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Abstract: Thermophiles are extremophiles that grow optimally at temperatures > 45°C. In order 23 

to survive and maintain function of their biological molecules, they have a suite of characteristics 24 

not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, 25 

thermophiles have mechanisms for maintaining their membranes, nucleic acids and other cellular 26 

structures. At the protein level, each of their proteins remains stable and retains activity at 27 

temperatures that would denature their mesophilic homologs. Conversely, cellular structures and 28 

proteins from thermophiles may not function optimally at moderate temperatures. These 29 

differences between thermophiles and mesophiles presumably present a barrier to evolutionary 30 

transitioning between the two lifestyles. Therefore, studying closely related thermophiles and 31 

mesophiles can help us determine how such lifestyle transitions may happen. The bacterial 32 

phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles and organisms with 33 

temperature ranges wide enough to span both thermophilic and mesophilic temperatures. 34 

Genomic, proteomic and physiological differences noted between other bacterial thermophiles 35 

and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal 36 

group of organisms for understanding both the response to fluctuating temperature as well as 37 

long-term evolutionary adaptation to a different growth temperature range. 38 

 39 
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Introduction 42 

Extremophiles are organisms that thrive under extreme environmental conditions unsuitable for 43 

survival of most other organisms. As such, they are of great interest for delineating the limits of 44 

conditions that permit life’s existence, a key insight needed to advance efforts in the search for 45 

life on Earth and other planets (Pikuta et al. 2007; Rothschild and Mancinelli 2001). Additionally, 46 

due to their intrinsically “extreme” nature, these organisms are also desirable sources of enzymes 47 

and other biomolecules that function under conditions that render other organisms and their 48 

enzymes inactive. Such biomolecules may have a wide range of biotechnological and industrial 49 

applications from clean energy to bioremediation and carbon sequestration. 50 

 When examining temperature as a parameter that can either permit or exclude life, there 51 

are mesophiles, the organisms that grow optimally at moderate temperatures, and two types of 52 

extremophiles: psychrophiles, which grow optimally at temperatures below 15°C, and 53 

thermophiles, which grow optimally at temperatures above 45°C (Kimura et al. 2013). Within 54 

thermophiles, organisms growing optimally at > 80°C are commonly referred to as 55 

hyperthermophiles. Thermophiles are of particular interest due to their ability to withstand the 56 

denaturing effect of higher temperatures on biological molecules such as proteins and DNA (Li et 57 

al. 2005).  58 

 The phylogenetic position of the hyperthermophile-containing bacterial lineages 59 

Thermotogae, Thermodesulfobacteria and Aquificae at, or close to, the base of the 16S rRNA tree 60 

of life (Fig. 1), has been used as support for the hypothesis that the ancestor of the bacterial 61 

domain was a hyperthermophile (Achenbach-Richter et al. 1987). Similarly, thermophilic 62 

Archaea are also found at the base of the Archaeal domain (Fig. 1). Together with the proposed 63 

high temperature conditions of early Earth this led to the hypothesis that the last universal 64 
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common ancestor (LUCA) was a hyperthermophile (Pace 1991). A (hyper)thermophilic LUCA is 65 

also supported by experimental evidence from resurrection of ancestral nucleoside diphosphate 66 

kinases and characterizing their properties (Akanuma et al. 2013). Other lines of evidence, 67 

however, suggest that the LUCA may have been either a mesophile or a thermophile growing 68 

optimally below 80°C (Boussau et al. 2008; Brochier-Armanet and Forterre 2006). Whether the 69 

LUCA lived at the time of life's origin or much later remains debatable as well (Zhaxybayeva and 70 

Gogarten 2004).  71 

Regardless of the optimal growth temperature of the LUCA, the ancestors of present day 72 

bacterial and archaeal lineages have had to modify their cellular structures and protein 73 

compositions to transition between mesophilic and thermophilic lifestyles (Boussau et al. 2008). 74 

Given the distribution of mesophiles and thermophiles on the Tree of Life (Fig. 1), we infer that 75 

such transitions likely happened independently multiple times. This same inference has been 76 

made based on multivariate analyses of the amino acid compositions of 279 prokaryotes (Puigbò 77 

et al. 2008) and from the different mechanisms of DNA supercoiling and the phylogeny of the 78 

involved genes (López-García 1999). This conjecture is also supported by reconstruction and 79 

synthesis of ancestral versions of enzymes and examining the optimal temperature at which they 80 

function. For example, examination of LeuB enzymes (3-isopropylmalate dehydrogenase) in the 81 

Bacillus genus suggests multiple transitions between thermophilic and mesophilic temperature 82 

optima when going forward in evolutionary time from the Bacillus ancestor (Hobbs et al. 2012). 83 

Therefore, thermophily has been lost and gained throughout the evolutionary history of the genus 84 

Bacillus. Similarly, analysis of extant and reconstructed ancestral myo-inositol-3-phosphate 85 

synthase enzymes from Thermotoga and Thermococcales suggests higher optimal growth 86 

temperatures of the ancestors (Butzin et al. 2013), indicating fluctuations of the tolerated 87 



5 
 

temperature ranges of these organisms throughout their evolutionary history. Together these 88 

studies imply that temperature adaptations may not be too difficult, and the growth temperature 89 

range may change rapidly and frequently in many lineages.  90 

Temperature adaptation can be defined either as a response of an individual cell to 91 

changes in temperature, or as an evolutionary adaptation of an organismal lineage (such as 92 

‘species’) to growth within a certain temperature range. To distinguish between the two, we will 93 

refer to temperature response for the former and temperature adaptation for the latter. These two 94 

phenomena are related, as selection acting on temperature responses may eventually lead to 95 

temperature adaptations. In this review we focus on organismal responses and lineage adaptations 96 

to moderate and high temperatures. For a review of adaptation to very low growth temperatures 97 

see Siddiqui et al. (2013). Specifically, we will discuss properties of thermophiles, and how these 98 

properties may relate to a transition between thermophily and mesophily, with a particular 99 

emphasis on the bacterial phylum Thermotogae.  100 

 101 

The Thermotogae 102 

Bacteria belonging to the Thermotogae phylum were first isolated by Karl Stetter and colleagues 103 

in 1986 from geothermally heated sea floors (Huber et al. 1986). Their name derives from the 104 

unique outer sheath-like structure that balloons over each end of the cell, known as the “toga” 105 

(Fig. 2) (Huber et al. 1986). There are 12 described genera in this phylum, most of which are 106 

thermophiles (Fig. 3). In the accepted taxonomy, these genera are all grouped in a single order, 107 

