
METHODOLOGY ARTICLE Open Access

Identifying elemental genomic track types and
representing them uniformly
Sveinung Gundersen1, Matúš Kalaš2,3, Osman Abul4, Arnoldo Frigessi5,6, Eivind Hovig1,7,8 and Geir Kjetil Sandve8*

Abstract

Background: With the recent advances and availability of various high-throughput sequencing technologies, data
on many molecular aspects, such as gene regulation, chromatin dynamics, and the three-dimensional organization
of DNA, are rapidly being generated in an increasing number of laboratories. The variation in biological context,
and the increasingly dispersed mode of data generation, imply a need for precise, interoperable and flexible
representations of genomic features through formats that are easy to parse. A host of alternative formats are
currently available and in use, complicating analysis and tool development. The issue of whether and how the
multitude of formats reflects varying underlying characteristics of data has to our knowledge not previously been
systematically treated.

Results: We here identify intrinsic distinctions between genomic features, and argue that the distinctions imply
that a certain variation in the representation of features as genomic tracks is warranted. Four core informational
properties of tracks are discussed: gaps, lengths, values and interconnections. From this we delineate fifteen
generic track types. Based on the track type distinctions, we characterize major existing representational formats
and find that the track types are not adequately supported by any single format. We also find, in contrast to the
XML formats, that none of the existing tabular formats are conveniently extendable to support all track types. We
thus propose two unified formats for track data, an improved XML format, BioXSD 1.1, and a new tabular format,
GTrack 1.0.

Conclusions: The defined track types are shown to capture relevant distinctions between genomic annotation
tracks, resulting in varying representational needs and analysis possibilities. The proposed formats, GTrack 1.0 and
BioXSD 1.1, cater to the identified track distinctions and emphasize preciseness, flexibility and parsing convenience.

Background
Recent ChIP and high-throughput sequencing technolo-
gies are currently generating functional annotations at
unprecedented speed and resolution. The availability of
detailed protein binding locations, DNA methylation,
histone modifications, DNA variations of individuals,
and more for different tissues and conditions, provides
the basis for a plethora of representational formats of
genome wide data. Adding to this, new technologies for
assessing the three-dimensional structure of the DNA,
such as Hi-C [1], introduce the concepts of distance
measures between different parts of a genome, opening
up a whole new set of representational complexity.

Several efforts have been attempted at defining general
formats for the textual representation of genome anno-
tation data. One such format is the General Feature For-
mat (GFF), currently in version 3 [2]. Other generic
formats are provided in connection to the UCSC Gen-
ome Browser [3], the Browser Extensible Data format
(BED), bedGraph and WIG, among others. One reason
for the different formats is that different properties are
required, often in order to support information related
to specific domains, technologies or experimental meth-
ods. Consider for instance the BED15 format by UCSC.
This is an extension of the BED format, adding 3 col-
umns in order to represent microarray expression data
[4]. Other examples are the Gene Transfer Format
(GTF) [5] for gene tracks and the Genome Variation
Format (GVF) [6] for DNA variant files, both based on
the GFF format.

* Correspondence: geirksa@ifi.uio.no
8Department of Informatics, University of Oslo, Blindern, 0316 Oslo, Norway
Full list of author information is available at the end of the article

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

© 2011 Gundersen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:geirksa@ifi.uio.no
http://creativecommons.org/licenses/by/2.0

Another reason behind the proliferation of formats
seems to be an issue of practicality. Certain types of
genome annotations, or genomic tracks, are more effi-
ciently and elegantly represented by certain data for-
mats. Consider a track of DNA melting temperatures, i.
e. an algorithmic prediction of the denaturation tem-
perature for each base pair of the genome, e.g. [7].
Representing such a track in the Wiggle format (WIG)
would take around 20 GB for the human genome. The
exact same information could be represented in the bed-
Graph format, but the file size would then expand to
around 100 GB. In this case, the file would contain
much redundant information, such as repeated chromo-
some declarations, and start and end positions that are
always increased by one for each line. The help pages at
the UCSC Genome Browser explicitly recommend the
WIG format for “dense, continuous data” and bedGraph
for “continuous data that is sparse or contains elements
of varying size” [8]. From this it seems that, at an
abstract level, there may exist fundamental distinctions
between track data, such that warrants the use of parti-
cular textual formats. We are, however, not aware of
any systematic discussion of such distinctions in the
literature.
Expanding on this notion of systematic distinctions

between track data, it seems that such distinctions also
warrant differences in which analyses are applicable. It
is for instance meaningful to ask whether SNPs fall
inside exons, but it is not meaningful to ask whether
SNPs fall inside melting temperature. Conversely, one
can ask whether SNP locations have high melting tem-
peratures, but not whether SNPs have high exons. This
indicates that there may be some form of abstract gram-
mar, where each track defines a set of informational
properties, and each analysis only makes sense on cer-
tain sets of informational properties for the tracks in
question.
In this paper, we start with a clarification of basic

nomenclature. We then discuss how the presence of dif-
ferent core informational properties of a track can be
used to delineate fifteen different types of tracks at an
abstract level. The fifteen track types encompass most
existing data formats, in addition to open up for data
sets making use of cross-positional linking, e.g. data sets
based on the three-dimensional structure of DNA. We
continue by reviewing common, generic formats, in tab-
ular, XML-based, or binary form, and discuss how they
fit with the proposed track types. This is followed up
with the proposal of a new tabular format and an
updated XML format for track data. These formats
build closely on previous ones, but obey the distinctions
between types of tracks. Finally, we discuss supporting
tools for the proposed formats, including a code base
supporting the storage of tracks in efficient binary

format, illustrating how the formats can be pragmati-
cally applied in high-speed analyses.

Results and Discussion
Definitions
A reference genome may be abstracted as a line-based
coordinate system. To build on this powerful metaphor,
we use the term genomic track (or, in short, track, as
used by the UCSC Genome Browser [3]) to refer to a
series of data units positioned on such a line. The basic
informational unit is called a track element, that is, a
unit of data with associated genomic coordinates that
may or may not be explicitly specified. A track element
is to be thought of as a mathematical or implementa-
tional abstraction, in tabular formats typically repre-
sented as a single data line. Although the concept of
genomic tracks is most useful for describing data that
refer to a single reference genome, the meaning carries
easily over to datasets referring to multiple reference
genomes, or to contigs or scaffolds of partially
assembled genomes.
We further define a genome feature as a track element

or set of track elements comprising a biological unit, e.g.
a specific gene, of a certain feature type, e.g. genes. The
term biological unit is to be understood broadly and
should also include experimental results, algorithmic
predictions and similar concepts, such as defined under
sequence feature in the Sequence Ontology [9]. Note
that a feature, e.g a gene, may be composed of several
track elements, e.g. representing the exons of that gene.
Often, a complete genome annotation, i.e. features of
many feature types connected to a genome, are collected
into a single file. This complicates the comparison of
different feature types, creating the need for filtering
such a file for the appropriate feature types prior to ana-
lysis. On the other hand, restricting a track to contain
only a single feature type may reduce the information.
For example, the connection between genes and their
exons is lost if the two feature types are stored as sepa-
rate tracks. We thus define a genomic track more speci-
fically as set of track elements of one or several feature
types, defined over an appropriate genome-scale coordi-
nate system, where the set of feature types constitutes a
pragmatic unit for analysis. A genomic track is then, in
our view, defined in relation to an analytical purpose,
whether explicitly defined or only suggested; this, in
contrast to a data file used mainly for storage, which
should be considered more as a flat file database.

Core informational properties of tracks
A genomic track consists of a set of track elements and,
for each element, describes a set of properties, such as
an identifier, a quality score or the method used. The
positional information of a track element is obligatory

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 2 of 17

for any genomic track and can be interpreted generically
across tracks. The position of a track element is often
encoded as a pair of start and end coordinates. How-
ever, when looking at genomic tracks from the perspec-
tive of information content, we find it fruitful to identify
the positional information equivalently as the lengths of
the track elements and the gaps between them, both
measured in base pairs. As the positional information is
essential and generic, we refer to gaps and lengths as
core informational properties of the track.
A genomic track may also carry a main value asso-

ciated with each track element, for instance the mea-
sured expression of a gene or the copy number of a
genomic region. We thus include values among the core
informational properties. This main value can be a num-
ber (e.g. the expression of a gene), a binary value (e.g. if
the element is considered case or control), a category (e.
g. the feature type), a character (e.g. the allele variant of
a SNP), or a list of values (e.g. gene expression for a set
of patients).
Lastly, a track element may be connected to other

track elements located at different locations on the gen-
ome. This is critical for three-dimensional tracks, as
locations that seem far apart when the DNA is
unwound, could still be co-located in the nucleus. The
corresponding core informational property of a track is
then interconnections. The interconnections, or edges,
are either directed or undirected, possibly with an
attached weight value.

