
Distinguishing between gravity theories
with galaxy peculiar velocity statistics

Robert Olav Fauli

Thesis submitted for the degree of
Master of Science in Astronomy

Institute of Theoretical Astrophysics
University of Oslo

1st of June 2015

ii

Copyright c© 2015, Robert Olav Fauli

This work, entitled “Distinguishing between gravity theories with galaxy peculiar velocity statis-
tics” is distributed under the terms of the Public Library of Science Open Access License, a
copy of which can be found at http://www.publiclibraryofscience.org.

Abstract

The ΛCDM model used in modern cosmology has major theoretical problems. To attempt to
solve these many modified gravity theories have been proposed. We calculate velocity statistics
(streaming pair-wise velocities and the velocity correlation function) for different models (Hu-
Sawicki f(R) and symmetron) using data from n-body simulations. We find that the streaming
velocities show the clearest deviations from GR. The F5 model deviates quite strongly, while
for symmetron models the time of fifth force turn on is more important than the force range.
We have not accounted for all the sources of variance and covariance, but suggest running many
simulations with different realisations of the initial matter distribution to solve this. For future
work we suggest calculating the statistics while binning the halos by their environments, and
comparing our simulations to observations.

iii

iv

Acknowledgments

I would like to thank my supervisors, David F. Mota, Claudio Llinares and Philip Bull, for
always answering my questions to the best of their ability whenever I came to them for help,
and for their positive encouragement during dark times. Thanks to Phil (Philip Bull) for giving
me direction, and for rapidly giving detailed constructive feedback on the thesis.

Thanks to my family for providing financial support and helping me take my drivers licence
during my time studying.

v

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1
1.1 General Relativity . 3

1.1.1 GR building blocks . 4
1.1.2 Friedmann equations . 7
1.1.3 Linear cosmological perturbation theory 8

1.2 Modified Gravity . 9
1.2.1 The alternatives . 9
1.2.2 Conformal transformations . 9
1.2.3 Scalar-tensor Theories . 10
1.2.4 Screening mechanisms . 10

1.3 Large scale structure . 15
1.3.1 Dark matter halos . 16
1.3.2 Galaxy correlation function . 16
1.3.3 Bias . 18

1.4 Velocity statistics . 18
1.4.1 Peculiar velocities . 18
1.4.2 Velocity correlation function . 19
1.4.3 Streaming pairwise velocity . 19

2 N-body simulations 21
2.1 Background on the code used . 22
2.2 Background cosmology and initial conditions . 23
2.3 Symmetron Simulations . 23
2.4 f(R) Simulations . 24
2.5 Limitations . 25
2.6 Halo finding . 25

3 Method 29
3.1 Calculating from simulation data . 29

3.1.1 Correcting for observer position . 29
3.1.2 Estimators . 30
3.1.3 Algorithm . 32
3.1.4 Constructing the errorbars . 32
3.1.5 Random poisson catalogues . 34

vii

3.2 Validating the results . 35

4 Results and analysis 39
4.1 Streaming velocities . 39

4.1.1 Comparison between models: f(R) . 40
4.1.2 Comparison between models: Symmetron 42
4.1.3 Dependence on mass and binning . 43
4.1.4 Cumulative streaming velocity distribution 45

4.2 Velocity correlation function . 46
4.2.1 Comparison between models . 46
4.2.2 Dependence on mass and binning . 49

5 Conclusions and Discussion 51

Appendices 61

A Code 63
A.1 Calculating velocity statistics . 63

A.1.1 main.cpp . 63
A.1.2 velo_tools.h . 77
A.1.3 velo_tools.cpp . 78
A.1.4 bookkeeping.h . 81
A.1.5 bookkeeping.cpp . 82

A.2 Approximating the velocity correlation function 84
A.2.1 main.cpp . 84

A.3 Approximating pair-wise streaming velocities . 92
A.3.1 v12.cpp . 92

A.4 Files used to approximate velocity statistics . 96
A.4.1 tools.cpp . 96
A.4.2 calc.cpp . 99

A.5 General tool set . 101
A.5.1 functions.h . 101
A.5.2 functions.cpp . 103
A.5.3 statistics.h . 110
A.5.4 statistics.cpp . 111

Chapter 1

Introduction

Our understanding of the cosmos has changed enormously over the last century. In the begin-
ning of the century we did not know about other galaxies and thought the Universe was static.
A static universe had the benefit of not needing to explain a beginning.

When Einstein developed General Relativity (1916) it became apparent that in order to
keep the universe static he had to insert a constant into his equations, otherwise the Universe
would collapse in on itself or expand rapidly. This was called the cosmological constant.

In 1929 Edwin Hubble made a suprising discovery. It was known at the time that the
light from a source approaching an observer would be measured at a shorter wavelength than
what was emitted at the source, and conversely a source moving away from the observer would
emit radiation that the observer would measure as a longer wavelength than what was emitted
from the source. Since the part of the visible spectrum on the shorter wavelength end is blue
and the part on the longer wavelength end is red, the light from a source moving towards us
will blueshifted, while if the source is moving away from us will be redshifted. The fractional
deviation of the observed wavelength from the one emitted at the source is called the redshift.
Hubble measured the redshift of a type of star called Cepheid variables in nearby galaxies. This
type of star changes in brightness periodically over time and the period can be related to the
radiative intensity of the star. Knowing how much the star radiates we also know how much
radiation we should measure as a function of distance to the star.

Measuring both the redshift and the period of the Cepheid variables, one could therefore
determine both the velocity at which the stars were moving closer or farther away from us and
how far away they were. The data showed that they were moving away from us and that there
was a linear relationship between the velocity and the distance from us. This was formulated
as Hubble’s law.

In 1998 the “High-z Supernova Search Team” used supernova data from the Hubble Space
Telescope to show that the Universe had been expanding more slowly in the past [1], while the
“Supernova Cosmology Project” did the same using ground based telescopes the same year [2].

To cause this accelerating expansion, missing energy was needed, and a lot of it (69%,
according to the 2013 Planck data [3]). Having no idea what it is, it has been appropriately
called “dark energy”.

This gave the cosmological constant a new role; instead of keeping the Universe static it
would now be responsible for the acceleration of the universe.

The other energy component with the prefix “dark” is dark matter. We do not know what
dark matter is, but we can see its effects; stars orbit around the centre of their galaxies so fast
that if only the matter we can see was there they should escape the galaxy according to General
Relativity (GR). Dark matter is the invisible source of this extra gravitational force. Although

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Distribution of the energy content in the universe according to the 2013 Planck
data [3].

we do not know what dark matter is, some of its properties have been deduced and the more
likely type is called Cold Dark Matter (CDM). Cold dark matter consist of non-relativistic
particles that do not interact through any other means than gravity.

Today we have a standard model of cosmology called ΛCDM, where Λ is the cosmological
constant and CDM stands for Cold Dark Matter. This model emerges from General Relativity
(GR), when one assumes that the Universe looks the same in all directions, — the Universe is
isotropic, — and that on large scales the Universe looks the same everywhere, — it is homoge-
neous. ΛCDM has just 6 parameters: the density of baryons, the density of cold dark matter,
when the first stars and galaxies were formed reionizing the Universe, the age of the Universe,
the amplitude and scale dependence of the initial fluctuations in the matter distribution. The
initial matter fluctuations are the end product of what is called inflation, a theory for how the
Universe evolved very early in its history. ΛCDM fits the data both from the Cosmic Microwave
Background (CMB) [4, 5] and supernovae redshifts [2, 1] very well.

In ΛCDM the cosmological constant Λ, dark energy, is responsible for the Universe’s accel-
erated expansion. Dark energy has a certain set of properties in ΛCDM: its energy density is
constant as the Universe expands. From particle physics we know of one thing with this prop-
erty, — vacuum energy. The problem is that the amount of vacuum energy particle physicists
calculate is much higher than what is needed in ΛCDM. Almost all of the vacuum energy must
cancel by some mechanism, this is a 55-order fine-tuning [6, 7]. It would seem less mystical

1.1. GENERAL RELATIVITY 3

if all of the vacuum energy were cancelled and there was another source for the cosmological
constant. So even though ΛCDM fits the data so well, there is still a big problem, although
purely theoretical. Thus alternative theories are actively developed, the motivation being to
solve the fine-tuning problem of the cosmological constant; it needs to be explained.

Alternatives that have been suggested for the cosmological constant include: adding so
far unknown energy content, like different types of exotic fluids, or altering the theory of the
space-time geometry of the Universe. The latter go under the category of “Modified Gravity”
and include things such as adding extra dimensions and scalar fields [8]. Though many of the
alternatives also fit data well, they do not match the simplicity of ΛCDM and in order to justify
a more complex theory it should have extra explanatory power, which means that they need to
be different enough from ΛCDM that we can detect it. So far we have not detected any such
deviations from ΛCDM [3].

The modifications to GR have to be made in a way that makes it plausible that we have not
yet detected them by direct measurements. One of the ways of doing this is to add a scalar field
(or a few scalar fields) that permeates the universe. These scalar fields cause what is commonly
called a “fifth force”, (though it is not really another force,) that hides by means of what we call
“screening mechanisms” making it really difficult to detect in dense areas like for example the
solar system. Two examples of screening mechanisms are Chameleon and Symmetron screening,
which we will come back to later in the thesis.

They also need to be consistent with the way we know the Universe has evolved. A way
of testing this is to simulate the universe from an early time until today, then comparing with
what we see through observations. If something is different is it because of the modified gravity,
or the limitations of Nbody-simulations (resolution, etc, see the Section 2)? Or can we find
something that is different in our simulations with modified gravity compared to normal gravity,
and if so can we look for it in our own universe?

Although no deviations from ΛCDM of significance have been detected yet, we are con-
stantly accumulating new data restricting how much of a deviation from ΛCDM is theoretically
feasible to still be consistent with data. This is done through solar system tests (measuring the
acceleration on objects by different means), measuring the properties of the CMB, weak lensing
(gravity bends light slightly when it passes by regions with a high matter density, thus distorting
the image allowing us to map the dark matter structure), and galaxy/dark matter halo velocity
surveys (galaxies will move differently when gravity is different from GR). The main focus for
future surveys are based around galaxy surveys, and more accurate measurements of the CMB.
Some projects that will accumulate data in the future surveying galaxies and looking at weak
lensing are the Euclid mission [9] and the Dark Energy Survey (DES) [10]. And for the CMB
we have ACTPol [11] and SPTPol [12]. Galaxy surveys are directly relevant to our the velocity
statistics we will look at in our thesis, and so are the velocities of galaxy clusters extracted
from CMB surveys using the fact that CMB photons scatter off electrons causing anisotropic
radiation, called the kinematic Sunyaev Zel’dovich effect. If we find a signature in the velocity
statistics from our simulations we could look for that specifically in the observational data.

1.1 General Relativity

In this section we give a brief overview of the formalism and physical principles of General
Relativity. We follow both Sean Carroll’s Spacetime and Geometry [13], and Øyvind Grøn’s
Lecture Notes on General Relativity.

4 CHAPTER 1. INTRODUCTION

1.1.1 GR building blocks

In cosmology we work on very large scales. While other forces are more important on small
scales, on large scales gravity dominates. First we need to get some of the fundamentals out
of the way, so in this section we will list the most important expressions in General Relativity
with a short explanation of what they mean.

1.1.1.1 The equivalence principle

In GR gravity is not a force; when an object (e.g. a rocket) is in free fall towards the surface
of (e.g) a planet there is no force acting on it. To an observer on the surface of the planet it
looks like the rocket is accelerating towards the planet with the acceleration g. The principle
of equivalence states that there is no way the person inside the rocket can distinguish between
being in free fall and being uniformly accelerated by the rocket engines in free space however;
the result of any experiments performed inside will be the same. In the Newtonian sense this
is the case because the “gravitational charge”, mg (Fg = −mg∇φ) of an object is equal to its
inertial mass, mi (F = mia), so freely falling objects with the same initial velocity follow the
same path in a gravitational field independent of their mass. These paths are called geodesics.
This is the equivalence principle, and it is a foundational component of GR.

