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Abstract

The london program performs non-perturbative finite field calculations on
molecules in strong magnetic fields. To make sure results are guaige-origin
independent London orbitals are used. At the Hartree-Fock level, the two-
electron contributions take the longest time to calculate. For Gaussian or-
bitals, charge density fitting and auxiliary density matrix method have been
implemented with success in other quantum chemistry programs, to approx-
imate the two-electron contributions. In this project, the performance of
these methods are investigated for London orbitals in the london program.
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Abbreviations

AO Atomic orbital
MO Molecular orbital
RHF Restricted Hartree-Fock
ROHF Restricted open-shell Hartree-Fock
UHF Unrestricted Hatree-Fock
SCF Self-consistent field
LCAO Linear combination of atomic orbitals
DFT Density functional theory
KS DFT Kohn-Sham DFT
GGA Generalized gradient approximations
DF Charge density fitting
RI Resolution of the identity
RI-J RI for coulomb
RI-K RI for exchange
ADMM Auxiliary density matrix method
ADMMX ADMM with no DFT correction
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Introduction

Taking magnetic fields into account in quantum chemical calculations can be
done through perturbation theory for weak magnetic fields. For strong mag-
netic fields, however, perturbation theory breaks down. A non-perturbative
approach is needed. The london [1] code is able to perform finite field cal-
culations in strong magnetic fields. To make sure the calculations are gauge-
origin independent, a gauge-origin dependent phase factor is included into
the orbitals. With this code, non-perturbative phenomena such as paramag-
netic to diamagnetic transitions [2] and a new chemical bonding mechanism
have been predicted [3].

Strong magnetic fields, orders of magnitude stronger than any magnetic
fields found on Earth, exist on stellar objects such as white dwarfs and neu-
tron stars. Magnetic fields on some white dwarfs can be as strong as 105

T, and fields on neutron stars can be stronger than 107 T. In such strong
magnetic fields, the magnetic interactions will be equally or more important
than electronic interactions for the energy [4, 5]. Even if the temperatures
on these objects are very high, hydrogen molecules have been found to exist
on white dwarfs[6], although not yet for any of the highly magnetized white
dwarfs.

In this project, the task is to study approximations to the Coulomb and
exchange terms in Hartree-Fock calculations. The approximations imple-
mented are the charge density fitting approximation and the auxiliary den-
sity matrix method, which have been found to work well in the absence of
magnetic fields. This project tests their performance when hybrid basis sets
are used and finite magnetic fields are included.
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1 Theory

1.1 Ab initio methods

In computational chemistry, the task is to solve the Schrödinger equation
for chemically relevant systems. However, for most of the systems a chemist
may want to investigate, this equation cannot be solved exactly. To obtain
meaningful information about chemical systems within a reasonable amount
of computation time, it is therefore necessary to introduce approximations.

Ab initio methods are a class of methods performing calculations based on
fundamental properties of a system, without using any experimental data be-
yond values of fundamental constants. In this project, primarily the Hartree-
Fock method is considered. The Hartree-Fock method is an important ab
initio method because it is a relatively fast method that yields usable results
on its own, and because the solution of a Hartree-Fock calculation can be
used as a starting point for other more accurate ab initio methods. Density
functional theory (DFT) is a different quantum chemical method based on a
theorem stating that the density of the electrons determines all the proper-
ties of a system in its ground state. For the energy there exists a functional
that yields the energy of the system, given the electron density (a functional
transforms a function into a value, as opposed to a function that transforms a
value into a value). If the form of this functional had been known, DFT would
have been an ab initio method. Instead there are approximate functionals
that are suited for different systems and levels of accuracy. An important
advantage to DFT is that the electron density only has three dimensions,
while the wavefunction is a 3N-dimensional function, where N is the number
of electrons. For situations where good functionals exist, DFT constitutes a
good compromise between accuracy and cost.

1.2 Born-Oppenheimer approximation

The time-independent Schrödinger equation can be written in its most gen-
eral form as

ĤΨ = EΨ. (1)

Here Ψ is the wavefunction, describing all electrons and nuclei, E is the
energy and Ĥ is the Hamiltonian. Postponing the effects of external magnetic
fields to section 1.8, the Hamiltonian, in atomic units (where h̄ = e = me =
1/4πε0 = 1), is given by

Ĥ = −
Ne∑
i=1

∇2
i

2
−

Nµ∑
K=1

∇2
K

2
−

Ne∑
i=1

Nµ∑
K=1

ZK
riK

+
Ne∑
i=1

Ne∑
j=i+1

1

rij
+

Nµ∑
K=1

Nµ∑
L=K+1

ZKZL
rKL

. (2)
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Here the lower-case letters i and j are used for electrons, and the capital
letters K and L are used for nuclei. The summations run up to Ne, the
number of electrons, or Nν , the number of nuclei. The two single sums
describe the kinetic energy contribution of the electrons and the nuclei. The
double sums describe Coulombic interactions between the particles in the
system, with the Coulomb potential 1

rab
, where rab = |ra − rb|. The first

double sum describes the interaction between electrons and nuclei, the second
describes interactions between electrons and the third describes interactions
between nuclei.

Solving the Schrödinger equation for this Hamiltonian is an example of a
many-body problem. Many-body problems are difficult and time-consuming
to solve, and the computational complexity quickly increases as the number
of particles increases. As a first step to alleviate this problem, the Born-
Oppenheimer approximation is introduced. The idea of this approximation
is that the atomic nuclei are much heavier than the electrons, and the nuclei
are therefore assumed to be at rest compared to the electrons. This leads
to a wavefunction consisting of a product of two parts. One part is the
wavefunction for the nuclei, which only depends on the coordinates of the
nuclei. The other part is the electronic wavefunction, which depends on the
coordinates of the electrons and parametrically depends on the coordinates
of the nuclei. For a set of coordinates for the nuclei, it is therefore possible
to solve the Schrödinger equation by only considering the coordinates of the
electrons. Because the nuclei are assumed to be at rest when considering the
electrons, the term describing the kinetic energy of the nuclei vanishes. The
resulting Hamiltonian for obtaining the electronic wavefunction is given by

Ĥel = −
Ne∑
i=1

∇2
i

2
−

Ne∑
i=1

Nµ∑
K=1

Zj
riK

+
Ne∑
i=1

Ne∑
j=i+1

1

rij
+

Nµ∑
K=1

Nµ∑
L=K+1

ZLZK
rKL

. (3)

It is conventional to retain the Coulombic interaction between nuclei in the
electronic Hamiltonian (Ĥel). This term is easy to add because it only de-
pends on the nuclear coordinates, which are already known when the calcu-
lation starts. The equation to solve is then given by

Ĥelψ(r) = Eψ(r), (4)

where ψ(r) is the electronic wavefunction.
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1.3 The variational principle

The variational principle can be expressed as

E0 ≤
〈ψ| Ĥ |ψ〉
〈ψ |ψ〉

. (5)

It states that the ground state energy (E0) is always lower than, or equal to,
the expectation value of the Hamiltonian for any wavefunction ψ. The en-
ergy is equal to the ground state energy when ψ is the exact wavefunction for
that Hamiltonian. The variational method is based on the variational prin-
ciple. It is used to find approximate wavefunctions by using a parametrized
function (ansatz). All variations of the parameters yield a wavefunction with
energy higher than or equal to the energy of the ground state according to
the variational principle. It is therefore safe to choose the the parametriza-
tion that minimizes the expectation value of the Hamiltonian. With respect
to energy, the best wavefunction within the parametrization has then been
found.

