
 

 

Purification and characterization of 

Flavohemoglobin 

 

A flavoheme enzyme 

 

Bernt Wu 

 

 

 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Master thesis at the Department of Biosciences] 
 

UNIVERSITETY OF OSLO  

 

June 2015 



II 

 

  



III 

 

Abstract 

Flavohemoglobin (FHb) is a flavoheme enzyme that catalyzes dioxygenation of nitric oxide 

(NO) to nitrate NO3
–
. NO is a diatomic radical gas produced by enzymatic and non-enzymatic 

oxidation of reduced nitrogenous compounds. NO acts as a membrane-permeable signal 

molecule in mammals. In addition it is toxic at higher concentrations and is utilized by the 

immune system against invading pathogens. FHb is involved in protection against the 

cytotoxic effects of NO (termed nitrosative stress) and is found in a range of bacterial species 

and some fungi. FHbs are not found in higher eukaryotes, but is employed by a range of 

pathogens, and is a potential therapeutic target. 

In this thesis we sought to investigate the FHb from Bacillus cereus by determination of the 

X-ray crystal structure as only a few structures of FHb from different organisms have been 

obtained. 

The protein was successfully cloned and expressed and a purification protocol has been 

developed, with ammonium sulfate precipitation, anion exchange chromatography and gel 

filtration. A high yield with high purity was obtained, but with heme and FAD at 

substoichiometric levels. Crystallization screening resulted in some small needles grown from 

precipitate, although they were non-reproducible and no crystal structure was obtained. 

A heme assay was performed in order to identify the heme/protein ratio and protein assays 

were performed to calculate protein concentration. Testing of reconstitution with heme and 

FAD was performed with promising results. 
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1 Introduction 

This thesis will start with an introduction on flavoheme proteins, more specifically about the 

heme and flavin cofactors, followed by an introduction to nitric oxide. Thereafter 

flavohemoglobin (FHb), which is the focus of this thesis, will be introduced with some focus 

on structure, catalytic mechanism and an overview of the research field. At the end of the 

introduction a more specific description of the work carried out in this thesis will be given. 

Heme and flavin cofactors 

Biological cofactors are utilized in order for enzymes to enable a wide variety of reactions 

necessary for all aspects of life. In this section the characteristics of two cofactors will be 

presented, heme and flavin. 

1.1.1 Heme 

Heme-proteins are widely used throughout the biosphere, and the heme group is a central 

molecule of life [1, 2] that is involved in a range of reactions including: catalysis, electron 

transfer and immunological defense, in addition to oxygen transport and storage,  

Heme is a prosthetic group consisting of an organic ring structure (protoporphyrin) and a 

single iron ion (figure 1.1). The four nitrogen atoms chelate the iron ion. Iron consists mainly 

in three oxidation states in biological systems: the reduced ferrous (Fe
2+

) form with oxidation 

number +2, the ferric (Fe
3+

) form with oxidation number +3 or the ferryl (Fe
4+

) form with 

oxidation state +4 [3]. There are various types of heme, which differ in their protoporphyrin. 

The most abundant type, heme b, consists of a protoporphyrin IX. The other iron porphyrins 

differ in the substitutions pointing out from the ring system. Ferric (Fe
3+

) protoporphyrin IX is 

called hemin and can be reduced by one electron to produce ferrous (Fe
2+

) heme. Heme is 

usually used as a generic term for both the ferrous (Fe
2+

) and ferric (Fe
3+

) forms of iron 

protoporphyrin IX. Formerly however, heme only referred to the ferrous form and hemin to 

the ferric [1]. 
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Figure 1.1: Heme cofactor: Heme consists of a protoporphyrin ring and a single iron ion. a) Heme b consists of 

protoporphyrin IX. b) The iron can coordinate two axial ligands, which may be Cys, His or Met residue in 

proteins or small molecules, including oxygen, nitric oxide and carbon monoxide. Taken from Zhang, Heme 

biology 2011 [1]. 

In proteins, the heme group is sequestrated in the protein structure in order to prevent 

irreversible conversion of the ferrous iron to the ferric state. The iron atom in heme can have 

up to six coordination bonds, four to the nitrogen atoms in the flat porphyrin ring and two 

perpendicular to the porphyrin. In heme proteins the iron may be 4, 5 or 6-coordinated with 

the axial ligands often being either cysteine, histidine, tyrosine or methionine and a small 

molecule [1]. 

1.1.2 Flavin 

Flavoproteins are found in bacteria, archaea and eukaryotes, with the number of genes 

encoding flavin-dependent proteins varying from 0.1% to 3.5% [4]. Flavoproteins catalyze a 

range of different reactions, and the flavin cofactors are said to compete for the title of master 

of versatility. Flavin-dependent reactions include dehydrogenation, oxidation, 

monooxygenation, halogenation, reduction of disulfide and other types of bonds, and light-

sensing. Flavin-dependent enzymes include oxidoreductases (>90%), transferases (4.3%), 

lyases (2.8%) isomerases (1.4%) and ligases (0.4%) [4]. 

Flavins are a family of yellow-colored compounds with the basic structure of 7,8-dimethyl-

10-alkylisoalloxazine (figure 1.2), which is a fused ring structure. Flavins are derived from 

riboflavin, commonly known as vitamin B2 [5]. Flavoproteins catalyze oxidation-reduction 

reactions. In most flavoproteins flavin is found in the form as flavin adenine dinucleotide 

a) b) 
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(FAD), or flavin mononucleotide (FMN), (figure 1.2). The isoalloxazine ring can undergo 

reversible reduction by accepting either one or two electrons, (figure 1.3).  

 

Figure 1.2: Structure of flavins: Structure of riboflavin (RF), flavin adenine dinucleotide (FAD) and flavin 

mononucleotide (FMN)  

 

Figure 1.3: Flavin has three reduction states: Fully oxidized semiquionone form and fully reduced. Flavin can 

accept either one or two electrons and can be used in a range of reactions. The R-group differs depending on the 

type of flavin. Taken from Biochemistry dictionary, Gonzaga University [6]. 

 

The three redox states are: oxidized, one-electron reduced (semiquionone) and two-electron 

reduced. The three reduction states differ in color because of the conjugated bonds in the ring 

system. The fully oxidized form is yellow with absorption peaks at 445, 375, 265 and 220 nm. 

The semiquionone form can exist in either a neutral blue form or an anionic red form with a 

pKa of 8.5 [5]. The blue and red forms have absorption maxima at 500-600 nm and 370-400 

nm respectively. The semiquionone form has a low stability in aqueous solution and will be 

protonated, followed by reduction to the fully reduced form. The fully reduced form is 

colorless with absorption maximum near 360 nm [7].  

Riboflavin 

(RF) 

FAD 

FMN 



4 

 

Flavin has the potential to transfer single electrons, hydrogen atoms and hydride ions making 

it more versatile than other redox cofactors. Other redox cofactors usually catalyze either one- 

or two-electron transfer processes exclusively. Flavoenzymes are therefore important 

mediators between one- and two-electron processes [5, 7]. 

In flavoproteins the flavin is tightly associated with the peptide, compared to NAD/NADP 

(nicotinamide adenine dinucleotide (phosphate)). The standard reduction potential of a flavin 

nucleotide depends on the protein with which it is associated and can be in the range from 

approximately -400 mV to +60 mV for the flavin. This is caused by local interactions with the 

protein. Similarly stabilization of the semiquinone form varies among flavoprotein [7]. 

Nitric Oxide and nitrosative stress 

Nitric oxide (NO) or nitrogen monoxide is diatomic radical gas produced by enzymatic and 

non-enzymatic oxidation of reduced nitrogen compounds (figure 1.4). Properly, nitric oxide 

should be written as NO to indicate the unpaired electron, but for the purposes of this thesis 

will be written as NO [8].  In order to stabilize the unpaired electron NO can react with other 

species containing an unpaired electron, or by interacting with some transition metals, in 

particular iron. 

  

Figure 1.4: Nitric oxide: The structure of nitric oxide consists of a nitrogen atom and an oxygen atom with an 

unpaired electron. 

NO acts as a signaling molecule in a range of processes in the human body including the 

nervous system and as a regulator of blood pressure and blood flow to different organs at 

nanomolar concentrations [8]. Today, other gases acting as signal molecules have been 

discovered (e.g. ethylene regulating ripening of fruit) but the discovery that such a structurally 

simple free radical could act as a signal molecule resulted in a major paradigm shift in the 

field of cell signaling [9]. In fact Furchgoff, Ignarro and Murad were awarded the Nobel Prize 

in Physiology or Medicine in 1998 for the discovery of nitric oxide as a signaling molecule 

[10]. In mammals nitric oxide is generated by nitric oxide synthases (NOS) and disruption of 

N=O
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NO signaling is linked to hypertension, neurodegeneration, stroke and heart disease [11]. 

In addition nitric oxide plays a role in cancer, both as a signal molecule and as a toxin [12]. 

At higher (micromolar) concentrations exogenous NO also demonstrates a broad range of 

cellular toxicities termed “nitrosative stress”. Some of these toxicities are due to NO directly, 

but it seems that NO serves as a precursor for a range of reactive nitrogen species (RNS) such 

as dinitrogen trioxide (N2O3), nitrogen dioxide (NO2
*
) and peroxynitrite (ONOO

–
). 

The cytotoxic effects of NO are utilized by our immune system and so protection from NO is 

important for virulence of certain pathogens [13]. FHbs are found in various pathogens and 

protect against nitrosative stress by conversion of nitric oxide to nitrate (NO3
–
).  

In addition FHb can be used to study NO biology by heterologous expression in plants [14, 

15] and mammalian cells [16]. E. coli FHb have been shown to be active in mammalian cells.  

In addition FHb blocked the growth suppressing effects of exogenous and endogenous NO, 

and was able to blunt certain NO-dependent signaling pathways [16].  

 

Flavohemoglobin (FHb)  

1.1.3 Introduction 

FHb is flavoheme enzyme containing both a flavin and a heme cofactor (figure 1.1 and 1.2) 

Several FHbs have been characterized to date [17-24] and are found in bacteria, fungi and 

protozoa. The E. Coli FHb, hmp is the most studied. The protein is a unique combination of 

an N-terminal globin domain and a C-terminal oxidoreductase domain (figure 1.5). The 

globin domain contains heme cofactor while a FAD cofactor is found in the oxidoreductase 

domain. FHb is an NO-dioxygenase and catalyzes the dioxygenation of NO by oxidizing 

NAD(P)H yielding nitrate (NO3
-
) (Scheme I). Dioxygenases incorporate both oxygen atoms 

from an oxygen molecule (O2) into the substrate, in contrast to monooxygenases which 

introduce a hydroxyl group with water as a byproduct. 

Scheme (I): 2NO + 2O2 + NAD(P)H  2NO3
-
 + NAD(P)

+
 + H

+
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Figure 1.5: Heart shaped structure of E. coli FHb: The N-terminal globin domain is shown in red, the 

reductase domain is divided into a NAD-binding domain, shown in green and a FAD-binding domain shown in 

blue. Taken from Ilari et al. J. Biol. Chem. 2002 [25] 

 

 

Figure 1.6: Classical globin fold. The classical globin fold (illustrated by myoglobin) consists of 6 helices with 

segments from A to H. A heme molecule is found in a hydrophobic pocket within the molecule, protected from 

solution. Taken from Garrett & Grisham, Biochemistry Third edition  [26] 
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The Globin domain 

All globin domains are structurally related to vertebrate hemoglobins (Hbs) and myoglobins 

(Mbs), with two types of globin folds, classical (3/3) and truncated (2/2). The classical globin 

fold consists of six helices consisting of eight helical segments from A to H (figure 1.6). The 

heme is found in a hydrophobic pocket and is five-coordinated with the iron ion ligated to the 

proximal histidine (His(F8)). In addition a conserved phenylalanine (Phe(CD1)) appears to be 

necessary to keep the heme in correct orientation within the pocket. Apart from His(F8) and 

Phe(CD1) a wide array of amino acid residues can be found within the heme pocket. [27] 

The globin domain of FHb (5-140 aa) is a classical globin fold with an unusually long H-

helix and the D-helix is substituted by a large loop region. The heme pocket geometry shows 

little resemblance to that found in vertebrate Hbs and Mbs, apart from the conserved residues 

Phe(CD1) and His(F8). 

The architecture of distal heme pocket is found unusual with Leu57(E11) isopropyl side chain 

closest to the heme (figure 1.7). The sidechains of Tyr29(B10) and Gln53(E7) were proposed 

to be involved in heme iron ligand stabilization and are found over 5 Å away. It has been 

suggested that a conformational change upon ligand binding will rotate the leucine sidechain 

away for the tyrosine hydroxyl group to interact with the ligand [28]. Additional side chains 

within 5Å are Phe43(CD1), Ile61(E15) and Val98(G8), and the backbone of Gln53 that with 

Leu57 fill the first distal shell.  

The proximal heme pocket consists of a proximal histidine residue (His85(F8)) (figure 1.7). 

The histidine residue is involved in a hydrogen bonding network comprising of His85(F8), 

Tyr95(G5) and Glu135(H23) which is not found in vertebrate Hbs. The hydrogen bonds 

impart a rigid orientation of the imidazole ring of His85 with respect to the heme plane. Other 

conserved amino acids are Asn44(CD2), Leu012(G8) and Tyr124(H11) and Lys84(F15) [27] 
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Figure 1.7: Heme-binding site of ferric unligated FHb from E. coli (HMP). The Heme group shown together 

with a selection of amino acid residues located within 5 Å of the heme. Taken from Forrester & Foster, Free 

Radic. Biol. Med. 2012 [13]. 