As we will see in Section 1.2.4, Modified Gravity could cause apparent violations of the
equivalence principle.

1.1.1.2 Formalism

In General Relativity a lot of formalism has been introduced to simplify expressions when
operating with vectors and tensors. One of them is Einstein’s summation convention:

S = aµbµ = a0b0 + a1b1 + a2b2 + a3b3; (1.1)

the numbers here are indices. When one upper and one lower index are the same letter we sum
over the indices 0, 1, 2, 3 if it is a greek letter and 1, 2, 3 in the case of a latin letter.

A vector can then be expressed as:

v = vµe(µ) = v0e(0) + v1e(1) + v2e(2) + v3e(3) (1.2)

where we have used Einstein’s summing convention in the last equality and e(µ) is the basis
spanning the vector space, which the paranthesis indicates.

The basis we will almost always used is e(µ) = ∂µ = ∂
∂xµ , we call this the “coordinate basis”.

A complementary mathematical construct called the dual-vector ω = ωνθ
(ν) are maps from

the vector space to real space R:

ω · v = ωνθ
(ν)vµe(µ) = ωνv

µ(θ(ν)e(µ)) = ωµv
µ ∈ R (1.3)

A (k, l) tensor can be transformed into a (k − 1, l + 1) tensor by contracting it with the
metric.

gµνC
ν
σλ = Cµσλ (1.4)

The position of the indices always remains intact.

1.1. GENERAL RELATIVITY 5

1.1.1.3 Curvature

Gravity is caused by curvature in spacetime. To describe how spacetime is curved, we use the
metric and the Riemann tensor.

When we say “the metric” we can mean two things, either the tensor gµν or the line-element
ds2. Both are interchangeable in most contexts, — we can get the tensor from the line-element
and vice versa. They give us the geometry of the spacetime manifold.

The metric allows us to find the distance between two points on the manifold. The product
of two vectors is u · v = gµνu

µvν .
In general relativity two different sign conventions are used: diag(−,+,+,+) and diag(+,−,−,−).

We will use the former (which is standard in cosmology, however in particle physics the latter
is common), meaning that for flat space we have

gµν ≡ ηµν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.5)

The derivative of a vector ∂µ is not covariant, so to make it covariant one adds a correction
term called the connection

∇µvν = ∂µv
ν + ΓνµλV λ (1.6)

where Γσµν is the connection coefficients.
Christoffel-symbols are the connection coefficients and in coordinate basis are given by:

Γλµν = 1
2g

λρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (1.7)

The connection coefficients describe how the coordinates have different length and direction
from one place to another (like how in polar coordinates dθ is longer the farther away from
origin we get). So if we want to keep a vector/tensor constant while parallel transporting along
the radius in polar coordinates and expressed in terms of polar coordinates, the connection
would tell us how. The covariant derivative tells us the rate of change of a tensor field relative
to if it was parallel transported.

Parallel transporting a vector along a path is to transport it along that path while keeping
it constant relative to the path. So the straightest possible line would be one that parallel
transports its tangent vector. These straightest possible lines are what we call geodesics, free
particles follow geodesics and they are given by the geodesic equation:

d2xµ

dτ + Γµρσ
dxρ

dτ = 0 (1.8)

When a particle is not free, but a force is working on it, the path is given by:

dxµ

dτ2 + Γµρσ
dxρ

dτ = q

m
Fµν

dxν

dτ (1.9)

τ is here the proper time, the time shown hypothetical clocks following the particles paths.
The Riemann tensor or curvature tensor tells us what happens to a vector that is parallel

transported around an infinitesimally small loop consisting of two vectors. The change in the
vector after transport can then be expressed as

δV ρ = RρσµνV
σAµBν . (1.10)

6 CHAPTER 1. INTRODUCTION

The Riemann tensor can be written as

Rασµν = Γανσ,µ − Γαµσ,µ + ΓαµλΓλνσ − ΓανλΓλµσ (1.11)

The Ricci tensor is the contraction of the Riemann tensor

Rµν = Rαµαν (1.12)

and the Ricci scalar or scalar curvature is the contraction of the Ricci tensor.

R = gµνRµν (1.13)

Einstein’s equation relates the curvature of spacetime to the presence of energy and mo-
mentum:

Gµν = κ2Tµν (1.14)

where the space-time geometry is on the left side of the equation and the energy content is
on the right. One way of deriving the Einstein equation is to start from the Einstein-Hilbert
action, which is the action for a vacuum:

SH =
∫ √

−g R dnx (1.15)

In classical field theory the equations of motion are those for which the action is stationary
under variation (the principle of stationary action). By varying the action around the metric,
using the principle of stationary action we get Einstein’s field equations in a vacuum:

Rµν −
1
2gµνR = 0 (1.16)

To include matter we include the action for matter SM , making up the total action:

S = 1
2κ2SH + SM (1.17)

where κ =
√

8πG.
Using the same method as for vacuum one gets the Einstein equation (equation 1.14).

Gµν = κ2Tµν (1.18)

where Gµν is the Einstein tensor

Gµν = Rµν −
1
2gµνR (1.19)

and Tµν is the stress-energy tensor. For a perfect fluid this is expressed as:

Tµν = (ρ+ p)uµuν + pgµν , (1.20)

uµ being the four-velocity of the fluid.
In cosmology we assume perfect fluids almost always, and it is typically a good approxima-

tion. The equation of state for one is
w = p

ρ
(1.21)

and for non-relativistic matter we have w = 0, for relativistic matter we have ω = 1/3 and we
think whatever plays the role of the cosmological constant has w ≈ −1 [14].

1.1. GENERAL RELATIVITY 7

1.1.2 Friedmann equations
In cosmology it is normal to assume that the universe is both isotropic and homogenious. This
has also been measured using the cosmic microwave background and galaxy distributions, which
look extremely isotropic. Under those assumptions the Friedmann-Lemaitre-Robertson-Walker
(FLRW) line-element is a solution of GR.

ds2 = gµνdxµdxν = −dt2 + a2(t)
[

dr2

1− kr2 + r2 (dθ2 + sin2 θ dφ2)] (1.22)

where a(t) is the scale factor describing how large the Universe is relative to today at time t.
The time is measured on “comoving” clocks, that is clocks that follow the expansion and thus
have constant comoving coordinates. k indicates whether the universe is open, flat or closed.

Spacetime k Ω
Open -1 Ω < 1
Flat 0 Ω = 1
Closed 1 Ω > 1

Table 1.1: What different k values mean, summarized.

Ω in Table 1.1 is the energy in the Universe relative to the critical density. The critical
density is the energy density in a flat universe, ρc = 3H2/8πG. For a species i we use the
notation Ωi ≡ ρi/ρc, ρc being the critical density. Current data [15] indicates that the Universe,
if not flat, is at least very close to flat, so we should have Ω =

∑
Ωi = 1.

The FLRW metric has been successful in explaining the redshifted galaxies observed by
Hubble in 1929 through the scale factor. It is not strictly the galaxies who have a velocity in
the direction away from us, but the metric is changing “creating” extra space in between us
and the galaxies. Similarly when the scale factor was smaller, there was less space between the
particles so the Universe was a lot denser.

To determine how the scale factor evolves based on the Universe’s energy content we use
the Friedmann equations. To find the Friedmann equations we look at the time and space-
components of the Einstein equation. The time component gives us Friedmann’s first equation
(commonly called the Friedmann equation).

G00 = 3ȧ2

a2 + 3k
a2 (1.23)

Gii = −2ä
a
− ȧ

a2 −
k

a2 (1.24)

Modeling the components of the cosmos as perfect fluids is a good approximation on large
scales. A perfect fluid has neither thermal conductivity nor viscosity. So using equation 1.20
we get T00 = ρ and Tii = p. The first and second Friedmann equations are then:

ȧ2

a2 = κ2

3 ρ−
k

a2 (1.25)

ä

a
= 8πG

3 (ρ+ 3p) (1.26)

If we know the energy content of the Universe, we can therefore determine the evolution
of the scale factor. The evolution of the Universe thus depends on the energy make up of the
Universe and the energy make up of the universe changes as the Universe evolves. The radiation

8 CHAPTER 1. INTRODUCTION

energy density evolves as ρr ∝ a−4 as the number density of photons decreases as the volume
it occupies expands and additionally the wavelength is stretched. The same logic applies to
matter density (baryons and dark matter) except there is no wavelength so ρm ∝ a−3. The
energy density of dark energy is however constant. Thus early on radiation dominates, before
matter dominates and then dark energy will dominate. The first Friedmann equation tells us
that in order for the Universe to start contracting in a flat universe we must have no energy
density (to get ȧ = 0), so as long as our Universe is flat it will always be expanding. The second
Friedmann equation tells us that in the radiation dominated era the expansion will decelerate
relative to the size of the Universe, while in the matter dominated era it will still decelerate, but
less so than during the radiation dominated era as the matter is pressureless. However as soon
as dark energy becomes important the sign of ä changes and the expansion starts to accelerate
and will approach the relative rate of acceleration, ä/a, for a Universe with only dark energy
asymptotically.

Taking another look at the second Friedmann equation we see that any type of energy with
an equation of state that has w < −1/3 (e.g. a scalar field or a type of exotic fluid) can give
ä > 0 and thus an accelerating universe.

1.1.3 Linear cosmological perturbation theory
In this section, we present some relevant results from linear perturbation theory. We follow the
discussion in [16].

The real Universe has inhomogeneities. One can introduce linear perturbations into the
metric and stress energy tensor to take into account some aspect of the inhomogeneities, at
least on large scales. This allows us to analytically explore how the inhomogeneities evolve
over time, which makes it simple and computationally cheap compared to running simulations.
When looking at the Universe on large scales, linear theory works very well, however when
we are interested smaller scales, scales smaller than roughly 10 Mpc, the non-linear terms we
ignore in linear theories become important. In those cases, simulations serve an important role.

One way of adding perturbations to the FLRW metric is by using the Newtonian gauge:

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1− 2Ψ)(dx2 + dy2 + dz2) (1.27)

where Ψ corresponds to the Newtonian gravitational potential and Φ is the perturbation to
curvature [16]. We will only consider scalar perturbations as they are dominant, but vector and
tensor perturbations also exist. The solutions in linear theory are well known and can be found
in [16]. They are generally given in Fourier space, where perturbations of each wavelength
start evolving independently when they are within the particle horizon (wavelength shorter
than the distance light has had time to travel since the beginning of the Universe). The initial
conditions for the evolution are set by inflation and are Gaussian fractional deviations from the
mean density, and statistically isotropic. Here we will present some key results [16]:

The perturbations we are interested in is the perturbations to the matter density, which
is given in terms if its fractional deviation from the mean matter density δ = (ρ − ρ̄)/(̄ρ). In
Fourier space, δ(k, a) = D(a)δ(k, a = 1). D, the growth function, describes how the density
perturbation grows with time. It is given by the linear growth equation [17],

D̈ + aHḊ − 3
2(aH)2ΩM (a)D = 0, (1.28)

where the dots are derivatives with respect to conformal time. The linear growth rate describes
how quickly the density perturbations grow relative to the scale factor, a, of the universe.

f ≡ d lnD
d ln a (1.29)

1.2. MODIFIED GRAVITY 9

This can be used to derive the linear velocity field which is given by:

v(k, a) = ifaHδ(k, a)
k

(1.30)

1.2 Modified Gravity
Modifying gravity is motivated by explaining the accelerated expansion of the universe without
the fine-tuning that appears in ΛCDM. There are not any good empirical reasons for modifying
GR just yet, just theoretical ones.

Successful Modified Gravity (MG) theories must abide by a set of conditions. They need
to explain something that is not explained by standard gravity, like the cosmological constant
problem, otherwise we have the same problem as we have with the standard model. For the
same reason it should not introduce another fine-tuning, or no progress has been made. The
theory needs to be different enough from standard gravity that it can be distinguished from
it through its physical effects on the Universe, otherwise, though it might have theoretical
advantages in terms of fine-tuning, it does not justify it possibly being more complex; it would
need to be simpler than standard gravity, which they generally are not. They also need to be
within the current constraints on deviations from GR. This means that in the solar system it
must reduce to GR (or extremely close to GR) as GR is well tested within our solar system.

