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Introduction 

We have attempted to simulate a Potts model with random power-law interactions using 

several different numerical algorithms in an effort to find the critical temperature. We have 

used the Potts model to model the effective interactions between adsorbates placed at 

random positions on a graphene surface. 

The model 

The Potts model Hamiltonian is 

           
    

              

Each adsorbate (in the model usually called spin) is assigned an integer value s between 1 

and q. Graphene is a hexagonal lattice with a carbon atom at each vertice. Each adsorbate 

can be located at different microscopic positions on the graphene sheet. If the adsorbate has 

a tendency to be located above the carbon atoms, there are effectively two different 

microscopic positions, either it is located above an atom on the A-sublattice or on the B-

sublattice. We model this degree of freedom by setting the number of possible s values q=2. 

Figure 1 illustrates this. If on the other hand the adsorbate prefers to be located above 

carbon-carbon bonds there are three inequivalent positions corresponding to the 

orientations of the bonds. In that case we use q=3. This possibility is illustrated in figure 2. 

Whether an adsorbate will prefer to be located over a carbon atom or over a carbon-carbon 

bond depends on what kind of adsorbate it is. 

 If two neighboring adsorbates have the same s value they contribute –J to the Hamiltonian. 

In the case of long-range interactions all adsorbates “neighbor” all other adsorbates and the 

interaction strength J will not necessarily be the same for all the pairs. For our system we 

take   
 

  
 (ref. [4]). Taking this into account the Hamiltonian becomes 

            
  

               

with      
 

    
  where rij is the distance between adsorbates i and j. Note that this means that 

the microscopic parameters J0 and a, which are properties of graphene and would otherwise 
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appear in the Hamiltonian, (or rather the product J0a3) have been set equal to one. We also 

note that in order for the dimensions to make sense we should measure the distance r in 

terms of the length of the system i.e.   
 

 
 

 
 
 . However, we can set the length of the 

graphene surface, L, equal to one as well. J then becomes dimensionless and if we should 

wish to use dimensions we must reintroduce J0 and a. 

 

Figure 1 An adsorbate can be located above a carbon atom of type A or type B, giving q=2 

 

Figure 2 An adsorbate can be located above a carbon-carbon bond with orientation of type A, B or C, giving q=3 

Monte Carlo method 

The expectation value <Q> of some observable quantity Q is given by  

      
    

    
 

       

            

where the sum is over all states µ of the system. Thus calculating properties of models in 

statistical mechanics often involves performing sums with very many terms. For large 
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systems the number of states will be too large and we must limited ourselves to averaging 

over some subset of states. If we choose M states at random using the probability 

distribution pµ the best estimation (often called estimator) of Q is 

     
     

        
   

   
        

   

              

We want to choose pµ in such a way that we pick the states which make important 

contributions to the sum in equation (3) more often. This is called importance sampling. To 

easily see that not all states contribute equally consider how the system will behave at low 

temperatures, without the thermal energy needed to excite the system it will spend most of 

the time in the ground state. The most common form of importance sampling is to sample 

the states of the system in such a way that the likelihood of any particular state appearing is 

proportional to its Boltzmann weight, i.e.  

       
                  

which gives  

    
 

 
   

 

   

                  

How then should we go about generating a random set of states where each of them 

appears according to its Boltzmann probability? Almost all Monte Carlo schemes solve this 

by making use of Markov processes. A Markov process is simply put a process which 

randomly changes the state of the system. The probability of transitioning from one state µ 

to another state ν is called the transition probability and is denoted by       . It must 

always fulfill the three requirements 

1. Does not vary over time 

2. Depend only on the states µ and ν, and not any other states of the system 

3.             

Using a Markov process repeatedly produces a Markov chain of states. For Monte Carlo 

simulations we want to use a Markov process which when run for long enough produces 

such a chain where the states appear according to the Boltzmann probability distribution, 
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this is called coming to equilibrium. In order to ensure this we must require two more things 

of the process; ergodicity and detailed balance. 

Ergodicity means that it must be possible for the system to transition between any two 

states if we repeat the Markov process enough times. This is necessary because in the 

Boltzmann probability distribution all states have a non-zero probability to appear. Then if it 

is impossible to reach a state ν from another state µ, no matter how long we run the 

process, and we start in state µ the probability of state µ appearing in the simulation will be 

zero, which it should not be. 