 

The FAD- and NAD(P)H-binding domain 

The flavin binding domain (oxidoreductase) consists of two separate subdomains, a FAD-

binding domain (150-245 aa) and a NAD-binding domain (250-400 aa). The FAD-binding 

domain consists of a six-stranded antiparallel -barrel with Greek Key topology. A small -

helix is capping the -barrel at the bottom and a long loop connecting F2, F3 -sheets on 

the top. The NAD-binding domain consists of a five-stranded parallel -sheet flanked by two 

helices on one side and by a helix and a loop on the other. The two subdomains form an 

oxidoreductase module, which structurally belongs to the ferrodoxin reductase family (FNR). 

[27], 

The re-side geometry of the isoalloxazine-binding motif (ring structure of flavin) has identical 

orientation of the conserved residues Gln205, Tyr206, Ser207 and Tyr188 with respect to the 

isoalloxazine plane (figure 1.8). The conserved residues Val269 and Thr272 are also found on 

this side of the flavin. On the si-side of the flavin of E. coli Cys389, Phe390, Gly391 and 

Pro392 are found, the latter three being conserved. In R. eutropha with a bound phospholipid 

Val98 Ile61

Tyr29

Leu57

Gln53

His85

Glu135

Tyr95
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the same conserved residues are observed but with a different orientation which might be 

caused by a conformational change caused by lipid binding (figure 1.7) [27]. 

The conserved residues in the flavin binding domain correspond to the following residues 

found in ferrodoxin reductases: Phe390, Gly270, Glu388, Thr272, Pro273, Gly186, Gln187, 

Tyr188, and Ser232. The ferrodoxin reductases are flavin binding proteins highly specialized 

in electron transfer from NADH to a flavin moiety and to a high-redox potential electron 

acceptor [27]. 

 

Figure 1.8: FAD binding site of FHb from, R. eutropha and E. coli. The FAD-binding site of R. eutropha 

(left) and E. coli (right) shown together with a selection of amino acid residues located within 5 Å. Both sides of 

the isoalloxazine ring are shown with the re-side on top and si-side on bottom. Taken from Bonamore & Boffi 

IUBMB Life, 2008 [27]. 

1.1.4 Catalytic mechanism 

Two mechanisms have been postulated for the dioxygenation of NO: a “dioxygenation” 

mechanism and a “nitrosylation” mechanism. The first step in the dioxygenation mechanism 

involves O2 binding to ferrous (Fe
2+

) heme, while NO binds first in the nitrosylation 

mechanism (figure 1.9) [13]. Both mechanisms will result in generation of NO3
–
 and 

oxidation of heme to the ferric state (Scheme II). Regeneration of ferrous heme is proposed to 

involve an initial two-electron reduction of FAD by hydride transfer from NAD(P)H. 

Reduced FAD then passes a single electron to the heme and ferrous heme is generated with 

FAD in the semiquinone state (FADSQ). NO dioxygenation may then proceed and FADSQ can 

transfer the second electron to the ferric heme.  
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Scheme (II): NO + O2 + Fe
2+

  NO3
-
 + Fe

3+
 

Scheme (III): NAD(P)H + 2 Fe
3+

  NAD(P)
+
 + 2 Fe

2+
 

  

Figure 1.9: Reaction scheme for FHb. The dioxygenation mechanism (left) with O1 binding first, followed by 

NO. The nitrosylation mechanism involves NO binding first (right) and regeneration of ferrous heme is 

performed by NAD(P)H (middle). 

The first step in the dioxygenation model starts by O2 binding to ferrous heme, which is 

axially ligated by a proximal histidine residue followed by NO binding forming a ferrous-oxy 

complex (Figure 1.10). In the next step the ferrous-oxy complex reacts with NO to form a 

transient Fe-ONOO intermediate, which is believed to undergo rapid isomerization and 

release of nitrate. 

 

Figure 1.10: Dioxygenation mechanism for FHb. The dioxygenation mechanism starts with O2 binding to 

ferrous (Fe
2+

) heme. The ferrous oxy-complex is stabilized by Tyr29. Nitric oxide reacts with the complex and a 

transient Fe-ONOO intermediate is formed. Spontaneous isomerization follows with a release of nitrate. 

Ferric (Fe
3+

) is reduced. Taken from Forrester & Foster. Free Radic. Biol. Med. 2012 [13]. 

Fe2+

Fe3+

Fe2+-O2 Fe2+-NO

NOO2

½NAD(P)H

½NAD(P)+

O2

NO3
-NO3

-

NO

Reduction

of heme

NitrosylationDioxygenation
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The nitrosylation model starts with NO binding to form a ferrous nitrosyl species. An electron 

transfer from heme would generate a ferric-nitroxyl equivalent, which in turn would react 

with O2 to form NO3
–
. 

Both mechanism share the “push-and-pull” mechanism in which a proximal imidazole 

(His85) imparts an electron rich character to Fe
2+

 heme which allows electron transfer to 

either O2 or NO2 

Research supporting the nitrosylation mechanism is the observation of a higher affinity of 

ferrous FHb for NO than O2 under conditions where the remaining substrate is at saturating 

conditions. The KM values are 0.28 M for NO and 100 M for O2. In addition deoxygenated 

ferrous-nitrosyl FHb undergoes rapid generation of NO3
–
 upon exposure to even micromolar 

concentrations of O2. Arguing for the dioxygenation mechanism is that mutation of Tyr29 to 

Phe impairs both O2-binding and catalysis with only marginal effects on NO affinity. [13] 

For the dioxygenation mechanism a highly conserved Tyr29 has been postulated to stabilize 

the O2-binding, but has been found over 5 Å from the heme in crystal structures for E. coli. 

Recently a computer simulation with E. coli FHb by Ferreira et al. reveals that stabilization of 

the ferrous-oxy complex is by H-bonding with Tyr29 mediated by water [29]. 

NO reductase-activity 

In addition to NO dioxygenase activity FHb also has the ability to reduce NO to N2O under 

anaerobic conditions (Scheme IV). It operates at approximately 1% the rate of aerobic 

dioxygenation. The physiological role of FHb’s NO reduction ability remains unclear, and it’s 

possible this function is overshadowed by other enzymes performing NO reduction in most 

bacteria [13].  

Scheme (IV): 2NO + 2H
+
 + 2Fe

2+
  N2O + H2O + 2Fe

3+
  

Mühlig et al. conducted a recent knockout study of Salmonella Typhimurium, a serovar (sub-

species) of Salmonella enterica. The bacterium mainly deploys three enzymes to detoxify 

NO: FHb (HmpA), flavorubredoxin (NorV) and the periplasmic cytochrome c nitrite 

reductase (NrfA) [30]. Experiments were performed in LB-medium mimicking conditions 

during fermentation of raw sausages. NaNO2 salt is used for fermentation and exerts 

nitrosative stress. The FHb knockout showed decreased growth compared to the wild type and 
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the other knockout mutants under both high and low O2 concentrations. This study indicates 

that NO reductase activity may be important for some systems. 

1.1.5 Other studies 

Several knockout studies of FHbs in different organisms have been performed and shown NO 

hypersensitivity, as well as decreased virulence/pathogenicity. Forrester & Foster have 

comprised a list of knockout studies [13]. Studies of Bacillus subtilis (a relative to B. cereus) 

show NO hypersensitivity after knock out of FHb [13], in addition to poor long term survival 

under anaerobic conditions in the presence of nitrate [31], 

As mentioned it has been proposed that FHb was generated as a fusion of genes. Studies show 

that it is necessary that the two domains are in a single polypeptide to function properly. 

Individual expression of the two domains fails to complement FHb deletion in vivo [13]. 

Kaur, et al. 2002 made a chimeric protein by fusing cDNA encoding the single domain 

Vitreoscilla hemoglobin with the C-terminal reductase domain from A. eutrophus FHb. This 

chimeric protein had NO dioxygenase activity and was able to rescue NO-sensitivity in FHb-

null E. coli. It is therefore interesting that there are bacteria, like Mycobacterium tuberculosis, 

that deploy a single globin domain (truncated hemoglobin) to protect against nitrosative 

stress. These proteins have an NO-consumption rate that are a magnitude slower than FHb 

[13].  
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Aims of the master project 

As described earlier FHbs are important in protection against nitrosative stress. Nitric oxide is 

utilized by the immune system against pathogens and knockout mutants exhibit NO 

hypersensitivity, and for pathogenic species, less virulence. FHbs are not found in higher 

eukaryotes and is thus a promising therapeutic target. In addition FHb could be used as tool to 

study NO signaling in e.g. mammals. 

Although FHb proteins from several bacterial relatives have been characterized, only a couple 

of structures from different organisms have been obtained without either a phospholipid 

bound (as in R eutropha [17]) or imidazole antibiotics [24, 25]. An additional crystal structure 

of FHb could contribute to our understanding of the catalytic mechanism, as only two 

structures of the heme pocket without ligands have been obtained. 

 

This master thesis is focuses on three main aims for the study of FHb from B. cereus. 

1. Develop a purification protocol for FHb 

Express protein using a host organism, develop a suitable purification protocol and 

purify sufficient amounts of protein for further analysis. 

2. Determine the X-ray crystal structure of FHb 

Screen for crystallization conditions of FHb and determine the structure of the 

protein using X-ray crystallography. 

3. Biochemical characterization 

Use spectroscopic techniques to investigate the properties of FHb. 
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2 Material and methods 

Molecular biology methods 

The gene for the protein to be investigated was purchased from GenScript, precloned into 

pEt22b(+) cloning vector with the restriction enzymes XbaI and BamHI (see Appendix 4). 

2.1.1 Transformation of recombinant vector into competent cells 

Transformation is a process in which exogenous genetic material is introduced into competent 

bacterial cells. The genetic material is taken up directly through the membrane, incorporated 

into host DNA and expressed. Recombinant plasmid pET22b(+) was purchased from 

GenScript and transformed into BL21(DE3) E. coli cells (Invitrogen). 

The purchased plasmid was diluted with Milli-Q water to a concentration of 50 ng/L for 

transformation. After thawing the E. coli cells on ice, 1-3 L plasmid solution was added to 

10 l cells.  The cells were kept on ice for 5 minutes, and then incubated at 42C for 

45 seconds before being returned to the ice for 2 minutes. 125 L LB medium was added to 

the cells and shaken at 37C for an hour at 225-250 rpm (Incubator Shaker Series 25, New 

Brunswick Scientific). The transformation reactions were plated on LB-plates with 

100 g/mL ampicillin and left over night at 37C. The LB-plates were inspected for growth of 

colonies the next day. Two control reactions were used, positive control with 1 l control 

plasmid (for ampicillin resistance) and a negative control without plasmid.  

2.1.2 Making bacterial freeze stocks 

Bacterial stocks are made for long term storage of plasmids within an appropriate host. 

Glycerol stocks can be stored for several years. An over-night culture of 5 mL LB-medium 

(100 g/mL Amp) was inoculated and incubated over night at 30C in a shaker at 225-

250 rpm (Incubator Shaker Series 25, New Brunswick Scientific). After growth is observed, 

200 L 60 % glycerol solution is added to 800 L of the overnight culture. Finally the stock is 

frozen with liquid nitrogen and stored at –80C 
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To recover bacteria from the stocks, only a tiny part of the still frozen stock is streaked on 

LB-agar plates (100 g/mL Amp). The plates are grown overnight at 37C until colonies are 

visible. 

Protein methods 

2.1.3 Over-expression of recombinant gene in E. coli cells 

Bacteria from freeze stocks were grown on LB-agar plates (100 g/mL Amp) overnight at 

37C. Immediately after colonies were observed the plates were removed and stored in room 

temperature (20C) for slow growth. An over-night culture of 200 mL LB-medium 

(100 g/mL Amp) was inoculated and incubated over night at 30C in a shaker at 225-

250 rpm. The over-night culture was diluted by transferring 50 mL to 1 L TB-medium 

(100 g/mL Amp) (See Appendix 3) and incubated at 30C in a shaker at 225-250 rpm. 

After about 8 hours the culture was diluted 20 times into new flasks with 1 L TB-medium 

(100 g/ml Amp) each, usually 12 flasks.  

The cells were grown until OD600 reached 0.8 and, the heme precursor, -aminolevulinic acid 

(ALA) was added to a concentration of 0.2 M and expression was induced with 1.0 mL 

1 M IPTG after cooling the medium on ice to 20C or less. The culture was incubated 

overnight at 20C at 225-250 rpm. Bacteria were harvested by centrifugation at 6500 g the 

following day.  

2.1.4 Protein purification 

Lysis of bacterial cells 

For cell lysis an AB X-press® system [32] was used. Frozen bacterial cells were lysed by 

high pressure and mechanical stress. Frozen bacterial cells were added to a precooled X-Press 

column (-20C) and mounted on a stand. Using mechanical pressure the bacterial cells were 

pushed through a tiny hole of the X-press column repeatedly, which breaks the cells, freeing 

its contents. 
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Precipitation of DNA 

The crushed cells were then dissolved in Buffer A (Appendix 3) containing ½ protease 

inhibitor pill (cOmplete ULTRA Tablets, Mini, EasyPack by Roche) at 4C and centrifuged at 

48 000 g for 1 hour at 4C to remove cell debris. A 10% streptomycin sulfate solution 

(pH 7.5) was added slowly, drop by drop to the supernatant, to a final concentration of 2 % 

streptomycin sulfate in order to precipitate DNA. The solution was then centrifuged at 

48 000 g for 30 minutes to remove the precipitated DNA. The supernatant was used for 

ammonium sulfate precipitation. 