1.4 Slater determinants

The Pauli principle states that a wavefunction describing fermions must be
antisymmetric with respect to interchange of identical fermions. Since elec-
trons are fermions, this applies to electronic wavefunctions as well. One way
to impose the antisymmetry condition is to use Slater determinants of the
form

ψ(r, s) =
1√
Ne!

∣∣∣∣∣∣∣∣
φ1(1) φ2(1) ... φNe(1)
φ1(2) φ2(2) ... φNe(2)

.

..
.
.. ...

.

..
φ1(Ne) φ2(Ne) ... φNe(Ne)

∣∣∣∣∣∣∣∣ , (6)

where each φm(n) is a one-electron spin orbital and the prefactor is a nor-
malization constant. A spin orbital is a product of a space-dependent part,
referred to as an orbital, and a spin-dependent part. For the theories con-
sidered in this project, spin is restricted to two possible values, (±1

2
h̄). The

antisymmetry condition is imposed by using a Slater determinant because
interchanging two electrons corresponds to interchanging two rows in the
determinant, which changes the sign of a determinant.

1.5 Linear combination of atomic orbitals

An atomic orbital (AO) is an orbital describing an electron in an atom. In
the same way, a molecular orbital (MO) is an orbital describing an electron
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in a molecule. One way to express MOs is to use a linear combination of
AOs (LCAO) as in

φi(r) =
∑
a

caiχa(r). (7)

Here χa denotes AOs and φi denotes MOs. The LCAO approach can be
justified by assuming that the AOs of an atom are quite similar to the orbitals
close to the same atom in a molecule. This is a simplification, but even when
this does not hold, the LCAO approach is still a way to express a complicated
function (a MO) using simpler ones.

To represent the AOs, two types of functions are commonly used: Gaus-
sian orbitals and Slater orbitals. Gaussian orbitals can be written in Carte-
sian form as

Glnm(r,R, a) = (x−Rx)
l(y −Ry)

n(z −Rz)
me−a(r−R)2

. (8)

Where r = (x, y, z) and R = (Rx, Ry, Rz) Here the sum of the exponents l,
n and m is equal to the angular momentum of the AO. The exponential
describes the radial electron distribution around some point R in space,
where a describes how local or diffuse the function is.

The exponential in a Slater orbital is of the form

χ(r) = e−ζ|r−R|. (9)

Where ζ corresponds to a for Gaussian orbitals. For ζ = Z, the nuclear
charge, the Slater orbital will have the same cusp around the nucleus and the
same decay with distance as an s-orbital. An important advantage of Gaus-
sian orbitals over Slater orbitals is the computation time needed to evaluate
integrals over the functions. Gaussians are separable, and efficient techniques
for evaluating integrals exist. This means calculations using Gaussians are
faster even if more functions have to be used.

The set of functions (Gaussian or Slater) available to express MOs is
called a basis set. A basis set needs to contain at least enough AOs to match
the AOs of all atoms in the molecule. Adding more functions beyond this
gives a better description of the MOs, but the computation time will of course
increase, so functions should be chosen carefully. To get a better description
of the AOs, it is common to combine Gaussians in a linear combination.
The coefficients are predetermined, and all the functions operate as one AO;
these basis sets are said to be contracted. Another common function type
to include are Gaussians corresponding to higher angular momentum atomic
orbitals — so-called polarization functions. The basis set is then said to be
polarized. It is also common to add diffuse Gaussian functions. Here the
exponent a in the Gaussian orbital is smaller than usual, and therefore the
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Gaussian will be spread out over a larger area than for other basis functions.
Basis sets with diffuse basis functions are called diffuse basis sets. To get
a better description of the valence electrons, it is common to use so-called
split-valence basis sets, where there are two of each of the basis functions
corresponding to the valence AOs in each atom. In the same manner there
is also triple-valence, quadruple-valence etc. To increase the flexibility of the
basis set, it is also possible to decontract the basis. This means that instead
of using the predetermined coefficients in the contracted basis, each Gaussian,
in the contracted AO, is instead used as an AO in the LCAO approach.

1.6 Notation

A linear operator acting on a space spanned by a basis set can be expressed
using the basis functions. A general operator can be written

Λ̂ =
∑
ab

|a〉Λab̄ 〈b| . (10)

Where Λab̄, is the matrix inverse of Λab. Matrix elements over the operator
can then be written as

Λαβ = 〈α| Λ̂ |β〉 =
∑
ab

〈α | a〉Λab̄ 〈b | β〉 =
∑
ab

SαaΛ
ab̄Sbβ (11)

The identity operator can then be written as

Î =
∑
ab

|a〉Sab̄ 〈b| (12)

for a non-orthogonal basis, where Sab̄ is the matrix inverse of Sab̄ defined as

Sab =

∫
χa(r)χb(r)dr. (13)

For an orthogonal basis, S will be given by the Kronecker delta function and
the identity operator is reduced to

Î =
∑
a

|a〉 〈a| (14)

1.7 Hartree-Fock theory

Hartree-Fock theory is based on the variational method and uses a single
Slater determinant as an ansatz for the electronic wavefunction. Applying
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the LCAO approach to the MOs in the Slater determinant gives an ansatz
depending on the coefficients in the LCAO. Minimizing the expectation value
of the Hamiltonian over these coefficients under the constraint that the MOs
remain orthogonal, yields the Hartree-Fock equations given by

FC = SCε. (15)

This is a matrix equation where the C matrix contains the coefficients from
the LCAO approach as columns. S is a matrix with overlap integrals for
all basis functions. The diagonal (canonical solution) matrix ε contains the
energy of the molecular orbitals. F contains expectation values of the Fock
operator for the basis functions as in

Fab =

∫
χa(r)F̂χb(r)dr. (16)

The Restricted Hartree Fock (RHF) operator is given by

F̂ = Hcore(1) +
∑
i

(2Ĵi(1)− K̂i(1))

Ĥcore(1) = −1

2
∇2 −

∑
µ

Zµ
r1µ

Ĵi(1) =

∫
φ∗i (2)

1

r12

φi(2)dr2

K̂i(1)φj(1) = φi(1)

∫
φ∗i (2)

1

r12

φj(2)dr2

(17)

In RHF theory, each orbital is shared by two electrons. Taking different spin
into account for the two electrons yields one spin orbital for each electron. To
handle systems with an odd number of electrons (radicals), the open-shell
RHF (ROHF) method can be used. Here most of the spatial orbitals are
doubly occupied as in the RHF case, but it is possible to have some singly
occupied orbitals to accommodate unpaired electrons. UHF is a general-
ization of RHF that can handle any number of electrons. For UHF theory
there are different spatial orbitals for different spins. Only RHF theory is
considered for this project.

For the derivation of the equations for the auxiliary density matrix method,
it is useful to note that the Fock matrix can also be considered as a derivative

Fab =
∂Etot
∂P bā

. (18)

Where P bā =
∑occ

i Cb
iC
∗ā
i is the density matrix. It is especially useful to note

that the exchange matrix can be expressed as a derivative of the exchange
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energy

Kab =
∂EK
∂P bā

. (19)

The solution of the Hartree-Fock equations are the molecular orbitals and
their energies. These can be found if the S and F matrices are known. The
F matrix does, however, depend on the molecular orbitals. This means that
the Hartree-Fock equations depend on their own solution. To be able to
solve this equation, it is therefore necessary to use an iterative method called
the self-consistent field (SCF) method to solve the equations. This method
requires an initial guess of molecular orbitals. A possible starting solution
is to diagonalize Ĥcore, this corresponds to non-interacting electrons. From
this starting solution, a Fock operator is computed and the F and S matrices
are calculated, making it possible to find a new C. The new solution is then
set as a starting solution for the next step. This procedure is repeated until
there is no significant difference between the starting solution and the new
solution in an iteration. At this point it is assumed that the correct solution
has been found.

