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Abstract 
Climate change drives species to shift their ranges towards the poles and towards higher 

altitudes. Arctic and alpine ecosystems are particularly vulnerable, as climate change 

happens faster in these regions than the global average. With this in mind, changes in 

the breeding distribution with regard to latitude and altitude of an alpine passerine, the 

Bluethroat (Luscinia svecica svecica), in Norway during 1980-2014 were investigated. 

Analysis was conducted using a site occupancy model with opportunistic citizen science 

data. Results show that the occupancy probability of Bluethroat in 1x1km areas declined 

substantially at lower and intermediate elevations and latitudes. The decline was 

especially severe in southern Norway and at lower elevations in northern Norway, while 

occupancy probability around optimal altitudes in northernmost parts of Norway 

remained fairly unaffected. These findings are congruent with the pattern of distribution 

shifts found for other alpine birds in Fennoscandia the last decades. There may be 

several proximate factors causing these shifts in breeding distribution, such as reduced 

food availability and increased competition.  
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1 Introduction 

Understanding factors regulating the distribution of organisms forms the core of ecology 

(Brommer et al. 2012). As such, climate is a dominant factor (Pearson and Dawson 

2003). Since 1750, human activity has led to an increase in atmospheric concentrations 

of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), 

leading to the contemporary anthropogenic climate change (IPCC 2013). The average 

global surface temperature, for ocean and land combined, has increased by 0.85 degrees 

Celsius in the period 1880-2012, and further warming is expected in the coming decades 

(IPCC 2013).  In the current thesis changes in the distribution of Bluethroat (Luscinia 

svecica svecica) with regard to latitude and altitude was studied over more than three 

decades in Norway. 

1.1 Climate change happens faster in Arctic and alpine 

areas than the global average 

The rate of global warming is not equal in all parts of the world. Compared to lower 

latitudes the Arctic is warming up more rapidly than the global mean, a phenomenon 

termed polar amplification (Serreze and Francis 2006, IPCC 2013). Since 1875, the 

Northern hemisphere above 60°N latitude has warmed at a rate of 1.36°C per century, 

approximately twice as fast as the global average (Bekryaev et al. 2010). Mountain 

ranges such as the Alps (Beniston et al. 1997, Böhm et al. 2001) and the Rocky 

Mountains have also experienced temperature increases above the global average 

(Kohler and Maselli 2009). According to Gonzalez et al. (2010) the Arctic and alpine 

ecosystems are also the most vulnerable to climate change. The above average 

temperature increases in these regions have led to detectable changes in vegetation in 

the Arctic and alpine ecosystems the last decades. In the European Alps, alpine flora is 

responding to the milder climate by shifting towards higher altitudes (Pauli et al. 1996, 

Walther et al. 2005), and forest and shrubs are expanding into the Arctic tundra (Sturm 

et al. 2001, Lloyd et al. 2002, Wang and Overland 2004, Chapin et al. 2005).  

 Dramatic changes are predicted in these regions in the near future. The alpine 

treeline in the Swedish mountains, a part of the Fennoscandian mountain range, is 

projected to rise with several hundred meters over a 100-year timeframe, leading to a 

severe reduction and fragmentation of the treeless alpine heathlands (Moen et al. 2004); 

but see Van Bogaert et al. (2011). In combination with rising sea levels the encroaching 

vegetation is projected to shrink the area of the Arctic tundra to its lowest extent in at 

least the past 21,000 years, severely reducing the breeding area for many bird species 

and the grazing areas for land animals inhabiting the tundra biome (Hassol 2004). 
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1.2 Climate change and shifts in bird distributions 

As a response to climate change species have been predicted to shift their ranges 

towards the poles (Davis and Zabinski 1992, Woodward 1992) and towards higher 

altitudes (Peters and Darling 1985). At the latitudes of Europe and North America it is 

now well documented that species distributions across a large number of taxa indeed 

are moving north and to higher elevations (Hickling et al. 2006, Chen et al. 2011). 

Changes seem to be proportionate with the degree of temperature increase, as shifts in 

species distributions have been largest in areas of the greatest warming (Chen et al. 

2011). These trends are also documented in birds. Pearce-Higgins and Green (2014) 

conducted a meta-study showing that avian species distributions across mid- to high 

northern latitudes have in general consistently shifted northward with 0.76± 0.27 km 

per year, a mean shift of 15km over a 20-year period. The rate of distribution shifts may 

vary among different groups of bird species. In Finland, Brommer et al. (2012) found 

that the trend of northward range shifts was stronger for bird species predominately 

breeding in central Europe than for northern boreal and Arctic bird species. 

 In general, the rate of retraction of the southern range limits, driven by 

extinction, seems to be slower than the northward expansion, driven by colonisation 

(Thomas and Lennon 1999, Brommer et al. 2012, Pearce-Higgins and Green 2014). This 

may indicate that the latitudinal advances at the northern range limits actually happen 

faster than the retractions at the southern limits (Pearce-Higgins and Green 2014). 

Alternatively it may only appear so, due to failed detection of population declines, or a 

failure of attributing the decline to climate change at the southern limits of species 

ranges (Thomas et al. 2006). Concerning birds’ ability to track climate change, Devictor 

et al. (2008) found that although birds are rapidly shifting their distribution northward, 

they are still lagging behind the northward change in temperature. They noted that this 

discrepancy may threaten the ability of birds to cope with climate change in the long 

run. 

 While there is strong evidence for latitudinal range shifts in birds, the evidence of 

upward shifts in altitude is less clear. Although some studies have found significant 

upward shifts in elevation in birds (Popy et al. 2010, Forero-Medina et al. 2011, Reif and 

Flousek 2012), it is noted by Pearce-Higgins and Green (2014) that most studies do not, 

and as many have found signs of species shifting to lower elevations. A possible 

explanation for the apparently weaker altitudinal than latitudinal response in range shift 

due to climate change may be that shifts in altitude is happening on a finer scale (tens of 

meters) compared to shifts in latitude (tens of kilometres). Hence, subtle shifts in 

altitude may be harder to detect than shifts in latitude (Pearce-Higgins and Green 2014).  
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1.3 Arctic and alpine bird species are particularly 

vulnerable to climate change 

As global warming progresses, some species may escape the detrimental effects of global 

warming by retreating to higher latitudes and altitudes, but species already living in 

these regions may eventually find themselves with nowhere left to go, facing global 

extinction (Thomas et al. 2006).  As a consequence of climate change in the Arctic, 

Virkkala et al. (2008) projected that more than 20  northern bird species inhabiting 

northern Fennoscandia will lose over 60% of their climatic space by year 2080. 

Worldwide, several hundred bird species are predicted to experience increased risk of 

extinction as a result of range contractions, due to the upward shift of their lower 

altitudinal limits, putting species already living at high altitudes at particular risk 

(Sekercioglu et al. 2008). Indications that bird species inhabiting alpine ecosystem are 

already affected by recent climate change were found by Lehikoinen et al. (2014) in the 

Fennoscandian mountain range.  They found a substantial decline in abundance in 9 out 

of 14 alpine bird species in the period 2002-2012, concurrent with the warmest and 

wettest decade in forty years. The fact that long-distance migrants declined less than 

short-distance migrants and resident species suggests that the main reasons for the 

decline may be intrinsic to the mountain range (Lehikoinen et al. 2014), and not due to 

factors in the overwintering areas or along the migration routes.  

1.4 Using citizen science data and a site occupancy 

model to investigate possible distributional 

changes of Bluethroat in Norway 

The project objective was to investigate possible changes in the breeding distribution of 

an alpine bird species, the Bluethroat, in Norway the last 35 years (1980-2014). Changes 

in the breeding distribution with regard to latitude and altitude were emphasised to 

investigate whether Bluethroat showed a pattern of distribution change as expected due 

to climate change, and to compare it to what have been found for other bird species the 

last decades. A site occupancy model based on MacKenzie et al. (2002) was used, 

provided with observational data from the Norwegian citizen science database 

artsobservasjoner.no (Artsobservasjoner 2014). A site occupancy model estimates the 

probability of species occupancy in an area, and is based on species detection/non-

detection data (Bailey and Adams 2005). Possible changes in the breeding distribution 

of Bluethroat using this approach would thus be detected as changes in occupancy 

probability.  

 Species are rarely detected with perfect accuracy. This may cause false absences 

to be recorded – incidences where investigators fail to detect a species that is actually 

present.  If occupancy probability is estimated from detection/non-detection data 
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without accounting for the possibility of false absences, the estimates of occupancy 

probability will underestimate the true occupancy levels (Bailey and Adams 2005). The 

method developed by MacKenzie et al. (2002) enables the modelling of species 

occupancy probability when species detectability is less than 100%. Based on the 

pattern of species detection/non-detection from multiple surveys of the same sites 

during a season, estimates for the detection and occupancy probability parameters can 

be found. 

 Artsobservasjoner is an open access internet platform where members of the 

public can report personal species observations, and thus consist of so-called citizen 

science data (Devictor et al. 2010). Birds have proved a successful taxonomic group for 

citizen science as they are relatively easy to census for amateur naturalists and because 

they are attractive (Devictor et al. 2010). Further, birds are sensitive environmental 

indicators of environmental changes and ecosystem health (Sullivan et al. 2009), and are 

thus a species group well suited for studies on the impacts of climate change.  

