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Abstract

Background: Survival prediction from high-dimensional genomic data is an active field in today’s
medical research. Most of the proposed prediction methods make use of genomic data alone
without considering established clinical covariates that often are available and known to have
predictive value. Recent studies suggest that combining clinical and genomic information may
improve predictions, but there is a lack of systematic studies on the topic. Also, for the widely used
Cox regression model, it is not obvious how to handle such combined models.

Results: We propose a way to combine classical clinical covariates with genomic data in a clinico-
genomic prediction model based on the Cox regression model. The prediction model is obtained
by a simultaneous use of both types of covariates, but applying dimension reduction only to the
high-dimensional genomic variables. We describe how this can be done for seven well-known
prediction methods: variable selection, unsupervised and supervised principal components
regression and partial least squares regression, ridge regression, and the lasso. We further
perform a systematic comparison of the performance of prediction models using clinical covariates
only, genomic data only, or a combination of the two. The comparison is done using three survival
data sets containing both clinical information and microarray gene expression data. Matlab code for
the clinico-genomic prediction methods is available at http://www.med.uio.no/imb/stat/bmms/
software/clinico-genomic/.

Conclusions: Based on our three data sets, the comparison shows that established clinical
covariates will often lead to better predictions than what can be obtained from genomic data alone.
In the cases where the genomic models are better than the clinical, ridge regression is used for
dimension reduction. We also find that the clinico-genomic models tend to outperform the models
based on only genomic data. Further, clinico-genomic models and the use of ridge regression gives
for all three data sets better predictions than models based on the clinical covariates alone.

Background
Predicting the outcome of a disease or some disease
related phenotype based on microarrays or other high-
throughput data is an important application of genomic

data. One particular instance of this problem is the
prediction of the time to some disease specific event like
death or relapse, often referred to by the technical term
survival time or failure time. The most widely used
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model for survival data is the Cox proportional hazards
model [1] which describes the instantaneous risk of
failure at time t by the hazard rate

h t h t e
T

( | ) ( ) .x = 0
x ββ (1)

Here x = (x1, ..., xp)
T is a set of genomic variables, e.g.

gene expression or snp measurements, b = (b1, ..., bp)T is
a vector of regression coefficients describing the effects of
each variable, and h0(t) is the baseline hazard giving the
hazard rate of an individual with all xj equal to zero. In
the sequel we will refer to (1) as the genomic model.

A major challenge of high-dimensional genomic data,
where the number p of predictors is much larger than the
number of individuals n (p >> n), is the problem of
overfitting. By using complex enough models, there are
infinitely many parameter combinations that fit the data
perfectly, but these will make use of random predictor-
response correlations, resulting in poor predictions on
external data sets. The solution is to use some form of
dimension reduction, or regularization, on the variable
space to obtain a more parsimonious model. In the
classical case of ordinary linear regression there are many
methods for such high-dimensional data, including
variable subset selection methods, principal components
regression (PCR), partial least squares (PLS), ridge
regression, and the lasso; see e.g. [2] for a review. All
these high-dimensional prediction methods have been
adapted to the Cox regression setting for censored survival
data, e.g. [3] and [4] combining univariate selection and
PCR, [5] applying PLS, [6] using ridge regression, and [7]
and [8] applying the lasso. In Bøvelstad et al. [9] a
thorough comparison of the prediction performance of
these methods was performed using three well known
high-dimensional microarray gene expression data sets.

Together with the genomic data, information on demo-
graphic and clinical variables (or covariates) often exists.
Examples of such variables are age, stage, grade, tumor
thickness, and lymph node status. The clinical covariates
may be important predictors known to be correlated to
survival. Also, there exist many established prognostic
indices that are combinations of such classical clinical
covariates and that are widely used, like e.g. the Notting-
ham Prognostic Index (NPI) [10] used for predictions in
breast cancer or the International Prognostic Index (IPI)
[11] for predicting survival of patients with non-Hodg-
kin’s lymphoma. Specifically, assume that we have a
vector z = (z1, ..., zq)

T of demographic and clinical
covariates. A predictionmodel using only these covariates
can be obtained using the Cox model

h t h t e
T

( | ) ( ) ,z z= 0
γγ (2)

where g = (g 1, ..., gq)T is a vector of regression coefficients
for the demographic and clinical variables. We will in the
sequel refer to (2) as the clinical model.