In Hartree-Fock theory, the electron-electron repulsion is treated in a
mean-field way by letting each electron interact with average electrostatic
field of the other electrons. The error introduced with this simplification is
called correlation energy. Hartree-Fock theory typically estimates the energy
of a system with an accuracy of 0.5-2%, so correlation has a small contri-
bution to the energy, compared to Coulomb interactions and kinetic energy.
However, compared to the total energy of a molecule, the energy changes
involved for many chemical phenomena are small. To achieve the needed
accuracy, it is therefore often necessary to also include correlation. For many
methods that include correlation, the solution of a Hartree-Fock calculation
can be used as a starting point.

1.8 Magnetic fields in the Hamiltonian

In the london program, molecular calculations are performed in the pres-
ence of an external magnetic field. This introduces new terms in the Hamil-
tonian. Using atomic units (magnetic fields are given in units of B0 = mee

4πε0h̄
=

2.35× 105 T), the canonical momentum operator

p = −i∇ (20)

is replaced with the physical momentum operator

π = p + A. (21)

12



Here A is a vector potential that relates to the magnetic field as

B = ∇×A. (22)

A given vector potential can only correspond to one magnetic field, while the
opposite is not necessarily true. Adding the gradient of any function to a
vector potential, called a gauge transformation, as in

A′ = A +∇f(r) (23)

with ′ denoting gauge-transformed quantities, will not change the magnetic
field described by that vector potential. This can be seen from

∇×A′ = ∇× (A +∇f(r)) = ∇×A +∇×∇f(r) = ∇×A. (24)

In london, only uniform magnetic fields B and vector potentials of the
form

A =
1

2
B× (r−O) (25)

are considered; the only allowed gauge transformation is then given by

f(r) =
1

2
(B×C) · r (26)

This transformation is called a gauge-origin transformation. With this trans-
formation, the position O can be chosen freely and is referred to as the gauge
origin.

With the physical momentum operator, the kinetic energy will be given
by

1

2
π2 =

1

2
(p + A)2 =

1

2
(p2 + 2A · p + A2) (27)

With the A in eq. (25)

A · p =
1

2
B× (r−O) · p =

1

2
B · (r−O)× p =

1

2
B · L, (28)

where L = (r−O)×p is the canonical orbital angular momentum operator.
This term is called the orbital Zeeman term. The kinetic energy will then be
given by

1

2
π2 =

1

2
(p2 + B · L + A2) (29)

In relativistic theory, spin as an intrinsic property of electrons follows
naturally. For non-relativistic theory, it is postulated. The electron spin
interacts with external magnetic fields through the spin-Zeeman effect. With
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spin-Zeeman and the kinetic energy in eq. (29) the Hamiltonian will be given
by

Ĥmag = Ĥel +
Ne∑
i=1

B · Li +
1

2

Ne∑
i=1

A2
i + B ·

Ne∑
i=1

si. (30)

Where Ai means A evaluated at the position of electron i.

1.9 London orbitals

A gauge transformation should not change expectation values of observables;
however, when the vector potential is changed, the Hamiltonian also changes.
To get gauge-independent expectation values of observables, the wavefunc-
tion will have to change as well. For a given gauge transformation the wave-
function changes as

ψ′(r) = e−if(r)ψ(r). (31)

The kinetic energy operator (1
2
π2) is the only operator that contributes to

the Fock operator that changes under a gauge transformation. It is therefore
sufficient to show that expectation values of this operator do not change.
This is shown by considering the expectation value of the gauge-transformed
operator and wavefunction as in

π′ |ψ′〉 = (p + A′)e−if(r) |ψ〉 = e−if(r)(p + A′ −∇f) |ψ〉 = e−if(r)π |ψ〉 . (32)

Applying the operator again yields

π′e−if(r)π |ψ〉 = e−if(r)π2 |ψ〉 , (33)

and multiplying the bra from the left cancels the phase factor

〈ψ′| e−if(r)π2 |ψ〉 = 〈ψ| eif(r)e−if(r)π2 |ψ〉 = 〈ψ|π2 |ψ〉 . (34)

Thus the gauge transformation does not change the expectation value of the
kinetic energy since

〈ψ′|π′2 |ψ′〉 = 〈ψ|π2 |ψ〉 (35)

In a complete basis it is possible to represent both ψ′ and ψ exactly, but
in a finite basis there is no guarantee that both can be represented equally
well. To resolve this problem for gauge-origin transformations, a gauge-origin
dependent phase factor is added to the Gaussian orbitals as in

χ(r) = Glnm(r,R)e−ika·r

ka =
1

2
B× (R−O)

(36)

where ka is the value of A at the center of the Gaussian. With these new
basis functions, called London orbitals [7], all contractions over operators
representing observables are independent of the gauge origin.

14



1.10 Magnetic properties

The energy of a system can be expanded in a Taylor series in terms of the
field strength B,

E(B) = E0 +
1

2

∑
α

JαBα−
1

2!

∑
αβ

χαβBαBβ +
1

3!

∑
αβγ

XαβγBαBβBγ + ... (37)

The coefficients in the expansion represent different magnetic properties. The
first-order coefficient is the magnetic dipole moment, which is analogous to
the electric dipole moment. In the same way, the second-order coefficient is
the magnetizability, which is analogous to the electric polarizability. With
the Taylor expansion around B = 0 the first order coefficient Jα = Lα, the
canonical angular momentum. For a Taylor expansion around a B 6= 0, Jα
is the physical angular momentum. To obtain the coefficients, it is common
to use perturbation theory to calculate derivatives of the energy evaluated
at zero field [8]. With the finite field calculations in the london code, the
coefficients can then be obtained in a more general way through a polynomial
fitting of the energy as a function of magnetic field. For closed-shell systems,
E(B) = E(−B), so terms with odd powers of magnetic field are therefore
zero.

1.11 Density functional theory

The fundamental idea in density functional theory (DFT) is to express the
energy (or other properties) of the ground state as a functional of the density.
In Kohn-Sham (KS) DFT, a set of orbitals corresponding to the electron den-
sity is reintroduced. This makes it possible to calculate most of the kinetic
energy at the cost of dealing with the higher dimensionality of the orbitals.
With the orbitals introduced, the kinetic energy, the nuclear attraction, and
the Coulomb electron repulsion will have the same formulas in KS DFT and
Hartree-Fock theory. In KS DFT, correlation and exchange are treated in a
separate term. The exact relation between the electron density and the ex-
change and correlation energy is not known, and many approximate relations
exist. One class of functionals are called generalized gradient approximation
(GGA) functionals. Here the functional uses not only the electron density,
but also the gradients of the electron density to express the functional.