Thermotogales, and one family, Thermotogaceae. However, a reclassification of these bacteria 108 

into separate orders is overdue, and a division into three orders and four families has been 109 
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recently proposed (Bhandari and Gupta (2014); Fig. 3). While the new classification is based on 110 

conserved indels, it is consistent with the 16S rRNA phylogeny (Fig. 3).   111 

Thermotogae are anaerobes and organotrophs, capable of growing on a wide range of 112 

complex substrates (Conners et al. 2006). They are found in hot ecosystems all over the world 113 

including thermal springs, hydrothermal vents, and petroleum reservoirs (Huber and Hannig 114 

2006; Ollivier and Cayol 2005), with some members growing at temperatures up to 90°C. 115 

Although it was long thought that the Thermotogae only harbored thermophiles and 116 

hyperthermophiles (11 of 12 genera are entirely composed of thermophiles or 117 

hyperthermophiles) (Fig. 3), mesophilic Thermotogae from the genus Mesotoga have recently 118 

been detected and isolated from cool hydrocarbon-impacted sites such as oil reservoirs and 119 

polluted sediments (Ben Hania et al. 2011; Ben Hania et al. 2013; Nesbø et al. 2006b; Nesbø et 120 

al. 2010; Nesbø et al. 2012). Interestingly, the closest relative of Mesotoga, Kosmotoga olearia, 121 

has an unusually wide growth temperature range, which may have been important in Mesotoga’s 122 

adaptation to low temperature (DiPippo et al. 2009; Nesbø et al. 2012). 123 

As of May 2015, over 80 completed and ongoing Thermotogae genome projects 124 

comprise 10 of the 12 described Thermotogae genera, with no genome projects for Geotoga nor 125 

Oceanotoga (Benson et al. 2014; Reddy et al. 2014). The maximum divergence in the 16S rRNA 126 

genes of these cultivated Thermotogae is ~25%, similar to what is observed for other bacterial 127 

phyla (Konstantinidis and Tiedje 2005). For protein coding genes pairwise average amino acid 128 

identity (AAI; Konstantinidis and Tiedje 2005) between genera ranges from 45 to 69% (average 129 

49%). Phylogenetic analysis of environmental 16S rRNA gene sequences shows several novel 130 

Thermotogae lineages without any cultivated members, and based on the nucleotide identity they 131 

would be classified as new genera (Nesbø et al. 2010). Thus, as with most microbial lineages, 132 
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there is a large unknown diversity of Thermotogae. At least four of these new lineages have only 133 

been detected in low temperature environments (as low as 9.5°C), suggesting that Thermotogae 134 

might be common in mesothermic environments. Interestingly, on the phylogenetic tree these 135 

likely mesophilic lineages fall within multiple thermophilic clades (Nesbø et al. 2010), 136 

suggesting several independent adaptations to lower temperatures. 137 

With mesophilic Thermotogae only recently discovered, the functional characterization of 138 

this phylum has focused on thermophiles, mainly the hyperthermophilic organisms Thermotoga 139 

maritima and Thermotoga neapolitana. Protein crystal structures have also been experimentally 140 

determined for a large portion of the T. maritima proteome (DiDonato et al. 2004; Lesley et al. 141 

2002), and the protein structures of its central metabolic networks were modeled by Zhang et al. 142 

(2009). Complimented with models of high temperature hydrogen and sulfur metabolism 143 

(Cappelletti et al. 2014; Schut et al. 2012), this wealth of functional information makes the 144 

Thermotogae a promising microbial lineage for industrial and biotechnological applications. For 145 

example, most Thermotogae produce hydrogen that may be harvested (e.g., Nguyen et al. (2008) 146 

and Maru et al. (2012)). The hydrogen production of T. maritima can be boosted via metabolic 147 

engineering, as was demonstrated by an in silico re-design of its metabolism (Nogales et al. 2012). 148 

Additionally, while the degradation of sugars by many Thermotogae results in the production of 149 

CO2 and acetate, T. neapolitana has been shown to convert these by-products to lactic acid when 150 

grown in a CO2 atmosphere, a process suggested to have potential in carbon capture (D'Ippolito et 151 

al. 2014).  152 

Carbohydrate utilization by T. maritima has been examined by studying the substrate 153 

specificities and affinities of its carbohydrate transporters (Boucher and Noll 2011; Cuneo et al. 154 

2009; Ghimire-Rijal et al. 2014; Nanavati et al. 2005; Nanavati et al. 2006) and their 155 
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transcriptional regulation in response to growth on different saccharides (Frock et al. 2012). 156 

Information about substrate specificities, enzymatic activities and catalytic mechanisms of many 157 

of T. maritima’s glycoside hydrolases are also available (Arti et al. 2012; Comfort et al. 2007; 158 

Kleine and Liebl 2006), which has been used, for instance, to engineer an alpha-galactosidase 159 

from T. maritima into an efficient alpha-galactosynthase (Cobucci-Ponzano et al. 2011). The 160 

transcriptional regulation of glycoside hydrolases and other carbohydrate metabolism-related 161 

genes in response to growth on various carbohydrates highlights the differences in carbohydrate 162 

utilization, even between closely related Thermotogae lineages (Chhabra et al. 2002; Chhabra et 163 

al. 2003; Frock et al. 2012). Moreover, interconnections exist between sugar regulons in T. 164 

maritima’s carbohydrate utilization network, suggesting coordinated regulatory responses to 165 

particular types of complex carbohydrates (Rodionov et al. 2013). This rich knowledge base will 166 

be very useful in comparative studies of thermophilic and mesophilic Thermotogae lineages and, 167 

ultimately, will lead to understanding processes leading to shifts in an organism’s growth 168 

temperature range. 169 

 170 

General cellular adaptations to thermophily 171 

Regardless of whether cells are responding to transient temperature increases within their growth 172 

range or evolving to an alternate growth range, changes in temperature require major 173 

modifications across the cell to optimize cell function and growth. The following sections discuss 174 

some of these temperature responses and adaptations in microbial cells. 175 

 176 

The effect of temperature on cellular membranes: maintaining a fluid envelope 177 
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The cell membrane is critical to cell function since it maintains and separates the interior cell 178 

environment from the exterior environment. In order to serve its function, a lipid membrane must 179 

be impermeable to most solutes and maintain a liquid crystalline phase, even under stress (de 180 

