB be the restriction
map y » vy | B. Suppose F is a compact subset of SpB such that

r 1(F) is compact in SpA . Then we have X(A,rwl(F)) = X(B,F).

Proof To our previous notation add the subscripts A or B to
distinguish between A and B. Let x € X(B,F). Then by Lemma
2.1 hp({x}, AB) « F, hence ral(hB({x}lr1B)) c v '(F). There-
fore we have that if JX is the ideal in A generated by

{X}LI1B , then

r 1(F) o r“l(hBax}ln B))

{y€SpA: keryo Jx}

h(JX)
> h({x}l) 5

1(F) , hence by Lemma 2.1

since J < {x} . Thus Sp,(x) < r

x € X(A,r~1(F)) , and we have shown X(B,F) < X(A,r '(F)).
Conversely let x € X(A,» 1 (F)) ; then hy({x} ) < r i (E) .

Let b € jo(F) . Then Zy(b) > F. If y €r '(F) then

r(y) € F so b(r(y)) =0 , hence D € ker(r(y)) = (kery)NB.

Therefore b(y) =0, so y’EZA(b) , and we have shown fﬂ(F)cZAGﬂ .
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Since F 1is compact and ZB(b) contains a neighborhood of F ,
there is a compact neighborhood N of F contained in ZB(b).
Since r is continuous v '(N) is a neighborhood of r !(F),
and by the above argument r '(N) < Z,(b) . Thus Z,(b) is a
neighborhood of r 1(E) , hence by the definition in Lemma 2.2
b € iA(r-l(F)) . From the proof of that lemma iA(r—l(F))l =
JoTHENT = X(a,rTH(F)) . since x € X(A,rT'(F)) it thus
follows from Lemma 2.1 +that bx = 0. Since b was arbitrary
in jg(F) , we have shown X(A,P—I(F)) c jB(F)l = X(B,F) , and

the proof is complete.
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3. Operator normal maps

Let H be a Hilbert space and T and € the trace class
and Hilbert-Schmidt operators on H respectively. We denote the
inner product on ¥ by <x,y> = Tr(xy*) and the norms in ﬁr‘and

o€ by |

ll; and !]lg respectively.

Definition 3.1 Let ¢ € B{(B(H)) . We say ¢ 1is operator normal

if ¢ is ultraweakly continuous and the restriction ol a{ is a
normal operator in B(x{) . If moreover ! 1is self-adjoint we

say @ 1is operator hermitian. ¢ 1is said to be a regular operator

normal map if ¢ 1is contained in a regular abelian Banach sub-
algebra of B(B(H)) consisting of operator normal maps.

We denote by [lo|l, the norm of 012f  whenever ol2f € BG{) .
Note that when ¢ 1is ultraweakly continuous then its adjoint map

restricts to a map o¢F € B(J ) with norm |lo*|| = |loll.

Lemma 3.2 Let ¢ € BB(H)) be regular and operator normal, and
denote by ¢ the adjoint in B(J{) of w©i3f . Then ¢!T = ¥,

and Hm”2 < ol .

Proof Let x €I  and y € d€. Then <p(x),y> = <x,0(y)> =
<o*(x),y>, so y(x) = ¢*(x). Let A be a regular abelian Banach
subalgebra of B(B(H)) consisting of operator normal maps such that
9w € A. Let r denote the restriction map ¢ - w|5€ of A 1into
B(¢#€) . Then r is continuous. Indeed, if (wn) is a sequence

in A converging to ¢ , and r(wn) converges to ¢' in B(3t)

then clearly ¢(x) p'(x) for each x € €. Thus the graph of r
is closed, so r is continuous by the closed graph theorem. Since

r is an isomorphism of A into B(X) it follows that




- 13 -

UA(w) ) OB(b()“D)’ hence the spectral radius of ¢ in B(a€) is
not larger than the spectral radius s of ¢ in A. But [,
equals the spectral radius of ¢ in BG{), so |loll, < s. By
the minimality of the spectral radius norm in a regular abelian

Banach algebra [14, 3.7.71 we have lloll, < s < [le}l , Q.E.D.

Theorem 3.3 Let A be a regular abelian Banach subalgebra of

B(B(H)) consisting of operator normal maps. Then the map
@ + ol is an isometric isomorphism of {® : €A} onto
{013 : €A} , which extends to an isomorphism of C(SpA) onto
the closure of {@ld:0 €A} in B ), where C(SpA) denotes

the continuous complex functions on SpA vanishing at infinity.

Proof Let a(@) = wi>{ for ¢ € A. Then clearly o is an
isomorphism of {: €A} onto {wid :0w€A} . Let r(p) =olol.
By Lemma 3.2 r 1is norm decreasing on A, hence if x 1is a
character on the norm closure of r(A) in B(¥f) then xor € SpA.

Thus for ¢ € A we have

lloll, =suplx orle)ts sup !y (o)l =][o],
X Ye SpA

and o is norm decreasing. However, |[lo|| is the spectral radius

of ® in A, so by the minimality of the spectral radius [4,3.7.71,

Thus ||®]] = lje}l,, and the theorem follows.

Corollary 3.4 If © 1is a regular operator normal map in B(B(H))

then UB(B(H))(w) = OB(&{)(Wia{) .

Proof ¢ 1is contained in a regular abelian Banach subalgebra of
B(B(H)) consisting of operator normal maps and containing the
identity map. Thus the corollary follows from Corollary 2.4 and

Theorem 3.3.
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The next result will not be used in the sequel but is in-
cluded because its proof is a good illustration of the techniques

and ideas involved.

Proposition 3.5 Let ¢ be a regular operator normal map in the

unit ball of B(B(H)) such that (1) = 1 and such that its
spectrum in B(B(H)) is contained in the unit circle. Then ¢ is

either a *-~-automorphism or *-anti-automorphism of B(H) .

Proof By Corollary 3.4 the spectrum of ¢l in B(X) is
contained in the unit circle, so @l€¢ normal implies ol 1is
unitary. In particular, since mml € B(B(H)) , m—l!}{ is the
adjoint of !¢ . Since |lo|l =1 and (1) = 1, ¢ is positive
(i.e. a >0 in B(H) implies @(a) > 0). Thus if x,y € g

- the positive cone in J - then o*(y) € J e X, so
0 < <0(x),y> = <x,0"(y)> = <X3@M1(y)>:

hence m-l(y) > 0. Thus @“1: €T+ ~ gt Since w_l is norm
continuous on B(H) , @-1 ot - can’ , wWhere C(H) denotes

the compact operators on H , using that J"* is norm dense in
c(H)*. Let B be the C*-algebra €1 + C(H). Then o ' is a
positive linear map of B carrying 1 on itself. Since ¢ 1is
operator normal, i : ¥ + 3€ | hence by continuity, o : C(H) » C(H) .
Thus ¢ 1is also a positive linear map of B into itself preserving
the identity, so that ¢ 1is an order—isomorphism.of B onto itself,
hence is either a *-automorphism or a *-anti-automorphism [3].

By ultraweak continuity of ¢ the desired result follows.

We shall need the next result in the next section.
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Lemma 3.6 Let (v ) be a uniformly bounded net of regular

v ved
operator normal maps, which converges poinwise ultraweakly to a

map ® € B(B(H)) . Then we have:

(i) el € B(X) .

(ii) ':grvIX + ol* weakly in B(¥f ), so in particular
(c.pv!}){)* > (012" weakly.

(iii)d If the 9, pairwise commute then ol3€ is normal.

(iv) If 9o, > @ in norm then ¢ 1is ultraweakly continuous.

Consequently, if (iii) and (iv) hold then ¢ is operator normal.

Proof  Choose K > 0 such that ”‘D\,” < K for all ve€ J. By
Lemma 3.2 |lo ll,< llofl < K, so (o 130) ; is a uniformly .

bounded net in B(¥{) . Thus there is a subnet (0,),e7 Such that

(cpalé-e )OLGI converges weakly to an operator ¢ € B(x) , i.e.

<P (x),y> = lim<p (x),y> = 1lim Tr(e_ (x) y*)
a o o a

for all x,y € o€ . Now ((Qa) being a subnet of the converg-

0€ET °?

converges pointwise ultraweakly to «® . Thus

-~

ing net ((pv)\)EJ .

if vy € g
<p(x),y> = lim Tr((pa(x)y*) = To(e(x)y™) = <@(x),y> ,
o

and p(x) =e(x) for all x € 7, so @:¥+ 3 . Furthermore
q)vae + ol ¥ weakly since each converging subnet does. Since [lo ||, <K

for all v, {lell, <K, hence oldl € B(2€) . This proves (i) and (ii).

Now assume all the N commute, and let M< B(¥) be the abelian

von Neumann algebra generated by all the maps (pvi.,%’f . Since (9\)!&(+ tp!B'(
weakly, ol €M. Since ((,avlé{)* + (@] ¥ )* weakly, we have by Lemma 3.2
that (@I¥)*1 9 = ¢* . Since @Ix)*€M, ol¥ is normal, and Gid follows.

If 0, > © in norm, then wop > wo in norm for each y€ B(H), ; hence

wo® isultraweakly continuous for each wEB(H)*,and @ is itself ultra-

weakly continuous. This concliudes the proof of (@v)and therefore of the lemma,
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4, Examples of regular algebras

The most easily obtained examples of regular abelian algebras
of operator normal maps are of the form x + ax = Lax and
x > xa = R x, where a belongs to an abelian C*-algebra A .
Both La and Ra are isometric isomorphisms since A is abelian.
When A is not abelian L, is still an isometric isomorphism, so

that every C¥-algebra A < B(H) has a canonical isometric imbedding

in B(B(H)) .

We denote the map LRy = R L. Dby aeb for a,b € B(H) .
Taking linear combinations we can in this way consider the algebraic
tensor product B(H) (®)B(H) as a subset of B(B(H)) consisting of
ultraweakly continuous maps, which restrict to bounded operators in
B(x{) . If x,y € ¥, then <L_x,y> = Tr(ax y* = Tr(x(a*y)*) =
<x,a¥*y >, so L; = L,+ and similarly R; = R_x . Thus the restric-
tion map B(H) (& B(H) » B(¥) is *-preserving when B(H) & B(H)
has the *-operation (Xa, ®_bi)* = Za’:{ ®bz . Note that since R
is anti-isomorphic in b the imbedding of B(H) (2 B(H) into
B(B(H)) 4is not an algebraic isomorphism. However, if A and B

are abelian subalgebras of B(H) , then the imbedding of A(9) B in

B(B(H)) is a *-isomorphism.

l.emma 4.1 The norm on B(B(H)) restricts to a cross norm on

B(H)(® B(H) .

Proof Let a,b € B(H). Then clearly |laeb|l <|lallbll. To
show the converse inequality let e > 0 and choose unit vectors
E,n € H such that [lagll> llal - ¢ and |bnll > |bll -¢. Let v be
a partial isometry of rank 1 such that vbn = ||bnllg . Then

lavbnll = [[brl] llagll > (Ibll-eX(lall-€) , hence [lasbll > [lal|[b]l .
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Proposition 4.2 Let A and B be abelian C*-subalgebras of
B(H) . Then the closure A & B of A(9 B in B(B(H)) is a re-

gular abelian Banach subalgebra consisting of operator normal maps.