 However, opportunistic citizen science data, as is the case with data reported to 

Artsobservasjoner, contain several kinds of biases that may potentially lead to artificial 

trends or mask existing trends (Van Strien et al. 2013). Firstly, surveyed sites are 

unevenly distributed in space, leading to geographical bias (e.g. Dennis and Thomas 

(2000)). Secondly, variable search efforts within sites due to the lack of standardization 

of observer effort may lead to observation bias. Lastly, reporting bias may arise when 

observers report only the species they find interesting. Van Strien et al. (2013) found 

that opportunistic butterfly and dragonfly data could be successfully used to draw 

inferences on distribution trends when analysed with occupancy models to avoid 

observation bias and other biases affecting detection. They deduced non-detections for a 

focal species from visits to a site where any species of butterfly or dragonfly were 

reported by an observer, while the focal species itself was not. However, by using 

reports of any other species than the focal species to obtain non-detection data they did 

not account for the possibility that a focal species may be observed, but not reported, 

because the observer found other observed species more interesting to report. This 

situation would lead to an apparent false absence, and increased heterogeneity in 

detection probability. In the current thesis I suggest an improvement to the method of 

Van Strien et al. (2013) of obtaining non-detection data by assigning the focal species a 

tailored group of non-target species that will reduce the risk of reporting-induced false 

absences, and thus reduce heterogeneity in detection probability. 

 The Bluethroat is a remarkably beautiful passerine bird that in Norway breeds 

primarily in the subalpine birch forests and low alpine heath lands in the Norwegian 

mountain range (Haftorn 1971, Thingstad 1994) (photo 1).  It was chosen as a 

representative for alpine birds because of its popular status among hikers and amateur 

birders. Its conspicuous bright colours and its distinct song make it a bird most birders 

would consider worthy of registering.  

 Lehikoinen et al. (2014) provided updated knowledge on the population status of 

Bluethroat in Fennoscandia (Norway, Sweden and Finland) by measuring trends in 
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abundance between 2002 and 2012. While the trend was slightly positive in Finland, 

and slightly negative in Sweden, it was significantly negative in Norway. Importantly, the 

bulk of the sampling areas in Norway were primarily located in the south, while in 

Sweden and Finland the sampling areas were from inland locations at higher latitudes. 

Thus, the study by Lehikoinen et al. (2014) indicates that the population of Bluethroat 

has been stable at high latitudes while it has declined at the latitudes of southern 

Norway. Their analysis was based on data from point counts along predetermined 

routes. The sites were situated in remote, sparsely populated areas far from roads, and 

the field work was conducted by paid surveyors (Lehikoinen et al. 2014). By using data 

from volunteers through Artsobservasjoner the current thesis offers a low cost 

alternative to conventional data sampling across the whole of Norway. It also serves as a 

pilot project testing the utility of this citizen science database in scientific research and 

nature management, as this has so far not been conducted in Norway to the knowledge 

of the author. 

 

 

 

Photo 1. Male Bluethroat (Luscinia svecica svecica). Photo by Bjørn Aksel Bjerke 
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2 Materials and Methods 

2.1 Study area 

In Norway the Bluethroat primarily inhabits the subalpine birch forests and the low 

alpine zone in the Norwegian parts of the Fennoscandian mountain range, but can in 

some places be found in other habitats (Thingstad 1994). Thus, data from all parts of the 

country were included to insure that no areas where Bluethroats occur were omitted. 

 The Fennoscandian mountain range stretches from 58°N to 71°N (Holten 1995). 

The large span in latitude from north to south leads to great variation in the light 

climate. During the growing season, the length of day varies from about 16h in the south 

to 24h in the north under a midnight sun. In the west, the mountains are characterized 

by steep and rugged slopes, incised by fjords and deep valleys. Further east, the central 

parts of the mountain range forms a plateau around 1000-1200 masl (Holten 1995). The 

highest peak is Galdhøpiggen (2469 masl). In the southern part of the mountain range 

the low alpine zone occurs at an altitude of 1100-1450 masl (Holten 1995) and at sea 

level in the far north (Lehikoinen et al. 2014). The low alpine zone is dominated by low 

vegetation such as grasses (Gramineae), dwarf birch (Betula nana), willows (Salix sp.) 

and Bilberry (Vaccinium myrtillus) (Holten 1995, Lehikoinen et al. 2014). The low alpine 

zone is gradually replaced by subalpine birch forest (Betula pubescens ssp. czerepanovii) 

at lower elevations. The subalpine birch forest forms a distinct zone covering a 

latitudinal range of about 50-300m (Lehikoinen et al. 2014). The subalpine birch forest 

is replaced by Norway spruce (Picea abies) or Scots pine (Pinus sylvestris) at even lower 

altitudes (Kullman and Öberg 2009). 

2.2 Study species 

The Bluethroat is a monogamous and territorial passerine (Krokene et al. 1996). 

The male’s blue throat patch, with a rust-red central spot, makes it incredibly beautiful 

and impossible to confuse with other species. Matching its plumage, the males’ song is 

remarkably beautiful, characterized by variation and improvisations. The female is 

visually less impressive and the throat patch is usually faint (Haftorn 1971). 

 In Norway the Bluethroat arrives at the breeding grounds in the second half of 

May. The males’ song activity is initiated immediately after arrival and declines sharply 

towards the beginning of egg-laying. In northern Finland (69.5°N) (Merilä and Sorjonen 

1994) and Sweden (65.5°N) (Arheimer 1982) the date of laying of the first egg was 

found to take place in the first half of June. Unpaired males, and males who fail breeding 

attempts, are known to continue singing later in the season, after the mated males have 

stopped. In addition to conventional singing, the male performs conspicuous song flights 

(Merilä and Sorjonen 1994).  
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 The Bluethroat nests on the ground, laying 6-7 eggs. The eggs are incubated for 

two weeks, and the chicks fledge after another two weeks (Thingstad 1994). The diet 

consists of insects (Svensson et al. 2010). Both parents feed the chicks, but only the 

female incubates the eggs (Arheimer 1982). It migrates south to its wintering grounds in 

North-Eastern Africa to Western India during September (Svensson et al. 2010). The 

Bluethroat is predominately a Palearctic species, and occurs in several subspecies within 

its range. The nominate subspecies L.s. svecica breeds in Northern Fennoscandia 

through northern Russia and Siberia to north-west Alaska (Haftorn 1971). In Norway it 

occurs from the far south to the far north, where it primarily inhabits the sub alpine 

birch forests and the low alpine zone. In the latter habitat it is particularly associated 

with wetlands surrounded by lush vegetation of willow (Salix spp.) and dwarf birch 

(Betula nana) (Haftorn 1971, Thingstad 1994). In northern Norway the Bluethroat 

occurs at sea level, and on coastal islands in suitable locations with birch forest and 

willow (Haftorn 1971). It is also somewhat common in forest dominated by aspen 

(Populus tremula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) 

(Thingstad 1994). The total area covered by subalpine birch forest in Norway is 

approximately 30 000 km2. In Thingstad (1994) it was estimated that the population 

size of Bluethroat in this habitat was in the order of about 200 000 pairs, with an 

average breeding density of about 6 pairs per km2. The breeding density was found to be 

highest in the upper parts of these forests. Further, the low alpine area in Norway covers 

approximately 75 000-100 000km2, and in this habitat the average breeding density of 

Bluethroat was found to be 5.5 pairs per km2. Thus, the Bluethroat population size was 

estimated to consist of about 400 000-550 000 pairs in montane areas in 1994. Given 

that the Bluethroat is also somewhat common in other habitats as well, a crude estimate 

of the total population size for Norway was in 1994 approximately 500 000-1000 000 

pairs (Thingstad 1994). 

2.3 Acquisition of data 

In order to promote a sound understanding of the origin and acquisition of data for this 

project, it is necessary to first introduce Artsdatabanken and two of its services dealing 

with species occurrences, namely Artsobservasjoner and Artskart. Artsdatabanken is a 

national database on biodiversity, subjected to the Norwegian Ministry of Education and 

Research (Artsdatabanken 2014). Artsdatabanken was established to enhance the 

knowledge of biodiversity, and has been operative since January 2005. Its main task is to 

convey updated and easily accessible information on species and ecosystems to the 

society (Artsdatabanken 2014). 

 Artsobservasjoner (2014) is a species report system developed by 

Artsdatabanken in cooperation with five member organisations of The Norwegian 

Biodiversity Network (SABIMA) (SABIMA 2014). It is dedicated solely to public 

registrations and encourages members of the public to report their own species 

observations in order to increase the report of species occurrence in Norway 
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(Artsobservasjoner 2014). Species observations are reported to Artsobservasjoner as 

so-called primary data, i.e. single observations of one or more individuals observed at a 

locality at a given time. A reported observation in Artsobservasjoner is also considered a 

report to the appropriate organisation within SABIMA dealing with the specific group of 

species, who is then responsible for assessing the validity of rare and usual 

observations. In the case of birds, Norsk Ornitologisk Forening (NOF) is the responsible 

organisation (Artsobservasjoner 2014). Registered observations are publically available 

(Artsdatabanken 2014). 

 All observational data on birds used in this project are derived from 

Artsobservasjoner, and thus only include data collected by volunteers. The volunteers 

are assumed to report opportunistic observations on their own initiative. The species 

observations submitted to Artsobservasjoner are also available in another database 

subjected to Artsdatabanken, called Artskart (Artskart 2014). Although data are 

available from the Artsobservasjoner website, data were acquired through Artskart due 

to the more efficient way of downloading large amount of data. In Artskart data from 

Artsobservasjoner are pooled together with data from other contributors, but reports 

stemming from Artsobservasjoner are labelled with “Artsobservasjoner” in the category 

“CollectionName”. All reports are submitted with date of entry. Data for all species in 

this thesis were downloaded the 5th of December 2014. 