For a system to be in equilibrium the rate of transition into a state µ must be the same as the 

rate of transition out of the state µ i.e. 

                                  

  

 

since            this simplifies to  

            

 

                    

We want to ensure that if we run the process long enough the probability distribution for 

the system will be pµ no matter what state we start with, however simply choosing transition 

probabilities that satisfy equation (8) does not guaranty this. While this condition ensures 

equilibrium it does not guarantee a simple equilibrium as it also permits so called dynamic 

equilibriums in which the probability distribution will cycle trough a number of values, such a 

cycle is called a limit cycle.   

Detailed balance means that it should be equally likely for the system to transition from µ to 

ν as from ν to µ, i.e. 

                                   

We see that if detailed balance is fulfilled so is (7). The probability to find the system in a 

certain state can change, like it will in a limit cycle, but only if there are either more or less 

transitions out of a state than into the state. Since detailed balance prohibits this it prevents 
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limit cycles. Setting the probability distribution at equilibrium to the Boltzmann distribution, 

equation (9) can be written as 

      

      
 

  
  

                                

Since this condition only fixes the ratio of the transition probabilities we still have quite a lot 

of freedom in how we choose them. The transition probabilities can be broken down into 

two parts like this 

                                        

The selection probability g(µ → ν) is the probability that given the initial state µ the state ν 

will be generated. A(µ → ν), the acceptance ratio, is the probability that we actually change 

the system from state µ to ν instead of staying in the state µ. 

The condition (10) then becomes 

      

      
 

      

      

      

      
                  

The acceptance ratios can have any value between 0 and 1, but if they are low the system 

will rarely change state and the algorithm will take longer to sample enough states. 

Therefore we should try to choose the selection probabilities and the acceptance ratios in 

such a way that the acceptance ratios are as large as possible within the given constraints. 

Metropolis 

The Metropolis algorithm (ref. [3]) is characterized by the acceptance ratio 

    ν      
                                               

                                              
                

If the proposed change lowers the energy of the system we always accept it, otherwise we 

accept the change with the given probability.  

The Metropolis algorithm goes as follows 

1. Choose an adsorbate at random 
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2. Assign it a new s value different from the old. All possible values should be equally 

probable. 

3. Calculate the change in energy, ΔE, that changing the s value in step 2 would cause. 

4. Accept or reject the new configuration according to the acceptance probability 

above. 

5. Repeat steps 1-4 n times, where n is the number of adsorbates. 

6. Take measurements. 

This must be repeated in order for the algorithm to get measurements from enough states. 

Each such repetition is called a Monte Carlo step. It is also important to allow the algorithm 

to run for a while before we start taking measurements in order for it to reach equilibrium. 

For the Metropolis algorithm all the selection probabilities g(µ → ν) are the same, the 

probability of selecting any given spin is always 
 

 
 and the selection probability will be 

 

   
 for 

all possible s values. Therefore it is up to the acceptance ratios to fulfill the condition of 

detailed balance. We also need the acceptance ratios to be as close to one as possible. Both 

of these things can be accomplished by setting the highest acceptance ratio to one and the 

other to what it needs to be in order to fulfill detailed balance, which is how the acceptance 

ratio given in (13) was determined. Ergodicity is also fulfilled since we can change any spin to 

any s value with a non-zero probability.   

Cluster algorithms 

Wolff cluster 

The Metropolis algorithm as described above is a single-flip algorithm because we change a 

single spin at a time. A cluster algorithm on the other hand changes entire groups of spins 

with the same s value, called clusters, at once. One such cluster algorithm is the Wolff 

algorithm (ref. [5]) which goes as follows  

1. Choose an adsorbate at random. This adsorbate is called the seed spin. 

2. Go through all other adsorbates and if they have the same s value add them to the 

cluster with probability padd. The adsorbate we are currently attempting to activate 

bonds from is called the current spin. To activate a bond to an adsorbate is the same 

as adding it to the cluster. 
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3. For each adsorbate added in step 2 we then repeat step 2 with this adsorbate as 

current spin. This is repeated until every adsorbate in the cluster has been the 

current spin. 