Even though clinical and demographic variables have a
prognostic value, predictions based on such covariates
may not be accurate enough. For this reason, an
immense effort has been put into finding genomic
variables that can contribute to better predictions and
hence more tailored treatment schemes, e.g. [12-14]. The
hope has been that the genomic variables would fully
replace the information obtained from the clinical and
demographic variables. As a consequence, clinical and
demographic variables with known predictive value have
not been taken into consideration when building
prediction models from genomic data. However, some
studies (e.g. [15]) have shown that established clinical
predictors are not outperformed by genomic variables as
prediction tools. It may hence be useful to also consider
established clinical covariates when building prediction
models.

Recently many authors have started focusing on combin-
ing clinical and demographic variables with genomic data
forming what has been called clinico-genomic models.
This has been done mostly for classification of patients,
e.g. into high-risk and low-risk groups [15-17]. Clinico-
genomic models for survival prediction using the Cox
model [18-22] or Bayesian Weibull tree models [23] have
also been proposed. Common to these papers is that they
find that the clinico-genomic models seem to outperform
the models using either clinical covariates alone or
genomic covariates alone. Combining such data in a Cox
model would yield a clinico-genomic model given by

h t h t e
T T

( | , ) ( ) ,z x z x= +
0

γγ ββ (3)

where z are the clinical and demographic covariates and
x the genomic variables. Assuming that the established
low-dimensional clinical and demographic covariates
are known to have effect on survival, it is natural to
perform dimension reduction only on the high-dimen-
sional genomic covariates. Combining clinical informa-
tion and high-dimensional genomic data in a Cox model
is, however, not straightforward. In this paper we show
how this can be done for seven well-known prediction
methods based on the Cox model, namely univariate
selection, unsupervised and supervised principal com-
ponents regression and partial least squares regression,
ridge regression, and the lasso. Many of these methods
have been used with success when predicting survival
using only genomic data, but have to our knowledge not
been systematically studied for the combined clinical
and genomic data.
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The objectives of this paper are (i) to make a systematic
comparison of the performance of the seven prediction
methods when using both clinical covariates and genomic
variables, and (ii) to compare the overall prediction
performance of the clinicalmodel (2), the genomicmodel
(1), and the clinico-genomic model (3). The comparison
will be performed using three survival data sets containing
both clinical information andmicroarray gene expression
data.

Methods
We assume that the demographic and clinical covariates
z are known to have an effect on survival (but with
unknown size of the effect). Thus, for the model (2) with
only clinical covariates no variable selection or dimen-
sion reduction will be done. We simply fit an ordinary
Cox model to the data to obtain parameter estimates.

Bøvelstad et al. [9] described how univariate selection,
PCR, supervised PCR, PLS, ridge regression, and the lasso
can be applied to model (1) using the genomic variables
as the only covariates. The same is described for
supervised PLS in Nygård et al. [5]. The methods are
similar to the corresponding ones described below for
the clinico-genomic setting.

When we have both clinical covariates and genomic
variables, we will treat the clinical model (2) as a starting
model. The additional effects of the genomic variables x
are found by simultaneously estimating the effects of x
and z using (3), but where the dimension reduction is
applied only to x. In the next subsections we describe in
more detail how this can be done for the prediction
methods under study. All seven methods assume a given
model complexity, represented by a parameter l. The
optimal value of l can be found using cross-validation,
which will be described later.

Prediction methods for clinico-genomic models
Univariate selection
We start out with the clinical model (2), i.e. a Cox
regressionmodel including only the demographic/clinical
covariates z. For each gene g, we test this model versus a
Cox model including the gene together with the clinical
variables, i.e. we test h(t|z, xg) = h0(t) exp(z

T g + bgxg) versus
h(t|z) = h0(t) exp(z

T g). These tests are performed using a
local score test [[24], Chapter 8.5]. The l top ranked genes
from the models with the smallest P-values are picked out
and included along with the clinical covariates z in a
multivariate Cox regression model.

Principal components regression (PCR)
Principal components analysis (PCA) finds linear com-
binations of the genomic variables, where each new

linear combination has maximal variance under the
constraint of being orthogonal to the first ones. We find
the l first principal components using PCA on the
genomic variables x. We then include the principal
components together with the demographic and clinical
covariates z in a multivariate Cox regression model.