1.12 Two-electron integrals

The contributions to the Fock matrix can be divided into one-electron contri-
butions and two-electron contributions, where the one-electron contributions
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are kinetic energy and Coulomb attraction to the nuclei, and the two-electron
contributions are Coulomb repulsion between electrons and exchange. By in-
troducing the Mulliken notation

(ab|cd) =

∫
χ∗a(1)χb(1)

1

r12

χ∗c(2)χd(2)dr1dr2 (38)

the Coulomb and exchange contribution can be written as

Jāb =
∑
c,d

P dc̄ (ab|cd) (39)

and
Kāb =

∑
c,d

P dc̄ (ad|cb) (40)

respectively. The two-electron contributions involve four-centre integrals,
which means the integral is over four basis functions located on potentially
four different nuclei. Because all four basis functions are summed over to find
the total contribution, the calculation of the two-electron contributions for-
mally scales as N4. This makes the calculation of the Coulomb and exchange
terms the most time-consuming part of a Hartree-Fock calculation.

1.13 Charge density fitting

The purpose of introducing charge density fitting (DF) is to reduce the cal-
culation time of the Coulomb matrix. To achieve this, a new basis set,
different from the AO basis set, is introduced. With this auxiliary basis set,
the Coulomb matrix can be calculated using three-center integrals instead of
four-centre integrals.

1.13.1 Approximate representation of the electron density

In the expression for the Coulomb contribution given in eq. (39), it is possible
to factor out an expression for the electron density given by

ρ(r) =
∑
cd

P dc̄χc
∗χd. (41)

In DF, this density is approximated by a density expressed in an auxiliary
basis set,

ρ̃(r) =
∑
α

Pαχα(r). (42)
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With the approximate density replacing the exact density, the Coulomb con-
tribution becomes

Jab =
∑
α

Pα (ab|α) , (43)

with the following notation for three-center integrals

(ab|c) =

∫
χ∗a(1)χb(1)

1

r12

χc(2)dr1dr2. (44)

This reduces the formal scaling of calculating the Coulomb contribution from
n4 to Nn2, where n is the number of AO basis functions and N is the number
of auxiliary basis functions.

1.13.2 Derivation of the fitting equations

Unless the auxiliary basis spans the entire space of products of the AO basis
functions, there will be a difference between the expanded density and the
exact density. To find the best fit of the auxiliary density, a residual is defined

R(r) = ρ(r)− ρ̃(r). (45)

Different approaches have been proposed to minimize this residual. One al-
ternative is to minimize the self-overlap of the residual (S approximation)
[9, 10], another is to minimize the self-repulsion of the residual (V approx-
imation) [11, 12]. The V approximation has previously been shown to give
the best results [13].

To write the derivation of the fitting coefficients, the following notation
is used

(a|b) =

∫
χ∗aχb
rab

dr (46)

This integral can viewed as an overlap with the Coulomb norm.
To derive the coefficients in the V approximation, the derivative of the

self-repulsion with respect to the coefficients in the auxiliary basis is set to
zero

∂

∂P β
(R|R) = 0 (47)

which expands to

∂

∂P β
(ρ− ρ̃|ρ− ρ̃) =

∂

∂P β
((ρ|ρ)− 2 (ρ̃|ρ) + (ρ̃|ρ̃)) = 0 (48)

yielding
0− 2 (β|ρ) + 2 (β|ρ̃) = 0 (49)
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giving the following equation:

(β|ρ̃) = (β|ρ) (50)

Because this holds for all basis functions β this will be a set of linear equations
described by

VP = R, (51)

where the elements of matrix V and the elements of the vector R are given
by

Vβα = (β|α) (52)

and
Rβ = (β|ρ) (53)

respectively. The vector P contains the fitting coefficients. Solving for P
yields the coefficients

P = V−1R (54)

where Pα can be written as

Pα =
∑
β

V αβ (β|ρ) (55)

DF is sometimes referred to as the resolution of the identity (RI) approxima-
tion. The auxiliary basis functions can be introduced through a resolution
of the identity in the expression for the Coulomb contribution. Inserting the
resolution of the identity from eq. (12), with the overlap calculated with a
Coulomb norm as defined in eq. (46), yields∑

cd

P dc̄ (ab|cd) ≈
∑
cd

P dc̄
∑
αβ

(ab|α)V αβ (β|cd) =∑
αβ

(ab|α)V αβ (β|ρ) =
∑
α

(ab|α)Pα.
(56)

1.13.3 The auxiliary basis set

The auxiliary basis set should be able to describe the electron density given
as products of AO basis functions. The product of two Gaussians is a sum
of Gaussians as in

Glnm(r,R, a) ·Gl′n′m′
(r,S, b) =

l+l′,n+n′,m+m′∑
i,j,k

Gi,j,k(r,T, d) (57)
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where the center of the new Gaussians T = aR+bS
a+b

and the combined exponent
d = a + b. For Gaussians with the same center (R = S) this will reduce to
a single Gaussian. With London orbitals, there is also the phase factor to
consider. The product of two phase factors is(

e−ika·r
)∗

e−ikb·r = e(ika−ikb)·r, (58)

where
ika − ikb = iB × (Ra −Rb). (59)

The gauge origin cancels, and only the difference between two centers re-
mains. In this project, we have tested Gaussian auxiliary basis sets specif-
ically developed for the RI approximation (cc-pVTZdenfit [14] and df-def2
[15]). For basis functions located on the same center, the phase factor can-
cels and only a Gaussian remains. This is what the auxiliary basis set is
designed to handle (as well as products of Gaussians on different centers).
For a product of two London orbitals with two different centers, the product
will contain a phase factor. An increasing distance between centers will yield
a larger exponent in the phase factor, which is not necessarily handled as
well by the auxiliary basis. However, as the distance increases, the Gaussian
part of the product will eventually be very small and make the whole prod-
uct irrelevant. Whether the Gaussian part dies out before the phase factor
becomes important, depends on parameters in both the Gaussian and the
phase factor part of the product, and is difficult to predict. The magnetic
field strength has the same effect as an increasing distance and is equally
important, as can be seen from eq. (59). It can therefore be expected that
at some point, as the magnetic field increases the Gaussian auxiliary basis
sets will not yield a sufficient performance, and the phase factors will have
to be handled in some way. It is, however, difficult to predict at what field
strength this problem will arise.

Both the df-def2 and the cc-pVTZdenfit basis, are optimised to be auxil-
iary basis sets for RI-K. However, basis sets optimized for RI-K can also be
used for RI-J (DF). For RI-J, the auxiliary basis expresses a density, while in
RI-K the auxiliary basis expresses the products of the basis functions. Rep-
resenting the products is more challenging, therefore an RI-K auxiliary basis
is flexible enough to function as an auxiliary basis for RI-J as well. Basis
sets optimized for RI-K can therefore be used for RI-J, but not the other
way around. It has also been found that basis sets used for RI-J can be used
for several AO basis sets. In this project, df-def2 is used with success as an
auxiliary basis for both cc-pVDZ and cc-pVTZ.

There is another example of DF in non-perturbative calculations for
strong magnetic fields that use the same auxiliary basis set [16]. Here, calcu-
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lation of the Coulomb term with DF avoids calculation of four-centre integrals
over London orbitals.

1.13.4 Implementation

To implement DF, it is necessary to compute the coefficients for the auxiliary
basis set, and be able to evaluate three-centre integrals. The existing integral
evaluation code in london is sufficiently general to evaluate two-, three- and
four-center integrals. To find the auxiliary coefficients, V and R in eq. (51)
need to be calculated, and the equation needs to be solved. V and R were
calculated with existing methods as two- and three-center integrals respec-
tively. To solve the linear system of equations, V is inverted and multiplied
on the right hand side of the equation. The inversion was done through an
eigenvalue decomposition, and to prevent linear dependence, eigenvalues be-
low 10−10 were projected out (set to zero). The threshold was optimized with
NaCl by minimizing the error with respect to the threshold, with no thresh-
old the DF error was two orders of magnitude higher. Inverting V is a slow
way of solving the system of equations, but it is possible to prevent linear
dependence this way, and the time limiting step in DF is still the calculation
of the Coulomb matrix.

