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Samandrag

Vi undersøker ein metode, opphavleg foresl̊att i [1], for å bestemme massane til
resonansar og usynlege sluttilstandar i kaskadehenfall, i teoriar utanfor Standard-
modellen med ein paritetssymmetri. Vi gjer undersøkinga v̊ar innanfor ramme-
verket til den Minimale Supersymmetriske Standardmodellen med bevaring av
R-paritet. Metoden formulerer massebestemminga som eit optimeringsproblem
som kan løysast med numeriske verktøy. I [1] vart det demonstrert med Monte
Carlo-simuleringar at metoden har gode utsikter for nøyaktig massebestemming.
Vi finn at det er visse problem med metoden og analysen, som leiar til under-
estimering av feilen. I lys av dette presenterer vi reviderte feilestimat. Vi held
fram med å undersøke alternative formuleringar av metoden som kanskje kan
løyse problema, og presenterer masseestimat og usikkerheiter for Monte Carlo-
analysar av desse alternative formuleringane. Vi undersøker ogs̊a effektane av
jet-rekonstruksjon, og viser at dette er ei viktig kjelde til feil for metoden.

Abstract

We investigate a method, originally suggested in [1], for determination of the
masses of resonances and invisible final states in cascade decays, in Beyond-
Standard-Model theories with a parity symmetry. We do our study within the
framework of the Minimal Supersymmetric Standard Model with conservation
of R-parity. The method formulates the mass determination as an optimiza-
tion problem for which numerical techniques can be applied. The method was
demonstrated in [1] by Monte Carlo simulations to have good prospects for ac-
curate mass determination. We discover that there are certain problems with
the method and the analysis, which lead to an under-estimation of the errors. In
light of this, we present revised error estimates. We proceed to investigate al-
ternative formulations of the method which might amend the issues, and present
mass estimates and uncertainties for Monte Carlo analyses of these alternative
formulations. We also investigate the effects of jet reconstruction, and show that
this is an important source of error for the method.
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Introduction

Supersymmetry is a proposed extension of the Standard Model of particle physics
which adds heavier partner particles, called superpartners, to the Standard Model
particles. Supersymmetry is appealing because it can provide solutions to many
of the unsolved problems of high-energy physics, problems which are either not
adressed by the Standard Model or are inherent in the Standard Model itself.
These problems include the Dark Matter which is observed to permeate the
universe and the apparent fine-tuning needed to avoid large corrections to the
Higgs boson mass.

This thesis begins with an introduction to the principles that underlie the
Standard Model, and outlines the construction of the model in Chapter 1. Then,
the extension of the Standard Model by supersymmetry is introduced and elab-
orated, culminating in the definition of the Minimal Supersymmetric Standard
Model (MSSM), which is the minimal (in terms of field content) supersymmetric
extension that contains the Standard Model. The MSSM has over 100 free pa-
rameters, so it is conventional to introduce some constraining assumptions. We
present one popular restricted model, called the Constrained MSSM (CMSSM),
and discuss its features and review its experimental status in light of LHC data.
All of this takes place in Chapter 2.

In a scenario where supersymmetry (SUSY) exists with conservation of R-
parity, there should be a neutral lightest supersymmetric particle (LSP) which
is absolutely stable. Additionally, all SUSY-particles will be produced in pairs
in collisions. Any supersymmetric particle will decay down to the LSP, possibly
in multiple steps. At the Large Hadron Collider (LHC) at CERN, one typically
expects squarks or gluinos, the supersymmetric partners of the quarks and glu-
ons, which subsequently decay in a cascade down to the LSP, emitting multiple
Standard Model particles in the process, see e.g. [2]. The LSP escapes detection,
but the energy and momentum of all the SM particles can be measured (assuming
no neutrinos are produced).

Should hints of SUSY be seen at the LHC in the future, it will be important
to determine the masses of the SUSY particles, and many methods have been
investigated for this purpose, e.g. see [3] for a review. In [1] a method for deter-
mining the masses by formulating the kinematics as a linear algebra problem is
presented and discussed. The article specifically considers a pair of SUSY parti-
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2 List of Tables

cles, each decaying to the LSP in a three-step cascade, emitting three Standard
Model particles each. Determination of the masses then involve inverting an eight
by eight matrix containing the measured Standard Model particle momenta, us-
ing it to determine the four-momenta, pµinv, of the two invisible LSPs. Having
calculated the invisible four-momenta, one can make a hypothesis for the eight
unknown SUSY masses involved in the chains, and minimize p2

inv−M2
hyp in order

to obtain a best fit hypothesis (the minimized quantity should be zero for an
on-shell particle). The article further demonstrates by a Monte Carlo simulation
that a good fit can be obtained using only a few tens of events. This is a very
desirable feature, since only a very limited number of SUSY candidate events
are expected at the LHC, given current limits on SUSY particle masses. Being
able to reconstruct the four-momenta of the invisibles is also useful for measuring
spins.

In Chapter 3 and 4, the method of [1] is presented and discussed. Chapter
3 formulates the type of process we are studying and the problems faced, and
defines the method. We also discuss some minor issues with the original for-
mulation and suggest ways to amend these. The subsequent chapters deal with
an investigation of, and improvements on the method. We begin in Chapter 4
by simulating events using the Monte Carlo generator Herwig++ and attempt to
reproduce the results presented in [1]. In the course of this, we discover what
appears to be problematic issues with the analysis in [1], concerned with the
numerical function minimization. We are able to reproduce our results using the
same code as in the original article [4], and this confirms the issues.

In light of this, we present revised estimates for the accuracy we can expect
from the method. In Chapter 5, we investigate ways to amend the problems
by modifying the method in various ways. Although we are able to construct
modified versions of the method which is free of the technical problems in the
original formulation, we are unable to recover the accuracy promised by the
original paper.

We finalize our analysis in Chapter 5 by taking the effects of jet reconstruction
into account, something which was not considered in the original paper. We find
that the uncertainties introduced by the jet reconstruction increases the errors
significantly. Finally, we make our conclusions.



Chapter 1

The Standard Model of Particle
Physics

The Standard Model of particle physics has been hugely successful in explaining
what our universe consists of at the smallest length scales, and how these con-
stituents interact with each other. It recieved a final, spectacular confirmation in
2012, when a Higgs boson consistent with the predictions of the Standard Model
was discovered by the CMS and ATLAS experiments at CERN [5, 6]. It is well
known, however, that the Standard Model is incomplete as a description of our
universe, for instance since it gives no explanation for Dark Matter. There are
also more technical problems with the Standard Model, such as the hierarchy
problem of the Higgs boson mass loop corrections and the arbitrariness of the
model parameters.

The present chapter gives a brief introduction to the principles that underlie
the Standard Model, and outlines the construction of the model.

1.1 Symmetries and conservation laws

Symmetries are manifest in most physical systems. For instance, the special the-
ory of relativity is symmetric under boosts and rotations, as well as translations
in space and time. There is a deep relationship between symmetries and the
conservation of physical quantities. This result is known as Noether’s theorem,
and was proven by Emmy Noether in 1915 [7]. It states that every differentiable
symmetry of the action of a physical system has a corresponding conservation
law. In the example of special relativity, the symmetries under translations in
time and space correspond to conservation of energy and momentum.

3



4 The Standard Model of Particle Physics Chapter 1

1.1.1 Description by groups

It is often convenient to describe the symmetries of physical systems in the lan-
guage of group theory. A group G is a set of objects together with a binary
operation · which satisfies the following properties:

g1 · g2 ∈ G ∀g1, g2 ∈ G (closure), (1.1)

∃ e ∈ G such that g · e = e · g = g ∀ g ∈ G (identity), (1.2)

∀ g ∈ G ∃ g−1 ∈ G such that g · g−1 = g−1 · g = e (inverse), (1.3)

(g1 · g2) · g3 = g1 · (g2 · g3) ∀ g1, g2, g3 ∈ G (associativity). (1.4)

The set of all Lorentz boosts and rotations in special relativity form a group,
called the Lorentz group, and together with all spatial translations they form the
Poincaré group.

The experimental fact that there exist a number of conserved quantities in
particle physical systems — examples include energy and momentum, but also
electrical and colour charge, among others — can be used to construct a theory of
particle interactions, by finding the symmetries, and the symmetry groups, that
correspond to these quantities and demanding that the theory be symmetric
under their action.

An important type of group is the SU(n) group. In the defining representa-
tion, this group consists of all complex unitary n×n matrices M with detM = 1.
The SU(n) groups are Lie groups, which means that they are continuous — i.e.
that it is possible to find group elements that are arbitrarily close to the iden-
tity. Also, any transformation in the group may be constructed by successive
application of such infinitesimal transformations.

The group elements, and the objects on which the group acts, may be given
in several representations. In the case of matrix groups this means matrices and
vectors of different dimension. For an SU(n) group, the two most important
representations are the defining, or fundamental, representation, where the vec-
tors have dimension n, and the adjoint representation, where the vectors have
dimension n2 − 1.

The infinitesimal behaviour of a Lie group is given by its corresponding Lie
algebra, which is written1

[Ta, Tb] = ifabcTc. (1.5)

The objects Ta are called the generators of the Lie group, and the fabc are called
the structure coefficients. The structure coefficients uniquely determine the alge-
bra. For SU(n), there are n2−1 generators, so a, b, c = 1, ..., n2−1. For a general
Lie group, the binary operation [·, ·], called the Lie bracket, must be specified,

1Here, and in the following, repeated indices are summed over, unless otherwise stated.
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but for SU(n) is is just the commutator

[Ta, Tb] = TaTb − TbTa. (1.6)

An element G of an SU(n) group may generally be written as

G = eiαaOa , (1.7)

in an open neighbourhood of the identity element in SU(n). Here, Oa = Ta in the
fundamental representation, and Oa = (fij)a in the adjoint representation. For
SU(2), the fundamental representation of the generators are proportional to the
Pauli matrices σi, and for SU(3) they are proportional to the Gell-Mann matrices
λi. Formally, G is the exponential map from a Lie algebra to its corresponding
Lie group.

The exponential map may be extended from a global transformation to a
local transformation with respect to some underlying manifold X by letting αa =
αa(x), where x ∈ X. For the purposes of the Standard Model, X is space-time.

1.2 Ingredients of the Standard Model

The Standard Model consists of 12 fermions with corresponding antifermions, a
number of vector gauge bosons and one scalar boson, whose existence have all
been verified experimentally. The gauge bosons mediate interactions between
the particles. There are three fundamental interactions in the Standard Model:
The electromagnetic interaction, the weak interaction and the strong interaction.
The combination of electromagnetic and weak interactions are often referred to as
the electroweak theory, or the Glashow-Weinberg-Salam model, while the theory
describing the strong interaction is known as Quantum Chromodynamics (QCD).
Not all particles couple to each other with all of the interactions.

The fermions are divided into two groups, the quarks and leptons. There are
six different flavours of quarks, called up, down, strange, charm, bottom and top,
in order of increasing mass. They are subdivided into three generations of pairs,
up/down, charm/strange and top/bottom. The up, charm and top quarks carry
quanta of +2

3
of the fundamental electrical charge e, while the down, strange and

bottom quarks carry −1
3
e. There are also six leptons, of which three are charged.

They are called the electron, the muon and the tau. They each belong in a
generation of their own, together with their neutral counterparts, the electron
neutrino, muon neutrino and tau neutrino, respectively.

The vector gauge bosons consist of the photon, the Z and W bosons and the
gluon. The photon is the mediator of electromagnetic interactions, the Z and W
mediate the weak interaction and the gluon mediates the strong interaction. The
photon, Z boson and gluon are all neutral, and they are their own antiparticles.
The photon and gluon are massless, while the W and Z bosons are quite heavy.
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The W carries one elementary unit of electric charge, and is thus distinct from
its antiparticle, with a difference in sign for the particle and antiparticle states.
The scalar boson of the Standard Model is the Higgs boson, which is responsible
for giving particles their observed mass through the Higgs mechanism. It is
electrically neutral and very massive.

Among the fermions, only the quarks couple to the strong interaction. All
the known fermions couple with the weak interaction, while only the electrically
charged fermions couple electromagnetically — i.e. all except the neutrinos. They
couple to the Higgs field proportionally to their mass, so that for instance the
top quark, which is the heaviest Standard Model particle, couples the strongest.
A schematic overview of the particles in the Standard Model is shown in Fig. 1.1.

Figure 1.1: An overview of the particles of the Standard Model and their
interactions, from [8].

The flavours of the quarks and leptons are conserved in the electromagnetic
and strong interactions. For instance, a top quark cannot change into a charm
or up quark by emission of a photon or gluon. The weak interaction enables
the top quark to change into a bottom quark, or a tau lepton to change into
a tau neutrino, through the emission of a charged W boson. This would still
seem to conserve the generation of quark or lepton, but breaking of generation
is also made possible through the mechanism of generation mixing, quantified by
the Cabibbo-Kobayashi-Maskawa (CKM) matrix for the case of quarks and the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for the leptons. The PMNS
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mixing also explains the observed phenomenon of neutrino oscillations.2

1.3 Constructing a gauge theory

The Standard Model is a quantum field theoretic model, and may be stated in
terms of a Lagrangian density function L. The guiding principle for constructing
the Lagrangian is gauge invariance. Gauge degrees of freedom are physical de-
grees of freedom which are “superflous”, in the sense that they do not have any
observable consequences. An example is Maxwell’s theory of electromagnetism,
where the electromagnetic vector potential Aµ is undetermined up to the addi-
tion of a total derivative term ∂µφ. The gauge freedom is exploited by requiring
that the Lagrangian, which determines the physical dynamics, does not change
when the gauge degrees of freedom are varied, i.e. that it is gauge invariant. This
invariance is related to conservation of physical quantities by Noether’s theorem.

The Standard Model is based on gauge invariance under three Lie groups,
the famous U(1)Y × SU(2)L × SU(3)C . The different particle types transform
in different representations of the groups. In the Standard Model, the fermions
transform in the fundamental representation, while the gauge bosons transform
in the adjoint representation.

The particle content of the Standard Model is input into the Lagrangian by
inserting fermionic fields, i.e. Dirac spinor fields, and imposing the desired gauge
invariance on these fields. The basic Dirac term, called the Dirac bilinear, for
some spinor field ψ, is3

LD = ψ̄(iγµ∂µ −m)ψ = ψ̄(i/∂ −m)ψ, (1.8)

where γµ are the Dirac matrices, m is the mass of the spinor field, and ψ̄ ≡ ψ†γ0.
The Dirac bilinear results in the Dirac equation for the field when the equations
of motion are applied. The Dirac equation and the Dirac matrices are derived in
Appendix A.

Next, we impose gauge invariance. The local group transformation of an
SU(n) group may be written in the fundamental representation as

G(x) = eigαa(x)Ta , (1.9)

where αa(x) are n arbitrary real differentiable functions, g is the charge of the
field, and Ta are the generators of SU(n) in the fundamental representation. We
assume that the Lagrangian consists of n Dirac bilinear terms with fields ψi, and
that they are put into an n-dimensional multiplet Ψ = (ψ1, ψ2, ..., ψn)T such that

2If the neutrinos are assumed to be massive, which they are technically not in the Standard
Model.

3We will, for what follows, set ~ = c = 1.
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the basic Dirac Lagrangian reads

L0 = Ψ̄(i/∂ −m)Ψ, (1.10)

where we assume that all fields have the same mass m.4 The group transforma-
tions of the multiplet and its adjoint are then

Ψ(x)
G→ G(x)Ψ(x), (1.11)

Ψ̄(x)
G→ Ψ̄(x)G†(x).

If we apply these transformations to the basic Lagrangian, it becomes

L0 =Ψ̄(x)(i/∂ −m)Ψ(x)

G→Ψ̄(x)G†(x)(i/∂ −m)G(x)Ψ(x) (1.12)

=Ψ̄(x)(i/∂ −m)Ψ(x) + iΨ̄(x)G†(x)(/∂G(x))Ψ(x).

Thus, the basic Dirac Lagrangian is not gauge invariant, since we have picked up
an additional term. Gauge invariance may be achieved by adding a term of the
form

gΨ̄(x)γµAa,µ(x)TaΨ(x), (1.13)

to the Lagrangian, where Aa,µ(x) is some new field, which we require to transform
under G as

Aa,µ(x)Ta
G→ G(x)

(
Aa,µ(x)Ta +

1

g
∂µ

)
G†(x). (1.14)

If we apply G to the sum of the Dirac bilinear with this new term, it is invariant:

L0 =Ψ̄(x)(i/∂ −m)Ψ(x) + gΨ̄(x)γµAa,µ(x)TaΨ(x)

G→Ψ̄(x)(i/∂ −m)Ψ(x) + iΨ̄(x)G†(x)(/∂G(x))Ψ(x) (1.15)

+ gΨ̄(x)γµAa,µ(x)TaΨ(x)− iΨ̄(x)G†(x)(/∂G(x))

=Ψ̄(x)(i/∂ −m)Ψ(x) + gΨ̄(x)γµAa,µ(x)TaΨ(x).

The term from Eq. (1.13) is usually included by replacing ∂µ with the covariant
derivative

Dµ = ∂µ − igAa,µTa. (1.16)

The fields Aa,µ are called gauge boson fields, and are responsible for mediating
interactions between the Dirac fermion fields. The gauge boson fields must also

4This assumption is often wrong in the case of the Standard Model, but finds its solution
in the Higgs mechanism.
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have their own free-field term in the Lagrangian, called the field strength, which
is given from the Proca Lagrangian for spin-1 fields as

−1

4
Fa,µνF

µν
a , (1.17)

where F µν
a is given as

F µν
a = ∂µAνa − ∂νAµa + gfabcA

µ
bA

ν
b , (1.18)

where, again, fabc are the structure coefficients of SU(n). Note that with this
definition, the field strength (1.17) is gauge invariant under Eq. 1.14.

With this, the total gauge invariant Lagrangian consists of n fermion fields
and n2 − 1 gauge boson fields, and reads

L = Ψ̄(i /D −m)Ψ− 1

4
Fa,µνF

µν
a . (1.19)

The covariant derivative gives rise to terms coupling the fermion and gauge fields.
In the case of n = 1, the gauge group is the U(1) group, which describes the
theory of quantum electrodynamics, the simplest gauge theory. For U(1), the
structure coefficients vanish, since there is only a single gauge field,5 making
the Lagrangian particularily simple. In QED, there are no gauge boson self-
interactions. For n > 1, the structure coefficients do not vanish, and this gives rise
to cross terms in the field strength term −1

4
Fa,µνF

µν
a coupling the gauge bosons

among themselves. These couplings are of great importance in the theories of
weak and strong interactions.

1.4 Singlets, doublets and triplets

As mentioned previously, not all the fermion fields are subject to all the differ-
ent interactions. If a field couples through a certain interaction, it is said to be
charged under the transformations corresponding to that interaction. A specific
amount g of charge is assigned to every field, and enters into the group transfor-
mations in Eq. (1.9). Thus, for g = 0, the transformation is the identity and has
no effect. In the electromagnetic U(1) case, this charge is the electrical charge,
g = q. Analogous charges are associated with the U(1)Y , SU(2)L and SU(3)C
groups. They are called hypercharge, weak isospin and colour charge, respec-
tively. These charges are the conserved quantitites associated with the gauge
symmetries, as implied by Noether’s theorem. Since the terms in the Lagrangian
coupling fermions to gauge bosons are proportional to the charges, they are often
called coupling constants — but the term coupling constant may also be used in

5This contradicts the claim that there are n2− 1 gauge fields — for U(n) there are n2. The
reason is that U(1) is not an SU(n) group, but the above derivation works for U(1) as well.
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a broader sense to mean the constant of proportionality in any Lagrangian term
which gives rise to a coupling vertex.

In the case of SU(2) and SU(3), the fields have to be put into vectors in
order to be acted upon by the transformations, as was done in the previous
section. Since the fermionic fields transform in the fundamental representation,
the dimensions of the vectors are two and three, respectively. These types of
vectors are referred to as SU(2) doublets and SU(3) triplets.

A Dirac field can be written as the sum of a left-chiral and a right-chiral part,
defined by the projection operators

PR/L =
1

2

(
1± γ5

)
, (1.20)

where γ5 ≡ iγ0γ1γ2γ3. Given a Dirac field ψ, we may write

ψ = PRψ + PLψ ≡ ψR + ψL. (1.21)

In the case of SU(2)L, only the left chiral part of the fields are charged under
the symmetry. For instance, the left-chiral parts of the quark fields are put in
doublets, e.g.

qL =

(
uL
dL

)
, (1.22)

for the up- and down-quarks, while the right-handed parts are put in two separate
singlets uR and dR, upon which the SU(2)L transformation has no effect. This
has the consequence that the SU(2)L interaction is left-chiral — it only couples
to left-handed parts of fields. Due to the spontaneous symmetry breaking of
the U(1)Y × SU(2)L symmetry, the chirality is not exact in the resulting weak
interactions, but it is still an important feature of the Standard Model.

The SU(3)C symmetry is the symmetry of the strong force, and among the
fermions, only the quarks are charged under it. The quarks transform under
SU(3) in triplets — one for each quark flavour — where the components of the
triplet are discriminated by differing colour, denoted red, green or blue.

While the fermions transform under the groups in the fundamental represen-
tation, which has dimension n for SU(n), the gauge vector boson fields transform
in the adjoint representation, which has dimension n2− 1. This number then de-
termines the number of different gauge bosons for each group: U(1)Y has a single
gauge boson field labeled Bµ, SU(2)L has three, labeled W µ

1,2,3, and SU(3)C has
eight different gauge boson fields, labeled Aµa for a = 1, ..., 8. The SU(3)C bosons
are called gluons. The U(1)Y and SU(2)L bosons are not the ones that we observe
— the physical gauge boson eigenstates are linear combinations of them, mixed
together by the spontaneous symmetry breaking of the Higgs mechanism.
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1.5 The Higgs mechanism

Gauge invariance forbids the inclusion of terms of the form m2AµAµ into the
Lagrangian, which are required in order to give vector bosons such as the Z their
observed mass. To include the terms, we must also include a new complex scalar
field doublet Φ = (φa, φb)

T . This mechanism was first suggested by Anderson [9],
and subsequently generalized to a relativistic field theory independently by three
groups: Guralnik, Hagen and Kibble [10], Brout and Englert [11], and Higgs [12].
It is commonly referred to as the Higgs mechanism. The mechanism introduces
the following terms into the Lagrangian:

L 3 |DµΦ(x)|2 − µ2|Φ(x)|2 − λ|Φ(x)|4. (1.23)

The last two terms comprise the Higgs potential. If µ2 is assumed to be negative
and λ positive, then the potential assumes the shape of a “mexican hat” as a
function of |Φ|. Figure 1.2 shows an analogous potential in the case of only a single
complex scalar field φ. This potential has a minimum and a circle of degenerate

Figure 1.2: The shape of the Higgs potential, from [13].

energy at the field value |Φ0|2 = |φ0
a|2 + |φ0

b |2 = −µ2/2λ. The mechanism of
spontaneous symmetry breaking occurs when, as the energy decreases, the Higgs
field falls to the bottom of the degenerate circle and is forced to choose a particular
point on the circle for its lowest energy state, the vacuum. This causes Φ to obtain
a non-zero vacuum expectation value (vev). Without loss of generality, we may
write Φ0 as

Φ0 =
1√
2

(
0
v

)
, (1.24)

in the vacuum state, where v ≡
√
−µ2/λ. We may write Φ generally as

Φ =
1√
2

(
η1(x) + iη2(x)

v +H(x) + iη3(x)

)
. (1.25)
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One can find parameters ξj, j = 1, ..., 4, such that, for a gauge transformation
G ∈ U(1)Y × SU(2)L, if

G−1 = e
i
v (ξj 1

2
σj)e

i
v
ξ4 , (1.26)

then

Φ =
1√
2
G−1

(
0

v +H

)
. (1.27)

Then, by gauge transforming the Lagrangian L using G, one obtains

Φ
G→ Φ′ =

1√
2

(
0

v +H

)
, (1.28)

and simultaneously, the vector gauge fields transform as

W µ
i

G→ W ′µ
i , (1.29)

Bµ G→ B′µ.