Proo f By Lemma 3.6 each map in A ® B 1is operator normal. The

rest is immediate from Lemma 4.1 and a result of Tomiyama [21].

Remark 4.3 By Proposition 4.2 each map of the form a e b with

a and b normal, is regular in the sense of Definition 3.1. It
can be shown that even more is true, namely that the Banach sub-
algebra of B(B(H)) generated by a e b 1is regular.

If G is a locally compact abelian group we denote by M(G)
its measure algebra, consisting of all bounded Borel measures with
convolution as multiplication and *-operation H(E) = W(-E) . We
write multiplication in G and its dual & additively. I am
indebted to G.K. Pedersen for discussions which led to Proposition

4.6,

Lemma 4.4 Let G be a locally compact abelian group and

t>u. a continuous unitary representation of G on the Hilbert
space H . Let at(x) = ut.xu: » X € B(H) . Then for each

u € M(Q) , o, defined by au(x) = fat(x)du(t) , is an operator

normal map such that (au!&()* = uglkf .

Proof It is easy to see that t ~» atl&€ is a continuous unitary

representation, cf.[19]. Thus e, 17€XeB(>) . If x,y €3 we have

<au(x),y> [<at(x),y>du(t)

f<x9u_t(y)>du(t)

[<x,a (y)>du(~t)

i

<x,fut(y)du -t) >

<X30lrﬁc(y)>e
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Thus (o 130)* = a~ 13, Since o o00m = 0 4o = O~ = Q~0a a
uiL 0 oo TRRY W*u TR T

commutes with its adjoint, so aulkf is a normal operator.

u

Finally, it follows from [2] that o« is ultraweakly continuous,

hence o, is operator normal.

Lemma 4.5 Let G be a locally compact abelian group. Then the
map T :M(G) + B(L”(G)) defined by T, (£) = w*f for f € LY(G) ,

is an isometric isomorphism into.

Proof It is well known and easy that T is an isomorphism into
B(LIG)) . Moreover, it is shown in the proof of [12, 3.4.1] that
T is a continuous multiplier of L”(G) endowed with the weak-*
topology induced by the elements in Ll (o) , and furthermore that
the adjoint map T: is a continuous multiplier of Lie) . By

[12,0.1.17 fiT} = llull, hence [T || = {lull.

Proposition .6 Let G be a locally compact abelian group and

H = L2(@) . Then there is a canonical isometric isomorphism

of M(G) into the operator normal maps in B(B(H)) such that

R - N VR
Of.all}( (aulo‘{) .
Proof. Let A be the regular representation of G on H, and

let S be the *-isomorphism of L7(G) into B(H) defined by

t t

By Lemma 4.4 o is operator normal, and aﬁ|}e = (aul%()* .

Seg = fg for g € L2(6) . Let at(x) = AL X A_ for x € B(H) .

Furthermore, au(S

§) = a4 for each f € L7(G) . TIndeed, let
(@) and s,t € 6. Then we have, with gt(u) = glu-t), u€ G,

g € 1.2

(a (5.)g)(s) = (81830 (s)
))(s) = f(s-t) g(s)

(A (Seg_y

(ftg)(s) = (Sftg)(s)
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hence a (Sf) = Sft . Let g,h € L?(G8); then we have, using the

Fubini theorem,

<au(S4)g,h> = f<at(Sf)g,h>du(t)
JfCa (S£)g)(s)RTE) ds du(t)
= [{f(s-t)g(s)h(s) ds du(t)
= [2(s)RTEY (f £(s~t)du(t))ds
= [g(s)h(8) (p*£)(s)ds

= <S“*fg5h>,

and a (S;) = S |, as asserted. From the definition of «a it
wof wrf u
is clear that HauH < |lu]l . However, we have just shown that

o :SLW(G) - S]w(G) , and since S 1is an isometry, we have

la Sl = 115 ugll = Ihwesl] -

By Lemma 4.5 we thus have

Q
v

? lla (Sl = sup *F|| = [ull ,
SR R

hence HuuH = llull , and we are through.

Corollary 4.7 Let G be a locally compact abelian group and

H = L?(€) . Then there is a canonical isometric isomorphism of
L'(6) onto a regular abelian subalgebra of B(B(H)) consisting

of operator normal maps.

Proof Restrict o in Proposition 4.6 to L' () , and use that
L) is regular.

If H is a finite dimensional Hilbert space it is obvious
that every operator normal map in B(B(H)) is regular. However,

if H 4is infinite dimensional this appears to be false.
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Corollary 4.8 If H 4is a separable infinite dimensional Hilbert

space, there exists an operator normal map ¢ in B(B(H)) such
that the Banach subalgebra of B(B(H)) generated by ¢ 1is non-

regular.

Proof Let G be a nondiscrete locally compact abelian group
such that L2(8) is separable, and identify L2(G) with H.
Then M(G) is a nonregular abelian Banach algebra, since & in
its natural imbedding in Sp M(G) is nondense, while the Qanishing
of of a Fourier transform 4y, u € M(G) , on G implies uw = 0.
Let A be the isometric image of M(G) in B(B(H)) constructed
in Proposition 4.6. Then A 1is nonregular, so by [14, 3.7.4]
there exists an element ¢ € A such that the Banach subalgebra

of A generated by ¢ 1s nonregular.
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5. The algebra A & A

For the rest of the paper we shall mainly study the regular
abelian Banach subalgebra A e A of B(B(H)) where A 1is an
abelian C*-algebra. Our results indicate that its relationship
to abstract harmonic analysis is quite profound. In the present
section we shall study maps in A ® A whose Gelfand transforms
are positive definite; defined as follows. If X 1is a set and

f a complex function on XxX we say f 1is positive definite

if whenever YyoeeesY, are n elements in X then the n xn

matrix (f(yi,yj)) is positive.

Recall from [21] that SpA ®A can be identified with
SpA x SpA . We shall therefore write elements in SpA®A as
pairs (y,y') with vy,y' € SpA . We denote by C(SpAe®A) the
continuous complex functions on SpA e A, vanishing at infinity
if SpA ® A is noncompact, and by o the canonical isomorphism
of C(SpAe®A) onto the norm closure c4 of {al|2€¢:a €A oA}
described in Theorem 3.3. We denote by ‘' and }(s.a. the

positive and self-adjoint Hilbert-Schmidt operators respectively.

An operator a € B(2€) is said to be positivity preserving

(respectively hermitian preserving) if

a(¥r) e Xt (resp. a(xf

cone of positive definite functions and uﬁ’ the cone of positivity

S.a)cﬂ,s.a.). If C(SpA®A) has the

preserving operators we next show that the isomorphism o is an

order-isomorphism.
Theorem 5.1 Let A be an abelian C*-algebra acting on the
Hilbert space H. Let o Dbe the canonical isomorphism of

C(SpA®A) onto the norm closure of {a|¥ :a€AeA}l , and let

f € C(SpA@A) . Then £ 1is positive definite if and only if
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a(f) 1is a positivity preserving operator in B({) .

Lemma 5.2 Let f € C(SpAeA) . Then if o(f) is hermitian
preserving then f(y,y') = f(y',y) for all y,y' € SpA. 1In
particular, if Yyseees¥, € SpA then the nxn matrix (f(yi,yj))

is self-adjoint.

Proof Assume first o(f) is the restriction to ¥ of a map

n

© €E A®A, say w=i§1 a;®b, , a;,b; € A. Then for x € of
we have Za;x*b, = o(x*) = o(x)* = Zbix*a’!‘

i+ SO that Zaiabi =

szsa; on €. But then

(y,y")(Za;eb;) (Y,v')(Zbi*ea’?)

1

Zy(b;) v'(a;)

(y'.y)(X aiabi) 5

so that f{y,y"') = f(y',y) in this case.

In the general case choose a sequence (wn) in A@® A such
that the restrictions to € converge to o(f) in B() . Say
= + - * * “ - 1 +
q)n = Zainsbin . Let @, = Zbinaain , SO that "bn = 2((pn+cpn)€A®A .
If x € € then Hcp;(x) -a(£) GO, = flo  (x¥)* - a(£)(x*)¥], =
l!tpn(x*)—a(f)(x*)|!2+ 0 uniformly for [[x|, < 1. Thus Y, > o(f) in norm

in B(y) . By Theorem 3.3 “?'n + f in supnorm, so

m oy (y'sy) = Fly',y)

Fly,y') = lim ¢_(y,y') = 1lim
n n n

Q.E.D.

Proof of Theorem 5.1 Assume a(f) 1is positivity preserving, and

let vy,,...,y_. € SpA. If B is the weak closure of A then
n

1
every character of B restricts to a character of A, and

A®A c BeB as subalgebras of B(B(H)) . Thus in order to show
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that the nxn matrix (f(yi’yj)) is positive, we may assume

A =B, i.e., A 1is a von Neumann algebra. Let ¢ > 0. Now

a(f) can be approximated in || ||,~norm by restriction of maps

in A®@ A . and each operator in A can be approximated in norm
by linear combinations of mutually orthogonal projections. We can

therefore find mutually orthogonal projections e_,...,e

1 n’?

-

L . in A with sum 1 such that Yi(ei) =1, 1i=1,...,0 ,

and constants Aij s 1,3 € {1,...,m} , such that if ¢ denotes the

restriction of inj ej@e, to ¥ then

(1) late) =yll, < e .

Furthermore, if we replace ¢ by %(¢+¢+) , cf. Lemma 5.2 , we
may by that lemma assume ¢ 1s hermitian preserving.
Let Vi be the closed subset of SpA corresponding to e;

under the Gelfand transform. By Proposition 2.3 there is a com-

pact neighborhood N.. of (yi,yj) in SpA ® A such that

J
Nij c Vi ij s, 1,3 € {1,...,n} , and
(2) Hw(x)-$(yi,yj)xH2 < ¢
for all x € X(AusA,Nij) with [Ix]l, <1, where X =3 . Choose
compact neighborhoods Wi of Y3 such that wi><wj c Nij s
i,j € {1,...,n} , and let fi be the projection in A correspon-
ding to the characteristic function Xwi of wi . Let now Py

be one of the projections fi ) ei--fi s, i =1,...,n, and es for
i = n+1,...,m, and renumber them so that P; =fi for i=1,...,n.
We can thus write

b= Zugg pepgd ok,

where ey € {Aij ti,je{1,...,m}} .
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By Lemma 2.2 4Py = w(pk) = @(Yk,yk)pk‘ for k = 1,...,n.