Fifteen genomic track types
All four core informational properties (gaps, lengths,
values, and interconnections) will not always be defined
for a track. Consider, for instance, a track of viral inser-
tion points on a genome. As it makes no sense to talk
about the length of an insertion point, such a track will
not have the lengths property defined. Similarly, a track
of single nucleotide polymorphisms (SNPs) will only
contain elements that refer to single discrete positions
on the genome. The track elements will, however, have
associated values denoting the respective alleles. Con-
sider also the DNA melting map, a track where a tem-
perature value is assigned to every base pair of the
genome [7]. As temperature values, i.e. track elements,
are defined for every consecutive position of the gen-
ome, there is never any gaps between the elements.
Also, the elements refer to single base pairs and have no
lengths. Thus, a track of DNA melting will have neither
the lengths nor the gaps property defined, only the
values property (denoting temperature).
Four core properties, being defined or not, gives 24 =

16 distinct combinations. Assuming that a genomic
track always consists of track elements with the same
core properties, we can distinguish tracks on the basis

of which combination of core properties are defined.
For one of the sixteen combinations, no core properties
are defined. It is thus of no interest, hence reducing the
set to fifteen combinations.
Looking closely at the fifteen combinations, an inter-

esting pattern appears. Figure 1 shows an illustration of
the informational contents of each combination. As
every combination denotes a particular geometric con-
figuration, strikingly distinct from the others, we refer to
tracks of the different combinations as having different
track types. The concept of dividing genomic tracks into
track types was partially introduced in [10], but has now
been expanded from five to fifteen track types.
Looking at the top left of Figure 1 and going down-

ward, we start at the base case where the only core
informational property is the gaps between the track ele-
ments. In this case, each track element represents an
exact base pair location on the genome, denoting e.g.
viral insertion sites. We call this track type Points (P).
Adding informative values to this case, e.g. associating
SNPs with allele frequencies, we get the track type
Valued Points (VP). In the next two cases, the lengths
property is added, resulting in the track types Segments
(S) and Valued Segments (VS). Segments are probably
the most common track type of existing tracks, repre-
senting common features such as genes or exons.
Valued segments could, for instance, denote genes with
associated expression levels.
Moving on, we remove the values and gaps properties,

leaving only lengths. Such tracks consist of segments
covering all base pairs of the genome, i.e. a partition of
the genome into potentially unequal pieces. Hence, the
track type is called Genome Partition (GP). Basic exam-
ples of this track type are the partition of a genome into
chromosomes or cytobands. Adding a value to each part
of a partition creates a Step Function (SF), covering the
whole genome with values. Basic examples of such
tracks are tracks denoting results of tiling microarrays,
providing that any gaps or overlaps between the tiles are
ignored. Removing the lengths core property, the step
function track is transformed into a track of type Func-
tion (F), where every base pair has an associated value.
Examples of function tracks are tracks with close depen-
dency on the genome sequence, such as GC content
tracks, or predictions of melting temperatures, as out-
lined above. We call the seven track types outlined here
for basic track types.
The fourth core informational property, interconnec-

tions, can be envisioned as an orthogonal extension to
the previous discussion. Adding interconnections, or
edges, to the seven track types previously outlined (first
column in Figure 1) defines linked versions of the same
track types, e.g. Linked Segments (LS) or Linked Step
Function (LSF) (second column of Figure 1). Although

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 3 of 17

Figure 1 Illustration of the geometric properties of the fifteen track types. The base line is a genome, or a sequence, on which the tracks
are defined. Vertical lines represents positions, while horizontal lines represent the lengths of the track elements. Gaps are thus illustrated by any
empty areas between the elements. Values are represented by the height of the vertical lines. Interconnections are represented by arrows, the
thickness of which correspond to the weight of the edge.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 4 of 17

tracks that include interconnections are presently in
little use, enough datasets exist to warrant the defini-
tion of all the linked track types, at least for complete-
ness. For example, the recent Hi-C dataset of Dekker
et al. [4] partitions the genome into 1 Mbp regions
(for the genome-wide case), where each pair of regions
has an associated proximity value. This dataset is then
of type Linked Genome Partition (LGP), where every
region has a weighted edge to all other regions. More
traditionally, one could envision a gene/protein path-
way being represented as gene segments, perhaps also
with associated expression data, being linked together
with directed edges representing associations (binding,
activation, inhibition, etc.). This would be of type
Linked Valued Segments (LVS). Note that a track type
is considered linked if at least some track elements are
interconnected.
To complete the picture, a last track type needs to be

defined. If only the interconnections core property is
defined, track elements do not have gaps between them,

lengths, or values. All base pairs are then track elements,
with each base pair connected to other base pairs by
edges, hence the name Linked Base Pairs (LBP). Think-
ing in term of graphs, all base pairs will thus be nodes,
although not all nodes need to have any edges. This, in
contrast to the track type linked points, which limits the
nodes to a specified set of points. The track type Linked
Function (LF) is similar to linked base pairs, only adding
an associated value to each base pair (node). The linked
base pairs track type is mostly suggestive at this point,
but at least theoretically, this would be the track type of
the perfect three-dimensional track, mapping the dis-
tance between all base pairs of a genome. Another
example of a track of this kind is the representation of a
randomization of a genome, with each edge representing
the positional relocation of a base pair. We refer to the
eight linked track types as the extended track types. Fig-
ure 2 shows an overview of the relations between the fif-
teen track types and the combination of core
informational properties defined.

LBP LGP

LSLP

LF LSF

LVSLVP

Va
lu
es

Lengths

Gaps

0

1

0 1

GP

SP

F SF

VSVP

Va
lu
es

Lengths

Gaps

0

1

0 1

0

1

0

1

Inter-connections

1

0

Figure 2 Four-dimensional matrix mapping the relations of the fifteen track types. Each dimension represents the exclusion (0) or
inclusion (1) of one of the four core informational properties: gaps, lengths, values and interconnections. The track type abbreviations in the
top-left box are: Genome Partition (GP), Points (P) and Segments (S); in the bottom-left box: Function (F), Step Function (SF), Valued Points (VP) and
Valued Segments (VS); in the top-right box: Linked Base Pairs (LBP), Linked Genome Partition (LGP), Linked Points (LP) and Linked Segments (LS); and
in the bottom-right box: Linked Function (LF), Linked Step Function (LSF), Linked Valued Points (LVP) and Linked Valued Segments (LVS). The track
types with white background (with gaps) are the sparse track types, while the ones with grey background (without gaps) are the dense track
types. See Figure 1 for a geometric illustration of the track types.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 5 of 17

Formal model of genomic tracks
Formally, we base the discussion of track types on a spe-
cific mathematical model of genomic tracks. We treat
the genomic coordinates as forming a discrete metric
space on the natural numbers, defined by the discrete
metric d:

d(a, b) = |a− b| + 1, a, b ∈ N (1)

The genomic coordinates in the model are thus iso-
lated points. A segment or interval starting at a position
a and ending at b is defined as the subset S of natural
numbers where:

S(a, b) = {s ∈ S | a ≤ s ≤ b ∧ b > a} (2)

The length of a segment is defined by the metric d,
and is equal to the number of elements in the set. The
length of the segment S(1, 3) = {1, 2, 3} is thus d(1, 3) =
|1 - 3| + 1 = 3 = |S(1, 3)|. Transferred to the biological
domain, the length of a segment is the number of base
pairs covered by the segment. The end position of a seg-
ment must be larger than the start position. We thus
exclude segments of length 1 from the model, as such
segments would be exactly equal to a point, e.g. the set
of a single number:

P(a) = {p ∈ P | p = a} (3)

From the set notation follows that a point P can be
precisely defined as falling inside a segment S if and
only if P ⊂ S. Two segments, on the other hand, may
partially overlap. A function is precisely defined as a
mathematical function from genomic coordinates to
corresponding values, e.g. f = N ® ℝ. A step function is
similarly a function from disjoint intervals covering the
entire domain to corresponding values.