Supervised principal components regression
Since the principal components are constructed without
considering the response, there is no guarantee that the
components are associated with patient survival. With
this argument, [3] and [4] proposed a supervised PCR,
where a pre-selection of genes significantly correlated to
survival is included before the PCA is applied. Following
this approach, we first pick out l1 percent of the top
ranked genes using univariate selection as described
above. We then apply PCA to this subset of genes and
include l2 of the first components together with z in a
multivariate Cox model.

Partial least squares (PLS) regression
Like PCR, partial least squares regression is based on linear
combinations of the genomic variables. However, PLS
uses combinations that are correlated with survival. There
are many suggestions on how to perform PLS for the Cox
regression setting. We will use the method of Nygård et al.
[5] that allows for inclusion of demographic and clinical
covariates together with the genomic variables, but only
performs dimension reduction on the latter.

Supervised partial least squares regression
PLS finds linear combinations in the space of the
genomic variables, which have the property of maximiz-
ing the covariance between the components and the
response (see e.g. [25]). The covariance is the product of
the variance of the components and the correlation
between the components and the response. It is often
experienced that the variance part is dominating, causing
PLS to behave very much the same way as PCR. As for
PCR, it can therefore be argued that also PLS may benefit
from a preselection step finding the genes most
correlated to patient survival. In our supervised PLS
Cox method for both genomic and demographic/clinical
variables we use the same algorithm as in the supervised
PCR method described above, except that the PCR step
on the pre-selected genes is replaced by the PLS
algorithm given in [5].

Ridge regression
Ridge regression [26] shrinks the regression coefficients
by imposing a penalty on their squared values. Van
Houwelingen et al. [6] showed how ridge regression
can be applied to the Cox regression setting with
high-dimensional genomic data by maximizing a
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penalized log-likelihood. We may extend the approach
in [6] by including lower-dimensional covariates z in
the log-likelihood, but performing penalization only
on the high-dimensional covariates x. This gives us the
following penalized log-likelihood:

l H l Hfull j

j

p

pen( , , ) ( , , ) ,γγ ββ γγ ββ0 0
2

1

= −
=
∑λ β

where lfull (l, b,H0) is the full log-likelihood given by [24]

l H H t

d H t

i
T

i
T

i

i

n

i i

full( , , ) [ exp( ) ( )

(ln( ( ))

γγ ββ γγ ββ0 0

1

0

= − +

+ +
=
∑ z x

zΔ ii
T

i
Tγγ ββ+ x )].

Here, ti denotes the possibly censored survival time of
individual i, and di indicates whether this survival time is
observed (di = 1) or censored (di = 0). Further, H0 (t) is
the cumulative baseline hazard and ΔH0(ti) is its
increment at time ti.

To reduce the computational burden, we use the
approach of van Houwelingen et al. [6] to obtain
parameter estimates. They noted that the estimating
equation ∂lpen(g, b, H0)/∂b = 0 implies that the resulting
estimate for b lies in the space spanned by the columns
of X, where X is the n × p matrix whose ith row is the
vector x i

T of genomic variables for patient i. Therefore,
we may write b = XTψ , for some ψ . The dimension of the
problem is thus reduced from p to n. In terms of ψ , we
have

l H H t

d H t

i
T

i
T

i

i

n

i i i

pen( , , ) [ exp( ) ( )

(ln( ( ))

γγ ψψ γγ ψψ0 0

1

0

= − +

+ +
=
∑ z u

zΔ TT
i
T Tγγ ψψ ψψ ψψ+ −u U)] ,λ

where ui is the ith row of U = XXT.

Lasso
The lasso [27,28] shrinks the regression coefficients in a
similar manner as ridge regression, but uses the absolute
values instead of the squared values. Penalizing the
absolute values has the effect that a number of the
estimated coefficients will become exactly zero, which
means that the lasso is also a variable selection method.
Like ridge regression, the lasso can be modified to
include clinical and demographic covariates with pena-
lization only of the high-dimensional genomic variables.
More precisely, the Cox regression coefficients in the
clinico-genomic model (3) can be found by maximizing

l(g, b) - λ β| |jj

p

=∑ 1
. Here, l(g, b) is the logarithm of the

Cox partial likelihood for model (3) given by

l

di i
T

i
T

j
T

j
T

j R ti

n

i

( , )

{ log[ exp( )]},
( )

γγ ββ

γγ ββ −− γγ ββ

=

+ +
∈=
∑∑ z x z x

1

where R(ti) is the risk set of time ti. We have used the
lasso implementation of Cox regression due to Park and
Hastie [8], available through the R package glmpath. The
clinical covariates were specified using the “nopenalty.
subset” argument.