Ammonium sulfate precipitation 

Ammonium sulfate ((NH4)2SO4) precipitation is a method to purify proteins, as different 

proteins precipitate at different concentrations of ammonium sulfate. After addition of 

ammonium sulfate the precipitated proteins are separated from proteins in solution by 

centrifugation. When the process is repeated with sequentially higher ammonium sulfate 

concentrations the precipitates/pellets are essentially different fractions containing different 

proteins. The process can be optimized by varying salt concentration to remove proteins that 

precipitate before and after the protein of interest. 

A procedure of adding ammonium sulfate in 3 steps was used, where each step was followed 

by centrifugation at 48 000 g. First 0.21 g/mL salt was added and spun, followed by 0.09 

g/mL (30 g/mL in total). This was repeated until the ammonium sulfate concentration was 

0.43 g/mL yielding three pellets. 

Chromatography 

All chromatography procedures were performed using the Äkta Purifier-system from 

GE Healthcare. This Äkta system can measure the absorbance and conductivity of the protein 

samples. Absorbance is measured in order to observe and separate proteins from each other 

while conductivity is an indicator of the salt content. The Äkta system can be operated 

manually or automatically. 

Most of the columns used were packed by the group, column material and empty columns 

have been supplied by GE healthcare. During elution absorbance was measured at 280, 400 

and 450 nm. All proteins absorb light at 280 nm as the aromatic amino acids (tyrosine and 
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tryptophan, and to a less degree phenylalanine) absorb light at this wavelength. Heme has a 

Soret peak (absorption maximum) at approximately 400 nm, and flavins have a maximum at 

450 nm. Fractions with high absorbance at 400 nm and 450 nm were collected in the 

following chromatography procedures. 

The following columns were used 

XK 26 column with 70 mL Sephadex 25 (packed by the group) 

XK 26 column with 70 mL HPQ Sepharose (packed by the group) 

XK 16 column with 120 mL Superdex 200 (packed by the group) 

Prepacked Superdex 200 10/300 GL (GE Healthcare) 

HiTrap Desalting column, 5 mL (GE Healthcare) 

Desalting 

The precipitated protein was resolved in Buffer A, and a desalting column (Sephadex 25) was 

used in order to lower the salt concentration of the sample by separating the low molecular 

weight components (salt) and the high molecular weight molecules (proteins). A low salt 

concentration is essential for a successful ion-exchange chromatography, since salt will 

compete with protein for binding to the anion-exchange columns. Buffer A was used; the 

Äkta system was operated manually by starting to collect the protein fraction when an 

increase in absorbance at 400 nm was observed and stopping the collection when absorbance 

at 400 nm decreased and before the conductivity rose. 

Anion-exchange chromatography 

Anion-exchange is a method for separating proteins by the charges on the protein surface. 

Proteins will bind to the column by electrostatic interactions. The charges on the protein 

surface depend on the pH as some of the amino acid residues will get protonated or 

deprotonated affecting the total charge. During anion exchange chromatography proteins with 

negative charges on the protein surface bind to the column material, the column material itself 

is positively charged. Protein elution is performed by increasing the salt concentration as the 

negative ions of the salt will compete with the proteins for binding. 



18 

 

Different salt gradients can be used for elution, including simple linear gradients and step-

gradients. A slack gradient will result in higher resolution, separating proteins of similar 

charge. The step gradients used consist of a series of linear gradients with “plateaus” (flat 

segments with no increase in salt concentration) to elute proteins that bind slightly stronger or 

weaker than the protein of interest. 

For ion-exchange a XK 26 column with 70 mL HPQ-Sepharose was used with buffer A and 

buffer B. The procedure was optimized for the protein so that other proteins that bind poorly 

will elute early and proteins that bind tighter will be washed out by increasing the salt 

concentration. Both linear and step gradients were used for purification, more details are 

found in the Results-section. 

Gel-filtration chromatography 

Gel filtration chromatography is a type of size exclusion chromatography with an aqueous 

mobile phase and a stationary phase. Gel filtration separates protein based on protein size. 

The gel material consists of beads with pores that allow smaller molecules access to a larger 

volume than larger molecules. Larger molecules will have less volume available and will pass 

through the column quicker than smaller molecules. Protein samples from anion-exchange 

chromatography procedure were purified by gel filtration chromatography. 200 l of 

concentrated protein was loaded on a Superdex 200 column (XK16) run with Buffer C 

separating the proteins with respect to size. The fractions with high 400 and 450 nm values 

were collected. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Samples from different purification steps can be analyzed by sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (SDS-PAGE). SDS is an anionic detergent that binds to 

proteins, causing it to linearize and become negatively charged. The charge of the protein 

becomes proportional to the mass, and proteins are separated by mass on the gel by an electric 

field. 

For analysis protein samples were mixed with NuPAGE® LDS sample buffer (Life 

technologies) with a volume of a quarter of the sample volume and incubated at 96C for 5 

minutes, vortexed and applied to a 10- or 15-well NuPage 4-12% Bis-Tris gel 
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(Life technologies). The gel was run for 35 minutes at 200 V with NuPage® MOPS SDS 

Running Buffer (Life technologies). 10 L of Novex® Sharp Pre-Stained Protein Standards 

(Invitrogen) ladder was used. 

After gel electrophoresis the gel was either stained with Brilliant Blue R250 (Sigma) or 

InstantBlue (Expedeon). For Brilliant Blue staining the gel was soaked in 0.1% Coomassie 

Brilliant Blue R250, 40% EtOH (ethanol), 10% HAc (Acetic acid) and heated for 20 seconds 

in a microwave before being transferred into destaining solution and destained overnight. 

InstantBlue Coomassie staining was performed by leaving the gel in solution until bands were 

visible, ca. 15 minutes. 

Ultra filtration 

Ultra filtration was used to concentrate samples from ion-exchange and size exclusion 

chromatography for crystallization. Amicon Ultra 30 K-15 (or -4) or Centricon Plus 30 K-70 

tubes were used as describes by the manufacturer (Millipore). A cutoff of 30 kDa was used as 

FHb has a molecular weight of 48.8 kDa. A typical set up for the Amicon Ultra 30 K-15 was 

4750 g at 4C with a fixed rotor angle for 18 minutes. 

2.1.5 Protein crystallization 

SDS-PAGE and UV-vis was used to analyze the purity and indicate cofactor content of the 

samples. Several crystallization trials were performed on pure protein samples. Crystallization 

screening was performed using either an Oryx6- (Douglas Inst. Ltd.) or Mosquito robot 

(TTP Labtech) offered by the Structural biology Core Facility at Rikshospitalet Oslo 

University Hospital (Bjørn Dalhus). Both robots prepared 96 sitting drop experiments in 

crystal trays, with the Mosquito being considerably faster, and needing less protein, but with a 

smaller drop size (0.2 L in contrast to 0.8 L for the Oryx6 robot). The Oryx6- and 

Mosquito robot prepared drops in room temperature and at 4C, respectively. The crystal 

trays were stored either in room temperature or at 4C. The trays were monitored with a light 

microscope immediately after drop preparation, in order to check for crystal growth, and 

regularly for the next weeks and (less frequently) months. 
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Optimization of crystal conditions was performed manually with 2 L sitting drops at room 

temperature under a light microscope (SMZ168 LED, Motic) with a 1:1 ratio between the 

protein solution and crystallization solution.  

2.1.6 Reconstitution of heme and FAD 

Reconstitution of heme-deficient FHb with heme was performed under reducing conditions 

(10 mM DTT) and with the presence of catalase as described by Gardner, NO dioxygenase 

assays [33], using degassed buffer instead of N2-sparged buffer and in a smaller scale. FHb 

(0.5 to 0.75 mM) was prepared in 400 l Buffer D (3000 U of catalase) and 20 mM hemin 

(dissolved in dimethyl sulfoxide) was added slowly to a final concentration equal to the 

concentration of FHb. Dithionite (2 mg freshly dissolved in water) was added after 

15 minutes of incubation at 20C, followed by 60 minutes of incubation at 37C. The solution 

was then run on a 5 ml HiTrap Desalting column (Pharmacia) with buffer D and a Superdex-

200 column to separate the target protein from heme, catalase and reductants. 

Initial testing was performed with 100 M FHb in 100 L buffer. The same procedure was 

also tested with FAD (dissolved in MilliQ-H2O) instead of heme, and by addition of both 

heme and FAD to the same solution, e.g. 100 M heme, 100 M FAD and 100 M FHb in 

100 L buffer. 

Protein Assays 

2.1.7 Ultraviolet-visible spectroscopy 

UV-vis spectroscopy was performed to determine protein concentration and indicate heme 

and FAD content of FHb.  

Protein concentration of FHb was determined using Agilent 8453 Diode array 

spectrophotometer. Protein samples were diluted until the absorbance measured was below 

1.0. The absorbance at 405 nm was measured and protein concentration was calculated using 

the extinction coefficient 88 600 M
–1

cm
–1 

[34]. Indication of heme content was measured by 

comparing absorbance at 280 nm and 405 nm. All proteins absorb at 280 nm and heme has a 

Soret peak at 400 nm. 
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2.1.8 Assay for Heme content 

A small pinch of dithionite (2 mg) was dissolved in MilliQ-H2O. A 300 L sample of FHb 

containing 1.2 to 12 nmol of heme was added to 300 L of 4.4 M pyridine/0.2 M NaOH 

solution and mixed. Absorbance was measured at 556 nm and 539 nm before and 

immediately after adding the dithionite solution and gently mixing the sample in a cuvette. 

Potassium ferricyanide (100 mM) was then added stepwise at 3-L aliquots to the cuvette and 

absorbance at 556 nm and 539 nm were recorded. Heme concentrations in the sample was 

calculated from the absorbance differences of the reduced minus oxidized heme at 556 nm 

and 539 nm. M heme is given by the following formula: M heme = 46.7 (A556 – A539) 

[35, 36] 

2.1.9 FAD analysis 

10 to 20 nmol protein was dissolved in 1 ml Buffer C and boiled for 3 minutes. The solution 

was then centrifuged at 20 000 g to remove the denatured protein. 0.8 ml of the supernatant 

volume was added to 1.2 ml Buffer A and FAD-content was measured by Absorbance at 450 

nm with an extinction coefficient of 11 300 M
-1

cm
-1

. 

2.1.10 Bradford protein assay 

Protein concentration was measured using a Quick Start Bradford protein assay (Biorad) and 

Modified Lowry protein assay, explained under [37].  

Approximate protein concentrations were obtained through UV-vis spectroscopy by 

measuring absorbance at 280- and 405 nm with extinction coefficients of 44 900 M
–1

cm
–1

 

(calculated with ProtParam [38]) and 88 600 M
–1

cm
–1 

[34], respectively. 

The linear range of the Bradford assay with bovine serum albumin (BSA) is from 125 g/mL 

to 1000 g/mL. Protein concentration is determined by making a standard curve (e.g. linear 

regression) with a range of BSA concentrations. Concentration of the target protein is then 

calculated from absorbance of the sample by utilizing the standard curve.  
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The 1 mL assay with disposable cuvettes was performed to determine protein concentration. 

A prediluted BSA standard was used (GBiosciences) with the following concentrations: 

100 g/mL, 200 g/mL, 300 g/mL 500 g/mL 800 g/mL and 1000 g/mL. In order to 

determine protein concentration, 1 mL of Coomassie Brilliant Blue G-250 dye (Biorad) was 

added to 20 L of each standard and unknown sample solution and mixed. The samples were 

incubated for 5 minutes at room temperature and absorbance were measured at 595 nm and 

compared to the BSA standard curve. 

2.1.11 Modified Lowry protein assay 

Modified Lowry assay was used for protein determination. Similarly to the Bradford assay, 

protein concentration is calculated from a standard curve. The same prediluted BSA standard 

for the Bradford assay is used for this method. The BSA standard is not linear within the 

range, and a point-to-point curve is preferable to a linear fit, if plotted by hand, according to 

the manufacturer [39]. 

1X Folin-Ciocalteu Reagent (Thermo) was prepared by diluting with MilliQ-water. BSA was 

used as a standard from 100 g/mL to 1000 g/mL (GBiosciences). 0.2 mL of each standard 

and unknown sample replicates were prepared. At 15 second intervals 1 mL of Modified 

Lowry Reagent (1x) (Thermo) is added to each tube, mixed and incubated at room 

temperature for 10 minutes. 100 L of 1X Folin-Ciocalteu Reagent was added after exactly 

10 minutes, maintaining the 15-second interval between tubes. Test-tubes were covered and 

incubated for 30 minutes at room temperature. Absorbance was measured at 750 nm and 

concentrations were calculated from the BSA standard. The spectrophotometer was blanked 

with a sample of water. “Blank samples” without protein, were prepared as protein samples, 

and measured at 750 nm and subtracted from each standard and unknown protein sample. 
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3 Results and discussion 

Expression 

Plasmids ordered from (GenScript Inc.) were successfully transformed into competent 

BL21(DE3) cells. FHb was expressed and SDS-PAGE was used to identify over-expressed 

proteins which showed over-expression after induction with IPTG (Figure 3.1a). A total 

number of three over-expressions were performed. Because of low cofactor content of the 

pure protein, discussed later (see UV-vis and heme assay), the amount of ALA was increased 

from 0.2 M to 0.25 M and 0.3 M riboflavin was added (Figure 3.1b) for the last run. 