1.14 Auxiliary density matrix method

There is an RI approximation for exchange as well [17, 18, 14] (RI-K), but
it will not yield the same speed-up as for DF (RI-J). The prefactor will be
reduced, but the formal scaling of the exchange contribution will still be N4

for the RI-K approximation. In this project, the auxiliary density matrix
method (ADMM) [19] approximation has been implemented to approximate
exchange. ADMM, like DF, uses an auxiliary basis to achieve a speed-up.

1.14.1 The ADMM approximation

ADMM is based on a trivial rearrangement of the difference between the
exchange contribution in two different basis sets as in

EHF
ex (AO) = EHF

ex (AUX) + EHF
ex (AO)− EHF

ex (AUX) (60)

The approximation is to replace the difference between Hartree-Fock ex-
change in AO and auxiliary basis, with exchange calculated with a DFT
exchange functional, which leads to

EHF
ex (AO) ≈ EHF

ex (AUX) + EDFT
ex (AO)− EDFT

ex (AUX). (61)
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The assumption here is that the difference between exchange calculated in
two different basis sets is similar for DFT and Hartree-Fock even if the values
of exchange in DFT and Hartree-Fock are different. GGA functionals have
been used to calculate the DFT exchange in previous works [19, 20]. It should
be noted that ADMM is also applicable to DFT. One way to calculate the
exchange contribution in DFT is to let a fraction of exchange come from
Hartree-Fock exchange and the remaining fraction from a functional. This
method is called hybrid DFT, and ADMM can be used to speed up the
calculation of the Hartree-Fock exchange term here as well. Using ADMM
in a hybrid DFT calculation yields a higher speed-up than in a Hartree-Fock
calculation, because DFT exchange in the larger basis needs to computed
anyway, and this term can be considered free in the ADMM contribution.

Technical challenges in handling two different basis sets in the DFT code
in london prevented the implementation of the DFT correction for this
project. In addition, the DFT code is still slow, so implementing the DFT
correction now would probably not yield any speed-up, but only improve
the accuracy. To distinguish this implementation from the full ADMM ap-
proximation, the current implementation will be called ADMMX. Without
the DFT correction, the method will yield a poorer accuracy. However, in
the variety of quantum chemical methods performing calculations in strong
magnetic fields, ADMMX can be one more method to choose from in the
trade-off between speed and accuracy. It can be considered as a model
Hamiltonian, slightly poorer than Hartree-Fock, but still not as crude as
other model Hamiltonians used to include magnetic fields [21].

1.14.2 Approximate representation of the density matrix

Because the auxiliary basis set is smaller than the AO basis set in eq. (61),
there will be an error when the orbitals are transformed into the auxiliary
basis. One way to minimize the difference between the MOs represented in
the AO basis and the MOs represented in the auxiliary basis, is to do a least-
squares fitting of the MOs to the auxiliary basis set, which is equivalent to
minimizing

R2 =
occ∑
n

∫
(ψn,AO − ψn,aux)2dr. (62)

This method is called ADMM2. Another way to transform the MOs is to
enforce that the auxiliary MOs remain orthogonal. This method is called
ADMM1. To achieve this, it is necessary to introduce Lagrange multipliers,
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and the minimization problem changes to

R1 =
occ∑
n

∫
(ψn,AO − ψn,aux)2dr +

occ∑
nm

∫
λnm(ψn,AOψm,AO − ψn,auxψn,aux)dr

(63)
A valid density matrix should fulfill some mathematical requirements, how-
ever when the AO density matrix is transformed into the auxiliary density
matrix these conditions may not be fulfilled any more. The three require-
ments for a valid density matrix are

P† = P

2Tr(PS) = Ne

PSP = P.

(64)

The first requirement states that that the density matrix should be sym-
metric for a real density matrix or hermitian for a complex density matrix.
The second requirement states that the density matrix should represent the
correct number of electrons, given as the trace of the density matrix. The
third requirement is the idempotency condition, that can be interpreted as
all MOs having an occupation number of exactly 1 or exactly 0. All these
requirements are fulfilled with the ADMM1 procedure. For ADMM2, only
the first is fulfilled. However, ADMM1 is more difficult to work with because
there is no simple relationship between the density matrix in the AO and
the auxiliary basis. For ADMM2 it is more straightforward to transform the
density matrix between AO and auxiliary basis, making ADMM2 easier to
implement. Other procedures for ADMM have been tried to make the auxil-
iary density matrix fulfill more of the conditions compared to ADMM2, and
still keep a simple relation between the AO and auxiliary density matrix.
With ADMMQ [20] the second condition in eq. (64) is forced to be fulfilled.
Compared to ADMM2, ADMMQ is a scaling of the auxiliary density matrix.
A scaling of the the density matrix yields a different scaling for Hartree-Fock
exchange and exchange calculated with a DFT functional. The difference in
scaling can yield energies with a large deviation from the ADMM2 energy.
The ADMMS approximation changes the scaling of the DFT functional to
solve this problem.

ADMM2 has been implemented for this project. It is equivalent to a
projection from the AO basis to the auxiliary basis as in

P̂ aux = Q̂ = ÎauxP̂ orbÎaux (65)
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With the identity defined in eq. (12), this writes out to

Q̂ =
∑
αβ

|α〉Sαβ̄ 〈β|
∑
ab

|b〉P bā 〈a|
∑
γδ

|γ〉Sγδ̄ 〈δ|

Q̂ =
∑
αβabγδ

|α〉Sαβ̄Sβ̄bP bāSāγS
γδ̄ 〈δ|

(66)

From the definition of an operator in eq. (10) it follows that

Qαδ̄ =
∑
βabγ

Sαβ̄Sβ̄bP
bāSāγS

γδ̄ (67)

for the density matrix in the auxiliary basis expressed by the density matrix
in the AO basis.

1.14.3 Contribution to the Fock matrix

The contribution to the Fock matrix is calculated in the auxiliary basis and
is then transformed back to the AO basis. The contribution of the exchange
matrix to the Fock matrix is defined by

Kāb =
∂EK
∂P bā

=
∂EK

∂Qαδ̄

∂Qαδ̄

∂P bā
(68)

Differentiating eq. (67) and inserting into eq. (68) yields

Kāb =
∑
γδαβ

SāγS
γδ̄kδ̄αS

αβ̄Sβ̄b (69)

where kδ̄α = ∂EK
∂Qδ̄α

is the exchange contribution in the auxiliary basis.

1.14.4 Implementation

In ADMM, the MOs need to be transformed to a different basis. There was
an existing method available in london to project a density matrix to a
different basis. With the new density matrix, the exchange contribution was
calculated. Transforming the exchange matrix to the AO basis was done as
described in eq. (69). The auxiliary overlap and the mixed overlap between
AO and auxiliary basis were calculated and the auxiliary basis overlap was in-
verted. This was done through an eigenvalue decomposition and eigenvalues
below 10−9 were projected out (set to zero) to avoid linear dependence.
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2 Results

The implementation of DF and ADMMX has been tested for six different
systems, with the cc-pVDZ and cc-pVTZ basis sets. The 3-21G basis has
been used as an auxiliary basis for ADMM. For DF, cc-pVTZdenfit has been
used as an auxiliary basis for cc-pVTZ, however, cc-pVTZdenfit is not avail-
able for all atoms in all systems. Df-def2 has therefore been used for the
remaining systems for cc-pVTZ, and for all systems with cc-pVDZ. The DF
auxiliary basis sets are Gaussian basis sets, developed as auxiliary basis sets.