Cross-validation
All methods described in the previous subsections
depend on a parameter l, representing the complexity
of the genomic part of the model: the number of
genomic variables for univariate selection, the number of
linear components for PCR and PLS, and the penalty
parameter for ridge regression and the lasso. For
supervised PCR and supervised PLS the model complex-
ity depends on both the number of genomic variables
and the number of PCR/PLS components, i.e. l = (l 1,
l 2) is two-dimensional for these two methods.

The value of l must be estimated, and finding the
optimal model complexity is a difficult but crucial task
when analyzing high-dimensional data. The method of
cross-validation (CV) can be used to find the optimal
model complexity l. We will use 10-fold CV together
with Verweij and van Houwelingen’s [29] CV criterion,
which is based on the Cox log partial likelihood. After
having found the optimal l for the genomic part of the
model, this value is used in a prediction method as
described in the previous subsections to find estimates of
b for the genomic model (1), and estimates of g and b for
the clinico-genomic model (3).

Prediction performance
Thus far we have described how to find estimates of b for
the genomic model (1) and estimates of g and b for the
clinico-genomic model (3). To evaluate how good these
estimates are for prediction, we will follow the evalua-
tion scheme proposed in Bøvelstad et al. [9]. More
precisely, we will compare the prediction performance of
the seven methods using the following approach: The
data are randomly split into training and test sets, where
the training set is about twice as large as the test set. Then
10-fold CV is used on the training set to find an estimate
λ̂train of the optimal model complexity for the genomic
part of the model. Given λ̂train , we use the whole
training set to obtain an estimate β̂β train for the effects of
the genomic covariates in model (1), and similarly for
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model (3) the estimates γ̂γ train and β̂β train for the effects
of the demographic/clinical and genomic covariates,
respectively. For the clinical model (2), γ̂γ train is
estimated directly by ordinary Cox regression using the
whole training set since no variable selection or
dimension reduction is performed on these covariates.
Note that the test data are set aside in the whole model
building procedure, and are only used to evaluate the
final prediction model. This is done in order to ensure a
completely independent evaluation.

As a measure of how well a prediction model performs
on the test data set, we will use the difference in deviance
between a fitted model and the null model containing
no covariates. Specifically, for the clinico-genomic model
this difference in deviance is given by

ˆ { ( ˆ , ˆ ) ( )},( ) ( )δ = − −2 l ltest
train train

testγγ ββ 0 (4)

where l(test) ( ˆ , ˆγγ ββtrain train ) and l(test) (0) are the Cox log
partial likelihood for the test data evaluated at
( ˆ , ˆγγ ββtrain train )

T and 0, respectively. The difference in
deviances for the clinical model and the genomic model
can also be found using (4), but where l(test) ( ˆ , ˆγγ ββtrain train )
is replaced by l(test) ( γ̂γ train ) and l(test) ( β̂β train ), respec-
tively. Note that 1 - exp( / )δ m , where m is the number of
subjects in the test data set, may be interpreted as a
measure of the variation in the test data explained by the
prediction model [30]. The performance of a model is
good when the difference in deviance is small.

Bøvelstad et al. [9] showed that the relative performance
between the prediction methods could depend on the
particular training/test splits. To ensure a fair compar-
ison, we therefore follow their approach and generate 50
random splits of the data into 2:1 training and test sets.
The performance of the methods are then evaluated by
the median and the spread of the difference in deviance
over the 50 splits.

Results
Three different data sets will be used in order to compare
the performance of the prediction methods described in
the Methods section, as well as the performance of the
clinical models, the genomic models, and the clinico-
genomic models. The data sets are described below,
along with the results.