 

Figure 3.1: SDS-PAGE analysis of protein expression: Coomassie stained polyacrylamide gel showing 

expression of proteins before and after induction with IPTG. a) Over-expression with 0.2 M ALA, b) Over-

expression with 0.25 M ALA and 0.3 M riboflavin. Cells are either lysed or not, as indicated on the figure. 

Lysed cells show proteins in the cell cytoplasm and indicate that the protein is soluble. Each sample was applied 

twice at different concentrations the second (right) are diluted 2-fold. 

Both gels have clear bands between 40 kDa and 50 kDa, which indicate that FHb is 

overexpressed (MW 44.8 kDa). A band of similar size is present even before induction. This 

might be due to another protein of similar size or some expression of FHb even before 

induction. The FHb band is clearly present after cell lysis, which indicates that the protein is 

successfully overexpressed and soluble inside the cells. After overexpression a yield of 

150 g bacteria is obtained for 12 L of TB-medium or 12.5 g per L of cell culture. 

 

a)             b) 

FHb 
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Purification 

In order to obtain pure protein samples for crystallization a 3-step purification procedure was 

established and optimized consisting of ammonium sulfate precipitation, anion exchange 

chromatography and gel filtration.  

3.1.1 Ammonium Sulfate precipitation 

The first step of purification is ammonium sulfate precipitation; figure 3.2 shows an SDS-

PAGE analysis of this step. A band of expected size (45 kDa) is present in all of the 

pellets/fractions but in higher concentration in the last two (0.30 g/ml and 0.43 g/ml). There is 

no band at 45 kDa in the supernatant in figure 3.2 indicating that the protein has precipitated 

and is found in the pellets. Holo-FHb contains both heme and FAD and has an orange color. 

FHbs from other organisms have shown that heme and FAD content varies and both cofactors 

can be lost during purification, resulting in substoichiometric heme and FAD [33]. The last 

precipitation had the strongest reddish color (figure 3.3) indicating a higher content of heme. 

Further purification was performed with the pellets precipitated with 0.30 g/mL and 

0.43 g/mL ammonium sulfate either separately or by combining the two (mix-fraction). 

 

Figure 3.2: SDS-PAGE analysis of ammonium sulfate precipitation: The gel shows protein samples after 

resuspension of pellets from ammonium sulfate precipitation. Precipitation is performed in three steps with 

0.21 g/mL, 0.30 g/mL and 0.43 g/mL ammonium sulfate (see Methods). Supernatant after addition of 0.43 g/mL 

and centrifugation is also shown. Each sample is applied to the gel twice with the first (left) with 2-times more 

protein. 

FHb 
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Figure 3.3: Picture of protein sample after resuspension of the pellets 

obtained after ammonium sulfate precipitation. The 0.43 g/mL sample has a 

stronger reddish color than the 0.30 g/mL sample. 

 

 

 

3.1.2 Anion Exchange chromatography 

The second step of purification is anion exchange chromatography (IEX). Optimization of the 

purification procedure was mainly performed on this step. An overview of the different 

programs/gradients used is found in table 3.1. A small scale test was performed (figure 3.4) 

with a gradient from 0-100 % salt at pH 7.5, with the 0.43 g/mL and 0.30 g/mL fractions from 

ammonium sulfate precipitation. Both fractions were tested as the fractions had different 

color, indicating a difference in cofactor content and with other proteins present two different 

IEX-procedures might be needed.  

A peak with absorption at 400 nm is observed at a salt gradient of 20 % for both pellets. The 

peak is distinctly larger for the 0.43 g/mL and with a lower 280 nm peak. Indicating less 

protein but more heme cofactor as is expected by the color of the sample (Figure 3.3). The 

0.43 g/mL fraction also contains more of other proteins and the “shoulders” are larger, and 

possibly less pure than the 0.30 g/mL sample. The 400 nm peaks were collected and analyzed 

by SDS-PAGE (figure 3.5) for assessing degree of purity and to aid optimization. The SDS-

PAGE shows a band at the expected size for both ammonium sulfate fractions. Some 

impurities are observed but the protein is already quite pure after this step. 
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a) 

 

b) 

 

Figure 3.4: Small scale anion exchange chromatogram 

Chromatogram from small scale IEX with a salt gradient of 0-100%. The black line, red line and blue line 

correspond to 400 nm, 280 nm and 450 nm, respectively. The pink line is measured conductivity. Protein with 

absorption at 400 nm is collected (indicated in the figure). a) Chromatogram for 0.43 g/mL pellet, 

b) Chromatogram for 0.30 g/mL pellet 
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Figure 3.5: SDS-PAGE analysis of small scale IEX  

The gel shows collected fraction after small scale IEX. Each sample is applied to the gel twice with the first (left) 

with 2-times more protein. 

 

Table 3.1 Overview of anion-exchange experiments performed 

Fraction Gradient type Gradient Chromatogram Gel 

0.43 g/mL  

Linear 0-100% Fig. 3.4a Fig. 3.5 and 3.10 

Linear 0-30% Fig 3.6a Fig 3.10 

Step Step1 Fig 3.6b - 

0.30 g/mL 

Linear 0-100% Fig 3.4b Fig 3.5 and 3-10 

Linear 0-50% Fig 3.7b Fig 3.10 

Step Step1* Fig 3.7a - 

Mix 

Linear 0-30% Fig. 3.9 Fig 3.10 

Step Step1* Fig. 3.8a Fig 3.10 

Step Step2** Fig. 3.8b Fig 3.10 

Overview of anion exchange experiments performed. Step gradients consist of 6 steps of 2 column volumes 

(CV) each, unless specified otherwise. After the step gradient the column is washed and re-equilibrated with 

5 CV and 5 CV, respectively. *Step1: 0-0%, 0-8%, 8-8%, 8-17% (8 CV), 17-17%, 17-30% 

**Step2: 0-0%, 0-12%, 12-12%, 12-20% (10 CV), 20-20%, 20-50% 
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Large scale purification 

After the initial test of anion exchange, large scale purification was performed at pH 7.5. 

SDS-PAGE analysis was performed after chromatography and a selection of SDS-gels are 

shown in figure 3.10. 

 

The 0.43 g/mL fraction 

As the 0.43 g/mL-fraction was expected to have the heme cofactor this was purified first. 

Based on the chromatogram from the small scale tests the gradient range was reduced to 

obtain a better separation of FHb from the other proteins. This resulted in a linear gradient for 

large scale purification from 0-30% salt at pH 7.5 (figure 3.6a) and was the main purification 

method for this fraction/pellet. During purification of the 0.30 g/mL fraction a step gradient 

was tested, (Step1 found in table 3.1). The Step1 gradient was also tested on the 0.43 g/mL 

pellet (figure 3.6b) 

The chromatogram for purification with a linear gradient (Figure 3.6a) has a similar peak as 

during initial testing but the “shoulders” are smaller. The protein has a high degree of purity 

as seen on the SDS-gel. However it is difficult to compare the PAGE-analysis between the 

initial test and the large scale purification, although the chromatogram shows a better 

separation. The step gradient in figure 3.6b looks promising with a broader peak and better 

separation but there is still some background. pH during the step chromatography is uncertain 

but probably around 7 as there were some problems with the pH-meter at the time, which was 

discovered later. 
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a) 

 

b) 

 

Figure 3.6: Anion exchange chromatograms for 0.43 g/mL fraction  

The black line, red line and blue line correspond to 400 nm, 280 nm and 450 nm, respectively. The pink line is 

measured conductivity. Protein with absorption at 400 nm is collected as indicated in the figure. The 

chromatograms show two different gradients: a) linear gradient from 0-30% salt and b) Step1. 
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a) 

 

b) 

 

Figure 3.7: Anion exchange chromatogram for 0.30 g/mL-fractions 

The black line, red line and blue line correspond to 400 nm, 280 nm and 450 nm, respectively. The pink line is 

measured conductivity. Protein with absorption at 400 nm is collected as indicated in the figure. 

The chromatograms show two different gradients: a) Step1 and b) a linear gradient from 0-50% salt. 
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The 0.30 g/mL fraction 

Even though the 0-30 % gradient worked for the 0.43 g/mL fraction, a step gradient was 

tested (Step1 in Table 3.1) for the 0-30 g/mL fraction to improve separation of proteins. The 

Step1 gradient is based on elution before 18% salt, as was the case during purification of 

0.43 g/mL, with a slack gradient from 8% salt to 17% salt. FHb elutes at a quite high salt 

concentration compared to this range and there were some problems with FHb eluting late 

during the program (results not shown). In response to this a simple gradient from 0-50% salt 

was used for main purification of the 0.30 g/mL fraction (figure 3.7b). From the 

chromatogram with the linear gradient the protein is expected to be quite pure, which is 

confirmed by the gel (figure 3.10). 

Mixing of ammonium sulfate -fractions 

Purification of both ammonium sulfate fractions yield high purity after anion exchange and 

mixing of the pellets was tested. The result after mixing the pellets will be called the “mix-

fraction” As the 0.43 g/mL fraction contains more heme as indicated by the color, the 

fractions could be separated in order to get protein with more cofactor for characterization and 

crystallization. However (as discussed later) the heme content varies and reconstitution after 

purification is needed anyway as crystals require a homogenous solution (either only apo- or 

holo-protein). In addition by mixing the pellets, which corresponds to removing an 

ammonium sulfate precipitation, it would be possible to simplify and “speed up” the 

purification procedure by needing fewer separate steps.  

Both the 0-30% linear gradient and the Step1 gradient were tested. In addition another step 

gradient was created (Step2, see Table 3.1). Step2 was created with expected elution between 

12% and 20% based on the observation from the Step1 gradient that the protein is eluting a bit 

late. It is worth noting that the sample from this expression had a lower heme content than 

previous runs, as the 405 nm / 280 nm ratio (discussed later) is consistently lower after 

purification and is also observed in figure 3.8. This also shows that the cofactor content can 

vary between different expression runs. An offset observed between the main 280 nm peak 

and 400 nm peak, as seen in Figure 3.8 for Step2, indicates that apo-FHb has a slightly lower 

affinity for the column. Both step gradients have two distinct flavin peaks at 450 nm within 

the main 280 nm peak. This is not observed for the other ammonium sulfate fractions. 
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a) 

 

b) 

 

Figure 3.8: Anion exchange chromatogram with step gradients for the mix fraction. 

Chromatograms for the mix fraction. The black line, red line and blue line correspond to 400 nm, 280 nm and 

450 nm, respectively. The pink line is measured conductivity. Protein with absorption at 400 nm is collected as 

indicated in the figure. The chromatograms show two different gradients: a) Step1 and b) Step2. 
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Figure 3.9: Anion exchange chromatogram with a linear gradients for mix fraction  

Chromatogram of mix fraction with a salt gradient from 0-30%. The black line, red line and blue line correspond 

to 400 nm, 280 nm and 450 nm, respectively. The pink line is measured conductivity. Protein with absorption at 

400 nm is collected as indicated in the figure. 

 

Figure 3.10: SDS-PAGE analysis of anion exchange chromatography  

The figure shows a collection of different SDS-gels, divided by white lines. The top row indicates the salt 

gradient used for purification, while the bottom row indicates the ammonium sulfate fraction. 
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The chromatograms with a linear gradient (figure 3.9) and Step2 (figure 3.8b) show a single 

peak at 280 nm and 400 nm for FHb. The Step1 (figure 3.8a) 400 nm peak is found between 

two peaks at 280 nm, it is however likely part of the first peak. 

SDS-PAGE analyses show that all methods yield a pure protein, but containing a varying 

fraction of apo-protein. For the mix Step2 seems to be the method giving the highest purity. 

The chromatograms are in agreement with this, with the Step2 showing less other protein as 

seen from the 280 nm detection curve, with Step 1 being the worst. 

Both the linear gradients with 0-30 % or 0-50% salt are good for purifying the ammonium 

sulfate fractions. Arguing for separation of the two ammonium sulfate fractions is the fact that 

the 0.43 g/mL fraction contains more heme, and it could be beneficial to purify separately in 

order to have a higher heme/protein ratio. However this ratio is not very high (discussed later) 

and heme reconstitution should be performed anyway. In order to save time mixing is 

probably better and Step2 is the best choice as the background at 280 nm is lowest for this 

method. With this procedure it might be possible to separate fractions depending on the 

amount of cofactor in the protein. According to Gardner, NO dioxygenase assays [33] 

ammonium sulfate precipitation could decrease heme content. Using another method for 

crude protein purification it might be possible to separate apo- and holo-FHb with the Step2-

gradient. 

3.1.3 Gel filtration 

The last step of purification is gel filtration. An overview of gel filtration chromatograms 

from the different anion-exchange programs are found in the appendix, as they are quite 

similar. A small contamination of another protein can be observed by a shoulder before the 

main peak (figure 3.11). The shoulder size varies, from a quarter of the size (height) and less. 

Occasionally an additional peak is observed at around 120 mL, but it never overlaps with the 

collected fraction and is always quite small (Appendix 6). SDS-PAGE analysis of the 

collected fraction shows a very pure protein. The purity increases for each purification step. 