1.2.1 The alternatives
There are many ways of modifying gravity. It is done by adding higher order terms to the
action, adding scalar fields, vector fields, tensor fields, or adding extra dimensions, and many
other ways [8].

1.2.2 Conformal transformations
In this section we explain what conformal transformations are and why they are useful. We
follow the discussion in [13].

A conformal transformation is a changing of scales locally. The metric is multiplied by a
time and space dependent function:

˜gµν = ω(x)gµν (1.31)

d̃s
2 = ω2(x) ds2 (1.32)

This changes all non-zero spacetime distances, but leaves spacelike intervals spacelike and
timelike intervals timelike. Angles are left alone, leaving the casual structure intact. The null-
geodesics (ds2 = 0) do not change either, they are conformally invariant. When changing the
metric we consequently also change the Riemann tensor, the Ricci tensor and the Ricci scalar.

These kinds of transformations are very useful, they allow us to get equations in different
theories into similar forms so it is easier for us to compare them. We call these different forms
conformal frames, two of the most important being the Jordan frame and the Einstein Frame.
Consistently, variables will be in the Einstein frame when nothing else it indicated; however a
tilde over a variable will indicate that it is in the Jordan frame (g̃µν).

The Einstein frame is found by using the transformation that gets the action in the form
[18]:

S =
∫
d4x
√
−g R

2κ2 + . . . (1.33)

10 CHAPTER 1. INTRODUCTION

which is the Einstein-Hilbert action with additional terms.
In this frame our the modifications to general relativity will appear in form of extra energy

content (e.g. a new scalar field). In the Jordan frame particles instead follow the geodesics
of their metric (WEP satisfied for massless particles) and the energy-momentum tensor is
covariantly conserved, ∇̃µT̃µν = 0.

1.2.3 Scalar-tensor Theories
In this section we present the basics of a type of modified gravity theories called scalar-tensor
theories. We follow [8] and [13].

Scalar-tensor theories have a long history starting with Brans and Dicke in the 1960s [8]
and have a few very useful features.

A scalar field is added that couples with the curvature scalar. This changes the Lagrangian,
giving:

L = 1
2κ2
√
−g[f(φ)R− g(φ)∇µφ∇µφ− 2Λ(φ)] + Lm(Ψ, h(φ)gµν) (1.34)

Note that we can change to a form where g(φ) = 1 to recover a form where the standard
scalar field action, Sφ, is one of the terms in the total action. This leaves us with two independent
functions.

Using the conformal transformation h(φ)gµν = g̃µν we get the Jordan frame, and by re-
defining the field (using that there are only two free functions) we arrive at a form given by the
“coupling parameter” ω(φ) and Λ(φ).

1.2.4 Screening mechanisms
Screening mechanisms suppress the effects of modifying gravity when a set of conditions are
in place. The point of screening mechanisms is to bypass the stringent constraints that have
been placed on gravity by solar system and lab tests [8]. Having a screening mechanism can
make an MG theory valid even though it is significantly different from GR when not screened.
When looking at screening mechanisms we will approach it from the Einstein frame as is the
norm in the literature. In this frame the modification to GR appears in the form of a fifth force
that strengthens the gravitational attraction between two objects, thus this force is suppressed
in areas that are screened. A consequence of this extra force is that the density perturbations
grow a bit faster due to the extra attraction between particles. Similarly lensing is also affected
since gravity is effectively stronger and thus objects bend the path of light more.

1.2.4.1 Chameleon

The chameleon mechanism is based on a scalar field that propagates a fifth force over a long
range when its mass is small, and a shorter range when its mass is large. The chameleon takes
on a large mass when the ambient density is large and a low mass when the ambient density
is low. This makes the fifth force hard to detect in dense areas, yet significant on cosmological
scales. We follow the discussion in Waterhouse (2006) [19].

In the Einstein frame:

S =
∫
d4x
√
−g
(

1
2κ2R−

1
2∇µψ∇

µψ − V (ψ)
)

+ Sm
[
gµνA

2(ψ)
]

(1.35)

where Ai(φ) is the matter coupling to species i and V (φ) is the potential of the scalar field.
This is a very general scalar tensor theory. In the chameleon model we have,

A2
i (φ) = e2βiφ/MPL (1.36)

1.2. MODIFIED GRAVITY 11

Applying the principle of stationary action, varying with respect to φ, using the FLRW
metric and the Klein-Gordon equation, ∇2φ = −(φ̈+ 3Hφ̇), one gets the cosmological equation
of motion for φ:

φ̈+ 3Hφ̇ = −Veff,φ(φ). (1.37)

Where Veff,φ ≡ ∂Veff/∂φ and we have used that the relation between the Einstein and Jordan
frame energy densities of a species is ρ ≡ e3(1+ωi)βiφ/MPL ρ̃ to define an effective potential, Veff ,
consisting of the potential energy of the field itself in addition to the contribution of matter:

Veff(φ) ≡ V (φ) +
∑
i

ρie
(1−3ωi)βiφ/MPL (1.38)

When choosing the potential we want to keep in mind the problems we want to solve.
Remembering that dark energy has an equation of state of ωDE ≈ −1 and that for a scalar field

ωφ = pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(1.39)

it is immediately obvious that ωφ ≈ −1 when φ̇2/2 � V (φ). That is, we should have a slow
rolling φ. Also we want the field to have been in effect for most of the time since the beginning.
Additionally V (φ) = ρDE and we would prefer to achieve this without having to fine tune a
constant in the potential. This sets some conditions on the properties of the potential; it must
have a minimum that the scalar field is slowly rolling towards and the potential must gradually
flatten towards the minimum.

The mass of the field is
m2 ≡ Veff,φφ(φ) (1.40)

and
m2

min ≡ m2(φmin), (1.41)

where 1/mmin is the characteristic range of the chameleon fifth force and φmin is the fields’
value at the minimum of the effective potential, which we can find by solving for the φ that
makes the derivative of the effective potential with respect to φ zero.

So if we increase the ambient matter density, then V,φ(φmin) decreases, and since the field is
slowly rolling towards a minimum, it is an increasing function of φ, then φmin has to decrease as
well. This means that V,φφ(φmin) increases as it is a decreasing function of φ, in turn increasing
mmin and thus decreasing the range of the fifth force. This is how the screening occurs. In
areas of a high matter density the field takes on a large mass and thus the force from the field
(pulling in the same direction as standard gravity) acquires a lower range.

The chameleon force, the fifth force exerted by the chameleon field, is not there in the Jordan
frame, as in the Jordan frame particles follow the geodesics. In the Einstein frame however, we
see that they do not. This means when we set up the geodesic in the Jordan frame there is no
force term, however when we convert to the Einstein frame a force term appears:

~Fφ
m

= − βi
MPl

~∇φ (1.42)

We already know what the time-component of the Einstein tensor (equation 1.24) is and
assuming the field couples equally to all matter species we get the Chameleon Friedmann
equation,

3H2M2
PL = 1

2 φ̇
2 + V (φ) + ρme

βφ/MPL + ρr. (1.43)

12 CHAPTER 1. INTRODUCTION

f(R) Chameleon screening

One f(R) model that exhibits chameleon screening is the Hu & Sawicki model [20]. In this
model the action in the Jordan frame is

S =
∫

d4x
√
−g̃
[
R̃+ f(R̃)

2κ2 + Lm
]

(1.44)

f(R) = −m2 c1(R̃/m2)n

c2(R̃/m2)n + 1
(1.45)

where n > 0 and m2 is defined as:

m2 ≡ κ2ρ̄0

3 = (8315Mpc)−2
(

Ωmh2

0.13

)
(1.46)

ρ̄0 being todays’ average density. Hu & Sawicki chose that the second derivative of f(R̃) would
be above zero and when m2/R̃→ 0 we can write [20]

lim
m2/R→0

f(R) ≈ −c1
c2
m2 + c1

c22
m2
(
m2

R

)n
. (1.47)

We can see straight away that if c1/c2 is constant and c1/c
2
2 → 0 then we would have a

cosmological constant. From that they got the modified Friedmann equation

H̃2 − fR(H̃H̃ ′ + H̃2) + 1
6f + H̃2fRRR̃

′ = κ2ρ̄

3 , (1.48)

where ′ ≡ d/d ln a, fR is the derivative of f(R) and fRR is derivative and double derivative of
f(R) respectively with respect to R.

To get an expansion history like in ΛCDM it is needed that c1/c2 ≈ 6ΩΛ/Ωm. This allows
us to use only two free parameters instead of the three c1, c2 and n. It is common to use n and
fR0 where the latter is fR at the present:

fR0 = −nc1
c22

(
Ωm

3(Ωm + 4ΩΛ)

)n+1
(1.49)

When recast to a chameleon scalar-tensor theory the Hu & Sawicki model takes on β = 1/
√

6
and the range of the fifth force today is [21]:

λ0
φ = 3

√
(n+ 1)

Ωm + 4ΩΛ

√
|fR0|
10−6 Mpc/h. (1.50)

1.2.4.2 Symmetron

In this section we present and explain the most important principles and results of the sym-
metron mechanism. We follow the discussion in [22].

In the symmetron model we have a scalar field potential V (φ) and matter coupling A(φ) that
are symmetric, V (−φ) = V (φ) and A(φ) = A(−φ). The screening occurs because the field has
zero Vacuum Expectation Value (VEV) in high density, and a large VEV in low density areas,

1.2. MODIFIED GRAVITY 13

while the matter coupling, A(φ) determines the strength of the force through its derivative.
The simplest potential and matter coupling are:

V (φ) = −1
2µ

2φ2 + 1
2λφ

4, (1.51)

A(φ) = 1 + φ2

2M2 +O
(
φ4

M4

)
, (1.52)

so the smaller the mass scale M is, and the larger the φ is, the stronger the fifth force is. The
parameter µ is also a mass scale and λ is dimensionless, both determining the shape of the
potential. Starting with the Einstein frame action of a scalar-tensor-theory [22]:

S =
∫

d4x
√
−g
[

1
2κ2R−

1
2δµφδ

µφ− V (φ)
]

+
∫

d4x
√
−g̃Lm(ψ, g̃µν) (1.53)

where we have used the Jordan frame metric in the matter action, g̃µν = A2(φ)gµν . This results
in an equation of motion for the scalar field given by

�φ− V,φ(φ) = −A3(φ)A,φ(φ)T̃ , (1.54)

T̃ = g̃µν T̃µν being the trace of T̃µν . The effective potential, Veff(φ) = V (φ) +A3(φ)A,φ(φ)ρ̃, for
the simple potential is:

Veff(φ) = 1
2

(ρ

M2 − µ
2
)
φ2 + 1

4φ
4 (1.55)

using T̃ ≈ −ρ̃ (assuming no pressure). The first term in the effective potential plays a key role,
when it become negative we say that symmetry breaks. If the symmetry is not broken, there
is no fifth force since the VEV of the field is zero.

In the FLRW medric and assuming non-interacting perfect fluids the Einstein equations,
ones again found by varying the Einstein frame action, become

1
κ2Gµν = T (φ)

µν +A2(φ)T̃µν . (1.56)

Like for the Chameleon, a force appears in the geodesic equation when converting to the
Einstein frame and for non-relativistic particles this is the equivalent of

ẍ = −~∇(logA), (1.57)

so the logarithm of the matter coupling is the fifth force potential.
In Figure 1.2 we see that when there is sufficiently high density, φ is trapped in the middle.

However in vacuum the middle is unstable and φ will roll down one of the sides. This is in
essence how the screening happens. The modified Friedmann equation for the Symmetron is:

3M2
PlH

2 = 1
2 φ̇

2 + Veff(φ). (1.58)

1.2.4.3 Spherical solutions

It is very useful to have a solution of spherically symmetric density distributions, as most objects
over a certain size are well approximated by this, like for example dark matter halos and stars.
We assume a density function

ρ̃(r) =
{
ρc : r < R
ρ∞ : r > R

(1.59)

14 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.2: An example of what the effective potential, Veff , would look like in an area of high
density (a) and an area of low density (b). This is taken from Figure 1 in [22].

where R is the radius of the object. Using that ∇2φ = Veff,φ(φ), assuming non-relativistic
matter (ωi = 0), flat space and that there is no time-dependence,

~∇2φ = V,φ(φ) + β

MPL
ρeβφ/MPL . (1.60)

We set as boundary conditions that the field should be smooth over the origin and that
when we go far away from the object φ → φ∞ where φ∞ is the value of the field in vacuum
approaching a distance of infinity away from the closest object. In the symmetron we use
φ∞ = φ0.