2.4 Extraction of relevant data from 

Artsobservasjoner 

The next step was to retain only the observations relevant for the project objective, 

which was to investigate changes in the breeding distribution of Bluethroat. Thus, for 

Bluethroat observations only those in the breeding season were of interest. Species 

observations in Artsobservasjoner are submitted with information on the following; 

date, number of individuals observed, age, gender, activity, observer comments, and 

locality with a measure of geographical uncertainty assessed by the observers 

themselves (Artsobservasjoner 2014). Observations of Bluethroat included in the 

analysis spanned from the 11th of May to the 23rd of August across all years. All 

observations within the 10th of June to the 15th of July were assumed to be of breeding 

individuals, and thus included in the data. I regard this time period to represent the core 

of the breeding season of Bluethroat in Norway and it is henceforth referred to as the 

“Prime season”. Observations outside the Prime season were only included if they were 

submitted with an activity category clearly indicating breeding. The limits of the Prime 

Season may seem overly conservative, but are determined in order to safeguard the 

exclusion of non-breeding individuals. In spring, before the 10th of June, individuals may 

still be migrating and only moving through an area, and in late summer after the 15th of 

July individuals that have failed in breeding or fledged young may move into areas of 

breeding Bluethroat. These categories are as follows: “Nest, eggs/chicks”, “Nest, chicks 
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heard”, “Failed breeding attempt”, “Incubating”, “Egg shell”, “Carrying feed to chicks”, 

“Carrying fecal sac”, “Visiting occupied nest”, “Pulli/newly fledged chick”, “Diversionary 

maneuver”, “Building nest”, “Incubation spot”, “Mating (or mating behavior)”, 

“Permanent territory”, “Pair in suitable habitat for breeding”, “Observation in breeding 

season, suitable breeding habitat” and “Nest in use”. Observations of non-target species 

included in the analysis were limited to the time span of included Bluethroat 

observations (May 11th – August 23rd). The limit of geographical uncertainty was set to 

=< 500m for observations of all species to reduce the risk of assigning observations to 

the wrong spatial unit (1x1km, see below). This criteria removed 317 (9%) of the 

Bluethroat observations within the Prime Season or with certain sign of breeding (3517 

obs.). Artsobservasjoner allows observations made prior to its establishment in 2008 to 

be reported (Artsobservasjoner 2014), thus data are available several decades back in 

time. The period 1980-2014 was selected for this project as data for Bluethroat earlier 

than 1980 were considered too scarce to make strong inference. 

2.5 Occupancy modelling when species detectability is 

imperfect 

According to MacKenzie et al. (2006) ‘Occupancy is the natural state variable for use in 

studies of distribution and range’. A state variable is a variable that is used to quantify 

the status of a community or population. Occupancy is defined as the presence of at least 

one individual of a species in a defined area (MacKenzie et al. 2006). It is very common 

for animals and even entire species to go undetected during surveys. Thus, one can only 

make reliable inferences about occupancy probability if the imperfect detection of 

species is accounted for during data collection and analysis (MacKenzie et al. 2006). A 

model that accounted for this was first developed by MacKenzie et al. (2002), where the 

probability of species detection is estimated from multiple surveys of each site. A site is 

an area that acts as a sampling unit for species presence/absence, and can be naturally 

occurring spatial units, e.g. ponds or islands, or arbitrarily delimited areas of habitat.  

The basis of the conceptual model is that the outcome of whether a species is detected at 

a site is governed by two stochastic processes. First, a site 𝑖 may be either occupied by 

the species (with probability 𝛹𝑖) or unoccupied (with probability 1 − 𝛹𝑖). The model 

assumes that an occupied site remains occupied for the duration of the season (breeding 

season in this case). The second process is the detection of the species; if the site is 

occupied by the species, then at each survey 𝑗 there is some probability 𝑝𝑖𝑗 of detecting 

it. Consequently, the probability of the species remaining undetected in the 𝑗th  survey, 

given that the site is occupied by the species, is 1 − 𝑝𝑖𝑗. Obviously, if the site is 

unoccupied by the species, the detection probability is zero. 
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𝛹𝑖   : the probability that a site 𝑖 is occupied by a target species  

        (occupancy probability). 

𝑝𝑖𝑗 
: the probability of detecting the species at site 𝑖 during the jth survey, given it is   

        present (detection probability). 

 

From multiple surveys, a detection history is formed for each site. For example, four 

detection/non-detection surveys at site 𝑖 can be written as ℎ𝑖 = [0,1,0,1]. A verbal 

description of this detection history would be: “the site was occupied by the target 

species (because it was seen at least once), species was not detected during survey 1, 

species was detected during survey 2, species was not detected during survey 3, species 

was detected during survey 4”. However, equal sampling effort is not required across all 

sites, hence the number of surveys in each site may vary. Using the concepts of 

occupancy probability and detection probability, the probability of observing this 

particular detection history can be expressed mathematically as:  

 

Pr(ℎ𝑖 = [0,1,0,1]) =  𝛹𝑖(1 − 𝑝𝑖1)𝑝𝑖2(1 − 𝑝𝑖3)𝑝𝑖4          (1.1) 

 

where the parameter 𝛹𝑖  represents the phrase “site 𝑖 was occupied by the target 

species” of the above verbal description of the detection history. Further, 𝑝𝑖𝑗 represents 

the phrase “species was detected in site 𝑖 during survey 𝑗”, and finally (1 − 𝑝𝑖𝑗)  

represents the phrase “species was not detected in site 𝑖 during survey 𝑗”. It is assumed 

that the detection probability during each survey is independent of the outcome of the 

previous surveys in the site. 

 For sites where the target species is never detected, there are two possible 

explanations; either the species was present, but never detected, or the species was 

truly absent. The two alternative explanations are impossible to separate from the data, 

and hence both must be represented in the probability statement. For example, the 

probability of detection history ℎ𝑖  = [0,0,0,0] would be represented mathematically as: 

 

 

Pr(ℎ𝑖  = [0,0,0,0]) =  𝛹𝑖  
∏(1 − 𝑝𝑖𝑗) + (1 − 𝛹𝑖  

)

4

𝑗=1

          (1.2) 

 

where 𝛹 ∏ (1 − 𝑝𝑖𝑗)4
𝑗=1  represents the situation in which the species is present, but not 

detected in any of the surveys, and (1 − 𝛹𝑖) represents the situation where the species is 

truly absent.  
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 When a probability statement is made for all the 𝑠 detection histories, the model 

likelihood for the observed data can be constructed as a product of the site-specific 

detection history probabilities: 

𝐿(𝜳, 𝒑 |ℎ𝑖 , ℎ2, … , ℎ𝑠)  = ∏ Pr(ℎ𝑖)                                     (1.3)

𝑠

𝑖=1

 

 

The detection history at each site is assumed to be independent of the detection 

histories at other sites. The likelihood function in expression (1.3) can be used to 

estimate occupancy probability and detection probability using maximum likelihood 

techniques. The maximum likelihood estimates for detection- and occupancy probability 

in the current thesis was calculated using the function ‘occu’ in the software package 

‘unmarked’ (version 0.10.6) (Fiske and Chandler 2011) in the statistical program R (R 

Core Team 2015).  

 Occupancy and detection probabilities are likely to vary with the characteristics 

of a site. By using a logit-link (log-odds) function the probability of occupancy and 

detectability of sites can be modeled as a function of measured covariates. The 

probability that a site 𝑖 is occupied by a species, as a function of site covariates, can be 

expressed as a logit-linear function on the form: 

 

logit(𝛹𝑖) =  𝛽0  +  𝛽1 + 𝑥𝑖1  +  𝛽2 + 𝑥𝑖2  + ⋯ +  𝛽𝑁𝑥𝑖𝑁          (1.4)        

 
Here, the occupancy probability of site 𝑖, on a logit scale, is a function of 𝑁 covariates 

associated with the site (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑁) and there are 𝑁 +  1  coefficients (parameters) 

that are to be estimated: one intercept or constant term (β0)  and 𝑁 regression 

coefficients for each covariate. The probability of occupancy can now vary across sites, 

but the parameter being estimated (the 𝛽 s) are assumed to be constant across all sites. 

Thus, the types of covariates appropriate to model 𝛹𝑖  are those that remain constant for 

the duration of the season, such as habitat type, elevation and latitude. 

 For detectability there are two types of covariates that can be considered. The 

first type is those covariates that remain constant within a season, but vary among sites 

(indexed by 𝑖), as for occupancy probability. However, these covariates need not be the 

same as those used to model occupancy probability. The second type is those that may 

vary between surveys, such as local environmental conditions, day of year or surveyor 

experience. Hence, given species presence, the probability that the species is detected in 

site 𝑖 during survey 𝑗, as a function of site covariates, can be expressed as: 

logit (𝑝𝑖𝑗) =  𝛽0  +  𝛽1𝑥𝑖1  +  … + 𝛽𝑁𝑥𝑖𝑁  +  𝛽𝑁+1 𝑦𝑖𝑗1 +  … +  𝛽𝑁+𝑉 𝑦𝑖𝑗𝑣          (1.5)   
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Here, 𝑥𝑖1, … , 𝑥𝑖𝑁  denote the 𝑁 site-specific (season-constant) covariates associated with 

site 𝑖. 𝑦𝑖𝑗1, … , 𝑦𝑖𝑗𝑣   are the 𝑉 site and survey-specific covariates associated with survey 𝑗 

of site 𝑖. 

Model assumptions 

Assumptions specific for single species-single season site occupancy models (MacKenzie 

et al. 2006): 

1) The occupancy status at each site does not change over the survey season. In this 

case; if a Bluethroat is observed in a site during a survey, it is assumed that it will 

continue to occupy the site for the duration of the breeding season. 

2) The probability of occupancy is constant across sites, or differences in occupancy 

probability are modeled using covariates. 

3) The probability of detection is constant across all sites and surveys or is a 

function of site-survey covariates; there is no unmodeled heterogeneity in 

detection probabilities.  

4) Detection of species and detection histories at each location are independent. 