In this gauge, the three degrees of freedom represented by the real scalar fields
ηi(x) are not present. The interpretation is that they are absorbed into the three
bosons W± and Z, providing the longitudinal polarization degrees of freedom
required for massive vector bosons. The remaining real scalar field H(x) is the
Higgs field.

This gauge choice also makes apparent that the gauge fields W µ
i and Bµ mix

together into the physical mass eigenstates W±µ and Zµ. This can be seen from
the covariant derivative term in Eq. (1.23). In this gauge, the covariant derivative
of Φ is

D′µΦ′ =

[
∂µ + ig

σj
2
W ′µ
j + i

1

2
g′B′µ

]
1√
2

(
0

v +H

)
, (1.30)

where g and g′ are the coupling constants of SU(2)L and U(1)Y , respectively,
and σj are the Pauli matrices. By multiplying out, this becomes

D′µΦ′ =

[
ig
2

(W ′µ
1 − iW ′µ

2 )v+H(x)√
2(

∂µ − ig
2
W ′µ

3 + ig′

2
B′µ
)
v+H(x)√

2

]
.

By making the following definitions,

tan θW =
g′

g
, (1.31)

W ′µ
3 = cos θWZ

µ + sin θWA
µ, (1.32)

B′
µ

= − sin θWZ
µ + cos θWA

µ, (1.33)

W±µ =
1√
2

(
W ′µ

1 ∓ iW ′µ
2

)
, (1.34)
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where θW is called the weak mixing angle, Eq. (1.31) becomes

D′µΦ′ =
1√
2

(
ig√

2
W+µ (v +H)

∂µH(x)− ig
2 cos θW

Zµ (v +H)

)
. (1.35)

Thus, the covariant derivative term |DµΦ|2 is

|DµΦ|2 =
1

2

(
g2v2

2
W+µW−

µ + g2vHW+µW−
µ

+
g2

2
W+µW−

µ H
2 + ∂µH∂µH +

g2v2

4 cos2 θW
ZµZµ (1.36)

+
g2

2 cos2 θW
vZµZµH +

g2

4 cos2 θW
ZµZµH

2

)
.

This expression contains the terms g2v2

8 cos2 θW
ZµZµ and g2v2

4
W+µW−

µ , which are

mass terms for the Z and W± bosons, respectively, fixing their masses to

mZ =
1

2 cos θW
vg, mW =

1

2
vg. (1.37)

Note that this means that at the Lagrangian level

mZ =
mW

cos θW
. (1.38)

Note also that there is no mass term for the photon field Aµ — it remains massless
after symmetry breaking. This allows for the remaining U(1)em symmetry, where
Aµ is the corresponding gauge boson and the gauge charge is the electrical charge,
which by Noether’s theorem must be conserved in all processes of the Standard
Model.

The Higgs mechanism also provides for the possibility of fermionic terms of
the form

ψ̄iψjyij(v +H) = yijψ̄iψjH + vyijψ̄iψj. (1.39)

The terms of the first type couple the fermions to the Higgs field. For i = j,
the terms of the second type are mass terms of the form written in the Dirac
bilinear, Eq. (1.8), and for i 6= j they give rise to off-diagonal terms in the CKM
and PMNS matrices. The coupling constants of these terms are called Yukawa
couplings.

1.6 The Feynman calculus and loop corrections

Very few problems in the framework of the Standard Model can be solved exactly.
Instead, calculations are done using perturbation theory to series expand the so-
lution as an infinite sum of increasingly complicated, but decreasingly important,
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contributions in terms of powers of some small parameter. Feynman invented a
technique for visualizing these expansions using diagrams, known as Feynman
diagrams [14]. For instance, the problem of electron-positron scattering has as
one of its leading contributions the diagram shown in Fig. 1.3a. The next-to-
leading order in the fine-structure constant α = e2/4π includes the diagrams in
figs. 1.3 (b), (c) and (d). The Feynman calculus associates each diagram with a

(a) (b)

(c) (d)

Figure 1.3: Feynman diagrams of contributions to e+e− scattering. Made
using JaxoDraw [15].

specific mathematical expression called the Feynman amplitudeM for that dia-
gram. When several diagrams are included, the total amplitude for the process
to the given order is the sum of the amplitudes from each diagram. The physical
quantities of interest, e.g. cross sections and decay widths, are obtained by inte-
grating the amplitude, or rather its absolute square, over all spin and momentum
configurations of the system.

1.7 Renormalization

The subleading diagrams in a perturbative expansion, such as those shown in Fig.
1.3 (b–d), contain closed loops. These loops introduce extra momentum integrals
into the calculations. Often, the integrals are divergent — which is unacceptable
from a physical viewpoint. The divergences can be understood and dealt with
by using the techniques of regularization and renormalization.

1.7.1 Regularization

Regularization is a means for parametrizing the divergence in terms of some
small parameter ε which is zero in the physical limit. The most modern way
to regularize a momentum integral is by using dimensional regularization: The
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original loop integral is an integral over four space-time dimensions. Dimensional
regularization makes the substitution 4→ d = 4− ε, so the integral becomes∫

d4 k →
∫
dd k. (1.40)

This integral is mathematically well-defined, and allows the divergences to be
parametrized in terms of ε.

An alternative to the dimensional regularization technique is to use a momen-
tum cutoff Λ, which is infinite in the physical limit. One may even argue that
new physics should come into play at higher energy scales, and therefore set the
cutoff to a finite value, since the theory is valid only up to this energy. This will
be applied to the calculation of Higgs mass loop corrections in Section 1.8.

1.7.2 Renormalization

When the divergence has been isolated and parametrized, it needs to be explained
physically. This is done by the process of renormalizing the theory. For instance,
in the case of the photon propagator in quantum electrodynamics, illustrated
in Fig. 1.3b, the dimensionally regularized expression for the leading-order loop
correction to the propagator is proportional to∫ 1

0

dx x(1− x)

(
2

ε
− log

(
m2 − x(1− x)q2

)
+ constant terms

)
, (1.41)

which blows up as ε → 0. Here, q is the momentum of the propagating photon
and m is the mass of the fermions in the loop. Renormalization is the claim
that this infinity is a part of the bare physical constants which are present in
the Lagrangian, in this case the electrical charge, whose bare value is denoted
e0. These bare parameters are not observable quantities, only parameters in the
Lagrangian. What is observed is the renormalized charge e = e0 + δe, where δe
is the infinite shift that cancels Eq. (1.41).

All the coupling constants of the Standard Model are renormalized. The
renormalization introduces an energy dependence into the coupling constants,
since the shift comes from loop corrections which depend on the energy of the
process. For instance, the effective value of the electron charge in quantum
electrodynamics, at some momentum q, is at one-loop order given as

e2(q) =
e2
r

1− (e2
r/6π

2) log(q/M)
, (1.42)

where er is some reference value for the charge, defined at the energy scale qr =
M . The fact that the coupling constants are not constant is referred to as the
running of the coupling constants.
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1.7.3 The Callan-Symanzik equation

The Callan-Symanzik, or renormalization group (RG), equation, is the equation
which describes the running of the coupling constants in a systematic way for
any interaction in a quantum field theory. It is obtained by requiring that the
Greens function for the interaction, G, i.e. the propagator or coupling vertex,
varies with the renormalization scale M in such a way that the bare parameters
of the Lagrangian are unchanged. For the example of massless QED, the Callan-
Symanzik equation for a Greens function G(n,m) with n electron fields and m
photon fields is [16][

M
∂

∂M
+ β(e)

∂

∂e
+ nγ2(e) +mγ3(e)

]
G(n,m)(x1, ..., xn;M, e) = 0. (1.43)

The functions beta and gamma are defined as

β ≡M
∂e

∂M
, γi ≡ −M

∂ηi
∂M

, (1.44)

where δηi are the field-strength renormalization terms, shifting the field values
of the electron and photon fields,

ψ → (1 + δη2)ψ and Aµ → (1 + δη3)Aµ, (1.45)

respectively. The Callan-Symanzik equation states that the combined effect of
all the shifts in parameters induced by the renormalization should exactly weigh
up for the shift in the Green’s function itself, which is given by

G(n,m) → (1 + nδη2 +mδη3)G(n,m). (1.46)

This is what is stated in Eq. (1.43). The Callan-Symanzik equation for other
interactions, such as the SU(3) quantum chromodynamics, may be derived sim-
ilarily, but its complexity grows with the complexity of the interaction.

The primary quantities of interest from a phenomenological viewpoint are
the beta functions. They describe the change in the coupling constant and other
parameters as a function of renormalization scale, and in the case of QED they
may be used to derive the formula (1.42) for the running of the electromagnetic
coupling constant e. Equation (1.42) shows that the electromagnetic coupling
constant increases as a function of the energy q. The same turns out to be
true for the weak coupling constant, while the strong coupling constant of QCD
decreases with increasing energy. This last fact is called asymptotic freedom, and
means that the quarks and gluons are unbound by strong forces in the limit of
high energy, or equivalently, short distances.
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1.8 Motivations for extending the

Standard Model

The Standard Model provides a very accurate description of the matter we have
around us, as well as three of the fundamental forces that are responsible for
matter interactions. As a “theory of everything”, it comes short since it does
not describe the fourth fundamental force, gravity. Attempts at unifying the
Standard Model with gravity have so far been unsuccessful. There are, however,
also other motivations besides gravity for extending the Standard Model.

Since the Standard Model is widely believed to be a low-energy effective
model of some more fundamental high-energy theory, it is speculated that the
three interactions of the Standard Model unite at a higher energy and act as a
single interaction under some larger gauge group, called a Grand Unified Theory
(GUT). However, when the three couplings are evolved to high energies using
the Callan-Symanzik equations, they do not meet at a single point. This is seen
by many as a flaw of the Standard Model. In the theory of supersymmetry, the
evolution of the couplings is altered, and they may meet at a single point. This
effect is shown in Fig. 1.4. Supersymmetry is discussed in more detail in the next
chapter.

2 4 6 8 10 12 14 16 18
Log

10
(Q/GeV)

0

10

20

30

40

50

60

α
-1

U(1)

SU(2)

SU(3)

Figure 1.4: Evolution of the inverse coupling constants α−1
i = 4π/g2

i , for the
cases of the Standard Model (dashed lines) and models with supersymmetry
(solid lines). From [2].

Another issue with the Standard Model is that is has no candidate for particle
Dark Matter. Observations over the last century have given strong evidence for
the existence of some as yet unkown form of matter which is distributed in large
quantites all over the universe — in fact four times as much as our ordinary
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matter. It is widely believed that this Dark Matter is some form of particle.
Dark matter interacts primarily, or possibly even solely, via gravitation, so the
particle has to be colourless and electrically neutral, because the strength of these
interactions would otherwise have lead to the particle having been observed by
now. It also has to be long-lived in order to explain the abundance of Dark
Matter that we observe in the universe today. These restrictions rule out most
of the Standard Model particles, with the exception of neutrinos. But neutrinos
are known to be very light, almost massless, and calculations of early-universe
dynamics show that they are too light to be candidates for Dark Matter.

There is also a more technical problem with the Standard Model, related to
the scalar Higgs field. As discussed in Section 1.6, the calculations of parame-
ters in a quantum field theory are subject to loop corrections. The Higgs mass
parameter recieves corrections from loops containing all massive fermions, with
the largest contribution coming from the top quark. The leading-order fermion
contribution is shown in Fig. 1.5a and is divergent. When it is evaluated using a

H H

f

f

(a)

H H

f̃

(b)

Figure 1.5: Loop corrections to the Higgs mass. (a) shows the leading Stan-
dard Model contributions, and (b) shows the corresponding supersymmetric
contributions which cancel them.

cutoff regulator Λ, the diagram turns out to be quadratic in the regulator. This
is shown in Appendix B. By arguing that the Standard Model only is valid up
to the energy scale of grand unification, one may set Λ = MGUT ∼ 1016 GeV.
This means that the Higgs mass corrections are many orders of magnitude larger
than the observed Higgs mass of 126 GeV, implying the need very nearly exact
cancellations among the correction terms with different signs.

The fermions and vector bosons of the Standard Model also recieve correc-
tions, but because of chiral and gauge symmetries, these can be shown to be at
most logarithmically divergent in terms of Λ. For the scalar Higgs particle, there
is no such “protective symmetry”. Neither are there any other symmetries in
the Standard Model which says that a cancellation should occur, so it appears
to be an “accident” of nature. Such accidents are seen as unnatural, and this
explanation is thus unsatisfactory from a theoretical viewpoint. This is referred
to as the hierarchy problem of the Higgs mass.

In supersymmetry, new scalar degrees of freedom enter into the loop correc-
tions as illustrated in Fig. 1.5b for scalar “sfermions” f̃ . This diagram is also
calculated in Appendix B. The leading-order loop correction contributions from
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fermions and sfermions combined are in unbroken supersymmetry

∆m2
H = −|λf |

2

8π2
Λ2 +

λf̃
16π2

Λ2 + · · · (1.47)

to leading order in Λ, where λf/f̃ are the coupling strengths to fermions/s-
fermions. In supersymmetry, the coupling for a fermion f is related to its sfermion
partner by |λf |2 = λf̃ , and there are exactly two sfermions for each fermion. Thus,
in supersymmetry, the corrections cancel each other in a natural way.





Chapter 2

Supersymmetry

The theory of supersymmetry (SUSY) is a proposed extension of the Standard
Model which increases the number of degrees of freedom by introducing a sym-
metry between fermions and bosons, called a supersymmetry. The construction
of supersymmetry is in some sense a two-step process, where one first derives the
Lagrangian of a theory with complete symmetry between fermions and bosons,
meaning that every bosonic degree of freedom gets a corresponding ‘supersym-
metric’ fermionic degree of freedom, and vice versa. These fields only differ in
spin. But since, for example, scalar, colour charged particles with the same
mass as the quarks are not observed in experiments, the symmetry cannot be ex-
act. To make the theory physically viable, the supersymmetric partners must in
most cases be significantly heavier than their Standard Model counterparts. This
means that the supersymmetry must be a broken symmetry, and this breaking
is in practice put into the theory by hand.

In this chapter we will outline the construction of a supersymmetric theory.
First, we introduce the group theoretic framework of the symmetries. We define
the concept of superfields, fields transforming under representations of the super-
symmetry group. We go on to construct a fully supersymmetric Lagrangian in
the framework of the Minimal Supersymmetric Standard Model (MSSM). Then
the breaking of supersymmetry is achieved by manually inserting so-called “soft”
supersymmetry-breaking terms. Also, the concept of R-parity is introduced in
order to ensure the stability of the proton. R-parity will also make the lightest
supersymmetric particle a good Dark Matter candidate. From the broken super-
symmetry Lagrangian, we extract the particle content — identifying the familiar
fields of the Standard Model as well as their supersymmetric counterparts. We
then introduce a popular phenomenological model used to constrain and study
the parameter space of the MSSM, and discuss its implications for the hierarchy
of supersymmetric masses. This constrained model is subsequently adopted for
the study of particular supersymmetric cascade decays, which is the topic for the
remainder of the thesis. We will also review the current experimental status of
supersymmetry.

21
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2.1 Extending the Poincaré symmetry

In the beginning of Chapter 1, the Poincaré group was introduced. It is the group
of all Lorentz boosts and rotations, as well as all translations in spacetime. It is
defined by its Lie algebra, called the Poincaré algebra,

[Mµν ,Mρσ] = −i(gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ), (2.1)

[Pµ, Pν ] = 0, (2.2)

[Mµν , Pρ] = −i(gµρPν − gνρPµ), (2.3)

where Mµν are the generators of Lorentz boosts and rotations and Pµ are the mo-
mentum operators, the generators of translations. Any physical theory obeying
Special Relativity must be invariant under the Poincaré group. It was shown in
1967 by Coleman and Mandula [17], during attempts to unify Special Relativity
with the observed global hadron flavour symmetry groups in a larger symmetry
group structure, that there exists no Lie-algebra based extension of the Poincaré
symmetry which includes the gauge groups of the Standard Model in a non-trivial
way, i.e. a way by which the extended group cannot be written as a direct product
such that the groups do not couple to each other.

This prompted Haag,  Lopuszański and Sohnius [18] to introduce the concept
of a superalgebra. A superalgebra, or graded Lie algebra, L, is a direct sum of
two Lie algebras L0 and L1, L = L0 ⊕ L1, with a special binary operation called
a grading. For xi ∈ Li, the grading operation is given by

xi · xj = xk ∈ Li+j mod 2, (2.4)

which means that x0 · x0 ∈ L0, x1 · x1 ∈ L0 and x0 · x1 ∈ L1.
Haag et. al. constructed a superalgebra by combining the Poincaré algebra

with an algebra spanned by four operators called Majorana spinor charges, repre-
sented by a two-component Weyl spinor QA (to be defined shortly) and its hermi-
tian conjugate Q̄Ȧ. The resulting superalgebra is given by the (anti)commutation
relations

[QA, Pµ] = [Q̄Ȧ, Pµ] = 0, (2.5)

[QA,Mµν ] = σBµν,AQB, (2.6)

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0, (2.7)

{QA, Q̄Ḃ} = 2σµ
AḂ
Pµ, (2.8)

where σµ = (12×2, σi), with σi the Pauli matrices and σµν = i
4
(σµσ̄ν − σν σ̄µ).

It is possible to extend the superalgebra further by introducing more Majorana
spinor charges, labeled Qα

A for α = 1, ..., N . For general N , this extension can be
shown to be the largest possible extension of the Poincaré group. The extension
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defined by Eqs. (2.5)–(2.8) is called N = 1 supersymmetry. The transformations
corresponding to the superalgebra are called supersymmetry transformations.

In the usual spinor representation of the Poincaré group, the fermion fields are
represented as four-component Dirac spinors. It can be shown that the Poincaré
group is isomorphic to SL(2,C)× SL(2,C), so it is possible to define the theory
using the representations of this group instead. The SL(2,C) group has two
inequivalent fundamental representations by two-component spinors which are
called left- and right-handed Weyl spinors and written as ψA and ψ̄Ȧ, respectively.

2.2 Superfields

The objects transforming under supersymmetry transformations can be repre-
sented by superfields, which are functions defined on the superspace spanned by
the spacetime coordinates xµ and four anti-commuting Grassman numbers θA
and θ̄Ȧ. There are two important types of superfields, called chiral and vector
superfields. Because of the anticommutativity, which means that any Grassman
number squared vanishes, a function of a Grassman number, f(θA), has an all-
order expansion given by

f(θA) = a+ bθA. (2.9)

Using this fact, a superfield Φ may generally be written as

Φ
(
xµ, θA, θ̄Ȧ

)
=f(x) + θAφA(x) + θ̄Ȧχ̄

Ȧ(x) + θθm(x) (2.10)

+ θ̄θ̄n(x) + θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAψA(x) + θθθ̄θ̄d(x).

The different field components have the following properties: f(x), m(x) and
n(x) are complex (pseudo)scalars, ψA(x) and φA(x) are left-handed Weyl spinors,

χ̄Ȧ(x) and λ̄Ȧ(x) are right-handed Weyl spinors, Vµ(x) is a complex Lorentz four-
vector and d(x) is a complex scalar.

A supersymmetry transformation on a superfield Φ(xµ, θ, θ̄) in terms of in-

finitesimal parameters ξA and ξ̄Ȧ may be written [2]

δξΦ =

(
ξA

∂

∂θA
+ ξ̄Ȧ

∂

∂θ̄Ȧ
+ i
[
ξσµθ̄ + ξ̄σ̄µθ

]
∂µ

)
Φ (2.11)

= Φ(xµ + iξσµθ̄ + iξ̄σ̄µθ, θ + ξ, θ̄ + ξ̄)− Φ(xµ, θ, θ̄).

A set of covariant derivatives are defined by

DA =
∂

∂θA
− iσµ

AȦ
θ̄Ȧ∂µ, D̄Ȧ = − ∂

∂θ̄Ȧ
+ iσ̄µ,AȦθA∂µ, (2.12)

which can be shown to satisfy

δξ(DAΦ) = DA(δξΦ), δξ(D̄
ȦΦ) = D̄Ȧ(δξΦ), (2.13)
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so that they are indeed supersymmetrically covariant. In terms of these, a left
chiral superfield Φ is defined by the condition

D̄ȦΦ = 0. (2.14)

By substituting yµ = xµ − iθσµθ̄, the covariant derivative D̄Ȧ is given as

D̄Ȧ = − ∂

∂θ̄Ȧ
. (2.15)

This shows that a left-chiral superfield must be independent of θ̄ in these coor-
dinates, so it may generally be written as

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y), (2.16)

thus containing two complex scalar fields and a left-handed Weyl spinor. Under
the infinitesimal supersymmetry transformation defined in Eq. (2.11), the com-
ponent field F can be shown to transform into a total derivative. It will thus not
contribute to the action, since all fields must vanish on the boundary at infinity.
For this reason it is called an auxillary field. Thus we see that a left-chiral super-
field contains two bosonic (scalar) degrees of freedom and two fermionic degrees
of freedom contained in a left-handed Weyl spinor. Similar arguments may be
applied to define a right-chiral superfield by the condition

DAΦ† = 0, (2.17)

and to show that it contains two auxillary and two proper scalar degrees of
freedom, as well as a right-handed Weyl spinor.

A vector superfield V is defined by the condition

V † = V. (2.18)

This condition allows the field content

V =f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + θθm(x) + θ̄θ̄m∗(x) (2.19)

+ θσµθ̄Vµ(x) + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAλA(x) + θθθ̄θ̄d(x). (2.20)

Here, the scalar fields f(x) and d(x), as well as the four-vector Vµ(x), are required
to be real fields, thus halving their amount of degrees of freedom. There are
auxillary degrees of freedom which may be removed by a gauge transformation.
One gauge which removes all auxillary fields from a vector superfield is the Wess-
Zumino gauge. A vector superfield may in this gauge be written as

VWZ = (θσµθ̄) [Vµ(x) + i∂µ(A(x)− A∗(x))] + θθθ̄Ȧλ̄
Ȧ(x) + θ̄θ̄θAλ

A(x) + θθθ̄θ̄d(x),
(2.21)
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where A(x) is a complex scalar field obeying A(x) + A∗(x) = 2<A(x) = −f(x).
In this gauge, the vector superfield contains one real scalar field degree of freedom
(d.o.f.) from d(x), three gauge field d.o.f.’s from [Vµ(x) + i∂µ(A(x)− A∗(x))] and
four fermion d.o.f.’s from the Weyl spinors λ(x) and λ̄(x).1

2.3 The unbroken supersymmetric Lagrangian

To obtain a theory which is supersymmetric, the action, given by

S =

∫
d4xL, (2.22)

needs to be invariant under supersymmetry transformations. As mentioned in
the previous section, a total derivative has this property because its integral is
determined by the boundary conditions, where it has to vanish. It can be shown
that the highest-order component fields in θ and θ̄, i.e. the term proportional to
θθθ̄θ̄, always has this property for both chiral and vector superfields and products
thereof. Thus the invariance of the action may be ensured by redefining the
Lagrangian using superfields such that

S =

∫
d4x

∫
d4θL, (2.23)

where the last integral is over the four Grassman variables. This will project out
only the desired terms, because of how the Grassman integral is defined. Thus
the supersymmetric Lagrangian may be constructed from superfields and their
products. It can be written generically as

L = Lθθθ̄θ̄ + θθLθ̄θ̄ + θ̄θ̄Lθθ, (2.24)

where the indices indicate the highest power of θ in each term. Note that this
alters the dimensions of L, since the Grassman variables θ have mass dimension
−1/2.