4. Change s value for all adsorbates in cluster. Though for practical purposes it is a good 

idea to change the s value of a spin when we add it to the cluster since that will 

automatically prevent the adding of the same spin twice. 

So we need to determine the probability padd. Consider a state µ that can be transformed 

into another state ν by changing one cluster. The probability of selecting a spin as seed spin 

is the same in both states, so is the probability of adding the spins in the cluster to the 

cluster and so is the probability of choosing the needed new s value to change the cluster to. 

The only probability that changes is the probability of not adding the spins with the same s 

value that is not supposed to be a part of the cluster. Say we have na spins with the same s 

value as the cluster that is not to be added to the cluster in state µ, the probability of not 

adding these na spins is            
  
 . And in state ν we have nb spins with the same s 

value that should not be added, the probability of not adding them is then            
  
 . 

For the Wolff cluster the condition of detailed balance then becomes  

      

      

      

      
 

           
  
 

           
  

 

      

      
                       

When we change the cluster we will get nb times the size of the cluster new spins bonds 

which will contribute to the energy and we break na times the size of the cluster which will 

no longer contribute to the energy. The change in the energy is then given by   

           
        

 
      

        

 
             

Inserting this into (14) we get 

           
  
 

           
  

 

      

      
  

      
        
       

        

                

Some reorganizing gives 
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We see that if we set                the acceptance ratios will be equal to one. 

Ergodicity will also be fulfilled since it is possible for a cluster to consist of only one spin. 

LB cluster 

In ref. [1] Luijten and Blöte presents an algorithm inspired by the Wolff algorithm, but 

instead of attempting to add every single spin one by one as in the standard Wolff cluster 

algorithm they introduces the cumulative bond probability 

           

 

   

                

Where  

                                         

is the probability that the first spin to be added to the cluster is at a distance j from the 

current spin (assuming the same s value). With 

                       

the probability of adding a spin at a distance n. Jn is the interaction strength for the bond 

between spins with distance n.  

We draw a random number ar and if ar is between C(j-1) and C(j) we active bond j, assuming 

the same s value. The next bond to be activated should be to a spin further away, at a 

distance k. That means we must change P accordingly which gives 

                                              

And the cumulative probability becomes 

              

 

     

             

Substituting for pn we get 
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 We then use the cumulative probability (22) in exactly the same way we used (18) to find 

the next distance k, then we shift P again. This is repeated until we have been through all 

possible distances. 

The algorithm in ref. [1] is meant for systems in which the spins are positioned at the 

vertices of a regular lattice. Since the positions of the spins in our system are random some 

modifications are required. Firstly j/k are no longer the distance to the next spin to be 

added, instead we sort the bonds by the strength of the interaction and make j/k an index 

running over this list. That is if we draw a random number ar between C(j-1) and C(j) we add 

the jth spin in the list. So when implementing this we need to make a table that for each spin 

contains 

1. The interaction strength with every other spin, sorted from weakest to strongest.  

2. The cumulative probability  

3. Indices for the vector that stores the s values since the sorting will be different for 

each current spin  

One might think that it is necessary to also store the Cj(k)s for every value of j as well, 

fortunately this is not necessary as we can calculate them from the C(j)s. We see that  

                    

 

   

                                   

Which rewritten gives 

      
         

      
              

Another thing that we must take into consideration is the fact that for a system with spins 

located at the vertices of a lattice the minimum distance between them will be one whereas 

in our system the maximum distance is one. This means that the interaction strength will be 

larger. Many of them will be so large in fact that the exponentials in the expression for the 

cumulative probability will be numerically zero and we end up with many cumulative 

probabilities equal to one, even when they are not supposed to be. 
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This can be solved by using the LB algorithm for the weaker bonds and then switching to the 

standard Wolff algorithm for the strong bonds. Since these bonds are so strong almost all 

the spins will be added to the cluster anyway and there is not much to gain from using the LB 

algorithm for the strong couplings. This combination of the Wolff and the LB algorithm is the 

method we have used.   