Assumptions specific for the current project: 

5) Bluethroat is registered when observed. 

6) Misidentification of species does not occur.  

 

2.6 Converting observations from Artsobservasjoner 

into occupancy data 

Detection/non-detection data are needed in order to utilize site-occupancy models to 

estimate detection and occupancy probability in an area. Obtaining non-detection data 

for a certain species, using opportunistic species registrations from a citizen science 

database such as Artsdatabanken, is not straight forward. Volunteers register only what 

they observe, providing detection-only data; they do not report species absence. Van 

Strien et al. (2010) and Van Strien et al. (2013) solved this problem by using the 

reported presence of other non-target species in a site to obtain non-detections for an 

unreported focal species in a particular survey. They did not, however, customize the list 

of such species to the species in focus, but used the presence of “any other” species 

belonging to the same species group (i.e. butterflies and dragonflies). I argue that the 

uncritical use of any other species than the focal species to obtain non-detections does 

not fully correct for observers tendency to report only the species they find interesting 
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(reporting bias). Using opportunistic citizen science data in occupancy modelling, false 

absences may arise in two different ways. Either the species is present in a site, but not 

detected, or the species is detected but not reported. The latter scenario may arise if the 

focal species is less popular than other species observed on the same occasion. To solve 

this problem I suggest that each focal species is assigned a customized group of carefully 

selected sympatric species that are considered less interesting to report than the focal 

species itself. Following this logic it is assumed that if an observer cares to report one of 

these less-interesting species, the focal species itself will also be reported if it is 

observed. By doing so the latter source of false absences will largely be avoided and 

much of the unexplained heterogeneity in detection probability between sites will be 

reduced. Species constituting the group of less-interesting species are henceforth 

termed background species.  

 For Bluethroat the following bird species were selected as background species 

based on their more or less sympatric distributions and their assumed lower popularity 

to observers compared to Bluethroat: 

Brambling (Fringilla montifringilla) 

Field fare (Turdus pilaris) 

Hooded crow (Corvus cornix) 

Meadow pipit (Anthus pratensis) 

Mew gull (Larus canus)  

Northern wheatear (Oenanthe oenanthe) 

Raven (Corvus corax) 

Redshank (Tringa totanus) 

Redwing (Turdus iliacus) 

Twite (Carduelis flavirostris) 

Willow tit (Poecile montanus) 

Willow warbler (Phylloscopus trochilus) 

 

For the method to be consistent, not mixing detection-only and detection/non-detection 

data, a Bluethroat detection (1) was only included in the analysis if at least one 

background species was registered in the same site during the same survey. A 

Bluethroat non-detection (0) was recorded if any of the selected background species 

were recorded in a survey, while Bluethroat itself was not. 
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2.7 Modelling possible changes in the breeding 

distribution of Bluethroat 

Type of site occupancy model used 

There are several types of site occupancy models suitable to different scientific inquiries 

(MacKenzie et al. 2006). The type of site occupancy model utilized in the current thesis 

is a single-species single-season model, where the probability of detection- and 

occupancy probability were modelled as functions of covariates. The notation “single-

season” may be confusing since the data covers breeding seasons from 35 years. 

However, in multi-season models the occupancy state (true occupancy or absence) in a 

site one year affects the occupancy probability in the site the next year. In contrast, in 

the single-season model used here the occupancy probability in sites from the same 

location, but in different years, are regarded as independent of each other. 

Location and site construction 

By using a UTM33 grid, the whole of Norway was divided into squares of 1x1km, 

henceforth referred to as locations. This was done by downloading terrain models of 

50x50m resolution from (Kartverket 2014), that were then aggregated into 1x1km 

squares, matching the UTM33 grid. The aggregation procedure was conducted in the 

statistical program R, using the package “raster” (version 2.3.33) (Hijmans 2015).  A 

location wherein at least one background species was registered in a particular year 

formed a site. Hence, a site is the synthesis between a specific location and a specific 

year; observations in the same location, but in different years, would thus belong to 

different sites. Values of site-specific covariates were then applied to these sites. 

Covariates included in analysis: 

Latitude (Site-specific) 

The angle of the rays of the sun relative to the surface of the earth determines the 

amount of heat energy received, and thus latitude is the most important climatic factor 

(Dannevig and Harstveit 2014). The latitude for each site was given by the lower left 

corner of the respective location. 

Altitude (Site-specific) 

Temperature decreases with altitude by 0.5–1.0 °C/100m (Beniston 2003). Altitude is 

thus an important factor influencing the local climatic conditions, but its effect is 
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conditional upon the given latitude. Information on altitude was applied to each site 

from the terrain models downloaded from Kartverket (Kartverket 2014). Since the 

original resolution of these terrain models were 50x50 m, which were then aggregated 

into 1x1 km, the altitude in each location represents the arithmetic mean of the altitudes 

of the 50 x 50 m units comprising the respective location. 

Year (Site-specific) 

Year is included as a site-specific covariate, thus a characteristic of a given site. 

Julian date (Survey-specific) 

The survey date, expressed as Julian date, was included as a survey-specific covariate to 

investigate whether the detection probability varied with time of year. 

Prime Season (Survey-specific) 

As all categories of Bluethroat observations were included within the span of the Prime 

season (June 10th  - July 15th), while observations outside this period only included 

observations with sure sign of breeding, the detection probability was assumed to be 

higher within the Prime season. This difference was thus accounted for by including 

Prime Season as an additive survey-specific covariate contingent on Julian date. 

Modelling strategy 

A priori assessments of how the given covariates would affect the detection- and 

occupancy probability of Bluethroat were done prior to modeling in order to reduce the 

number of candidate models to a manageable set that were biologically reasonable.  

 Akaike information criterion (AIC) was used as a means of ranking the predictive 

suitability of candidate models (Burnham and Anderson 2002). The method of AIC is 

based on the model likelihood, but encourages parsimony (i.e. models with as few 

parameters as necessary) by penalizing an increase in the number of parameters 

(MacKenzie et al. 2006). During model selection a suit of candidate models are 

compared and the model with the lowest AIC-value chosen as the best. The models need 

not be nested. The criterion is expressed mathematically as: 

𝐴𝐼𝐶 =  −2𝑛𝑙𝑙 + 2𝑘       (1.7) 

Where 𝑛𝑙𝑙 is the negative log likelihood of a model, and 𝑘 is the number of parameters in 

the model. The focus is on the absolute differences in AIC-value between models and not 

the AIC itself or relative differences. According to Burnham and Anderson (2002), as a 

rough rule of thumb, all models with an AIC-difference less than 2 to the AIC-value of the 
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model with the lowest AIC among the candidate models have substantial level of 

empirical support. The use of AIC does not guarantee that one ends up with a model that 

fits the data well, only that the model with the lowest AIC-value is expected to give the 

most correct predictions among the candidate models considered. Hence, a residual plot 

analysis was conducted in combination with AIC to assess how well the top-ranked 

model fitted the data (see Appendix, Fig. A3 and Fig. A4). 

Modeling occupancy probability 

The effect of latitude and altitude were included in all candidate models. It was assumed 

that the effect of latitude was logit-linear. The effect of altitude on occupancy probability 

was assumed to depend on latitude. Towards higher latitudes the treeline occurs at 

increasingly lower altitudes and the optimal altitude for the occurrence of Bluethroat is 

expected to follow this pattern.  Thus, it only made sense to investigate the effect of 

altitude on occupancy probability in interaction with latitude. Further, it was anticipated 

that occupancy probability would increase with altitude up towards an optimum, 

presumed to be at the altitude of the sub alpine birch forest and low alpine heathland in 

a given area, and then more abruptly diminish as the low alpine zone bordered to the 

less vegetated zone above. Sign of such a relationship was discovered from the residual 

plots of preliminary models.  A number of polynomial expressions (2-8 degrees) for 

altitude were assessed to find the best fit to this presumed relationship between altitude 

and occupancy probability. Starting values from the previous, lower-order models were 

used to optimize model fit during this assessment, and the model for detection 

probability was held constant (see Table 2  below). To investigate to what degree change 

in occupancy probability depended on latitude, the interaction between year and 

latitude was included in candidate models for occupancy probability. 

Modeling detection probability 

Bluethroat detection probability was assumed to be a function of Julian day, whether or 

not visits to locations were undertaken during the Prime Season, and altitude in 

interaction with latitude. It was anticipated that detection probability was likely to 

increase during spring as Bluthroats arrive, and decrease in late summer when they 

start to departure, thus a quadratic function of Julian date was used to model this 

seasonal pattern in detectability.  In contrast to observations of Bluethroat within the 

Prime Season, wherein all observations of Bluethroat were included in the data, 

observations outside of this period had to meet strict criteria indicating breeding to be 

accepted. This meant that only a fraction of the observations outside the Prime Season 

would be included, leading to a lower detection probability. This difference in detection 

probability was accounted for by introducing the Prime Season covariate. It was further 

anticipated that detection probability would be higher on the treeless heathland in the 

low alpine zone than in the dense vegetation of the sub alpine birch forest at lower 
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altitudes because birds in open landscapes are easier to spot. Thus, in addition to Julian 

day and Prime Season, altitude (in interaction with latitude) was considered as a 

covariate indirectly affecting the detectability of Bluethroat. 
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3 Results 

3.1 Overview of data 

In total there were 66 313 unique location-year combinations (sites) with 

detection/non-detection data across all years. Of the 66 313 sites, Bluethroat was 

observed at least once in 1 768 (2.66%) of them. In each site there were conducted a 

varying number of surveys, ranging from 1 to 198 (mean 2.6, sd = 6.5) (Appendix, Table 

A1). A survey represents a visit to a site wherein at least one background species was 

observed along with the concomitant detection (1) or non-detection (0) of Bluethroat. 