The superpotential W is defined as a product of left-chiral superfields,

W (Φ) = LiΦi +
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk. (2.25)

The inclusion of higher-order field terms is ruled out by the condition of renormal-
izability, which forbids terms where the combined mass dimension of the factors
(including the leading Grassman coordinates in Eq. 2.24 and the differential d4θ
in Eq. 2.23) are larger than four. Scalar, fermionic and auxillary fields have mass

1Vµ(x) has four d.o.f.’s, but one d.o.f. is removed by the gauge freedom of the imaginary
part of A(x).
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dimension 1, 3/2 and 2, respectively, and the Grassman coordinates θ have di-
mension −1/2. The most general Lagrangian that can be written in terms of
chiral superfields is

L = Φ†iΦi + θ̄θ̄W (Φ) + θθW (Φ†), (2.26)

where the first term is called the kinetic term.
The Lagrangian has to be gauge invariant. The general gauge transformation

of a chiral superfield under a group G is defined by

Φ
G→ e−iqΛ

aTaΦ, (2.27)

where Ta are the group generators, q is the charge of Φ under G and the gauge
parameters Λa can be shown to be left-chiral superfields. The equivalent trans-
formation for a right-chiral superfield Φ† involves a right-chiral superfield gauge
parameter Λ†a.

Analogously to the Standard Model, the supersymmetric gauge interactions
are introduced as compensating terms to the gauge transformation of the chiral
superfields. The analogue to the gauge boson fields are the vector superfields V a,
which are introduced into the kinetic terms of the Lagrangian by writing them
as

Φ†ie
qiV

aTaΦi, (2.28)

so that the kinetic term transforms as

Φ†ie
qiV

aTaΦi
G→ Φ†ie

iqi(Λ
a)†TaeqiV

′aTae−iqiΛ
aTaΦi, (2.29)

which is invariant given that the vector superfields transform as

eqV
′aTa = e−iq(Λ

a)†TaeqV
aTaeiqΛ

aTa . (2.30)

For infinitesimal Λ, this is to leading order

V
′a = V a + i(Λa − (Λa)†)− 1

2
qfabcV

b((Λc)† + Λc). (2.31)

This gives for the vector component fields of the vector superfields, V a
µ ,

V a
µ

G→ V
′a
µ = V a

µ + i∂µ(Aa − (Aa)∗ − qfabcV b
µ (Ac + (Ac)∗). (2.32)

With these definitions, it can be shown that the Standard Model couplings of
fermions with bosons are recovered by defining the covariant derivative

Di
µ = ∂µ −

i

2
qiVµ. (2.33)
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The terms of the supersymmetric Lagrangian containing the field strengths
of the gauge fields are written as

Tr[WAWA], (2.34)

where WA and W̄Ȧ are left- and right-handed chiral superfields, respectively, given
by

WA ≡ −
1

4
D̄D̄e−qV

aTaDAe
qV aTa , (2.35)

W̄Ȧ ≡ −
1

4
DDe−qV

aTaD̄Ȧe
qV aTa . (2.36)

The most general form of the supersymmetric Lagrangian is then

L = Φ†eqV
aTaΦ + θ̄θ̄W (Φ) + θθW (Φ†) +

1

2T (R)
θ̄θ̄Tr(WAWA), (2.37)

where T (R), the Dynkin index of the representation of the gauge group, is a
normalization constant.

2.4 Supersymmetry breaking

Supersymmetry has to be a broken theory, at least in the low-energy limit, since
supersymmetric particles with Standard Model masses are not observed. The
breaking can be inserted into the supersymmetry Lagrangian by hand, by ex-
plicitly adding terms that break supersymmetry and allow for mass splitting.
The rationale for these terms is that the SUSY Lagrangian is only an effective
Lagrangian where some heavy fields have been integrated out, and that the break-
ing of SUSY occurs through these fields at a higher scale through a spontaneous
symmetry breaking mechanism similar to the Higgs mechanism in the Standard
Model.

There are several alternatives for the mechanisms of SUSY breaking, some of
which are Planck-scale mediated SUSY breaking, gauge mediated SUSY breaking
and anomaly mediated SUSY breaking. Whichever of the mechanisms is chosen,
there are only a finite set of terms that may be added to the Lagrangian without
reintroducing the hierarchy problems of the Higgs mass loop corrections. They
are called soft SUSY breaking terms, and are required to have couplings of mass
dimension one or higher. They may in the most general form be written

Lsoft =− 1

4T (R)
Mθθθ̄θ̄Tr[WAWA]− 1

6
aijkθθθ̄θ̄ΦiΦjΦk

− 1

2
bijθθθ̄θ̄ΦiΦj − tiθθθ̄θ̄Φi + h.c. (2.38)

−mijθθθ̄θ̄Φ
†
iΦj.
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In terms of the component fields of the superfields, the soft Lagrangian may be
written

Lsoft =− 1

2
MλAλA −

(
1

6
aijkAiAjAk +

1

2
bijAiAj + tiAi +

1

2
cijkA

∗
iAjAk + c.c.

)
(2.39)

−m2
ijA
∗
iAj.

Since this contains both Weyl spinor fields λA and scalar fields Ai, the soft terms
may be used to modify masses and couplings of the superpartner scalar and
fermionic fields which will appear below.

2.5 The Minimal Supersymmetric Standard

Model

The Minimal Supersymmetric Standard Model (MSSM) is the minimal super-
symmetric theory which contains the field content of the Standard Model. It is
constructed by choosing superfields in accordance with the requirements deduced
in the previous sections. To construct a Dirac fermion, we use one left-chiral and
one right-chiral superfield together. This gives the four fermionic degrees of free-
dom that a Dirac fermion and its antiparticle require. Since each chiral superfield
also contains two scalar degrees of freedom (after removing the auxillary fields),
this introduces two scalar particle-antiparticle pairs, which are called the super-
symmetric partners, or superpartners, of the Dirac fermion. An important point
is that all superfield components must have the same charge under all gauge
groups, due to the way the gauge transformation was defined. This also means
that the scalar fields generally will be charged, and that the supersymmetric
partner fields have the same couplings as their Standard Model counterparts.

The superfields for the charged leptons are denoted li and Ēi for the left- and
right-chiral superfields, respectively, and the left-handed neutrino superfields are
denoted νi. Here, i = 1, 2, 3 is a generation index. The SU(2)L doublet of the
Standard Model is recovered by setting Li = (νi, li). The quark superfields are
denoted ui, Ūi, di and D̄i, where Qi = (ui, di) makes the SU(2)L doublet.

The gauge boson fields come from the vector superfields, each of which also
contains two Weyl-spinor fields of opposite handedness. To obey gauge invari-
ance, n2 − 1 vector superfields are required for each of the SU(n) groups just as
in the Standard Model, i.e. gauge invariance under U(1)Y × SU(2)L × SU(3)C
requires 1+3+8 vector superfields.2 These are denoted B0, W a and Ca, respec-
tively. The Weyl spinor fields, the superpartners of the gauge fields, are written
as B̃0, W̃ a and g̃, respectively. In the literature, these are referred to as bino,
wino and gluino.

2Again, n2 rather than n2 − 1 for the U(1) group.
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The MSSM requires two Higgs superfield SU(2)L doublets to be able to give
mass to both up- and down-type quarks. In the Standard Model, the same
Higgs doublet can be used for both types by rotating the components using the
SU(2)L generators, but this is not possible in SUSY because it would mix left-
and right-handed superfields in the superpotential. The Higgs doublets in the
MSSM are

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
, (2.40)

where the sign indicates electric charge. This introduces several additional Higgs
scalars into the model, as well as their fermionic superpartner fields.

Using the fields listed above, the MSSM Lagrangian LMSSM may be con-
structed, subject to the rules for a general gauge invariant SUSY Lagrangian
that were derived in sections 2.3 and 2.4. This gives rise to kinetic terms, su-
perpotential terms, supersymmetric field strength terms and soft SUSY breaking
terms. The total MSSM Lagrangian is

L = Lkin +W + LV + Lsoft. (2.41)

The kinetic terms are given by

Lkin =L†ie
1
2
gσW− 1

2
g′BLi +Q†ie

1
2
gsλC+ 1

2
gσW+ 1

3
· 1
2
g′BQi

+ Ū †i e
1
2
gsλC− 4

3
· 1
2
g′BŪi + D̄†i e

1
2
gsλC+ 2

3
· 1
2
g′BD̄i (2.42)

+ Ē†i e
2 1
2
g′BĒi +H†ue

1
2
gσW+ 1

2
g′BHu +H†de

1
2
gσW− 1

2
g′BHd,

where g′, g and gs are the coupling constants of U(1)Y , SU(2)L and SU(3)C ,
respectively. The hypercharge under U(1)Y is assigned in units of 1

2
g′ as a con-

vention. Also, factors of 1
2

are used in the transformations of SU(2)L and SU(3)C
to avoid accumulation of numerical factors because of how the generators are
defined. With these conventions, the electroweak relationship between electric
charge Q, hypercharge Y and weak isospin T3 is

Q =
Y

2
+ T3. (2.43)

The field strength terms are

LV =
1

2
Tr
[
WAWA

]
θ̄θ̄ +

1

2
Tr
[
CACA

]
θ̄θ̄ +

1

4
BABAθ̄θ̄ + h.c., (2.44)

where the field strengths are given as

WA = −1

4
D̄D̄e−WDAe

W , W =
1

2
gσaW a, (2.45)

CA = −1

4
D̄D̄e−CDAe

C , C =
1

2
gsλ

aCa, (2.46)

BA = −1

4
D̄D̄DAB, B =

1

2
g′B0. (2.47)
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The possible gauge invariant terms of the MSSM superpotential W are

W =µHuHd + µ′iLiHu + yeijLiHdEjy
u
ijQiHuŪj + ydijQiHdD̄j (2.48)

+ λijkLiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k,

where HuHd is shorthand for HT
u iσ2Hd, to make the term SU(2)L invariant.

2.5.1 R-parity

The superpotential in Eq. (2.48) contains terms which break lepton and baryon
number conservation, namely LHu, LLE and LQD̄. If the couplings for these
terms are large, they allow for proton decay, which is experimentally very heavily
constrained, with a lifetime of τproton > 1033 yr [19]. To avoid this, it is conven-
tional to introduce the concept of R-parity, which gives an explanation for why
these couplings are zero.

R-parity is a multiplicative quantum number which is assumed to be conserved
in all SUSY interactions. Formally, a particle has R-parity given by

R = (−1)2s+3B+L, (2.49)

where s is the particle’s spin, B its baryon number and L its lepton number.
The important point is that all Standard Model particles have R = +1 while all
superpartners have R = −1. This leads to the very important prediction that
superpartner particles can only be produced and annihilate in pairs. In particular,
it means that the lightest superpartner (LSP) must be stable against decay. This
makes the LSP very attractive as a candidate for Dark Matter, if it is electrically
neutral and has no colour charge. In a SUSY scenario with conservation of R-
parity, the supersymmetric particles will typically decay in cascades down to the
LSP, emitting multiple Standard Model particles along the way.

With R-parity, the possible supersymmetry breaking soft terms of the MSSM
are, in component fields,

Lsoft =

(
−1

2
M1B̃B̃ −

1

2
M2W̃

i,AW̃ i
A −

1

2
M3g̃

a,Ag̃aA + c.c.

)
+
(
−aeijL̃iHdẽ

∗
iR − auijQ̃iHuũ

∗
iR − adijQ̃iHdd̃

∗
jR + c.c.

)
(2.50)

−(mL
ij)

2L̃†i L̃j − (me
ij)

2ẽ∗iRẽjR − (mQ
ij)

2Q̃†iQ̃j

−(mu
ij)

2ũ∗iRũjR − (md
ij)

2d̃∗iRd̃jR −m2
Hu
H†uHu −m2

Hd
H†dHd.

The soft terms constitute the main contributions to the superpartner masses.
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2.6 Radiative electroweak symmetry breaking

The scalar potential of the MSSM Higgs fields is, in terms of component fields,

V (Hu, Hd) =|µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |2
)

+
1

8

(
g2 + g′2

) (
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2 (2.51)

+m2
Hu

(
|H0

u|2 + |H+
u |2
)

+m2
Hd

(
|H0

d |2 + |H+
d |2
)

+
[
b
(
H+
u H

−
d −H0

uH
0
d

)
+ c.c.

]
.

It can be shown that a necessary and sufficient set of conditions for achieving
spontaneous electroweak symmetry breaking in this potential is [2]

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
, (2.52)

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (2.53)

Like any quantum field theory, the MSSM is subject to renormalization, which
induces the running of the coupling constants and masses of the model as dis-
cussed in Chapter 1. In particular, the mass parameters mHu/d

for the Higgs
doublets, which come from soft breaking terms in the Lagrangian, run with en-
ergy. To break the electroweak symmetry, i.e. satisfy Eqs. (2.52) and (2.53), one
can assume that these are equal at some high scale, and run down. It can be
shown that the beta functions which determine the running to lowest order are
given by

16π2βm2
Hu

= 6|yt|2
(
m2
Hu

+ (mQ
33)2 + (mu

33)2
)
, (2.54)

16π2βm2
Hd

= 6|yb|2
(
m2
Hd

+ (mQ
33)2 + (md

33)2
)
, (2.55)

where yt and yb are the top and bottom Yukawa couplings, respectively. Be-
cause the top Yukawa coupling is much larger than the bottom one, the mHu

parameter runs down much faster with energy and can become negative, facil-
itating the symmetry breaking given by Eqs. (2.52) and (2.53). This is called
radiative electroweak symmetry breaking, and gives an explanation for the Higgs
mechanism.

As a result of the symmetry breaking, the neutral components of both the
Higgs doublets acquire a non-vanishing vacuum expectation value, vu = 〈H0

u〉
and vd = 〈H0

d〉, respectively. These must relate to the vector boson masses of the
Standard Model as

v2
u + v2

d =
2m2

Z

g2 + g′2
≈ (174 GeV)2. (2.56)
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The remaining free parameter is conventionally parametrized as

tan β ≡ vu
vd
. (2.57)

2.7 Particle phenomenology of the MSSM

Standard model particles3 Spin Superpartners Spin

e, µ, τ 1/2 ẽL, ẽR, µ̃L, µ̃R, τ̃1, τ̃2 0
νe, νµ, ντ 1/2 ν̃e,L, ν̃e,R, ν̃µ,L, ν̃µ,R, ν̃τ,L, ν̃τ,R 0

u, d, s, c 1/2 ũL, ũR, d̃L, d̃R, s̃L, s̃R, c̃L, c̃R 0

b, t 1/2 b̃1, b̃2, t̃1, t̃2 0
h,H,A,H± 0 χ0

1, χ
0
2, χ

0
3, χ

0
4 1/2

B0,W 1,2,3 1 χ±1 , χ
±
2 1/2

g 1 g̃ 1/2

Table 2.1: Summary of MSSM particle and sparticle content.

The total particle content of the MSSM is as follows: The Standard Model
particles are present: electrons, muons, taus and their corresponding neutrinos,
the up, down, strange, charm, bottom and top quarks, the photon, Z boson, W
bosons, gluons, and the Higgs boson. In addition to the Standard Model Higgs
h, there are four other scalar Higgs particles with positive R-parity, labeled H,
H± and A. H is identical to h except for its larger mass, and is therefore termed
“heavy Higgs”, in contrast to the “light Higgs” h of the Standard Model. The
other neutral field A is a pseudo-scalar.

All the Standard Model particles have superpartners, often termed sparticles.
For the gluons, they are called gluinos and labeled g̃. The partners of the B0

and W a fields, which in the Standard Model make up the photon, Z and W±,
mix with the superpartner Higgs fields to form four neutral Majorana fermions
called neutralinos, labeled χ̃0

i , i = 1, ..., 4, and two charged fermion-antifermion
pairs called charginos, χ̃±i , i = 1, 2. Each of the Standard Model fermions get two
corresponding scalar particles with the same gauge charges. For the first two gen-
erations, the mass matrix is to good approximation diagonal in the basis spanned
by the superpartner fields to the chiral Weyl fermions, so e.g. the superpartners
of the up quark u are labeled ũR and ũL. For the third-generation fermions, the
chiral approximation is cruder, so these mass eigenstates are just numbered, e.g.
b̃1 and b̃2 for the b quark. A summary of the MSSM particle content is shown in
Table 2.1.

The fact that superpartner fields inherit the couplings of their Standard Model
counterparts is very useful when drawing Feynman diagrams for processes, since

3Plus the extended Higgs sector.
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intuition from the Standard Model can be applied through supersymmetriza-
tion of the diagrams. For instance, the fermion-fermion-gauge boson vertices
(Fig. 2.1a) of the Standard Model have supersymmetrized fermion-sfermion-
gaugino and sfermion-sfermion-gauge boson versions (figs. 2.1 b and c). However,
sfermion-sfermion-gaugino does not exist, because of R-parity.

f

f

g

(a)

f̃

f

g̃

(b)

f̃

f̃

g

(c)

Figure 2.1: Feynman diagrams of a fermion-fermion-gauge boson vertex
(a) and the supersymmetrized fermion-sfermion-gaugino (b) and sfermion-
sfermion-gauge boson (c) vertices.

An important consequence of the coupling inheritance is that the gaugino
fields χ̃

0/±
i will couple differently depending on the mass mixing matrix for these

states. Since the wino field inherits the left-chiral SU(2)L coupling, the chiral-
ity of the couplings of the four neutralinos may differ considerably if the mass
eigenstates are close to the gauge eigenstates. In the parameter point used for
the analysis in the coming chapters, the second-generation neutralino consists
of a large wino part, and this means that it has a small coupling to right-chiral
quarks.

2.7.1 Sparticle masses

The main contributions to the sparticle masses naturally come from the soft
terms, since these are responsible for the symmetry breaking which would oth-
erwise give Standard Model masses to sparticles. The mass parameters from
these terms are the gaugino mass terms M1,2,3, the sfermion mass terms mij and
the Higgs terms mHu/d

. Additionally, the parameter µ from the superpotential
term coupling the Higgs doublets together in the unbroken SUSY Lagrangian
contributes [2].
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• At tree level, the different Higgs masses (which have positive R-parity) are

m2
A = 2|µ|2 +m2

Hu
+m2

Hd
, (2.58)

m2
h,H =

1

2

(
m2
A +m2

Z ±
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2 2β

)
, (2.59)

m2
H± = m2

A +m2
W . (2.60)

• The gluino mass mg̃ is given as

mg̃ = M3

[
1 +

αs
4π

(
15 + 6 ln

µ

M3

+
∑
all q̃

Aq̃

)]
, (2.61)

where Aq̃ are the significant squark one-loop contributions given by

Aq̃ =

∫ 1

0

dx x ln

(
x
m2
q̃

M2
3

+ (1− x)
m2
q

M2
3

− x(1− x)− iε
)
. (2.62)

• The neutralinos χ̃0
i are the mass eigenstates of the bino, wino and higgsino

fields. In the gauge eigenstate basis, where χ̃0 = (B̃0, W̃ 0, H̃0
d , H̃

0
u)T , the

mass matrix may be written at tree level as

Mχ̃0 =


M1 0 −cβsθWmZ sβsθWmZ

0 M2 cβcθWmZ −sβcθWmZ

−cβsθWmZ sβsθWmZ 0 −µ
cβcθWmZ −sβcθWmZ −µ 0

 , (2.63)

where cx = cosx and sx = sinx. For a given parameter choice, this matrix
must be diagonalized to find the neutralino masses and field content.

• The charginos χ̃±i have analogous structure. In the gauge eigenstate basis
χ̃± = (W̃+, H̃+

u , W̃
−, H̃−d )T , the mass matrix is

Mχ̃± =


0 0 M2

√
2cβmW

0 0
√

2sβmW µ

M2

√
2sβmW 0 0√

2sβmW µ 0 0

 . (2.64)

• The first two generations of sfermions, superpartners of the Standard Model
fermions, get masses according to

m2
F = m2

F,soft + ∆F , (2.65)
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where m2
F,soft is the mass term from the soft term of the form −m2

FF
†F and

∆F is given by

∆F = (T3F −QF sin2 θW ) cos 2β m2
Z , (2.66)

where T3F and QF are the weak isospin and electric charge, respectively, of
the left-handed supermultiplet to which the sfermion belongs. The masses
are then e.g.

m2
ẽL

= m2
L1

+ ∆ẽL, (2.67)

m2
ẽR

= m2
eR

+ ∆ẽR. (2.68)

The mass-splitting between same-generation sleptons and squarks are uni-
versal and given by e.g.

m2
ẽL
−m2

ν̃L
= m2

d̃L
−m2

ũL
= − cos 2β m2

W . (2.69)

• The third-generation sfermions have more complicated mass contributions,
e.g. the stop squark mass matrix in the chiral gauge eigenstate basis t̃ =
(t̃L, t̃R)T is given by

m2
t̃ =

(
m2
Q3

+m2
t + ∆ũL v((au33)∗ sin β − µyt cos β)

v(au33 sin β − µ∗yt cos β) m2
u3 +m2

t + ∆ũR

)
, (2.70)

which can be diagonalized to find the mass eigenstates. The reason that
the third-generation sfermions have more complicated mass matrices is that
the Yukawa and trilinear couplings are larger, giving non-negligible contri-
butions to the masses.

2.8 Gauge unification and mass hierarchies

It was mentioned in Section 1.8 that one very appealing feature of supersym-
metry is that the coupling constants of the electromagnetic, weak and strong
interactions can be made to unite at a high energy scale. In the MSSM, this
scale, called the “grand unification scale” (GUT), is mGUT ≈ 2 × 1016 GeV. If
we assume that the grand unified gauge group is SU(5) or SO(10),4, then we can
take the three gauge couplings of the grand unified theory to be [20]

g1 =

√
5

3
g′, g2 = g, g3 = gs. (2.71)

4SO(n) is the special orthogonal group given in the defining matrix representation as the
group of all orthogonal n× n matrices of determinant one.
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It can be shown that the one-loop β-functions of the gauge couplings gi and the
gaugino soft mass parameters Mi are

βgi|1−loop =
1

16π2
big

3
i , (2.72)

βMi
|1−loop =

1

8π2
g2
iMibi. (2.73)

The ratios Mi/g
2
i for all three parameter pairs are scale independent at one-loop

order. To see this, it is convenent to write the β-functions as

βX ≡
d

dt
X, (2.74)

for a running variable X, where t = log µ is the scale parameter for the renor-
malization scale µ. If we define

R =
Mi

g2
i

, (2.75)

then

βR =
dR

dt
=

( d
dt
Mi)g

2
i −Mi

d
dt
g2
i

g4
i

= 0,

which proves the claim.
By assuming that the coupling constants gi unite to the value gu at the GUT

scale, and that the gaugino masses Mi have the common value m1/2 at the same
scale, then it follows that

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
m1/2

gu
. (2.76)

In terms of the electromagnetic and strong fine-structure constants α and αs,
and the weak mixing angle θW , this gives

M3 =
αs
α

sin2 θWM2 =
3

5

αs
α

cos2 θWM1. (2.77)

At a scale of 1 TeV, this evaluates to approximately

M3 : M2 : M1 u 6 : 2 : 1. (2.78)

This propagates into the mass formulae to predict the approximate mass rela-
tionships

mg̃ ≈ 6mχ̃0
1

and mχ̃0
2
≈ mχ̃±1

≈ 2mχ̃0
1
. (2.79)
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2.9 The Constrained MSSM

The available parameter space of the general MSSM is very large, of the order
100 free parameters. The reason for the vast number of parameters are the soft
supersymmetry breaking terms, which contain coupling parameters for all the
extra terms without any a priori way to relate them. It is therefore conventional
to make some restricting assumptions. A much-studied restriction is the Con-
strained MSSM (CMSSM), also known as minimal supergravity (mSUGRA). This
model is constructed by assuming that supersymmetry breaking is mediated by
some mechanism of gravity at the Planck scale of MP = 2.4 × 1018 GeV. By
assuming a minimal form for the parameters at the GUT scale, to obtain gauge
unification, the resulting model is parametrized in terms of five parameters,

m1/2, m0, A0, tan β and sign(µ). (2.80)

The mass parametersm1/2 andm0 are the common soft masses of all gauginos and
sfermions, respectively, at the GUT scale. The mass splitting between sparticles
appears when the individual sparticle masses are evolved down to a lower scale.
This is illustrated in Fig. 2.2 for one choice of m1/2 and m0. The figure also
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Figure 2.2: MSSM RG-running, from [2]. In this figure, m0 = 200 GeV and
m1/2 = 600 GeV.

illustrates the evolution of mHu down to a negative value, facilitating the radiative
electroweak symmetry breaking discussed in Section 2.6.
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Because the renormalization running is proportional to the Yukawa couplings
of the Standard Model partners, the sfermion partners will often get an inverted
mass hierarchy compared to the Standard Model. Especially in the colour sector,
where stop and sbottom are often the lightest squarks. However, the effect may be
compensated by mixing terms, and the first and second generation mass splittings
are small or even degenerate, since the masses are dominated by the common soft
mass terms. Since all the sfermion masses evolve from the common mass m0, the
squarks will typically be heavier than the sleptons in CMSSM because the running
of the former is affected by QCD interactions. Also, because the SU(3) coupling
g3 influences the RG-running of mq̃, typically mq̃ ≈ mg̃.