Breast cancer data
The first data set is from the paper of van Houwelingen
et al. [6] and contains 4919 gene expression measure-
ments, clinical covariates, and censored survival times
from 295 Dutch women diagnosed with breast cancer.
The data have been visited in a number of papers, and is
a modified version of the data introduced in the papers

of van’t Veer et al. [12] and van de Vijver et al. [31]. The
median follow-up time is 7.2 years, and out of the 295
patients 27% experienced breast cancer death. As clinical
covariates, we use tumor diameter (mm), lymph node
status (positive/negative), and grade (good/intermedi-
ate/poor), which are classical clinical covariates used for
prediction of breast cancer survival. Also, the classifica-
tion rule that defines the Nottingham Prognostic Index
(NPI) [10] is based on these three covariates. For more
information on the data, see [6].

The results when applying the described methods to the
data are summarized in the boxplots of Figure 1. The
data are divided 50 times at random into training and
test sets containing 200 and 95 patients, respectively. As
in the paper of Bøvelstad et al. [9] we will for each
method consider the median of the 50 values of
difference in deviance as the measure of main interest.
For all three boxplots, the horizontal black line at zero
indicates the null model (with no covariate information
included), and is displayed for reference.

Figure 1
Breast cancer data. Results after applying the clinical
model (left-hand boxplot) and the seven prediction methods
to both the microarray gene expression data (center
boxplot) and the combined data (right-hand boxplot). In all
three boxplots, the horizontal line at zero indicates the null
model with no covariate information. For the center and
right-hand boxplots, the dashed magenta line indicates the
median of the clinical model. Further, the green stars in the
right-hand boxplot are the median of each of the seven
methods when applied to the microarray gene expression
data. A small value of the difference in deviance corresponds
to a good prediction performance. Uni - univariate selection,
PCR - principal components regression, PLS - partial least
squares, SPCR - supervised PCR, SPLS - supervised PLS, and
RR - ridge regression.
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The left-hand boxplot of Figure 1 shows the difference in
deviance obtained from applying the clinical model to
the 50 training/test splits. The median of these 50 values
is further displayed, for easy comparison, by a dashed
magenta line in the other two boxplots.

The center boxplot of Figure 1 displays the predictions
made from the seven methods when using the microarray
gene expression data as covariates. From the plot we see
that univariate selection has the poorest performance,
and that many of its 50 predictions are worse than what
can be obtained using a prediction model with no
covariate information. From the plot we also see that
PLS, supervised PLS, supervised PCR, and the lasso give
poorer predictions than the clinical model. PCR has on
the median a similar performance as the clinical model,
but predictions using PCR yields larger variation. Ridge
regression is the method with the best prediction
performance according to our definition, and also the
method with the smallest variation. Also, ridge regression
is the only method able to improve predictions using
genomic information compared to using the clinical
model (2).

Finally, the right-hand boxplot of Figure 1 displays the
results when using both types of data for prediction.
For comparison purposes, we have indicated the
median of each of the seven methods when applied
to the microarray gene expression data by a green star.
Studying the plot, we see that the methods have a
more similar performance and are less variable than
the corresponding results from the genomic model.
Again, univariate selection has the poorest perfor-
mance, and ridge regression is the only method able to
make predictions that are better than when using
clinical data alone. Compared to the genomic model,
all methods except PCR and ridge regression have
improved prediction when using both clinical and
genomic covariates.

DLBCL data
The second data set, introduced in Rosenwald et al. [32],
consists of censored survival times and 7399 microarray
gene expression measurements for 240 patients with
diffuse large-B-cell lymphoma (DLBCL). The median
follow-up time is 2.8 years, and 57% of the patients died
during follow-up. For 222 of these patients, we also have
information on the International Prognostic Index (IPI),
which is a well-established prognostic score derived from
five clinical covariates (see [11] for more details). The IPI
has levels low, medium, and high. Since we want to
compare models containing both types of data, we will
restrict our attention to the smaller set of patients. For
more information on the data, see [32].

Figure 2 shows the results after applying the various
models and methods to the 50 random training (150
patients) and test (72 patients) splits of the data. From the
center boxplot, it is clear that when using only microarray
gene expression data, all methods have a rather poor
performance. In fact, none of the methods are able to
make predictions that are better than when using the
clinical covariate IPI alone, and many have as poor as or
poorer performance than if using the null model. As for
the breast cancer data, ridge regression has the best
prediction performance among the seven methods.
Investigating the right-hand boxplot, we see that using
the clinico-genomic model yields a vast improvement in
prediction performance for all methods. Again, ridge
regression has the best performance and is able to obtain
improved predictions compared to the clinical model.
The latter is also the case for the lasso and PCR.