2.1 Results with zero magnetic field

For zero magnetic field, the phase factors in the London orbitals are equal
to one, and there is no difference between London orbitals and Gaussian
orbitals. The implementation of DF in london can therefore, at zero mag-
netic field, be compared to the implementation in lsdalton [22]. Comparing
ADMMX and the ADMM implementation in lsdalton will show the effect
of the DFT correction for calculations at zero magnetic field. However, in
london all basis sets are Cartesian basis sets, while lsdalton uses solid
harmonic basis sets as standard. The implementation of ADMM and DF is
therefore only implemented for solid harmonic basis functions in lsdalton.
Without DF or ADMM, it is possible to use a Cartesian basis for lsdalton.
Table 1 compares Cartesian and solid harmonic basis in lsdalton. The dif-
ference between solid harmonic basis and Cartesian basis is larger than the
error introduced by ADMM or DF. It is therefore not possible to compare
absolute energies, only errors, between lsdalton and london when the
approximations are used.

Table 2 shows errors using ADMM and DF for lsdalton and london.
The expression ”plain Hartree-Fock” is used to for a Hartree-Fock calculation
with no ADMM and no DF. The DFT correction is included in the imple-
mentation in lsdalton and has no option to run the ADMM calculations
without it. It will therefore be difficult to compare the results for ADMM in
table 2 between lsdalton and london, but the effect of the DFT correction
will be indicated. In lsdalton, the KT3X GGA exchange functional has
given the best results for the calculations performed in this project. With
this functional, the errors in lsdalton are reduced by roughly an order
of magnitude compared to the ADMMX implementation in london. In ls-
dalton, several ADMM variants are implemented, and the ADMMS variant
in general performs better than the ADMM2 variant.

For DF, the accuracy is comparable between lsdalton and london.
Since there is no difference between DF in lsdalton and london at zero
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Table 1: Energies for Cartesian and solid harmonic basis for all test systems with
the cc-pVDZ and cc-pVTZ basis sets using lsdalton.

Basis set System Cartesian Solid harmonic Difference
Eh Eh mEh

cc-pVDZ LiH -7.94973 -7.94972 0.00
NaCl -621.42091 -621.42065 0.27
N2O -183.67767 -183.67687 0.81
Benzene -230.72255 -230.72180 0.75
Naphthalene -383.38559 -383.38412 1.47
C20 -756.68823 -756.68498 3.26

cc-pVTZ LiH -7.95175 -7.95167 0.08
NaCl -621.44089 -621.44062 0.28
N2O -183.73032 -183.72942 0.90
Benzene -230.78051 -230.77938 1.13
Naphthalene -383.47985 -383.47796 1.90

magnetic field, this is not surprising. DF in always underestimate the energy,
as indicated by table 2. For ADMMX all calculations in table 2 overestimates
the energy, and this is usually the case for ADMMX calculations. There is
therefore an error cancellation when both methods are used. For most calcu-
lations this is not significant since the errors are of so different magnitudes.

2.2 Results with magnetic field

When there is a magnetic field present, the phase factors in the London or-
bitals will be non-trivial functions of position. Gaussian and London orbitals
are no longer the same. Table 3 shows errors for ADMM and DF at B = 0.1
B0 Different directions of the magnetic field are marked as perpendicular
(⊥) to the bond or the plane or parallel (‖) to the bond or the plane in the
molecule. The parallel orientation is showed in figure 1 for the molecules
where parallel orientation is ambiguous.

At B = 0.1 B0, the error in both DF and ADMM are of the same order
of magnitude as for zero magnetic field. The phase factors in the London
orbitals do not seem to pose any problems at this magnetic field strength.

Table 4 shows energies for even stronger magnetic fields. For most sys-
tems, the field strength is B = 1.0 B0. However, for the systems with the
longest distances between atoms, the combination of strong magnetic field
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Table 2: Errors in energy (mEh) compared to plain Hartree-Fock for DF and
ADMM using lsdalton and london with cc-pVDZ (DZ) and cc-pVTZ (TZ)
basis sets at zero magnetic field.

Program Basis System no density fitting with density fitting
ADMM2 ADMMS ADMM2 -

lsdalton DZ LiH -1.49 -1.13 -1.53 -0.04
NaCl -37.77 -27.40 -37.81 -0.03
N2O 2.59 14.04 2.56 -0.03
Benzene -7.03 1.51 -7.15 -0.13
Naphthalene -15.28 -1.16 -15.44 -0.19
C20 -110.29 -81.04 -110.41 -0.12

TZ LiH -6.06 -5.49 -6.08 -0.02
NaCl -42.99 -32.52 -43.03 -0.04
N2O 0.56 15.43 0.55 -0.01
Benzene -34.66 -25.17 -34.72 -0.09
Naphthalene -57.82 -42.32 -57.92 -0.14
C20 -185.18 -151.38 -185.25 -0.08

london DZ LiH 2.71 - 2.70 -0.01
NaCl 87.37 - 87.36 -0.01
N2O 94.92 - 94.91 -0.02
Benzene 112.90 - 112.87 -0.04
Naphthalene 187.33 - 187.28 -0.07
C20 298.24 - 298.17 -0.07

TZ LiH 2.74 - 2.73 -0.02
NaCl 85.22 - 85.21 -0.01
N2O 110.13 - 110.13 -0.00
Benzene 132.24 - 132.21 -0.07
Naphthalene 220.71 - 220.65 -0.11
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Table 3: Errors in energy (mEh) compared to plain Hartree-Fock for B = 0.1 B0

with ADMM and DF using london.

Basis set System ADMM both densfit
cc-pVDZ LiH ⊥ 2.25 2.24 -0.01

LiH ‖ 2.42 2.41 -0.01
NaCl ⊥ 87.44 87.43 -0.01
NaCl ‖ 87.29 87.28 -0.01
N2O ⊥ 94.51 94.49 -0.02
N2O ‖ 95.47 95.46 -0.02
Benzene ⊥ 117.03 117.00 -0.04
Benzene ‖ 114.19 114.16 -0.04
Naphthalene ⊥ 193.77 193.71 -0.07
Naphthalene ‖ 1 189.22 189.16 -0.07
Naphthalene ‖ 2 189.30 189.24 -0.07
C20 ⊥ 302.53 302.46 -0.07

cc-pVTZ LiH ⊥ 2.58 2.57 -0.01
LiH ‖ 2.47 2.46 -0.02
NaCl ⊥ 85.30 85.29 -0.01
NaCl ‖ 85.24 85.23 -0.01
N2O ⊥ 110.00 110.00 -0.00
N2O ‖ 110.98 110.97 -0.00
Benzene ⊥ 136.62 136.59 -0.07
Benzene ‖ 134.11 134.08 -0.07
Naphthalene ⊥ 227.36 227.31 -0.12
Naphthalene ‖ 1 223.38 223.32 -0.11
Naphthalene ‖ 2 223.57 223.52 -0.11
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Figure 1: Orientation of field for planar molecules. Orientations denoted || 1 and
|| 2 for naphthalene, and the orientation denoted || for benzene is showed.

and long distances is not handled by the current version of london. In lon-
don, the integrals over basis functions are computed with the Boys function
using complex valued arguments. The current implementation works best for
arguments that are close to the real axis in the complex plane. With a com-
bination of long distances and strong magnetic fields, the phase factor gives
arguments to the Boys function with a large imaginary part. For naphthalene
and C20, the strongest magnetic field investigated is therefore B = 0.5 B0.
For C20, there are convergence problems in the SCF procedure for B = 0.5
B0 because of a small HOMO-LUMO gap. The results are therefore limited
to B = 0.4 B0 for C20.