Analysis dependency on track types
As each of the fifteen track types implies a set of core
informational properties, a track type also poses a limit
to which analyses are appropriate for a track. It makes
sense to calculate the base pair coverage of a track of
genes (type: segments), but not for a track of SNPs (type:
valued points), which should instead be counted. This

logic also carries on to analyses applied to more than
one track. Consider, for the sake of simplicity, only five
of the fifteen track types. If we select two tracks, each of
one of these five types, we get 15 combinations, pro-
vided that the order of the tracks is not important. Each
of these combinations could then define a set of appro-
priate analyses. Table 1 provides analysis examples for
many of the pairwise combinations of the five track
types points, segments, function, valued points, and
valued segments. Although assigned to a single combina-
tion of track types, an analysis may often be meaningful
for a set of such combinations. For instance, asking
whether the points of one track are located inside the
borders of the segments of another track (points vs seg-
ments) will trivially also give meaning where one or
both of the tracks has associated values (e.g. valued
points vs valued segments). Also, it could give meaning
to ask whether small segments of one track are located
inside the borders of the segments of another track (e.g.
for the segments vs segments combination). The corre-
spondence between the track types and possible analyses
are at the core of the idea of track types. Although stor-
ing data sets as efficiently as possible is an important
aspect, the bioinformatics field is currently lagging more
in terms of general understanding and standards for
analyzing data sets in meaningful ways. It is our hope
that the definition of track types will help in this regard.

Existing representational formats
Existing formats for representing genomic tracks can
broadly be divided into three groups: textual formats,
binary formats, and XML formats. Often textual and
binary formats are closely connected, such as the SAM
and BAM formats for read alignments [11]. This duality
is due to the different advantages of the two forms. Tex-
tual formats are often humanly readable and simpler to
parse and manipulate than their binary alternatives. The
binary formats, on the other hand, are more compact
and more efficient to use, often incorporating indexing
schemes for fast random access to data. XML formats
aim to bridge this gap by defining data structures that
can exist in both textual and binary forms. Note that we
limit the discussion to formats that aim at being general,

Table 1 Relation between analyses and track types

Points Segments Function Valued Points Valued Segments

Points Different frequencies? Located inside? Higher values at locations? Located in highly valued segments?

Segments Overlap? Higher values inside?

Function Correlated?

Valued Points Nearby values similar? Categories differentially located in targets?

Valued Segments

Examples of analyses for different combinations of track types (using only five of the fifteen defined track types). Note that many of these analyses are valid for
several (though not all) combinations, and are assigned to what we consider the most typical combination for the analysis. All these analyses are carefully
described significance tests [10], available online at the Genomic HyperBrowser [28]

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 6 of 17

in one form or another, thus excluding formats that are
special to a particular technology or platform.
The large majority of formats for genomic data are

textual, and the large majority of the textual data for-
mats are tabular, that is, they consist of tab-separated
columns. Three of the most common tabular formats
are Generic Feature Format (GFF) [2], Browser Extensi-
ble Data format (BED) [4] and Wiggle Track Format
(WIG) [8]. Figure 3 shows an overview of these three
tabular formats, with example files.
A main reason for the popularity of tabular formats is

that they are inherently simple to create and read, both
manually and by computers. This has been a major
asset in the field of bioinformatics because of the wide-
spread use of both ad hoc scripting and WYSIWYG

editing in spreadsheet software (such as Microsoft
Excel). Still, the abundance of different formats, together
with the increased complexity of particular formats, cre-
ates practical problems when e.g. creating new tools.
XML formats represent a way of letting go of the

entire process of custom and explicit parsing of files. In
particular when an XML format is specified by a dedi-
cated XML Schema (abbreviated XSD, from XML
Schema Definition), the data included in an XML docu-
ment can be automatically transformed into convenient
runtime data objects. XML formats are much used in
connection with Web services, XML databases, or serial-
izations of object models, but there have so far been
only a few XML formats used for exchanging sequence-
feature data. The Distributed Annotation System [12]

(A) General Feature Format - GFF

• Begins with a set of meta-
information header lines

• Divided into 9 fixed columns
(including start and end)

• The last column may include
any number of row-specific at-
tributes, i.e. tag=value pairs

• Currently in version 3

##gff-version 3

##sequence-region ctg123 1 1497228

ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

ctg123 . mRNA 1050 7000 . + . ID=mRNA00001;Name=EDEN.1;Parent=gene00001

ctg123 . mRNA 1300 7000 . + . ID=mRNA00002;Name=EDEN.2;Parent=gene00001

ctg123 . exon 1300 1500 . + . ID=exon00001;Parent=mRNA00002

ctg123 . exon 3000 3902 . + . ID=exon00002;Parent=mRNA00001, mRNA00002

ctg123 . exon 5000 7000 . + . ID=exon00003;Parent=mRNA00001, mRNA00002

ctg123 . CDS 1201 1500 . + 0 ID=cds00001;Name=edenprotein.1;Parent=mRNA00001

ctg123 . CDS 3000 3902 . + 0 ID=cds00001;Name=edenprotein.1;Parent=mRNA00001

ctg123 . CDS 5000 5500 . + 0 ID=cds00001;Name=edenprotein.1;Parent=mRNA00001

ctg123 . CDS 3301 3902 . + 0 ID=cds00003;Name=edenprotein.2;Parent=mRNA00002

ctg123 . CDS 5000 5500 . + 1 ID=cds00003;Name=edenprotein.2;Parent=mRNA00002

ctg123 . CDS 3391 3902 . + 0 ID=cds00004;Name=edenprotein.3;Parent=mRNA00002

ctg123 . CDS 5000 5500 . + 1 ID=cds00004;Name=edenprotein.3;Parent=mRNA00002

(B) Browser Extensible Data - BED

• Divided into 12 fixed columns,
3 of which are required (in-
cluding start and end)

• Contains positional informa-
tion of blocks (subsegments),
e.g. exons of genes

chr22 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512

chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601

(C) Wiggle Track Format - WIG

• Each block of data starts with
a declaration line. Two types:
variableStep for irregular and
fixedStep for regular position-
ing of track elements

• Span attribute defines the
length of each track element

• Step defines the distance be-
tween starts of each element
(fixedStep only)

• Two columns for variableStep
(start and value), one for
fixedStep (value)

variableStep chrom=chr1

201 25.0

301 26.0

351 25.0

476 23.0

variableStep chrom=chr2

151 10.0

251 11.0

376 13.0

501 14.0

fixedStep chrom=chr1 start=201 step=100 span=100

25.0

26.0

25.0

23.0

fixedStep chrom=chr2 start=151 step=100 span=100

10.0

11.0

13.0

14.0

Figure 3 Overview of three common tabular formats. A) Generic Feature Format (GFF). The example file is a reduced version of the main
example of the GFF version 3 specification [2]. B) Browser Extensible Data format (BED). The example file is fetched from the specification of the
format at UCSC [4]. C) Wiggle Track Format (WIG) [8]. The example files show the two subformats variableStep and fixedStep. The track elements
in the variableStep file covers single base pairs (span = 1, as default) and contains sparse data. For the fixedStep file, the step attribute is equal to
the span attribute. The fixedStep file thus contains dense data. Figure 4 shows GTrack conversions of these example files.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 7 of 17

uses the DASGFF XML format, which is similar to the
tabular GFF. Web services for feature prediction at CBS
[13] have been using a common XSD-based output for-
mat that has been inspired by GFF. Numerous Web ser-
vices and databases define their own XML formats for
annotation data, such as the UniProt XML [14] or the
ELMdb Web service [15]. BioXSD version 1.0 has
defined a format for sequence features that is expressive
enough to be able to substitute the majority of other
feature formats [16]. The main disadvantages of using
XML for genome-scale annotations have been the verb-
osity of the textual serialization of XML data and the
large memory usage of most of the libraries parsing
XML. The recent W3C standard for highly optimized
binary representation of XML - the Efficient XML Inter-
change (EXI) format [17] - promises to solve these
problems.