Outside the sphere the solution is

φout(r) = A
e−m∞(r−R)

r
+ φ∞ (1.61)

One way of solving for the inside is to divide the interval [0, R] into [0, Rc] and [Rc, R], where
we have φ ∼ φc for the first interval and φ � φc for the second. Three different solutions can
then be given for both Symmetron and Chameleon screening: the low contrast solution where
Rc = R, the thick-shell solution where Rc = 0 and the thin-shell solution where 0 < Rc < R.
The thick and thin-shell solutions for the Chameleon outside of the sphere are:

φthick(r) ≈ − β

4πMPl
Mc

e−M∞(r−R)

r
+ φ∞ (1.62)

φthin(r) ≈ − 3β
4πMPl

∆R
R

Mc
e−M∞(r−R)

r
+ φ∞ (1.63)

where Mc = 4πR3ρc/3 is the mass of the sphere and ∆R/R is what we call the “thin-shell
suppression factor” [19]. For the Symmetron, the solution becomes one.

The thin-shell suppression factor for the Chameleon and the Symmetron are:

∆R
R
≡ MPl(φ∞ − φc)

βρcR2 (1.64)

∆R
R
≡ M2

ρR2 = M2

6M2
PlΦ

= φ0

6gMPlΦ
= MPlφ0

gρcR2 (1.65)

1.3. LARGE SCALE STRUCTURE 15

where g ≡ φ0
√
λ/µ determines the strength of the fifth force relative to the Newtonian ap-

proximation of the standard gravitational force Fφ = 2g2FN . Similarly the strength of the
Chameleon fifth force is determined by β, Fφ = 2β2FN . We see that the thin-shell suppres-
sion factors for the Chameleon and the Symmetron mechanisms are equivalent if we let φ0 be
interpreted as the difference between the Chameleon field value far away (ambient Chameleon
value) and φc. If a whole area has a density higher than average then the effective ambient
Chameleon value or φ0 is effectively smaller in that area, so objects lying in higher density
environments are more likely to be screened. When ∆R > R we use the thick-shell solution
and when ∆R << R we use the thin-shell solution.

Even the strength of the force from screened (∆R/R � 1) and unscreened (∆R/R � 1)
objects on test particles behave similarly:

Fφ
FN
|screened ' 6ξ2 ∆R

R
� 1 (1.66)

Fφ
FN
|unscreened ' 2ξ2 (1.67)

where ξ = β in the Chameleon [23] and ξ = g in the Symmetron [22].
As a consequence of the screening, gravity will appear to work differently on a screened

object than an unscreened object, even if their mass is the same, apparently breaking the
principle of equivalence. Some examples of consequences of this is that in an unscreened galaxy
(e.g. a dwarf galaxy) the gas, which is unscreened, will orbit faster than the stars, (which
are screened) [24]. Similarly smaller galaxies should leave voids faster then larger galaxies on
average [24].

1.3 Large scale structure
When observing the Universe we are not interested in exactly where every galaxy is or where
every star is. This is because this could be different in different realisations of the initial
fluctuation set up during inflation. Moreover it does not tell us anything of theoretical use.
The overall statistical properties of the Universe on large scales should however be the same, no
matter the realisation. These properties could be things like how much galaxies tend to cluster
together or how fast they move. This is dependent on what the Universe consists of and which
physical laws guide its evolution, so by using many different statistics one can narrow down
on a set of viable models. Since initial perturbations are Gaussian, a probability distribution
purely characterized by its variance, the second moment, it should be possible to extract all
of the information using two-point statistics, which is why two-point statistics are the most
common.

Most of the matter in the Universe is dark matter and does not emit any sort of electro-
magnetic radiation that we have been able to measure. So the only way we are able to observe
it is from its gravitational effects on baryonic matter, matter that does radiate. Since the dark
matter interacts gravitationally with baryonic matter, the baryons tend to fall into the potential
wells of what are called dark matter haloes, large clumps of gravitationally bound dark matter.
If the halo is dense enough it can collect enough baryons to form a galaxy. Really large halos
can have halos within them, sub-halos, forming a galaxy within each, making a galaxy cluster.
We can use the galaxies to trace the dark matter, for example if a halo moves in one direction
then its galaxy moves with it. Larger halos are more massive and thus attract each other more
then halos of lower mass, and large halos attract large haloes more strongly than smaller ha-
los. So the more massive the halos the more they will cluster, gather in groups. We call this
difference in clustering for the “bias”, or galaxy bias when we talk about galaxies specifically.

16 CHAPTER 1. INTRODUCTION

To measure the different statistics, the nature of baryonic matter is used. One of them is
that hydrogen gas has an emission line at 21 cm. By mapping the intensity of it one maps
where there is hydrogen gas and how much [25]. This can be done for galaxies with other
emission lines, e.g. [26]. Another method is to map galaxy clusters using the Thermal Sunyaev-
Zel’dovich effect, which is that when photons from the CMB scatter with high-energy electrons
they gain energy, causing small distortions in the CMB [27]. Other methods are for example to
use distortions in images of objects where the path of the photons towards us have been changed
by the gravity of dark matter halos, causing distortion in the image; this is called gravitational
lensing [25].

1.3.1 Dark matter halos
Halos are gravitationally bound objects. Defining properties like their center and the edge of
as halo is a bit tricky. In halo catalogues many different definitions are used and it is therefore
very important to be aware of which ones were used in order to use it properly.

One of these is whether or not the mass of a halo within another halo, a subhalo, is bart of
the mass of its parent halo. If for example we were to compare data from n-body simulations
(see Section 2) to that of a gravitational lensing survey, that survey would have a parent halo
in its resulting catalogue. So if the catalogue from the nbody simulations has subtracted the
mass of the subhalo from the parent halo we would not be comparing the same thing.

The other differences usually are not as important, like whether the edge of a halo is defined
by the bound particle furthest from the center or where bound particles have to have zero
velocity (or else they would escape, as in not bound).

When we measure the mass of a halo, e.g. by gravitational lensing, the mass we deduce will
be all of the mass within the volume of the halos, not just the bound mass.

1.3.2 Galaxy correlation function

1.3.2.1 Analytics

The two-point galaxy correlation function [28] describes how galaxies cluster relative to be
placed randomly like in a uniform random Poisson point process. In a uniform random Poisson
point process, each point is equally likely to appear in any location independent of the locations
of the other points. The number of points in an area follow a Poisson distribution for this kind
of process.

In this section we follow Peebles’ book: The Large-Scale Structure of the Universe, [28].

Say we have a number density n, then the average number of galaxies in a volume V is
〈N〉 = nV . The probability of finding a galaxy in an infinitesimal volume is δP = nδV . As
previously noted, if the galaxies were distributed like a random Poisson process the location
of each galaxy would be independent of each other. So what is the probability how having a
galaxy in two separate infinitesimal volumes? In this case we have two independent events which
means that the probability of both happening is the product of the each events’ probability:

δP = n2δV1δV2 (1.68)

When it is a random Poisson process where we place the volumes does not matter. The two-
point correlation function describes how the separation of the volumes changes the probability:

δP ≡ n2δV1δV2 [1 + ξ(r12)] (1.69)

1.3. LARGE SCALE STRUCTURE 17

ξ(r12) = δP

n2δV1δV2
− 1 (1.70)

where r12 is the distance between volume one and two. So for the Random Poisson Process
(RPP) the correlation function ξ is zero as the separation do not change the probability. When
ξ(r) > 0 it is more likely that two volumes separated by the distance r both contain an object,
we say that the positions are correlated. If ξ(r) < 0 the positions are anticorrelated.

Another way of looking at it is that if we know there is a galaxy in one volume then the
probability of finding one in another infinitesimal volume a distance r away is:

δP = nδV [1 + ξ(r)] (1.71)

ξ(r) = δP

nδV
− 1 (1.72)

1.3.2.2 Using halo a catalogue to find the correlation function

This section is a simple example to inform what we will do with the velocity statistics in Chapter
3.

If we have a galaxy catalogue and want to calculate the galaxy correlation function then
equation 1.70 does not exactly make it obvious how we should do it. Intuitively we would
just count the number of galaxies, bin the distances from a galaxy, count the number of other
galaxies within a distance bin and divide by the number density times the volume of the bin.
Then if the number of galaxies are equal to nV we get ξ(r) = 0 like we should.

In order to calculate the function we have to consider a couple of things. First, a halo at the
corner of the volume spanned by the data will have fewer neighbours than one in the middle.
Second, if the data is from for example an N-body simulation the boundary contitions are likely
to be periodic. This is however not significant on scales much smaller than the data volume.

In order to deal with this problem several estimators ([29]) have been developed to estimate
the correlation function. The fundamental idea is to compare the distribution in the data to
the one in a randomly generated dataset, where both the geometry and the volume that the
data set spans is the same. Most of the estimators are built up from three quantities:

DD(s) = dd(s)
nd(nd − 1)/2 (1.73)

RR(s) = rr(s)
nr(nr − 1)/2 (1.74)

DR(s) = dr(s)
nrnd

(1.75)

where dd(s) is the number of halo-pairs in the actual data set seperated by a comoving distance
s, rr(s) is the same but for the random data. dr(s) is the number of actual-random halo pairs
(one from the actual data set and one from the random data set) with comoving seperation s.

The most commonly used estimator is the one developed by Landy and Szalay [30].

ξ(r) = DD(r)− 2 DR(r) +RR(r)
RR(r) (1.76)

This estimator has been shown to have Poisson variance when there is zero correlation, the
actual catalogue volume is big enough and the random catalogue has enough generated data in
it.

18 CHAPTER 1. INTRODUCTION

1.3.3 Bias
Dark matter halos are not distributed exactly like the underlying dark matter distribution. In
fact they cluster more, depending on their mass.

The bias is a way of quantifying how much halos cluster relative to the underlying dark
matter. Normally one assumes a linear bias which is defined as,

b ≡
(
ξh
ξdm

)1/2
(1.77)

Mo & White (1996) [31] showed that a linear bias was a good approximation far into
non-linear scales and developed an analytical model based on the Press & Schechter (PS)
[32] formalism that PS developed in 1974. This model was shown to be quite accurate when
comparing to n-body simulation data and a slight inaccuracy was due to the analytical mass
function not matching the one found in the simulations [33].

1.4 Velocity statistics

1.4.1 Peculiar velocities
The only observable component to the velocity of galaxies is the radial velocity, which consists
of two parts, velocity due to Hubble expansion and the peculiar velocity: v = vh + vp where
vh = H0aχ where χ is the comoving distance to the galaxy from the observer.

Lets call ~xo the observer position and ~xh the halo position, then the vector from the observer
to the halo is:

~x = ~xh − ~xo (1.78)

Which gives us the radial velocity, which is the only part of the velocity that we can measure:

vrad = ~x · ~v
|~x|

(1.79)

In linear perturbation theory we have a relation between the comoving velocity field

~v = ifH0δ(~k)
~k

k2 (1.80)

where k2 = kik
i, H0 is the Hubble constant and f is the linear growth rate (see Section 1.1.3).

The peculiar velocity of an object is due to the sum of the gravitational forces working on it,
which means they should be different for different theories of gravitation. Since the velocities
are proportional to the growth rate f , which often is appoximated as f ≈ Ωγm, they can be used
to measure it, or γ, like was done in [34].