This thesis studies a particular type of cascade decay chain, namely

q̃ → χ̃0
2q → l̃lq → χ̃0

1llq. (2.81)

which exhibits several features which enable determination of SUSY mass pa-
rameters. For this chain to be available to study in a CMSSM parameter point,
the following conditions must be satisfied:

1. The mass hierarchy must be mq̃ > mχ̃0
2
> ml̃ > mχ̃0

1
.

2. The gluino must be as heavy or heavier than the squarks, to disable the
q̃ → g̃q channel, which otherwise dominates over the chain process.

3. All the intermediate particles must have sizeable branching fractions to the
subsequent chain particles.

In [21] it is shown that these conditions are indeed satisfied in large parts of the
CMSSM parameter space. Figure 2.3 shows plots of a selection of the CMSSM
parameter space, indicating different mass hierarchies. The green areas have the
correct hierarchy for the chain and the right LSP. The darker green area inside it
additionally has a sizeable branching fraction into the chain, i.e. more than 10%
of the branching at the SPS1a benchmark point defined in [22], which is marked
and denoted α in Fig. 2.3a. Regions where a charged particle (the stau) is the
LSP are excluded. The SPS1a point is the benchmark point that will be used in
subsequent chapters.

2.9.1 The SPS1a benchmark point

The SPS1a benchmark point is defined in [22] as the CMSSM point with m0 =
100 GeV, m1/2 = 250 GeV, A0 = −100 GeV, tan β = 10 and µ > 0. The
point is actually defined as the MSSM parameters obtained by using ISAJET

7.58 [23] to RG-run down from the defining CMSSM parameters. In this thesis
we will instead use the parameters obtained by using SOFTSUSY 3.4.1 [24] for
RG-running. This gives a slightly different mass spectrum, but the main features
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(a) (b)

(c) (d)

Figure 2.3: CMSSM mass hierarchies for different parameter choices: A0 =
−m0, tanβ = 10 (a), A0 = 0, tanβ = 30 (b), A0 = 0, tanβ = 10 (c), and
A0 = −1000 GeV, tanβ = 5 (d). The dark and light green areas satisfy the
conditions for the decay cascade (2.81). From [21].

are the same. Figure 2.4 shows the mass and decay spectrum of the SPS1a point
in SOFTSUSY. The dashed lines indicate the decay channels, and the line width is
proportional to the branching ratio. Decays with a branching ratio of less than
1% are not shown. Among the features to note is that the right-handed squarks
have a much smaller branching ratio to χ̃0

2 than the left-handeds: 1% and 30%,
respectively. This limits the amount of right-handed squarks initiating the chain,
which is helpful for mass reconstruction since it limits the mass splitting between
the squarks in the chain. Also, the left-handed sleptons are heavier than χ̃0

2,
switching off that decay channel and limiting the slepton mass splitting.

The branching fractions of the χ0
2 are divided between the the different l̃l decay

modes, with nearly 90% branching to τ̃ τ and the rest evenly divided between ẽe
and µ̃µ. Because the tau is short-lived and has a large branching fraction to
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Figure 2.4: The mass spectrum of SPS1a from SOFTSUSY. The dashed lines
show the decay channels. The figure is made using PySLHA 3.0.2 [25]. See
the text for details.

hadrons (65%) [19], it is difficult to use the cascade events which contain a tau
for kinematical analysis, and this limits the number of useful chain events at
SPS1a. For the analysis in the coming chapters, we will work with event samples
of 25 events generated in the SPS1a parameter point at a centre-of-momentum
energy of

√
s = 14 TeV, selected such that the leptons in the two chains are of

different flavour. This corresponds to an integrated luminosity of 3 fb−1 [1].

2.10 The experimental status of supersymme-

try

The search for supersymmetric particles is one of the main activities ongoing
at CERN’s Large Hadron Collider, particularly in the general purpose ATLAS
and CMS experiments. Before the LHC was turned off for maintenance and
upgrades at the end of 2012, each experiment had collected ∼ 20 fb−1 of data
at a centre-of-momentum energy of

√
s = 8 TeV in what is called LHC Run I.

No significant excesses of events that could indicate the existence of SUSY have
so far been observed, with the exception of a few minor deviations in data that
do not reach the level required for a discovery, the most significant being a 3σ
excess in events consistent with a Z-boson, missing energy and jets [26]. At the
time of writing, the LHC has begun circulating beams in preparation for Run
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II, which will achieve a centre-of-momentum energy of
√
s = 13 TeV, and is

expected to record ∼ 300 fb−1 of data over the next ten years. In an even longer
perspective, an upgrade to the high luminosity LHC is planned, which brings the
total expected integrated luminosity up to 3000 fb−1 at

√
s = 14 TeV.

The discovery of a Higgs boson with [27]

mh = 125.09 ± 0.21 (stat.)± 0.11 (syst.) GeV, (2.82)

has important implications for supersymmetry. If we assume that it is the light
SM-like Higgs of the MSSM, Eqs. (2.58) and (2.59) restrict combinations of the
Higgs potential parameters |µ|, tan β and m2

Hu/d
at tree level. In corrections to

its mass at loop-level, this Higgs impacts even more supersymmetric particles,
in particular those with large couplings, such as the stop squark, as discussed in
Section 1.8 and Appendix B.

Figure 2.5 shows the current reach of ATLAS in the CMSSM model which
we discussed in Section 2.9. The plot shows the (m0,m1/2) plane for fixed values
of tan β = 30, A0 = −2m0 and µ > 0. The choice of tan β and A0 is made to
accomodate a large Higgs mass consistent with (2.82), here shown as dashed–
dotted blue lines. The various coloured (solid) lines indicate the lower bound for
the parameter combination at the 95% confidence level in different searches, while
the dashed lines are the expected exclusion limits for the given data assuming
only the Standard Model. We see that for low values of m0, where the decay
chain in eq. (2.81) exists, searches for events with multiple jets and no leptons
put the most constraining limits on the m1/2 parameter.

Figure 2.6 shows the same kinds of exclusion limits, but now in the (mq̃/g̃,mχ̃0
1
)

mass plane for the MSSM. These searches assume simplified models with the
mass hierarchy mq̃/g̃ > mχ̃0

2
> ml̃ > mχ̃0

1
and all other sparticles decoupled.5 The

events considered in this analysis are required to have two (a) and four (b) jets,
respectively, where none of the jets have been tagged as b-jets. Additionally, there
must be two leptons of opposite sign and same flavour, which are not allowed
to have an invariant mass between them that is compatible with a Z boson
decaying. Also, there must be a significant amount (> 200 GeV) of missing
transverse energy. We see that for a χ̃0

1 with mass below 200 GeV, squarks below
800 GeV are excluded, and below 300 GeV, gluinos below 1200 GeV are ruled
out, thus putting considerable constraints on the decay chain we are interested
in.

Referring back to Fig. 2.3, we see that the bright green region, where the
chain hierarchy is present with a sizeable branching fraction, favours low values
for m0 and m1/2 in the CMSSM. Comparing to the experimental constraints of
figure 2.5, we see that much of these parts of the parameter space are ruled out.
In particular we note that the SPS1a point is excluded. The top left region,

5Only the squarks of the first two generations are included. The third generation squarks
are assumed to be decoupled.
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Figure 2.5: CMSSM limits from ATLAS following Run I [28–33].

where m1/2 & 800 GeV and 1000 GeV & m0 & 400 GeV, is compatible with
the green areas of Fig. 2.3 and is not ruled out by the ATLAS limits themselves,
but it corresponds to a Higgs mass mh . 123 GeV, which is somewhat far from
the measured value in (2.82). However, it should be noted that current state-of-
the-art calculations of the Higgs mass in the MSSM (and CMSSM) come with
theoretical errors of the order of 2 GeV [34], thus this region is not per se ruled
out. There is also a question of what values are chosen for A0 and tan β, since
the searches in Fig. 2.5 assume one specific choice. Tuning these parameters may
bring closer agreement with the Higgs mass, but this has not been investigated
here since it would require a full re-evaluation of the ATLAS searches.

As a benchmark for the event yield of the chain (2.81), we have calculated the
expected number of events in which there are two such chains, for the parameter
point m0 = 400 GeV, m1/2 = 800 GeV, A0 = −800 GeV, tan β = 30, µ > 0
for LHC Run II. This is the lowest (m0,m1/2) combination that is not excluded
by Fig. 2.5 and at the same time provides the conditions needed for the chain.
We calculate sparticle masses and branching fractions using SOFTSUSY 3.4.1

[24] and squark and gluino cross sections for 13 TeV LHC using NLL-fast 3.0

[35–41]. Assuming an integrated luminosity of 3000 fb−1 for a high-luminosity
upgraded LHC,6 we find an expectation of the order 10−5 events.

6The high-luminosity upgrade of the LHC will probably take data at
√
s = 14 TeV. There

is, however, no complete implementation of NLL-fast for 14 TeV.
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Figure 2.6: Limits on the mass of q̃ (a) and g̃ (b) versus the χ̃0
1 mass in

events with least two (a) or four (b) jets (with a b-jet veto), respectively, and
a same-flavour dilepton pair. From ATLAS Run-I [26].

To match the measured Higgs mass and avoid the ATLAS direct searches,
and at the same time keep the conditions needed for the chain as illustrated in
Fig. 2.3, it appears that both the m0 and m1/2 parameters need to be pushed to
or above 1000 GeV. Increasing the sparticle masses reduces the production cross
section, which means that the expected number of events decreases even further.
Thus, it seems that it will be difficult to measure the golden decay chain in the
CMSSM at the LHC in a way that will be useful in the present context. However,
by requiring only one chain rather than two, the expected event yield increases
significantly. There are several measurements that can be done using only one
chain [42]. For the aforementioned parameter point, the expected number of
events with one chain is 0.10 — which is still very small, but it illustrates how
much rarer the two-sided chain is.

By loosening some of the constraining assumptions of the CMSSM, such as
the soft mass unification at a high scale, more general parametrizations of SUSY
may be defined. The failure of the LHC to find signs of supersymmetry has
prompted a large interest in studies of these more general models, in particular
those termed “Natural SUSY”, since the main guiding principle is to avoid the
need for fine-tuning, such as the little hierarchy problem of the Higgs mass dis-
cussed in Appendix B. In these more general models, the squark and/or gluino
masses may decouple, e.g. pushing the gluino and third generation squarks to
high masses, while retaining light squarks of the two first generations. This may
evade experimental constraints on the Higgs mass, and still give relatively large
cross sections for squark production to initiate the chain. However, one would
still be subject to the constraints shown in fig. 2.6 (a).

As a benchmark for this scenario, we have used NLL-fast to find the squark-
pair production cross section at 14 TeV LHC, in the decoupling limit of large
gluino mass. Assuming mq̃ = 850 GeV, we get σq̃q̃ = 0.258 pb. If we assume,
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as a best-case scenario, that the squarks have BR(q̃L → qχ̃0
2) = 100%, BR(q̃R →

qχ̃0
1) = 100%,7 and that BR(χ̃0

2 → ll̃) = 100% and BR(l̃ → lχ̃0
1) = 100%, then

the expected event yield with an integrated luminosity of 3000 fb−1 is about 200
000 events. This is an order of magnitude larger than for SPS1a.

7This corresponds to a scenario where χ̃0
2 ∼ W̃ 0, χ̃0

1 ∼ B̃0.



Chapter 3

Determination of SUSY particle
masses from cascade decays

3.1 The problem

Consider an LHC event where two chains of the form

q̃ → χ̃0
2q → l̃lq → χ̃0

1llq (3.1)

are present. Combined, the measurable particles in the two chains are the two
quarks and four leptons, where the lepton pairs are opposite-sign same-flavour.
The LSPs escape detection, but the sum of their transverse momenta can be
measured as the missing pT . The quantities of interest, however, are the masses
of the supersymmetric particles, mq̃,mχ̃0

2
,ml̃ and mχ̃0

1
. Potentially with several

values for the squarks and sleptons if they differ in generation and/or chirality
between the sides. These masses are not directly measurable, but the kinematics
of the problem depend on them.

Many methods have been investigated for the purpose of measuring super-
symmetric masses [3]. One well known example is the end-point method [43]. We
measure e.g. the dilepton invariant mass in the process (3.1). The distribution
of the dilepton invariant mass can be shown to form a right triangle where the
maximal value is given by

(mmax
ll )2 =

(
m2
χ̃0
2
−m2

l̃

)(
m2
l̃
−m2

χ̃0
1

)
m2
l̃

, (3.2)

thus constraining mχ̃0
2
, ml̃ and mχ̃0

1
. Similar constraints may be obtained for

the three other visible particle combinations, giving four equations with four
unknowns. This method is very dependent on statistics, since each measured
event only contributes one point to the distribution. A large number of events is
required to get a reliable value. However, the number of events contributing to

45
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the measurement is also much larger, since each side of the decay chain contribute
individually, thus making use of events with leptons on one side only as well.

3.2 Webber’s method

Webber [1] suggests a different method, where all available kinematical info from
every event is used. Consider the general decay tree in fig. 3.1. We assume
that we have an event with two such chains, but not necessarily with identical
particles in the two. We will distinguish the two chains by referring to them as the
“first” and “second” one, although the assignment is arbitrary. Assuming that

D C B A

c b a

Figure 3.1: Decay topology, from [42].

the decaying particles are on-shell, the four-momenta in the first chain should
satisfy

(pc + pb + pa + pA)2 = m2
D,

(pb + pa + pA)2 = m2
C ,

(pa + pA)2 = m2
B, (3.3)

p2
A = m2

A.

The first three equations give three linear constraints on the invisible four-
momentum pA:

−2pc · pA = m2
C −m2

D + 2pc · pb + 2pc · pa +m2
c ≡ S1, (3.4)

−2pb · pA = m2
B −m2

C + 2pb · pa +m2
b ≡ S2, (3.5)

−2pa · pA = m2
A −m2

B +m2
a ≡ S3. (3.6)

Physically, these correspond to projections of the invisible particles on the mea-
sured ones. Equivalently the second chain (with primed indices) gets the con-
straints

−2pc′ · pA′ = m2
C′ −m2

D′ + 2pc′ · pb′ + 2pc′ · pa′ +m2
c′ ≡ S5, (3.7)

−2pb′ · pA′ = m2
B′ −m2

C′ + 2pb′ · pa′ +m2
b′ ≡ S6, (3.8)

−2pa′ · pA′ = m2
A′ −m2

B′ +m2
a′ ≡ S7. (3.9)

In addition we have the transverse momentum constraints

pxA + pxA′ = pxmiss ≡ S4, (3.10)

pyA + pyA′ = pymiss ≡ S8.
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The vector S = (S1, S2, ...) thus depends on the eight unknown masses

M = (m2
D,m

2
C ,m

2
B,m

2
A′ ,m

2
D′ ,m

2
C′ ,m

2
B′ ,m

2
A′) (3.11)

and the visible momenta, which in principle are measurable. We define a vector
containing the four-momenta of the invisible final state particles as

P = (pxA, p
y
A, p

z
A, EA, p

x
A′ , p

y
A′ , p

z
A′ , EA′). (3.12)

We then have

AP = S, (3.13)

where

A = 2



pxc pyc pzc −Ec 0 0 0 0
pxb pyb pzb −Eb 0 0 0 0
pxa pya pza −Ea 0 0 0 0
1/2 0 0 0 1/2 0 0 0
0 0 0 0 pxc′ pyc′ pzc′ −Ec′
0 0 0 0 pxb′ pyb′ pzb′ −Eb′
0 0 0 0 pxa′ pya′ pza′ −Ea′
0 1/2 0 0 0 1/2 0 0


. (3.14)

Furthermore, S may be written as

S = BM + C, (3.15)

where

B =



−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0


(3.16)

is a sparse matrix, and

C = (2pc · pb + 2pc · pa +m2
c , 2p2 · p3 +m2

b ,m
2
a, p

x
miss,

2pc′ · pb′ + 2pc′ · pa′ +m2
c′ , 2pb′ · pa′ +m2

b′ ,m
2
a′ , p

y
miss). (3.17)

With all of this, the solution for the invisible four-momenta, given the unknown
masses, is

P = A−1S = DM + E, (3.18)
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where D = A−1B and E = A−1C.
The matrix D and vector E contain only measurable quantities, hence they

only need to be calculated once for every event. For the true value of the unknown
masses M, the system should satisfy the on-shell conditions

p2
A = P 2

4 − P 2
1 − P 2

2 − P 2
3 = m2

A,

p2
A′ = P 2

8 − P 2
5 − P 2

6 − P 2
7 = m2

A′ . (3.19)

So by calculating Dn and En for each event n, and making a hypothesis M for
the unknown masses, we can measure the goodness of fit for our hypothesis by
the quantity

ξ2(M) =
∑
n

[
(p2
A)n −m2

A

]2
+
[
(p2
A′)n −m2

A′

]2
. (3.20)

Note that this quantity measures the goodness-of-fit of all the unknown masses
equally, since it follows from the constraint equations (3.3) that for example

(p2
B)n −m2

B = (pa + pA)2
n −m2

B

= (p2
a)n + (p2

A)n + 2pa · pA −m2
B

= (p2
a)n + (p2

A)n −m2
A +m2

B −m2
a −m2

B (3.21)

= (p2
A)n −m2

A.

For each event there are eight constraining equations. There are eight un-
knowns from the masses plus six from the unknown LSP momenta (using the
on-shell constraint on the LSPs). The system is thus underconstrained, with six
free parameters. The point of the method is to minimize ξ2 as a function of M.
This is generally an eight-dimensional minimization problem with a potentially
very complicated behaviour, and thus not easy to solve. However, in the case
of identical chains, it reduces to a much more handleable four-dimensional one
which one could hope could be solved. In this case the number of free parameters
reduces from six to two. The condition of identical chains can often be satisfied
by a combination of vetoing (e.g. b-jets) and assuming small mass splittings
between different generations, thus approximating their masses as equal. As was
discussed in Section 2.9, this is a realistic assumption in many SUSY scenarios.
Note that because the system is underconstrained, more than one event is needed
to be able to solve for the masses.

Note that the method is applicable to a wider range of models than super-
symmetry — it may be used in any model which adds Standard Model partner
particles under a parity symmetry, for example in universal extra dimension
(UED) with the Kaluza-Klein excitations cascade

q1 → qZ1 → qll1 → qllγ1, (3.22)

where γ1 is the Kaluza-Klein excitation of the photon [44]. This is why we discuss
the chain in the abstract notation used above. However, we will only consider
supersymmetric applications in this thesis.
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3.3 Two technical modifications

For the method to be applicable, the matrix A must be invertible. A matrix is
invertible if its determinant is non-zero. However, the matrix A as it stands in
(3.14) as defined by Webber [1], is technically ill-defined for inversion since not
all rows have the same units. The rows 4 and 8, corresponding to the components
4 and 8 of the vector S, have no dimension, while the other rows have dimension
[mass]1. This is reflected in the components of S, where all, except 4 and 8, have
dimension [mass]2. This means both that the magnitude of the determinant is
sensitive to the choice of mass scale, since some rows have non-zero dimension,
and that it does not scale properly for numerical calculations, since not all rows
have the same dimension. This is something that Webber does not comment
on, and although it is more sensitive to numerical instability the method still in
principle works, but we make some minor reformulations of the method in order
to amend both problems.

For the first, we redefine S4 and S8 to be

S4 ≡ (pxA + pxA′)
2 = (pxmiss)

2, (3.23)

S8 ≡ (pyA + pyA′)
2 = (pymiss)

2.

We do not wish to redefine P (3.12), so to keep the relationship S = AP we
modify rows 4 and 8 of A to

A4 = (pxmiss, 0, 0, 0, p
x
miss, 0, 0, 0), (3.24)

A8 = (0, pymiss, 0, 0, 0, p
y
miss, 0, 0),

so that A now is

A = 2



pxc pyc pzc −Ec 0 0 0 0
pxb pyb pzb −Eb 0 0 0 0
pxa pya pza −Ea 0 0 0 0

pxmiss/2 0 0 0 pxmiss/2 0 0 0
0 0 0 0 pxc′ pyc′ pzc′ −Ec′
0 0 0 0 pxb′ pyb′ pzb′ −Eb′
0 0 0 0 pxa′ pya′ pza′ −Ea′
0 pymiss/2 0 0 0 pymiss/2 0 0


. (3.25)

This redefinition does not alter the solvability of the problem, since the only
information lost in S is the sign of pimiss which is kept in A instead. Also it keeps
the essential feature that A only contains measured quantities, so that it can be
inverted prior to making a mass hypothesis. The redefinition of S means we also
have to modify C to keep the relationship S = BM + C from Eq. (3.15). We
make the same redefinitions here, i.e.

C4 ≡ (pxmiss)
2, (3.26)

C8 ≡ (pymiss)
2.
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The other issue is to make the numerical problem dimensionless. All elements
of A and P now have mass dimension 1, while all elements of S, and thus M and
C, have dimension 2. We are free to multiply both sides of Eq. (3.13) by some
normalization mass Mnorm squared,

1

M2
norm

AP =
1

M2
norm

S, (3.27)

and we choose to take it into the matrix and vectors such that they all become
dimensionless, i.e. we modify

Â =
1

Mnorm

A,

P̂ =
1

Mnorm

P, (3.28)

Ŝ =
1

M2
norm

S,

thus modifying M and C in the same way as S to comply with Eq. (3.15). We
also modify the fitting function ξ2 accordingly, so that it becomes

ξ2(M) =
∑
n

[
(p̂2
A)n −

m2
A

M2
norm

]2

+

[
(p̂2
A′)n −

m2
A′

M2
norm

]2

. (3.29)

To obtain numbers of order one, which is optimal for numerical purposes, we
should pick a mass of the relevant scale for the problem. This is not something
that is known a priori, since it depends on the supersymmetric masses that we
are trying to determine. We might be tempted to use something based on the
measured momenta, but this is a bad idea since it would mean weighting different
events differently. We choose the normalization constant

Mnorm = 100 GeV, (3.30)

the same order of magnitude as we expect for the supersymmetric masses (elec-
troweak scale).

We have made thorough checks that this formulation and the original one
produce identical results within numerical accuracy, so that indeed the formula-
tions are equivalent. The normed matrix and vectors Â, P̂ and Ŝ are the ones
we will use throughout the rest of the thesis, and we will refer to them without
the hats, i.e. A, P and S.