Binary formats are often used internally in software
systems, and not necessarily provided as public formats.
Some exceptions to this are the aforementioned BAM,
as well as the bigBed and bigWig formats [18]. The last
two formats are binary versions of the BED and WIG
format, respectively, providing efficient storage and
indexing capabilities, allowing users to store large tracks
on their own computers, while a server requests only
the parts needed for analysis or visualization. Another
binary format is the USeq Compressed Binary format
[19] focusing on tight compression of tabular data files
of different types, while keeping them in an indexed
structure.
As Figure 3 illustrates, different formats support dif-

ferent combinations of the core informational proper-
ties, and hence, different track types. Table 2 provides
an overview of which of the basic track types are

Table 2 The track types supported by existing tabular, binary and XML formats

Format Ref. Data Repr. P S VP VS GP SF F L Strand #Cols Value type

GFF3/GTF [2] General Tab. ✓1 ✓ ✓1 ✓ 2 ✓ 9 Float3

BED/bigBed [4] General Tab./Bin. ✓1 ✓ ✓1 ✓ 2 ✓ 3-12 Int(0-1000)/string4

BED15 [4] Microarray Tab. ✓1 ✓ 2 ✓ 15 List of floats5

bedGraph [4] General Tab. ✓1 ✓ 4 Float

WIG/bigWig (fixedStep) [8] General Tab./Bin. ✓ ✓ ✓ ✓ 1 Float

WIG/bigWig (variableStep) [8] General Tab./Bin. ✓ ✓ 2 Float

CNT [36] Copy number Tab. ✓ 4 Float

Personal Genome SNP [4] Variation Tab. ✓1 ✓ 7 String6

VCF [37] Variation Tab. ✓ ✓ ≥ 8 String6,3

GVF [6] General/Variation Tab. ✓1 ✓ ✓1 ✓ 2 ✓ 9 Float3

PSL [4] Alignment Tab. ✓ ✓ ✓ 21 Int7

SAM/BAM [38] Alignment Tab./Bin. ✓ ✓ ✓ 11 Int/string8

BioHDF [39] Alignment Bin. ✓ ✓ ✓ 11 Int/string8

MAF [4] Multiple Alignment Tab. ✓ ✓ 9 ✓ 2-7 Float/string8

FASTA [40] Sequence Text ✓ N/A Char

DAS XML [12] General XML ✓1 ✓ ✓1 ✓ 2 ✓ N/A Float

BioXSD 1.0 [16] General XML ✓10 ✓10 ✓10 ✓10 ✓11 ✓ N/A Float12

USeq [19] General Bin. ✓ ✓ ✓ ✓ ✓ N/A Int/float/string

Genomedata [41] General Bin. ✓ ✓ ✓ ✓ N/A Int/float/char

The track type abbreviations are as follows: Points (P), Segments (S), Valued Points (VP), Valued Segments (VS), Genome Partition (GP), Step Function (SF), and
Function (F). L refers to any of the linked track types. The table also denotes whether the format supports specification of strand, the number of columns of the
tabular formats, and the type of the dominant value, if any.
1 Points are specified using both start and end values. There is no way of specifying that a file contains only points.
2 Only a special case of linked segments is supported, namely part-of relationships, such as en exon being a part of a gene.
3 The chosen value type refers to what may be considered the main score column of the format. The format also includes a configurable column containing
values that may be extracted by specialized parsers.
4 We limit the bigBed format to the standard BED columns for simplicity, as the bigBed format is highly customizable through the use of AutoSQL configurations.
5 The float values represent a set of gene expression values from microarray experiments.
6 The values represent the possible alleles at a SNP position. Also, the allele frequencies and quality scores are reported and could be used as values.
7 E.g. the number of bases that match/do not match.
8 E.g. the mapping quality or the aligned sequence itself.
9 Links to alignments in other genomes.
10 There is no way of specifying that a record contains only points or only segments.
11 No weights are supported in BioXSD 1.0.
12 Numerical values are always signed double precision floats (8 bytes). A limited set of other value types is also allowed (e.g. sequence variation and
alignments).

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 8 of 17

covered by some common formats. As each of the dif-
ferent groups of formats (tabular, XML, and binary) has
advantages in distinct scenarios and communities, one
would ideally like to select three formats that cover all
track types, one from each group. Unfortunately, no
common formats do. One option would be to extend an
existing format to support all track types. A main reason
for such an extension would be to be able to make use
of the plethora of tools and parsers already available. In
the case of XML formats, the existing BioXSD 1.0 for-
mat was found to be easily extensible to support all
track types. In the case of tabular formats, however, the
only major format to support extensions is GFF,
through the attribute column. However, using GFF to
represent e.g. tracks of type function would be highly
impractical. Each base pair would then be represented
by a data line of nine columns, wasting considerable
amounts of space. The remaining option is then to cre-
ate a new tabular format. In order for the introduction
of a new format to be justified, such a format should
have the potential to replace at least some of the exist-
ing formats, in addition to having the extensibility
required to meet future needs when new types of data
appear. As binary formats are often not independent
formats, but typically linked to tabular ones, we will not
focus on such formats here. We thus present a pair of
general formats aware of all track types, one of which is
tabular and the other based on XML. The tabular for-
mat, GTrack 1.0, is a new format that builds closely on
the BED and WIG formats, while adding support for
extensions in a similar fashion as in GFF. The XML for-
mat is a successor of the existing BioXSD 1.0 format.
Besides catering to a broader user base, presenting
“track type"-compliant formats of both kinds illustrates
that the fundamental concepts of track type are inde-
pendent of implementation. The primary goals for the
formats are to support all track types systematically, to
allow custom extensions, and to provide efficient sto-
rage, while at the same time focusing on simple parsing
and manipulation of files.

GTrack: Type-aware tabular format
We here introduce a new tabular track format: the
GTrack format, short for both “Genomic Track” and
“Generic Track”. The GTrack format supports all fifteen
previously defined track types, illustrated in Figures 1
and 2. A GTrack file includes a column specification
line, specifying the names of all the columns in the file.
Each track type has a one-to-one correspondence to a
combination of core columns being present in the col-
umn specification line, as detailed in Table 3. The four
core informational properties are represented by the
four core reserved columns in such a way that the exis-
tence of each core column (start, end, value, and edges)

corresponds to a core property being defined (gaps,
lengths, values, and interconnections, respectively):

• Gaps are implicitly represented by the start col-
umn, i.e. it holds the start coordinate of a track ele-
ment and thus marks the end of any preceding gap.
• For sparse track types, i.e. track types with gaps,
length is implicitly represented by the difference
between start and end columns. For dense track
types (without gaps), there is no start column. The
length is then the difference between the previous
end position and the current. Deriving length from
the end position, rather than the start position, is
preferable, as a parser in the opposite case would
have to read the subsequent line before concluding
on the length of the current track element. The exis-
tence of the end column thus corresponds directly to
the track elements having the length property.
• Although several columns in a data set may con-
tain values of potential interest, one of these col-
umns will typically provide a main value used in
processing or analysis according to a given purpose.
This focus is specified by the value column.
• The edges column contains, for each track element,
a comma-separated list of id’s of other track ele-
ments which are interconnected with the element in
question, in addition to values associated to the
edges, e.g. weights or edge types
• A GTrack file may contain several columns con-
taining values or edges. Users may then switch
between them by simply editing the column specifi-
cation line.

The edges column requires that the non-core reserved
column id is present, containing a unique identifier for
each track element. Three other non-core columns are
specified in the GTrack format: genome, seqid and
strand (see Table 3). The titles of the eight reserved col-
umns are reserved words in the column specification
line. They may appear in any order, and any number of
additional columns may be specified. Figure 4 shows six
example GTrack files, five of which are conversions of
the example files in Figure 3. The example files illustrate
the variation stemming from the different column speci-
fication lines (starting with the characters ‘###’).
When creating the GTrack format, we have empha-

sized simplicity, both for creation, manual reading and
automated parsing of the format. We have identified
three principles towards simplicity: independence of
data lines, overview of structural characteristics and
equally sized lines.
The principle of independent data lines states that it

should be possible to interpret each data line in a tabu-
lar format independently of its location in the file. This