To find the peculiar velocity we now need to subtract the Hubble part. This is very hard
to due accurately as is is hard to measure positions accurately. One of the ways of measuring
the position of a galaxy is to use the Tully-Fisher relation, which is an empirical formula for
how the luminosity of a spiral galaxy relates to the its rotational velocity, the last of which can
be measured by measuring the width of the emission lines from the galaxy (the emission from
matter rotating away from us will be redshifted compared to the matter rotating towards us).
Once the luminosity of the galaxy has been infered we use the measure flux from it to determine
the distance which allows us to separate the redshift caused by Hubble expansion and what is
cause the the galaxy’s peculiar velocity [25, 35].

1.4. VELOCITY STATISTICS 19

1.4.2 Velocity correlation function
The correlation function is a statistic measuring correlations in the peculiar velocity fields, in
this section we present it and its approximations following the discussion in [16].

The velocity correlation function is defined as:

ξv(r) = 〈vp,i vp,j〉 (1.81)

where r is the distance between the galaxies.
So it is the average product of the peculiar velocities of objects seperated by a distance r.
The peculiar velocities are measure from an observing point. Halos close to each other will

tend have a comoving velocity in the direction of each other on average as they are more likely
to be part of the same larger structure, and the closer they are the stronger this trend will be
as the other halo becomes a more dominant attractor when it is close. Therefore the velocity
correlation function is relatively steep at smaller r.

Using the linear approximation for the velocity field (see Section 1.1.3) and that we can
write

ξv(r) = 〈~v1 · r̂1 ~v2 · r̂2〉 , (1.82)

we can find that a linear approximation of the velocity correlation function is decomposed in
a parallel and perpendicular component, where the parallel direction is along the line of sight
between the two galaxies.

ξv,⊥(r)
ξv,‖(r)

=
∫ ∞

0

dk
2π2k

P (k)
(
−f2H2

0 j
′
0(kx)/x

−f2H2
0kj
′′
0 (kx)

)
(1.83)

where j0(x) is the zeroth spherical Bessel function and j′0(x) is the derivative with respect to x.

1.4.3 Streaming pairwise velocity
The streaming pairwise velocity is a measure of galaxies tendency to approach each other [28].
We follow the discussion in [36]

The pair-density weighted relative velocity is given by

~v12 = 〈(~v1 − ~v2)(1 + δ1)(1 + δ2)〉
1 + ξ(r) (1.84)

where the 〈. . . 〉 indicates that we average over all pairs separated by the distance r. ξ(r) = 〈δ1δ2〉
is the two-point correlation function.

Assuming Gaussian initial conditions ~v12 is related to the

v12(r) = −2
3Hrf

¯̄
ξ(r)[1 + α

¯̄
ξ(r)] (1.85)

where f = d lnD/d ln a, D(a) is the linear growing mode solution, ¯̄
ξ(r) is defined as ¯̄

ξ(r) ≡
¯ξ(r)

1+ξ(r) and ¯ξ(r) is given by ¯ξ(r) = (3/r3)
∫ r

0 ξ(x)x2dx; H is the Hubble constant and a is the
scale factor as usual.

20 CHAPTER 1. INTRODUCTION

Chapter 2

N-body simulations

This section is in no way intended to give the reader a detailed understanding of N-body
simulations, but rather a feel for how they work. The discussion of [37] has been used extensively
in this section.

As the computational power to price ratio keep increases n-body simulations become more
and more advanced. The same simulation that used to take a few days to run can now take a few
minutes. We can have a higher number of particles and higher resolution on our simulations.

Cosmological n-body simulations are in nearly all cases run with comoving spatial coordi-
nates and periodic boundary conditions on the box which is occupied by a number of particles

When looking at the large scale structure one often only includes dark matter in the simula-
tion as baryonic matter is not that important if one is not interested in for example seperating
spiral galaxies from elliptical galaxies.

The initial conditions are made by choosing a cosmological model (e.g. ΛCDM). In most
cases Gaussian density fluctuations are used, as generated by inflation, specified by the power
spectrum P (k). These are then evolved linearly until typically z ∼ 100 where the simulation
starts. Then particle positions and velocities needs to be generated, normally by the use of the
Zel’dovich approximation.

The equations used to calculate the movement of the particles are as follows
d~x
dt = 1

a
~v (2.1)

d~v
dt +H~v = ~g (2.2)

~∇ · ~g = −4πGa[ρ(~x, t)− ρ̄(t) (2.3)
where ~v is the peculiar velocity, ρ and ρ̄ is the mass density and mean mass density respectively.
~∇ = ∂/∂~x is the comoving gradient.

Every particle is evolved following equations 2.1 and 2.2, usually using the leapfrog algo-
rithm. Calculating the gravitational acceleration between each pair of particles takes a lot of
time therefore a number of techniques have been developed to avoid having to do so. All having
their different take on how to solve equation 2.3, below we outline a few of them.

Tree codes recursively set up a hierarchy of cells containting at least one particle each. And
then when calculating the force on a particle it treats groups of particles as one particle using
the condition s/d < θ where s is the cell size and d is the distance from the particle we want
to calculate the force on.

The idea behind the particle-mesh method is to divide up the box in a three-dimensional
cartesian grid. Then the poisson equation is solved in the following three steps:

21

22 CHAPTER 2. N-BODY SIMULATIONS

1. Assign each particles mass to its nearest points using an interpolation scheme (Cloud-in-
Cell is the most common one) on the grid. Each point on the grid now has a mass which
is the sum of all the mass assigned to it.

2. The Fourier space solution φ̂(~k, t) = −4πGa2ρ̂(~k, t)/k2 to the Poisson equation is calcu-
lated from the mass distribution of the grid (using Fast Fourier Transform). And then
transform back from Fourier space.

3. Gravity is interpolated from the grid to the particles using the same interpolation scheme
as was used in step one, or else particles could exert forces on themselves by their effective
mass being positioned elsewhere with the first type of interpolation.

The number of operations used by the PM algorithm to evaluate the force on all the particles
is of the order O(N) +O(Ng logNg) [37].

The Particle-particle/particle-mesh algorithm is just the PM algorithm, except that one
increases the force resolution by calculating the force from individual particle pairs seperated
by a relatively short distance (typically less that two or three grid spacings).

One problem is the where strong clustering occurs the number of particles seperated by
short distance can become very large, making the pair summation dominant. To tackle this
problem one can place subgrids in highly gense sub-boxes, and then sub-grids within those
again if needed. This we call adaptive P3M (AP3M). Using the sub-grids one the algorithm
scales as O(N logN) [37]

2.1 Background on the code used
The data used in this project are from simulations run with the ISIS code [21], which is based
on RAMSES [38], an open source n-body and hydrodynamical code. RAMSES is a highly
parallelized code that uses an Adaptive Refinement Tree (ART) [39] inspired n-body solver and
Adaptive Mesh Refinement (AMR) for its hydrodynamics (which we will not describe further
here).

ISIS is a modification of RAMSES that adds the ability to do n-body simulations of scala-
tensor theories. It solves the following equation

ẍ + 2Hẋ = − 1
a2∇Φ− g(φ,∇φ, a), (2.4)

using the equation of motion for the metric perturbation Φ:

∇2Φ = 3
2

ΩmH2
0

a
δ (2.5)

and the equation of motion of the field

∇2φ = (V,φ +A,φρ)a2 = a2S(ρ, φ) (2.6)

where S(ρ, φ) and g(φ,∇φ, a) are functions that the dependent on the theory of gravity [21]. x
is the position of a particle and x is its derivative with respect to time.

ISIS also uses a non-linear multigrid solver rather than the linear one used by RAMSES,
meaning that the grid can be divided uneavenly into subgrids. This means that the grid can be
adjusted more carefully around where the higher densities are and we can get a more accurate
force calculation.

2.2. BACKGROUND COSMOLOGY AND INITIAL CONDITIONS 23

2.2 Background cosmology and initial conditions
We ran three different simulations with the Hu-Sawicki f(R) model [20] (see Section 2.4), four
with the symmetron model (see Section 2.3), and one with standard gravity. The simulation is
done using a box with 256 Mpc/h sides, holding 5123 particles of mass 9.26490 · 109 Msun/h
each. This is a large enough box to study the matter structure at somewhat large cosmological
scales, and the particles have a low enough mass that we can identify halos of Milky Way size
and upwards reliably [40].

The background cosmology is given by the parameters Ωb,0 = 0.045, Ωcdm,0 = 0.222, ΩΛ =
0.733 and H0 = 71.9 km/s/Mpc, these are consistent with the WMAP7 best-fit parameters
[41, 42].

Gaussian initial conditions were generated using a software package called Cosmics [43].
The same initial conditions can be used in the modified gravity models and standard gravity,
as at high redshift the matter density of the universe is high, so in effect the whole Universe
is screened. The initial conditions being Gaussion means that the density at a certain point in
space follows a Gaussian probability distribution, thus a random number generator (RNG) is
needed to specify the density at each point. For the different models in this thesis, the same
file with initial conditions was used in each simulation, so we have the same seed in all the
simulations.

The simulation starts at z = 50. This is well before non-linear effects become important.
Past z = 50 we have Ωcdm = Ωm = 0.267, ΩΛ = 0.733 and H0 = 71.9 km/Mpc/s. Meaning
that there are no baryons in the simulation itself. Baryons are important when the universe
is small, the density of baryonic particles high, and the pressure between baryons is important
making their behavior very different from dark matter which neither exerts nor experience any
pressure.

2.3 Symmetron Simulations
For numerical stability, the scalar field is normalized by its vacuum expectation value, defining
a new scalar field:

χ ≡ φ

φ0
(2.7)

where φ0 = µ/
√
λ, µ is a mass scale and λ is a dimensionless constant used to form the potential

V (φ) = −µ2φ2/2 + λφ4/4.
Normally one defines the fields potential V (φ) and conformal factor A(φ) by the parameters

µ, λ and M . Here those are changed in favor of three new parameters [21]:

λ0 = 1√
2µ

(2.8)

β = φ0MPl

M2 (2.9)

(zSSB + 1)3 = a−3
SSB = ρSSB

ρ0
= µ2M2

ρ0
(2.10)

The first parameter, λ0, determines the length scale of the the fifth force; the second, β, is a
dimensionless coupling constant controlling the strength of the force; and zSSB is the redshift
at which the symmetry of the potential breaks (the first term in the effective potential becomes
negative) and the fifth force is turned on. These parameters are physically more intuitive,

24 CHAPTER 2. N-BODY SIMULATIONS

as each parameter is related to the properties of the fifth force rather than the shape of the
potential.

Model λ0 zSSB β
SymmA 1 1 1
SymmB 1 2 1
SymmC 1 1 2
SymmD 1 3 1

Table 2.1: The parameters for each Symmetron run. λ0 is given in units of Mpc/h.

Simulations were run for the parameters given in Table 2.1. Of the models, SymmA will
deviate the least from standard gravity, with the force turning on late (zSSB = 1) and a coupling
constant of one. All of the models have the same force length which was chosen as λ = 1 Mpc/h,
because it is short enough to be physically viable (evade solar system tests and CMB based
tests) while exhibiting interesting deviations from ΛCDM . If we use SymmA as a baseline,
the other symmetron models have only one of the parameters changed each. This allows us to
see what impact changing each of the parameters has on our data, and how they are related in
importance.

2.4 f(R) Simulations
The Hu-Sawicki model [20] is, as described in Section 1.2.4.1, an f(R) model recast to a scalar-
tensor theory that exhibits Chameleon screening (see Section 1.2.4.1).

As was described in Section 1.2.4.1, the model has two free parameters, fR0 and n, where
n is the power law index in the ansatz for f(R) and fR0 is related to the parameters c1 and c2
used in the ansatz, they both are related to the range of the fifth force (at z = 0, today) by
[21]:

λ0 = 3
√

n+ 1
Ωm + 4ΩΛ

√
|fR0|
10−6 Mpc/h. (2.11)

Model n |fR0| λ0
F4 1 10−4 23.7
F5 1 10−5 7.5
F6 1 10−6 2.4

Table 2.2: The parameters for each f(R) run. λ0 is given in units of Mpc/h

The parameters used in the three different simulation runs are given in Table 2.2. They are
commonly used in the literature [44, 45, 46, 47, 48], where they are referred to as F4, F5 and
F6.