3.4 Taking account of combinatorics

In a real detector event, the ordering of the quarks and leptons in and between
chains is not known — all we have are the measured particle types and their
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momenta. We must take this into account when applying the method to Monte
Carlo simulated datasets. Webber does this by evaluating all possible combina-
tions in each event at each mass point and selecting the combination which gives
the lowest ξ2 value, choosing to add this value to the sum in Eq. (3.29). The
number of possible combinations are 8 or 16, depending on whether the lepton
pairs in the two chains are the same flavour or not.

For two pairs of different-generation leptons, the possible orderings are (given
some ‘base ordering’ which we permute from): Switching the ordering of the
leptons in the first chain, switching the ordering of the leptons in the second
chain, or switching the leptons in both chains.1 For each of these permutations
we have the option to switch the two quarks, so the total number of combinations
is 8. In the case of identical leptons, we may additionally interchange leptons
between the chains — but this only increases the total combinations by a factor
of 2 because the same-chain leptons must have opposite charge.

Note that in order to switch the ordering of near and far leptons within the
same chain, all we need to do is permute the rows of the matrix A. The vector
C is invariant as long as the same-chain leptons have the same mass. When the
quarks are flipped, however, or when leptons are interchanged between chains,
then we must redefine A and C. Webber makes a point that this property can
save computer memory, since one only has to store two or four versions of the
matrix and vector for each event. We have not found this to be an issue.

3.5 Outline of our plan

In the following chapters we will investigate and develop this method further.
The plan of attack is as follows:

1. We begin by attempting to reproduce Webber’s parton level results using
Monte Carlo simulations. As a benchmark we investigate the precision
attainable for the CMSSM parameter point SPS1a [22], which was used
by Webber [1]. We also apply a crude momentum smearing, in order to
simulate that the measurement of the kinematics of final-state particles is
not exact, as well as a quality cut on the best-fit value of the ξ2 function
to eliminate bad event samples.

2. We proceed to analyze the effects of changing the settings of the numerical
routine used for minimizing the ξ2 function. In light of this, we present
revised estimates for the precision attainable for the method in the different
cases with and without momentum smearing.

1We will in the following refer to the lepton which is nearest to the quark in the decay chain
as the near lepton, and the other as the far lepton.
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3. We then compare results with and without including the combinatorical
issues from identifying the decay products. We also investigate the effects
of using a more sophisticated parametrization of the momentum smearing,
based on realistic detector response.

4. We proceed with investigating potential improvements to the method, such
as using the value of the determinant of the matrix A to discard bad events,
and schemes for reducing the combinatorical ambiguities.

5. The partons that emerge from the hadron showers will hadronize, forming a
hadron jet before arriving in the detector. Measurement of the initial parton
from reconstructing such jets is one of the big challenges of collider physics.
We use the FastJet [45] program for jet reconstruction, with algorithms
used in the LHC experiments, and study the effect of jet reconstruction on
the mass measurement.

6. In an analysis of real data, one would have to use selection criteria such
as cuts on transverse momentum and number of jets and leptons to dis-
criminate between signal and background events. We will apply such cut
schemes to our simulated events based on expectations for 14 TeV LHC,
and present estimates for the precision we can expect from the method in
this case.



Chapter 4

Investigating Webber’s method
by Monte Carlo simulations

Webber demonstrates the aptitude of the method on a Monte Carlo generated
dataset. A natural starting point for our study is to try to reproduce his results,
which is the main focus of the present chapter.

4.1 Reproducing Webber’s results

There are several ways in which a pair of squarks can be produced in pp collisions.
The three main categories are: direct pair production of two squarks or a squark-
antisquark pair, squark plus gluino with subsequent gluino decay to a squark, and
pair production of two gluinos which both subsequently decay to squarks. The
mechanism of production affects how much momentum goes into the squark, and
thus the momentum boost of the subsequent decay chain. However, the quantity
which is reconstructed, p2

A, is Lorentz invariant. Still, the numerical aspects
of the reconstruction depend on the measured momenta. The three different
categories also affect how many hard jets are present in the event, which affects
the combinatorical aspects of reconstructing the chain. This problem we will
return to in Chapter 5.

In [1], Webber studies the benchmark CMSSM parameter point SPS1a [22]
which we discussed in Section 2.9.1. He uses HERWIG 6.510 [46, 47] to produce
events, selecting only events with two left-handed first- or second generation
squarks (to limit the mass splitting), but irrespective of the hard production
process. He further specifies to only include events where the lepton pairs of the
two chains are of different flavour, and require them both to be of first or second
generation. He uses the quark four-momenta before parton showering, which
means that the quarks potentially are off-shell, and takes the quark masses to be
the invariant mass of these four-momenta.

The analysis, i.e. minimization of the ξ2, is performed on 100 samples of

53
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25 events each, using the Minuit [48] Simplex routine for minimization. He
models the effects of measurement errors in a real detector by applying a common
momentum smearing on all particles according to a gaussian distribution, and he
investigates a cut on the total ξ2 obtained at the minimum to eliminate samples
which give a bad result. His final results are summarized in Table 1 of [1], which
we for convenience show in Table 4.1. The four columns labeled mi show the
mean values and r.m.s. errors of each of the fitted masses in the samples, with
the true masses shown in parenthesis. The column δp/p indicates the standard
deviation of the gaussian smearing applied on the momenta, ξ2

max indicates the
cut value on the ξ2, fξ is the fraction of samples surviving the cut and fcorr is the
fraction of events where the chosen particle combination, selected as described
in Section 3.4, is the correct one. Note that if a sample is rejected by the ξ2 cut,
it means that this sample would have failed experiment, since each sample is a
separate simulation of a run of the LHC.

δp/p ξ2
max fξ fcorr mq̃(540) mχ̃0

2
(177) ml̃(143) mχ̃0

1
(96)

0 ∞ 100% 72% 538± 20 176± 12 143± 7 95± 10
0 100 80% 76% 539± 7 177± 1 144± 1 96± 2
5% ∞ 100% 52% 534± 28 176± 11 143± 10 95± 13
5% 100 57% 55% 539± 9 178± 3 144± 2 96± 4
10% ∞ 100% 40% 522± 37 171± 18 140± 17 88± 26
10% 200 42% 43% 530± 22 173± 12 140± 12 89± 20

Table 4.1: Webber’s table of results, taken from Table 1 of [1].

To reproduce Webber’s results, we have mainly generated events using Herwig++
2.7.1 [49]. As a control, and to enable us to interface the simulation with jet
reconstruction software later, we have also used Pythia 8.2 [50]. We have also
had access to the HERWIG 6.510 code used in the original paper, enabling us to
make a quite close reconstruction of Webber’s analysis [4]. The reproductions of
Webber’s results in the present chapter are done with the HERWIG code. In Sec-
tion 4.5 we switch to a Herwig++ generated dataset, which we also use through
most of Chapter 5, before we employ Pythia to study jet reconstruction effects
in Section 5.6. Even though the SPS1a parameter point is excluded by experi-
mental data, as discussed in Section 2.9.1, we choose to use it for our study to
be able to compare our results as closely as possible to Webber’s.

To minimize the ξ2 function, we have used the Simplex algorithm. For the
reproduction of Webber’s results in the present chapter we have used the Minuit

implementation, which was also used in [1]. For the subsequent investigation of
improvements, we have also used a custom implementation listed in Appendix
D. In the course of our investigation, we have discovered that the mass fit is
heavily dependent on the input parameters to the Simplex minimization, and
this makes the fit more challenging. To facilitate the subsequent discussion, we
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briefly introduce the Simplex method.

4.2 The Nelder-Mead Simplex algorithm

Simplex [51] is a heuristic minimization search method for minimizing a scalar
function ofN variables. It takes a starting parameter point as input from the user.
From this parameter point it erects a simplex, an N+1-dimensional generalization
of a triangle, by slightly increasing each of the coordinates of the parameter point
in turn.1 It then begins to evaluate the function in the vertices of this simplex.
A new simplex is constructed by reflecting the vertex with the highest function
value around the (hyper)line made out of the other N vertices. Hopefully this
new simplex lies lower in the function terrain, and thus the algorithm iterates
towards a local minimum. In case of trouble, it may also try contracting the
simplex or distorting its shape in various ways to obtain points of lower function
values.

Since the method is heuristic, so is the convergence criterion. Convergence is
said to be obtained when the estimated distance to minimum (EDM) is smaller
than some set tolerance value. Usually there is also a predefined maximal num-
ber of iterations before the method gives up, to avoid going on forever on non-
converging problems. The EDM is commonly defined as

EDM(fmin, fmax) =
|fmax − fmin|
|fmax|+ |fmin|

, (4.1)

where fmin and fmax are the function values at the lowest and highest point of the
current simplex, respectively. This means that the convergence criterion really
measures how “flat” the simplex is, and thus how steep the function is in the
region. If the tolerance is too high, then we run the risk of obtaining convergence
in a region where the gradient is not steep enough to be resolved by the set
tolerance, but which may still be far from the minimum.

A pitfall of any minimization routine, also for Minuit Simplex, is that it has
a default tolerance value which is used automatically unless the user specifically
changes it. The default tolerance in Minuit Simplex is 0.1. This appears to be
what Webber has used. We have confirmed that we obtain statistically consistent
results when choosing that value. However, this does not always resolve our
particular function well enough, because it tends to have almost flat directions
in mass space for some sets of events. This is illustrated in Fig. 4.1, which shows
contour plots of the ξ2 for one sample of 25 events as a function of pairs of mass
parameters. We see that in this sample, the χ̃0

1 direction is flat at low mass

1The simplex can be constructed in various ways. Another option is to scale the coordinates
by a factor, rather than adding a constant value. The behaviour of the minimization turns out
to be very similar in this case.



56 Investigating Webber’s method by Monte Carlo simulations Chapter 4

m
q̃

0 200 400 600 80010001200140016001800

m χ̃
0
2

0
100

200
300

400
500

600

lo
g(
ξ2

)

10

15

20

25

30

35

(a)

m
q̃

0 200 400 600 80010001200140016001800

m l̃

0
50
100
150
200
250
300
350
400
450

lo
g(
ξ2

)

10

15

20

25

30

35

(b)

m
q̃

0 200 400 600 80010001200140016001800

m χ̃
0
1

0
50

100
150

200
250

300

lo
g(
ξ2

)

14
16
18
20
22

24

26

28

30

(c)

m
q̃

020040060080010001200140016001800 mχ̃0
1

0 50 100 150 200 250 300

lo
g(
ξ2

)

14

16

18

20

22

24

26

28

30

(d)

Figure 4.1: 3D contour plot of log(ξ2) in (mq̃,mi) plane around the point of
true minimum, where i = χ̃0

2 for (a), i = l̃ for (b) and i = χ̃0
1 for (c) and (d).

The other two masses are in each case fixed to their true value.

values, a feature which stretches down to mχ̃0
1

= 0 GeV. Note, however, that
there may be additional higher-dimensional degeneracies in the four-mass space
which will not show in a two-dimensional plot.

Setting the tolerance high may therefore lead to convergence at a non-minimal
point. If, additionally, the search is started at or close to the masses used to
generate the Monte Carlo, then the minimization may obtain “convergence” at
points very close to the true value, but these points are not minimal points, just
regions where the function is not very steep.

4.3 The effect of tolerance

Refer to the scatter plot in Fig. 2 of [1], displayed in Fig. 4.2 for convenience.
It is a scatter plot of the best-fit mass points in the fit corresponding to the
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Figure 4.2: Figure 2 from [1], showing the best-fit points for each sample
corresponding to the first row of Table 4.1, plotted as functions of pairs of
masses.

first row of Table 4.1. We have reproduced this fit using Webber’s code [4],
but we have generated our SPS1a parameter point using SOFTSUSY 3.4.1 [24]
rather than ISAJET 7.59, as discussed in Section 2.9.1. We have converted the
resulting SLHA [52] model file to the ISAWIG format readable by HERWIG 6.510

using the package PySLHA 3.0.2 [25].2 The effects of using a different RG-runner
is that the SUSY masses are not exactly the same. The most significant shift is
the squarks, which in Webber’s case have a mass of 540 GeV, compared to 565
GeV in our case. We observe similar results as Webber gives in his article when
we run his code with the original settings for our SUSY parameter point. Our
reproduction of Fig. 4.2 is shown in Fig. 4.3a,3 and our reproduction of Table 4.1
is given in Table 4.2.

However, the tolerance setting in Minuit can be adjusted. When we rerun
the code used to produce Fig. 4.3a with the tolerance set to 10−12,4 we get the fit
shown in 4.3b and listed in Table 4.3. The results are not dramatically altered,
but there are some features to notice: There is a clear tendency to a linear
correlation between the masses. This is a feature we should expect physically
from the kinematics: By co-varying all the masses, the fit does not change much.
This can be seen in the matrix dependence on the masses.5 The fact that this

2We have had to make several modifications to the PySLHA code to make the ISAWIG output
readable by HERWIG 6.510. These changes have been included in PySLHA 3.0.3 by the author.

3All the plots in this thesis are in vector graphics format. When the thesis is viewed
electronically, they are zoomable.

4This will be referred to as low tolerance below.
5This is part of the reason why these kinds of mass reconstruction methods very often

reconstruct the squared mass difference rather than the masses themselves.
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δp/p ξ2
max fξ fcorr mq̃(568) mχ̃0

2
(180) ml̃(144) mχ̃0

1
(97)

0 ∞ 100% 65% 566± 9 180± 2 144± 2 97± 3
0 100 85% 67% 567± 6 180± 1 144± 1 97± 3
5% ∞ 100% 43% 564± 26 181± 14 145± 10 94± 15
5% 100 52% 48% 566± 10 180± 2 145± 2 96± 4
10% ∞ 100% 33% 551± 33 180± 15 144± 11 91± 24
10% 200 43% 36% 559± 17 177± 11 143± 11 91± 20

Table 4.2: Our reproduction of Table 4.1, using Webber’s code [4] with
original settings, except with the SPS1a masses from SOFTSUSY.

physically reasonable degenerate direction appears when the tolerance is reduced
indicates that a such a reduction is necessary to achieve reliable results. We also
see that the fitted masses now seem slightly biased toward lower values. Finally,
we note that while the mean value and errors are still consistent with the true
values, their accuracy is somewhat reduced. Particularly so for the LSP, where
the fit is reduced from 99± 3 GeV to 83± 19 GeV, compared to the true value
of 97 GeV.

These fit results, with the low tolerance setting, are still not bad. However, in
Table 4.1, Webber also gives best-fit values where he has applied smearing to the
four-momenta, as a crude approximation to the effects of limited detector reso-
lution. He does this by smearing the spatial components according to a gaussian
distribution of a given r.m.s. width δp/p, and then setting the energy component
to the value which leaves the invariant mass of the four-vector unchanged. In
Fig. 4.4 we show scatter plots of the fits to the dataset smeared with δp/p = 5%,
minimized with original and reduced tolerance, again using Webber’s code for
event generation and minimization. The fit with original tolerance is consistent
with Fig. 3 of [1], as it should be. However, when the tolerance is reduced, the
fit results are worsened considerably. Since each event is smeared individually,
this appears to greatly affect the position of the minimum. Again we see that
the LSP (yellow) recieves the roughest treatment, being pushed to much lower
values than the true one in most cases. The results are even worse for the 10%
smeared dataset.

However, Webber also investigates the effects of imposing a cut on the ξ2

value obtained at the minimum. In his fits, this cut tends to remove the bad
events, giving a better fit. Applying a cut also helps for the reduced-tolerance
fit, although it does not recover Webber’s original low error estimate. In Table 4.3
we reproduce Table 4.2 for the reduced-tolerance fit. We note that the fraction
of samples passing the ξ2 cut is drastically reduced compared to Table 4.2. The
fraction of events where the best-fit combination is the true one is also reduced.
The fact that the fraction of samples passing the ξ2 cut decreases is counter-
intuitive — one would expect that a lower tolerance ensures that the fit obtains
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a lower ξ2 value. However, the form of the ξ2 is very complicated due to the
combinatorical ambiguities, and it may be difficult for Simplex to handle.

δp/p ξ2
max fξ fcorr mq̃(568) mχ̃0

2
(180) ml̃(144) mχ̃0

1
(97)

0 ∞ 100% 36% 563± 13 173± 10 136± 11 83± 19
0 100 35% 52% 565± 9 175± 8 138± 9 86± 16
5% ∞ 100% 31% 557± 27 165± 17 125± 15 58± 27
5% 100 13% 43% 558± 14 164± 11 126± 12 65± 22
10% ∞ 100% 29% 542± 35 158± 20 116± 17 36± 28
10% 200 15% 33% 549± 20 155± 12 116± 12 38± 25

Table 4.3: Reproduction of the fits in Table 4.2, but with reduced convergence
tolerance.

4.4 Starting point dependence of the best-fit

point

There is also another potential issue with Webber’s analysis. It has to do with
the fact that the best-fit search is started at the true mass values. In a real
experiment, these parameters are the unknowns we wish to find. Starting the
search here is in principle fine as long as we are sure that the algorithm always
finds the true global minimum. So we must investigate what happens if we start
our search in some other point. We have done this for a motivated set of starting
points, and discover that this greatly affects the location of the best-fit points.

In Fig. 4.5 we show the best-fit points for four low-tolerance minimizations
on the unsmeared HERWIG 6.510 dataset. Figure 4.5a is the same as Fig. 4.3b,
the minimization started from the true mass point (TMP). The other three are
minimizations from starting points selected to illustrate other plausible mass
spectra: one where both the masses and the mass differences are smaller (b), one
where they are larger (c), and one where there is a large splitting between a heavy
squark and three very light masses (d). It is obvious that the results of the fit is
hugely dependent on where we start the search. This concerns both the location
of the best-fit point and the number of samples where convergence, as defined in
Section 4.2, is obtained within 500 iterations, indicated by the number Nbins in
each plot. For instance, the mean value and standard errors of the squark masses
for the samples range from 506±98 GeV to 563±13 GeV. We also note that the
margins of error in the latter case, which is minimization from the TMP, exclude
the mean values obtained from the other three starting points.

It might, however, be that the function has multiple local minima, giving rise
to the behaviour in Fig. 4.5, but that the global minimum is the one we find by
starting in the TMP. To investigate this, we have run minimizations (with low
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tolerance) where we perturb the starting point of each of the four parameters
for each event sample away from the TMP by a gaussian distribution of width
10% or 20% of the TMP mass values. This is a minor perturbation relative to
the masses. The minimization results are shown in Table 4.4 for perturbations of
10% (top) and 20% (bottom). The standard errors of the fit increase considerably
compared with Table 4.3.

δp/p ξ2
max fξ fcorr mq̃(568) mχ̃0

2
(180) ml̃(144) mχ̃0

1
(97)

10%:
0 ∞ 100% 44% 553± 41 165± 23 125± 26 53± 43
0 100 58% 52% 562± 16 171± 16 133± 18 78± 28
5% ∞ 100% 36% 547± 46 159± 21 117± 23 38± 39
5% 100 46% 47% 558± 18 165± 18 126± 20 62± 32
10% ∞ 100% 30% 540± 46 151± 22 110± 24 12± 28
10% 200 39% 35% 545± 21 152± 18 113± 20 24± 34
20%:
0 ∞ 100% 40% 540± 58 156± 30 116± 32 44± 42
0 100 50% 56% 562± 16 171± 15 133± 16 77± 28
5% ∞ 100% 32% 548± 49 159± 24 115± 28 33± 39
5% 100 37% 42% 552± 19 160± 18 122± 18 59± 30
10% ∞ 100% 27% 529± 51 150± 26 107± 22 11± 27
10% 200 38% 33% 543± 23 151± 20 113± 19 24± 33

Table 4.4: Reproduction of the fits in Table 4.3 with random perturbations
of 10% and 20% of the TMP masses, respectively, on the starting points of
the Simplex search.
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Figure 4.3: Reproduction of Webber’s results corresponding to fig. 4.2 and
the first row of Table 4.1 for (a) original convergence tolerance and (b) a lower
tolerance criterion of 10−12.
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Figure 4.4: Reproduction of Webber’s 5% momentum-smeared fit, corre-
sponding to the third row of Table 4.1, for (a) original convergence tolerance
and (b) the lower tolerance criterion.
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Figure 4.5: Minimization on the unsmeared HERWIG 6.510 dataset for
different starting points: ~M = (568, 180, 144, 97) GeV (the TMP) in (a),
~M = (400, 300, 200, 100) GeV in (b), ~M = (800, 500, 300, 50) GeV in (c) and
~M = (1000, 100, 80, 30) GeV in (d).
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4.5 Sans combinatorics

If we for a moment forget about the combinatorics, and evaluate only the true
particle combination for each event, then the minimization gives consistent re-
sults irrespective of starting point. This is illustrated in Fig. 4.6, which shows
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Figure 4.6: An equivalent fit to fig. 4.5 (on a Herwig++ dataset), however,
the ξ2 contribution is only evaluated for the true particle combination in each
event.

minimization of 100 samples of 25 events minimized with low tolerance, but only
evaluated with the correct combination of chain particles.6 There are differences
between the fits, mainly between Fig. 4.6d and the others. In particular, while
about 85 of the samples converge within the set limit of 500 iterations in each
of the cases a, b and c (indicated by the value of Nbins(total) in the top right of

6This dataset is generated with Herwig++ 2.7.1 [49] and minimized using our own imple-
mentation of the Simplex algorithm in C++, included in Appendix D. We have checked that
this dataset gives consistent results with the HERWIG 6.510 program used in Chapter 4. The
reason we switch is that the HERWIG 6.510 code [4] does both Monte Carlo generation and
Simplex minimization together, without storing event data, while we want to be able to rerun
the minimization without regenerating the Monte Carlo.
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each plot), this number is reduced to 67 in d. The starting point in case (d) is
characterized by a much larger mass gap between the squark and the χ̃0

2 than in
the TMP, which we might surmise would give rise to very different kinematics
than we have in our events. We tentatively conclude that the combinatorics is
the main culprit in making the method sensitive to the starting point.

We also keep in mind the effects of momentum smearing, and check the no-
combinatorics minimization on the 5% smeared dataset for the same four starting
points. The plots are shown in Fig. 4.7. We find that it also in this case gives
consistent results irrespective of starting point, with mean best-fit values of mq̃ =
556±33 GeV, mχ̃0

2
= 156±21 GeV, ml̃ = 112±20 GeV and mχ̃0

1
= 22±34 GeV

— but the LSP mass is fitted to zero in 63 of 94 samples. It appears that when
the data are smeared, the method loses its sensitivity to the LSP mass. Or
equivalently, we could say that it loses its sensitivity to the absolute mass scale
of the problem.
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Figure 4.7: Again the same fit as in 4.5 and 4.6, here with a 5% smeared
dataset and no combinatorics.
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4.6 Effects of a more realistic momentum smear-

ing

The momentum smearing that Webber uses is crude. More realistic smearing
formulae can be obtained from the manual to AcerDET 1.0 [53]. We apply these
smearing formulae, updated to be consistent with the ATLAS Technical Paper
[54], to the Herwig++ dataset. In Fig. 4.8 we show minimizations with low toler-
ance on this dataset. In Fig. 4.8a combinatorics is not taken into account, and
in Fig. 4.8b it is. In the former case, the LSP mass is fitted to zero in 32 of the
samples, and in the latter case it is fitted to zero in 12 of the samples.