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 9 of 17

is a principle followed in many common formats, e.g.
GFF [2] or BED [4]. Following this principle gives sev-
eral advantages. First, when creating or manipulating a
file, keeping data lines independent allows the filtering
and sorting of data lines while still keeping all the rele-
vant information. Second, keeping a track element on a
single line makes it easier to read for the human eye.
Third, independent data lines reduce the need of auto-
matic parsers to hold state information. The GTrack
format follows the principle of independent data lines
with two exceptions. First, data lines of dense track
types are dependent on their positions in the file. Sec-
ond, the GTrack format allows (and, in the case of
dense track types, requires) the specification of bound-
ing regions around each block of values. A bounding
region specification line defines the domain of the fol-
lowing track elements, i.e. the region where we have
information about the features modeled by the track ele-
ments. It is recommended that tracks mask out regions
of a genome where nothing is known (such as centro-
meres or assembly gaps) using bounding regions, rather
than just omitting track elements or specifying 0-values,
as the difference is important for many analyses. Bound-
ing regions unfortunately require parsers to store state

information. See Figure 4A, 4C1, 4C2 and 4D for exam-
ples of bounding region specification lines (starting with
the characters ‘####’).
The principle of including an overview of structural

characteristics means that a track file should start with a
set of configurable options that describe the structure of
the data lines, in an easily readable manner. Note that
many of these characteristics will, by nature, include
redundant information, i.e. that could have been col-
lected from the data lines themselves. There are several
reasons for explicitly stating such characteristics. First, it
gives the human reader a simple overview of the type of
data stored in the file, without having to scrutinize the
actual data. Second, it allows the creator of a track to
validate that the file is structured in the way intended
(for this purpose, we also provide a web-based validator
tool [20]). Third, inclusion of structural characteristics
allows parsers to be restrictive on which kind of struc-
tures to support. A quick script can then, for instance,
read the header and check whether the track type is seg-
ments with no overlapping elements, failing explicitly if
the header does not match this requirement. The script
can then assume that the remaining file follows the
asserted structure, safely ignoring the non-relevant

Table 3 Overview of the reserved columns in the GTrack format and their associations to track type

Core property: Gaps Lengths Values Interc.

GTrack column(s): genome seqid start end1 value strand id edges2

Type of column: N N C C C N N C

Track type

Points (P) ? ! ✓ . . ? ? .

Segments (S) ? ! ✓ ✓ . ? ? .

Genome Partition (GP) ? ! . ✓ . ? ? .

Valued Points (VP) ? ! ✓ . ✓ ? ? .

Valued Segments (VS) ? ! ✓ ✓ ✓ ? ? .

Step Function (SF) ? ! . ✓ ✓ ? ? .

Function (F) ? ! . . ✓ ? ? .

Linked Points (LP) ? ! ✓ . . ? ✓ ✓

Linked Segments (LS) ? ! ✓ ✓ . ? ✓ ✓

Linked Genome Partition (LGP) ? ! . ✓ . ? ✓ ✓

Linked Valued Points (LVP) ? ! ✓ . ✓ ? ✓ ✓

Linked Valued Segments (LVS) ? ! ✓ ✓ ✓ ? ✓ ✓

Linked Step Function (LSF) ? ! . ✓ ✓ ? ✓ ✓

Linked Function (LF) ? ! . . ✓ ? ✓ ✓

Linked Base Pairs (LBP) ? ! . . ✓ ? ✓ ✓

C Core reserved column (defines track type)

N Non-core reserved column (reserved, but does not define track type)

✓ Column is mandatory

? Column is optional

. Column is not allowed

! Property must be present, either as a column or in a bounding region specification
1 The length is the difference between the end and the start position, or, if the start column is not present, the difference between the current end position and
the previous.
2 The non-core reserved column id is required when the edges column is present.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 10 of 17

generality of the GTrack specification. In the GTrack
format, the structural characteristics are specified in
header lines, starting with the characters ‘##’. Table 4
contains an overview of all GTrack header variables.
Note that header lines are optional when their values
are equal to the default values. We also provide the

“Expand GTrack headers” tool, which generates a
GTrack file with full headers based on a supplied,
incomplete GTrack file, further simplifying the process
of generating header lines.
The principle of equally sized lines states that all

data lines contain the same number of columns, i.e.

(A) GFF as GTrack (ad hoc variant)
##gtrack version: 1.0

##track type: linked valued segments

##value type: category

##uninterrupted data lines: true

##1-indexed: true

##end inclusive: true

###source value start end score strand phase id name edges

####seqid=ctg123; start=1; end=1497228

. gene 1000 9000 . + . gene00001 EDEN .

. mRNA 1050 7000 . + . mRNA00001 EDEN.1 gene00001

. mRNA 1300 7000 . + . mRNA00002 EDEN.2 gene00001

. exon 1300 1500 . + . exon00001 . mRNA00002

. exon 3000 3902 . + . exon00002 . mRNA00001;mRNA00002

. exon 5000 7000 . + . exon00003 . mRNA00001;mRNA00002

. CDS 1201 1500 . + 0 cds00001.1 edenprotein.1 mRNA00001

. CDS 3000 3902 . + 0 cds00001.2 edenprotein.1 mRNA00001

. CDS 5000 5500 . + 0 cds00001.3 edenprotein.1 mRNA00001

. CDS 3301 3902 . + 0 cds00003.1 edenprotein.2 mRNA00002

. CDS 5000 5500 . + 1 cds00003.2 edenprotein.2 mRNA00002

. CDS 3391 3902 . + 0 cds00004.1 edenprotein.3 mRNA00002

. CDS 5000 5500 . + 1 cds00004.2 edenprotein.3 mRNA00002

(B1) BED as GTrack (direct variant)
##gtrack version: 1.0

##track type: valued segments

##uninterrupted data lines: true

###seqid start end id value strand thickStart thickEnd itemRgb blockCount blockSizes blockStarts

chr22 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512

chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601

(B2) BED as GTrack (linked variant)
##gtrack version: 1.0

##track type: linked valued segments

##uninterrupted data lines: true

###seqid start end id value strand thickStart thickEnd itemRgb edges

chr22 1000 5000 cloneA 960 + 1000 5000 0 .

chr22 1000 1567 cloneA.1 960 + . . . cloneA

chr22 4512 5000 cloneA.2 960 + . . . cloneA

chr22 2000 6000 cloneB 900 - 2000 6000 0 .

chr22 2000 2433 cloneB.1 900 - . . . cloneB

chr22 5601 6000 cloneB.2 900 - . . . cloneB

(C1 and C2) WIG as GTrack (D) Linked genome partition in GTrack

##gtrack version: 1.0

##track type: valued points

##1-indexed: true

##end inclusive: true

###start value

####seqid=chr1

201 25.0

301 26.0

351 25.0

476 23.0

####seqid=chr2

151 10.0

251 11.0

376 13.0

501 14.0

##gtrack version: 1.0

##track type: step function

##1-indexed: true

##end inclusive: true

###end value

####seqid=chr1; start=201; end=600

300 25.0

400 26.0

500 25.0

600 23.0

####seqid=chr2; start=151; end=550

250 10.0

350 11.0

450 13.0

550 14.0

##gtrack version: 1.0

##track type: linked genome partition

##edge weights: true

##undirected edges: true

#---original column names---

#end id directed undirected

###end id directed edges

####seqid=chr1; start=0; end=300

100 0 2=1.4 2=1.4

200 1 . .

300 2 6=2.3 0=1.4;5=2.3

####seqid=chr2; start=150; end=600

300 3 4=1.2 4=1.2;5=1.7

450 4 . 3=1.2

600 5 3=1.7 2=2.3;3=1.7

Figure 4 GTrack example files. A) GTrack version of the GFF file in Figure 3A. GTrack conversions of GFF vary according to the set of attributes
present in the GFF file. The column selected as the main value may also be changed. B1 and B2) Two possible GTrack conversions of the BED
file in Figure 3B. In the direct variant (B1) only a “track type” header line and a column specification line are added. The exon positioning will in
this case not be understood by a general GTrack parser. The linked variant (B2) expands the exons into subsegments that links to their parent
gene segment. C1 and C2) GTrack conversions of the WIG files in Figure 3C. The variableStep file has sparse track elements covering single base
pairs, with associated values. The track is thus of type valued points. The fixedStep file contains dense data, with the same values for a series of
consecutive base pairs. The track type is thus of type step function. Note that in the last example, the end values are used for positioning. D)
Example GTrack file of type linked genome partition. Here two graphs are defined, one directed and one undirected. To change the active graph,
the edges column in the column specification line needs to be changed, in addition to the “undirected edges” header line. The example GTrack
files are available at [20]. BioXSD 1.1 versions of the examples are available as follows: A [21], B1 & B2 [22], C1 [23], C2 [24], and D [25].