Mendoza 2014). As the temperature increases, membrane integrity and impermeability become 181 

compromised, which eventually results in cell death (Chang 1994). Therefore, thermophiles must 182 

maintain their membranes under conditions that could inactivate those of mesophiles. Bacteria 183 

and Archaea handle this challenge differently due to the dissimilar structures of their membrane 184 

lipids (reviewed in detail by Oger and Cario (2013), Koga and Morii (2005), Koga (2012), and 185 

Mansilla et al. (2004)). We will only focus on bacterial lipids here. For a review on archaeal lipids 186 

see Oger and Cario (2013). 187 

Bacterial polar membrane lipids consist mainly of straight-chain fatty acids that are bound 188 

to the polar head group predominantly by ester linkages (Koga and Morii 2005). Bacteria respond 189 

to various temperatures by altering the composition (length, degree of branching and degree of 190 

unsaturation) of their fatty acid chains to maintain membrane fluidity (Mansilla et al. 2004; Zhang 191 

and Rock 2008). The types of fatty acids bacteria are able to produce will therefore influence the 192 

temperature range within which they can grow. For example, hyperthermophilic Thermotogae 193 

have unusual membrane-spanning diabolic fatty acids in their membrane, which are thought to be 194 

an adaptation to high temperature growth (Carballeira et al. 1997; Damsté et al. 2007). In 195 

agreement with this hypothesis, these diabolic fatty acids are not found in the membranes of the 196 

mesophilic Mesotoga prima (Nesbø et al. 2012). Moreover, M. prima (grown at 35°C) contained 197 

branched, mono-unsaturated and saturated fatty acids, while K. olearia (grown at 55°C) contained 198 

only saturated fatty acids (Nesbø et al. 2012). Fatty acid composition is also part of the immediate 199 

cold-shock response with genes involved in production of, for instance, branched fatty-acids 200 
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being up-regulated in the thermophile Thermoanaerobacter tengcongensis when grown at sub-201 

optimal temperatures (Liu et al. 2014). Increase of branched fatty acids is a common response to 202 

lower temperatures (Suutari and Laakso 1994), and in Listeria monocytogenes this is due to 203 

temperature-dependent substrate selectivity of FabH, the enzyme responsible for the first 204 

condensation reaction in fatty acid biosynthesis (Singh et al. 2009).  Interestingly, in Bacillus a 205 

transmembrane two-component response regulator, which controls the desaturase that introduces 206 

double bonds in preexisting fatty acids, senses changes in membrane fluidity and not the actual 207 

temperature changes (de Mendoza 2014).  208 

 In addition to the lipid structure of cell membranes, integral membrane proteins affect the 209 

temperature tolerance of an organism (Thompkins et al. 2008). Therefore, while the lipid 210 

composition of the membrane is crucial for its function, integral membrane proteins may also 211 

play a significant role, particularly with respect to the temperature limit of an organism’s growth 212 

range. For example, mutations of integral membrane proteins of the DedA family cause 213 

temperature sensitivity and cell division defects in Escherichia coli (Thompkins et al. 2008). 214 

Interestingly, proteins from the DedA family have been shown to be essential in at least two 215 

bacterial species (E. coli and Borrelia burgdorferi), but their homologs are not detected in 216 

several thermophilic and hyperthermophilic Thermotogae genomes (Doerrler et al. 2013). This 217 

suggests that the function provided by DedA is either not needed by these organisms, or is being 218 

provided by analogous integral membrane proteins, or that their DedA homologs are too 219 

divergent to be detected by sequence similarity searches.  220 

 221 

Nucleic acids: a challenge to keep the strands together 222 
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High temperatures denature double stranded DNA and secondary structures of RNA. This 223 

presents a problem for thermophiles, and for hyperthermophiles in particular. These organisms 224 

must maintain their chromosomes in an orderly state for both efficient packaging as well as 225 

coordinated gene expression. Therefore, to survive the damaging effects of high temperature 226 

thermophiles need to either continuously repair their damaged DNA or protect it from damage in 227 

the first place. For example, the archaeon Pyrococcus abyssi has a highly efficient DNA repair 228 

system that continuously repairs temperature-induced DNA damage (Jolivet et al. 2003). Very 229 

high levels of homologous recombination are observed in hyperthermophilic Thermotoga spp. 230 

where the ratio of nucleotide changes introduced by recombination relative to point mutation 231 

(r/m) is in the range 24-100 for genomes originating from geographically distant sites (Nesbø et 232 

al. 2006a; Nesbø et al. 2014). This in the upper range of values reported in a comparison of r/m 233 

across a large sample of mostly mesophilic Bacteria and Archaea (0.02 – 64), where values 234 

above 10 were interpreted as very high (Vos and Didelot 2009). The high level of recombination 235 

may be explained by the need for DNA repair in thermophiles (Johnston et al. 2014). This 236 

hypothesis is supported by observations of high levels of recombination and repair in other 237 

hyperthermophilic microorganisms, such as Pyrococcus furiosus (DiRuggiero et al. 1997), 238 

Sulfolobus islandicus (Whitaker et al. 2005), and Persephonella (Mino et al. 2013). 239 

Protection of DNA is known to occur via multiple unrelated mechanisms. Primarily, 240 

thermophiles safeguard their DNA with thermostable proteins analogous to eukaryotic histones. 241 

For example, in the archaeon Thermococcus kodakaraensis HpkA and HpkB dramatically 242 

increase the melting temperature of a given DNA sequence upon binding, with HpkB being able 243 

to raise the melting temperature of poly(dA-dT) DNA by > 20°C (Higashibata et al. 1999), 244 

suggesting that these proteins play a major role in the stabilization of Thermococcus 245 
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kodakaraensis chromosomes. In the bacterium T. maritima the histone-like protein HU stabilizes 246 

and protects the DNA (Mukherjee et al. 2008).  247 

Thermophiles can also use polyamine compounds to stabilize their DNA and RNA, as 248 

well as many other cellular components. Multivalent polyamine compounds such as putrescine, 249 

spermidine, and spermine, or their acetylated forms, compact histone-bound DNA in 250 

Thermococcus kodakaraensis, stabilizing it at temperatures as high as 90°C (Higashibata et al. 251 