A weak band at around 35 kDa is observed on approximately half of the gels, depending on 

the amount of sample applied, (figure 3.12). Some additional bands are observed in this 

particular instance. Protein yield after purification is around 20 mg / 30 g bacteria (8 mg 

per 1L cell culture) 
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Figure 3.11: Chromatogram from gel filtration  

Chromatogram of gel filtration. The black line, red line and blue line correspond to 400 nm, 280 nm and 450 nm, 

respectively. Protein with absorption at 400 nm is collected as indicated in the figure. 

 

Figure 3.12: SDS-PAGE analysis of protein purification: The gel shows protein samples after ammonium 

sulfate precipitation, desalting, anion exchange experiments and a gel filtration step.  
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UV-vis spectroscopy 

UV-vis spectroscopy was used to determine protein concentrations as described in the 

methods section. Calculated yield is found in table 3.2. The spectrophotometer was also used 

to give an indication of cofactor content, mainly heme. 

3.1.4 Ammonium sulfate precipitation 

Absorbance was measured after ammonium sulfate precipitation and desalting. The ratio 

between 405 nm (Soret peak) and 280 nm is found in Table 3.3. The results are from the 

expression with addition of ALA and riboflavin, and the ratio is expected to be higher for 

earlier purification experiments. When the ratio of purified protein is measured, the last 

expression with ALA and riboflavin has a lower 405 nm / 280 nm ratio, than previous 

purifications. The results show a ratio of 0.054 for the 0.30 g/mL pellet and 0.096 for the 0.43 

g/mL-pellet indicating an almost twice the heme content, which is in agreement with the color 

of the solution (figure 3.3) and chromatograms from IEX (figure 3.4-3.9). The mix fraction 

has a ratio between the two pellets which is expected. 

3.1.5 Gel filtration 

The ratio between absorbance at 405 nm and 280 nm was also recorded after gel filtration as 

an indication of the amount of FHb containing the heme cofactor (table 3.3). The ratio shows 

a rather large variation and is found to be roughly between 0.15 and 0.70. As the 405 nm / 280  

nm-ratio depends on both the initial cofactor content incorporated during the over-expression 

as well as the choice of purification procedures it is difficult to draw conclusions about the 

effect of using different gradients during IEX. The 0.43 g/mL sample has the highest ratio, 

which is expected. Similarly the 0.30 g/mL sample has a lower ratio. From table 3.3 it is clear 

that the mix-fractions have the lowest ratio. This is likely a consequence of a less successful 

over-expression with respect to cofactor incorporation. Induction and addition of cofactors 

were a bit late, and riboflavin was not dissolved properly at the time of addition. 
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Table 3.2: 405 nm / 280 nm ratio after desalt 

Ratio 0.30 g/mL 0.43 g/mL Mix1 Mix2 

OD405/OD280 0.05423 0.09648 0.08317 0.07455 
The table shows the ratio between 405 nm and 280 nm after ammonium sulfate precipitation and desalting. 

About half of the ammonium sulfate fractions were mixed before application to the desalting column, and had to 

be applied twice. The eluates are named Mix1 and Mix2. 

 

Table 3.3: 405 nm / 280 nm ratio after gel filtration 

 

(NH4)2SO4 

ALA 

M 

Riboflavin 

M 

 

Gradient 

 

Figure 

405 nm / 

280 nm 

0.43 g/mL 0.2 - Linear 0-30% 3.6 0.52-0.63 

0.43 g/mL 0.2 - Step1 3.6b 0.66 

0.30 g/mL 0.2 - Linear 0-50% 3.7b 0.37-0.38 

0.30 g/mL 0.2 - Step1 3.7a 0.44 

Mix 0.25 0.30 Linear 0-30% 3.9 0.26 

Mix 0.25 0.30 Step1 3.8a 0.16 

Apo* 0.25 0.30 Step2 3.8b 0.05 
The table shows the ratio between 405 nm and 280 nm after gel filtration with additives during over-expression, 

the ammonium sulfate fraction used, the gradient type during IEX and the applicable figure. *After IEX of a 

mix-fraction the 280 nm peak was collected in two fractions, the fraction consisting of apo-protein is shown. 

3.1.6 FHb reduction by NADPH 

UV-vis spectra of FHb after purification and after reduction by NADPH in GF-buffer (pH 7) 

under aerobic conditions were taken. After purification FHb is mainly in the ferric (Fe
3+

) 

form, with a Soret peak at 405 nm, with additional smaller peaks at 542 nm and 572 nm. After 

addition of NADPH, the Soret peak moves to 411 nm, with clear peaks at 543 nm and 578 

nm, respectively. The spectra are similar to that of flavohemoglobins from other organisms 

[18, 20-22, 34]. The reduced spectrum indicate that NADPH can reduce heme through FAD 

as an intermediate, like other FHbs and that it works as an electron donor. It would be 

interesting to see if reduction is similar with NADH.  As oxygen is present it will likely bind 

to the reduced iron of the heme group as shown by the appearance of the peaks at 543 nm and 

578 nm. A FAD peak is expected between 450 nm and 480 nm, but because of overlapping 

spectra with heme, it is difficult to observe, there is a slope change after reduction, which 

might be from FAD.  
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Figure 3.13: UV-vis spectroscopy of FHb: FHb in GF-buffer (pH = 7.5) is reduced by NADPH under aerobic 

conditions. The Black line is FHb after purification, in the oxidized state. The Red line shows FHb after 

reduction by NADPH with O2 binding. 

 

Assays 

3.1.7 Protein Concentration 

Bradford and Modified Lowry assay was performed, as described in the Methods section, in 

order to determine protein concentration of the purified FHb samples. In order to calculate 

protein concentrations of holo protein an extinction coefficient of 88.6 mM
-1

cm
-1

 for the Soret 

peak (405-406 nm) was used [34]. To indicate total concentration an extinction coefficient of 

44.81 at 280 nm was used. The extinction coefficient was calculated from the protein 

sequence with Protaparam (Expasy) [38].  

The Bradford and Modified Lowry give the total concentration of the FHb. Bovine Serum 

Albumin (GBiosciences) was used to generate the standard curves shown in figure 3.14. The 

overall shape of the Modified Lowry Assay curve does not seem to be linear in the 
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concentration range tested and so a quadratic fit was used. A linear fit was used with the 

Bradford assay. According to the manufacturer (Bio-Rad) the linear range of the assay is from 

125 g/mL to 1000 g/mL. The linear fit is calculated for this range and the standard at 

100 g/mL is not taken into consideration since it is outside the linear range. Extrapolation is 

performed for the Bradford assay, with absorbance of FHb samples  0.63 (absorbance of 1.0 

mg/mL BSA = 0.60). The calculated protein concentrations are shown in Table 3.5. 

As both protein assays were performed with the same sample concentration there is a rather 

large discrepancy between the two methods with calculated concentrations of 1.04 mg/mL 

and 0.59 mg/mL for the Bradford and Modified Lowry assay, respectively.  Both methods 

are affected by the standard used, (e.g. BSA or gamma globulin) and the color response varies 

with the proteins assayed [37, 40, 41]. In addition as extrapolation was performed for the 

Bradford assay a higher uncertainty is expected. 

Table 3.4: Fit for protein assays 

Assay Fit a b c R
2
 

Bradford Linear 0.12358 0.48642 - 0.98164 

Lowry Quadratic 0.09875 2.77648 -1.47847 0.99512 
The fit for the standard is expressed in the form: f(x) = a + bx + cx

2
. Absorbance is expressed by 

x (concentration in mg/mL) and the constants (a, b, c and d). 

a)           b) 

 

Figure 3.14: Bradford assay and Modified Lowry protein assays. Bradford assay (a) and Modified Lowry 

assay (b) was performed as described in Methods with a bovine serum albumin (BSA) standard. The squares 

represent the BSA standard with the fits shown. A linear fit is used for the Bradford Assay and a quadratic fit for 

the Modified Lowry assay. Only the squares within the box are used for fitting. 
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Table 3.5: Calculated concentrations for the Bradford assay and Modified Lowry assay 

Assay Fit /  Average 

mg/mL 

Sample 1 

mg/mL 

Sample 2 

mg/mL 

Sample 3 

mg/mL 

Bradford Linear fit 1.04 1.04 1.02 1.06 

Lowry Quadratic fit 0.59 0.62 0.59 0.56 

 

By comparing the protein concentration measured by the protein assays with absorbance of 

FHb in solution at 280 nm (measured with a UV-vis spectrophotometer) the following 

extinction coefficients were calculated, 280 = 70.36 mM
-1

/cm
-1 

and 280 = 124.02 mM
-1

/cm
-1

 

for the Bradford assay and Modified Lowry assay, respectively. There is a rather large 

difference between the two extinction coefficients, also compared to the extinction coefficient 

calculated by ProtParam (44.81 mM
-1

/cm
-1

) [38]. FAD absorbs light at 280 nm which is not 

taken into account by the ProtParam tool, so the extinction coefficient is expected to be too 

low. The discrepancy between extinction coefficients calculated by the two protein assays 

could be due to variations of color response for the assays. The Modified Lowry assay could 

be more accurate [40], in addition extrapolation was performed to calculate protein 

concentration for the Bradford assay causing a higher uncertainty. 

3.1.8 Heme Assay 

The fraction of FHb with heme and FAD varies among organisms and purification runs, 

although the ratio between concentrations of FHb and heme can be 1:1 [42]. As heme absorbs 

light at 405 nm, the ratio between absorbance at 405 nm and 280 nm (OD405 / OD280) can 

indicate heme content. Takaya et. al. reported a ratio of 0.85 with 0.5 mole heme and 1 mole 

FAD per mole FHb [18]. Rafferty et. al. reported a ratio of 1.05 with 0.65 mole heme and 

1 mole FAD per mole FHb [22]. 

Heme assays were performed to quantify heme concentrations of FHb samples, and assess the 

amount of mole heme/mole protein (figure 3.15). For the assay, FHb is reduced with 

dithionite and reoxidized with ferricyanide. Heme concentrations in the samples are 

calculated from the absorbance differences of the reduced minus oxidized heme at 556 nm 

and 539 nm

M heme is given by the following formula: M heme = 46.7 (A556 – A539) [33, 35] 
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Figure 3.15: A typical UV-vis spectrum for a heme assay. Heme assay performed as described in Methods. 

Heme concentration is calculated by the formula: M heme = 46.7 (A556 – A539) The spectra are 

background corrected at 700 nm (700 nm = 0). 

 

The extinction coefficients for the Soret peak of FHbs from three organisms have been 

reported, which differ by a factor of 2: 403 = 88.6 mM
-1

cm
-1

 for E. coli, [34] 395 = 123 mM
-

1
cm

-1
 for R. eutropha [43] and 395 = 63 mM

-1
cm

-1
 for S. cerevisiae [24]. An extinction 

coefficient of 88.6 mM
-1

cm
-1

 has been used to calculate concentration of FHb with heme.  

The Soret peak of B. cereus FHb is at 405 nm, and E. coli has the Soret peak at the most 

similar wavelength (403 nm). 

It is worth to note that the FHb assayed contained a quite low 405 nm / 280 nm ratio (Table 

3.6). The heme assay gives a low concentration of heme compared to the concentration 

calculated from absorbance measurements. The heme fraction calculated from absorbance 

varies from 0.13 to 0.36. If the ratio between OD405/OD280 and heme content, is similar to that 

reported from Takaya et.al. [18] and Rafferty et.al. [22], then the expected heme fraction is 

0.15. This can indicate that the heme assay gives an underestimation of the heme content, and 

further studies have to be performed to validate the method. 
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Table 3.6: Results from heme assay 

280 280 

 

mM
-1

/cm
-1

 

 

[FHb] 

M 

[FHb-

Heme]* 

M 

 

[Heme] 

M 

Heme 

fraction* 

(405) 

Heme 

fraction 

(assay) 

OD405 

/OD280 

ProtParam 44.81 36.45 

4.74 1.14 

0.13 0.032 

0.26 
Bradford 70.36 23.02 0,21 0.050 

Lowry 124.02 13.17 0,36 0.087 

Assaysavg 89.78 18.18 0,26 0.063 
Concentrations of total protein [FHb] and heme fractions have been calculated with different extinction 

coefficients at 280 nm. Assaysavg is calculated from the average values of the protein assays. 

*Calculated with an extinction coefficient of 88.6 mM
-1

cm
-1

 [34].  

The FAD-content of FHb can vary, [33] and in order to measure FAD-content FHb was 

boiled and absorbance measured, but due to high background no conclusions can be drawn.  

However FAD content can be measured by fluorescence [33]. 

Reconstitution 

Reconstitution attempts were made by incubating the partly apo-FHb with either heme, FAD 

or both cofactors (figure 3.17-3.19). To separate the excess cofactor from the reconstituted 

FHb sample, an initial attempt was made by applying the sample to a desalting column as it is 

a crude size-exclusion column. However, only a single peak was observed, so the column was 

unable to separate protein from heme and other reactants, results not shown. Therefore, a 

Superdex 200 gel filtration column was used 

 

Figure 3.16: Reconstitution mixture applied on Superdex column: a) Solution used for reconstitution applied 

on a Superdex-200 GL column without FHb present. The black line, red line and blue line correspond to 400 nm, 

280 nm and 450 nm, respectively. 