The range of the fifth force increases the larger |fR0| is, so in order of decreasing force length
we have F4, F5 and F6. F6 thus deviating the least from standard gravity. The strength of the
force does not vary however as we always have β = 1/

√
6 in the Hu-Sawicki model. This set of

parameters spans the viable parameter space fairly well, while having a large enough |fR0| to
exhibit interesting deviations from GR [44]; if |fR0| were to be to small, the theory would be
almost indistinguishable from standard gravity.

Note that F4 is however no longer viable [49], although it remains part of the standard
parameter set used by the community.

2.5. LIMITATIONS 25

2.5 Limitations
Beyond creation of the initial conditions, dark matter is the only matter component used; the
baryon part is replaced by dark matter (we have neglected neutrinos). This should work well
when looking at the large scale structure, as the baryons are generally thought to just trace the
dark matter [50] with some linear bias.

The force in the simulation is calculated by assigning the mass of the particles to points on
a grid and then calculating the force from the grid. Therefore the more points we have on the
grid the higher the accuracy of our force calculations. This inaccuracy changes the position
and velocity of the particles in the next step. It has been shown that on scales larger than
the mean particle separation the dark matter clustering is reliable (in our simulations we have
5123 particles and mean separation is 0.5Mpc/h) when not limited by the box size [51]. In our
simulations it should be even better as our grid is of higher resolution where we have a higher
density (more particles).

The size of the simulation box can have significant effects on the large scale matter dis-
tribution. This is because the size limits the wavelength of perturbation that we can include
information from. Wavelengths longer than the sidelength of the box do not contribute to the
simulation and we should be very careful looking at scales above 128 Mpc/h, as per Nyquist
sampling one needs at least a sample of two (fit two wavelengths in the box) to be able to
recover its properties reliably. Power and Knebe (2006) [52] investigated the effects of limiting
the box size, starting from a box with a sidelength of 128 Mpc/h. When reducing the box
size, the median halo mass within a mass interval was reduced, but not very significantly, for
halos below 1013 Msun/h, even when using a boxlength of 32 Mpc/h. Power and Knebe (2006)
[52] also found that the halo-halo correlation function did not change much when reducing the
box size when looking at very small scales (< 2 Mpc/h in this case) however at 10 Mpc/h the
discrepancy is quite significant when going from a 128 Mpc/h sized box to one of 64 Mpc/h.
We have a larger box (256 Mpc/h) so our correlation function should be reliable a somewhat
larger scales, but we still need to be aware of this as it will affect the absolute values of our
velocity statistics who depend on the correlation function (through the power spectrum for the
velocity correlation function and directly for the pair-wise streaming velocities). Since we are
comparing models it is more important to us the the changes in the large scale matter structure
between models and the correction to the correlation function due to the box size should be
of less importance. In an ideal case we would test this by seeing of our velocity statistics and
differences between models changed when varying the box size.

2.6 Halo finding
When the simulation has run its course to z = 0, a halo-finder is used to determine the location
of gravitationally bound objects from the position of the particles in the box. There are two
main categories of halo-finders: ones locating halos through peaks in the matter density, and
ones that link together particles closer to each other than a set linking length. The halo-finder
that we used is called ROCKSTAR [40], version 0.99.5 (Beta). ROCKSTAR is part of the latter
category of halo-finders which are called “Friends of Friends” (FoF) finders.

The way ROCKSTAR works can be described schematically (similar to Figure 1 in [40]) as
follows:

First the simulation box is divided into 3D FoF groups. Then, for each of the groups (in
parallel as much we one has CPUs for) [40]:

1. Normalize positions and velocities of the particles by the group position and velocity

26 CHAPTER 2. N-BODY SIMULATIONS

dispersions.

2. Select a linking length in phase-space (the 6D space (x,p) of spatial positions and particle
momentum) so that 70% of the particles in the group are linked together in subgroups.

3. Repeat step 1 and 2 until no more substructure can be found.

4. Assign particles to the closest halo (in phase-space) in the last level of substructure that
was found in step 3.

5. Remove unbound particles, that is particles with a velocity above the escape velocity.

6. Calculate halo properties (halo mass, position, velocity, etc.).

Halo positions are found by taking the average position of a group of particles in the selected
halos to make the expected Poisson error (σx/

√
N) as small as possible. This is the particle

selection that most accurately determines the halo position according to [40]. Traditionally
halo finders using the maximum density peak in the halo to determine its position have been
more accurate than FoF finders, this is because the particle density decreases quickly going
towards the edge of a halo and including those particles then made the position of the halos
less accurate. ROCKSTAR method closes this gap by not using most of the particles in a halo
as when minimizing the expected poison error only the inner 103 particles of the 106 particle
halo will typically be used.

The velocity of a halo is found by calculating the average velocity of the particles within
the central 10% of the halo radius, because the galaxy associated with the halo would track the
core of the halo [40]. The difference between this velocity and the bulk velocity (using all the
particles in the halo) can be up to a few hundred km/s. Both of them can be useful depending
on purpose; the former is more useful to us as we study galaxies as tracers if the velocity field,
not the dark matter halos.

Figuring out the uncertainty of the halos positions and velocities due the halofinder’s ability
to recover them is done by measuring them in one time step using the halo-finder, then predicting
what the positions and velocities should be in the next time step based on the current position
and velocity. This is then compared to what the halo-finder recovers. In the ROCKSTAR
paper [40], they performed this procedure and the errors for both the velocities and positions
are shown in their Figure 2.1 as a function of halo mass compared to some other finders. We can
see that ROCKSTAR resolves velocities extremely well compared to the other finders except for
haloes of masses lower than 1010 Msun, which we will not use. Uncertainties in halo positions
are on the order of a few kpc, which is very small compared to the scales we are interested in.
In light of this the uncertainty in the recovery of the halo positions and velocities should be of
little importance.

Finally, note that some finders include the masses of subhalos in the mass of the parent
halos. This is not done in ROCKSTAR as each particle is only assigned to halos in the lowest
level of substructure.

We will look at haloes above 1012 Msun, halos with above 100 particles, in order to get
trustworthy halo positions and velocities [40, 53], while not knowing the particle size used in
Figure 2.1.

2.6. HALO FINDING 27

Figure 2.1: Figure 7, taken from [40].

28 CHAPTER 2. N-BODY SIMULATIONS

Chapter 3

Method

In this chapter we describe how we calculated the velocity statistics.

3.1 Calculating from simulation data

In this section we will describe how we calculate the velocity correlation function and the pair-
wise streaming velocities described in Sections 1.4.2 and 1.4.3 using the halo catalogues resulting
from the simulations described in Chapter 2.

3.1.1 Correcting for observer position

We want to create a mock observed galaxy catalogue in order be able to make direct comparisons
with real observations.

The n-body simulation uses a cube with periodic boundary conditions to simulate the Uni-
verse’ much large size than the box size. That means that when light and other particles leave
the cube through one side of the cube it comes back into the cube from the opposite side in-
stantaneously. As a result, outside our cube there are in effect mirror cubes consisting of halos
with mirrored positions. If we place an observer at some point in our cube, often one of the
mirrors will be closer to the observer than the halo in the original box. If we limit the distance
from the observer that we take data from to be half of a cube sidelength, there will always be
only one copy of each halo within this range.

29

30 CHAPTER 3. METHOD

Figure 3.1: A 2D illustration of the box we simulate, with the neighbouring periodic boxes. A
circle of radii Lbox is drawn around the observer with only one copy of each halo within it.

To avoid using the same halo more than once we always choose the copy that is within this
range. This can be done in the following way.

For each dimension, if the distance in that dimension from the observer to the original
halo is more than half of the cube’s sidelength, we adjust that distance in that dimension by
subtracting half the sidelength and get the distance to the closest copy.

The velocity of a copy is exactly the same as that of the original in an absolute sense; what
we are interested in is however the velocity relative to the observer. When we adjust the position
of a halo in a spatial dimension, we also change the sign of its velocity in each dimension and
then we can calculate the radial peculiar velocity.

3.1.2 Estimators
An estimator is a formula for estimating the value of the statistic of an underlying distribution
based on limited observations. A good estimator should have as low a variance as possible and
have as little bias as possible, and unbiased estimator is one who’s expected value is the same
as the expected value of the statistic it is estimating for the underlying distribution.

3.1.2.1 Velocity correlation function

We were unable to find an appropriate estimator for the velocity correlation function so we
used the naive estimator,

ξv(r) =
∑

all pairs with separation r vivj

Npairs(r)
(3.1)

3.1. CALCULATING FROM SIMULATION DATA 31

3.1.2.2 Streaming velocities

The pair-wise streaming velocities like we described in Section 1.4.3 uses the relative velocity
along the line of sight between each of the galaxies. This is not a problem when using data from
the simulations, however in the real universe we can only measure the radial peculiar velocity
with any accuracy. To estimate the streaming velocity we can use an estimator [36]:

ṽ12(r) = 2
∑

(sA − sB)pAB∑
p2
AB

(3.2)

where sA = r̂A·vA is the line of sight peculiar velocity part of object A and pAB ≡ r̂·(r̂A+r̂B)
(r = rA−rB) the meaning of the different quantities are illustrated in Figure 3.2. The summing
signs (

∑
) indicate that we sum over all pairs with separation r.

Figure 3.2: An illustration of the geometry for equation 3.2.

This comes from the idea that 〈sA − sB〉 = v12pAB/2 and equation 3.2 makes that square
difference ξ2(r) =

∑
A,B [(sA − sB)− pAB ṽ12(r)/2]2 [36].

The estimator breaks down for very high angle halo pairs [54]; for example, if the angle
between a pair of halos is 180 degrees, the pAB becomes zero and so that pair does not contribute
to ṽ12(r). So preferably we should have a pAB that also projects correctly for wider angles [54],
but as not make too large of a difference when we do not include high-angle pairs as those
are effectively down-weighted, thus lowering our effective sample size. In the future one would
want to find a projector pAB that holds for larger angles, particularly when using data from
observations as the amount of data is then likely to be much more limited.

An alternative choice of estimator would have been [54]

v12(r) = 1
Npairs(r)

∑
i6=j

(vi − vj) · r̂ (3.3)

where Npairs(r) is the number of pairs in range-bin r and r̂ = r/|r| is the unit vector pointing
from halo j to halo i.

32 CHAPTER 3. METHOD

as then our v12 is more accurate as we avoid that wide-angle problem and use the full three
dimensional information. However using the estimator (equation 3.2) we can run simulation
data and redshift survey data through the same code.

3.1.3 Algorithm
This sub-section describes how the velocity statistics are estimate using the estimators described
in sub-section 3.1.2.

At first we need to extract our halo sample and select the right version of each halo as
described in section 3.1:

1. Read in data and remove halos outside the selected mass range.

2. Give each halo an ID number.

3. Calculate each halo’s position relative the to observer and adjust it and its velocity to
match the closest copy to the observer.

4. Calculate the peculiar radial velocity x̂ · v of each halo relative to the observer and save
it in memory.

In order to calculate error bars (see Section 3.1.4), we will need to recalculate the statistic
many time, in order to save CPU time it is the useful to save pair-wise calculated values in
upper triangle matrices so that when we need to recalculate it we can just look it up in memory
instead:

5. For each pair of halos, we then calculate the velocity statistic like so:

(a) Calculate the distance of separation between halos r and assign the halo-pair to
correct range bin.

(b) Save pair i, j to element j − i in array i with the array of arrays holding the data.

If calculating the velocity correlation function, we save v1v2 for each pair in an upper triangle
matrix, while when calculating streaming velocities v12 (equation 3.2) we save pi,j . This is so
that when we calculate the error bars later on we do not have to do the same calculations over
and over again, but can rather just look the numbers up in a lookup table and thus save a lot
of cpu time.

3.1.4 Constructing the errorbars
3.1.4.1 Absolute error

Since the simulation box is of limited size, we also have a finite sample of halos. We need to
determine the uncertainty of our velocity statistics due to the limited halo sample. Ideally, if
time allowed, we would run lots of simulations with new random seeds, we would then also
account for variance in possible initial conditions, but in absense of the time we have to use
other methods.

Two common methods are the jackknife and bootstrap methods. Both methods use the data
sample to simulate the distribution of data we are missing out (the true “ensemble” distribution)
on due to our limited sample size.