2000). In Thermotoga species the polyamines caldopentamine and caldohexamine increase in 252 

concentration with increased temperature, suggesting a role in thermal response and thermal 253 

adaptation (Zellner and Kneifel 1993). Indeed caldopentamine and caldohexamine, as well as five 254 

other long linear polyamines found in Thermus thermophilus, have been shown to stabilize 255 

double-stranded DNA at high temperature, with a greater stabilizing effect by polyamines with a 256 

larger number of amino nitrogen atoms (Terui et al. 2005).  257 

Thirdly, unique RNA modifications can confer thermostability in thermophiles 258 

(McCloskey et al. 2001). For example, modifications from adenosine to 2’-O-methyladenosine or 259 

from guanosine to N2,2’-O-dimethylguanosine in the tRNAs are often growth temperature-260 

specific, even among closely related lineages (McCloskey et al. 2001).  261 

Lastly, thermal adaptation may be achieved via reverse gyrase-mediated DNA 262 

supercoiling. Reverse gyrase is a protein found almost exclusively in hyperthermophiles and, 263 

importantly, it is a gene carried by all known hyperthermophiles (Brochier-Armanet and Forterre 264 

2006; Forterre 2002; Lulchev and Klostermeier 2014). While deletion of the reverse gyrase gene 265 

from Thermococcus kodakaraensis results in slower growth at high temperatures (90°C), it does 266 

not abolish its growth, suggesting that this enzyme is not essential for hyperthermophilic growth 267 

as was once thought (Atomi et al. 2004). However, since the T. kodakaraensis mutant lacking 268 
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reverse gyrase grew poorly at 90°C, and unlike the wild-type strain, could not grow above 90°C 269 

(Atomi et al. 2004), this enzyme is still considered to be a critical adaptation for optimal growth 270 

at high temperatures (Brochier-Armanet and Forterre 2006). Although reverse gyrase catalyzes 271 

ATP-dependent positive supercoiling of DNA in vitro, its function in vivo remains unknown. The 272 

increased heat protection provided by this enzyme may be linked to a role in the DNA damage 273 

response, possibly through recruitment to lesions (Lulchev and Klostermeier 2014; Perugino et al. 274 

2009). Interestingly, cultivated hyperthermophilic species from both the Thermotogae and the 275 

Aquificae have acquired their reverse gyrase genes from Archaea by lateral gene transfer (LGT), 276 

suggesting that hyperthermophily may have been acquired by Bacteria from Archaea (Brochier-277 

Armanet and Forterre 2006; Forterre et al. 2000). 278 

While some of these adaptations for nucleic acid stabilization have only been found in 279 

thermophiles (e.g., reverse gyrase (Forterre 2002), certain RNA modifications (McCloskey et al. 280 

2001) and thermostable histones (Higashibata et al. 1999)), others are found in mesophiles as well. 281 

For instance, the same polyamines found in Thermotoga are also found in mesophilic microalgae 282 

(Nishibori et al. 2009). Hence, transition between thermophily and mesophily may only require a 283 

re-purposing of certain cellular constituents, rather than removing or acquiring them.  284 

In addition to cellular components interacting with nucleic acids for stabilization, the 285 

composition of some nucleic acids appears adapted to the thermophilic lifestyle of the host 286 

organism. The extra hydrogen bond in G:C nucleotide pairs was long thought to play a part in 287 

optimal growth temperature. While genome-wide G+C content does not correlate with optimal 288 

growth temperature (Galtier and Lobry 1997; Hurst and Merchant 2001; Zeldovich et al. 2007), 289 

the G+C content of some structural RNA encoding genes does. For example, the G+C content of 290 

secondary structures of rRNA and tRNA molecules, specifically in the stem structures, increases 291 
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with optimal growth temperature (Galtier and Lobry 1997; Kimura et al. 2013; Zhaxybayeva et al. 292 

2009). As a result, the GC content variation of the 16S rRNA gene can be used as a proxy for 293 

studying temperature adaptation within the Thermotogae. For example, the temperature optimum 294 

for uncultured members of the phylum was predicted by establishing a correlation between the 295 

16S rRNA gene distances and optimal growth temperature of 33 Thermotogae isolates (Dahle et 296 

al. 2011). Additionally, inference of the ancestral states of the 16S rRNA gene that gave rise to 30 297 

Thermotogae isolates allowed Green et al. (2013) to hypothesize that the thermotolerant 298 

Thermotogae lineages are under directional selection and that transition from high to low optimal 299 

growth temperature is easier to achieve.  300 

 301 

Compatible solutes: the power of redundancy  302 

Compatible solutes are organic compounds that are accumulated by cells under stressful 303 

conditions such as osmotic stress and heat stress (Santos et al. 2011). These compounds, 304 

particularly polyamines, are known to stabilize nucleic acids in thermophilic cells (see above). 305 

Moreover, in the bacterium Calderobacterium hydrogenophilum polyamine compounds stabilize 306 

the 70S initiation complex of ribosomes (Mikulik and Anderova 1994). Many temperature studies 307 

in the Thermotogae have focused on the accumulation of these organic compounds and 308 

polyamines and the elucidation of their biosynthetic pathways in T. maritima and the more 309 

moderate thermophile Petrotoga miotherma (Jorge et al. 2007; Oshima et al. 2011; Rodionova et 310 

al. 2013; Rodrigues et al. 2009; Zellner and Kneifel 1993). Several compatible solutes have so far 311 

only been found in thermophiles including di-myo-inositol phosphate, mannosyl-di-myo-inositol 312 

phosphate, mannosylglyceramide, and diglycerol phosphate (Borges et al. 2010; Gonçalves et al. 313 

2012) and novel thermophilic solutes continue to be identified (Jorge et al. 2007; Rodrigues et al. 314 
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2009). However, while these compounds are thermophile-specific and may represent thermophile-315 

specific adaptations, they are not the only compatible solutes used to deal with heat stress. When 316 

the ability to synthesize di-myo-inositol phosphate was removed from Thermococcus 317 

kodakarensis by deleting a key synthesis gene, the growth of this archaeon was unaffected, and 318 

aspartate accumulated as an alternative compatible solute (Borges et al. 2010). In the 319 

Thermotogae multiple solutes accumulate under stress conditions (Jorge et al. 2007; Rodrigues et 320 

al. 2009). This suggests that although the role compatible solutes play in thermal protection is not 321 

fully understood, there is functional redundancy among the solutes. 322 

 323 

Protein dynamics and turnover; assistance from chaperones and proteases 324 

Chaperones are large protein complexes that assist the proper folding and re-folding of proteins. 325 

The chaperonins represent an extensively studied subclass of chaperones with a stacked double-ring 326 

structure (Large et al. 2009). Distribution of the chaperone families varies across Bacteria and 327 