The best-fit masses in the no-combinatorics case of Fig. 4.8a are mq̃ = 557±
16 GeV, mχ̃0

2
= 161±15 GeV, ml̃ = 120±17 GeV and mχ̃0

1
= 47±38 GeV, which

have smaller errors and biases compared to the fit with 5% momentum smearing
in the previous section. This indicates that the momentum smearing used by
Webber overestimates the uncertainties, since we obtain a better fit with a more
realistic smearing. The fit in the case with combinatorics, Fig. 4.8b, also has less
spread compared to Fig. 4.4b. However, it has the same issues with dependence
on the Simplex starting point.
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Figure 4.8: Minimization with low tolerance on the Herwig++ dataset with
momentum smearing according to the AcerDET 1.0 manual [53]. Combina-
torics is not taken into account in (a).



Chapter 5

Investigating potential
improvements

With the potentially significant systematic uncertainties inherent in Webber’s
original method, from the choice of starting point and the tolerance of the mini-
mization, we will now turn to investigate possible improvements.

5.1 Fitting mass squared differences

We saw in the previous chapter that, even without taking combinatorical ambi-
guities into account, the method is insensitive to the absolute mass scale of the
decay in many of the samples when the momentum resolution is smeared. In
a later article [55], Webber et al. reformulate the method in terms of squared
mass differences. We can borrow their idea and reformulate the problem as a
mass-squared-difference fit. Such a fit may be combined with measurements of
the dilepton invariant mass edge to find the LSP mass, using Eq. (3.2), which
can be rewritten as

m2
χ̃0
1

= (m2
l̃
−m2

χ̃0
1
)

[
m2
χ̃0
2
−m2

l̃

(mmax
ll )2

− 1

]
, (5.1)

or in the more abstract notation of Fig. 3.1,

M2
A = (M2

B −M2
A)

[
M2

C −M2
B

(mmax
ab )2

− 1

]
. (5.2)

Thus we see that the LSP mass can be found from knowing only the mass-squared
differences plus the invariant mass edge. This formulation is inspired by [56].

Referring back to Chapter 3, and the way the reconstruction was formulated in
terms of matrices, the only modifications we have to make in order to reformulate

67
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the problem as a mass-squared-difference fit are the following: Define a vector
M of mass-squared differences

M = (M2
1 ,M

2
2 ,M

2
3 ), (5.3)

where

M2
1 = m2

D −m2
C , M2

2 = m2
C −m2

B, M2
3 = m2

B −m2
A, (5.4)

and observe that the vector S may still be written as

S = BM + C, (5.5)

provided we let

B =



−1 0 0
0 −1 0
0 0 −1
0 0 0
−1 0 0
0 −1 0
0 0 −1
0 0 0


. (5.6)

Thus the reconstructed LSP momenta P = (pxA, p
y
A, p

z
A, EA, p

x
A′ , p

y
A′ , p

z
A′ , EA′) are

still given as

P = A−1BM + A−1C, (5.7)

where M and B are modified and A and C are as before.
This means that we can reformulate our problem to fit M2

1,2,3 instead. How-
ever, since we in this case do not fit the masses themselves, our ξ2 function,

ξ2(M) =
∑
n

[
(p̂2
A)n −

m2
A

M2
norm

]2

+

[
(p̂2
A′)n −

m2
A′

M2
norm

]2

, (5.8)

has an unknown variable mA. We choose to use the dilepton mass edge constraint,
Eq. (5.2), to calculate the value of m2

A from the squared mass difference at each
function evaluation. In terms of the mass-squared differences M2

1,2,3, m2
A is given

as

m2
A = M2

3

[
M2

2

(mmax
ll )2

− 1

]
. (5.9)

We note that with these modifications, we have introduced another constraining
equation into our problem, thus reducing the number of free parameters from
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Figure 5.1: MSD minimizations on the Herwig++ dataset (a) without smear-
ing and (b) with 5% momentum smearing, without combinatorics.

two to one, as discussed in Chapter 3. In addition, the minimization problem
has been reduced from a four-dimensional one to a three-dimensional one.

A fit of the unsmeared dataset with this method, not considering combina-
torics, is shown in Fig. 5.1a. We have used the theoretical value of mmax

ll =
80.1 GeV for the SPS1a masses, calculated using Eq. (3.2). The experimental
uncertainty on mmax

ll is not expected to be significant compared to other sources
of uncertainty. We have checked that the fit also in this case is independent of
where we start the search. We also show the same fit on the dataset with 5%
momentum smearing in Fig. 5.1b. In the last chapter we saw that with momen-
tum smearing, the LSP mass was estimated to zero in 63 of of the 94 convergent
samples, Fig. 4.7, when we used the original formulation of the method. In this
case all the samples obtain a nonzero LSP mass. For the remainder of the thesis
we will use the mass-squared-difference (MSD) minimization.

We also want to investigate whether the modifications have affected the com-
binatorical problems we faced when using the original formulation, where we pick
the lowest value of ξ2 among all combinations for each event in each point. We
saw in Section 4.4 that the results were dependent on where the minimization
search was started.

In Fig. 4.5 we demonstrated the performance of the minimization of the
unsmeared HERWIG 6.510 dataset using four different starting points for the
Simplex search. In Fig. 5.2 we show the same plot using the MSD technique
on the Herwig++ dataset, selecting between the different combinatorical choices
by always choosing the lowest ξ2 value. Although there are large biases and
standard errors, the differences between the four scatter plots in Fig. 5.2 appear
less significant than in Fig. 4.5. This is reflected in the mean values, which for
e.g. the squark range from 507 to 519 GeV in the four plots, and in the standard
errors, which all are about 60 GeV for the squark. There are similar consisten-
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Figure 5.2: MSD minimization on the unsmeared Herwig++ dataset with
combinatorics done according to Webber, for the four different starting points
introduced in Section 4.4.

cies between the plots for the other three masses. The four different starting
points are also consistent with respect to how many samples obtain convergence
in the minimization (about 50 of 100), and how many events obtain the correct
combinatorical choice in the best-fit point (about 25% of the convergent samples).

Even though the four plots in Fig. 5.2 are statistically similar, the individual
event samples are not consistently fitted to the same points, and the same sam-
ples do not obtain convergence in all cases. 32 of the 100 event samples obtain
convergence from all four starting points, although each starting point has about
50 convergent samples. Only three of the samples obtain best-fit points less than
0.1 GeV apart in all four masses in all four cases.

5.2 Summing the combinations

We saw in Section 4.5 that when we minimize only the true combinatorical choice,
the minimization is independent of starting point. If we include all combinations



Section 5.2 Summing the combinations 71

0 50 100 150 200 250 300

mi [GeV]

400

450

500

550

600

650

m
q̃[
G

eV
]

Nevents =25

Nbins(total) =56

ξ 2
max =100

fξ =53%

fcorr =28%
q̃

χ̃0
2l̃χ̃0

1

mq̃=531±15
mχ̃0

2
=149±16

ml̃=114±15
mχ̃0

1
=60±23

(a)

0 50 100 150 200 250 300

mi [GeV]

400

450

500

550

600

650

m
q̃[
G

eV
]

Nevents =25

Nbins(total) =56

ξ 2
max =100

fξ =53%

fcorr =26%
q̃

χ̃0
2l̃χ̃0

1

mq̃=528±22
mχ̃0

2
=148±17

ml̃=114±16
mχ̃0

1
=59±22

(b)

0 50 100 150 200 250 300

mi [GeV]

400

450

500

550

600

650

m
q̃[
G

eV
]

Nevents =25

Nbins(total) =58

ξ 2
max =100

fξ =43%

fcorr =29%
q̃

χ̃0
2l̃χ̃0

1

mq̃=528±21
mχ̃0

2
=149±15

ml̃=115±14
mχ̃0

1
=61±19

(c)

0 50 100 150 200 250 300

mi [GeV]

400

450

500

550

600

650

m
q̃[
G

eV
]

Nevents =25

Nbins(total) =48

ξ 2
max =100

fξ =52%

fcorr =27%
q̃

χ̃0
2l̃χ̃0

1

mq̃=526±19
mχ̃0

2
=146±15

ml̃=112±14
mχ̃0

1
=57±21

(d)

Figure 5.3: MSD minimization on the unsmeared Herwig++ dataset with
combinatorics done according to Webber, for the four different starting points
introduced in Section 4.4, subject to a ξ2 cut of 100.

by always selecting the lowest among the ξ2 values in each mass point, a starting
point dependence is introduced. The mathematical difference between these two
problems is that in the former case, the ξ2 is a smooth polynomial, while in the
latter case it is not. We can make the ξ2 surface smooth if we add the differ-
ent combinatorical choices together instead of jumping between them. Webber
mentions this option in his article, but discards it, saying “[t]he surface would be
smooth if one added the ξ2 contributions of all combinations, but then the sen-
sitivity to the correct solution is reduced and biases are introduced by the huge
contributions of wrong combinations” [1].

However, not all combinations will contribute equally if they are included.
Reference [57] features a general discussion on momentum reconstruction prob-
lems with missing energy, and also a specific discussion of the golden MSSM
decay chain. Although they discuss other mass reconstruction methods than our
present minimization scheme, some of the discussion applies to our case as well.
They argue that the permutation of the leptons within the same chains intro-
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duces only a minor error into the reconstruction, which because of the kinematics
should vanish in the limit of large mq̃ −mχ̃0

1
mass gap.

For events where the dileptons differ in flavour between the chains, which is
what we have used in our analysis thus far, there are eight combinatorical pos-
sibilities. These can be divided into two categories depending on which lepton
pair is paired with which quark. For each of these pairings, there are four com-
binations of near and far leptons, as discussed in Section 3.4. The matrix A is
invariant, up to a permutation of rows, for each of the two categories. If we in-
clude all four combinations of near and far leptons for each event by adding them
to the ξ2, then the problem reduces from an eight-fold ambiguity to a two-fold
ambiguity, distinguished only by the permutation of quarks between chains.
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Figure 5.4: Minimization of the unsmeared Herwig++ dataset where all or-
derings of the leptons within the same chains are included in the calculation
of ξ2, and only the true quark-lepton combinations are considered.

In Fig. 5.4 we show a fit of the unsmeared dataset where the ξ2 has been
constructed in this way, but where only the true pairing of quarks and leptons
is considered. The mean values and standard errors for the mass fits in the 100
samples are mq̃ = 565 ± 41 GeV, mχ̃0

2
180 ± 34 GeV, ml̃ = 141 ± 34 GeV and

mχ̃0
1

= 98± 35 GeV. The standard error is quite large, about 40 GeV for all the
four masses, but the mean values are very close to the true values in all four cases.
The minimization is also completely robust against starting points: For the four
different starting points defined earlier, all 100 samples obtain convergence in
all cases, and each sample is fitted to the same point in all cases. In the case
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where we jump between values, 50% of the event samples obtain convergence,
see Fig. 5.2. Since a real LHC analysis only will have one sample of events, the
convergence robustness is an important factor.

We have also tried including all eight combinations instead of only the four
lepton permutations. Then the results worsen considerably. While the robustness
against starting points is retained, only half of the samples obtain convergence,
and the errors on the masses are about 90 GeV for the three lightest particles
and 150 GeV for the squark. There is also a significant downward bias on the
squark mass.

5.2.1 Error introduced when summing lepton permuta-
tions

The lepton permutations consist of permuting the leptons in one, both or none
of the two chains. Consider one decay chain, shown schematically in fig. 5.5.
For the true assignment of near and far lepton, we have the relationship m2

B =

D C B A

c b a

Figure 5.5: Decay topology, from [42].

(pA + pa)
2 ≡ m2

Aa. If the lepton assigments are switched, it corresponds to
reconstructing the mass (pA + pb)

2 = m2
Ab ≡ mX instead of the true mass mB.

The kinematics of this misidentification is investigated in Appendix C. It turns
out that mX has a probablity distribution limited by the values

m2
Xhigh = m2

A +m2
C −m2

B, (5.10)

m2
X low =

m2
Cm

2
A

m2
B

.

Note that mX is contained in the interval (mA,mC) for any kinematically allowed
choice of masses mA,B,C . The probability distribution of mX is shown in Fig. 5.6.
For SPS1a, the limits evaluate to mX low = 121 GeV and mXhigh = 145 GeV.
Thus, in this case, the high mX limit is close to the true mB = 144 GeV. This
does not have to be the case generally.

In principle the measurement of the other masses should be unaffected by this,
e.g. since m2

C = (pb + pa + pA)2 which is invariant under b ↔ a. However, there
is a nontrivial relationship between the fitted masses in the method, e.g. due to
the dilepton edge formula, so the misidentification may affect them indirectly.
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Figure 5.6: Probability distribution of mX .

5.3 Cutting on the determinant

In this section we investigate what can be gained by applying a minimal value
cut on the determinant of the matrix A. The idea behind this is that since a
matrix with zero determinant is uninvertible, the magnitude of the determinant
may be small for events that are “difficult” to invert in some sense, and these
may contribute poorly to the fit.

This turns out to have some merit, as can be seen from Fig. 5.7: The plot (a)
is exactly the same as in Fig. 5.4, except that the detA cut has been applied on
an event-wise basis. The errors on the masses decrease by a factor two. They are
further reduced by combining with a ξ2 cut, but at the expense of losing a lot of
samples. About 60% of events pass a |detA| > 10 cut. The events passing the cut
are as expected quite evenly distributed between samples, with the worst sample
retaining 10 of 25 events after cuts and the best retaining 24. The distribution
of the number of events in each sample passing the cut have a mean value of 15
with a standard deviation of 2.5.

Note that while the ξ2 cut used earlier will remove the whole sample, the
detA cut only removes parts of it, meaning that all the samples still may yield
an answer, albeit possibly with low statistics.

Figure 5.8 shows the distribution of detA for the true quark-lepton combina-
tions and the misidentified combinations. We see that the distribution exhibits a
smooth decrease from zero, and it is symmetric. There do not appear to be any
jumps in detA values which could be used to set the cut value.
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Figure 5.7: Minimization where a minimal value cut is applied on |detA|
for each event, in this case |detA| > 10. Minimization is done using the MSD
technique, on the Herwig++ dataset without smearing in (a) and (b) and with
5 percent smearing in (c) and (d). ξ2 cuts of 1000 are applied in (b) and (d).
Only the true quark-lepton combination for each event is considered, and the
four lepton permutations are summed.

5.3.1 Sub-determinant cuts

Consider again the full form of the matrix A,

A =
2

Mnorm



pxc pyc pzc −Ec 0 0 0 0
pxb pyb pzb −Eb 0 0 0 0
pxa pya pza −Ea 0 0 0 0

pxmiss/2 0 0 0 pxmiss/2 0 0 0
0 0 0 0 pxc′ pyc′ pzc′ −Ec′
0 0 0 0 pxb′ pyb′ pzb′ −Eb′
0 0 0 0 pxa′ pya′ pza′ −Ea′
0 pymiss/2 0 0 0 pymiss/2 0 0


. (5.11)

It comes from the constraints in Eqs. (3.4)–(3.9). These equations are projections
of the unknown momenta pA/pA′ onto the measured momenta pabc/pa′b′c′ . To be
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Figure 5.8: Distribution of detA for the correct and the wrong combination
of quarks with lepton pairs. The tails of the distribution have been trimmed
at ±200 to remove outliers.

able to invert the equations and solve for pA/pA′ , the three measured momenta
for each chain must be linearly independent, i.e. they must form a basis for the
subspace we are projecting pA/pA′ onto. Of course, three vectors cannot span a
four-dimensional space — this is the reason the problem is underconstrained and
we have to find a best-fit solution, since there are not enough measured momenta
to fully constrain the invisible ones. But we can look at the three-dimensional
spatial momentum subspace. For e.g. pA to be reconstructible, we should have
span {pa,pb,pc} = R3. This is equivalent to

|pa · (pb × pc)| 6= 0, (5.12)

which is proportional to the sub-determinant of A given by

subdet(A, 1, 3) =
1

M3
norm

∣∣∣∣∣∣
pxc pyc pzc
pxb pyb pzb
pxa pya pza

∣∣∣∣∣∣ . (5.13)

If the value of the left hand side of Eq. (5.12) is small, then the projections of
the invisible momenta are numerically poor. Analogously to cutting on the full
detA, we can apply a simultaneous cut on the values of the two subdeterminants

subdet(A, 1, 3) =
1

|pa||pb||pc|

∣∣∣∣∣∣
pxc pyc pzc
pxb pyb pzb
pxa pya pza

∣∣∣∣∣∣ =
|pa · (pb × pc)|
|pa||pb||pc|

, (5.14)

subdet(A, 5, 7) =
1

|pa′ ||pb′ ||pc′ |

∣∣∣∣∣∣
pxc′ pyc′ pzc′
pxb′ pyb′ pzb′
pxa′ pya′ pza′

∣∣∣∣∣∣ =
|pa′ · (pb′ × pc′)|
|pa′ ||pb′ ||pc′ |

, (5.15)
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where we have chosen a different normalization to make the subdeterminant
values lie in the interval [−1, 1]. The determinant with this normalization is
what we will refer to as the subdeterminant in the following.

The distribution of the subdeterminant values for the unsmeared Herwig++

dataset is shown in figure 5.9. The subdeterminants corresponding to the two
chains are included independently. It is interesting to note that the correlation
coefficient between the determinant and subdeterminants is of the order −0.01,
and a correlation hypothesis test shows consistency with the assumption that
they are uncorrelated, at 95% confidence level.

1.0 0.5 0.0 0.5 1.0

subdetA

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el

at
iv

e 
oc

cu
re

nc
e

Correct quark-
 lepton combination
Wrong quark-
 lepton combination

Figure 5.9: Distribution of subdet(A, 1, 3) and subdet(A, 5, 7) for the correct
combination and the wrong combination of quarks with lepton pairs.

To test this approach, we apply cuts on the subdeterminants, by requiring
that both subdeterminants are larger than some value, to the Herwig++ dataset.
We use the cut values 0.03 and 0.005, chosen so that about 60% and 90% of the
events pass the cut, respectively. 60% is the same fraction as for the detA cut
used in Fig. 5.7, to enable comparison. We use the MSD fitting technique with
a sum over the four lepton combinations, considering only the true A matrices,
as in Fig. 5.7. The resulting scatter plot is shown in Fig. 5.10. We see that the
errors on the masses in both cases are of the same order as in Fig. 5.4, where
no determinant cut was applied, and thus they are a factor two larger than the
errors in the case of the detA cut in Fig. 5.7a. Thus, the subdeterminant cut
does not seem to make the fit better.
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Figure 5.10: Minimization where a cut of |subdet(A, 1, 3)| > x and
|subdet(A, 5, 7)| > x is applied for each event, with x = 0.03 in (a) and
x = 0.005 in (b). Minimization is done using the MSD technique, on the
Herwig++ dataset without smearing. Only the true quark-lepton combinations
are considered, and the remaining four lepton permutations are summed.

5.4 Handling combinatorics in the summed-

combination approach

We proceed with investigating the method of summing the four lepton combina-
tions. In this formulation, the combinatorical ambiguity is reduced. When con-
sidering only events where the chains have opposite-flavour leptons (OFL), the
ambiguity reduces from eight in the original formulation to two. For same-flavour
leptons (SFL) it reduces from 16 to 4. Each of these combinations correspond to
a different A matrix.

A complication is that, as mentioned in the beginning of Chapter 4, there may
be more than two high-momentum quarks in an event. This is in fact quite likely,
since one or both of the squarks in the chains may come from gluinos, originating
from the processes pp→ g̃q̃ and pp→ g̃g̃ and decaying as g̃ → q̃q. In a realistic
detector event, the quarks will fragment into hadron jets before reaching the
detector. These jets must be reconstructed using specially constructed algorithms
in order to determine, as well as possible, the four-momentum and invariant mass
of the originating quark. This process potentially introduces large inaccuracies
into the measurements of the four-momenta of the jets.

Since we do not a priori know which jets belong to the event, the possibility
of additional jets quickly increases the combinatorical ambiguity — with three
jets, there are six different A matrices for OFL events, and 12 for SFL events.
With four jets, there are 12/24 different A’s. It is clear that we need a way to
handle the remaining ambiguity.
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There are several options for doing this. One is to utilize the original method
of “jumping” between values, always selecting the lowest among the combinations
for each event at each mass point. When there are fewer different values to choose
between, the amount of jumping and the resulting difficulties might be reduced.

We check this for the unsmeared Herwig++ dataset with only OFL events,
where there are only two combinations to jump between, by starting the mini-
mization from the four different starting points. The resulting scatter plots are
shown in Fig. 5.11. We find in this case for the unsmeared dataset that ∼ 90
samples converge in each case, while 84 of the samples converge in all four cases.
62 of the samples are fitted consistently, meaning that all four minimizations
agree on all four mass values within 0.1 GeV. We also find that about 80% of the
events obtain the minimum with the correct combination, while the remaining
20% apparently obtain smaller values using the wrong combination of quarks and
leptons.
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Figure 5.11: MSD minimization on the unsmeared Herwig++ dataset with
combinatorics handled by summing the four closest combinations and jumping
between the two quark-lepton combinations, for the four different starting
points introduced in Section 4.4.
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5.4.1 An event-pair algorithm for handling combinatorics

Another possibility is to combine a few events at a time, and minimize the ξ2,
with the lepton-combinations summed, separately for each of the quark-lepton
combinations between chains, i.e. each matrix A, in each event. For instance,
if we select two events, then there are four ways to combine the quark-lepton
assignments in the events: the right combination in both events, one right and
one wrong, or both wrong. If the lowest ξ2 minimum value among these four
tend to belong to the right quark-lepton combination, then this may be used to
select the correct quark-lepton combinations, and thus the correct mathbfA for
the event, before all events are summed together for the total mass fit.

We have implemented this in the following way: We use the mass-squared
difference fitting technique, and we sum the four leptonic combinations. For each
sample of events, we run through all the individual events, indexing them by i.
For each event, we run through all the other events, indexed by j. For each pair
(i, j), we minimize the ξ2 for the four possible combinations of (Aa

i ,A
b
j) matrices,

where a, b = 1, 2 denotes the different A matrices for each event. We make a
note of which choice a for event i gives the lowest minimum among the four. We
allow the minima to take unphysical values for the fitted masses, either in the
form of wrong mass hierarchies or even negative mass values, since we only are
interested in the ξ2 value.

For each event i, we count how many of the (i, j) pairs prefer the different
choices of Aa

i . If there is a clear preference for a specific choice a, then we select
this as the “true” matrix. In the case of events where all four leptons are the same
flavour, there will be four different Aa matrices instead of two, thus increasing
the number of combinations to evaluate.

For the unsmeared Herwig++ data set of 100 samples of 25 events, there seems
to be a clear preference for the correct A matrix. The fraction of events where
the correct A is chosen, for each event sample, is shown in Fig. 5.12. We see
that for the samples with the lowest fraction of correct events, the fraction is
60%. Thus even the worst sample does better than a random guess, which has
an expectance of 50%. No cut on detA is applied prior to the selection, since
we find that we get a significantly clearer signal by including all events. We also
apply a determinant cut to remove events after the selection. There is a slight
shift towards a higher fraction of correct A after this cut. We obtain similar
results for the dataset with 5% momentum smearing.