While each survey is the result of the observations of a single observer, the different 

surveys in a site may stem from different observers. In total, 173 785 surveys were 

conducted across all sites, in which Bluethroat was observed in 2 209 (1.27%). 

 Across all years there were 27 039 unique locations (Fig. 1).  As one location 

covers 1x1 km the total area covered in the research equals to 27 039 km2, constituting 

8.35% of the total area of the Norwegian mainland. Of the 27 039 locations, Bluethroat 

was seen at least once in 1 166 (4.3%) of them (Fig. 2). Most locations were visited only 

a few years (Appendix, Table A2).   

 Consistent with the increasing number of observations per year, the number of 

sites per year also increased with time, especially after the establishment of 

Artsobservasjoner (Appendix, Table A3). The proportion of sites in which Bluethroat 

was seen each year shows large annual fluctuations, but a strong negative trend with 

time (Fig. 3).  

 The number of observers contributing with observations, and the number of 

observations submitted each year, increased markedly with the establishment of 

Artsobservasjoner in year 2008. In total, 2 257 different observers contributed with 

observations to the thesis (Appendix, Fig. A1b). 

 In total, 431 215 observations of all species were obtained from 

Artsobservasjoner from the years 1980-2014, given the investigation criteria described 

in Materials & Methods (Table 1). The total number of Bluethroat observations within 

the PrimeSeason (10th June – 15th July), and the observations outside of this period 

with certain sign of breeding, was 3 517. Of these, 317 observations were omitted due to 

geographical uncertainty greater than 500m, leaving 3200 observations. The final step 

was to remove observations of Bluethroat that were not registered together with at least 

one background species in the same survey (site and date) by the same observer, in 

order to maintain observations as detection/non-detection data. This criterion removed 

991 single observations of Bluethroat, leaving 2 209 observations that could be used in 

the site occupancy model. Thus, of the 3 517 Bluethroat observations within the Prime 

Season, or with sure sign of breeding, 62.8% met the method requirements. 
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Table 1: Number of observations of all species included in the occupancy data.  
N = 431 215 

Bluethroat Twite Brambling Mew gull Willow tit 

2209 4926 13234 76930 9893 

Field fare Meadow pipit Hooded crow Willow warbler Raven 

42575 35751 52061 68969 17615 

Redshank Redwing Northern wheatear   

48022 28512 30518   

 

 

 

Figure 1. Unique locations with reported observations. Red points represent unique locations (1x1km) in 
which at least one observation of Bluethroat or its twelve background species were reported during 1980-
2014. Locations are concentrated around areas of high human population density, with an overweight of 
locations in southern Norway. Points are not drawn to scale. 

  

Unique locations  (N = 27 039)
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Figure 2. Locations (1x1km) in which Bluethroat was reported at least once during 1980-2014. 
Bluethroat was reported at least once in 1 166 locations, a fraction constituting 4.3% of the total number 
of locations. The points are enlarged for the purpose of visualisation. 
 
 

 

Figure 3. Proportion of sites in which Bluethroat was seen each year in the period 1980-2014. After large 
annual fluctuations in early years of the study period, the proportion of sites occupied by Bluethroat 
shows a strong negative trend towards 2014. 
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3.2 Model selection 

The 5th degree polynomial expression for altitude gave the best model fit and the lowest 

AIC (Table 2, model F). A further reduction in AIC was obtained by including latitude in 

interaction with Julian day in the model for detection probability (𝑝) (Table 2, model E). 

The rationale behind this choice was that it seemed reasonable that the detection 

probability with Julian day would vary across latitudes, as spring is later at northern 

latitudes, and birds arrive later. The detection probability model of model E was then 

added an interaction effect between altitude and latitude, which proved to give a 

considerable lower AIC-value (Table 2, model C). The interaction between latitude and 

Julian day in the detection probability model of model C was then tried removed, which 

resulted in a further reduction in AIC (Table 2, model B). This proved that the 

presumption that the latitude-Julian day interaction effect was not of great importance 

to detection probability. The occupancy probability model of model B was then added an 

interaction term between year and altitude (Table 2, model A). Although model A had a 

slightly higher AIC-value than model B, model A was chosen as the main model for 

inference due to its incorporation of a latitude-year interaction effect without 

considerable increase in AIC compared to model B.  

 A model with a three-way year-latitude-altitude interaction in the occupancy 

model was sought for in order to let the trends in occupancy probability over time vary 

with both altitude and latitude (Table 2, model D). This model was based on model B, 

but a version with a 4th degree polynomial expression for altitude, instead of the original 

5th degree polynomial expression, proved to give a lower AIC-value. Although this model 

had a considerable higher AIC-value than model A-C, it was chosen for the task of 

revealing possible changes in occupancy probability with altitude over time. 

 More complex models for detection probability allowing detection probability to 

decline at higher altitudes (i.e., allowing bell-shaped curves) resulted in unstable model 

fits indicating that it is not possible to discern whether occupancy probability or 

detection probability is near zero at these altitudes, although model predictions at lower 

and intermediate altitudes changed little. This problem probably reflects the fact that 

there are fewer sites with replicated visits within seasons at high altitudes than at low 

altitudes. I therefore based my interpretation on the models that only included a logit-

linear trend in detection probability with latitude, and note that model predictions for 

detection probability at high altitudes (where occupancy probability is predicted to be 

near zero) are unreliable. 
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Table 2: Assessed models for the detection- and occupancy probability of 
Bluethroat. 
Model selection was based on AIC-values and an overall assessment of the model fit. 
date = Julian day; PS = Prime Season. Explanation of abbreviations for polynomial 
expressions of parameters: e.g. latitude*poly(date,2) means “latitude + date + date2 + 
(latitude * date) + (latitude * date2)” 

 

* The AIC-value of Model B is slightly lower than the AIC-value of Model A. Nonetheless, 
Model A has been chosen for inference due to its higher flexibility by the addition a year-
latitude effect. 

Model  Detection model (p) Occupancy model (Ψ) Parameters ΔAIC 

A poly(date,2) + PS + (altitude * 
latitude) 

latitude*poly(altitude, 5) + 
(year*latitude) 

21 0.00 

B poly(date,2) + PS +(altitude * 
latitude) 

latitude*poly(altitude, 5) + year 20 -0.11* 

C latitude*poly(date,2)+PS 
+(altitude*latitude) 

latitude*poly(altitude,5)+year 22 4.54 

D poly(date,2) + PS + (altitude * 
latitude) 

year*latitude*poly(altitude,4) 27 23.19 

E  latitude*poly(date,2)+PS latitude*poly(altitude,5)+year 20 25.23 

F  poly(date,2)+PS latitude*poly(altitude,5)+year 17 70.20 

G  poly(date,2)+PS latitude*poly(altitude,6)+year 19 74.20 

H  poly(date,2)+PS latitude*poly(altitude,7)+year 21 78.20 

I  poly(date,2)+PS latitude*poly(altitude,8)+year 22 82.20 

J  poly(date,2)+PS latitude*poly(altitude,3)+year 13 84.15 

K  poly(date,2)+PS latitude*poly(altitude,4)+year 15 88.15 

L  poly(date,2)+PS latitude*poly(altitude,2)+year 11 139.50 
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3.3 Model results 

According to the predictions of model A, the occupancy probability of Bluethroat has 

undergone profound changes with latitude in Norway the previous 35 years. The pattern 

of change in occupancy probability can be seen for specific combinations of altitude and 

latitude in Fig. 5 (see also Appendix Fig. A4), and for the whole country in Fig. 6. To 

further investigate the pattern of change in occupancy probability, model predictions at 

four latitudes (59°N, 62°N, 66°N and 70°N) (Fig. 4) were chosen for comparison with 

respect to changes in occupancy probability with both altitude and latitude in four 

different years (1980, 1992, 2002, 2014). Through analysis of residual plots, model A 

was found to fit the data satisfactorily (Appendix, Fig. A2 and Fig. A3).  

 

Figure 4. Map of Norway with lines showing the approximate position of the latitudes chosen for 
comparison of changes in occupancy probability with regard to latitude and altitude during the period 
1980-2014. 
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Figure 5. Model predictions of occupancy probability of Bluethroat as a combination of latitude and altitude 

(Model A). a) occupancy probability in 1980, b) occupancy probability 2014. While Occupancy probability was 

only weakly correlated with latitude in 1980 (a), there was a strong positive association between occupancy 

probability and latitude in 2014 (b). The blank areas in the two figures represent combinations of altitudes and 

latitudes for which there were no data. 