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 11 of 17

that all attributes have a value. Columns that do not
contain information are marked with a period charac-
ter. There are several advantages for this solution com-
pared to the solution used in the GFF format, where
the last column may contain a list of attributes in the
format tag = value, allowing the attribute list to differ
for each line. First, having equal size columns allows
validation that all data lines are complete, or at least
that the creator of the track has considered all attri-
butes for all track elements. With a variable size attri-
bute column, there is no way to check that all
attributes have been considered. Second, parsing attri-
bute lists as in the GFF format is more cumbersome,
as the parser will not in advance know which attri-
butes may appear in the file. Third, not having to
repeat attribute names for all lines saves some space.
Fourth, and most importantly, having the same num-
ber of columns in each data line keeps the interface of
the format coherently organized, with attributes as col-
umns and track elements as rows. As the GTrack

format supports custom columns, it can completely
replace the attribute solution of the GFF format.
In addition to simplicity, the GTrack format aims at

being highly extensible and inter-operable. First, the
ability to define columns in any order and number, pro-
vides ample options for extensibility, in addition to sim-
plifying conversion. In many cases, converting another
tabular format to GTrack is as simple as adding a col-
umn specification line. Note that basic, three-column
BED files are directly compatible with the GTrack for-
mat, without the need for any modifications. Also, both
0- and 1-based indexing, in addition to the end position
being inclusive or exclusive, are included in the GTrack
specification, further simplifying conversion. Second,
GTrack includes a strategy for making structured exten-
sions of the format, namely the specification of subtypes.
Four subtype header lines are available (see Table 4),
specifying the name and version of a subtype, the URL
of the subtype specification, and the strictness of adher-
ence required by the subtype. The idea is that research

Table 4 Overview of the header variables of the GTrack format

Header variable Description Default
value

GTrack version Version of the GTrack specification used 1.0

Track type Track type of the GTrack file segments

Value type The kind of content accepted in the value column number

Value dimension The dimension of the content in the value column scalar

Undirected edges Whether all edges are undirected false

Edge weights Whether the edges have weights false

Edge weight type The kind of content accepted as edge weights number

Edge weight
dimension

The dimension of the edge weights scalar

Uninterrupted data
lines

Whether it is guaranteed that the data lines are not interrupted by bounding region specification lines or
comments

false

Sorted elements Whether it is guaranteed that all bounding regions and track elements come in sorted order false

No overlapping
elements

Whether it is guaranteed that no two track elements overlap false

Circular elements Whether any track elements or bounding regions cross the coordinate borders of a circular sequence false

1-indexed Whether the coordinates start at 1 (0 if false) false

End inclusive Whether the coordinates specified in the end column is included in intervals false

*Value column The name of the column to be used for as the ‘value’ column value

*Edges column The name of the column to be used for as the ‘edges’ column edges

*Fixed length Fixed length of all track elements 1

*Fixed gap size Fixed-size gaps between all neighboring track elements 0

*Fixed-size data lines Whether each data line has an exact size in terms of number of characters false

*Data line size The size of each data line in terms of number of characters 1

*GTrack subtype The name of the subtype of the GTrack format specification used for the file (empty
string)

*Subtype version The version of the GTrack subtype 1.0

*Subtype URL URL to a GTrack file used as a specification/model for the GTrack subtype (empty
string)

*Subtype adherence Regulates the way a GTrack file may override the subtype specification free

All header variables not specified in a GTrack file retains their default values.

* Defined in the extended part of the GTrack specification. See the GTrack specification (Additional file 1) for more details.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 12 of 17

communities can define their own tabular formats, mak-
ing use of a subset of the GTrack specification. Such
formats could for instance be replacements of existing
formats, or formats that are honed to specific technolo-
gies or tools. The header variable “subtype URL” points
to a GTrack file that can be used as model for the sub-
type, and is intended to be read by automatic parsers.
Figure 5A shows an example of such a subtype specifi-
cation file, based on the example GTrack file in Figure
4A. Specifying subtype models allows the reduction of a
complete GTrack header down to a minimum of one
line, as shown in Figure 5B. It is our belief that allowing
extensions of the GTrack format via subtypes caters for
a range of future extensions, while ensuring backward
compatibility. Subtypes can be defined in a range of set-
tings, from project specific, ad hoc solutions, to the spe-
cification of generic formats. Further examples of
GTrack subtypes are described in the GTrack specifica-
tion (Additional file 1). A set of standard GTrack sub-
types are available online [20] (including subtypes
corresponding to the example files in Figure 4).

BioXSD 1.1: Enhanced and optimized XML format
BioXSD has been developed as a universal XML format
for the basic types of bioinformatics data that is in parti-
cular suitable to be used with Web services [16]. It
models common types of data for which a specialized
XML Schema (XSD) has not been widely adopted: bio-
molecular sequences, alignments, sequence feature
records, and references to ontologies and data resources.
The BioXSD schema defines formats of data but not
formats of particular XML documents, by defining XSD
types but no global XML elements. BioXSD types can
thus be used according to applications’ needs in applica-
tions’ own XSDs such as those in WSDL files of Web
services.

BioXSD 1.0 type AnnotatedSequence can represent
annotations of a biomolecular sequence or genome with
any types of positioned or non-positioned features,
which can be combined in one record. Although the
textual serialization of XML is in general more verbose
than a tabular format, already the BioXSD 1.0 has
included a number of optimizations compared to tradi-
tional feature formats like GFF or BED, thanks to the
tree-like structure of XML. These have been mainly:

• not repeating the reference to a sequence in every
feature occurrence
• not repeating the type of feature in every feature
occurrence
• representing multi-segment and multi-point feature
occurrences in one feature-occurrence element

The goal of BioXSD version 1.1 has been to further
improve the expressiveness of the BioXSD formats and
at the same time focus on optimizations of the data size.
The successor of BioXSD 1.0 AnnotatedSequence is
BioXSD 1.1 type FeatureRecord. BioXSD 1.1 in general
allows more types of sequence positions, distinguishing
them in the same way as the tabular GTrack format.
Sparse positions are segments, points (actual points or
insertions), and outer positions. Dense positions have
been added: dense points (function) marked-up by <
nextPoint/> empty elements; and dense partition or step
function marked by < nextPartition max=”..."/> elements
including the border position where each interval ends.
However in contrast to GTrack, the different types of
positions can still be freely combined within a Feature-
Record. The representation of all types of sequence
positions have been refactored, simplified, and opti-
mized. Another crucial set of optimizations allows speci-
fication of the ontologies, databases, and computational

A

##gtrack version: 1.0

##gtrack subtype: GFF ad hoc

##subtype version: 1.0

##subtype adherence: redefinable

##track type: linked valued segments

##value type: category

##1-indexed: true

##end inclusive: true

###source value start end score strand phase id name edges

B

##subtype URL: http://gtrack.no/gff_ad_hoc.gtrack

####seqid=ctg123; start=1; end=1497228

. gene 1000 9000 . + . gene00001 EDEN .

(...)

Figure 5 GTrack subtype example. A) An ad hoc GTrack suptype specification based on the example GTrack file in Figure 4A, which is a
conversion from the GFF file in Figure 3A. This and other GTrack subtypes are available from the GTrack website [20]. B) A minimal GTrack
header, parsable by fully compliant GTrack parsers. Note that the “Expand GTrack headers” tool, available from the GTrack website [20], can be
used to expand headers of GTrack files using subtypes, in order for such files to be used in simpler parsers that do not support the subtype
functionality.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 13 of 17

tools of interest in a condensed way for a list of feature
annotations, so that they do not have to be repeated.
Detailed contents of the BioXSD feature record are
listed in Table 5. Examples of data represented in
BioXSD 1.1 format are available at [21-25].
There is one slight difference in how the GTrack and

BioXSD deal with focus of feature records. GTrack
defines one operational focus of a concrete dataset. That
is the reason why it allows to specify only one type of
track locations and only one value column and one
edges column at a time, although other values and edges
may still be “hidden” in out-of-focus columns. BioXSD
on the other hand allows combining features, types of
track positions, values, and interconnections freely with-
out any operational focus. Thus, if a tool consuming

BioXSD feature data demands it, a particular operational
focus of the data must be supplied by the user.
Compared to other generic sequence-feature formats,

BioXSD allows defining complex, structured meanings
of annotations, as well as complex feature data and
metadata, or relations. This would not be conveniently
possible in a tabular format and takes advantage of the
XML. BioXSD types can freely be combined and
included within documents, files, or applications’ inputs
and outputs. They can easily be combined with other
XML formats defined in other XSDs, can be extended
just like classes in an object-oriented programming lan-
guage, or further restricted using built-in XSD mechan-
isms. BioXSD can be validated and parsed by ordinary
XML/XSD-handling frameworks.