Neuroblastoma data
The last data set is fromOberthür et al. [33] and consists of
362 patients suffering from neuroblastoma. For each
patient, we have information on their risk group
according to the current German neuroblastoma trial
(NB2004, levels low/intermediate/high) as well as 9978
microarray gene expression values and its (possibly)
censored survival time. Median follow-up time for the
patients are 3.8 years, and out of the 362 patients 21%
died from the disease. The patients were introduced in
[33] as two different sets; one “training set” of 256
patients and one “test set” of 120 patients. We merged the

Figure 2
DLBCL data. Results after applying the clinical model (left-
hand boxplot) and the seven prediction methods to both the
microarray gene expression data (center boxplot) and the
combined data (right-hand boxplot). Further details of the
plot are given in the legend of Figure 1.
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two, and the 9978 microarray gene expression measure-
ments are from probes shared by both sets. Due to few
events in the two lower NB2004 risk groups, we chose to
combine them into one group. Also, 14 patients were
omitted from our study due to missing clinical informa-
tion. For more information on the data, consult [33].

We generated 50 random splits of training (240 patients)
and test (122 patients) sets from the data, and formed
boxplots from the results which are displayed in Figure 3.
From the center plot, we observe that when using
microarray gene expression data, only ridge regression is
able to make predictions that are better than if using only
theNB2004 stratification index. This is in accordance with
the observations made for the breast cancer data. As seen
for the DLBCL data, combining the clinical covariate and
the microarray gene expression data resulted in a large
improvement in prediction ability for all prediction
methods. In fact, all methods but univariate selection
are able tomake better predictions than the clinicalmodel
using the NB2004 strata alone. For the clinico-genomic
models, supervised PLS has the best median performance,
whereas ridge regression has the second best performance.

Results summary
Observing each boxplot in Figures 1, 2, 3, there is a fairly
large spread in the difference in deviance over the 50
splits. This is partly due to variation caused by splitting
the data at random into training and test sets, and partly
due to variation in the performance of the prediction
methods for the various splits. In order to explore how

much of the variation that is due to the latter when using
the combined data in a clinico-genomic model, we use
ridge regression as a benchmark and, for each of the
splits, compute the difference between the deviance of
the six other methods and the deviance of ridge
regression. Figure 4 shows boxplots of these differences
for the 50 splits, and represents a pairwise comparison
between ridge regression and the other methods when
applied to the combined data. The figure shows that for a
majority of the splits, ridge regression has a better
prediction performance than all the other methods on all
three data sets. Note that this also applies for the
neuroblastoma data where supervised PLS had better
median performance than ridge regression (right-hand
plot of Figure 3).

Discussion and conclusions
In treatment of patients with cancer and other fatal
diseases, obtaining accurate survival predictions is a
crucial step for better treatment decisions and prolonged
survival. Several recent studies [15-17,19-23] have
suggested that combining clinical information and
genomic data may lead to better predictions than when
using such data separately. However, for the well-known
Cox regression model, combining low-dimensional
clinical data with high-dimensional genomic data is

Figure 3
Neuroblastoma data. Results after applying the clinical
model (left-hand boxplot) and the seven prediction methods
to both the microarray gene expression data (center
boxplot) and the combined data (right-hand boxplot).
Further details of the plot are given in the legend of Figure 1.

Figure 4
Difference in deviance from the ridge model. The
boxplots give the difference in deviance between the six
methods and ridge regression when using the combined data
in a clinico-genomic model. The plots thus give a pairwise
comparison between ridge regression and the other
methods, in addition to giving an illustration of the variation
due to regression methods corrected for the variation due to
the 50 random training/test splits. For method abbreviations,
see Figure 1.
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not straightforward. We have shown how this can be
done for seven well-known prediction methods used for
high-dimensional data. In addition, we have performed
a systematic study in order to (i) study the behavior of
these seven methods when applied to the combined
data, and (ii) compare the survival predictions obtained
when using only clinical data, only genomic data, or a
combination of the two.