Figure 5.13 shows scatter plots of the best-fit points found by selecting A
for each event according to this algorithm, and summing the remaining four
combinations. Figure 5.13a has no cut on the determinant, while a |detA| > 10
cut is applied in Fig. 5.13b.1

1The number fdetA = 96 % in the plot in Fig. 5.13a seems to indicate that not all events
have passed the determinant cut, even though no cut has been applied. This is an artifact due
to not all events passing the A matrix selection algorithm.
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Figure 5.12: Distribution of the 25-event samples of Herwig++ events, indi-
cating, for each sample, the fraction of events where the event-pair selection
algorithm prefers the true A matrix. A |detA > 10 cut is used in the blue
distribution, discarding some events. See the text for details.
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Figure 5.13: MSD minimization on the unsmeared Herwig++ dataset with
combinatorics handled by selecting A matrices for each event using the event-
pairing algorithm described in Section 5.4 and summing the remaining four
combinations. A minimal-value determinant cut of 10 is applied in (b).
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5.4.2 Including same-flavour lepton events

In our analysis so far, we have discarded events where all the four leptons are
of the same flavour (SFL events). This was done to limit the combinatorical
ambiguity, but comes at the expense of halving the amount of events we can
expect. In the language of our method, the inclusion of SFL events amounts
to including two additional matrices A which come from permuting the leptons
across the chains. It is interesting to see how the algorithm for choosing A tackles
this case. We find that it handles it quite well. Figure 5.14a shows the fraction
of correctly identified A matrices with and without a determinant cut, on the
unsmeared Herwig++ dataset with SFL events included. We see that almost all
event samples obtain a fraction larger than 50%, which should be compared to
the expectance of random chance which is 25% in this case. The SFL events are
distributed as they come from the Monte Carlo, which means they constitute
about half the events in each sample.
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Figure 5.14: Distribution of the fraction of correctly identified A matrices
in samples when same-flavour lepton events are included. A determinant cut
of 10 is applied in (b).

In Fig. 5.15, we show the best-fit points obtained in this case. The errors are
somewhat larger than when using only opposite-flavour leptons (OFL), and the
downward bias is enhanced. The best-fit points with a determinant cut are mq̃ =
547±31 GeV, mχ̃0

2
= 165±25 GeV, ml̃ = 126±25 GeV and mχ̃0

1
= 83±25 GeV

for the OFL only case (Fig. 5.13b), and mq̃ = 534±35 GeV, mχ̃0
2

= 160±27 GeV,
ml̃ = 121 ± 27 GeV and mχ̃0

1
= 78 ± 28 GeV when SFL events are included as

well (Fig. 5.15b).
Since using only OFL events amounts to discarding half the available events,

when SFL events are included we should really double the sample size. Figure
5.16 shows scatter plots of this. The mean best-fit points with a determinant
cut of 10 are mq̃ = 539 ± 32 GeV, mχ̃0

2
= 165 ± 19 GeV, ml̃ = 125 ± 19 GeV
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Figure 5.15: MSD minimization on the unsmeared Herwig++ dataset in-
cluding same-flavour lepton events, with combinatorics handled by selecting
A matrices for each event using the event-pairing algorithm described in Sec-
tion 5.4 and summing the remaining four combinations. A minimal-value
determinant cut of 10 is applied in (b).

and mχ̃0
1

= 83 ± 20 GeV. The errors are somewhat reduced compared to the
minimization with 25-event samples, and they are also slightly lower than the
25-event sample minimization with only OFL events, though there is a larger
downward bias on the squark mass than in the only-OFL case.

5.4.3 Handling the remaining combinatorical ambiguity

The method of event-pair selection described in the previous section provides a
way to select between the quark-lepton combinations. With this, we in princi-
ple have a working method which can be applied to a sample of events with-
out knowing the true combinatorical configuration, and which is robust against
starting points and convergence issues. The plot of minimization on the un-
smeared Herwig++ dataset with a determinant cut, shown in Fig. 5.13b, can
be viewed as a best-case scenario for this technique. The mean best-fit val-
ues are mq̃ = 547 ± 31 GeV, mχ̃0

2
= 165 ± 25 GeV, ml̃ = 126 ± 25 GeV and

mχ̃0
1

= 83± 25 GeV. Although the determinant cut has reduced the errors com-
pared to Fig. 5.13a, the errors are still very large — as large as 30% for the LSP.
There is also a significant downward bias, which is enhanced by the determiant
cut. Part of this uncertainty is introduced by the summing of the four leptonic
combinations. It would be desirable to find a way to discriminate between these
combinations also.

One might try to revert to the method of “jumping” between combinations
in the ξ2 function, but jumping between only the four remaining combinations
instead of all eight. We have tried this option, but it gives a very poor fit.

Another possibility is to do something analogous to the algorithm we applied
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Figure 5.16: MSD minimization on 50-event samples of the unsmeared
Herwig++ dataset, including same-flavour lepton events, with combinatorics
handled by selecting A matrices for each event using the event-pairing algo-
rithm described in Section 5.4 and summing the remaining four combinations.
A minimal-value determinant cut of 10 is applied in (b).

to choose between the quark assignments. One could imagine pairing events and
minimizing all combinations (42 = 16, in this case), selecting the combination
which is minimal in most cases. However, this would only give two contributing
terms to the ξ2 for each minimization, instead of eight terms in the case where
four permutations are summed. The ξ2 turns out to be difficult to minimize in
this case, and it often does not converge at all.

5.5 Comparison benchmark

We are now in a position to produce a table analogous to those of Chapter 4,
for our modified implementation of the method. We apply the MSD fit with
dilepton edge to the Herwig++ dataset with only OFL events. We use the event-
pair selection algorithm to choose between the two A matrices for each event,
and sum the remaining four lepton permutations in the ξ2. We apply a minimal
value determinant cut of 10. We also test applying a ξ2 cut as in Chapter 4,
although the cut value has to be set higher to get a sizeable fraction of samples
past the cut because of the changes made to the method. We have chosen a
cut value which gives a similar pass-cut fraction as in Webber’s original analysis,
Table 4.1. The results are summarized in Table 5.1.

We see that the ξ2 helps to reduce the errors as before. Note that the fraction
of events passing the ξ2 cut does not decrease as rapidly with increased momen-
tum smearing as in the original analysis of Webber. Particularily, we have not
doubled the ξ2 cut value for the 10% smearing case, contrary to the original
analysis. The mass errors from the fits in Table 5.1 are larger compared to those
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δp/p ξ2
max fdetA fξ fcorr mq̃(568) mχ̃0

2
(180) ml̃(144) mχ̃0

1
(97)

0 ∞ 64% 100% 83% 547± 31 165± 25 126± 25 83± 25
0 5000 63% 81% 82% 546± 19 162± 18 122± 19 80± 19
5% ∞ 65% 100% 82% 548± 33 167± 27 128± 27 85± 28
5% 5000 64% 75% 83% 547± 22 166± 18 126± 18 84± 19
10% ∞ 64% 100% 81% 545± 40 161± 29 122± 29 78± 31
10% 5000 64% 65% 80% 543± 31 159± 25 120± 25 76± 26

Table 5.1: MSD minimization on the Herwig++ dataset with and without
momentum smearing and ξ2 cuts. See the text for details.

of the original analysis [1], given in Table 4.1. For example, the 5% smeared fit
with ξ2 cut has about twice as large error on the squark mass, while the errors
on the other three masses are an order of magnitude larger. By reducing the ξ2

cut value to 2000, we bring fcorr down to 56%, the same as in Table 4.1. This
brings the errors somewhat down, to give the best-fit values mq̃ = 548± 19 GeV,
mχ̃0

2
= 163± 16 GeV, ml̃ = 124± 16 GeV, mχ̃0

1
= 81± 16 GeV.

Note that this analysis is done with a determinant cut of 10. In a future
analysis one could experiment with different combinations of determinant and ξ2

cuts to find an optimal combination.

5.6 Taking jet reconstruction effects into account

Finally, we take the effects of jet reconstruction into account. We have simulated
jet reconstruction using Pythia 8.2 [50] with the FastJet [45] jet reconstruction
program. It utilizes the anti-kt jet clustering algorithm [58], which does sequential
jet recombination in the following way:

One defines a minimal transverse momentum pT that a jet can have, and an
angular radius squared R2 = ∆η2 + ∆φ2 in the pseudorapidity–azimuthal angle
(η, φ) plane of the detector. This radius defines the maximal angular size that a
jet is allowed to have.

For an object i with transverse momentum kt,i, the distance between i and
the beam axis B is defined as

diB = k−2
t,i , (5.16)

and the distance between two objects i and j is defined as

dij = min
{
k−2
t,i , k

−2
t,j

} ∆R2
ij

R2
, (5.17)

where

∆R2
ij = (ηi − ηj)2 + (φi − φj)2, (5.18)
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with (ηi, φi) the angular coordinates of i.
The transverse momenta kt of all particles in the detector are indexed by i.

Then the algorithm does a sequential recombination by looping over all particles
as follows:

1. For a particle i, find the smallest value among all dij and diB.

2. If one of the dij is smallest, then recombine the objects i and j by combining
their four-momenta.

3. If diB is smallest, set i to be a jet and remove it from the list of particles.

4. Repeat from 1. until there are no particles left.

5. All reconstructed jets which have a pT larger than the set threshold are
kept.

We use R = 0.4, |η| < 4 as parameters for the jet reconstruction. We adapt
the cuts used in [56], which are:

1. There must be at least two jets with pT > 100 GeV, |η| < 2.5.

2. All the four leptons must have pT > 10 GeV, |η| < 2.5.

3. The event must have missing pT > 50 GeV.

Since we use Pythia rather than Herwig++ for the jet reconstruction, we have
checked that the events are consistent with previous results when jet reconstruc-
tion is not taken into account.

In Fig. 5.17, we show scatter plots of the best-fit points obtained for the
Pythia dataset with jet reconstruction, minimized on samples of 25 events with
only opposite-flavour leptons. We take the quark masses to be the invariant
masses of the reconstructed jets. We use the MSD minimization with a sum of
lepton permutations and the event-pair selection algorithm for the quark-lepton
permutation. As usual a |detA| > 10 cut is applied in Fig. 5.17b. The two
hardest jets in each event have been taken as the signal jets. This is justified in
SPS1a because of the small mass splitting between the gluino and the squarks,
which limit the momentum attainable for the quarks from gluino decay in events
containing g̃ → qq̃.

Another reason for selecting jets in this way is that the alternative would
require discrimination between three or more jets. This quickly increases the
combinatorical ambiguity, as discussed in Section 5.4. One could hope to reduce
the ambiguity with additional selection criteria, such as constraints from the
invariant mass edges discussed in the beginning of Chapter 3, but the prospects
for selecting the correct combination are still dim.
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Figure 5.17: Minimization on the Pythia dataset with jet reconstruction
and kinematical cuts, using 25-event samples with only OFL events. Most of
the points in (a) lie outside the plotting region.

Note that when we use the jet reconstructed quark momenta, we lose infor-
mation on which quark belongs to which chain in the Monte Carlo data. We
thus no longer have the possibility to minimize only the correct quark-lepton
combinations as a control, unless we match the jets to the quarks, which is a
non-trivial procedure.

Also, since the numbering of jets is independent from the numbering of chains,
we should expect the A selection algorithm to have equal preference for the
two matrices which have correct lepton combinations. Therefore, the fraction of
events where the first A is selected should be centered on 0.5. The distribution of
this fraction, with a |detA| > 10 cut, is shown in Fig. 5.18 for 25-event samples of
only OFL events and 50-event samples of both OFL and SFL events (abbreviated
OSFL). We see that the distributions are centered close to 0.5 as we expect. The
OSFL distribution has a slight preference for lower fractions, as we should expect
since it chooses between four A matrices rather than two.2

In Fig. 5.19, we show the minimization on jet-reconstructed samples of 50
events each, including both OFL and SFL events.

The best-fit values are summarized in Table 5.2. We have also tried applying
cuts to the ξ2 values in the minimization with determinant cuts. We have found
ξ2 cut values for each of the OFL and OSFL cases which yield about 15%, 40%
and 75% of samples past, respectively. We see that the two lowest ξ2 cuts approx-
imately halve the errors for both the OFL and the OSFL cases, while the loosest
cut gives less of an error reduction. The OFL and OSFL cases obtain similar
results — the OSFL case has somewhat smaller errors, but a larger downward
bias.

2The two extra matrices are never the right ones, since they correspond to wrong lepton
permutations between chains.
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Figure 5.18: Distribution of the fraction of events where the A selection
algorithm prefers the first A. The Pythia dataset with jet reconstruction is
used, for samples of 25 events with only opposite flavour leptons, and samples
of 50 events with both opposite and same flavour leptons.
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Figure 5.19: Minimization on the Pythia dataset with jet reconstruction
and kinematical cuts, using 50-event samples with both OFL and SFL events.
Most of the points in (a) lie outside the plotting region.
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Type (Nevt) ξ2
max (fξ) fdetA mq̃(568) mχ̃0

2
(180) ml̃(144) mχ̃0

1
(97)

OFL (25) ∞ 56% 525± 154 213± 90 177± 87 138± 88
OFL (25) 5 · 105 (71% ) 55% 551± 105 205± 82 166± 82 123± 84
OFL (25) 5 · 104 (41% ) 54% 536± 64 180± 56 141± 56 98± 57
OFL (25) 104 (18% ) 50% 535± 67 178± 46 139± 45 96± 48
OSFL (50) ∞ 60% 495± 147 204± 95 170± 89 132± 89
OSFL (50) 3 · 106 (77% ) 60% 494± 110 190± 80 155± 75 115± 76
OSFL (50) 3 · 105 (39% ) 60% 503± 52 167± 38 128± 37 83± 40
OSFL (50) 5 · 104 (14% ) 58% 504± 54 163± 45 125± 44 79± 47

Table 5.2: Summary of results obtained on the Pythia dataset with jet
reconstruction and kinematical cuts, using the MSD technique with the event-
pair selection algorithm for choosing between Aa matrices and summing over
the four lepton permutations. A |detA| > 10 cut has been applied.





Conclusions

The method presented by Webber in [1], although promising, has been shown to
have inherent technical problems which lead to an underestimation of the errors
and biases in the original article, as presented in Table 4.1. The challenges stem
in part from the combinatorical ambiguity inherent in the chain.

When the estimates are revised, taking into account the need for a lower
Simplex tolerance in order to resolve the function minimum, the error is sig-
nificantly increased, and biases are introduced, as can be seen from the results
presented in Table 4.3. In addition, there is a dependence upon the minimization
starting point which adds to the uncertainties, demonstrated in Table 4.4. Of
particular importance is the feature that when experimental uncertainties are
simulated in the form of momentum smearing, and the convergence tolerance is
set sufficiently low, the mass of the LSP is fitted to zero in many of the samples,
see Fig. 4.7. This is the case even without taking into account combinatorics.

Attempts to modify the method to avoid these problems only has limited
success. Although we have devised an implementation that is robust against dif-
ferent starting points for the minimization algorithm, handles the combinatorical
ambiguities and resolves the LSP mass, we have not found a way to reduce the er-
rors to values that are comparable to the results pertained in the original article.
Table 5.1 gives a summary of the capabilities of the alternative implementation
of the method, and should be compared to the original estimates given in Ta-
ble 4.1. For the three lightest particles, the errors in our analysis are an order
of magnitude larger than the original estimate. We also observe a significant
downward bias on all four masses.

Jet reconstruction effects were not investigated by Webber in the original
article. Taking these into account should be expected to affect the precision
attainable by the method, and we indeed find that it drastically increases the
errors. Our results with jet reconstruction are summarized in Table 5.2. Even
when we apply a quality cut on the ξ2 values of the fits which remove about
half the event samples, along with a minimal value cut on the determinant of the
kinematics matrix for each event, we obtain errors of the order 50 GeV on all four
masses. For the LSP mass this corresponds to an error of 50%. Doubling the event
samples by including events where all four leptons have the same flavour reduces
the errors somewhat, but at the expense of solidifying a significant downward
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bias in mass estimate.
In summary, we have shown that the errors and biases were underestimated

in the original article. We have revised the estimates to be more realistic. In
addition, our analysis employs event samples which are large compared to the
expected event yield given current limits on sparticle masses, at least in the
CMSSM. In non-CMSSM models, the cross section for the chain can be larger.
Reducing the sample size is expected to further increase the uncertainties.



Appendix A

The Dirac equation

Einstein’s fundamental relationship between energy, momentum and mass in spe-
cial relativity is

pµpµ −m2 = 0. (A.1)

Following the prescriptions of quantum mechanics, energy and momentum are
promoted to operators:

pµ → i~
∂

∂xµ
≡ i~∂µ. (A.2)

Taken as an eigenvalue equation for a free field φ, this gives rise to the relativistic
Klein-Gordon equation

−~2∂µ∂µφ−m2φ = 0. (A.3)

This equation differs from the Schrödinger equation of non-relativistic quantum
mechanics in that it is second order in ∂0 = ∂t, while the Schrödinger equation is
first order. To obtain a first-order differential equation in time, Dirac attempted
[59] to factor the energy-momentum relation (A.1) as

pµpµ −m2 = (γκpκ +m)
(
γλpλ −m

)
. (A.4)

This leads to the requirement

pµpµ = γµγνpµpν . (A.5)

The right hand side can be written as

γµγνpµpν =
1

2
(γµγνpµpν + γνγµpνpµ) (A.6)

=
1

2
(γµγν + γνγµ) pµpν , (A.7)
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where we have used the fact that µ and ν are dummy summation variables. This
implies that

{γµ, γν} = 2gµν , (A.8)

where gµν is the Minkowski metric tensor, and the curly brackets denote the
anticommutator {γµ, γν} = γµγν + γνγµ. Dirac realized that this condition can
be met provided we let the γµ be matrices. It turns out that the lowest possible
dimension of these matrices is 4×4. They may be represented in several equivalent
bases, but one standard convention is

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.9)

where σi are the Pauli matrices, 1 denotes the 2 × 2 identity matrix and 0 the
2×2 matrix of zeroes. With this factorization, the relativistic momentum-energy
relation is satisfied by

γµpµ −m = 0. (A.10)

The Dirac equation is obtained by substituting operators and letting them act
on an object Ψ, giving

(i~γµ∂µ −m) Ψ = 0, (A.11)

where Ψ is required by dimensionality to be a four-column vector of fields,

Ψ =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 , (A.12)

called a Dirac spinor.
The equations of motion are the equations describing the field configurations

which minimize the action,

S =

∫
d4xL. (A.13)

Demanding stationarity of action for a spinor field Ψ and its adjoint Ψ̄ ≡ Ψ†γ0,

δS = 0, (A.14)

gives the Euler-Lagrange equations of motion

∂µ

(
∂L

∂ (∂µΨ)

)
− ∂L
∂Ψ

= 0, (A.15)

∂µ

(
∂L

∂
(
∂µΨ̄

))− ∂L
∂Ψ̄

= 0. (A.16)
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The Lagrangian LD which yields the Dirac equation upon application of the
equations of motion is

LD = Ψ̄
(
i~/∂ −m

)
Ψ, (A.17)

which is called the Dirac bilinear.





Appendix B

Higgs mass loop corrections

This appendix contains calculations of the one-loop contributions to the Higgs
mass from fermionic and scalar particles.

B.1 Fermion loop

The diagram is given in Fig. B.1. The vertex factors are −i y√
2
, where y is the

q q

q + k

k

Figure B.1: Fermionic loop correction to the Higgs mass.

Yukawa coupling of the fermion, which has mass m. The amplitude is then given
by

iM =− (−i)2y
2

2
Tr

{∫
d4k

(2π)4

[
/q + /k +m

]
[/k +m]

[(q + k)2 −m2] [k2 −m2]

}
. (B.1)

The denominators can be combined by a Feynman parametrization,

1

[(q + k)2 −m2] [k2 −m2]
=

∫ 1

0

dx
1

[((q + k)2 −m2)x+ (k2 −m2) (1− x)]2

=

∫ 1

0

dx
1

[(k + qx)2 −∆]2
, (B.2)
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where ∆ ≡ q2x(x− 1) +m2. Defining ` ≡ k + qx, we get

iM = −y
2

2

∫ 1

0

dx

∫
d4`

(2π)4
Tr

{
/̀2

+ /q2x(x− 1) +m2

[`2 −∆]2

}
, (B.3)

where we have omitted terms linear in `, since they vanish by the antisymmetry
of the integral, and terms with an odd number of γ matrices since they trace to
zero. The remaining trace is found by using that

Tr {γµγν} = 4gµν , (B.4)

and remembering that there is really also a 4× 4 identity matrix in the m2 term.
We then get

iM = −y
2

2

∫ 1

0

dx

∫
d4`

(2π)4
4
`2 + q2x(x− 1) +m2

[`2 −∆]2
(B.5)

= −2y2

∫ 1

0

dx

∫
d4`

(2π)4
4
`2 + ∆

[`2 −∆]2
.

We now make a Wick rotation by introducing the Euclidian variable `E, given
by `0 = i`0

E, ~̀= ~̀
E, such that

`2 = −`2
E, d4` = id4`E. (B.6)

This gives

iM = i8y2

∫ 1

0

dx

∫
d4`E
(2π)4

`E
2 −∆

[`2
E + ∆]

2 , (B.7)

which can be evaluated in spherical coordinates,∫
d4`E =

∫
dΩ4

∫
d|`E| |`E|3, (B.8)

where Ω4 is the four-dimensional solid angle, which by spherical symmetry just
gives ∫

dΩ4 = 2π2. (B.9)
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By using a cutoff regularization parametrized by Λ, the whole amplitude is then

iM =− i 4π2

(2π)4
y2

∫ 1

0

dx

[∫ Λ

0

d|`E|
|`E|5

(|`E|2 + ∆)2 −∆

∫ Λ

0

|`E|3
(|`E|2 + ∆)2

]
=− iy2 1

4π2

∫ 1

0

dx

[−2∆2 + ∆Λ2 + Λ4 − 3∆ (∆ + Λ2) log (∆ + Λ2)

2 (∆ + Λ2)

− −2∆2 − 4∆2 log ∆

2∆

]
(B.10)

Λ2�∆→ − iy2 1

4π2

Λ4

2Λ2

=− i y
2

8π2
Λ2.

For y = |λf |, this gives the first term in Eq. (1.47).

B.2 Scalar loop

The diagram is given in Fig. B.2. The vertex factor is taken to be iλ, and m is

q q

k

Figure B.2: Scalar loop correction to the Higgs mass.

the mass of the scalar in the loop. The amplitude is given by

iM = iλ

∫
d4k

(2π)4

i

k2 −m2
. (B.11)

By Wick rotating k → kE and switching to spherical coordinates as in the previ-
ous section, we get

iM =iλ
1

(2π)4

∫
dΩ4

∫ Λ

0

d|kE|
|kE|3

|kE|2 +m2

=i
λ

16π2

(
Λ2 +m2 log

(
m2

m2 + Λ2

))
(B.12)

Λ2�m2

→ i
λ

16π2
Λ2.
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For λ = λf̃ , this is the second term in Eq. (1.47).
Note that when the leading, quadratic terms cancel each other, the remainder

in Eq. (B.12) is

m2 log

(
m2

Λ2

)
, (B.13)

which does not cancel with the fermion loop, since it depends on the scalar mass.
If the scalar, i.e. the superpartner particle, is heavy, then this contribution may
be significant. This puts restrictions on the sfermion masses in order not to
reintroduce the fine-tuning, and is sometimes called the little hierarchy problem.