Error treatment and verification of the algorithms 

It is important to have some way of estimating the statistical errors in the simulation. One 

such method is called blocking. Say we have N measurements, these measurements are then 

divided into Nb groups or blocks. For each block we can then calculate the mean of the 

measurements in that block. Then we calculate the mean of these “block means”, which is 

our best estimation of that quantity. If we make the blocks large enough we can treat the 

“block means” as statistically independent and calculate the standard deviation on the total 

mean using 

   
 

 
  

         
  
   

    
             

We must also of course check that the algorithms work properly. This can be done by 

comparing the results against an analytical solution. For as few as two and three adsorbates 

we can find an exact expression for the energy with pen and paper. For two adsorbates and 

with q=3 we have 

      
    

    
 

       

 

  

 
  

 
 
  

  
 
    

               

q=2 gives 
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And for q=4  

      
 

 
  

 
 
  

  
 
     

           

For three adsorbates and q=3 we get 

      
    

    
 

       

 

  
                

                    
          

          
    

                                       
         

 And q=2 gives 

      
                

                    
          

          
    

                                     
         

where, as before,     
 

    
 .  

Brute force 

As mentioned previously the number of terms in (3) will be too large to handle for large 

systems, however it is doable for smaller systems. In order to further verify the results from 

the Monte Carlo algorithms we wish to compare them to a straight forward brute force 

numerical calculation of this sum. However there is one issue with this approach even for 

relatively small systems. Since the size of the surface L x L is constant the more adsorbates 

we have the closer together they will be. That means that the interaction strength     
 

    
  

will be large for most of the pairs which will give very large energies for many of the states. 

When we then perform the sum many of the terms will then be very large and we risk 

getting a result that is too large for the computer to handle. This can be avoided by adding a 

constant to the energy (we add since the energy will be negative). This can be seen as 

adjusting the energy of all states by the same amount and leads to no physical changes in 

the system. 

Denoting the new expectation value for the energy <E’> and the constant we add Ek, we 

have  
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We see that we can simply calculate < E’ > and then subtract Ek to find the original 

expectation value < E >. Similarly for the expectation value for the energy squared  

         
         

           
 

             

 

  
        

            
        

             
          

            

 

                  
           

We also note that since the constant in the exponential will cancel out, the expectation 

value of any quantity that is not the energy will not be affected, which is consistent with 

adding the constant not causing any physical changes in the system. 
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Figure 3 <E> calculated using all four different methods for two adsorbates in the upper panel and three adsorbates in 
the lower panel with q=3 
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Figure 4 <E> calculated using all four different methods for two adsorbates in the upper panel and three adsorbates in 
the lower panel with q=2 
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Figure 5 <E> calculated using all four different methods for two adsorbates and with q=4 

 

In figures 3-5 we see that the results from both the brute force calculation and the two 

Monte Carlo algorithms are in agreement with the exact analytical expression in equations 

(27-31). Figures 6 and 7 upper panels show the order parameter      with m given by  

     
    
   

 

   

          

Where    
  

 
 is the proportion of spins with value s.  

In the lower panels of figures 6 and 7 we show the specific heat Cv given by the expression 

    
    

  
          

  
 

  
 
 

 
    

    

 

  
 

  
                        



21 
 

For n=5, figure 6, we get the same results using all three numerical methods. However, for 

n=10 we see that Metropolis disagrees with the other two. For low temperatures almost all 

spins will have the same s value and changing the value of a spin will increase the energy, 

since we have long-range interactions the energy increase will be larger for a higher number 

of spins. For the Metropolis algorithm the acceptance ratios will be very small for large 

increases in energy. This gives the algorithm a tendency to get stuck in the ground state. For 

the cluster algorithm on the other hand the acceptance ratios will always be one and the 

cluster constructing probabilities only depend on the temperature and the interaction 

between the spins and not the total energy change of the system, which means that we 

avoid this problem. Therefore we have used the cluster algorithm and not Metropolis when 

calculating our results.  

We also note that the curves for the specific heats are not smooth. This is caused by the way 

we calculate the specific heat. Normally we would want to use (36) however in our case that 

will not work properly due to catastrophic cancellation. Catastrophic cancellation can occur 

when we compute small numbers by subtracting two nearly equal large numbers. To avoid 

this we instead use (35) and the centered differencing formula 

       
             

  
             

to calculate the specific heat. Unfortunately numerical derivation will introduce some 

inaccuracies.   