To compare the prediction methods, we used the
comparison scheme of Bøvelstad et al. [9]. The scheme
was applied to three survival data sets containing both
clinical information and microarray gene expression
measurements for patients diagnosed with breast cancer
[6,12,31], diffuse large-B-cell lymphoma (DLBCL) [32],
and neuroblastoma [33]. In our study, we have assumed
that the clinical covariates are known to have an effect on
survival, so no selection or dimension reduction have
been applied to these covariates. For multiple pairs of
training/test sets we employed cross-validation on the
training sets to find the optimal complexity of the
genomic part of the models, and evaluated the models
on the independent test sets. Doing this, we did not risk
the danger of getting overly optimistic results for the
genomic predictor, which some earlier studies have
shown. In van’t Veer et al. [12], for example, the genomic
predictor was both derived and evaluated on the same
data, leading to a heavily overestimated prediction
strength for this predictor. This was criticized by
Tibshirani and Efron [34], who proposed the method
of K-fold pre-validation (see also [35]), where the
prediction for each individual i is based on a rule
made with fold g, i Œ g, left out. The pre-validation
procedure is especially suited when data are sparse, as it
also uses the training data in the evaluation procedure.
Bøvelstad et al.’s [9] procedure of fitting and evaluating
the methods on multiple random splits into training and
test sets is an alternative way of utilizing the whole data
set in the evaluation procedure.

We find that ridge regression has the best median
prediction performance for the breast cancer data and
the DLBCL data, and has the second best performance
for the neuroblastoma data (Figures 1, 2, 3). However, in
the pairwise comparison (Figure 4), ridge regression
performs better on all three data sets than all the other
methods for more than half of the 50 splits studied. For
the breast cancer data and the DLBCL data, comparing
the unsupervised versions of PCR/PLS with the super-
vised versions for the clinico-genomic models indicate
that pre-selection of genes is not improving predictions,
and rather giving more unstable results. The lasso, which
can be thought of as a selection method, has a rather
poor performance in two out of three data sets. Simple
univariate selection has the poorest performance of the

methods studied. This is evident in all three data sets. Its
performance is fairly good on the combined data, but
this is simply because it for most of the 50 splits selects
no genes, and thus behaves more or less as the clinical
model.

The second goal of our comparative study was to
investigate the prediction performance of models that
utilize only clinical data, only genomic data, or a
combination of the two. Based on the three data sets,
our comparison study indicated that using genomic data
alone may lead to poorer predictions than what can be
obtained from established clinical predictors. In the cases
where the genomic models were better than the clinical
ones, ridge regression was used for dimension reduction.
We also found that the clinico-genomic models tend to
outperform the models based on genomic data alone.
However, the improvement of using combined data
varied among different diseases. In our study there was a
difference between the breast cancer data on one hand,
and the DLBCL and neuroblastoma data on the other. For
the breast cancer data set, the clinical covariates and the
genomic covariates seemed to contain much of the same
information for the purpose of prediction. Thus, the
predictions made using microarray gene expression data
alone did not differ much from the predictions made
when using both the clinical data and the microarray
gene expression measurements, as observed in Figure 1.
This is in agreement with the results found in [18]. For the
DLBCL and the neuroblastoma data sets, the information
was more orthogonal and large improvements were made
when combining the data into clinico-genomic models
(Figures 2 and 3).

We conclude that combining traditional clinical covari-
ates with high-dimensional genomic data may lead to
better predictions than what can be achieved using the
data separately. Also, the results from the three data sets
studied indicate that the choice of high-dimensional
prediction method may be important. Ridge regression
seems to be the method that most often achieves the best
predictions when applied to both the genomic model
and the clinico-genomic model. However, we emphasize
that additional studies investigating more data sets, as
was done in [18], should be carried out in order to
confirm our findings and draw final conclusions.

Finally we want to point out that the purpose of this
paper has been to perform a methodological study
comparing the seven methods for building prediction
models using clinical and genomic data. This is different
from finding a prediction model for a given data set. In
order to build a clinico-genomic prediction model using
a given dimension reduction method, one should use
the whole data set (no test data is set aside for
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validation) and proceed as described for a single set of
training data in the Methods section.
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