Appendix C

Invariant mass with lepton
misidentification

The invariant mass of particle a and A in the decay topology of Fig. C.1 is given
by m2

aA = (pa + pA)2 = m2
B. However, if the particle b is misidentified as a,

what is the resulting invariant mass m2
X? The calculation is most easily done

in the rest frame of B. Let pa = (Ea,pa), pA = (EA,pA) in this frame. We

D C B A

c b a

Figure C.1: Decay topology, from [42].

assume mb = ma = 0. The decay must go back-to-back, so pA = −pa. Then,
the condition

m2
B = (pA + pa)

2 = p2
A + 2pA · pa + p2

a (C.1)

= m2
A + 2

(
m2
A + |pa|2

)1/2 |pa|+ 2|pa|2, (C.2)

gives

|pa| = |pA| =
m2
B −m2

A

2mB

. (C.3)

Thus, if p̂ is a unit vector in the direction of A in the rest frame of B, we have

pA =

(√
m2
A +

(m2
B −m2

A)2

4m2
B

,
m2
B −m2

A

2mB

p̂

)
=

(
m2
B +m2

A

2mB

,
m2
B −m2

A

2mB

p̂

)
,

(C.4)

pa =

(
m2
B −m2

A

2mB

,−m
2
B −m2

A

2mB

p̂

)
.
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To evaluate m2
X , we must evaluate pb and pA in the same reference frame. We

choose to transform p′b to pb in the rest frame of B. This is easiest by using the
invariance of the Minkowski norm, which gives

(pb + pB)2 = (p′b + p′B)2 = m2
C

= m2
B + 2mB|pb| (C.5)

⇒ |pb| =
m2
C −m2

B

2mB

,

where we have used that pB = 0 in the rest frame of B. Now, we may assume
without loss of generality that the decay products of C → Bb are aligned along
the x-axis. The decay B → Aa will make an angle θ with the x-axis. This is
illustrated in figure C.2. The spherical distribution of the decay direction of A

CB b

boostB

A

a

θ

b

x

y

Figure C.2: Lorentz boost from rest frame of C to rest frame of B.

is isotropic in the rest frame of B if B is a scalar, which means that cos θ is
uniformly distributed. We then get

m2
X = (pA + pb)

2 = m2
A + 2EA|pb| − 2|pA||pb| cos θ (C.6)

= m2
A + 2

(
m2
A +

(m2
B −m2

A)2

4m2
B

)1/2
m2
C −m2

B

2mB

− 2
m2
B −m2

A

2mB

m2
C −m2

B

2mB

cos θ

= m2
A +

m2
C −m2

B

2m2
B

(
m2
B(1− cos θ) +m2

A(1 + cos θ)
)
.

The limiting cases are

cos θ = −1⇒ m2
Xhigh = m2

A +m2
C −m2

B, (C.7)

cos θ = +1⇒ m2
X low =

m2
Cm

2
A

m2
B

.

We see that m2
X is monotonically decreasing as a function of cos θ between these

limits, which means mX is as well. We note that the interval (mXlow,mXhigh) is
always a subset of the interval (mA,mC) for any physical combination of mA,B,C ,
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so mX is always consistent with chain kinematics. For the example of SPS1a
discussed in the text, mA, mB and mC are 97 GeV, 144 GeV and 180 GeV, re-
spectively. The limits then evaluate to mXhigh = 145 GeV and mX low = 121 GeV.
The probability distribution for mX in this case — assuming that B is a scalar,
as indeed it is if it is a slepton — is shown in Fig. C.3.

125 130 135 140 145

mX [GeV]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
(m

X
)

Figure C.3: Probability distribution of mX .





Appendix D

A C++ implementation of the
Nelder-Mead Simplex algorithm

Adapted from [60]. The function to call for minimization is amoeba. It returns
true or false depending on whether convergence has been obtained within the set
number of iterations. The xisquared function uses the Armadillo linear algebra
library [61].

// Imp l ementa t i on o f Ne lde r –Mead S imp lex method :
doub l e ∗ a l l o c v e c t o r ( i n t c o l s )
{

r e t u r n ( doub l e ∗) ma l l o c ( s i z e o f ( doub l e ) ∗ c o l s ) ;
}
vo i d f r e e v e c t o r ( doub l e ∗ v e c t o r , i n t c o l s )
{

f r e e ( v e c t o r ) ;
}
doub l e ∗∗ a l l o c m a t r i x ( i n t rows , i n t c o l s )
{

i n t i ;
doub l e ∗∗ mat r i x = ( doub l e ∗∗) ma l l o c ( s i z e o f ( doub l e ∗) ∗

rows ) ;
f o r ( i = 0 ; i < rows ; i++)

mat r i x [ i ] = a l l o c v e c t o r ( c o l s ) ;
r e t u r n mat r i x ;

}
vo i d f r e e m a t r i x ( doub l e ∗∗ matr ix , i n t rows , i n t c o l s )
{

i n t i ;
f o r ( i =0; i < rows ; i++)

f r e e v e c t o r ( mat r i x [ i ] , c o l s ) ;
f r e e ( mat r i x ) ;

}
doub l e ∗∗ make s imp lex ( doub l e ∗ po in t , i n t dim )
{
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i n t i , j ;
doub l e ∗∗ s imp l e x = a l l o c m a t r i x ( dim + 1 , dim ) ;
f o r ( i = 0 ; i < dim + 1 ; i++)

f o r ( j = 0 ; j < dim ; j++)
s imp l e x [ i ] [ j ] = po i n t [ j ] ;

f o r ( i = 0 ; i < dim ; i++)
s imp l e x [ i ] [ i ] += 1 . 0 ;

r e t u r n s imp l e x ;
}
vo i d e v a l u a t e s imp l e x ( doub l e ∗∗ s imp l ex , i n t dim , doub l e ∗

fx , doub l e (∗ func ) ( doub l e ∗ , i n t , i n t , double ,
v e c to r<bool> &, vec to r<vec to r<mat>> &, vec to r<vec to r<vec>>
&, vec to r<pa i r<i n t , i n t> >, i n t , i n t ) ,

i n t Nevents , i n t jB in , doub l e Mnorm , vec to r<bool>
&a l l l e p t o n s e q u a l l i s t , v e c to r<vec to r<mat>> &D l i s t s ,
v e c to r<vec to r<vec>> &E l i s t s , v e c to r<pa i r<i n t , i n t> >
e v e n t I n d i c e s , i n t min imizat ion method , i n t combosum)

{
i n t i ;
f o r ( i = 0 ; i < dim + 1 ; i++)
{

f x [ i ] = (∗ func ) ( s imp l e x [ i ] , Nevents , jB in , Mnorm ,
a l l l e p t o n s e q u a l l i s t , D l i s t s , E l i s t s ,
e v e n t I n d i c e s , m in imiza t ion method , combosum) ;

}
}

vo i d s imp l e x e x t r eme s ( doub l e ∗ fx , i n t dim , i n t & i h i , i n t &
i l o , i n t & i n h i )

{
i n t i ;
i f ( f x [ 0 ] > f x [ 1 ] )
{ i h i = 0 ; i l o = i n h i = 1 ; }
e l s e
{ i h i = 1 ; i l o = i n h i = 0 ; }
f o r ( i = 2 ; i < dim + 1 ; i++)

i f ( f x [ i ] <= fx [ i l o ] )
i l o = i ;

e l s e i f ( f x [ i ] > f x [ i h i ] )
{ i n h i = i h i ; i h i = i ; }

e l s e i f ( f x [ i ] > f x [ i n h i ] )
i n h i = i ;

}
vo i d s imp l e x b e a r i n g s ( doub l e ∗∗ s imp l ex , i n t dim , doub l e ∗

midpoint , doub l e ∗ l i n e , i n t i h i )
{

i n t i , j ;
f o r ( j = 0 ; j < dim ; j++)

midpo in t [ j ] = 0 . 0 ;
f o r ( i = 0 ; i < dim + 1 ; i++)

i f ( i != i h i )
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f o r ( j = 0 ; j < dim ; j++)
midpo in t [ j ] += s imp l e x [ i ] [ j ] ;

f o r ( j = 0 ; j < dim ; j++)
{

midpo in t [ j ] /= dim ;
l i n e [ j ] = s imp l e x [ i h i ] [ j ] – midpo in t [ j ] ;

}
}
i n t upda t e s imp l e x ( doub l e ∗ po in t , i n t dim , doub l e &

fmax , doub l e ∗ midpoint , doub l e ∗ l i n e , doub l e s c a l e ,
doub l e (∗ func ) ( doub l e ∗ , i n t , i n t , double , v e c to r<bool> &,
vec to r<vec to r<mat>> &, vec to r<vec to r<vec>> &,
vec to r<pa i r<i n t , i n t> >, i n t , i n t ) ,

i n t Nevents , i n t jB in , doub l e Mnorm , vec to r<bool>
&a l l l e p t o n s e q u a l l i s t , v e c to r<vec to r<mat>> &D l i s t s ,
v e c to r<vec to r<vec>> &E l i s t s , v e c to r<pa i r<i n t , i n t> >
e v e n t I n d i c e s , i n t min imizat ion method , i n t combosum)

{
i n t i , update = 0 ;
doub l e ∗ next = a l l o c v e c t o r ( dim ) , f x ;
f o r ( i = 0 ; i < dim ; i++)

next [ i ] = midpo in t [ i ] + s c a l e ∗ l i n e [ i ] ;
f x = (∗ func ) ( next , Nevents , jB in , Mnorm ,

a l l l e p t o n s e q u a l l i s t , D l i s t s , E l i s t s , e v e n t I n d i c e s ,
m in im izat ion method , combosum) ;

i f ( f x < fmax )
{

f o r ( i = 0 ; i < dim ; i++)
po i n t [ i ] = next [ i ] ;

fmax = f x ;
update = 1 ;

}
f r e e v e c t o r ( next , dim ) ;
r e t u r n update ;

}

vo i d c o n t r a c t s imp l e x ( doub l e ∗∗ s imp lex , i n t dim , doub l e ∗
fx , i n t i l o , doub l e (∗ func ) ( doub l e ∗ , i n t , i n t , double ,
v e c to r<bool> &, vec to r<vec to r<mat>> &, vec to r<vec to r<vec>>
&, vec to r<pa i r<i n t , i n t> >, i n t , i n t ) , i n t Nevents , i n t
jB in , doub l e Mnorm , vec to r<bool> &a l l l e p t o n s e q u a l l i s t ,
v e c to r<vec to r<mat>> &D l i s t s , v e c to r<vec to r<vec>>
&E l i s t s , v e c to r<pa i r<i n t , i n t> > e v e n t I n d i c e s , i n t
min im izat ion method , i n t combosum)

{
i n t i , j ;
f o r ( i = 0 ; i < dim + 1 ; i++)

i f ( i != i l o )
{

f o r ( j = 0 ; j < dim ; j++)
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s imp l e x [ i ] [ j ] = ( s imp l e x [ i l o ] [ j ]+ s imp l e x [ i ] [ j ] ) ∗ 0 . 5 ;
f x [ i ] = (∗ func ) ( s imp l e x [ i ] , Nevents , jB in , Mnorm ,

a l l l e p t o n s e q u a l l i s t , D l i s t s , E l i s t s ,
e v e n t I n d i c e s , m in imiza t ion method , combosum) ;

}
}

#de f i n e ZEPS 1e–30
i n t c h e c k t o l ( doub l e fmax , doub l e fmin , doub l e f t o l )
{
doub l e d e l t a = f ab s ( fmax – fmin ) ;
doub l e accu racy = ( f ab s ( fmax ) + f ab s ( fmin ) ) ∗ f t o l ;
// cout << d e l t a << ” , ” << accu racy << ” , ” << f t o l << end l ;
r e t u r n ( d e l t a < ( a ccu racy + ZEPS) ) ;
}

boo l amoeba ( doub l e ∗ po in t , doub l e &fmin , doub l e
(∗ func ) ( doub l e ∗ , i n t , i n t , double , v e c to r<bool> &,
vec to r<vec to r<mat>> &, vec to r<vec to r<vec>> &,
vec to r<pa i r<i n t , i n t> >, i n t , i n t ) ,

i n t dim , doub l e t o l , i n t max i te r ,
i n t Nevents , i n t jB in , doub l e Mnorm , vec to r<bool>

&a l l l e p t o n s e q u a l l i s t , v e c to r<vec to r<mat> > &D l i s t s ,
v e c to r<vec to r<vec> > &E l i s t s , v e c to r<pa i r<i n t , i n t> >
e v e n t I n d i c e s , i n t min imizat ion method , i n t combosum)

{
// Usage : Po in t i s an a l l o c a t e d dim– d imen s i o n a l a r r a y o f

doub l e s
// to be f i l l e d w i th c o o r d i n a t e s o f the b e s t – f i t po in t ,
// func i s the f u n c t i o n to min imize .
i n t i h i , i l o , i n h i , j ;
doub l e ∗ f x = a l l o c v e c t o r ( dim + 1) ;
doub l e ∗ midpo in t = a l l o c v e c t o r ( dim ) ;
doub l e ∗ l i n e = a l l o c v e c t o r ( dim ) ;
doub l e ∗∗ s imp l e x = make s imp lex ( po in t , dim ) ;
e v a l u a t e s imp l e x ( s imp lex , dim , fx , func ,

Nevents , jB in , Mnorm , a l l l e p t o n s e q u a l l i s t , D l i s t s ,
E l i s t s , e v e n t I n d i c e s , m in im izat ion method , combosum) ;

i n t i t e r = 0 ;
wh i l e ( i t e r < max i t e r )
{

s imp l e x e x t r eme s ( fx , dim , i h i , i l o , i n h i ) ;
s im p l e x b e a r i n g s ( s imp l ex , dim , midpo int , l i n e , i h i ) ;
i f ( c h e c k t o l ( f x [ i h i ] , f x [ i l o ] , t o l ) ) { /∗ cout << ” below

t o l = ” << t o l << end l ; ∗/ break ; }
upda t e s imp l e x ( s imp l e x [ i h i ] , dim , f x [ i h i ] ,
midpo int , l i n e , – 1 . 0 , func ,
Nevents , jB in , Mnorm , a l l l e p t o n s e q u a l l i s t , D l i s t s ,

E l i s t s , e v e n t I n d i c e s , m in im izat ion method , combosum) ;
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i f ( f x [ i h i ] < f x [ i l o ] )
upda t e s imp l e x ( s imp l e x [ i h i ] , dim , f x [ i h i ] , midpo int ,

l i n e , – 2 . 0 , func ,
Nevents , jB in , Mnorm , a l l l e p t o n s e q u a l l i s t ,

D l i s t s , E l i s t s , e v e n t I n d i c e s ,
m in im izat ion method , combosum) ;

e l s e i f ( f x [ i h i ] >= fx [ i n h i ] )
i f ( ! u pda t e s imp l e x ( s imp l e x [ i h i ] , dim , f x [ i h i ] ,

midpo int , l i n e , 0 . 5 , func , Nevents , jB in , Mnorm ,
a l l l e p t o n s e q u a l l i s t , D l i s t s , E l i s t s ,
e v e n t I n d i c e s , m in imiza t ion method , combosum) )

c o n t r a c t s imp l e x ( s imp lex , dim , fx , i l o , func ,
Nevents , jB in , Mnorm , a l l l e p t o n s e q u a l l i s t ,
D l i s t s , E l i s t s , e v e n t I n d i c e s ,
m in im izat ion method , combosum) ;

i t e r += 1 ;
}

f o r ( j = 0 ; j < dim ; j++)
po i n t [ j ] = s imp l e x [ i l o ] [ j ] ;

fmin = f x [ i l o ] ;
f r e e v e c t o r ( fx , dim ) ;
f r e e v e c t o r ( midpo int , dim ) ;
f r e e v e c t o r ( l i n e , dim ) ;
f r e e m a t r i x ( s imp lex , dim + 1 , dim ) ;

i f ( i t e r < max i t e r )
{

r e t u r n t r u e ;
}
e l s e

r e t u r n f a l s e ;
}
s t r u c t MomentumVector
{

i n t i d ;
arma : : vec p ;

} ;

doub l e minkowsk idot ( vec a , vec b )
{

r e t u r n a [ 3 ] ∗ b [ 3 ] –a [ 0 ] ∗ b [ 0 ] –a [ 1 ] ∗ b [ 1 ] –a [ 2 ] ∗ b [ 2 ] ;
}

doub l e x i s q u a r e d ( doub l e ∗Masses , i n t Nevents , i n t j , doub l e
Mnorm , vec to r<bool> &a l l l e p t o n s e q u a l l i s t ,
v e c to r<vec to r<mat>> &D l i s t s , v e c to r<vec to r<vec>>
&E l i s t s , v e c to r<pa i r<i n t , i n t> > e v e n t I n d i c e s , i n t
min im izat ion method , i n t combosum)

{
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doub l e x i s q u a r e d = 0 ;

i f ( m in im i za t i on method == 1)
{

// ORIGINAL FOUR–PARAMETER FIT
vec M;
M << Masses [ 0 ] ∗ Masses [ 0 ] << Masses [ 1 ] ∗ Masses [ 1 ] <<

Masses [ 2 ] ∗ Masses [ 2 ] << Masses [ 3 ] ∗ Masses [ 3 ]
<< Masses [ 0 ] ∗ Masses [ 0 ] << Masses [ 1 ] ∗ Masses [ 1 ] <<

Masses [ 2 ] ∗ Masses [ 2 ] << Masses [ 3 ] ∗ Masses [ 3 ] ;
M = M/pow(Mnorm , 2) ;

// Avoid r e g i o n s o f u n p h y s i c a l mass comb ina t i on s by
add ing a huge c o n t r i b u t i o n i n a con t i nuou s way

doub l e hug e f a c t o r = 10000000 .0 ;
i f ( Masses [ 0 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 0 ] ∗M[ 0 ] ;
i f ( Masses [ 1 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 1 ] ∗M[ 1 ] ;
i f ( Masses [ 2 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 2 ] ∗M[ 2 ] ;
i f ( Masses [ 3 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 3 ] ∗M[ 3 ] ;
i f (M[ 0 ] < M[ 1 ] ) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗(M[ 0 ] –M[ 1 ] ) ∗(M[ 0 ] –M[ 1 ] ) ;
i f (M[ 1 ] < M[ 2 ] ) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗(M[ 1 ] –M[ 2 ] ) ∗(M[ 1 ] –M[ 2 ] ) ;
i f (M[ 2 ] < M[ 3 ] ) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗(M[ 2 ] –M[ 3 ] ) ∗(M[ 2 ] –M[ 3 ] ) ;

f o r ( auto i t e r a t o r C u r r e n t E v e n t : e v e n t I n d i c e s )
{

i n t i E v en t = i t e r a t o r C u r r e n t E v e n t . f i r s t ;
i n t iCombo = i t e r a t o r C u r r e n t E v e n t . second ;
// cout << ” i t e r a t o r C u r r e n t E v e n t = ” << i E v en t << ” ,

”<< iCombo << end l ;

doub l e x i s q u a r e d c u r r e n t ;
vec P ;
P = D l i s t s [ iCombo ] [ i E v en t ]∗M + E l i s t s [ 0 ] [ i E v en t ] ;
x i s q u a r e d c u r r e n t = pow(P [ 3 ] ∗P [ 3 ] – P [ 0 ] ∗P [ 0 ] –

P [ 1 ] ∗P [ 1 ] –P [ 2 ] ∗P [ 2 ] – M[ 3 ] , 2) + pow(P [ 7 ] ∗P [ 7 ] –
P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] – P [ 6 ] ∗P [ 6 ] – M[ 3 ] , 2) ;

i f ( combosum == 2)
{

P = D l i s t s [1+iCombo ] [ i E v en t ]∗M + E l i s t s [ 1 ] [ i E v en t ] ;
x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]

– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – M[ 3 ] , 2 ) +
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pow(P [ 7 ] ∗P[7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] –
P [ 6 ] ∗P [ 6 ] – M[ 3 ] , 2) ;

P = D l i s t s [2+iCombo ] [ i E v en t ]∗M + E l i s t s [ 2 ] [ i E v en t ] ;
x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]

– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – M[ 3 ] , 2 ) +
pow(P [ 7 ] ∗P[7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] –
P [ 6 ] ∗P [ 6 ] – M[ 3 ] , 2) ;

P = D l i s t s [3+iCombo ] [ i E v en t ]∗M + E l i s t s [ 3 ] [ i E v en t ] ;
x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]

– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – M[ 3 ] , 2 ) +
pow(P [ 7 ] ∗P [ 7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] – P [ 6 ] ∗P [ 6 ] –
M[ 3 ] , 2) ;

}

x i s q u a r e d = x i s q u a r e d + x i s q u a r e d c u r r e n t ;

// ADD IF TEST FOR COMBOSUM + REMEMBER TO CHECK SHIFT
VALUE FOR COMBINATORICS DEPENDENT ON COMBOSUM

}

} // END IF min im i za t i on method == 1
e l s e i f ( m in im i za t i on method == 2)
{

// MASS–DIFFERENCE FIT
vec M;
M << Masses [ 0 ]
<< Masses [ 1 ]
<< Masses [ 2 ] ;

M = M/pow(Mnorm , 2) ;

// Avoid r e g i o n s o f u n p h y s i c a l mass comb ina t i on s by
add ing a huge c o n t r i b u t i o n i n a con t i nuou s way

doub l e hug e f a c t o r = 100000 . 0 ;
i f ( Masses [ 0 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 0 ] ∗M[ 0 ] ;
i f ( Masses [ 1 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 1 ] ∗M[ 1 ] ;
i f ( Masses [ 2 ] < 0) x i s q u a r e d = x i s q u a r e d +

huge f a c t o r ∗M[ 2 ] ∗M[ 2 ] ;

// C a l c u l a t e c u r r e n t e s t ima t e f o r LSP mass from d i l e p t o n
i n v a r i a n t mass edge

doub l e m l l i n v = 80 . 1 ; // Ca l c u l a t e d from t r u e masses
u s i n g fo rmu la

doub l e MLSPsq = M[ 2 ] ∗ (M[ 1 ] / ( m l l i n v ∗ m l l i n v ) – 1 . 0 ) ;

f o r ( auto i t e r a t o r C u r r e n t E v e n t : e v e n t I n d i c e s )
{

i n t i E v en t = i t e r a t o r C u r r e n t E v e n t . f i r s t ;
i n t iCombo = i t e r a t o r C u r r e n t E v e n t . second ;
// cout << ” i t e r a t o r C u r r e n t E v e n t = ” << i E v en t << ” ,
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”<< iCombo << end l ;

doub l e x i s q u a r e d c u r r e n t ;
vec P ;
// cout << iCombo << end l ;

P = D l i s t s [0+4∗ iCombo ] [ i E v en t ]∗M +
E l i s t s [0+4∗ iCombo ] [ i E v en t ] ;

x i s q u a r e d c u r r e n t = pow(P [ 3 ] ∗P [ 3 ] – P [ 0 ] ∗P [ 0 ] –
P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – MLSPsq , 2) + pow(P [ 7 ] ∗P [ 7 ] –
P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] – P [ 6 ] ∗P [ 6 ] –MLSPsq , 2) ;

// cout << x i s q u a r e d c u r r e n t << end l ;

i f ( combosum == 2)
{

// Add c o n t r i b u t i o n s from the t h r e e f i r s t wrong
combos , where the l e p t o n s a r e f l i p p e d i n s i d e c h a i n s

P = D l i s t s [1+4∗ iCombo ] [ i E v en t ]∗M +
E l i s t s [1+4∗ iCombo ] [ i E v en t ] ;

x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]
– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – MLSPsq , 2 )
+ pow(P [ 7 ] ∗P [ 7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] –
P [ 6 ] ∗P [ 6 ] – MLSPsq , 2) ;

P = D l i s t s [2+4∗ iCombo ] [ i E v en t ]∗M +
E l i s t s [2+4∗ iCombo ] [ i E v en t ] ;

x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]
– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – MLSPsq , 2 )
+ pow(P [ 7 ] ∗P [ 7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] –
P [ 6 ] ∗P [ 6 ] – MLSPsq , 2) ;

P = D l i s t s [3+4∗ iCombo ] [ i E v en t ]∗M +
E l i s t s [3+4∗ iCombo ] [ i E v en t ] ;

x i s q u a r e d c u r r e n t = x i s q u a r e d c u r r e n t + pow(P [ 3 ] ∗P [ 3 ]
– P [ 0 ] ∗P [ 0 ] – P [ 1 ] ∗P [ 1 ] – P [ 2 ] ∗P [ 2 ] – MLSPsq , 2 )
+ pow(P [ 7 ] ∗P [ 7 ] – P [ 4 ] ∗P [ 4 ] – P [ 5 ] ∗P [ 5 ] –
P [ 6 ] ∗P [ 6 ] – MLSPsq , 2) ;

}
x i s q u a r e d = x i s q u a r e d + x i s q u a r e d c u r r e n t ;

}
} // END IF min im i za t i on method == 2

r e t u r n x i s q u a r e d ;

}
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