15 20 25 30

-20

0

20

40

60

80

100

m
A

U

mL eluent

 400 nm

 280 nm

 450 nm



43 

 

a) 

 

b) 

 

Figure 3.17: Reconstitution with heme: a) Chromatogram of reconstitution with heme. The black line, red line 

and blue line correspond to 400 nm, 280 nm and 450 nm, respectively. Four peaks are observed at 10 ml, 15 mL, 

20 mL and 27 mL. All peaks were collected and SDS-PAGE analysis was performed (b) as A3, A6, A9 and A11 

respectively. 
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Reconstitution with heme (figure 3.17) resulted in 4 peaks in the chromatogram and the peak 

at 15 mL is expected to be FHb as it shows a band at the expected size on the SDS-PAGE. 

The peaks at 20 mL and 27 mL are expected to be heme, as they are present when a heme 

solution is applied to the Superdex column, figure 3.16. The peak at 10 mL could be 

aggregates of FHb as filtration was not performed before application to the column, although 

no band is present in the SDS-gel. A UV-vis spectrum of the fraction however shows similar 

characteristics as FHb and the peak at 15 mL, but with a lower absorbance at 405 nm. A small 

peak at 13 mL might be catalase. The reconstitution clearly increased the heme content of the 

FHb as can be seen by the increase in 405 nm / 280 nm ratio from 0.72 to 0.99, from 0.38 to 

0.70 and 0.54 to 0.70 (Table 3.7). Therefore the reconstitution procedure of heme seemed to 

work. If compared to 405 nm / 280 nm ratios from other FHbs [18, 22], the heme content is 

expected to be 0.59 and 0.42 for the 405 nm / 280 nm ratios of 0.99 and 0.70, respectively. 

The Chromatogram from reconstitution with FAD (figure 3.18) also shows separation of 

protein from FAD with peaks at 15 mL and 20 mL, respectively. This is confirmed by SDS-

PAGE analysis as only the first peak contains a protein band. The tiny peak at 13 mL might 

be catalase. Table 3.7 shows an increase in absorbance at 450 nm, although lower than for 

heme which is expected as FAD has a lower extinction coefficient than heme at this 

wavelength (450  11.2 mM
-1

cm
-1

) [44]. FAD absorbs some light at 405 nm as well. 

As reconstitution with both heme and FAD separately indicate successful reconstitution a trial 

of reconstitution with heme and FAD by adding both cofactors to the same tube was tested.  

The chromatogram (figure 3.19) is a mixture of the former reconstitutions experiments with 

the expected peaks, in addition to a shoulder at 13 mL. The change in 405 nm / 280 nm ratio 

is similar as for reconstitution with heme alone with an additional increase in 450 nm / 280 

nm ratio, especially for the A7 peak. It seems like reconstitution of heme and FAD can be 

performed by adding both cofactors at the same time. An SDS-PAGE analysis should be 

performed, in addition to further testing to possibly increase the amount of holo-FHb further. 
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a) 

 

b) 

 

Figure 3.18: Reconstitution with FAD: a) Chromatogram of reconstitution with FAD, The black line, red line 

and blue line correspond to 400 nm, 280 nm and 450 nm, respectively. Two peaks are observed at 15 mL, 20 mL 

and 27 mL. Both peaks were collected and SDS-PAGE analysis was performed (b) as A6 and A10, respectively. 
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Figure 3.19: Reconstitution of heme and FAD at the same time: Chromatogram of reconstitution with heme 

and FAD. The black line, red line and blue line correspond to 400 nm, 280 nm and 450 nm, respectively. Four 

peaks are observed at 13 mL, 15 mL, 20 mL and 27 mL. The first two are collected as indicated on the figure. 

Table 3.7: 400 nm/280 nm 

  Before After 

Reconstitution Peak OD405/OD280 OD450/OD280 OD405/OD280 OD450/OD280 

Heme A6 0.72 0.15 0.99 0.25 

Heme A6 0.38 0.09 0.70 0.21 

Heme*,** A6 0.54 0.17 0.70 0.31 

FAD** A6 0.69 0.15 0.75 0.20 

Heme+FAD** 
A7 

0.72 0.16 
1.05 0.39 

A10 0.99 0.28 

*Performed at 4C, *Performed with 100 M FHb instead of 20 mM 

 

Sequence alignment 

A sequence alignment of B. cereus FHb (figure 3.31) was performed with flavohemoglobins 

from E. coli, R. Eutropha and S. cerevisiae with sequence identities of 46.72, 46.63 and 

44.53, respectively. The organisms listed all have crystal structure in the Protein data bank 

(PDB) [17, 24, 25]. The conserved residues mentioned in the introduction are all present in 

B. Cereus FHb. The FHb sequence alignment in addition to spectroscopy and SDS-PAGE 

analysis confirm that the purified protein is a member of the FHb family. 

  

0 5 10 15 20 25 30 35

0

100

200

300

400

500

600

700

800

m
A

U

mL eluent

 400 nm

 280 nm

 450 nm

A10

A7



47 

 

 

YHb      MLAEKTRSIIKATVPVLEQQGTVITRTFYKNMLTEHTELLNIFNRTNQKVGAQPNALATT 60 

FHp      MLTQKTKDIVKATAPVLAEHGYDIIKCFYQRMFEAHPELKNVFNMAHQEQGQQQQALARA 60 

FHb      MLSAKTIEIVKSTVPLLQEKGVEITTRFYQILFSEHPELLNIFNHTNQKKGRQQQALANA 60 

Hmp      MLDAQTIATVKATIPLLVETGPKLTAHFYDRMFTHNPELKEIFNMSNQRNGDQREALFNA 60 

         **  :*   :*:* *:* : *  :   **. ::  . ** ::** :.*. * * :**  : 

 

YHb      VLAAAKNIDDLSVLMDHVKQIGHKHRALQIKPEHYPIVGEYLLKAIKEVLGDAATPEIIN 120 

FHp      VYAYAENIEDPNSLMAVLKNIANKHASLGVKPEQYPIVGEHLLAAIKEVLGNAATDDIIS 120 

FHb      VYAAATYIDNLEAIIPVVKQIGHKHRSLGIKAEHYPIVGTCLLRAIKEVAGA--PDEVLN 118 

Hmp      IAAYASNIENLPALLPAVEKIAQKHTSFQIKPEQYNIVGEHLLATLDEMFSP--GQEVLD 118 

         : * *  *::   ::  :::*..** :: :* *:* ***  ** ::.*: .     :::. 

 

YHb      AWGEAYQAIADIFITVEKKMYEEA-----LWPGWKPFEITAKEYVASDIVEFTVKPKFGS 175 

FHp      AWAQAYGNLADVLMGMESELYERSAEQPGGWKGWRTFVIREKRPESDVITSFILEPADGG 180 

FHb      AWGEAYGVIADAFISIEAEMYEEAAHKEGGWKDFRNFVIVKKVKESDVITSFYLKPEDGG 178 

Hmp      AWGKAYGVLANVFINREAEIYNENASKAGGWEGTRDFRIVAKTPRSALITSFELEPVDGG 178 

         **.:**  :*: ::  * ::*:.       *   : * *  *   :  *..* ::*  *. 

 

YHb      GIELESLPITPGQYITVNTHPIRQENQYDALRHYSLCSASTKNGLRFAVKMEAARENFPA 235 

FHp      PV----VNFEPGQYTSVAIDVPA--LGLQQIRQYSLSDMPNGRSYRISVKREGGG-PQPP 233 

FHb      KV----SSFIPGQYVTIQINIEG--ETYTHNRQYSLSDAPGKEYYRISVKKEKGV-DTPD 231 

Hmp      AV----AEYRPGQYLGVWLKPEG--FPHQEIRQYSLTRKPDGKGYRIAVKREEG------ 226 

          :        ****  :  .           *:***      .  *::** * .       

 

YHb      GLVSEYLHKDAKVGDEIKLSAPAGDFAINKELIHQNEVPLVLLSSGVGVTPLLAMLEEQV 295 

FHp      GYVSNLLHDHVNVGDQVKLAAPYGSFHIDV----DAKTPIVLISGGVGLTPMVSMLKVAL 289 

FHb      GKVSNYLHGHVKEGDVLPVSAPAGDFVLNM----DSTLPVVLISGGVGITPMMSMLNTLI 287 

Hmp      GQVSNWLHNHANVGDVVKLVAPAGDFFMAV----ADDTPVTLISAGVGQTPMLAMLDTLA 282 

         * **: ** ..: ** : : ** *.* :          *:.*:*.*** **:::**.    

 

YHb      KCNPNRPIYWIQSSYDEKTQAFKKHVDELLAECANVDKIIV------------HTDTEPL 343 

FHp      -QAPPRQVVFVHGARNSAVHAMRDRLREAAKTYENLDLFVFYDQPLPEDVQGRDYDYPGL 348 

FHb      EQDSKRNVYFVHAAINSNTHAMKEHVKAVENEYEQVKAYTCYSAPTEKDLEMKNFDKEGF 347 

Hmp      KAGHTAQVNWFHAAENGDVHAFADEVKELGQSLPRFTAHTWYRQPSEADRAKGQFDSEGL 342 

                : :.:.: :  .:*: ..:        ..                 . *   : 

 

YHb      INAAFLKE-KSPAHADVYTCGSLAFMQAMIGHLKELEHRDDMIHYEPFGPKMSTVQV 399 

FHp      VDVKQIEKSILLPDADYYICGPIPFMRMQHDALKNLGIHEARIHYEVFGPDLFAE-- 403 

FHb      IESEWLKTIIPTTEAEFYFCGPVAFMKHINAALTDLSVKQEHIHYEFFGPATSLQ-- 402 

Hmp      MDLSKLEGAFSDPTMQFYLCGPVGFMQFTAKQLVDLGVKQENIHYECFGPHKVL--- 396 

         ::   ::        : * ** : **:     * :*  ::  **** ***        

 

 

Sequence identity to FHb 

Hmp: 46.72 

FHp: 46.63 

YHb: 44.53 

 

 

Figure 3.20: Sequence alignment of FHb. Sequence alignment of flavohemoglobin from B. cereus (FHb), 

S. cerevisiae (YHb), E. coli (Hmp), and R. Eutropha (FHp) performed by Clustal Omega [45]. An “*” (asterisk) 

indicates positions which have a single, fully conserved residue. A “:” (colon) and a “.” (period) indicate 

conservation between groups of strongly similar properties and weakly similar properties, respectively.  

Amino acids either surrounding the active site and/or are known to play a role in catalysis are marked in yellow. 

Amino acids in cyan are believed to constitute the push-and-pull mechanism. Side chains responsible for FAD 

binding are marked in green [13]. In addition amino acids otherwise mentioned in the introduction are marked in 

gray.  
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Protein crystallization 

For crystallization screening a range of different commercial crystallization kits were used 

(Table 3.8). Very small red or orange needles grew from amorphous precipitate under various 

conditions (figure 3.21) (Table 3.8). Optimization of crystallization conditions were set out 

manually under a light microscope. None of the initial crystals/needles were reproduced 

during optimization. FHb precipitated during mixing of the drops for crystallization which 

might be due to light sensitivity of the flavin as crystallization was performed under a light 

microscope. Flavins exhibit some light-sensitivity and are susceptible to photo-degradation, 

although FAD is less sensitive than the other flavins (by an order of magnitude). Regardless 

Nobre et al. and Zhou et al. performed purification of FHb protected from light and estimated 

mole heme per mole protein to be 1 and 0.89, respectively [20, 21]. 

In addition the ratio between OD400 and OD280 varied between each purification. A high 

purity and low apo-content (homogenous solution) is important for crystal growth. The 

relatively high apo-content could be one of the reasons for the limited success of the 

crystallization screening. To obtain a sample with higher holo-content, a successful 

reconstitution is one possibility, as well as being able to separate the apo- and holo-FHb 

during purification.  

A lack of diffracting crystals resulted in no X-ray data and consequently no crystal structure. 

 

 

Figure 3.21: Small needles grown from precipitate. The picture of needles grown from precipitate is taken 

with a light microscope. 
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Table 3.8: Commercial crystallization screens used for initial screening. 

Screen name Manufacturer Room Temperature 4C 

Crystal Screen 1+2 Hampton Research C2, F10 - 

Hampton Index I+II Hampton Research X - 

JCSG+ 
Molecular 

Dimensions 

A9*, B9*, D7, H4, 

H6, H7* 
D7 

MIDAS 
Molecular 

Dimension 
A5, A6 X 

Morpheus 
Molecular 

Dimensions 
X - 

Natrix Hampton Research X - 

Wizard I + II Jena Bioscience E3 - 

Wells with small needles are named while screens with no crystals are marked with an “X”. 