Archaea, and some chaperones are considered indispensable (Large et al. 2009). For example, some 328 

chaperonins help fold new polypeptides, as well as re-fold and rescue proteins that have been 329 

inactivated due to stress (Techtmann and Robb 2010). A major stressor that triggers chaperone-330 

mediated protein repair is heat shock, which has resulted in many chaperones being named heat 331 

shock proteins (HSP) (Large et al. 2009). By preventing inactivation and aggregation of proteins at 332 

high temperatures, this ubiquitous system is thought to be especially important in thermophiles, 333 

which employ chaperones in both unstressed and heat-stressed states (Pysz et al. 2004). Thus, while 334 

these proteins are part of high temperature response in mesophiles, their constitutive expression in 335 

thermophiles may be part of their temperature adaptation. For example, the predicted chaperone 336 

TM1083 in T. maritima is thought to stabilize the DNA gyrase enzyme at temperatures near optimal 337 
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growth (Canaves 2004). Moreover, the molecular chaperone trigger factor (TM0694) from T. 338 

maritima strongly binds model proteins and decreases their folding rate, while these activities are 339 

much weaker in the homologous trigger factor from the psychrophile Pseudoalteromonas 340 

haloplanktis, which instead shows increased prolyl isomerization (Godin-Roulling et al. 2014). 341 

However, it should be noted that chaperones, although always highly expressed in thermophiles, are 342 

part of their high temperature response as well. For instance, examination of the T. maritima 343 

proteome at four temperatures spanning its growth range revealed higher relative abundance of 344 

chaperones at supra-optimal temperatures (Wang et al. 2012). 345 

Proteases are also part of the heat shock response in mesophilic organisms (Richter et al. 346 

2010). A key distinction between well-studied bacterial mesophiles and the hyperthermophile T. 347 

maritima is the lack of regulation in T. maritima of most of its proteases in response to 348 

temperature stress (Conners et al. 2006). This may be explained by an absence of major 349 

regulators of the mesophilic proteolytic response (i.e., rpoH or ctsR homologs) in the T. maritima 350 

genome (Conners et al. 2006; Pysz et al. 2004). Perhaps this bacterium gains a survival 351 

advantage from constitutive expression of most proteases. A similarity search revealed an 352 

absence of detectable rpoH and ctsR homologs in 38 Thermotogae, including the thermophilic K. 353 

olearia and the mesophilic M. prima, suggesting that any regulation of protease expression in the 354 

Thermotogae involves different genes than those used by other Bacteria and Archaea. 355 

 356 

Thermal adaptation at the protein level 357 

Although chaperones aid in proper folding and maintenance of proteins under high temperature 358 

conditions, proteins from thermophilic organisms are themselves adapted to high temperature. 359 

This adaptation is required to maintain activity at temperatures that would denature mesophilic 360 
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homologs and is found at all levels of protein structure, from primary through quaternary. Protein 361 

thermostability is also not uniform across the proteome and depends on its functional role:  362 

proteins either having catalytic activity or regulating other catalytic proteins appear to be under 363 

greater selection to be temperature adapted than proteins involved in, for example, core 364 

transcriptional or translational processes (Gu and Hilser 2009). 365 

While there are many examples of specific thermostabilizing characteristics and 366 

interactions at each of the four levels of globular protein structure (reviewed by Imanaka (2011) 367 

and Li et al. (2005)), there is no universal property that confers thermostability. Rather, it is the 368 

combination of factors at all levels of structure that grants high temperature activity in globular 369 

proteins. Increased thermostability is often due to slight differences in sequence and structure, and 370 

thermophilic and mesophilic counterparts are typically very similar proteins (Taylor and Vaisman 371 

2010). Below we briefly overview known pathways to temperature adaptation in globular proteins. 372 

 Protein primary structure is the amino acid sequence of the polypeptide chain. Ultimately, 373 

the properties and sequence of the amino acids determine the final higher level structures of the 374 

protein. One characteristic associated with thermostable proteins is enrichment of amino acids that 375 

contribute to a strong hydrophobic core. Larger aliphatic amino acids with more branches are 376 

favored at positions that fill cavities, which may ultimately strengthen the protein through 377 

increased hydrophobic interactions (Clark et al. 2004). Taylor and Vaisman (2010), however, 378 

found that it is only a moderately good indicator of protein thermostability.  379 

Comparisons of amino acid composition of thermophilic and mesophilic proteins have 380 

revealed several trends at the global proteome level. The observed excess of charged (D,E,K,R) 381 

versus polar (N,Q,S,T) amino acids in soluble proteins from hyperthermophiles, known as the 382 

CvP bias (Cambillau and Claverie 2000; Gao and Wang 2012; Holder et al. 2013; Suhre and 383 
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Claverie 2003), may reflect larger importance of ionic interactions between charged amino acids 384 

over hydrogen-bond interactions for retaining protein structure as temperature increases 385 

(Cambillau and Claverie 2000). Additionally, a systematic evaluation of all possible subsets of 386 

amino acids revealed that the total fraction of the amino acids IVYWREL in a proteome most 387 

strongly correlates with optimal growth temperature (Zeldovich et al. 2007).  388 

The CvP and IVYWREL biases have been explored thoroughly in the Thermotogae where 389 

both indices show strong linear correlations with optimal growth temperature (Zhaxybayeva et al. 390 

2009). Specifically, the distribution of CvP values was unimodal for each of the Thermotogae 391 

proteomes, arguing against the hypothesis that thermophily is a recently acquired trait of the 392 

Thermotogae. Moreover, calculation of CvP values from estimated ancestral Thermotogae 393 

sequences suggested that the ancestral Thermotogae proteome belonged to organisms with an 394 

optimal growth temperature of ≈84.5°C, higher than that of any characterized extant Thermotogae 395 

bacterium (Zhaxybayeva et al. 2009). While the average CvP value for most of the thermophilic 396 

Thermotogae lineages was above 10.62, the mesophilic M. prima proteome has an average CvP 397 

value of 8.96 (Zhaxybayeva et al. 2012). Also this genome has a unimodal CvP distribution, 398 

suggesting it has maintained a mesophilic lifestyle for a long time. An exception to the trend is 399 

observed in the P. lettingae genome, which has an average CvP value of 8.42 (Zhaxybayeva et al. 400 

2009), but an optimal growth temperature of 65°C. However, P. lettingae-like 16S rRNA genes 401 

and genomic DNA have been recovered from environments with temperatures < 65°C (e.g., 40-402 