  

0.0

0.2

0.4

0.6

0.8

1.0

500 1000 1500 2000

58

60

62

64

66

68

70

 0.001 

 0.001 

 0.1 

 0
.1

 

 0
.2

 

 0.2 

 0.3 

 0
.3

 

 0
.4

 
 0

.5
 

 0
.6

 

 0
.6

 

 0
.7

 

 0
.7

 

 0
.8

 

 0
.8

 

 0.9 

a)  Occupancy probability 1980

Altitude

L
a

ti
tu

d
e

0.0

0.2

0.4

0.6

0.8

500 1000 1500 2000

58

60

62

64

66

68

70

 0.001  0.001 

 0
.1

 

 0
.1

 

 0
.2

 

 0
.2

 

 0
.3

 

 0
.3

 

 0
.4

 

 0
.4

 

 0
.5

 

 0
.6

 

 0
.6

 

 0.7 

 0
.7

 

 0
.8

 

 0
.8

 

 0.9 

b)  Occupancy probability 2014

Altitude

L
a

ti
tu

d
e



25 

 

 

Figure 6. Model predictions of occupancy probability of Bluethroat projected on maps of Norway in four 
different years (Model A). a) 1980, b) 1992, c) 2002 and d) 2014. In this figure changes in occupancy 
probability of Bluethroat can be seen for the whole country. From being fairly high at all latitudes in 1980, 
occupancy probability of Bluethroat has gradually declined at the southernmost latitudes and northwards 
during the study period. 
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3.3.1 Patterns and changes in occupancy probability with respect to 

altitude 

All results on changes in occupancy probability with respect to altitude were inferred 

from model D (Table 2), which allowed the logit-linear trends over years to depend on 

altitude and latitude. At the low to intermediate altitude range of the species distribution 

there were significant changes at all latitudes, with non-overlapping confidence 

intervals between predictions from 1980 and 2014 (Fig. 7). In the beginning of the study 

period  (1980 predictions) the breeding distribution of Bluethroats at the two southern 

latitudes, 59°N (Fig. 7a)  and 62°N (Fig. 7b), was confined to latitudes ranging from 

about 400-500 masl to about 1400-1500 masl. Within this range the occupancy 

probability was strongly bell-shaped with the highest occupancy probabilities 

concentrated within a quite narrow altitudinal range.  At the same time at the northern 

latitudes, 66°N (Fig. 7c) and 77°N (Fig. 7d), occupancy probability was fairly high even 

down to sea level. This was especially pronounced at 70°N where there was only a slight 

difference in occupancy probability across the different altitudes (Fig. 7d). Data is 

lacking for the highest altitudes at the two northern latitudes, 66°N and 70°N, thus it is 

not possible to tell whether a similar bell-shaped pattern applied above the optimal 

altitude there, as for the two southern latitudes 59°N and 62°N.  

 Perhaps the most noteworthy change in occupancy probability as a function of 

altitude between 1980 and 2014 was the decline at lower altitudes at the northern 

latitudes 66°N and 70°N (Fig. 7c-d). According to model predictions, occupancy 

probability at sea level at 66°N was 0.22 (95% ci.: 0.07 to 0.49) in 1980 (Fig 7c). In 2014, 

occupancy probability at sea level at this latitude was close to zero; 0.02 (95% ci.: 0.01 

to 0.03), and the predicted occupancy probability of 1980 at sea level had risen to 422 

masl. As for 70°N, the occupancy probability at sea level had declined from 0.81 (95% 

ci.: 0.50 to 0.95) in 1980 to 0.20 (95% ci.: 0.15 to 0.26) in 2014 (Fig. 7d). The predicted 

occupancy probability at sea level of 1980 at 70°N had risen to 567 masl in 2014. At 

59°N in 1980 the altitude of occupancy probability 0.3 was 585 masl (Fig. 7a). In 2014 

the altitude of 0.3 occupancy probability at 59°N had risen by 222 meters to 807 masl. 

At 62°N in 1980 there were two altitudes of occupancy probability 0.3; 461 masl (lower 

end) and 1287 masl (upper end) (Fig. 7b). In 2014 the lower-end altitude at 0.3 

occupancy probability at 62°N had risen by 270 meters to 731 masl. The estimates of 

occupancy probability at higher altitudes than the optimum altitudes were generally too 

uncertain for meaningful inference about changes in the upper altitudinal range of the 

species. However, I note that occupancy probability at 62°N, where some high altitude 

data exist, changed little over the years (Fig. 7b).  

 Between 1980 and 2014 the altitude of maximum occupancy probability shifted 

upward at all latitudes, with the greatest shift at southern latitudes (Fig. 7a-d). 

Concomitantly, the maximum occupancy probability had declined at all altitudes and 

latitudes. At 59°N, the altitude of maximum occupancy probability in 1980 was 940 masl 

(occupancy probability: 0.94 (95% ci.: 0.57 to 0.95)) (Fig. 7a). In 2014, the altitude of 
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maximum occupancy probability had shifted 118 meters upward to 1058 masl 

(occupancy probability: 0.57 (95% ci.: 0.44 to 0.70)). At 62°N, the altitude of maximum 

occupancy probability in 1980 was 829 masl (occupancy probability: 0.93 (95% ci.: 0.84 

to 0.97) (Fig. 7b). In 2014, the altitude of maximum occupancy probability had shifted 

204 meters upwards to 1033 masl (occupancy probability: 0.57 (95% ci.: 0.50 to 0.63). 

At 66°N, the altitude of maximum occupancy probability in 1980 was 665 masl 

(occupancy probability: 0.97 (95% ci.: 0.80 to 0.98)) (Fig. 7c). In 2014, the altitude of 

maximum occupancy probability had shifted 263 meters upwards to 928 masl 

(occupancy probability: 0.6 (95% ci.: 0.40 to 0.75)). At 70°N, the altitude of maximum 

occupancy probability in 1980 was 511 masl (occupancy probability: 0.98 (95% ci.: 0.93 

to 1.0(0.999)) (Fig. 7d). In 2014, the altitude of maximum occupancy probability had 

shifted 56 meters upwards to 567 masl (occupancy probability: 0.77 (95% ci.: 0.60 to 

0.90)). Confidence intervals for the upward shift in altitude of the maximum occupancy 

probability have not been computed, and thus these estimates must be interpreted with 

caution. 

 

 

Figure 7. Occupancy probability of Bluethroat as a function of altitude at four different latitudes in 1980 
(red) and 2014 (blue) (Model D). a) 59°N, b) 62°N, c) 66°N and d) 70°N. The horizontal line in a) and b) 
marks occupancy probability equal to 0.3. 
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3.3.2 Patterns and changes in occupancy probability with respect to 

latitude 

During the course of the study period from 1980 to 2014 the occupancy probability of 

Bluethroat experienced a decline at optimal altitudes across all latitudes (Fig. 8a-d). The 

decline was, however, not evenly distributed. Most severe was the decline in occupancy 

probability in the south; at 59°N and the optimal altitude the occupancy probability 

went from 0.86 (95% ci.:0.73 to 0.94) in 1980 to 0.49 (95% ci.:0.39 to 0.60) in 2014 

(43% decline) (Fig. 8a). The decline in occupancy probability at 62°N (Fig. 8b) and 66°N 

(Fig. 8c) showed a development very similar to each other. At 62°N, occupancy 

probability at the optimal altitude went from 0.92 (95% ci.: 0.87 to 0.95) in 1980 to 0.55 

(95% ci.:0.50 to 0.62) in 2014 (40% decline). At 66°N, occupancy probability at the 

optimal altitude went from 0.95 (95% ci.:0.90 to 0.97) in 1980 to 0.56 (95% ci.: 0.40 to 

0.71) in 2014 (41% decline). Least affected was the occupancy probability at 70°N (Fig. 

8d); at the optimal altitude occupancy probability went from 0.99 (95% ci.: 0.984 to 

0.998) in 1980 to 0.90 (95% ci.: 0.801 to 0.960) in 2014 (9% decline). At the end of the 

study period in 2014 there was a conspicuous positive association between occupancy 

probability of Bluethroat and latitude (Fig. 5b and Fig. 6d). For model predictions of 

occupancy probability of Bluethroat as a combination of latitudes and altitudes also in 

1992 and 2002, see Appendix, Fig A4. Comparing model predictions for the whole 

country between different years during the study period (Fig. 6a-d), it is apparent that 

the occupancy probability initially declined at the southernmost latitudes and that the 

decline then steadily crept northwards.  
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Figure 8. Changes in occupancy probability of Bluethroat from 1980 to 2014 at four different latitudes at 
the optimal altitude for each latitude (given above the plots). a) 59°N, b) 62°N, c) 66°N and d) 70°N. While 
occupancy probability declined at all four latitudes investigated during the study period, the decline was 
most severe at lower and intermediate latitudes.  

 

3.3.3 Detection probability 

Detection probability (model A) was estimated as a function of Julian day at optimal 

altitudes at the respective four latitudes 59°N, 62°N, 66°N and 70°N (Fig. 9). Maximum 

detection probability, over a breeding season, at optimal altitudes was highest at 59°N 

and 62°N with 0.39 (95% ci.: 0.34 to 0.45) and 0.39 (95% ci.: 0.36 to 0.42), respectively. 

At 66°N, the maximum detection probability estimate was 0.34 (95% ci.: 0.27 to 0.40), 

and at 70°N it was 0.24 (95% ci.: 0.20 to 0.29). The Julian day of maximum detection 

probability was day 180 (June 29th), assumed to be the same at all latitudes in this 

model. The Prime Season was of great importance to detection probability at all 

latitudes. The differences in detection probability across latitudes may reflect differing 

densities at the respective latitudes. Detection probability was also estimated as a 

function of altitude at different latitudes, as the detection probability model of Model A 

included an interaction between altitude and latitude for detection. Detection 

probability was weakly positively correlated with altitude at all latitudes (Fig. 10). 
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Figure 9. Estimated detection probability of Bluethroat as a function of Julian day at four different 
latitudes (model A). a) 59°N, b) 62°N, c) 66°N, d) 70°N. The given altitudes are the altitudes of maximum 
occupancy probability at the respective latitudes. Detection probability was highly influenced by the 
Prime Season (June 10th – July 15th), in which all observations of Bluethroat were interpreted as 
observations of breeding individuals. Maximum detection probability was highest at 59°N and 62°N, and 
declined successively at increasing latitudes. 

 

Figure 10. Detection probability of Bluethroat as a function of altitude at four different latitudes (Model 
A). a) 59°N, b) 62°N, c) 66°N and d) 70°N. Julian day = mean Julian day = 179 (28. juni) for all plots. While 
detection probability was positively correlated with altitude at all latitudes, the effect was weak in 
southern Norway and almost non-existent in northern Norway.  
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4 Discussion 

Modelling the occupancy probability of Bluethroat in Norway 1980-2014, using 

opportunistic citizen science data from Artsobservasjoner, I found that occupancy 

probability has declined substantially at lower and intermediate altitudes and latitudes. 