For the strongest field strengths, the DF error is still of the same order
of magnitude as for zero field. For ADMM, the most notable increase in
error is for NaCl. For perpendicular orientation of the field compared to the
bond, the SCF optimization fails to converge for ADMM with the 3-21G
auxiliary basis set for the strongest fields. Figure 2 shows error in energy for
NaCl with cc-pVDZ and cc-pVTZ for perpendicular orientation and parallel
orientation of the field. For cc-pVDZ, calculations with ADMM failed to
converge at B = 1.0 B0. For cc-pVTZ, the calculations failed to converge
from B = 0.7 B0 and up to B = 1.0 B0. For parallel orientation, the error
rises to almost 1 Eh. With the 3-21G* basis set, calculations converged
for all field strengths and the error remained at the same level as for other
systems. The importance of polarization in the auxiliary basis can in part be
understood by considering the slope in figure 2. One contribution to ∂E

∂B
is the

physical angular momentum; the difference in slope between ADMM/3-21G
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Table 4: Errors in energy (mEh) compared to plain Hartree-Fock at the B (B0)
given, with ADMM and DF using london.

Basis set System B ADMM both densfit
cc-pVDZ LiH ⊥ 1.0 3.14 3.14 -0.01

LiH ‖ 1.0 7.41 7.40 -0.01
NaCl ⊥ 1.0 928.35 928.19 -0.04
NaCl ‖ 0.9 843.19 843.12 -0.03
N2O ⊥ 1.0 102.44 102.24 -0.19
N2O ‖ 1.0 98.64 98.62 -0.02
Benzene ⊥ 1.0 165.19 164.76 -0.36
Benzene ‖ 1.0 385.19 385.13 -0.06
Naphthalene ⊥ 0.5 268.33 268.26 -0.08
Naphthalene ‖ 1 0.5 243.25 243.17 -0.09
Naphthalene ‖ 2 0.5 277.89 277.81 -0.10
C20 ⊥ 0.4 357.05 356.96 -0.09

cc-pVTZ LiH ⊥ 1.0 13.76 13.61 -0.28
LiH ‖ 1.0 19.61 19.53 -0.15
NaCl ⊥ 1.0 942.32 942.05 -0.03
NaCl ‖ 0.6 570.42 569.61 -0.03
N2O ⊥ 1.0 140.96 140.84 -0.11
N2O ‖ 1.0 346.34 346.33 -0.04
Benzene ⊥ 1.0 305.67 305.86 -0.10
Benzene ‖ 1.0 385.92 385.97 -0.09
Naphthalene ⊥ 0.5 197.49 197.45 -0.25
Naphthalene ‖ 1 0.5 295.25 295.19 -0.10
Naphthalene ‖ 2 0.5 331.21 331.13 -0.11
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and ADMM/3-21G* could therefore be explained by a more similar level of
polarization in the AO and auxiliary basis for 3-21G* compared to 3-21G.

At the cc-pVTZ level, the convergence problems can be attributed to a
small HOMO-LUMO gap. For all calculations that do not converge, the gap
is smaller than 0.1 Eh. For the cc-pVDZ calculation, the HOMO-LUMO
gap varies more, but for some iterations the gap is as small as for cc-pVTZ
calculations.
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Figure 2: Error in energy with ADMM compared to plain Hartree-Fock for NaCl
with cc-pVDZ and cc-pVTZ with perpendicular and parallel orientation of the field.
The improvement of ADMM with 3-21G* as an auxiliary basis compared to 3-21G
is clearly demonstrated.

2.3 Timings

Table 5 shows timings for the methods for the largest systems investigated in
this project. The three smaller systems take less than one second for a SCF
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iteration for most combinations of program and basis set, and have there-
fore been omitted. There are two factors that make comparisons between
lsdalton and london difficult for timings. For london, the DFT cor-
rection is not implemented; this is the largest time consumer for ADMM in
lsdalton. For DF in lsdalton, J-engine [23, 24, 25] is also implemented.
This speeds up DF in lsdalton additionally. The speed-up with london
compared to lsdalton is quite similar, with a larger ratio for the london
implementations with the two smallest systems and a smaller ratio for the
largest system. The effect of J-engine and the DFT correction can be seen
in the timings as lsdalton takes the most time in ADMM, while it is the
opposite for london.

Table 5: Timings (s) for lsdalton and london with cc-pVDZ (DZ) and cc-pVTZ
(TZ). Timings for calculating exchange and Coulomb with ADMM2 (A2) and DF
are shown, with their total time given under ”Both”. ”HF” shows the time needed
to calculate exchange and Coulomb with plain Hartree-Fock, and the ratio between
”HF” and ”Both” is given under ”Ratio”.

Program Basis System A2 DF Both HF Ratio
lsdalton DZ Benzene 3 0 4 4 1.0

Naphthalene 10 1 10 24 2.4
C20 13 2 15 46 3.1

TZ Benzene 9 1 10 62 6.2
Naphthalene 25 2 27 334 12.4
C20 28 5 33 507 15.4

london DZ Benzene 5 38 44 143 3.3
Naphthalene 28 153 182 705 3.9
C20 68 727 795 1617 2.0

TZ Benzene 6 152 159 2576 16.2
Naphthalene 30 579 609 11594 19.0
C20 70 2328 2398 28892 12.1

2.4 Paramagnetic to diamagnetic transition of C20

C20 is a system with 20 carbon atoms organized in a ring. It is a paramagnetic
system, which means the energy of the system decreases with an increasing
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magnetic field. However, the paramagnetic behaviour is only present up to a
critical value of magnetic field. For magnetic fields stronger than this critical
value, the energy will start to increase with increasing magnetic field and
the system is diamagnetic. This critical value will be given by a minimum
in energy as a function of magnetic field. It is interesting to see if this limit
changes by introducing DF or ADMM. Figure 3 shows energy as a function
of magnetic field calculated with plain Hartree-Fock, DF, ADMM and both
ADMM and DF. The critical value for paramagnetism appears at the same
magnetic field strength for all four cases.
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Figure 3: Energy as a function of magnetic field, showing the paramagnetic be-
haviour of C20. Zero set to energy at zero field for each curve (E(B)− E(0)).

2.5 Dissociation of magnetically bound molecules

In strong magnetic fields, a new bonding mechanism has been predicted
[3], by which anti-bonding orbitals are stabilized relative to the bonding
orbitals. With this mechanism, molecules with bonds of zero bond order can
be stable. He2, He3 and larger clusters have been predicted [26], where He3
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is an equilateral triangle. Figure 4 shows the structure for clusters of helium
where the triangle structure of He3 seems to be repeated.

Figure 4: Structures for clusters of helium. Reproduced from Ref [26] with permis-
sion of The Royal Society of Chemistry.