50°C, (Nesbø et al. 2010; Nobu et al. 2014)), suggesting that these bacteria often live at 403 

temperatures below the optimal growth temperature of the cultivated isolate. 404 

Protein secondary structure describes the local folding of polypeptide sequences. This 405 

includes regular structures like α-helices and β-sheets, or irregular structures like β-turns, coils 406 
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and loops. These are formed primarily by hydrogen bond interactions between the backbone and 407 

side chain elements of the amino acids. In addition to having secondary structures that facilitate 408 

tighter packing and rigidity at the tertiary level, thermophilic proteins tend to have secondary 409 

structures that are more stabilized than their mesophilic counterparts (Facchiano et al. 1998; Koga 410 

et al. 2008; Prakash and Jaiswal 2010). For example, thermostable proteins have been reported to 411 

have a larger fraction of their amino acid residues arranged in α-helices than mesophilic proteins 412 

do (Prakash and Jaiswal 2010).  413 

Protein tertiary structure is the arrangement of a folded polypeptide chain in three-414 

dimensional space. This is achieved by disulfide bridges, electrostatic interactions within the 415 

polypeptide chain, and hydrophobic interactions and hydrogen bonding within the chain as well as 416 

between the peptides and solvent. Thermophilic proteins tend to have conformations that are more 417 

rigid and more tightly packed, with reduced entropy of unfolding and conformational strain 418 

compared to their mesophilic counterparts (Li et al. 2005). The strongest contributors to 419 

thermostability are increased ion pairs on the protein surface combined with a more strongly 420 

hydrophobic interior (Taylor and Vaisman 2010). In agreement with this, additional salt bridges 421 

on the surface of the enzyme diguanylate cyclase from T. maritima accounted for its greater 422 

thermostability compared to the same enzyme found in the mesophiles Pseudomonas aeruginosa, 423 

Marinobacter aquaeolei and Geobacter sulfurreducens (Deepthi et al. 2014). Additionally, the 424 

glutamate dehydrogenase enzymes of the hyperthermophilic bacterium T. maritima and 425 

hyperthermophilic archaeon P. furiosus have smaller hydrophobic accessible surface area (ASA) 426 

and greater charged ASA than the glutamate dehydrogenase from the mesophilic bacterium 427 

Clostridium symbiosum (Knapp et al. 1997). Since few other structural differences were found 428 
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between the thermophilic and mesophilic enzymes, this tighter packing is thought to contribute to 429 

the thermal stability of the proteins.  430 

Protein quaternary structure is the arrangement of multiple folded polypeptide chains into 431 

a multimeric complex. In globular proteins this level of structure is formed and maintained by 432 

many of the same forces that contribute to the tertiary structure of a protein, but between 433 

polypeptide chains rather than within them. These forces include disulfide bridges, electrostatic 434 

interactions, hydrophobic interactions and hydrogen bonding. In thermostable proteins, greater 435 

numbers of these interactions, or stronger interactions over weaker ones, are favored (Li et al. 436 

2005). 437 

 One additional way of achieving greater protein stability is to increase the number of 438 

subunits. For example, the malate dehydrogenase (MDH) enzyme, which is usually a dimer in 439 

mesophiles, is a tetramer in the thermophilic bacterium Chloroflexus aurantiacus (Bjørk et al. 440 

2003). The additional dimer-dimer interface of the tetrameric MDH is hypothesized to provide 441 

thermal stability due to the higher number of inter-polypeptide interactions compared to the 442 

mesophilic dimers. To test this hypothesis, Bjørk et al. (2003) introduced a disulfide bridge that 443 

would strengthen dimer-dimer interaction further, and found that the new enzyme had a melting 444 

temperature 15°C higher than the wild-type enzyme. In addition, removing excess negative charge 445 

at the dimer-dimer interface by replacing a glutamate residue with either glutamine or lysine 446 

resulted in an increase of apparent melting temperature by ~ 24°C (Bjørk et al. 2004). 447 

  448 

Tolerating new temperatures: Is it possible to modify just a few proteins? 449 

As discussed above, adaptation to a high optimal growth temperature is achieved differently by 450 

Bacteria and Archaea, by one species than another, and even by one protein than another within 451 
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the same organism. Given that all of these factors combine in unique ways to permit growth 452 

within a specific temperature range, how could a shift in permissive temperature range be 453 

accomplished? While some of these strategies are universal to thermophiles and mesophiles, such 454 

as utilization of chaperones and compatible solutes, others, like shifting of membrane properties, 455 

would have to be radically altered to accommodate large changes in temperature range.  456 

Changing a few key proteins may have global stabilizing effects on the whole cell. For 457 

instance, some of the proteins whose stability appears most affected by thermal adaptation are 458 

involved in production of compatible solutes that stabilize other proteins (Gu and Hilser 2009). 459 

Such changes would reduce the need to modify the stability of all components of the proteome. It 460 

may also be possible to lower the maximal growth temperature of an organism through changes to 461 

a single protein (Endo et al. 2006). By replacing the chromosomal copy of groEL chaperonin in 462 

Bacillus subtilis 168 (growth range from 11 to 52°C) with a psychrophilic groEL from 463 

Pseudoalteromonas sp. PS1M3 (growth range from 4 to 30°C), Endo and colleagues noted a 2°C 464 

reduction in the maximal growth temperature of the newly constructed B. subtilis strain. Similarly, 465 

the heterologous expression of a small heat shock protein from Caenorhabditis elegans, enabled E. 466 

coli cells to grow at temperatures up to 50°C (and survive heat shock at 58°C for 1/2h) extending 467 

its growth range by 3.5°C (Ezemaduka et al. 2014). While these changes do not constitute true 468 

shifts in growth temperature range or changes to optimal growth temperature, these studies 469 

suggest that changes to a single key protein (involved both in temperature adaptation and 470 

response) could extend or narrow the temperature range at which an organism is able to grow by a 471 

few degrees. Accumulation of several such mutations could eventually lead to a more substantial 472 

shift in growth range. Some of these mutations may be advantageous at lower temperatures, while 473 

others may be loss-of-function mutations, where abilities to function at higher temperatures are 474 
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lost for proteins in individuals living in an environment with temperatures at the lower end of 475 

their original growth range. Under the latter scenario, change in the growth temperature range 476 

might not be a result of selection, but rather a product of random genetic drift or genetic 477 

hitchhiking with another, unrelated trait selected for in the new environment.  478 

 479 

Role of Lateral Gene Transfer in Temperature Adaptation: Acquisition of Already 480 