In the jackknife method, data points are left out and a new value yJi is calculated with the
estimator so that yJi is the estimation with halo number i left out of the sample. The variance
of the estimator is then:

3.1. CALCULATING FROM SIMULATION DATA 33

Algorithm 1 Basic algorithm for calculating the statistics from a halo sample.
for i from 0 to N do
for j from 0 to i− 1 do
if Halo ID is the same then
Do nothing.

else
bin = Look up range bin.
if statistic == streaming velocities then
Numeratorbin = Numeratorbin + 2(vi − vj)pi,j
Denominatorbin = Denominatorbin + p2

i,j

end if
if statistic == velocity correlation function then
Numeratorbin = Numeratorbin + vivj
Denominatorbin = Denominatorbin + 1

end if
end if

end for
end for
for bin from 0 to Nbins− 1 do
statbin = Numeratorbin/Denominatorbin

end for

σ2
Jmean = (Nhalos − 1)

Nhalos

Nhalos∑
i=1

(yJi − ȳ)2 (3.4)

where ȳ is the estimation using all halos.
Since calculating the estimator scales in floating points operation as O(N2

halos) as we loop
over pairs and in the Jackknife we also need to loop over all halos again, the Jackknife method
would go like O(N3

halos).
In the bootstrap method, if our sample size is N we sample N values from our sample with

replacement, that means that we pick a random halo from our sample N times to construct a
new sample of the same size as the original sample allowing for a halo to be picked more than
once. From this new sample we can calculate the statistic we want to find the variance of again.
The idea is that if you use the distribution of the original data as a fair representation of the
true underlying distribution, one can see how the velocity statistic varies as a function of the
random variation in the data. This means that the bootstrap scales in floating point operation
as O(N2), which is why we ended up picking this method.

When choosing the number of resamples it is a tradeoff between spending more CPU time
to get more accurate errorbars, or get less accurate errors spending less CPU time. The choice
was made to do a thousand resamples. Once all of the new values have been calculated the
central 68% of values are within a one σ deviation from the true value, and the central 68% are
not necessarily centered on the value of the estimator using the original sample, which means
we can get asymmetric error bars.

3.1.4.2 Error propagation

The asymmetric errorbars we got from the bootstrap proved to be quite symmetric when cal-
culating the skewness of ṽ12 in each rang bin (see Figure 3.3), so when propagating the errors

34 CHAPTER 3. METHOD

Figure 3.3: Skewness of the ṽ12 distribution given by 1000 random halo resamples with replace-
ment. 10 Mpc/h bins are used.

in the calculation of relative deviations from standard gravity (ΛCDM) we assumed symmetric
(Gaussian) errors.

To find the errors in the relative deviation from ΛCDM we use the errors from ΛCDM and
the alternative theory we are comparing with.

The relative deviation from ΛCDM is expressed as

∆y = yΛCDM − yMG

yΛCDM
, (3.5)

where y(r) is a binned velocity statistic.
To find the error of d we need to propagate the errors of the individual components.
Combining the errors for y in quadrature we obtain

σ∆y
≈ |d|

√√√√√
√
σ2

ΛCDM + σ2
MG − 2σΛCDM,MG

yΛCDM − yMG

2

+
(
σΛCDM

yΛCDM

)2
− 2 σdiff, ΛCDM

ydiff/yΛCDM
(3.6)

where ydiff = yΛCDM − yMG, σΛCDM,MG is the covariance between yΛCDM and yMG, and
σdiff, ΛCDM is the covariance between ydiff and yΛCDM.

There is one problem with assigning errorbars to the relative deviations from ΛCDM, the
covariance between models. In Section 2.2 we stated that the initial conditions for each model
were exactly the same, so the covariance between models is likely to be very large and we have
ignored it, likely leading to larger errorbars than we potentially should have.

3.1.5 Random poisson catalogues
In the streaming velocity plots (Figures 4.1 and 4.2) with 2 Mpc/h bins, there are two curious
features:

1. They do not vary as much as the errorbars would suggest, so it looks like there is significant
covariance between bins.

3.2. VALIDATING THE RESULTS 35

2. The graph is “step-like” on scales less than 40 Mpc/h, having range intervals with a
constant slope, but with a sudden change in slope in between.

To test whether this was a property of the estimator, or could be due to a programming
error instead, random Poisson (uncorrelated) catalogues with different seeds were constructed.

A number of halos were placed with a uniform probability between 0 and Lbox in each
dimension, making any spot in the box equally probable. They were assigned velocities in each
dimension using a Gaussian distribution with standard deviations of 200 km/s. If everything is
working we would expect to se ṽ12 vary around zero. The results for these random catalogues
can be found in Figure 3.4, and they do indeed vary around zero.

Figure 3.4: ṽ12 plotted for random Poisson catalogues (Section 3.1.5). For σv = 200 km/s, where
each line is for a different seed. The asymmetric errorbars are determined by the bootstrap
method described in Secton 3.1.4.1.

3.2 Validating the results
To reliably be able to base any conclusions from our calculations it is important to check that
it is working as intended.

Both the velocity correlation function and the streaming velocities can be approximated
from linear theory.

For both approximations I used the matter density power spectrum generated when sup-
plying CAMB [55] with a parameter file holding our cosmology, and solving all of the integrals

36 CHAPTER 3. METHOD

Figure 3.5: Plot showing the linear approximation to the velocity correlation function and the
one calculated from the ΛCDM n-body data described in Chapter 2

using the integration function QAG in the GNU Scientific Library [56], Integrating between
kmin = 10−6 h/Mpc and kmax = 31100 h/Mpc (we are aware that this is an unusual and
unnecessarily wide k range). All integrals over k were shown to be stable (within numerical
accuracy) when shrinking the integration interval from both sides.

The linear approximations to the parallel and perpendicular components of the velocity
correlation function were given in equations 1.83 we made an approximation to ξv(r). As can
be seen the in Figure 3.5 our approximations do not match what we get from the simulation of
ΛCDM .

An analytical model for v12 was found in [57], which is valid on quasi-linear scales [36]:

v12(x, a) = −2
3Hrf

¯̄ξ(x, a)[1 + α ¯̄ξ(x, a)] (3.7)

¯̄ξ(x, a) ≡ ξ̄(r, a)[1 + ξ(r, a)]−1 (3.8)

ξ̄(r) = 3
r3

∫ r

0
ξ(x)x2dx (3.9)

3.2. VALIDATING THE RESULTS 37

Figure 3.6: v12 approximation made using equation 3.7 plotted with the results of using the
estimator for ṽ12 on the ΛCDM n-body data.

ξ(r) =
∫ dk

k

k3P (k)
2π2 j0(kr) (3.10)

where ξ(x, a) is the galaxy/halo two-point correlation function at distance scale x when the
scale factor is a, and α = 1.2− 0.65γ where γ is the logarithmic slope of ξ at ξ = 1.

Juszkiewicz, Springel & Durrer (1998) [57] also suggests that one can use the galaxy cor-
relation function to calculate predict v12, one then just use that function in place of the dark
matter correlation function [58] in the approximation. An attempt was made at calculating the
halo-halo correlation function using the Landay Szalay estimator [30], but there was problems
finding halo-halo correlation functions in the literature where the halo mass intervals used were
also stated. In order to verify the halo-halo correlation function we tried to calculate what the
ratio between correlation functions using different mass ranges should be and compare this to
what we got. This was ultimately unsuccessful, however.

All of the approximations in this section (3.2), the bias calculations and the halo-halo
correlation function have one thing in two things in common: they all include integrals over the
power spectrum and neither of them work. Therefore one could suspect that something is wrong
with the power spectrum that either we use in the approximation, or the one used in the initial
conditions of the simulations (these were not found). There was made a custom halo catalogue

38 CHAPTER 3. METHOD

Figure 3.7: The ratio between σ(M) =
∫∞

0 k2P (k)W 2(kR)dk calculated using P (k) from
CAMB in my halo bias calculation code and what was gotten using the code presented in
[59]. We use M = 4πρmR3/3 where ρm is the matter density of the Universe.

with 4 halos in and both the halo velocity correlation function and the streaming velocities were
calculated by hand and shown to match what our code got on the same catalogue.

To summarize, we should be careful concluding anything from the results we get as none
of them have been satisfactorily. It is however more likely that the calculation done from the
n-body simulation data is correct than the approximations. We must also be aware that there
could be something off with the initial powerspectrum in the simulations.

Chapter 4

Results and analysis

In this chapter we present and analyse the velocity correlation functions and pair-wise streaming
velocities calculated using the methods described in Section 3.1 and data from the N-body
simulations described in Chapter 2.

4.1 Streaming velocities
In this section we will present streaming velocities for the different f(R) and symmetron models
and compare them to ΛCDM. Methods for calculating these values can be found in Chapter 3.

The velocity correlation function for f(R) and ΛCDM models is shown in Figure 4.1 for
2 Mpc/h bins. It is important to note that the y-axis is −ṽ12, meaning that the larger its value,
the more rapidly the halos are approaching each other.

ṽ12 for all models varies a lot less between the bins than the error bars suggest it should;
the scatter in the measured curve is much smaller. This suggests either that there is covariance
between the bins, meaning that they vary together, or that the bootstrap errors are incorrect.
This is expected, as halos close to each other will be gravitationally attracted by approximately
the same set of halos, just with a slightly different force strength. It is possible to predict the
covariance using the velocity correlation tensor [36].

For all the models (Figures 4.1 and 4.2) there are “step-like” features; that is, the graph
looks almost linear between the second bin ([2, 4) Mpc/h), then suddenly changes gradient at
around 18 Mpc/h, remaining linear until around 40 Mpc/h. A test was performed calculating
ṽ12 for for random Poisson catalogues (Section 3.1.5) to see if these features are real. The
features were not seen for these catalogues (Figure 3.4): one possibility is that this is a function
of our initial conditions, that if we had another seed we would not see the features. This is easy
to test we just need to run the simulation for different seeds and see if the features appear in
those as well. Another option could be that the feature appear because there are correlations
between bins, but then we would expect not as sudden of a transition between “steps”.
−v12 peaks for all the models in the second bin; that is, in the range [2, 4) Mpc/h. Going

from the peak to r = 0, −v12 approaches zero. This matches what is found in the literature
[36]. If two halos are at almost the same location they are almost as likely to have just passed
each other as they are to be approaching each other. At scales where this effect is not dominant
galaxies tend to approach each other faster the closer they are to each other as overdensities
attract one another [28].

ṽ12 flattens out at large r above zero, in theory there should be no correlation approaching
homogeneous scales as then there should be on average equally many halos pulling from each

39

40 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.1: ṽ12 plotted for the chameleon f(R) theories and ΛCDM, with 2 Mpc/h bins. The
asymmetric errorbars are determined by the bootstrap method described in Section 3.1.4.

side.
There is a bump between around 118 Mpc/h and 135 Mpc/h, this is around the same scale

at which Barionic Accoustic Oscillations (BAO) causes a bump in the halo and dark matter
correlation functions [60].

The error bars increase in size the larger in separation we go to, even though at the larger
scales there are more halo pairs, so ordinarily one would think that the error bars would become
smaller. However at larger scales the angular separation of the halos in a pair is likely to be
large and the pair is therefore downweighted (small projection factor pij) thus the “effective
sample size” is smaller than otherwise.

4.1.1 Comparison between models: f(R)
For the f(R) models one would expect the peak to be the highest for F4, followed by F5, F6
and then ΛCDM, as when the range of the fifth force is longer the fifth force between particles
have been working to grow the deviation from ΛCDM for a longer time. In our results F6 has a
peak almost identical to (a tiny bit lower than) ΛCDM, while F5 peaks at 47 km/s higher than
F6, and F4 around 74 km/s higher than ΛCDM. This is all as expected, other than F6 peaking
lower than ΛCDM. We cannot tell if the peaks are at the exact same place, only that they are
in the same bin. If we lower the bin size, we could possibly resolve differences in peak locations,

4.1. STREAMING VELOCITIES 41

Figure 4.2: ṽ12 plotted for the symmetron theories and ΛCDM, with 2 Mpc/h bins. The
asymmetric errorbars are determined by the bootstrap method described in Section 3.1.4.

but this would reduce the number of pairs in each bin and so the variance increases. This is
the error on −ṽ12 however, and since all of the models have the exact same initial conditions,
the difference should be real. We are however limited by the force resolution of the simulation
— an inaccurate force calculation affects the position and velocity of a particle for all future in
the simulation. It can however both overestimate and underestimate the force.