These findings are concordant with what has been predicted as a response to a warmer 

climate (Peters and Darling 1985, Davis and Zabinski 1992, Woodward 1992) and with 

what have been found for other bird species during the last decades (Pearce-Higgins and 

Green 2014). 

4.1 Changes in occupancy probability with altitude 

According to the fitted model predictions, occupancy probability of Bluethroat has 

declined at low and intermediate altitudes, and the altitude of maximum occupancy 

probability has shifted upward for all latitudes investigated during the study period (Fig. 

5).  

 Few studies have found significant altitudinal shifts in bird distribution in 

response to climate change. In the Italian Alps, Popy et al. (2010) investigated changes in 

mean elevation of birds between the periods 1992-1994 and 2003-2005 based on fine-

scale (1x1km) atlas surveys with presence absence data. At the bird community level 

they found a significant overall shift in mean elevation of 29m towards higher altitudes, 

concomitant with a temperature increase of ca. 1°C in mean temperature between the 

two periods. However, they noted that the upward shift in altitude cannot 

unambiguously be interpreted as an effect of climate as other local factors might have 

influenced the pattern observed. At tropical latitudes, Forero-Medina et al. (2011) found 

an average upward shift of 49m for 55 species of birds in the Peruvian Andes in the 41 

year period between 1969 and 2010. They used mist nests to sample bird communities 

at five different elevations between 690-2220 masl, and compared the weighted mean 

altitude between the two periods. Both Popy et al. (2010) and Forero-Medina et al. 

(2011) found that the altitudinal changes in bird distributions were smaller than 

expected from the changes in temperature. In the Italian Alps, Popy et al. (2010) found 

the response of the avifauna to be four to eight times lower than what was expected 

with the observed temperature increase. In addition, both Popy et al. (2010) and Forero-

Medina et al. (2011) found that the trend of upward shift in distribution did not apply to 

all species investigated as the distribution of some species even shifted to a lower 

altitude. 

 Compared to the rather modest changes in altitudinal distribution found by Popy 

et al. (2010) in the Italian Alps and by Forero-Medina et al. (2011) in Peru, the findings 

in the current study are of a completely different order. This may be due to different 

relative warming at the respective latitudes leading to different rates of altitudinal shifts, 

or due to modelling artefacts and errors. Temperature data in Norway for the study 
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period was not included in the present study. However, in southern and northern 

Finland, temperatures increased by 1.4°C and 1.7°C between 1970 and 2012, 

respectively (Virkkala and Lehikoinen 2014). Southern Finland is at the same latitudes 

as southern Norway (about 60°N) and northern Finland borders to Finnmark, the 

northernmost county of Norway, at nearly 70°N. Despite a considerably higher rate of 

temperature increase at these northern latitudes compared to the Italian Alps the shifts 

in occupancy probability with altitude in Norway seems disproportionate, especially at 

66°N and 70°N. This in particular considering the comparatively similar upward shifts of 

the avifauna across the huge difference in latitude between the Italian alps (Popy et al. 

2010) and close to equator (Forero-Medina et al. 2011). In addition, the current results 

lack credible intervals, thus there exists no measure of the precision of change. The 

altitudinal changes in occupancy probability with altitude in Norway found in this study 

must therefore be interpreted with caution. 

4.2 Changes in occupancy probability with latitude 

According to model predictions, occupancy probability of Bluethroat in Norway has 

declined at all latitudes investigated, from 59°N to 70°N, during the study period. The 

largest relative decline in occupancy probability has taken place at southern latitudes. 

This pattern apparently indicates a retraction of the southernmost distribution of the 

species. It has, however, not been possible to detect any corresponding northward shift 

of the centre of optimal of occupancy probability as northern Norway from the 

beginning in 1980 already held this status.  

 These findings are congruent with the discoveries of Virkkala and Rajasärkkä 

(2011) in a study of population changes of bird species in Finland. They compared 

population changes of bird species in protected areas in the periods 1981-1999 and 

2000-2009. They categorized species as either northern, southern, or distributed over 

the whole country. Bluethroat was included as a northern species. Using line transects to 

measure density, they found that populations of northern species had declined the most 

in southern protected areas. Concomitantly, they found that southern species increased 

most in northern protected areas, while populations of birds distributed over the whole 

of Finland showed a northward shift in density. Their findings also revealed that 

population declines of northern species were progressively severe towards the southern 

range boundary; the density of northern species declined with almost 50% in the 

southern protected areas, but only by 22% and 18% in central and northernmost 

protected areas of Finland, respectively. The increasing decline at the southern 

distribution boundary for northern bird species matches the pattern of change in 

occupancy probability of Bluethroat in Norway found in the present study. However, 

changes in abundance may take place without affecting occupancy probability. 

Importantly, their findings indicate that the pattern of decline at the southern 

distribution margin is not unique for Bluethroat, but applies to many other bird species 

with a northern distribution in Fennoscandia. Further evidence for a northward 



33 

 

distribution shift of both southern and northern birds in Finland was found by Brommer 

et al. (2012). They compared changes in the weighted mean latitude of species’ 

distribution, using the results from three atlas surveys conducted between 1974 and 

2010 using presence/absence data. According to their results the rate of retraction at 

the southern distribution margin for northern birds seemed to happen at half the rate of 

the northward expansion of southern birds. However, they note that their method 

lacked a standard measure of survey effort and that they therefore cannot critically 

assess to what extent changes in effort and changes in true occupancy are responsible 

for the pattern observed. 

 The current findings also provided a more detailed picture of the population 

status of Bluethroat in Norway than did the results of Lehikoinen et al. (2014). They 

found a significant decline in abundance for Bluethroat in Norway as a whole, but this 

was based on a limited number of sites mainly located in southern parts of the country. 

The current findings are congruent with a decline in southern Norway, but indicate a 

situation in northern Norway more similar to what was found for Sweden and Finland, 

where the populations have been quite stable. While the current study had far more 

sites than Lehikoinen et al. (2014) (66 313 vs 135 in Norway, respectively), the sites in 

the current study were not randomly selected. Thus, the sites of Lehikoinen et al. (2014) 

may have been more representative for the specific areas surveyed. Importantly, the 

results of Virkkala and Rajasärkkä (2011) and Lehikoinen et al. (2014) were based on 

abundance and density data, while the present study used presence/absence data. 

Brommer et al. (2012) also used presence/absence data, but did not adjust for detection 

probability and effort. 

4.3 Possible proximate causes of decline in occupancy 

probability of Bluethroat due to climate change at 

low altitudes and latitudes 

As the pattern of decline in occupancy probability of Bluethroat in Norway the last 

decades are concurrent with what is expected as a response to climate change, it is of 

interest to look at possible proximate causes driving the observed pattern. Few studies 

on climate change-induced species range shifts have identified the proximate factors 

driving the change. In those who have, changes in species interactions have been 

identified as the cause, especially those that lead to decreases in food availability and 

disease, rather than temperatures exceeding species’ physiological tolerance (Cahill et 

al. 2013). There are examples of such biotic proximate factors affecting bird populations. 

Benning et al. (2002) found that endemic birds on the Hawaiian Islands are losing their 

malaria free refuges at high elevations as climate change enables the malaria parasite to 

infect birds at increasingly higher elevations. Pearce-Higgins et al. (2010) found that 

changes in the golden plover population were negatively correlated with high August 

temperatures in England. High August temperatures lead to desiccation and low survival 
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of instars of cold-adapted craneflies (Tupilidae), on which the golden plover (Pluvialis 

apricaria) heavily depends. They predict that the direct negative effect of climate change 

on cranefly abundance may lead to northward range contraction of the golden plover if 

warming continues.  

 For insectivorous birds it is important that they time their breeding so that it 

coincides with the peak abundance of insect prey in spring (Lack 1968). Adaptation to 

climate change by long-distance migrants may be constrained by inflexibility in their 

timing of spring migration. While climate change advance the spring phenology on their 

breeding grounds, the timing of migration of some species may be governed by 

endogenous factors, such as day length, that is not affected by climate change (Both and 

Visser 2001). Møller et al. (2008) found that, between 1990 and 2000, populations of 

European migratory bird species that showed the least response in their timing of 

breeding to advancing spring phenology declined, whereas species that were able to 

advance their timing of migration in step with climate change did not. Karlsen et al. 

(2009) compared the onset of the growing season in Norway between 1982 and 2006. 

They found that the onset of the growing season in Norway had advanced by 1-2 weeks 

in coastal and lowland areas of southern Norway, while in northern Norway the onset of 

the growing season remained the same, or even occurred later. If the Bluethroat has 

been unable to respond to this change by advancing its timing of migration, a mismatch 

between timing of arrival and the peak of insect prey might have been a proximate 

factor causing the observed decline in occupancy probability at low latitudes and 

altitudes in Norway. However, Lehikoinen et al. (2014) found that both alpine migrant 

and resident bird species declined, indicating a more complex pattern. The lesson from 

Pearce-Higgins et al. (2010) underlines the importance of having sound knowledge on 

which species a focal species depends, and how climate change affects them, in order to 

find the proximate causes of climate change-induced decline. Thus, the key to finding the 

proximate causes of decline of Bluethroat in Norway may be to improve the 

understanding of how climate change affects its most important prey species. 

 Further, as climate change facilitates northward range expansion of bird species 

originally having a more southern distribution (Virkkala and Rajasärkkä 2011, Brommer 

et al. 2012), previously allopatric species may become sympatric, or the abundance of 

southern species may increase at higher latitudes and altitudes. This may lead to new 

competitive species interactions, or intensify existing ones, respectively. Moreover, 

abiotic conditions are known to influence the outcome of inter-specific competition (e.g. 