22 
 

 

Figure 6 |m|
2
 and Cv for 5 adsorbates and q=3 
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Figure 7 |m|
2
 and Cv for 10 adsorbates and q=3 

 

Periodic boundary conditions 

In order to minimize boundary effects we employ periodic boundary conditions. This is done 

by surrounding our L x L surface with copies of itself.  

Periodic boundary conditions means the energy will not only depend on the interactions 

between the spins of our original system, now we must also take into account the 

interactions between the spins of the original system and the copies. This can be 

implemented by changing the effective interaction from Jji to Jji’ given by  

   
    

 

            
 
            

 
 

 
 

 

     

               

 which is the sum of the interactions between spin j and all version of the spin i, 
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where nx and ny denotes which copy of i we are considering. For example for the copy 

located directly to the right of the original surface we will have nx=1 and ny=0. 

As we can see in figure 8 the results obtained using the three different methods are in 

agreement for periodic boundary conditions as well. 

 

Figure 8 <E> and |m|
2
 calculated using periodic boundary conditions 

Figure 9 shows |m|2 and Cv using different numbers of copies. We see that the effect of the 

interactions with the copies further away than five L is negligible. This means that we only 

need to include five copies in each direction when calculating results. 
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Figure 9 |m|
2
 and Cv calculated using different numbers of copies. Npbc denotes the number of copies included in each 

direction 

The critical temperature 

As previously mentioned, for low temperatures almost all spins will have the same s value 

whereas for higher temperatures there will be an almost equal number of spins with each 

possible s value. The transition between these two regimes is sharp, the temperature at 

which it is at its sharpest is called the critical temperature and such a transition is called a 

phase transition. As we can see in figure (10) the behavior of the system will be dependent 

on the positions of the spins, which we expect since the interactions depend on the 

positions. We also see that this dependence is stronger for fewer adsorbates. This makes 

sense since adding more spins will have a self-averaging effect on the inter-particle 

distances. 
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Figure 10 |m|
2
 for five different sets of positions for the adsorbates 

 

We do not want to limit ourselves to one particular set of positions or number of adsorbates 

but rather look at a general system. That means that in order to find the critical temperature 

we must take the average over several different sets of adsorbate positions. And as we can 

see in figure (11) we must scale the temperature if we wish to compare curves for different 

values of number of adsorbates n.  
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Figure 11 |m|
2
 for different values of n and q=3 

 

The typical distance between adsorbates is 

    
  

 
 

 

  
                  

And the typical interaction strength is then 

   
 

  
  

 
 
 

  
                 

The temperature will scale with this and in order to compare various values of n we must 

then divide the temperature we are plotting against by  
 

   

Doing this gives us the results shown in figures 12-14, where in addition to |m|2, we show Cv 

and the Binder cumulant (ref. [8]) given by 
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 From these figures we find that the critical temperature Tc is approximately 7.5 for q=2, 8.5 

for q=3, and 11 for q=2.  

Figure 15 shows Tc plotted as functions of q. We see that Tc decreases for increasing q which 

is reasonable as that simply means that it is easier to disturb the order when we have a 

greater number of possible s values. Based on this limited number of data points Tc appears 

to be close to inversely proportional to q. 

 

 

Figure 12 |m|
2
, the Binder cumulant, and Cv for different n with the temperature scaled for q=2 
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Figure 13 |m|
2
, the Binder cumulant, and Cv for different n with the temperature scaled for q=3 
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Figure 14 |m|
2
, the Binder cumulant, and Cv for different n with the temperature scaled for q=4 
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Figure 15 The approximate values of Tc as functions of q 

Closing remarks 

We have found that a cluster algorithm is a good fit for simulating this kind of system. 

Although the particular algorithm we have used would probably be even more suited for 

larger systems, as they will have a greater number of weak bonds we could potentially skip. 

We have also determined an approximate value for Tc for three different values of q. In 

order to get more accurate estimates of Tc we would need to run the program for larger 

values of n, as well as increasing the number of data points close to Tc.  
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