. N\ .
Since supp piapj = supp Xwi X ij = wi ij , we have by Lemma 2.1
that
(3) P p. « X(A@A,W, xW.) ,
1 ] 1 ]

i,3 € {1,....n} .
Let q; < pj be a 1-dimensional projection, i = 1,...,n,
and as above adding P53 for i =1,...,n, and p; for

i=n+1,...,m to the q; » We can write
L zpr*sqrgqs!}(3 ’

where LI € {Aij:i,j €{1,...,m}} , and qQys-++5q, are 1-dimen-
sional. Choose partial isometries Qg of rank one with domain

q, and range q, such that is a set of matrix

(qrs)lsr,SSn

n
units, Let q = 21 Q, > and let M denote the factor

Qpp = 9p p=

B(H)q of type I_ spanned by the . If M is the nxn

qI’S

complex matrices, then the map zarsqrs > (ars) is a *~-isomorphism,

hence an isometry of M onto Mn . Let e be the 1-dimensional
projection e = %’qus in M. By (1)

a(£)(e) —w(e)H2 < e,
hence, since y(e) is self-adjoint, |[|x|| <!|xl|, for )(E){s . and

a(fie) >0,

(W) p(e) +eq > 0.
By (2) and (3)

lvCa, ) = v v dall, < ¢
Thus we have

1 ~ i 1 - " ]
(5) |lwted —sz(yr,ys)qrsliz < h—a‘H\p(qu) -xb(yr,ys)qrshz <ne .

By Lemma 5.2 the operator Z@(yr,ys)qrs is self-adjoint. Thus




by {4) and (5)

(6) %TZT(Yr’YSqus > (ﬂne=e5q.

If a = (aij) is a matrix in M~ then its norm is majorized
by X[aij§ . Indced, !aiji < llal] for all 1i,j, so we have
lall® = Jla*all < Tra*a) = [lall} = z;aijgz < lallzl a;s] . Thus from (1)
we have

If we combine this with (6) we have since (f(Yr’Ys)) is self-adjoint

” (f('Yr,a'Ys)) - (\T)(Y.PSYS))“ < le(YPBYS) = JJ(YI”YS)'

nzﬂa(f)-wﬁz < n% .

A

(f(yr,ys)) > (-n2-n%-n)e .

Since e is arbitrary (f(YraYs)) > 0, and we have shown f 1is

positive definite.

Conversely, assume f is positive definite. Let B denote

the weak closure of A and let Y be the restriction to A of

vy € SpB . Thus (f(?i,?j)) is positive for all YyoeeesYy € SpB .

In order to show a(f) is positivity preserving it suffices

to show al(f)(p) > 0 for each 71~dimensional projection p in € .

For this it suffices to show that for each unit vector & in H

and e > 0 there is a nonnegative real number a such that
(7) |<a(£)(p)g,E>-a] < e.
We let ©p,& and € > 0 Dbe given.

Choose mutually orthogonal projections SRR in B and
Aij i,j € {1,...,n} such that if ¢ is the restriction of
Zhjje;®ey  to o then [ly=a(£)||, < e/2 . Choose v; € SpB  such
that Yi(ei) = 1., Since o 1is an isometry we have

{f(?~,7-)*~kiji < e/2.



Let ¢' be the restriction of f(vj,vﬁ)ei e ey to 2¥. Then

laCE)=y ]I, < HlaCO)=ull, +llw=v'll, < 5+5 = €.

let &, = e and let n be a unit vector such that p is the pro-

jection on the subspace it spans. Then we have

<p'(plg,&g> Zf(?i,?ﬁ)<ei;>e.g,g>

J
= I f(:;:i:’?j )<p g] 5P €i>

= }:f(\.’ia'\’j )<<Ej sﬂ>ﬂ9<€i,n>ﬂ>

u

(Y. .. .. .
rrf (19YJ)<£].~U><§lan>
> 0 ,
sincea (f(?i,?j)) > 0. If q is the 1-dimensional projection
on the subspace spanned by & then

| <a(E)(PIE,E>=-<p ' (PIELE>] = [<(a(f)-y')p,q>]

< ltatE)=ptl ol llall, < €.
Thus with a = <p'(p)£.,&> the proof is complete.

Recall that if ¢ 1is a linear map from one C¥-algebra M

into another M, then ¢ is said to be positive if @(x) > 0

for each x > 0 in M. ¢ is said to be completely positive if

®® 1 M e Mp +~ N ® Mn is positive for each n ., where 1 is

the identity map on Mn'

Corollary 5.3 Let A be an abelian C¥-algebra acting on the

Hilbert space H. Let © € A®@A . Then the following conditions
are equivalent:

(i) ©® 1is positive.

(ii) ¢ is completely positive.

(iidi) @ 1is positive definite on SpAeA.




Proof (ii) = (i) is trivial. Since ® is ultraweakly
continuous, ©l¢f is positivity preserving if and only if ¢ is

positive. Thus (i) e«=s (iii) is immediate from Theorem 5.1. To

show (iii) = (ii) let n € N be given. Let @*1 denote the !

4

scalar operators in Mn . Then ¢ @ 1 belongs to

(A@(Bn) e (AeC ) < B(BH® ")) . We can identify Sp(A@(Dn) with
N

SpA wvia yel1 + y. Thus oei is positive definite if and

only if & is positive definite. By (i) (iii) oe1  is

positive. Q.E.D.

Lemma 5.4 Let A be an abelian C¥*-algebra acting on the
Hilbert space H, and let o denote the canonical isomorphism
of C(SpAeA) onto the C*-subalgebra of B(J() generated by
al> , aé€ AoA . Let ©w € Ae®A satisfy @(1) = 1, and let
f be a continuous positive definite function on SpA®A such

that f(y,y) = 1 for all vy € SpA. Then we have:

(i) ®(y,y) =1 for all v € SpA.
(ii) If ¢ 1is an operator normal map in B(B(H)) such that
pla€ = o(f), then ¢ is positive and (1) = 1.

Proof (i) Let y € SpA ., and let e > 0. As in the proof of

Theorem 5.1 there is g = Erige5@ey such that !lly-¢ll< ¢ , where

(ei) is an orthogonal family of projections in the weak closure of
A with sum 1 such that y(e1) = 1. In particular Agq ® Ply,y) .
Now

e > [p(1) =) = | -1]

By Lemma 3.2 we thus have

!&’("(9'\’)'15 EQ)(YsY)-@(YaY)! +I}‘1’]_1i

iA

A

| o-ull +e <2e.
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Since € 1is arbitrary (i) follows.

(ii) As in the proof of Theérem 5.1 we may assume A 1is a
maximal abelian von Neumann algebra. Let f‘ and ¢ be as in (ii).
Choose ' = inj e;@ey as above such that ”¢“¢'”2 < eg. let
Y; €SpA s tisfy yi(ei) = 1. Then for all i,

-7 = 1-a..] .
e > ff(YJ»Yl) v (Yl’YlD! {1 )\lll

Thus {J¢"(1)-1]l =§1zxij_ei-1ﬂ < g . Modifying ¢' we can assume

= Fly..ve) = 0" (ys,v. i i Aew =1 ! =1,
Aij f\ylgyJ) U (yl,yj) , and in particular A,. , SO Y'(1) =1

. . A . e

Using Lemma 8.4% below it is immediate that ¢' is positive
definite, hence by Corollary 5.3 p' 1is positive, and by construc-
tion ¢'(1) = 1. In particular |ly'l = 1 [15]. Choose a sequence
of such maps ¢ such that [lv ~¥ll, < Vo, I = ty ] = 1.

Let ¥ be a point -ultraweak limit point in B(B(H)) of the
sequence (wn) , cf. [111., Then ¥ is positive, J(1) = 1,

T = ' ¢ 0 I 1 . = ZIh.. e. .

vt plaf. Let e >0 and 1/n < ¢ Then ¢ Al] e;®e;

for suitable Aij and e.. Let e be a 1-dimensional projection,

e <e;. Then y (e) = e, so that fp(e)-el, < e. In particular

Hu(e)-eli < e, so ly(e) lell = ¢ = 1-e . Thus if C(H) denotes
i b I ! P

iV

the compact operators on H then |lglCWH) > 1. But (1) = 1,
so |I7ll= 1 [15]. Therefore |l¥|C(H)| < 1. Since ¢|C(H) = Fjc(H),
and ¢ is ultraweakly continuous [l¢il < 1, hence equal to 1.
Again by ultraweak continuity of ¢ , ¥ 1is a positive map
because !|C(H) is positive being equal to ¥ on C(H) . Thus
el = lwlf =1 151,
Let a € A, x € B(H), then y_(ax) = axhl(x) , so that
P(ax) = aP(x). Thus if x € C(H) we have +¢(ax) = P(ax) =
agpi(x) = avix), and symmetrically ¢(xa) = y(x)a . Since v is

ultraweakly continuous we therefore have ¢(a) = ay (1) = p(1)a .




In particular (1) € A' = A, since A 1is assumed to be maximal
abelian.

Suppose ¥(1) # 1. Then there exists a nonzero projection
e € A such that |ley(1)|| < 1. We now apply the preceding part

~ -~
Ae , 9§, = v|Ae .

of the proof to Ae, B(eH), ¥, = plhe , ¢ __ = b

ne
Since the set of Hilbert-Schmidt operators on eH equals eXe
and C(eH) = eC(H)e all the previous assumptions and arguments

hold when we restrict attention to B(eH) as above. Rut then the

previous argument shows ?!weH =§!we(eﬂl = jw(e)ﬂ = Hep(l <1,
while [y il = Hﬁéi = Hﬁe(eﬂi = |leP(edl] = ilell = 1 ,a contradiction.
Thus ¢(1) = 1 as asserted. Q.E.D.

Proposition 5.5 Let A be an abelian C*-algebra acting on a

separable Hilbert space H. Let ¢ € A®A be positive and (1) = 1.,
Then we have

(1) 1T e BT .

(i1) Tr(e(x)) = Tr(x} for all x € T,
(iii) ¢* has a unique extension to a positive operator normal

map P in B(B(H)) such that (1) = 1.

Proof We may assume A is a von Neumann algebra. TFrom the proof

of Theorem 5.1 there is a sequence (@q) of maps in Ae®A of the

converging in norm to @

form ZA.. eis>ej in the algebraic tensor product AU A/ such that

@_  1is positive, wn(1) =1, and the e.'s  are mutually orthogonal

n
projections. Let x € J be positive. Then mn(x) + @(x) uni-
formly. Since Tr 1is lower semicontinuous being the countable sum

of vector states, and Tr(@n(x)) = Tr(x) , we have

Tr(p(x)) < Iim Tr(o (x)) = Iim Trix) = Trix) .
- n n n




=+

x|, for x € J . By polarization

Thus [le(x)l; < |
o!J € B(J') and has norm less than or equal to 4.
~hus (1) follows.

Since ¢!J € B(J ), ¢*¥ has a unique extension to an ultra-

weakly continuous map ¢ in B(B(H)) such that 3% = ! .

Furthermore, if f € C(SpA® A) 1is defined by fly,vy") =.®(y,y'),
then f(y,y) = 1 for all y € SpA. If o in the canonical
isomorphism of C(Sp A® A) onto the norm closure o4 of

{plaf :peaoA}l in B(), then o(f) = |3 , because a(f) is
the adjoint of olaf in QAP. In particular ¢ 1is operator normal.
Thus f and ¢ satisfy the assumptions of Lemma 5.% (ii), hence
(1) = 1, and (iii) follows. But then, if x € J we have
Tr(e(x)) = <1,0(x)> = <p(1),x> = <1,x> = Tr(x) , so (ii) follows. ‘

Q.E.D.

We conclude this section by showing how the obtained results
are applicable to representations of locally compact abelian groups

as automorphisms of B(H) .