Montchamp-Moreau (1983), Warner et al. (1993) and Wethey (2002)). Hence, another 

possible proximate cause of the observed decline of Bluethroat at low latitudes and 

altitudes may be due to new adverse interactions with invading species that benefit 

from a milder climate, or due to shifts in the competitive balance between Bluethroat 

and existing competitors to the disadvantage of the former. 

 Lastly, although the trends in occupancy probability of Bluethroat show a pattern 

as expected in response to climate change, one must be careful in attributing these 

trends solely to this factor. Speed et al. (2010) experimentally proved that herbivores 
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can limit the tree line to below its potential. As the use of upland areas as summer 

pastures for livestock have ceased in many areas the past century, the current 

encroachment of forest into previously open heathland may not stem from climate 

change alone, but be part of natural succession as herbivore pressure has been reduced 

(Penniston and Lundberg 2014). The conversion of open heathland areas into forest the 

last decades may have influenced the performance of Bluethroat either directly or 

indirectly, possibly contributing to the observed changes in occupancy probability. 

4.4 Methods 

The more potential background species a focal species has the more data is likely to be 

available in terms of sites and surveys. Thus, the method may not be well suited for less 

popular species, as they would have fewer potential background species. For Bluethroat, 

however, there were only minor discrepancies between data and the fitted model in 

residual plots (model A), showing a good model fit.  

 Probably reflecting differences in human population density, locations were more 

numerous in southern than in northern Norway (Fig. 1). Locations were concentrated 

around areas of high human population density and activity; from Fig. 1, cities and 

popular hiking areas such as the Lofoten archipelago can be identified as dense 

aggregations of locations. Still, the country as a whole was fairly well sampled as there 

were few large contiguous areas completely void of locations. There is a sharp division 

in the amount of data before and after the establishment of Artsobservasjoner in 2008 

(Appendix, Fig A1a). Prior to its establishment the amount of data was sparse. 

Understandably, few people probably kept record of observations when no platform 

existed to publish them. In the year of establishment of Artsobservasjoner the number of 

observers and observations rose abruptly, and continued to rise in all subsequent years. 

Estimates of detection and occupancy probability are thus more reliable in the years 

succeeding the establishment of Artsobservasjoner than the preceding years, due to 

more data.  

 Many ecological processes occur at geographic scales beyond the reach of 

ordinary research methods (Dickinson et al. 2010). Thus, citizen science, being 

particularly useful to address issues spanning large temporal and spatial extents 

(Devictor et al. 2010), may be the only practical solution to achieve the geographic reach 

required to document ecological processes and address ecological questions such as 

species range shifts, broad-scale population trends and impacts of climate change 

(Dickinson et al. 2010). Hence, the use of citizen science data from Artsobservasjoner in 

combination with occupancy models could therefore be a powerful tool for conservation 

and nature management. Occupancy models have previously been found to perform well 

in interpreting citizen science data. Van Strien et al. (2013) found that trends in 

opportunistic data on butterflies and dragonflies, found with occupancy models, were 

well-matched with trends found in monitoring data. They further claim that there is 
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little evidence that other methods than occupancy models are capable of coping with 

reporting and detection bias in opportunistic citizen science data. 

4.5 Conclusion 

Using an occupancy model, with opportunistic citizen science data, substantial declines 

in occupancy probability of Bluethroat has been detected at lower altitudes and at 

southern latitudes in Norway the last 35 years. The pattern observed is consistent with 

distribution changes predicted as a response to climate change, and what has been 

found for other species of birds the last decades.  

 From the current results there is evidence for significant decline in occupancy 

probability below optimal altitudes, suggesting a range contraction happening at the 

lower distribution limit. The uncertainty of model predictions above optimal altitudes is 

too large to detect any concurrent range expansion of the upper distribution limit. The 

estimates of upward shift in occupancy probability of Bluethroat found in this study 

stand apart from the results in other studies by being of a much greater magnitude. 

However, these estimates lack measures of uncertainty, and must therefore be regarded 

as general trends rather than exact results.  

 The decline in occupancy probability with latitude began at the southernmost 

latitudes and steadily crept northward during the study period; only in the far north 

have the occupancy probability of Bluethroat remained reasonably unchanged. Most 

severe decline in occupancy probability happened at the southernmost latitude 

investigated.  

 Several biotic proximate factors may have caused the observed pattern. First, 

climate change may have affected the species on which the Bluethroat depends, 

changing the timing or amount of available food during the breeding season. Second, 

with the warmer climate new competitors may have arrived, or the balance of existing 

inter-specific competitive interactions may have changed in disfavour of the Bluethroat. 

A third possible factor contributing to the decline, not connected to climate change, may 

stem from the discontinuation of livestock grazing leading to forestation of previously 

open heathland. Of course, several proximate factors may act in concert. To enhance the 

understanding of how climate change affects the distribution of Bluethroat in Norway, 

further study should focus on identifying which species are the most important to 

Bluethroat, and on understanding how climate change affects them and their 

interactions with Bluethroat. 

 The current study shows that occupancy models can be successfully utilised to 

discover trends in distribution of a species using opportunistic citizen science data. It 

further demonstrates the benefit of public involvement in collecting biological data, and 

the great resource Artsobservasjoner can be for research and nature management. 
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6 Appendix 

 

Table A1: Number of sites and surveys per year 
 

Year Sites Surveys Surveys per Site 

1980 233 512 2.2 
1981 285 675 2.4 

1982 303 698 2.3 
1983 294 820 2.8 

1984 312 799 2.6 

1985 363 780 2.1 

1986 281 677 2.4 

1987 396 937 2.4 
1988 355 722 2.0 

1989 419 871 2.1 
1990 405 849 2.1 

1991 553 1060 1.9 
1992 463 891   1.9 

1993 539 1106 2.1 

1994 555 1129   2.0 
1995 691 1400 2.0 

1996 600 1244 2.1 

1997 536 1160 2.2 

1998 462 1013   2.2 
1999 591 1357 2.3 

2000 685 1634 2.4 

2001 716 1517 2.1 
2002 783 1789 2.3 

2003 970 2190 2.3 
2004 1045 2224 2.1 

2005 1069 2194 2.1 
2006 1162 2499   2.2 

2007 1509 3236   2.1 

2008 3546 8098 2.3 

2009 6015 15800 2.6 

2010 7437 20312 2.7 
2011 7183 20068 2.8 

2012 7704 22191 2.9 
2013 8559 24882 2.9 

2014 9294 26451 2.8 

SUM 66313 173785 2.6 
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Table A3: Number of sites pr. year 

1980 1981 1982 1983 1984 1985 1986 
233 285 303 294 312 363 281 

1987 1988 1989 1990 1991 1992 1993 

396 355 419 405 553 463 539 
1994 1995 1996 1997 1998 1999 2000 

555 691 600 536 462 591 685 
2001 2002 2003 2004 2005 2006 2007 

716 783 970 1045 1069 1162 1509 
2008 2009 2010 2011 2012 2013 2014 

3546 6015 7437 7183 7704 8559 9294 
 

Table A2: Number of locations visited the given number of years 

1 year 2 years 3 years 4 years 5 years 

14675 4862 2441 1521 1083 
6 years 7 years 8 years 9 years 10 years 

733 473 286 236 130 

11 years 12 years 13 years 14 years 15 years 
112 75 76 41 53 

16 years 17 years 18 years 19 years 20 years 
50 18 31 21 16 

21 years 22 years 23 years 24 years 25 years 
16 7 15 7 7 

26 years 27 years 28 years 29 years 30 years 

6 4 5 10 8 
31 years 32 years 33 years 34 years 35 years 

7 2 5 4 3 
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Figure A1. Overview of the annual number of observations and observers contributing with data to the 
thesis through Artsdatabanken. a) The number of observers contributing with observations each year of 
the study period (1980-2014). b)  The number of observations submitted by all observers in the same 
period. Both the number of observers and the number of observations submitted showed a significant 
increase in 2008, the year of establishment of Artsobservasjoner, and continued to increase in the 
subsequent years.  
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Figure A2. Residualplot of latitude and altitude for Model A. a) residualplot of latitude, b) residualplot of 
latitude zoomed in, c) residualplot of altitude, d) residualplot of altitude zoomed in. Units represent the 
average of residuals within discrete intervals of latitude or altitude, respectively. For latitude each unit 
represent the average of residuals within 0.66 latitudes. For altitude each unit represent the average of 
residuals within 111 meters. The height of the units represents the 95% confidence interval. In cases 
where the 95% confidence intervals do not overlap with zero, the discrepancy between model predictions 
and data are significant. For latitude (a-b), there are only small and unsystematic discrepancies between 
predicted values and data, signifying a good model fit. For altitude (c-d) there is a reasonably good fit 
between predictions and data, with slight underestimation of predicted values around 1000 masl. Above 
about 1500 masl confidence intervals widens, signifying less data and thus higher uncertainty in how well 
model predictions are congruent with data. 
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Figure A3. Residual plot of Julian day and year for Model A. a) Julian day, b) Julian day zoomed in, c) year, 
d) year zoomed in. For Julian day (a-b) units represent the average of residuals within intervals of 5.2 
days. In c-d, residuals are plotted for each year between 1980 and 2014. The height of the units represents 
the 95% confidence interval. In cases where the 95% confidence intervals do not overlap with zero, the 
discrepancy between model predictions and data are significant. Although there are significant 
discrepancies between predicted values for Julian day and data, these are small (a-b). For year (c-d) there 
were no significant discrepancies between model predictions and data. 
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Figure A4. Model predictions of occupancy probability of Bluethroat as a combination of latitude and 
altitude in a) 1992 and b) 2002 (Model A).  
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