Table 3.9: Conditions with small needles grown from precipitate 

Screen name Well Contents 

Crystal Screen 1 + 2 C2 0.2 M Ammonium acetate, 0.1 M sodium citrate tribasic 

dehydrate pH 5.6 30% v/v MPD 

F10 0.1 M MES monohydrate pH 6.5 12% (w\v) PEG 20 000 

JCSG+ A9 0.2 Ammonium chloride pH 6.3 20% (w\v) PEG  3350 

B9 0.1 M Citric acid pH 5, 20% (w\v) PEG 6000 

D7 0.2 M Lithium sulfate, 0.1 M Tris pH 8.5, 

40% (w\v) PEG 400 

H4 0.2 M Calcium chloride, 0.1 M Bis-Tris pH 5,5, 

45% (w\v) MPD 

H6 0.1 M Ammonium acetate, 0.1 M Bis-Tris pH 5.5, 

17% PEG (w\v) 10 000 

H7 0.2 mM Ammonium sulfate, 0.1 M Bis-Tris pH 5.5, 

25% (w\v) PEG 3350 

MIDAS A5 0.5 M ammonium phosphate monobasic, 12.5% (w\v) 

poly(acrylic acid sodium salt) 2100 

A6 19% (v/v) poly(acrylic acid-co-maleic acid), 

0.1 M Tris pH 8.5 

Wizard I + II E3 20% (w/v) PEG 8000, 0.1 M Tris pH 8.5; 0.2 M MgCl2 

 

  



50 

 

Conclusion and future perspectives 

The focus of this master project was to purify, characterize and obtain a crystal structure of 

flavohemoglobin (FHb) from B. Cereus. FHb is an NO-dioxygenase which is proposed to 

protect against nitric oxide by dioxygenation of NO to nitrate (NO3
-
). As well as being a 

potential therapeutic target [13] it can be a useful tool for probing mammalian nitric oxide 

biology [16]. 

The protein was successfully cloned and expressed and a purification protocol has been 

developed, with ammonium sulfate precipitation, anion exchange chromatography and gel 

filtration. A high yield with high purity was obtained, but with varying degrees of heme and 

FAD content. Crystallization screening resulted in only some small needles grown from 

precipitate, and as reproduction or optimization of crystallization failed, no crystal structure 

was obtained.  

With varying degrees of apo-protein, heme assay was performed in order to identify heme to 

protein ratio. Bradford assay and Modified Lowry assay was used to obtain the protein 

concentration and calculate extinction coefficients. Testing of reconstitution of heme and 

FAD was performed with promising results.  Both heme and FAD content was clearly 

increased, in addition reconstitution of both cofactors can be performed at the same time. 

Future work includes reconstitution, more crystallization screening and further 

characterization. Purification protected from light should be tested as well. 

In summary, this thesis presents an expression and purification protocol and the first results of 

characterization and reconstitution of the flavohemoglobin protein from Bacillus Cereus. 
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4 Appendices 

Appendix 1 – Terms and abbreviations 

(v/v)   (volume/volume) 

(w/v)   (weight/volume) 

Amp   Ampicillin 

B. cereus  Bacillus cereus 

BSA   Bovine serum albumin 

DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

DTT   Dithiothreitol 

E. coli   Escherichia coli 

EDTA   Ethylene diamine tetraacetic acid 

EtOH   Ethanol 

FAD   Oxidized Flavin Adenine Dinucleotide 

FADH2  Reduced Flavin Adenine Dinucleotide 

FADSQ   Semiquinone state of Flavin Adenine Dinucleotide 

FHb   Flavohemoglobin 

hAC   Acetic Acid 

HEPES  N-2-hydroxyethylpiperazine-N’-2-ethanosulfonic acid 

H2O   water 
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IPTG   Isopropyl -D-1-Thiogalactopyranoside 

LB   Lysogeny broth 

MOPS   3-(N-morpholino)propanosulfonic acid 

MPD   2-methyl-2,4-pentanediol 

NAD+   Oxidized Nicotinamide adenine dinucleotide 

NADH   Reduced Nicotinamide adenine dinucleotide 

NADP+  Oxidized Nicotinamide adenine dinucleotide phosphate 

NADPH  Reduced Nicotinamide adenine dinucleotide phosphate 

N2   Nitrogen gas 

PAGE   Polyacrylamide gel electrophoresis 

PDB   Protein Data Bank 

PEG   Polyethylene glycol 

R. eutorpha  Ralstonia eutropha, formerly Alcaligenes eutrophus 

S. cerevisiae  Saccharomyces cerevisiae 

SDS   Sodium dodecyl sulfate 

TB   Terrific broth 

Tris   Tris(hydroxymethyl) aminomethane 

UV   Ultraviolet 

UV-vis   Ultraviolet-visible light 
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Appendix 2 – Materials 

Chemicals 

Chemical Manufacturer 

Acetic acid Merck 

-aminoluvelinic acid (ALA) Sigma 

Ammonia Kebo Lab 

Ammonium chloride Sigma / Merck 

Ammonium sulfate Merck 

Ampicillin sodium salt Sigma 

Bacto agar Becton, Dickinson & Co. 

Bovine Serum Albumin standard, prediluted GBiosciences 

Bradford Assay Dye Reagent Bio-Rad laboratories 

Brilliant Blue R250 Sigma 

Catalase Sigma 

Citric acid Fluka 

Deconex (Detergent) VWR 

DTT V'WR 

Ethylenediaminetetraacetic acid (EDTA) Sigma 

Ex-Cell Antifoam Sigma 

Dimethyl sulfoxide (DMSO) Sigma 
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Dithiothreitol (DTT) Sigma 

Ethanol Arcus 

FAD Sigma 

Glycerol VWR 

Hydrochloric acid  37% Sigma 

Hemin Fluka 

HEPES Sigma 

MOPS SDS-Running buffer Noves® 

Mucosit®-P Disinfecting Powder Cleaner Sigma 

NADPH Applichem 

NuPAGE ® Bis-Tris Mini Gels (10 & 15 wells) Novex® 

InstantBlue coomasie staining CBS 

Isopropyl -D-1-thiolgalactopyranoside (IPTG) Thermo 

PEG (3350, 6000 and 8000) Sigma 

Potassium chloride Merck 

Potassium ferricyanide Aldrich 

Dipotassium hydrogen phosphate (K2HPO4) Merck 

Potassium dihydrogenphosphate (KH2PO4) Merck 

Protease pill (cOMplete ULTRA tablets, mini Easypack) Roche 

Pyridine Merck 

Riboflavin (Vitamin B2) Sigma 
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Sodium dithionite Fluka 

Sodium citrate Merck 

Streptomycin sulfate salt Sigma 

Tris(hydroxymethyl)aminomethane (Tris) VWR 

Tryptone Sigma 

Yeast Extract Merck 

 

Chromatographic column materials 

Material Manufacturer 

Hitrap
 
Desalting GE Healthcare 

Sephadex 25 GE Healthcare 

HPQ Sepharose GE Healthcare 

Superdex 200 10/30 GL GE Healthcare 

Superdex 200 GE Healthcare 
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Hardware 

Material Function Manufacturer 

Äkta purifier system Purifier stystem GE Healthcare 

JA-10 rotor Rotor Beckman Coulter 

JA-25.50 rotor Rotor Beckman Coulter 

pH meter (PHM240) pH-meter Radiometer Analytical 

MililQ plus MilliQ-water Millipore 

Agilent 8453 Spectrophotmeter UV-vis 

spectrophotometer 

Agilent Technologies 

Series 25 Incubator shaker Incubator New Brunswich Sc. 

Tomy SS-325 Autoclave Tomy 

Emmer autoklav Autoclave Emmer 

Dri-Block DB-2D Heat block Techne 

WB4MS Water Bath Biosan 

REAX 2000 Vortex Heidolph 

Mosquito LCP Crystallization robot TTP Labtech 

Oryx6 Robot  Crystallization robot Douglas Inst. Ltd. 

Avanti J-25 Centrifuge Large centrifuge Beckman 

Avanti J-20XP Centriguge Large centrifuge Beckman Coulter 

BioCen20 Table centrifuge Orto Alresa 
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Software 

Material Source 

845 x UV visible Chem Station Agilent Technologies 

Unicorn 531 (build 743) 2011 Äkta GE Healthcare 

Unicorn 407 (build 743) 2006 Äkta GE Healthcare 

 

Equipment 

Material Manufacturer 

Amicon Ultra (30 K) Millipore 

Amicon Ultra 4 Centrifugal filters Millipore 

Amicon Plus-70 Centrifugal filters (30 K) Millipore 

Centrifugation tubes  Nalgene 

Crystallization plates Qiagen 

Cuvettes (Quartz) Hellmma 

Disposable cuvettes Plastibrand 

Microlance 3 BD 

PCR-Tubes Axygen 

Pipette tips VWR 

Precision syringes Hamilton 

Sterile 0.22 m filter Sarstedt  
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Crystallization Kits 

Screen name Manufacturer 

Crystal Screen Hampton Research 

Hampton Index I+II Hampton Research 

JCSG+ Qiagen / Molecular Dimensions 

MIDAS Molecular Dimensions 

Morpheus Molecular Dimensions 

Natrix Hampton Research 

Proplex Molecular Dimensions 

Wizard I + II Emerald Biosystems / Rigaku Reagents 
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Appendix 3 – Media and solutions 

 

4.1.1 Media 

 

LB-medium (1 L)     Phosphate Buffer    

10 g NaCl      0.17 M KH2-phosphate 

10 g tryptone      0.72 M K2H-phosphate 

5 g yeast extract     pH 7.5 

1 L MilliQ-water     autoclaved 

Adjusted to pH 7.5 and autoclaved 

 

TB-medium (1 L)           

12 g tryptone 

25 g yeast extract 

0.9 L MilliQ-water 

4 mL glycerol dissolved in water 

0.1 L phosphate buffer, pH 7.5 autoclaved separately  

Autoclaved without glycerol and phosphate buffer 
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4.1.2 Buffers 

 

Buffer A     Buffer B      

50 mM Tris-Cl, pH 7.5   1 M KCl 

50 mM Tris-Cl, pH 7.5   2 mM DTT 

2 mM DTT 

 

Buffer C     Buffer D      

100 mM HEPES, pH 7.5   50 mM Tris-Cl, pH 8 

100 mM KCl     1 mM EDTA 

2 mM DTT     10 mM DTT 

3000 U catalase 

 

Appendix 4 – Sequences 

Amino acid sequence of flavohemoglobin from B. cereus (402 aa) 

MLSAKTIEIV KSTVPLLQEK GVEITTRFYQ ILFSEHPELL NIFNHTNQKK 50 

GRQQQALANA VYAAATYIDN LEAIIPVVKQ IGHKHRSLGI KAEHYPIVGT 100 

CLLRAIKEVA GAPDEVLNAW GEAYGVIADA FISIEAEMYE EAAHKEGGWK 150 

DFRNFVIVKK VKESDVITSF YLKPEDGGKV SSFIPGQYVT IQINIEGETY 200 

THNRQYSLSD APGKEYYRIS VKKEKGVDTP DGKVSNYLHG HVKEGDVLPV 250 

SAPAGDFVLN MDSTLPVVLI SGGVGITPMM SMLNTLIEQD SKRNVYFVHA 300 

AINSNTHAMK EHVKAVENEY EQVKAYTCYS APTEKDLEMK NFDKEGFIES 350 

EWLKTIIPTT EAEFYFCGPV AFMKHINAAL TDLSVKQEHI HYEFFGPATS 400 

LQ         402 
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DNA sequence of flavohemoglobin from B. cereus (1209 bp for gene and 1257 bp total) 

TCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGTTAAGTGCAAAAACAAT

TGAAATCGTAAAGTCAACAGTACCATTATTACAAGAAAAAGGTGTTGAAATTACAACGAGAT

TCTATCAAATTTTATTTTCGGAACATCCGGAATTGTTGAATATTTTCAACCATACGAATCAG

AAAAAGGGAAGACAACAACAAGCGTTAGCGAATGCTGTTTATGCAGCTGCAACGTACATTGA

TAATTTAGAAGCAATTATTCCAGTTGTAAAACAAATTGGTCATAAGCATAGAAGTTTAGGGA

TTAAAGCTGAGCATTATCCGATTGTAGGTACATGTTTACTACGTGCCATTAAAGAGGTCGCA

GGTGCACCTGATGAAGTTTTAAATGCATGGGGAGAAGCATATGGTGTAATTGCTGATGCATT

CATTAGCATTGAAGCAGAGATGTATGAAGAAGCTGCACATAAAGAAGGTGGATGGAAAGACT

TCCGCAACTTTGTGATTGTAAAAAAAGTGAAGGAAAGCGATGTTATTACGTCATTTTATTTG

AAACCTGAAGATGGAGGGAAAGTTTCTTCATTCATCCCAGGTCAATATGTAACAATTCAAAT

CAATATTGAAGGTGAGACATATACACATAATCGTCAATACAGTTTATCCGATGCTCCTGGGA

AAGAATATTATCGTATTAGTGTAAAAAAAGAAAAAGGTGTAGATACACCAGACGGTAAAGTG

TCTAATTACTTACATGGACATGTAAAAGAAGGAGATGTTTTACCAGTAAGTGCACCAGCGGG

AGATTTCGTGTTAAATATGGATTCAACATTACCAGTTGTACTAATTAGTGGTGGAGTGGGGA

TTACACCGATGATGAGTATGTTAAATACGTTAATTGAACAAGATTCAAAACGTAATGTATAT

TTTGTTCATGCAGCAATAAATAGTAATACACATGCAATGAAAGAACACGTTAAGGCAGTAGA

AAATGAATATGAACAAGTTAAAGCATATACTTGTTATTCTGCACCGACTGAAAAAGATTTAG

AAATGAAGAACTTTGATAAAGAAGGTTTCATTGAAAGTGAATGGTTAAAAACTATTATTCCG

ACAACTGAAGCAGAGTTCTATTTCTGTGGTCCAGTAGCATTTATGAAGCATATAAATGCTGC

ACTAACTGATTTAAGTGTGAAACAAGAGCATATTCATTATGAATTTTTCGGCCCAGCAACAA

GCTTACAATAAGGATCC 

Start and stop codon are marked in bold, Restriction sites for cutting are underlined and a part 

of the original vector sequence is shown in blue. 