Lemma 5.6 Let G be a locally compact abelian group and t - u.
a continuous unitary representation of G on the Hilbert space H.
Let a,(x) = u+>cuz for x € B(H) , and let A denote the abelian

von Neumann algebra generated by {ut: t€G} . Then for each

£ € .}(e) , we have op € ABA.

Proof Let e > 0 and assume [{f]l; < 1. Let K be a compact

subset of G such that [, [f(t)[dt < e/4 . Let o = Ta;xg, be a
RN l

simple function with support in K such that [le-fll, < /2, say

< 2. Trom Stone's theorem we can find mutually orthogonal

o I,



projections SRR in A and YysesenY, € ¢ such that
fu, - = Wejh < e/8 for teK.
Then for t € K we have
! o —Z?\(_:]Tg<yk,t>ej ® ek'l
< |l Qg - 5F75 5T o |+ 5 ey 0 (- zeyy toe ) |

< e/lW .

Thus we have for x € B(H) , with m(E) the Haar measure of a set
Ecec G,
| folta dt - = (S(ay fp “““"‘<Yj,t><yk,t>dt»>ej xe |l

ik i
Y e .
= liEaiIEi\u (x) 3Z'k<y 't><yk.,‘t>ej xek)dLH
! ( - |
< E ial iat x) JZ]\«(] t><Yk’b es x ey | dt

A

b3 ]ai§ e/ 4| x”m(Ei)

= ol llx[le/u
< e/ 2)|x|!
Let cjk = i:ai JE1(Yj,t><Yk3'l> dt . Then we have
- i - i
“af""cjke ® el < lb-.c: o ,‘+|| Ciy €5 ®e ]
< |lE-alf | + e/2
<eg/2 +e/2 = ¢,
Since € 1s arbitrary ags € A A. Q.E.D.

Let G be a locally compact abelian group, and f a con-
tinuous complex function on G. If E 1is a closed subset of G

we say f is positive definite on E if the nxn matrix

~

(f(gi—gj)) is positive whenever g ;... 8, € B




Proposition 5.7 Let G be a locally compact abelian group and

t > u a continuous unitary representation of G on the Hilbert

t
space H. Let Spu denote the spectrum of t = Uy in the dual

group G, and let at(x) = ut>cu: for x € B(H) . Then if

£ e L1(6) the following three conditions are equivalent:

(i) og is positive
(ii) @ 1is completely positive
(iii) f 1is positive definite on Spu.

Proof Let AO denote the C*—algebra generated by

{u)Cr = fg(t)utdt ' g eL'(6)} . Then SpA, =Spu. Indeed, let PY
be the projection valued measure on G such that by Stone's
S 1 -~
theor = [<y,t>dP . Let g € L (G). Then u_ = [~5(y)dP
em u b= y Let ¢ G g ng v) y

By density of the Fourier transforms in C(&)
we obtain a *-isomorphism of A, on C(Spu) , and the assertion
follows. By Lemma 5.6 e € A A, where A 1is the weak closure

of A,. If g€ C(G) 1let T € C(B x 3) be defined by g(y,y') =

Hy>

g(y~y') . Then it is immediate that is positive definite on

Spu if and only if f 1is positive definite on SpuxSpu. 1In

particular it follows from Corollary 5.3 that if ¢ e is positive

then f is positive definite on SpA®A, hence by restriction £

A~

is positive definite on SpAg® Ap, and so f 1is positive definite
on Spu. Conversely, if £ is positive definite on Spu then
f is positive definite on SpAg®Ag. From the proof of Theorem

5.1 we see that a. is positive, and so completely positive by
S

Corollary 5.3. Thus (iii) = (ii), and the proof is complete.




6. Maps with pure point spectra

In this section we shall study the case when an operator
normal map has pure point spectrum when restricted to the trace
class operators J”. 1In the finite dimensional case the result
is a characterization of those identity preserving positive maps

which belong to an algebra of the form Ae®A.

Theorem 6.1 Let ¢ be an operator normal positive map in B(B(H))

such that (1) = 1. Suppose !J is a bounded operator on T
such that the eigenvectors of ¢!<] of rank1 form a total set
in 9 . Then ¢ 1is completely positive, and there is a totally

atomic maximal abelian von Neumann algebra A on H such that

¢ belongs to the point-ultraweak closure of A®A.

We divide the proof into some lemmas. The first has the
same conclusion as Proposition 5.5 and shows in particular that
in the finite dimensional case Tr(w(x)) = Tr{x) whenever ® 1is

an operator normal map such that (1) = 1

Lemma 6.2 Let ¢ be an operator normal map in B(B(H)) such
that ©(1) = 1. Suppose @l|J € B(J) and that the eigenvectors

of @l!d form a total set in 9 . Then Tr(e(x)) = Tr(x) for

all x € T,
Proof Let S be a total set of eigenvectors of o! 97 . TFor

each x € S, x € o€ and is an eigenvector for ¢ and thus for
©* , since @la€ is normal. If @(x) = Ax then X<x,1> =
<p*(x),1> = <x,0(1)> = <x,1>, hence <x,1> = <o(x),1> = 0 if

A+ 1, and <x,1> = <p(x),1> if 5 = 1.

Thus <x,1> = <@(x),1> for all =x 1in the linear span
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T of S. Since T 4is dense in I by assumption and
@l T €B(T), <x,1> = <p(x),1> for all x € I . Q.E.D.

Lemma 6.3 Let ¢ Dbe as in Theorem 6.1 and let S be a total
set in J consisting of eigenvectors of vank 1 for ¢l J . If
e 1s a projection in B(H) such that o(e) = e, then {exe:x€S}

is a total set of eigenvectors of rank 1 for ole Je .

Proof From an unpublished result of Broise it follows that
ple xe) = ep(x)e for all x € B(H) . A simple proof in our case
goes as follows: Let p be a state of B(H) with support in e.
Then po ¢ is a state of B(H) with support in e . Thus
plw(x)) = plo(exe)) for all x € B(H). Since this holds for
all such p, eop(x)e = @wlexe) .

Let x € B(H) , o@(x) = ax, thén olexe) = ep(x)e = rexe,
so exe 1is an eigenvector for ¢, Finally, since S is toa&al

. - . . o . .
in ./ , and the map y - eye is norm decreasing on J , it is

clear that the set {exe :x€S} is total in eJ%e .

Lemma 6.4 Let ¢ be as in Theorem 6.1. Suppose x 1is a rank 1
operator with ||x|| = 1 such that ¢(x) = x. Then either x is

a scalar multiple of a projection, or x is a partial isometry
such that the C*-algebra M generated by x is isomorphic to

the complex 2 x2 matrices, and ¢ restricted to M 1is the iden-

tity map.

Proof If x is a scalar multiple of a normal operator then,
since x is of rank 1, x is already a scalar multiple of a
projection. We may thus assume x is a partial isometry such
that p = x*x # xx* = q, and p and q are 71-dimensional pro-

jections.
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From Kadison's Schwarz inequality [10] applied to x +x*

and i(x-x*) we have, cf. [18, Lemma 7.3]

w(p+q) ol(x*x+xx*) > 0(x)*o(x) + e(x)o(x)*

x*x+xx* = p+q .

From Lemma 6.2 we have Tr(w(p+q)) = Tr(p+q) , hence by the
faithfulness of the trace, 9(p+q) = p+q. Since x 1is of rank 1

and p + q the C*-algebra M generated by x is isomorphic to

the complex 2 x 2 matrices. Turthermore, the identity of M is
e = pvg. Thus there exist positive constants a and B such
that e < a(p+g) < ge . In particular, if x > 0 dis in the unit

ball of M, then 0 < @(x) < ¢(e) < ap(ptq) = al(ptq) < aBe .

Thus ¢(x) € M, since M = B(H)e , and ®iM is a positive linear
map of M into itself of norm 1. In particular 0 < ¢(e) < e,
and again by Lemma 6.2 ¢{e) = e. Thus ¢ preserves the identity
of M.

Now x,x*, and e are linearly independent in M. For if
there are complex numbers vy,§ such that yx +8x* = e, then
multiplication of this equation respectively from the left and
right by x yields the equations vx% + 8xx* = x ,and yx%+ 6x*x = x.

£ 3

* = ¢x¥x, so that & = 0, and x,x*, e are linearly

Thus éxx
independent as asserted. Since they all are eigenvectors for ¢
with eigenvalue 1, it follows that the eigenspace N = M for the
eigenvalue 1 1is at least of dimension 3.

Suppose @M is not the identity, then dim N = 3. Since
S is total in T the set {eye:y €S} is a total set of eigen-
vectors in M by Lemma 6.3. Since ®|M 1is operator normal, there
is thus y € S such that eye # 0 and o(eye) = xeye with X% 1.

We have thus found an eigenvector z for @IM of rank1, |lz|| = 1,



and @(z) = xz, » #1, Now z* 1is an eigenvector with eigen-
value A . If z is not a scalar multiple of z* they span a
subspace of M of dimension 2, which is orthogonal to N . This
is impossible since dim M = 4, We may thus assume =z is self-
adjoint, hence a scalar multiple of a projection; hence we may
assume 2z 1s a projection. Since e-z 1is orthogonal to 2z in
M, e-z € N. Thus e-z = ¢ple~z) = @(e) —w(z) = e-xz , and we
have shown A = 1, contrary to assumption. Thus @M is the

identity. Q.E.D.

Lemma 6.5 Let ¢ be as in Theorem 6.1. Then there exists a

1~-dimensional projection p such that o(p) = p.

Proof Let S be a total set of eigenvectors for ¢|J of rank 1.
If no eigenvector in § has eigenvalue 1 then for all x € S,
©(x) = Ax with A # 1., Then by Lemma 6.2 ATr(x) = Tr(w(x)) =
Tr(x) , so Tr(x) = 0. In particular Tr(x) = 0 for all x in
the linear span R of S . But S is assumed to be total in 97,
so R is dense in ¢ . But then Tr(x) = 0 for all x € Sr,
which is a contradiction. Thus there is x € S with o¢(x) = x.

An application of Lemma 6.4 completes the proof.

Proof of Theorem 6.1 We first show that there is an orthogonal

family (pj)jEJ of 1-dimensional projections with sum 1 such

- 1 2
that w(pj) =Py By Zorn's lemma let (pj)jEJ be a maximal
such family. By Lemma 6.5 it is nonempty. Let q = 1- X pj.

v Jj€eJ
Since ¢ 1is ultraweakly continuous ¢(q) = qg. If q % 0, o

restricted to B(H)q has by Lemma 6.3 exactly the same proper-
ties as © has as a map in B(B(H)) . Thus by Lemma 6.5 there

is a 1-dimensional projection p < g such that ¢(p) = p.
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This contradicts the maximality of the family (Pj)jEJ , so gq=0,
and T Pj = 1. Let A denote the totally atomic maximal

jEJ
abelian von Neumann algebra generated by (pj)j€J . For each
finite subset I « J let qr = jélpj . Then the net (qI)ICJ is
monotone increasing, so qr * 1 ultrastrongly, and dimqh:=cardiI.

We show @!B(H)qI belongs to A.I«sAI , where AI is the finite
dimensional algebra generated by Py > JETI.