To test the performance of the ADMMX approximation, dissociation
curves for He2 and He3 have been calculated at B = 1 B0. For He3, all
bonds have been kept at the same relative length in the dissociation. Figures
5 and 6 show the dissociation curves and the error for the ADMM calcula-
tions, respectively. The basis functions for He with 3-21G* have been created
by adding the polarization functions from 6-31G* to the 3-21G basis. For He
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this means an additional p-function compared to 3-21G. ADMMX yields a
minimum closer to plain Hartree-Fock with 3-21G* compared to 3-21G as an
auxiliary basis, though the difference is not large. For the total energy, figure
6 shows that with 3-21G* the error is smaller and more constant along the
curve compared to 3-21G. This indicates that polarization in the auxiliary
basis for ADMMX is important to keep the error constant with respect to
nuclear distances as well as for magnetic field. The dissociation curves are
another example of the importance of including polarization in the auxiliary
basis for ADMMX with strong fields. The dissociation curve named Hartree
is a Hartree-Fock calculation with no exchange contribution. This curve has
basically the same minimum as for the plain Hartree-Fock calculation, which
means exchange does not move the minimum of the curve, and that this is
handled by ADMMX.
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Figure 5: Dissociation curve at B = 1.0 B0, showing the perpendicular param-
agnetic bonding of He2 and He3. Zero set to energy minimum for each curve
(E(r)− E(rmin)).
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Figure 6: Error compared to plain Hartree-Fock for ADMMX in dissociation curve
at B = 1.0 B0, with a polarized and a non-polarized basis set.
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3 Discussion

3.1 Conclusion

In this project, DF and ADMMX have been implemented and tested in the
london code with plane-wave hybrid basis sets. The implementations have
been tested for 6 test systems with cc-pVDZ and cc-pVTZ as AO basis sets.
The calculations have been performed at different magnetic field strengths
to investigate how the error varies with magnetic field.

For DF, the basis sets df-def2 and cc-pVTZdenfit have been tested; these
are basis sets developed for DF in field-free calculations. With these auxiliary
basis sets, the DF error is below 1 mEh for all systems and magnetic field
strengths investigated. The phase factors in the London orbitals do not seem
to pose any major problems.

The 3-21G and 3-21G* basis sets have been investigated as auxiliary basis
sets for ADMMX. Since ADMMX does not have the DFT correction, the
accuracy of the method is poorer than for other implementations of ADMM.
However, with a polarized auxiliary basis for calculations involving strong
fields, the error remains fairly constant with magnetic field. With a constant
error, it is possible to describe properties depending on derivatives. ADMMX
has been found to give an accurate description of phenomena such as the
paramagnetic diamagnetic transition and the dissociation of magnetically
bound molecules. Polarization in the auxiliary basis is important to make
the errors fairly constant, with respect to both magnetic field and nuclear
distances.

The speed-up for the systems investigated when using both ADMMX and
DF range from a factor two to a factor four for cc-pVDZ calculations and
from a factor 12 to a factor 19 for cc-pVTZ calculations.

3.2 Further work

ADMMX has been able to yield chemically relevant information. The in-
vestigation of paramagnetic to diamagnetic transitions was described well
for C20. With the speed-up from DF and ADMMX, larger systems can be
investigated. Since the response of a molecule to magnetic fields is propor-
tional to the flux of the magnetic field, larger systems will show effects of
magnetic fields at lower field strengths. ADMMX can therefore be used to
investigate systems that show the paramagnetic to diamagnetic transition
at lower magnetic fields. This gets us one step closer to finding molecules
that show this transition in experimentally attainable fields. For the he-
lium molecules, the dissociation curves for these perpendicular paramagnetic
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bound molecules was well described by the current implementation. This is
another phenomenon that can be investigated further for larger molecules.
It should be noted that the Hartree dissociation curve showed the same min-
imum as the plain Hartree-Fock and ADMMX calculations. This means that
exchange does not move the minimum of the dissociation curve. It should
be explored how ADMMX performs when exchange moves the minimum of
the dissociation curve.

Auxiliary basis sets have been developed for DF, but this is not the case
for ADMM. It can be expected that the errors in the ADMM method can be
reduced by developing auxiliary basis sets specifically for this method. For
calculations in strong magnetic fields, it seems a polarized version would be
needed.

To reduce the errors of the ADMMX method it is natural to include a
DFT correction. How a polarized auxiliary basis will effect the DFT correc-
tion should be investigated. A polarized auxiliary basis leads to a fairly con-
stant error, with respect to magnetic field, between Hartree-Fock exchange
in AO and auxiliary basis. To get accurate results the same has to be the
case for the DFT exchange functional.

A different approach to reduce the computation time of exchange is the
RI-K approximation. The speed-up of RI for exchange is given by the ratio
between the number of occupied orbitals and the total number of orbitals.
For small molecules with large basis sets, this ratio is the highest. However,
in the RI-K approximation, the auxiliary basis represents products of basis
functions. With London orbitals, the products could be complex. This adds
a challenge to implementing RI-K for London orbitals.

The current implementations of ADMM and DF reduce the computation
time for two electron contributions in Hartree-Fock calculations in the lon-
don code. Speed has not been prioritized in the development of the code so
far, it can therefore be expected that substantial reductions in computation
time can be achieved in other parts of the code as well. At present the code
is not parallelised, this can also be considered to speed up calculations.
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4 Appendix

4.1 Geometries

LiH
Li 0.000 -2.258 0.000
H 0.000 2.258 0.000

NaCl
Na 0.000 -2.665 0.000
Cl 0.000 2.665 0.000

N2O
N 0.000 0.000 0.000
N 2.241 0.000 0.000
O -2.128 0.000 0.000
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Benzene
C 0.000 2.639 0.000
C 2.285 1.319 0.000
C 2.285 -1.319 0.000
C 0.000 -2.639 0.000
C -2.285 -1.319 0.000
C -2.285 1.319 0.000
H 0.000 4.671 0.000
H 4.045 2.336 0.000
H 4.045 -2.336 0.000
H 0.000 -4.671 0.000
H -4.045 -2.336 0.000
H -4.045 2.336 0.000

Naphthalene
C 2.239 -2.112 0.000
C 1.904 -4.762 0.000
C -0.451 -5.764 0.000
C 0.207 -0.556 0.000
C -7.131 -3.622 0.000
C -6.796 -0.971 0.000
C -5.099 -5.178 0.000
C -2.612 -4.184 0.000
C -2.280 -1.550 0.000
C -4.441 0.031 0.000
H 0.458 1.458 0.000
H 4.115 -1.341 0.000
H 3.530 -5.975 0.000
H -0.708 -7.777 0.000
H -5.350 -7.191 0.000
H -9.007 -4.392 0.000
H -8.422 0.242 0.000
H -4.184 2.044 0.000
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C20

C 6.3020277 -4.5786545 0.0
C 7.3873441 -2.4914432 0.0
C -4.5119870 6.3578001 0.0
C 7.7898030 0.0000715 0.0
C -2.4071314 7.4084887 0.0
C 7.4410660 2.3265989 0.0
C 6.3021990 4.5788452 0.0
C 0.0867960 7.7957112 0.0
C 4.6524803 6.2559836 0.0
C 2.4072518 7.4086186 0.0
C -6.3020277 4.5786545 0.0
C -7.3873441 2.4914432 0.0
C 4.5119870 -6.3578001 0.0
C -7.7898030 -0.0000715 0.0
C 2.4071314 -7.4084887 0.0
C -7.4410660 -2.3265989 0.0
C -6.3021990 -4.5788452 0.0
C -0.0867960 -7.7957112 0.0
C -4.6524803 -6.2559836 0.0
C -2.4072518 -7.4086186 0.0
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