The restriction enzymes have the following restriction sites: 

XbaI: TCTAGA  used for cutting 

BamHI: GGATCC  used for cutting 

NdeI:  CATATG  often used by the group 

NdeI was not used as a restriction enzyme as a restriction site is present within the protein 

sequence. In order to make minimal changes to the vector, the additional bases of the vector 

between the XbaI and NdeI were added. 
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Appendix 5 – Vector map 
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Appendix 6 – Gel filtration chromatograms 

An overview of the chromatograms in this section is found in the table below. Gel filtration 

has been performed as described in the Methods section. 

The figures names are given in this format: 

Figure “Letter”, “ammonium sulfate fraction”, “anion exchange program used” 

For the figures, the black line, red line and blue line correspond to 400 nm, 280 nm and 

450 nm, respectively. Protein with absorption at 400 nm is collected as indicated on the 

figures. 

Modified Table 3.1 Overview of anion-exchange experiments performed 

Fraction Gradient type Gradient IEX-chromatogram GF 

0.43 g/mL  

Linear 0-100% Fig. 3.4a - 

Linear 0-30% Fig 3.6a Figure A 

Step Step1 Fig 3.6b Figure B 

0.30 g/mL 

Linear 0-100% Fig 3.4b - 

Linear 0-50% Fig 3.7b Figure C 

Step Step1 Fig 3.7a Figure D 

Mix 

Linear 0-30% Fig. 3.9 - 

Step Step1 Fig. 3.8a Figure E 

Step Step2 Fig. 3.8b Figure F 

Apo* Step Step2 Fig. 3.8b Figure G 

*Collected from second half of the peak in figure 3.8b with very low absorbance at 400 nm. 

Figure A, 0.43 g/mL, 0-30% 
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Figure B, 0.43 g/mL, Step1 

 

Figure C, 0.30 g/mL, 0-50% 
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Figure D, 0.30 g/mL, Step1 

 

Figure E, Mix, Step1 

  

 

 

 

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

m
A

U

mL eluate

 400 nm

 450 nm

 450 nm
Collected

0 20 40 60 80 100 120 140 160

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

m
A

U

mL eluate

 400 nm

 280 nm

 450 nm
Collected



66 

 

Figure F, Mix, Step2 

 

Figure G, Mix (Apo*), Step2 

 

 

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

m
A

U

mL eluent

 400 nm

 280 nm

 450 nm

Collected

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

m
A

U

mL eluent

 400 nm

 280 nm

 450 nm
Collected



67 

 

5 References 

 

1. Zhang, L., Introduction, in Heme Biology: The Secret Life Of Heme In Regulating 

Diverse Biological Processes, L. Zhang, Editor. 2011, World Scientific Publishing CO 

PTE LTD. 

2. Bali, S., Palmer, D.J., Schroeder, S., Ferguson, S.J., and Warren, M.J., Recent 

advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative 

pathway for the formation of heme and heme d 1. Cellular and Molecular Life 

Sciences, 2014. 71(15): p. 2837-63. 

3. Hersleth, H.-P., Ryde, U., Rydberg, P., Görbitz, C.H., and Andersson, K.K., 

Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, 

oxygenases and catalases. Journal of Inorganic Biochemistry, 2006. 100(4): p. 460-

476. 

4. Macheroux, P., Kappes, B., and Ealick, S.E., Flavogenomics - a genomic and 

structural view of flavin-dependent proteins. FEBS Journal, 2011. 278(15): p. 2625-

2634. 

5. Edwards, M.A., ed. Structure and General Properties of Flavins. Flavins and 

Flavoproteins: Methods and Protocols, ed. S. Weber and E. Schleicher. Vol. 1146. 

2014, Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, Nj 07512-1165 USA. 3-

13. 

6. Cronk, J.D. Flavin adenine dinucleotide (FAD).  [cited 2014 27.10]; Available from: 

http://guweb2.gonzaga.edu/faculty/cronk/biochem/F-index.cfm?definition=FAD. 

7. Nelson, D.L. and Cox, M.M., Lehninger Principles of Biochemistry. 5 ed. 2008. 

8. Stern, A.M. and Zhu, J., An Introduction to Nitric Oxide Sensing and Response in 

Bacteria, in Advances in Applied Microbiology, Vol 87, S. Sariaslani and G.M. Gadd, 

Editors. 2014, Elsevier Academic Press Inc: San Diego. p. 187-220. 

9. Hill, B.G., Dranka, B.P., Bailey, S.M., Lancaster, J.R., Jr., and Darley-Usmar, V.M., 

What part of NO don't you understand? Some answers to the cardinal questions in 

nitric oxide biology. Journal of Biological Chemistry, 2010. 285(26): p. 19699-704. 

10. Foundation, T.N. 1998; Available from: 

http://www.nobelprize.org/nobel_prizes/medicine/laureates/1998/. 

11. Campbell, M.G., Smith, B.C., Potter, C.S., Carragher, B., and Marletta, M.A., 

Molecular architecture of mammalian nitric oxide synthases. Proc Natl Acad Sci U S 

A, 2014. 111(35): p. E3614-23. 

12. Cheng, H., Wang, L., Mollica, M., Re, A.T., Wu, S., and Zuo, L., Nitric oxide in 

cancer metastasis. Cancer Letters, 2014. 353(1): p. 1-7. 

13. Forrester, M.T. and Foster, M.W., Protection from nitrosative stress: A central role 

for microbial flavohemoglobin. Free Radical Biology and Medicine, 2012. 52(9): p. 

1620-1633. 

14. Zeier, J., Delledonne, M., Mishina, T., Severi, E., Sonoda, M., and Lamb, C., Genetic 

elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant 

Physiology, 2004. 136(1): p. 2875-86. 

15. Mishina, T.E., Lamb, C., and Zeier, J., Expression of a nitric oxide degrading enzyme 

induces a senescence programme in Arabidopsis. Plant, cell & environment, 2007. 

30(1): p. 39-52. 

16. Forrester, M.T., Eyler, C.E., and Rich, J.N., Bacterial flavohemoglobin: a molecular 

tool to probe mammalian nitric oxide biology. Biotechniques, 2011. 50(1): p. 41-5. 

http://guweb2.gonzaga.edu/faculty/cronk/biochem/F-index.cfm?definition=FAD
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1998/


68 

 

17. Ermler, U., Siddiqui, R.A., Cramm, R., and Friedrich, B., Crystal structure of the 

flavohemoglobin from Alcaligenes eutrophus at 1.75 A resolution. The EMBO 

journal., 1995. 14(24): p. 6067-77. 

18. Takaya, N., Suzuki, S., Matsuo, M., and Shoun, H., Purification and characterization 

of a flavohemoglobin from the denitrifying fungus Fusarium oxysporum. FEBS 

Letters, 1997. 414(3): p. 545-548. 

19. Gardner, P.R., Gardner, A.M., Martin, L.A., and Salzman, A.L., Nitric oxide 

dioxygenase: An enzymic function for flavohemoglobin. Proceedings of the National 

Academy of Sciences, 1998. 95(18): p. 10378-10383. 

20. Nobre, L.S., Gonçalves, V.L., and Saraiva, L.M., Chapter Eleven - Flavohemoglobin 

of Staphylococcus aureus, in Methods in enzymology, K.P. Robert, Editor. 2008, 

Academic Press. p. 203-216. 

21. Zhou, S., Fushinobu, S., Nakanishi, Y., Kim, S.-W., Wakagi, T., and Shoun, H., 

Cloning and characterization of two flavohemoglobins from Aspergillus oryzae. 

Biochemical and Biophysical Research Communications, 2009. 381(1): p. 7-11. 

22. Rafferty, S., Luu, B., March, R.E., and Yee, J., Giardia lamblia encodes a functional 

flavohemoglobin. Biochemical and Biophysical Research Communications, 2010. 

399(3): p. 347-351. 

23. Gupta, S., Pawaria, S., Lu, C., Hade, M.D., Singh, C., Yeh, S.-R., and Dikshit, K.L., 

An Unconventional Hexacoordinated Flavohemoglobin from Mycobacterium 

tuberculosis. Journal of Biological Chemistry, 2012. 287(20): p. 16435-16446. 

24. El Hammi, E., Warkentin, E., Demmer, U., Marzouki, N.M., Ermler, U., and Baciou, 

L., Active site analysis of yeast flavohemoglobin based on its structure with a small 

ligand or econazole. FEBS Journal, 2012. 279(24): p. 4565-4575. 

25. Ilari, A., Bonamore, A., Farina, A., Johnson, K.A., and Boffi, A., The X-ray Structure 

of Ferric Escherichia coliFlavohemoglobin Reveals an Unexpected Geometry of the 

Distal Heme Pocket. Journal of Biological Chemistry, 2002. 277(26): p. 23725-23732. 

26. Grisham, C.M. and Garrett, R.H., Biochemistry. 3 ed. 2004: Brooks / Cole Publishing 

Co. 

27. Bonamore, A. and Boffi, A., Flavohemoglobin: Structure and reactivity. IUBMB Life, 

2008. 60(1): p. 19-28. 

28. Mowat, C.G., Gazur, B., Campbell, L.P., and Chapman, S.K., Flavin-containing heme 

enzymes. Archives of Biochemistry and Biophysics, 2010. 493(1): p. 37-52. 

29. Ferreiro, D.N., Boechi, L., Estrin, D.A., and Martí, M.A., The key role of water in the 

dioxygenase function of Escherichia coli flavohemoglobin. Journal of Inorganic 

Biochemistry, 2013. 119(0): p. 75-84. 

30. Muhlig, A., Kabisch, J., Pichner, R., Scherer, S., and Muller-Herbst, S., Contribution 

of the NO-detoxifying enzymes HmpA, NorV and NrfA to nitrosative stress protection 

of Salmonella Typhimurium in raw sausages. Food Microbiology, 2014. 42: p. 26-33. 

31. Nakano, M.M., Essential role of flavohemoglobin in long-term anaerobic survival of 

Bacillus subtilis. Journal of Bacteriology, 2006. 188(17): p. 6415-8. 

32. Edebo, L., A new press for the disruption of micro-organisms and other cells. Journal 

of Biochemical and Microbiological Technology and Engineering, 1960. 2(4): p. 453-

479. 

33. Gardner, P.R., Chapter Twelve - Assay and Characterization of the NO Dioxygenase 

Activity of Flavohemoglobins, in Methods in enzymology, K.P. Robert, Editor. 2008, 

Academic Press. p. 217-237. 

34. Helmick, R.A., Fletcher, A.E., Gardner, A.M., Gessner, C.R., Hvitved, A.N., Gustin, 

M.C., and Gardner, P.R., Imidazole Antibiotics Inhibit the Nitric Oxide Dioxygenase 



69 

 

Function of Microbial Flavohemoglobin. Antimicrobial Agents and Chemotherapy, 

2005. 49(5): p. 1837-1843. 

35. Appleby, C.A., Purification of Rhizobium cytochromes P-450. Methods in 

enzymology, 1978. 52: p. 157-66. 

36. Berry, E.A. and Trumpower, B.L., Simultaneous determination of hemes a, b, and c 

from pyridine hemochrome spectra. Analytical Biochemistry, 1987. 161(1): p. 1-15. 

37. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Analytical 

Biochemistry, 1976. 72: p. 248-54. 

38. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M., Appel, R., and 

Bairoch, A., Protein Identification and Analysis Tools on the ExPASy Server, in The 

Proteomics Protocols Handbook, J. Walker, Editor. 2005, Humana Press. p. 571-607. 

39. Thermo. Instructuions, Modified Lowry Protein Assay Kit. [Instruction manual] 2011; 

Available from: https://www.funakoshi.co.jp/data/datasheet/PCC/23240.pdf. 

40. Thermo, Thermo Scientific pierce Protein Assay Technical Handbook. 2010: Thermo 

Scientific. p. 44. 

41. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement 

with the Folin phenol reagent. Journal of Biological Chemistry, 1951. 193(1): p. 265-

75. 

42. Gardner, A.M., Martin, L.A., Gardner, P.R., Dou, Y., and Olson, J.S., Steady-state 

and Transient Kinetics of Escherichia coli Nitric-oxide Dioxygenase 

(Flavohemoglobin): The B10 Tyrosine Hydroxyl is essential for dioxygen binding and 

catalysis. Journal of Biological Chemistry, 2000. 275(17): p. 12581-12589. 

43. El Hammi, E., Warkentin, E., Demmer, U., Limam, F.r., Marzouki, N.M., Ermler, U., 

and Baciou, L., Structure of Ralstonia eutropha Flavohemoglobin in Complex with 

Three Antibiotic Azole Compounds. Biochemistry, 2011. 50(7): p. 1255-1264. 

44. Ghisla, S., Massey, V., Lhoste, J.M., and Mayhew, S.G., Fluorescence and Optical 

Characteristics of Reduced Flavines and Flavoproteins. Biochemistry, 1974. 13(3): p. 

589-597. 

45. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., 

McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G., Fast, 

scalable generation of high-quality protein multiple sequence alignments using 

Clustal Omega. Molecular systems biology, 2011. 7: p. 539. 

 

https://www.funakoshi.co.jp/data/datasheet/PCC/23240.pdf