For every pair D; % Pj , 1,3 € I, there are x,y in S
such that pi.xpj # 0 and pj37pi # 0. Let e = Pi+pj . Then
in particular exe # 0 # eye , and by Lemma 6.3 exe and eye
are rank 1 eigenvectors for (;)EB(H)e . We have thus found four
eigenvectors of rank 1 for wiB(H)e , and ¢(e) = e. Since two
of them are p; and Ps » and the other two are scalar multiplies
of partial isometries between them, we have shown that if we multi-
ply the chosen eigenvectors exe and eye by suitable scalars
for all pairs i,j € I , we have found a set of eigenvectors for
I

wiB(H)q consisting of a complete set of matrix units for B(H)q
I

Thus mlB(H)qI is of the form

o | B(H) = T A..pP-@®p: €A ® .
dr i,5€T ij “1 ] AI AI

Since AI @AI < AeA and qr * 1 ultrastrongly, d; X4 > X

ultrastrongly, so ultraweakly for all x £ B(H) . Furthermore

(wlB(H)qI) oqr®qy € A®A . Thus we have by the above formula

ex) = l?'[_m olapxqp) = l?_'L_m (npiB(H)qI)(quqI)
and ¢ belongs'to the point-ultraweak closure of A®A . ©Note that
since m%B(H)qI is positive and belongs to AItzAI , it is com-
pletely positive by Corollary 5.3. Thus ¢ , being the point-ultra-
weak limit of completely positive maps, is itself completely posi-

tive. The proof is complete.
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Remark 6.6 The last theorem gives a necessary condition for an

operator normal positive map ¢ to be completely positive in
terms of spectral properties. It might be belived that there is
a converse to the theorem. However, the following example shows
that a regular operator normal completely positive map ¢ such
that (1) = 1 need not have a basis of eigenvectors of rank 1.

2 0 1 10
Let H =€, let a = ( 1 O) s b = ( 0_1) , and

¢ = 2(a®a +beb) . Since a and b are self-adjoint unitaries,
v 1is operator hermitian and completely positive, being the convex

sum of two *-automorphisms. An orthogonal basis of eigenvectors

is
.10 10 0 1 0 -1
xp = O ) % = (g s x5 = (g g) s = (g g )
with @(xl) = Xy s w(xu) = =X, s w(xz) = w(xa) = 0. Thus the

eigenvalues %1 have multiplicities 1, and every eigenvector

Io)

with eigenvalue 1 has rank 2.
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7. Some completely positive maps

If © 1is a completely positive map of a c*-algebra M
into B(H) then there exist a Hilbert space H', a bounded
linear map V of H into H', and a *-representation m of M

A

on H' such that @(x) = V¥r(x)V for all x € M [17]. We say

V*rV is a Stinespring decomposition for ¢ . If M and N are

von Neumann algebras we denote by M®N their von Neumann

algebra tensor product.

Theorem 7.1 Let H be a separable Hilbert space and ¢ € B(B(H))

ultraweakly continuous, positive, and (1) = 1., Let A be a
maximal abelian von Neumann algebra acting on H. Then the

following two conditions are equivalent:

(i) There exist a probability space (X,63,uy) and a measurable

map u of X into the unitary group of A such that

o(x) = fxu(;)x14(§)*du(§) ) x € B(H) .

(ii) (x) = x for all = € A, and ¢ is complefely posifive
with a Stinespring decomposition V¥gV with ¢ normal such that
there exist a Hilbert space K and an abelian von Neumann algebra
B acting on KX with the following properties:

(1) V:H > H' = HeK

(2)  w(B(H)) < B(H) ®B

(3)  w(B(H))' n(B(H)eB) = C&B

(4) V' € €®B(K)

(5) m(A) = A®C

In particular, if the above conditions are satisfied then

® belongs to the point-ultraweak closure of A®A.
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Proof (ii) =» (i). Assume ¢ satisfies the conditions in (ii).
Since w is normal w(B(H{)) is a von Neumann algebra isomorphic
to B(H) . Let N denote the von Neumann algebra generated by
m(B(H)) and € & B. We show N = B(H)®B. Indeed, by condi-
tion (2) N' n (B(H)eB) = CeB. Since B(H) @ B is of type I
it is a normal von Neumann algebra [6, ch. III, 7, ex. 13]. Since
N c B(H)®B and N contains the center € ® B of B(H) @ B,

we have

N = (N'n(B(H) @ B))' n (B(H) ® B)
= (Ce B)' N (B(H) @ B)
= B(H)® B,
as aéserted.
Let e be a minimal projection in B(H) . Then «(e) 1is
an abelian projection with central carrier 1 in B(H) e B.

Indeed, let (e ) be an orthogonal sequence of minimal pro-

n’'neN
jections in B(H) with sum 1 such that e, = e. Then E:w(gn)= 1.
n=1

Since e ~ e for all n as projections in B(H) , n(e)fvﬂ(en)

for all n. In particular their central carriers are equal, so
n

must be the identity. Let a = X ﬂ(xi)(1 ®tﬁ) € N with x; € B(H) .
1=1

b.€B, 1 = 1,...,n. Then we have

i

m(e)an(e) Zw(ehﬂxi)n(e)01®bi)

= z .e L)
b2 Tr(exle.)ﬂ ®bl

w(e)ITT(xieT1®bi

€ 1w(e)(CeB)

Since by the preceding paragraph operators like a are ultra-

weakly dense in B(H) ® B,
m(e)(BH) 8 B)rle) = u(e)(CeB) ,

so that w(e) 1is an abelian projection as asserted.
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For each n& N let v be a partial isometry in B(H)

such that vn*vn e s vnxqf = e, and v, = e. Since e e 1
is an abelian projection with central carrier 1 in B(H) e B,
and n(e) is the same by the preceding paragraph, n(e) ~ e e
in B(H) ¢ B [6, Ch. IT ,53, Lemme 1]. Let u be a partial

isometry in B(H) @ B such that u*u = e®1, uu®* = n(e) . Let

(-]
U= % w(v;)u(vne1) )
n=)

where the convergence is in the strong toﬁology. Since the
supports of the v, ® 1 and the ranges of the n(v;) are pair-
wise orthogonal for different n's and both span the whole space
it is easy to see that U is a unitary operator in B(H) e B.
Furthermore, a straightforward computation shows U(en®1)U* = n(en) s
and U(vn®1)U* = n(vn) . Since the *-algebra generated by the e,
and the v is ultraweakly dense in B(H) , and = is ultraweakly
continuous, U(xe1)U* = n(x) for all x € B(H) .

By [16,1.18.1] there exists a localizable measure space
(X,03,v) such that B can be identified with L”(X,v) acting
on LZ(X,v) by pointwise multiplication. By [16,1.22.13] we can
identify B(H) @ B with L%(X,v,B(H))- the Banach algebra of all
essentially bounded weakly-* v-locally measurable functions on
(X,v) into B(H) wvia the map (aef)(z) = f(gr)a , where f 1is
identified with the funetion f(z) on X, and a € B(H) .
Furthermore L%"(X,v,B(H)) acts on LZ(X,v,H) - the Hilbert space

of H-valued L2%-functions on X , with inner product

<E,n> = J'X<&<c),n(c)>dv(c) 5

and action is pointwisej; (fg)(z) = £(z)¢(z) . In particular,

gsince U € B(H)®B, U can be identified with the function

w(z) € L*(X,v,B(H)) .

_p—
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By condition (4), VV* € C®B(X) . Since (1) = 1, V is
an isometry, hence there is a projection p in B(K) such that
VV* = 1ep. We show dim p = 1 . For this note that since V

is an isometry, V*B(H')V = B(H) . Thus
VBAEIV® = (1ep)(B(H) & B(K))(1ep) = BMH)epRK)p,

and the map x - VxV*¥ is an isomorphism of B(H) onto
B(H) @ pR(K)p . By condition (5) w(A) = A®C, so there exists
a #*-automorphism a of A such that =n(a) = a(a)e1 for aeA.

Hence, if a € A, then ®w(a) = a by assumption, so that

Vav* = vela)V¥* = vv*(a(a) ® 1)VV" = a(a)ep .

Consequently A®Cp = VAV* ., Since by assumption A 1is a max-
imal abelian subalgebra of B(H) , A ® Cp is maximal abelian in
VB(H)V* = B(H) e pB(K)p . But this is only possible when dimp = 1.
Let £ be a unit vector in X such that PEy = £, - If
EEH then Vg = V'g &, > where V' 1is a unitary operator in

B(H) , as is trivially verified. Recall that (E@go)(c) = EO(E)E

if &£ € H. Thus if x € B(H), €,n € H, we have

<V*w(x)V§,n> <1r(x)V'g®go3 V'nago>

Ulxe 1) UF(V'e e £y)> Vnegy>

1"

L(<w(g) xw(c)*go(r,)V'g, £,(0V"'n>dv(z)

- &<V’*w(7;)xw(z)*V'g,n>}go(;)Izdv(c)

Letting wu(z) = V'*w(z) and dulz) = !EO(;)Izdv(c) we thus have

0(x) fxu(c) xulz)™* du(g)

and

2 2
fpaute) = [ 5 0] fave) = flggll” = 1.

Therefore all that remains in order to complete the proof of (i)
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is to show wu(gz) is a unitary operator in A a.e. (u) .
Since U is unitary and V' is unitary it is clear that u(z)
is unitary a.e. (u) . Let q be a projection in A , and let

€ € H be a unit vector. Then we have

<QE;&> = [ <u(g)q ul@)*e,e> du(x) =fllulz)q ulzy el 2au(c) .

Since 0 < [u(r)qu(o)*gl| < 1 a.e. (u) it follows that if £gqH)
then <qf,£> = 1, hence luCo)q ul)*el] = 1 a.e. () , hence
£ € ulg)q u(g)*(H) a.e. (u). Since this holds for all ¢ €q(H) ,
q < ulz)q ulg)* a.e. (u) . If £ € (1-q)(H) +then 0 = <QELE> ,
and u(z)q ulz)® =0 a.e. (u) . As above then, 1-q < 1—u(;)§u(c)*
a.e. (), Consequently q = u(z)q u(z)* a.e. (u) for each projection
g in A, Since H is separable, A is countably generated, so that
ulz)xule)® = x  for all «x € A and all ¢ € X outside a set of
u-measure 0. Thus u(g) € A' = A a.e. (u) , and the proof of
(ii) = (1) is complete.

(1) = (ii). Let (X,M,u) and u be given so that (i) holds.

Let X = L®(X,u), and let
T 2 2
H' = He L (X,u) = L2(X,u,H) ,

. . o . 2 . .
where the identification of HelL (X,u) and LZ(X,u,H) is via

(e@f)(z) = f(r)t . Define a linearp map V :H » H' by
(ve)(g) = ¢, €€ H,
and define a map 7 of B(H) into operators on H' by
(r(x)£)(2) = ulg) x ulg)*F(z) , x €B(H), fEH',

Then we have

lfm(x)£]|2

[luixue £ %du ()
11 £l GOl aw o)

Il 2 e ?

in




so that [lm{x)ll < x|l . Since it is trivial to verify that =
is *-preserving, linear,multiplicative, and (1) = 1, = 1is a

*-representation of B(H) on H'. Let &,n € E. Then we have

<V*r(x)VE,n> fX<(1r(x)VF,)(c)?(Vn)(?;)>du(?;)

f<ul@xulz)®g,n>dulz)

<p(x)E,n> ,

so that V*mV is a Stinespring decomposition for o .