‘Adapted’ Genes 481 

Lateral gene transfer (LGT) is a major force in prokaryotic evolution, allowing rapid adaptation to 482 

changes in the environment by acquiring clusters of genes or single genes that confer a selective 483 

advantage (Boucher et al. 2003; Zhaxybayeva and Doolittle 2011) and LGT has been implicated 484 

in adaptation to extreme environments including high temperatures (see for example Omelchenko 485 

et al. (2005)). Genes encoding proteins linked to adaptation to higher or lower growth 486 

temperatures have been laterally exchanged (reviewed in Boucher et al. 2003). Reverse gyrase is 487 

a classic example of lateral transfer of a single gene that is thought to have been crucial for 488 

evolutionary adaptation to high temperatures by hyperthermophilic Bacteria (Brochier-Armanet 489 

and Forterre 2006; Forterre 2002). Phylogenetic analyses suggest two ancient acquisitions of this 490 

gene by bacterial lineages from Archaea, followed by secondary transfer events among Bacteria 491 

(Brochier-Armanet and Forterre 2006).  492 

 Similarly, the compatible solute di-myo-inositol phosphate is thought to be important for 493 

heat tolerance in thermophiles and hyperthermophiles (Borges et al. 2010). Two key genes 494 

involved in the synthesis of this compound (inositol-1-phosphate cytidylyltransferase and di-myo-495 

inositol phosphate phosphate synthase) are suggested to have been laterally transferred from an 496 

archaeal lineage to hyperthermophilic marine Thermotoga species, while in other lineages the two 497 
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genes are predicted to have fused before being exchanged among several bacterial and archaeal 498 

lineages (Gonçalves et al. 2012).  499 

Reverse gyrase and the myo-inositol pathway genes are just two examples of a large 500 

number of genes transferred into the Thermotogae. When the genome of T. maritima MSB8 was 501 

first sequenced (Nelson et al. 1999), 24% of its open reading frames (ORFs) showed greatest 502 

similarity to sequences from Archaea, suggesting that these genes have been acquired from these 503 

distantly related organisms that inhabit the same environment. Comparative genomic analyses of 504 

additional Thermotogae genomes have confirmed an influx of genes from Archaea (albeit the total 505 

number dropped to 10-11% of the ORFs, due to increased number of bacterial homologs in 506 

GenBank) and an even larger fraction of Firmicutes genes in these genomes (Mongodin et al. 507 

2005; Nesbø et al. 2009; Zhaxybayeva et al. 2009; Zhaxybayeva et al. 2012). Phylogenetic 508 

analysis of all the ORFs in the M. prima genome suggests this lineage has undergone extensive 509 

gene exchange with diverse mesophilic lineages, and that LGT has aided its transition from a 510 

thermophilic to a mesophilic lifestyle (Zhaxybayeva et al. 2012). Thus, as a major force that has 511 

shaped the genomes of the Thermotogae, LGT may have also been important for the acquisition 512 

and development of the temperature ranges of the various Thermotogae lineages. Most of the 513 

acquired genes in Thermotogae (including M. prima) are involved in carbohydrate metabolism 514 

(Mongodin et al. 2005; Nesbø et al. 2009; Zhaxybayeva et al. 2009; Zhaxybayeva et al. 2012). 515 

However, M. prima has additionally acquired genes involved in signal transduction mechanisms, 516 

secondary metabolite biosynthesis, and amino acid transport and metabolism (Zhaxybayeva et al. 517 

2012), suggesting the potential importance of genes from these functional categories for life at 518 

lower temperatures. 519 

 520 
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Transition to mesophily in Kosmotoga and Mesotoga 521 

The discovery of the mesophilic Thermotogae lineage (Mesotoga) raised the possibility that 522 

(hyper)thermophily was not ancestral to the phylum. However, as discussed above, the amino acid 523 

composition (CvP bias and IVYWREL amino acids frequency) of the reconstructed ancestral 524 

Thermotogae proteome suggests that the ancestral Thermotogae was a hyperthermophile 525 

(Zhaxybayeva et al. 2009), and that the transition to mesophily in the Thermotogae phylum is 526 

secondary. Moreover, ancestral sequence reconstruction of myo-inositol-3-phosphate synthase 527 

enzymes in the Thermotoga genus also suggests that the ancestor of this hyperthermophilic 528 

lineage grew optimally at temperatures higher than those of extant species (Butzin et al. 2013). 529 

The G+C content of ribosomal RNA, which correlates with optimal growth temperature, also 530 

suggests that the reconstructed 16S rRNA of the ancestor of all Thermotogae belonged to a 531 

thermophile (Green et al. 2013; Zhaxybayeva et al. 2009).  532 

 So far, the genus Mesotoga is the only strictly mesophilic Thermotogae, with optimal 533 

growth occurring between 37 and 45°C (Ben Hania et al. 2013; Nesbø et al. 2012). Initially 534 

Mesotoga spp. were only detected using molecular tools such as community 16S rRNA PCR and 535 

metagenome analyses (Nesbø et al. 2006b). Mesotoga prima was the first described isolate of the 536 

genus (Nesbø et al. 2012), which now includes another validated species, Mesotoga infera, (Ben 537 

Hania et al. 2013), one yet to be validated, Mesotoga sp. PhosAc3 (Ben Hania et al. 2011), and 538 

several isolates with ongoing genome sequencing projects (Benson et al. 2014; Reddy et al. 539 

2014). The 2.97 Mb genome of M. prima is considerably larger than any previously sequenced 540 

Thermotogae genome, which range between 1.86 and 2.30 Mb (Zhaxybayeva et al. 2012). This 541 

larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. A 542 

unimodal distribution of CvP values of M. prima's proteome, with a mean value in the 543 
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mesophilic range, indicate that native M. prima proteins have also changed in response to its 544 

evolved mesophilic lifestyle (Zhaxybayeva et al. 2012). 545 

Analysis of additional Thermotogae shows that the variation in size may be related to 546 

optimal growth temperature: thermophiles have more streamlined genomes, with little intergenic 547 

space and a higher number of genes per transcription unit, while mesophiles have larger 548 

intergenic spaces and higher gene redundancy (Latif et al. 2013; Zhaxybayeva et al. 2012). This 549 

finding holds true for lineages outside of the Thermotogae, as examination of 1155 prokaryotes 550 

demonstrates (Sabath et al. 2013). However, the observed correlation in Thermotogae needs to 551 

be untangled from effects of phylogenetic history (Zhaxybayeva et al. 2012). 552 

The closest relative of the Mesotoga lineage is the thermophilic lineage Kosmotoga (Fig. 553 

3). Members of this genus have been found in hydrothermal sediments (L'Haridon et al. 2014; 554 

Nunoura et al. 2010) and oil production fluids (DiPippo et al. 2009; Feng et al. 2010). Like other 555 

thermophilic Thermotogae, the Kosmotoga are anaerobic chemoorganotrophs able to ferment 556 

carbohydrates and peptides (Nunoura et al. 2010) and to produce molecular hydrogen (DiPippo 557 

et al. 2009; Feng et al. 2010). The first isolated bacterium of this genus was Kosmotoga olearia 558 