Table 5 The allowed content of a BioXSD FeatureRecord

Notes May further contain

BioXSD
description of
feature type

Name 1

Ontology
concepts

1

Synonyms

Textual note

References to database entries, databases, ontology concepts, other feature types type of relationship with the referenced object2

More specific type
of feature

name and/or concepts, synonyms, database entries

More generic class
of feature types

name and/or concepts

BioXSD feature
occurrence

Position segments, points3, positions outside of the actual sequence or feature
occurrence4, dense points* (function) and dense partition* or step
function* 5

strand, certainty

Scores (values) double-precision signed floats (8 bytes), or any well-formatted strings* unit, index, type of score2, note, position,
provenance metadata

Evidence references to databases, tools, and citations; scores,
verdict, reliability, provenance metadata

Name

Note

Alignments alignment- and aligned sequence-specific scores,
gaps, frameshifts, directions, note, provenance
metadata

Sequence
variation

variants, canonical variant, scores, position

Frame

CDS phase

References to ontology concepts, database entries, other feature occurences
(interconnections)

type of relationship with the referenced object2;
scores of the relationship (weights of edges)*

1 At least one of these two is mandatory.
2 By any ontology concept, referred to by a concept URI, identifier, or term; or by a custom term if no ontology concept is available.
3 Points are bases/residues or insertions between them.
4 For example if annotating the position of a regulatory element of a coding sequence, or relations between genes or protein domains.
5 Positions can form multi-segment subsequences, multi-point tuples, and can be combined within feature occurrences according to users’ needs. The positions
are always 1-based. The feature occurence may apply to the whole sequence (being a non-positioned sequence property).

* Added in BioXSD version 1.1.

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 14 of 17

It has, however, been problematic to use XML formats
for highly voluminous data such as whole-genome anno-
tations. The textual serialization of XML is more ver-
bose compared to a textual tabular format, and even
more compared to a bespoke binary format. Many basic
XML-handling tools have high runtime demands for
computer memory, making parsing of huge XML docu-
ments impossible. All these problems are hopefully
going to be solved thanks to the recent and long-
expected Efficient XML Interchange (EXI) standard by
the World Wide Web Consortium [17], together with
its growing family of supporting libraries, and tools for
streamed XSLT transformations and random-access
XPath and XQuery queries. EXI defines the way any
XML data or document should be serialized in a stan-
dard binary format that will be many times smaller and
at the same time faster to access than the textual XML.
There is no need to develop one’s own bespoke binary
encodings and parsers when using EXI, and the data
can be programmatically handled transparently, with the
same look and feel as the ordinary XML.

Availability of specifications and supporting tools
The BioXSD 1.1 XML Schema is available at [26].
BioXSD data can be validated by all the main XML vali-
dation tools, and consumed and produced programmati-
cally by the bulk of the common XML/XSD-handling
libraries. Further information and documentation are
available at [27].
A complete specification of the GTrack format version

1.0 is attached as Additional file 1 and is also available
from the GTrack website [20]. The website also contains
supporting tools for the GTrack format, connected to
the Genomic HyperBrowser [10,28]. Table 6 contains an
overview of all GTrack-related tools available as
webtools.
The GTrack format is maintained by Sveinung Gun-

dersen and the BioXSD format is maintained by Matúš
Kalaš. Both formats are licensed under the Creative
Commons Attribution-NoDerivs 3.0 Unported License
[29].

The Genomic HyperBrowser [10,28] is built on top of
the Galaxy framework [30,31] and provides a large set
of statistical investigations tailored for the specific track
types of supplied tracks. In order for such analyses to be
efficient, the system uses a binary storage scheme
internally. In this scheme, the core informational col-
umns are stored as C vectors directly written to disk.
The vector files are then accessed using the NumPy
package [32] for Python [33], allowing very efficient vec-
tor computations. A linear index of the files is built in
order to allow random access to the data. This binary
representation is stored in parallel to the files in their
original format, and updated automatically as the origi-
nal files are updated. The implementation is open
source and available as part of the HyperBrowser code
base under the GPL license, version 3 [34]. As an alter-
native, the recently published Tabix tool [35] provides
fast access to tabular data in compressed form, and
works with GTrack files of types Points and Segments,
and their derivatives.

Conclusions
By systematic analysis of informational properties of
genomic tracks, we delineated fifteen distinct types of
tracks. These track types shed light on the variability of
track representations, suggesting that the differences
between formats is not only due to preferences and con-
ventions, but also to fundamental differences in the
information inherent in different tracks. Furthermore,
discerning the informational properties of a track allows
the nature of the track to be precisely conveyed, as well
as clarifying what represents meaningful analyses on a
given track.
The identification of core informational properties of

tracks, as well as a broad survey of various practicalities
concerning existing formats, created a basis for the spe-
cification of a new format for genomic data: the GTrack
format. By allowing precise interpretation, simple par-
sing, as well as relatively straightforward conversion to
several existing formats, we believe that the introduction
of this “yet another format” will actually help streamline

Table 6 Overview of the webtools available from the GTrack website [20]

GTrack supporting tools Description

Show GTrack specification Displays a HTML version of the GTrack specification

Validate GTrack file Checks whether a GTrack file complies with the specification

Convert tabular file to GTrack Converts any tabular file to GTrack

Convert file to/from GTrack Converts to and from common tabular formats (GFF, BED, WIG, bedGraph)

Expand GTrack headers Expands partially completed GTrack headers based on data contents

Standardize GTrack file Converts a GTrack file to track type “linked valued segments” using the default indexing scheme

Sort GTrack file Sorts a GTrack file (including bounding regions)

Complement GTrack columns Complements the columns of a GTrack file based on another GTrack file

All tools are implemented as part of the Genomic HyperBrowser [10,28] and available under the GPL license, version 3 [34].

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 15 of 17

data representation in the field. Finally, by coordinating
the GTrack format with an enhanced and optimized
version 1.1 of the BioXSD format, this also aids in unify-
ing tabular and XML-based track representation, while
keeping the specific advantages of the two.

Additional material

Additional file 1: GTrack specification. Specification document of
GTrack 1.0.

Abbreviations
BAM: Binary Alignment/Map format; BED: Browser Extensible Data format;
ChIP-seq: Chromatin Immunoprecipitation sequencing; EXI: Efficient XML
Interchange; F: function; GFF: General Feature Format; GTF: Gene Transfer
Format; GVF: Genome Variation Format; GP: genome partition; P: points; LBP:
linked base pairs; LF: linked function; LGP: linked genome partition; LP: linked
points; LS: linked segments; LSF: linked step function; LVP: linked valued
points; LVS: linked valued segments; S: segments; SAM, Sequence
Alignment/Map format; SF: step function; SNP: single nucleotide
polymorphisms; URI: Uniform resource identifier; URL: Uniform resource
locator; VP: valued points; VS: valued segments; WIG: Wiggle format; WSDL:
Web Service Definition Language; WYSIWYG: what you see is what you get;
XML: Extensible Markup Language; XSD: XML Schema Definition.

Acknowledgements and funding
Funding was kindly provided by EMBIO, FUGE, UiO, Helse Sør-Øst, and
eSysbio (funded by the Research Council of Norway). This work was
performed in association with ‘Statistics for Innovation’, a Centre for
Research-Based Innovation funded by the Research Council of Norway. We
thank Kai Trengereid for crucial work in developing the GTrack-related tools,
and Inge Jonassen for valuable input on the BioXSD format. We would also
like to acknowledge the excellent review work provided by the peer
reviewers. These reviews have contributed significantly to the content of this
paper.

Author details
1Department of Tumor Biology, The Norwegian Radium Hospital, Oslo
University Hospital, Montebello, 0310 Oslo, Norway. 2Computational Biology
Unit, Uni Computing, Thormøhlensgate 55, 5008 Bergen, Norway.
3Department of Informatics, University of Bergen, Thormøhlensgate 55, 5008
Bergen, Norway. 4TOBB University of Economics and Technology, Ankara,
Turkey. 5Statistics For Innovation, Norwegian Computing Center, 0314 Oslo,
Norway. 6Department of Biostatistics, Institute of Basic Medical Sciences,
University of Oslo, Blindern, 0317 Oslo, Norway. 7Institute for Medical
Informatics, The Norwegian Radium Hospital, Oslo University Hospital,
Montebello, 0310 Oslo, Norway. 8Department of Informatics, University of
Oslo, Blindern, 0316 Oslo, Norway.