We let B = L®(X,u) and verify conditions (1) - (5).
(1) ds trivial by definition of V.

(2) By definition, if x € B(H) , f € H' then (a(x)f)(g) =
ulg)xulg)*£(z) . Thus ={x) € L(X,u,B(H)) , which equals

B(H) & L®(X,u) &bty [16,1.22.13], and (2) follows.

(3) Suppose y €n(B(H))'n (B(H)®B). Then y € L™(X,u,B(H)),
so y(z) € B(H) for ¢t € X, ¢ - y(g) 1is measurable and

ess. sup||ly(e)l] =llyll . Since y € w(B(H))', if x € B(H)

yloulx ulz)® = uldxulg)*y(g), a.e. u.

Since x + u(z)xul(z)* is a *-automorphism of B(H) a.e. (u) ,
y(gdw = wy(g) for all w € B(H) , i.e. y(g) 1is a scalar a.e. (u).
Thus y(z) = £f(¢)1 for some f € L*(X,u), i.e. y € €8B, and

(3) is proved.
(4) If f € H', ¢ € H we have

<V*F,E> = <f,VE> = ,fX<f(c),£>du(;) = <j'Xf(c)du(c),£> ,

hence «
V'f = IX flgidu(z) .

Let x € B(H), f,g € H'. Then we have
[ <(V*(xe DHENE) (V) (2)>du(z)

<W*(x®1)f,g>
<[ x £(2) du(z),fgl)dulz)> = <xV*E,V¥g> .

H




Similarly we have
<(x®1)VV¥E,g> = <V f, V¥ (x*e1)g> = <V*f,x*V*g> ,

hence (x®1)VV* = VV¥(xe1) for all x € B(H) . and (4) follows.

(5) By assumption u(z) € A a.e. (u). Hence for x € A and

f € H' we have
(r(x)E)(z) = u(dxulg)*f(g) = xf(r) = ((xe1)f)(z) ,

so #(x) = x®1, and (5) follows. Thus (i) = (ii) is proved.

Finally if (i) or (ii) is satisfied then it is straightfor-
ward from (i) to show that ¢ Dbelongs to the point-ultraweak

closure of AsA. Q.E.D.

In the finite dimensional case part (ii) of the above theorem
has a much simpler form. Recall that if n is a natural number
we denote by Mn the complex n xn matrices and Dn the diagonal

nxn matrices.

Corollary 7.2 Let ¢ € B(Mn) be a positive map. Then the follow-

ing two conditions are equivalent.

(i) There exist a probability space (X,% ,u) and a measurable

map u of X into the unitary group of Dn such that
wix) = fxu(z;)xu(c)*du(z;) , xeMn
(ii) ©(x) = x for all x € D_, and ¢ is completely positive

with a Stinespring decomposition V*»V satisfying the following

three conditions:
(1) There exists a Hilbert space X such that V:¢" > ¢"eX.

(2) There exists an abelian von Neumann algebra B on K such

that w(x) € Mnés for all x € M_ .

(3) VV* € € & B(X) .
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Proof (1) =» (ii) 1is immediate from Theorem 7.1. In order to
show the converse we have to show that conditions (3) and (5) in
Theorem 7.1 are redundant when H 1is finite dimensional.

Let (e..) Dbe the natural matrix units in M, so that e,.

1]
is a projection in Dn of dimension 1. Let fij = w(eii) . Then
J
~ i ® f.. = T.. S
fii f11 in MncsB , and X i3 1, so each fis has central
carrier 1. Let ¢ denote the canonical center valued trace on

rglaB [5, Ch. TIL,§ 4, Theoréme 3]. Then v(£,0) = T/n1-= hle s 01)

so fii ~ eji for all i,j . 1In particular f*i is an abelian
projection in IﬁléB for each i. From the proof of (ii) = (i)

in Theorem 7.1 +there is a unitary operator U € P%léES such that
Ul x®1)U* = ni{x) for x € Mn . In particular U(Mn®¢)U* = w(Mn),

so that

7(M_)' N(MeB) = U _eC)'U* n(M ®B)
n n n n
= U(C§B(K))U*rKMh§B)
= U((€eB(K)) n<Mn53)>U*

= U(CeB)U*

C®B ,
and (3) follows.

To show (5) we notice that VV® = 1ep for a projection o)
in B(K). Since V is an isometry, n dim p = dim(lep) = dim VV*
= n, hence dim p = 1. Then it follows as in the proof of (ii)
= (i) in Theorem 7.1 that ©(x) = fulz)xulz)®du(z) with ulk)e D,
a.e, (u) . 1In particular, U € (Dnéﬁl)' = DnEB(K) and 7(x) = xe1

for x € Dn . Thus (5) follows. Q.E.D.
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8. Hadamard products of matrices

As before we let Mn denote the complex nxn matrices.
If a = (uij) and b = (Bij) belong to Mn their Hadamard
product is defined as

We refer the reader to [20] for a survey on this matrix product.
If Dn denotes the diagonal matrices in Mn we shall first see
that the study of maps in Dn<aDn is the same as that of the
Hadamard product. Then we shall characterize a certain class of
matrices by means of their Hadamard product.

Let (eij) denote the usual matrix units in Mn , so if

(a,.) €M then a =% . Let 3 denote the map

Oe 2.
ij n 1] 13
in ]%1®Dn , considered as a subalgebra of BO%).

9]
"

=¥

- e

PR

Q. eCoe ®Co s
13711 % %33
Then if b = (Bij) € Mn we have

= % B = a*b,

a(b) = Zaijeiilaejj aij.ijeij

If we identify Sp D, with the set {1,...,n} , so that c(i) = Y

whenever ¢ = Xy 61%1, then for a and & as above we have

i%i4
%(i,j) = 0gs . Thus & is a positive definite function on
Sp Dn x Sp Dn if and only if a 1is positive. It is then clear
that Theorem 5.1 is the infinite dimensicnal analogue of the classi-
cal result that a > 0 if and only if ax*b > 0 for all b > 0
[20, Theorem 3.11.

In the next section we shall give an abstract characterization
of maps in A®A of the form o« s cf. §4, TFor this we shall need
a stronger property than positive definiteness, namely we shall
need that the matrices (@(Yi,yj)) considered in §5 belong to a

restricted class of positive matrices. We next give some equivalent

definitions of this class of matrices.
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Proposition &.1 Let a = <aiﬁ) be a positive matrix in Mn

such that as; = 17, i=1,...sn . Then the following four con-

ditions are equivalent:
(i) ac¢ conv{(z42j) €M : |z

(ii) There exist a continuous unitary representation u of

the n-dimensional torus T" into the diagonal matrices D

and a Borel probability measure u on ™ such that

n

a*b = [ u(z)bulz¥dulz) , beEM
m

~

0
(iii) The map b + a=#*b in B(Mn) is completely positive with

a Stinespring decomposition satisfying the conditions in Corollary
7.2 (ii).

(iv) There exists a positive definite function f on Z" such

that

f((ail"sjl,onosain—ajn)) = aij b) 15193 _<_n9

where le = 0 if kXx#*1 and 1 1if k=1.

8.2 Notation We denote by Kn the closed convex hull of the

rank 1 matrices (ziEj) such that =z =(zl,...,zn) e ™.

Proof of Proposition 8.1 We show (i)=(ii)= (iii) = (iv)=(1).

(i) = (ii). Let a € K . Let u be the continuous unitary
representation of ™ with values in Dn given by u(z) = Tz;e:s
n
where z = (21""’Zn)~€ T .
and Kn is convex and compact, its extreme boundary aKn is closed.

Since Mn is finite dimensional

Furthermore, since each matrix (ziZj) R 261;1, is of rank 1, they

are all in 8K_ . Consequently 3K = {(ziZj) : z€T"} . From con-

vexity theory [1, 1.4.8 ]l there is a Borel probability measure v
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on aKn such that

: r .
a gK,dv(g)
n
n . -
We map T onto 3K = via the map z = (zl,...,zn) > (Zizj)'

o~

Since the map b =(Bij) > ZBijeiigejj =b 1s a continuous isomor-

phism of Mn given the Hadamard product and Dn®Dn it follows
easily that there exists a Borel probability measure u on ik

such that

T = [ ulz)eulz)du(z) ,
o

hence (ii) follows.
(ii) = (iii). This is immediate from Corollary 7.2.

(iii) » (iv). By Corollary 7.2 +there exists a probability space

(X,0%,u) such that
3 = fyul) sulz)®aulz) ,

where ¢ =+ u(g) is a measurable map of X into the unitary group

of Dn . For each ¢ € X 1let fc denote the function on %"
defined by
n mi
fc(ml,...an) = :I:FU(C)i )
1=1
n
where u(g) = % u(c)ieii . Since we have chosen u so that

i=1
u(z) dis unitary for each ¢ , f is a character of Z".

Furthermore

A(1i,3) = a..

i3 [Xu(c)iﬁrfi;du(c)

S

X IC((ﬁjl —6j1,...,6. -Gjn))du(c).

m

Thus the function f on Z" defined by
f(m1,0-03mn) = Ixfg(mlgno.’mn)du(c)’

is the required function.
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(iv) = (i). Let f be a positive definite function on z" satis-

fying (iv). By Bochner's theorem [12,36 A] there exists a Borel

n n

probability measure u on Zt =T such that
n mn.-k.
- - - i i
1=1
where 2z = (Zl,...,zn) , and mi’ki € Z. In particular we have
n 61'_6.
ik Jk -
a.. = [ TT z du(z) = [_z.z.du(z).
ij T =1 k 173

Thus a € Kn , and the proof is complete.

A positive nxn matrix a = (ai4) such that ass = 1 is
. J

often called a correlation matrix, see [20]. In a forthcoming
paper J.P.R. Christensen and J. Vesterstrgm [4] give another
characterization for a correlation matrix to belong to Kn.
Furthermore they show that Kn is properly contained in the set
of correlation matrices when n > 4 . The latter result was also
known to U. Haagerup, at least for some n. I am much indebted

to Vesterstrgm for pointing out mistakes in early versions of

Proposition 8.1. In the sequel we shall need the following results
on Kn.