(DiPippo et al. 2009). K. olearia grows optimally at 65°C and has a reported growth range of 20-559 

80°C (DiPippo et al. 2009). Not only is this bacterium capable of growing at an unusually low 560 

temperature for a thermophile, but to our knowledge it represents the widest reported bacterial 561 

temperature growth range to date. 562 

 The ability of Kosmotoga to grow at such an extraordinary gamut of temperatures is 563 

intriguing for two reasons. First, it must maintain protein activity and membrane integrity. Every 564 

living organism has adapted to do this at a certain temperature range, but how these requirements 565 

can be maintained over a 60°C range is unknown. What evolutionary mechanisms would maintain 566 
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a 60°C growth interval in Kosmotoga? Perhaps this lineage continues to experience environments 567 

with more variable temperatures or, alternatively, the wide growth range may be a result of 568 

selection on another trait. Second, as discussed above, this ability of tolerating a wide range of 569 

temperature conditions, may have facilitated the transition of Mesotoga from thermophily to 570 

mesophily, because the capacity to grow at lower temperatures presumably already existed in 571 

Mesotoga's ancestors. 572 

As a result Kosmotoga and Mesotoga offer a unique model system for studying both 573 

immediate temperature responses and long-term temperature adaptation. Specifically, K. olearia’s 574 

exceptionally wide growth range allows examination of temperature responses under both 575 

mesothermic and thermic conditions in the same cell-line. For example, analysis of K. olearia’s 576 

transcriptome at different growth temperatures promises to shed light into the role of specific 577 

processes, functions, genes or proteins in thermoadaptation. Since K. olearia’s closest relative is a 578 

mesophile with a narrower growth range, comparative genomic, transcriptomic and proteomic 579 

analyses promise to reveal how Kosmotoga's temperature responses may eventually lead to 580 

temperature adaptation. If we assume that Mesotoga and Kosmotoga’s common ancestor was a 581 

thermophile, possibly with a wide growth range, then the Mesotoga lineage lost its ability to grow 582 

at high temperatures, while Kosmotoga has either kept or expanded its growth range. For 583 

Mesotoga we have speculated that reduction of its growth temperature range may have happened 584 

as the lineage got 'trapped' in an oil reservoir that cooled down (Nesbø et al. 2006b; Zhaxybayeva 585 

et al. 2012) and therefore may be a result of loss-of-function mutations and genetic drift.  586 

  The existence of several additional Thermotogae lineages likely thriving in mesothermic 587 

environments (Nesbø et al. 2010) opens opportunities to study the evolutionary processes in 588 

lineages that have adapted to lower temperatures independently. These novel lineages can be 589 
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accessed through metagenomic studies or through further cultivation efforts. Taken together, 590 

future genomic, transcriptomic and proteomic studies of temperature responses and adaptations 591 

in Kosmotoga, Mesotoga, and other Thermotogae will help decipher how shifts in temperature 592 

range and optimum are accomplished.  593 
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Figure Legends: 1011 

 1012 

Fig. 1. Distribution of organismal growth temperature adaptation across the three domains of life. 1013 

Only major lineages with cultivated members (phyla for Bacteria and Archaea and supergroups 1014 

for Eukarya) are shown. Most lineages contain organisms thriving at different temperature 1015 

optima, suggesting that adaptation to temperature has happened multiple times independently. 1016 

Given the uncertainty associated with the relationships among the shown taxonomic groups, their 1017 

branching order is shown as unresolved, except for archaeal superphyla (Williams and Embley 1018 

2014) and several deep-branching bacterial lineages (after SSU rRNA-based "The All-Species 1019 

Living Tree", November 2014 release; (Munoz et al. 2011)). Eukaryotic supergroups are after 1020 

Adl et al. (2012). The root of the tree is placed on a branch leading to bacterial phyla after 1021 

Gogarten et al. (1989) and Iwabe et al. (1989), although an alternative location of the root 1022 

between Archaea and Bacteria remains plausible (Dagan et al. 2010). Data on optimal growth 1023 

temperature were obtained from the Integrated Microbial Genomes system (Markowitz et al. 1024 

2014) and this figure does not represent an exhaustive overview of known lineages. 1025 

 1026 

Fig. 2. Cells of Mesotoga prima MesG1.Ag.4.2. The toga can be seen ballooning out from the 1027 

cell poles. The scale bar in the lower left corner corresponds to 0.5 µm. Cells of M. 1028 

prima MesG1.Ag.4.2 were grown to exponential phase and samples prepared for microscopy as 1029 

described by Spurr (1969). Images were acquired using a Philips Morgagni 268 transmission 1030 

electron microscope (Philips-FEI, Hillsboro, Oregon, USA) operating at 80 kV with Gatan Orius 1031 

CCD camera.  1032 

 1033 
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Fig. 3. Phylogenetic relationships among representative Thermotogae genera. 16S rRNA gene 1034 

sequences were aligned using the NAST aligner in MOTHUR (Schloss et al. 2009) to the SILVA 1035 

reference alignment (Yilmaz et al. 2014). Alignment sites with gaps were removed (resulting in a 1036 

1093 nt alignment), and the maximum likelihood tree was reconstructed in RAxML (Stamatakis 1037 

2014) under the GTR+Γ substitution model. The newly proposed Thermotogae classification into 1038 

three orders and four families is shown to the right of the tree (Bhandari and Gupta 2014). Note 1039 

that based on the 16S rRNA phylogeny, Mesoaciditoga lauensis should be have its own order 1040 

(Mesoaciditogales) and family (Mesoaciditogaceae). Published optimal growth temperatures for 1041 

each genus are shown. Taxonomic names of hyperthermophiles, thermophiles and mesophiles 1042 

are depicted in bold black, black, and grey fonts, respectively. Bootstrap support values (out of 1043 

100 replicates) are shown at the nodes only for values above 70. The tree was rooted with the 1044 

following taxa as an outgroup (collapsed into a wedge): Alkalliphilus auruminator (AB037677), 1045 

Marinithermus hydrothermalis (AB079382), Persephonella marina (AF188332), Aquifex 1046 

pyrophilus  (AQF16SRRN), Aquifex aeolicus (AE000751), Clostridium thermocopriae 1047 

(CLORG16SAA), Clostridium botulinum (NC_009495), Flexibacter flexilis (FBCRRB), 1048 

Thermus thermophilus (X07998) and Dictyoglomus thermophilum (X69194).  1049 
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