Authors’ contributions
SG, AF, EH and GKS conceived and developed the ideas on track type
distinctions. SG, MK, OA and GKS developed the GTrack specification. SG and
GKS wrote the main parts of the paper. MK wrote the parts on XML-based
track representation and developed BioXSD 1.1. SG and GKS were involved
with the development of GTrack-related tools. All authors read and
approved the final manuscript.

Received: 11 May 2011 Accepted: 30 December 2011
Published: 30 December 2011

References
1. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,

Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R,
Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J,
Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range

interactions reveals folding principles of the human genome. Science
2009, 326(5950):289-293.

2. Generic Feature Format version 3. [http://www.sequenceontology.org/gff3.
shtml].

3. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM,
Haussler D: The human genome browser at UCSC. Genome Res 2002,
12(6):996-1006.

4. UCSC genome browser data formats. [http://genome.ucsc.edu/FAQ/
FAQformat.html].

5. Definition of Gene Transfer Format. [http://mblab.wustl.edu/GTF22.html].
6. Reese MG, Moore B, Batchelor C, Salas F, Cunningham F, Marth GT, Stein L,

Flicek P, Yandell M, Eilbeck K: A standard variation file format for human
genome sequences. Genome Biol 2010, 11(8):R88.

7. Liu F, Tostesen E, Sundet JK, Jenssen TK, Bock C, Jerstad GI, Thilly WG,
Hovig E: The human genomic melting map. PLoS Comput Biol 2007, 3(5).

8. Definition of Wiggle Track Format. [http://genome.ucsc.edu/goldenPath/
help/wiggle.html].

9. The Sequence Ontology. [http://www.sequenceontology.org].
10. Sandve GK, Gundersen S, Rydbeck H, Glad IK, Holden L, Holden M, Liestol K,

Clancy T, Ferkingstad E, Johansen M, Nygaard V, Tostesen E, Frigessi A,
Hovig E: The Genomic HyperBrowser: inferential genomics at the
sequence level. Genome Biol 2010, 11(12):R121.

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R: The Sequence Alignment/Map format and
SAMtools. Bioinformatics 2009, 25(16):2078-2079.

12. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L: The distributed annotation
system. BMC Bioinformatics 2001, 2:7.

13. Web services provided by the Center for Biological Sequence analysis
(CBS), Technical University of Denmark. [http://www.cbs.dtu.dk/ws/].

14. UniProt C: The Universal Protein Resource (UniProt) in 2010. Nucleic Acids
Res 2010, , 38 Database Issue: D142-8.

15. Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S,
Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N,
Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Trave G, Aasland R,
Helmer-Citterich M, Linding R, Gibson TJ: ELM: the status of the 2010
eukaryotic linear motif resource. Nucleic Acids Res 2010, , 38 Database
Issue: D167-80.

16. Kalas M, Puntervoll P, Joseph A, Bartaseviciute E, Topfer A, Venkataraman P,
Pettifer S, Bryne JC, Ison J, Blanchet C, Rapacki K, Jonassen I: BioXSD: the
common data-exchange format for everyday bioinformatics web
services. Bioinformatics 2010, 26(18):i540-6.

17. Efficient XML Interchange (EXI) Format 1.0. [http://www.w3.org/TR/2011/
REC-exi-20110310].

18. Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D: BigWig and BigBed:
enabling browsing of large distributed datasets. Bioinformatics 2010,
26(17):2204-2207.

19. Nix DA, Courdy SJ, Boucher KM: Empirical methods for controlling false
positives and estimating confidence in ChIP-Seq peaks. BMC
Bioinformatics 2008, 9:523.

20. GTrack. [http://www.gtrack.no].
21. BioXSD example 1. [http://bioxsd.org/trackExample1.xml].
22. BioXSD example 2. [http://bioxsd.org/trackExample2.xml].
23. BioXSD example 3. [http://bioxsd.org/trackExample3.xml].
24. BioXSD example 4. [http://bioxsd.org/trackExample4.xml].
25. BioXSD example 5. [http://bioxsd.org/trackExample5.xml].
26. Definition of BioXSD version 1.1. [http://bioxsd.org/BioXSD-1.1.xsd].
27. BioXSD.org. [http://bioxsd.org].
28. The Genomic HyperBrowser. [http://hyperbrowser.uio.no].
29. Creative Commons Attribution-NoDerivs 3.0 Unported License (CC BY-

ND 3.0). [http://creativecommons.org/licenses/by-nd/3.0/].
30. Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol 2010, 11(8):R86.

31. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for
experimentalists. Curr Protoc Mol Biol 2010, 19-21, Unit 19.10.1.

32. Oliphant T: Guide to NumPy Trelgol Trelgol Publishing; 2006.
33. The Python Language Reference. [http://docs.python.org/release/2.7.2/

reference/index.html].
34. GNU General Public License, version 3. [http://www.gnu.org/copyleft/gpl.

html].

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 16 of 17

http://www.biomedcentral.com/content/supplementary/1471-2105-12-494-S1.TXT
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.sequenceontology.org/gff3.shtml
http://www.sequenceontology.org/gff3.shtml
http://www.ncbi.nlm.nih.gov/pubmed/12045153?dopt=Abstract
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html
http://mblab.wustl.edu/GTF22.html
http://www.ncbi.nlm.nih.gov/pubmed/20796305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20796305?dopt=Abstract
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://www.sequenceontology.org
http://www.ncbi.nlm.nih.gov/pubmed/21182759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11667947?dopt=Abstract
http://www.cbs.dtu.dk/ws/
http://www.ncbi.nlm.nih.gov/pubmed/20823319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20823319?dopt=Abstract
http://www.w3.org/TR/2011/REC-exi-20110310
http://www.w3.org/TR/2011/REC-exi-20110310
http://www.ncbi.nlm.nih.gov/pubmed/20639541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20639541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061503?dopt=Abstract
http://www.gtrack.no
http://bioxsd.org/trackExample1.xml
http://bioxsd.org/trackExample2.xml
http://bioxsd.org/trackExample3.xml
http://bioxsd.org/trackExample4.xml
http://bioxsd.org/trackExample5.xml
http://bioxsd.org/BioXSD-1.1.xsd
http://bioxsd.org
http://hyperbrowser.uio.no
http://creativecommons.org/licenses/by-nd/3.0/
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://docs.python.org/release/2.7.2/reference/index.html
http://docs.python.org/release/2.7.2/reference/index.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

35. Li H: Tabix: fast retrieval of sequence features from generic TAB-
delimited files. Bioinformatics 2011, 27(5):718-719.

36. Affymetrix CNT File Format. [http://goldenhelix.com/SNP_Variation/
Manual/svs7/affymetrix_cnt_file_format.html].

37. VCF (Variant Call Format) version 4.1. [http://www.1000genomes.org/wiki/
Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41].

38. The SAM Format Specification (v1.4-r985). [http://samtools.sourceforge.
net/SAM1.pdf].

39. BioHDF. [http://www.hdfgroup.org/projects/biohdf/].
40. FASTA. [http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml].
41. Hoffman MM, Buske OJ, Noble WS: The Genomedata format for storing

large-scale functional genomics data. Bioinformatics 2010,
26(11):1458-1459.

doi:10.1186/1471-2105-12-494
Cite this article as: Gundersen et al.: Identifying elemental genomic
track types and representing them uniformly. BMC Bioinformatics 2011
12:494.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Gundersen et al. BMC Bioinformatics 2011, 12:494
http://www.biomedcentral.com/1471-2105/12/494

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/21208982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21208982?dopt=Abstract
http://goldenhelix.com/SNP_Variation/Manual/svs7/affymetrix_cnt_file_format.html
http://goldenhelix.com/SNP_Variation/Manual/svs7/affymetrix_cnt_file_format.html
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf
http://www.hdfgroup.org/projects/biohdf/
http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
http://www.ncbi.nlm.nih.gov/pubmed/20435580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20435580?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Definitions
	Core informational properties of tracks
	Fifteen genomic track types
	Formal model of genomic tracks
	Analysis dependency on track types
	Existing representational formats
	GTrack: Type-aware tabular format
	BioXSD 1.1: Enhanced and optimized XML format
	Availability of specifications and supporting tools

	Conclusions
	Acknowledgements and funding
	Author details
	Authors' contributions
	References