Lemma 8.3 Let a = (aij) € M_  be positive and Iaijl = 1 for
all 1i,j . Then there exists 2z € T"  such that %53 = Zizj'

Proof If 1 <n < 2 the lemma is trivial. Assume n > 3 and

let z; = ETE . Since a is positive, so is the 3 x3 matrix
P
/1R %3
Zi 1 Clij
e /
\Z5 45 T



Its determinant D = =2 +2Re(§izjaij) is nonnegative since the
matrix is positive. Since |z;]| = lzjl = !aijl =1, 0g5 T 2325
Lemma 8.4 Let a = (a4j) €M . Let J, Dbea finite set with

r. elements, i = 1,...,n , such that the integers {1,2,...,r}
n

where pr = X r.,
i=1 1

be the matrix (Bkl) where B = aij if k € Ji , 1 € Jj'

Then b 1is positive if a is positive, and b €K, if a€K .

is the disjoint union of the Ji . Let béEMr

Proof Assume a positive. Let (gl,...,gr) € ¢¥. Then

I Bg 5 &y z z Bl ok %1

k,1 1,3 (k,l)GJiXJj

fflaij(kéJi Ek)(le:Jj RR

which is nonnegative since a is positive. Thus b is positive.
If a € K~ then by Proposition 8.1 there is a Borel proba-

bility measure u on T such that a = fn(zizj)du(z) , hence

ags = {mziéjdu(z). For each z € TV letT b(z) be the pxp

matrix (Bkl(z)) with Bkl(z) = Zigj if k € Ji , 1 € Jj . Then

b = f b(z)du(z) . Since b(z) is positive by the first part of
T 4
the proof, it is in Kn by Lemma 8.3. Thus b € Kn by Proposition 8.1.

It is a well known and a very useful fact that a self-adjoint
n*n matrix is positive if and only if all its submatrices symme-
tric about the diagonal have nonnegative determinants. A natural
analogous problem is: Find an integer k depending on n and

complex functions fl,...,f in n? variables such that a corre-

I

lation matrix a = (aij) belongs to Kn if and only if

fl(all’ sooo,ann) Z 0 fOr‘ l = 1’000,k0
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9. A Bochner theorem for positive maps

In this section we study the problem of when a map @9€ AgA
is of the form @ cf.s4, where u 1is a Borel probability
measure on a locally compact abelian group. For this we shall need
a stronger condition of positive definiteness of ¢ than the one
used in §6. Recall from 8.2 that

- o~y - " . - n
Kn = conv{(zizj)ebgl.z -(zl,.,.,zn)EfF} .

Definition 9.1 Let X be a set and f a complex function on

XxX. We say f 1is strongly positive definite if whenever

\SEREREY N € X then the matrix (f(yi,yj)) € Kn . If (X, V)
is a o-finite measure space we say f € L(XxX,vxv) 1is

essentially strongly positive definite if there is a set N € 0L

of v-measure zero such that f 1is strongly positive definite on
(XNN) x (XNN) .

In the above definition we have intrinsically assumed that
f(y,y) = 1 for all (respectively almost all) vy € X . However
from Lemma 5.4 we know that if ® € A®A 1is positive then

®(1) = 1 if and only if @(y,y) = 1 for all y € SpA .

Remark 2.2 If A and B are abelian C¥*-algebras such that

AcB and ¢ € A®A 1is such that & € C(SpAxSpA) is strongly
positive definite then & considered as a function in C(SpBxSpB)
is also strongly positive definite. Indeed, let 1 denote the
inclusion map of A e A into B ® B. Then its adjoint map re-
stricts to a continuous map r of SpB®B into SpA®A such
that if f € C(SpA®A) then 1(f)(y) = f(r(y)) for y €SpBeB.
If ¢ considered as a function in C(SpAeA) is strongly posi-

tive definite it is thus clear that 1($) , which is & considered




as a function in C(Sp Be B) is also strongly positive definite.
A consequence of this remark is that we may always assume A is a
von Neumann algebra in order to study maps in A ® A which have
strongly positive definite Gelfand transforms.

If (X,0l,v) is a o-finite measure space and f,g € L"(X,v)
we identify the function f ® g in the C*-tensor product
L¥(X,v) ; L®(X,v) with the function (feg)(y,y') = f(y)g(y') in
L®(XxX,vxv) , and thus imbed L®(X,v) & L¥(X,v) isometrically into
L®(XxX,vxv) . We consider this imbedding as an inclusion, so we

*

can talk about functions in L%®(X,v) ® L®(X,v) as essentially

strongly positive definite.

Proposition 9.3 Let A be a countably generated nonatomic

abelian von Neumann algebra. Let T be the compact abelian

group which is the countable infinite product of the circle group
T with itself. Let (X,(l,v) be a o-finite measure space such
that A is identified with L™(X,01,v). Let £ € L(X,v) &L (X,v)

be essentially strongly positive definite. Then we have:

(1) There is a continuous unitary representation S of TY
into the unitary group 7 (A) of A such that the function

u > <y,S(u)> (= S(u)(y)) is measurable for each «y € X.

lal

(ii) There is a state w on the abelian b*-algebra of bounded

measurable functions on TY such that

£(y,7") = w(<y,S(uP <Y ,5(W>) a.a. y,y' € X.

Lemma 9.4 With the assumptions and notation of Proposition 9.3
let N Dbe a measurable set of v-measure zero such that f is

strongly positive definite on (XSNN) x (X~N). Then there exist
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a sequence ( &%R of measurable partitions of X~ N and a
sequence (y(€ . p in X~N with the following properties:
15 *3 n

(i) P_ = {p e; €{0,113 .

n (e]?...,en)'
(ii) P(el,...,en,O) U P(elg...,en,l) = P(el,.. s€_) for all Ei ¢
(1i1) Y(sl,...,sn) € P(el,...,an)'

(iv) If e-= (el,.u,en) s M = ("1"”’nn) then the functions

f = 'z z £y 4y ) xpo ® X
N e{0,11" nefo,1) 0 €N TR TR

are strongly positive definite, where Xp® Xp denotes the

characteristic function of the set ExF < XxX.

(v) ﬁfn—me-+ 0.

Proof Let &6§>0. Considering X~N instead of X we may

assume f is strongly positive definite. Since the algebraic
tensor product L%(X,v)® L"(X,v) is norm dense in
L®(X,v) & L®(X,v) and each function in L%(X,v) is a norm limit

of simple functions, we can find a measurable partition

{Pl""’Pn} of X of sets of positive measure and Xij € C,
i,j = 1,...,n such that if ¢' = Exij xpie>xpj, then
I[£=¢*]l_<6/2 . Deleting a set of measure zero we may assume
sup|fly,y'") =¢'(y,y'")| <8§/2 . Thus if y; € P; ‘then

triangle inequality yields || ~f|l_<&§ . Since f 1is strongly

positive definite an easy application of Lemma 8.4 shows that y

is strongly positive definite. Furthermore we may split up the
oM

sets Pls..,an SO we may assume n =

for some m. A stan-

dard inductive argument now yields the sequences (G?n) and (fn)
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in the lemma, using the assumption that A is nonatomic. Q.E.D.

Proof of Proposition 9.3  Let 53n and £ be constructed as in

n © i o
Lemma 9.4, Let Y_=THO0,1} and Y=THO0,1} (= (0,13

) . Let B8
n

be the continuous imbedding

B Y > Y by Bn&ﬁau,,

n n ) =(El’“"%f0°0“°' ) .

€
n

Let H_ = TI T _ , where T_ =T is the circle group, and let
n yey, y v
H, have the = product topology. Let H = 1T'T§ , also with the
veEY
product topology. Define a continuous imbedding a_ :H - H by

e

(oan(u))(€ y T U

e o/ \E s o€
13625 Qn)

13..
Let Y, :H ~»> Hn by Yn(U) = uoB . SO that Yn(u)(elw..ae ) T

u(el""’enfosoa...) Then we have

\ -
yn(ocn(u/) = u for uEHn

We define a map Tp :Hn - U (A)Y by

T () = z u X
n (Elgonogen) (519"'5En) P(El,gougen)

where we note that W (A) is identified with the L®-functions

on X into the circle group T . Then u; > u in H implies

=

. . - ® . .
n(u;) > T (u) pointwise as L -functions, or equivalently T/

is continuous, when Hn has the product topology and “7{(A) the

strong topology.
Define the map S _:H » U (A) by Sn = Tn=yn . Then 8_

is continuous and easy computations show they are extensions of

each other in the following sense: if n>m and =am(v)ﬁ

vEIﬂn then Sn(u) S _(u) = Tm(v),

m
We now define a map S :H » U(A) which extends all the S

cH . w  {a_(H_)) i n ir asing seque -
Let u€H Now an(Hn) nen 1S an increasing sequence of sub

n°



groups of H with union dense in H, and if u" = un(yn(u))

then u" € an(Hn) and u" »u in H. Let vy € X. From the

construction of the partitions @% , there is a sequence

(e_,¢ } in Y such that y € P for all n. A
1 (el, )

25!"
straightforward computation shows that Sn(un)(y) =

-
’*n

n .
A i Cl L. e A [} D 1
u(el,...,enﬁoqﬂ,...) » SO that gn(Ll () 1%31552,,..,) efine
S(u) as the pointwise limit of the functions Sn(un) . If we

write the value of S{(u) at vy, as <y,S(u)> we have shown
that <y,S¢u)>» = lim<y,8n(an(yn(u)))> , hence the function
u -+ <y,S{u)> is a pointwise 1limit of continuous functions on H
for each y € X. 1In particular it is a measurable function on H.
Furthermore, since Sn(un) + S(u) pointwise, Sn(un) + S(u) in
the strong topology. Thus if £,n € LZ(X,v) 5 <Sn(un)£,n> -
<S(w)t,n> for all u ., hence the function u =+ <S(u)t,n> is the
pointwise limit of continuous functions hence is measurable.

Since L%(X,v) is countably generated Lz(ng) is a separable
Hilbert space. Also it is clear from their definitions that Yo
and Tn are multiplicative, hence so is Sn . Thus S being a
pointwise limit of the Sn is multiplicative, hence S 1is a measur-
able unitary representation of H on the separable Hilbert space
LZ(X,v) . But then S 1is strongly continuous [8, p. 347]. Thus the
proof of part (i) in the proposition is complete.

To shew (ii) we write e for the element (€19°“"€n) in Yn .

Then fn defines a strongly positive definite function g, on

7 » - d = \ . .
Yn xln by g, * . n?Y L(YE,Ynjée ®6n , Where Ge is the point
measure with value 1 at €. By Proposition 8.1 there is a

Borel probability measure v, on Hn such that

g, (e,n) = an <e,u><ﬁjﬁsdvn(u>.



If y €P v' € Pn then fn(y,y’) = gn(s,n) , and <e,u> =

€ s
<y,Tn(u)> s, <n,u> = <Y'3Tp(u)>. Thus we have
1y = f Ty
£ (rsy') = é <y, T (W) ><y T, T (u)>dv_(u) .
n
Let v' = v °a; . Then v' is a Borel probability measure on H .

<

61""’€n) , and u € Hn then

<y,S(0Ln(u))> = W,Sn(an(u))>= <Y,Tn(u)> .

Thus

f (y,y") = f<y,SCu)><y ' ,S(w)>dv' (u) .
n N n

Let w be the state

mn(f) = éf(u)dvﬂ(u)

on the abelian C*-algebra A of bounded Borel measurable functions
on H. Let w be a w*-limit point of the sequence (wp) in the
state space of A , say the subnet (w, ) converges to w in the

o

w*-~topology. Since the functions u =+ <y,S(u)> belong to L/F we

have for almost all y,y' € X,

1

fly,y') = 1im £ (y,v")
o [0}

= lim~&<YSS(u)><¥’,S(u)>dvﬁ (u)
o [0}

= 1lim o
o

= w(<y,S(uk»<y',5Cu)>) .

n

{(<y,S(w)><y",Su) >)
o

Since H can be identified with TY we are through.

Corollary 8.5. Let X be a separable compact Hausforff space and

v a finite nonatomic regular Borel measure on X with support X.

Let f € C(XxX) be strongly positive definite. Then there are a



continuous unitary representation S of T% with values in

® i * A&

L (X,v) and a state ® on the abelian C¥-algebra of bounded
measurable functions on T” such that the functions u =+ <y,S(u)>

are in 4 for all vy € X and such that

f(.Y’.Yi) - w(<Y,S(u)><y',Szu)>) a.e. (\)) .

Proof  Since support v is X,C(X) 1is isometrically imbedded in
L®(X,v) , and f considered as an element of L7 (X xX,v xv) is
strongly positive definite. If A 1is the abelian von Neumann
algebra L”(X,v) acting on LZ(X,v) by multiplication, then an

application of Proposition 9.3 yields the desired result.

Remark In Proposition 9.3 and Corollary 9.5 we have assumed that
the abelian von Neumann algebra in question is nonatomic. This is
not important. The general case can be taken care of as in the

proof of Theorem 9.6 below.

We are now in position to prove the main representation
theorem for positive normalized maps in A ® A, which shows that
such maps which are strongly positive definite, are of the form
a as in Lemma 4.4, where the group is a closed subgroup of the
infinite dimensional torus T® . This result is an answer to our
initial problem, namely to obtain a deeper ihsight into the rela-
tionship between spectral theory of linear maps of B(H) and
Fourier analysis. It shows in particular that function calculus
for such a map ¢ € A®A corresponds to function calculus for
measures in the measure algebra M(G) . We denote by Adu the

automorphism u e u®* of B(H) when u is a unitary operator.




Theorem 9.6 Let A be an abelian von Neumann algebra acting on a

separable Hilbert space H.. Let ¢ € A®A , and assume ® 1is strongly
positive definite. Then there are a compact abelian group G, a
continuous unitary representation S of G with values in A

and a Borel probability measure u on G such that

w = [AdS(uwdnu) .
G

Proof We first assume A 1is nonatomic, and we identify the Gelfand
transform map of A ® A on SpA®A with the canonical imbedding
Ad®A » A;A . If A is identified with L7(X,v) for some o-finite
measure space (X,0(,v) an easy argument using Lemma 9.4 shows

that @ considered as an element of L (X xX,v xv) is essentially
strongly positive definite. Thus by Proposition 9.3 there are a
state w on the abelian C*malgebra u4 of bounded measurable
functions on TY and a continuous unitary representation S on

TY with values in A such that

(8) O(y,y") = wi<y,Su><y',S(u)>) a.a.y.y' € X.

Let by the Riesz representation theorem u be the Borel probability

w .
measure on T such that

4

w(f) = [ flwdpla)
T(l)
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for f a continuous function on T® . We shall show that for

each p € B(H), , x € B(H) we have

(9) p(@(x)) = f(up(Su><Su*)du(u).
T

n

X X..e.e®e. with
i,j=1 13+

Suppose first ¢ is of the form ¢ =
€45...5€ an orthogonal family of projections in A with sum 1.
Let B be the abelian C*-algebra they generate. Then B is a
finite dimensional subalgebra of A . From the proof of Proposition

9.3 we see that the formula (8) is an integral
o(y,y") = fw<y,Su><y‘,Su>du(u) R
T
where the support of u 1is in a closed subgroup Hy of T iso-

morphic to a finite product of T with itself. Thus (8) can be

rephrased as

x (o) f mx(Suc&Su*)du(u)

III
for all characters x of Be B. Since the characters span
(B@Bf*', and (BeB)*¥ is the set of restrictions of functionals

in (A@A)* to Be B it follows that

wle) = [ w(Su e sSu®)du(u)
T(D
for all w € (ABA)* . If w(p) = ple(x)) we see that (9) holds.

For ¢ as in the theorem we can just as in Lemma 9.4 find a

sequence (@n) of positive maps in A& A of the form

<yl N _ n noo_ o ol .

@ = inj e;®e5 such that ;5 = 1, and l,cpn ol » 0. Let
O (y,y'") = [ <y, Sw><y’,Swdu_(u) a.a. vy,y'€ X.
n a n

L

As in the proof of Proposition 9.3 there is a subnet (un ) of
o




(un) which converges to u in w*-topology. Thus if p € B(H),

and x € B(H), u + p(SuxSu*) 1is continuous on T¥ , hence

p((x)) = 1lim p(q:n (x)) = lim |

p(Su x Su®)du. (u)
Ny a ng T¢ g

= [ p(SuxSu®)dulu) .

W
£

In the general case when A may have minimal projections
let K be a separable infinite dimensional Hilbert space and B
a nonatomic abelian von Neumann algebra acting on K . Then the
von Neumann algebra tensor product C = A®B of A and B acts
on He K , and is a nonatomic abelian von Neumann algebra. If A
is identified with the subalgebra Ae € of C we have
© € Ce®CcB(B(HeK)) . By the first part of the proof there is a
probability measure u on T* such that o = Lw)AdS(u)du(u),
where Ad Su € Aut B(HeK). In order to complete i the proof of the
theorem we first show that S(u) € A for each u € TY except for
a set of u-measure zero. If not there is a measurable set Ec T"
of positive measure such that u € E implies Su € A, and there
is a one dimensional projection p on K such that Su(1ep)Su* #1ep
for all u € E. Let F = {u€T”:Su(isp)Su* +18p} . Then F o E
and is measurable with positive measure. Let w be a faithful
normal state on B(H) and p be the vector state on B(K) 5
p(x) = <x£,£>, where ©pE = £ . If u€ T and o ® p(Su(1ep)Su®) =1,
then Su(1ep)Su* > supp(we®p) = 1®p, so if u € F, then
Su(1ep)Su* > 1ep . Therefore two possibilities may occur. Either
w ®p(Su(1ep)Su*) < 1 for u in a subset Fq of T with positive
measure, or if nct Suf1ep)Su* > 1ep for all u € F except on a

set of zero measure. Since © € A@A < Ce®C and 1ep belongs to

the commutant of A, ©(l1ep) = 1 ep . Thus in the former case
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—
n

wep(lep) = weplpliep))

= %ﬂﬂ>®p(8u(1®p)8u*)du(u)

A

[, 1dw =1,

a contradiction. In the latter case we may find a normal state n
on B(HeK) such that n(Su(lep)Su®*) > n(1ep) on F except on a

set of zero measure. Since n(Su(1®p)Su*) = n(1ep) for u € ™-F

we have
n(1ep) = n(e(1ep))
= ,fwn(Su(1®p)Su*)du(u)
T
> [ n(1ep)du = n(lep) ,
T(.U
a contradiction. Thus Su € A for wup-almost all u € v | Let
6 = s T (UA)) . Then G is a compact abelian group and 8|G is
a continuous unitary representation of G into U (A) . Since

supp 1 <€ G we are through.

Remark 9.7 We have not succeeded in proving a direct converse to

Theorem 2.6 , i.e. if ©vw € A®A 1is of the form o with p a
Borel probability measure on a compact abelian group G , then @
is strongly positive definite. The reason for this is that it is

not clear whether

(10) & (y,y") = [ o _Cy,y")du(g) .

H e g
It is clear that if &u is of this form and YqseersY, € SPA
then

s oY ))d“(?_‘;) 5

(au(Yij‘Yj)) = (I i2¥y

o (s v ddu(g) = [ @ (v
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and since each matrix (&g(visvj)) ia an extreme point of Kn R
(&u(yi,yj)) € K, hence &u is strongly positive definite.
Conversely, if ¢ € A®A 1is such that & 1is strongly positive
definite, so by Theorem 9.6 ¢ = o s then (10) holds. Indeed, we
assume A nonatomic, and leave it to the reader to use the tech-
niques of the proof of Theorem 9.6 to extend the argument to the

general case. Then from the proof of the theorem there exists a

sequence @ = ngj e?@ eg in the algebraic tensor product AeA
such that jlo_-ofl > 0 and (A?j) € X for some m. Turthermore
= = {
Py aun o ug dun(g),

hence by the first part of the proof of the theorem

wn<y,y') = fag(y,Y‘) dun(g).

Let f v (g) = a_(y,y'). Then f y 1s a continuous function
YsY g Y
on G . Since a subnet (un ) of (un) converges to u in the
B
w*-topology,
@ns(y,y') = fIYsy,(g)dunB(g) - ffY’Y,(g)du(g).

Since also @n Cysy') = @ly,y') , (10) follows as asserted.
B

Corollary 9.8 Let A be an abelian C*—algebra acting on the separable

Hilbert space H. Let ¢ € A®A be such that @ is strongly
positive definite. Then ¢ is an extreme point of the convex
set K = {p €B(B(H)) : ¢ is positive, y(1) =1} if and only if

¢ 1is a #*-automorphism of B(H) .

Proof It follows from [18] that every *-automorphism is an ex-
treme point of K. The converse is an immediate consequence of
Theorem 9.6 and the fact that if u is a point measure then ¢ is

a ¥-automorphism.
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Corollary 9.9 Let A be an abelian C*-algebra acting on the

separable Hilbert space H . Let ® € AeA be such that & is
strongly positive definite. Thus ® has a Stinespring decompo-

sition satisfying the conditions of Theorem 7.1 (ii).

10, Comments

There are several problems left open in the previous para-
graphs. Some we have not touched because we feel they are outside
the scope of the paper. To this class of problems belong the study
of unbounded maps and the problem of maps of general von Neumann
algebras into themselves, rather than B(H) . For the latter
problem there are two obvious approaches. One is first to perform
an analogous study of maps of semi-finite von Neumann algebras
using the trace in a way similar to ours, and then to try to use
Tomita theory to modify this approach to type III algebras.
Another approach is to follow the line of the present paper and
then to consider the von Neumann algebras in question as invariant
subspaces of the maps. This approach has the drawback that it
makes it only possible to study maps in B(M) , M a von Neumann
algebra, which have nice extensions to maps in B(B(H)) .

There is one concrete problem we have left open. In both
Proposition 5.5 and Lemma 6.2 we have results to the effect that
if ¢ 1is operator normal and ©@(1) = 1 then Tr(w(x))= Tr(x) for
all x € T . Is this true for all (regular) operator normal maps
@ such that ©(1) =1 and l!J€ B(I)? A possible approach is
to generalize the result in [19] and then approximate 1 ultra-

weakly by Hilbert-Schmidt operators x such that o(x)-x is

"small®™,




The problem of computing norms seems to be extremely difficult.
If ¢ 1is positive, regular, operator normal, and (1) = 1, then
1T € ogey (0120 by Corollary 3.4, hence by Lemma 3.2 lloll,= [lo|l=1 .
It is clear from Corcllary 5.3 how this is related to the fact that
if fe 1@ and f is positive definite, then [/f], = £ .
For other maps, it is as for Fourier transforms of functiens, diffi-
cult to know the norm of ¢ if |l¢|l, is known. A consequence of
this is the limited set of functions we can use if we want to do

functional calculus for an operator normal map ¢ .
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