All models decline when we go to larger scales after the peak, F5 deviating noticeably from
ΛCDM at ranges up until around 20 Mpc/h, and F4 almost up to 40 Mpc/h. From table 2.2
we have that the range of the force for F5 and F4 are 7.5 Mpc/h and 23.7 Mpc/h, so we have
deviations on length scales significantly larger than the force length. This is likely because
when the universe was smaller (a was smaller) what corresponds to a length scale of 40 Mpc/h
today was smaller. For example, a length scale r = 10 Mpc/h today (z = 0) corresponds to
r = 5 Mpc/h at redshift z = 1. Another contributing factor to the deviations on such large
scales is the covariance between bins. If the fifth force works between two halos separated by a
small enough range for the fifth force to work, then they approach each other faster than they
otherwise would. A halo approaching both halos, but far enough away for only the fifth force
from one of the halos to work will be affected by the fifth force of the halo that does not work
on it directly, by that it changes the velocity and position of the halo which is within the fifth
force range.

The relative deviations (Figure 4.3a) of the different f(R) theories approach each other, the

42 CHAPTER 4. RESULTS AND ANALYSIS

(a) (b)

Figure 4.3: ṽ12 relative deviation from ΛCDM plotted for all of f(R) theories (left) and sym-
metron theories (right) with 10 Mpc/h sized bins. The asymmetric symmetric errors are deter-
mined by the bootstrap method described in Section 3.1.4, and then propagated following the
method in Section 3.1.4.2 assuming no covariance between ΛCDM and the alternative theory.

largest deviations being at small r, systematically as r increases up until 110 Mpc/h. Beyond
110 Mpc/h, the deviations of all the f(R) models increases, F4 increasing the most, then F5
and F6. This is at a scale were the fifth force could not have been working for a significant
amount of time. One of the factors that can cause effects on this scale is the box size, but since
this happens at a scale beginning at less than half the box size, and we are working with a
relative deviation, the difference when we change theories is unlikely to be an effect of much
significance. One reason could be that the mass function is distribution of halos with respect
to mass is different for the different theories, it is for example known from the literature that
changing the minimum mass of the halos used changes the amplitude of the large scale ṽ12 [61],
this will however require more careful investigation.

4.1.2 Comparison between models: Symmetron
Figure 4.2 shows −ṽ12 as a function of the length scale for the symmetron models and ΛCDM.

The symmetron models, like the f(R) models, peak in the second bin. The two highest
peaks are for SymmD and SymmB, where SymmB has the lower one. These are the models for
which the fifth force has been “turned on” the longest, with SymmD’s fifth force turning on at
z = 3 and SymmB’s at z = 2 (from Table 2.1), compared with z = 1 for SymmA and SymmC.
The next peak in height is actually ΛCDM, above SymmC and SymmA in descending order.
It makes sense that SymmC has a higher peak than SymmA, as the fifth force in SymmC is
stronger, but why are they both lower than ΛCDM? Looking at Figures 4.3a and 4.3b, we see
that at larger scales, halos do not tend to approach each other (in terms of comoving distances)
as much in the modified gravity theories as for standard gravity (ΛCDM). It could be that what
causes this large scales suppression of ṽ12 also works on small scales and that the fifth forces
of SymmA and SymmC is not a large enough effect to make them peak higher than ΛCDM.
The approximation for v12 given in equation 3.7 depends on three functions: H(a), f(a) and
ξ(x, a). For a = 1, which is the time our halo catalogues are for, H is equal for all models in

4.1. STREAMING VELOCITIES 43

(a) (b)

Figure 4.4: ṽ12(r) relative deviation from ΛCDM plotted for F4 (a) and F5 (b) with different
halo mass ranges (given in units of Msun/h in the legend) and 10 Mpc/h sized bins.

order to match the input value of H0. The growth rate f = d lnD/d ln a (see Section 1.1.3)
should be larger for both symmetron and f(R) models [17] and thus contributes to a large v12,
not smaller. The last factor is a function of the two-point spatial correlation function ξ(x, a).
This is a little steeper in modified gravity, as there is extra clustering due to the fifth force [46],
but more investigation needs to be done as to how ¯̄ξ(x, a)[1 + α ¯̄ξ(x, a)] is affected.

4.1.3 Dependence on mass and binning
Here we calculated the streaming velocities for different halo mass ranges. More massive halos
are screened for fifth force effects to a larger extent than lower mass halos overall, although the
density in the halo environment also impacts the degree of screening significantly [24]. If a halo
is located in a high density environment, then the halo does not have to be as massive for the
halo to be screened.

In using different mass bins, we would expect the deviations from ΛCDM to be larger
for lower masses, particularly in low density environments. Using the same mass bins, but
only for halo pairs in high density environments, we should see almost no deviation from
ΛCDM however.

To choose the mass bins, we had to compromise between having more mass bins with smaller
halo samples, or fewer mass bins with larger samples. Due to the steepness of the mass function
(the cumulative mass distribution), we could make the lower massbins much smaller than the
higher mass ones. If too low of a samplesize was used, the errorbars would be very large, but the
halos also need to be massive enough that their position and velocity can be resolved with good
enough accuracy. As we explained in Section 2.6, we use halos more massive than 1012 M�/h
(more than a hundred particles).

In Figure 4.4b we see that the deviation for F5 from ΛCDM is strongest for the most massive
halos. We would have expected the lowest mass bin to deviate the most at this range. In F4
however it does deviate the most for the lowest mass bin, but the middle mass bin deviates less
than the most massive halos. [62] showed very little mass dependence for F4 and F5 at 5 Mpc/h;
ideally we would run simulations using many different seeds in the initial conditions, it is likely
that these differences at larger scales would then be shown to be a feature of high variance. This

44 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.5: ṽ12 relative deviation from ΛCDM plotted for SymmD with different halo mass
ranges (given in units of Msun/h in the legend) and 10 Mpc/h sized bins.

could be caused by a systematic effect in the environment of different halos, though normally
more massive halos are in denser environments. From the bin centered on 75 Mpc/h the lower
massbin of F4 and F5 deviates more and more from ΛCDM, at the 115 Mpc/h bin scale halos
approach each other almost twice as fast as for ΛCDM. For F4 the two more massive mass bins
approach each other, but deviate in the positive direction. For F5 only the middle mass bin
deviate in the positive direction at large scales. There is no particularly good reason for these
deviations, once again it would be very useful to investigate further by running simulations
using different seeds to see if these features are not just due to variance.

In Figure 4.5 we see the relative deviation from ΛCDM for SymmD. Here, the least massive
halos have the largest deviations at small range as we would expect, but the same trend as we
saw for F5 is here too at scales large than 75 Mpc/h.

4.1. STREAMING VELOCITIES 45

4.1.4 Cumulative streaming velocity distribution

Figure 4.6: Relative deviations from ΛCDM for the cumulative streaming velocity distributions.
The distributions have been normalized by the pair count in the range bin.

Figure 4.6 shows the cumulative streaming velocity for the range between 10 and 20 Mpc/h. It
is worth noting that the quantity in the plot is a little bit different than the individual pairs’
contribution to the streaming velocity, as the estimator (equation 3.2) consists of a sum in the
denominator and a sum in the numerator. The quantity we have used here is the one each pair
contributes to the numerator, the line of sight velocity difference.

As expected, the difference is the largest for F4 like in the other plots of streaming velocities.
Both F4 and F5 deviate more and more from ΛCDM as we move to higher velocities. This could
be because lower mass halos generally move faster than more massive ones as gravity is stronger
for them (enhanced by fifth force as they are less likely to be screened).

F6 traces ΛCDM extremely well and so does SymmA, as we would expect. F5 and SymmD
have relatively similar deviations from ΛCDM, F5 deviating a little bit more than SymmD
does. These two models also have quite similar peak heights in −ṽ12, with −273 km/s for F5
and −275 km/s. Similarly F4 has the highest peak and also the largest deviation from ΛCDM ,
while SymmB has the fourth highest peak and also the fourth largest deviation from ΛCDM in
the cumulative streaming velocity distribution.

46 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.7: ξv(r) plotted for the chameleon theories and ΛCDM with 10 Mpc/h sized bins. The
asymmetric errorbars are determined by the bootstrap method describe in Section 3.1.4.

4.2 Velocity correlation function

In this section we show how the velocity correlation function described in Section 1.4.2 is affected
by using different MGR models. We also show how this depends on halo mass binning. The
methods for calculating the velocity correlation function can be found in Chapter 3.

4.2.1 Comparison between models
In Figures 4.7 and 4.8 see that for all models we have a peak and the first range bin and then
a decline, this is because then two halos are close together they are likely to be part of the
same larger structure and so their radial peculiar velocity relative to the observer is likely to
be around the same and have the same sign leading to a positive contribution to ξv(r). For all
the models the function flattens out above zero meaning that the halo pairs with this large a
separation still either move both away or towards the observer. In theory the larger seperation
we have between halos the less correlated they should be. As each has less effect on the other.
We do not see that here, in fact the correlation increases on scales larger than 130 Mpc/h.

From the relative deviation plots (Figures 4.10 and 4.9) we see that neither of the models
vary as much between bins as the errorbars would suggest they should the same reasoning that
was applied to the streaming velocities hold here.

F4 deviates strongly from ΛCDM up until around 60 Mpc/h, well outside the errorbars.
60 Mpc/h is much much longer than the fifth force range (around 22 Mpc/h) for F4. The same
logic we used for effects on larger scales than the force lengths for the streaming velocities also
applies here, in short these scales were smaller at an earlier time. The theories with lower range
fifth forces deviate less just like for the streaming velocities.

4.2. VELOCITY CORRELATION FUNCTION 47

Figure 4.8: ξv(r) plotted for the symmetron theories and ΛCDM with 10 Mpc/h sized bins.
The asymmetric errorbars are determined by the bootstrap method describe in Section 3.1.4.

Figure 4.10: ξv(r) relative deviation from ΛCDM plotted for all of f(R) theories with 10 Mpc/h
sized bins. The asymmetric symmetric errors are determined by the bootstrap method describe
in Section 3.1.4 and then propagated following the method in Section 3.1.4.2 assuming no
covariance between ΛCDM and the alternative theory.

48 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.9: ξv(r) relative deviation from ΛCDM plotted for all of the symmetron theories
with 10 Mpc/h sized bins. The asymmetric symmetric errors are determined by the bootstrap
method describe in Section 3.1.4 and then propagated following the method in Section 3.1.4.2
assuming no covariance between ΛCDM and the alternative theory.

F6 traces ΛCDM very well, oscillating around zero deviation. This stronger correlation for
F4 and F5 on short range can be explained by that the fifth force binds the halo pairs together
more strongly so there is a larger chance of them moving together and the radial peculiar velocity
of each halo relative to the observer have the same sign for both halos (positive contribution).

At larger scales than 25 Mpc/h F5 has a lower ξv, this is however not true for F6 as it
oscillates very closely to ΛCDM. F4 is more correlated than ΛCDM on all scales. What we
would expect would be for there to be no difference in correlation on large scales as the fifth
force the two halos or the larger structures they are in does not work. The velocities of the halos
are still however different than what they are in ΛCDM, so we would expect some deviation that
would average out to zero over all realizations. These deviations should have a higher variance
for more powerful theories (stronger or/and longer range fifth force) as the halos in general
move faster, making the sign of each pairs contribution more important relative to ΛCDM.

In Figure 4.9 the relative deviation from ΛCDM of the symmetron models is plotted for
ξv(r). We see that they oscillate around ΛCDM, but with around the same “wavelength”. This
is hard to explain, we have no idea what could cause this. It does however indicate that if
we want to detect deviations from GR using the velocity correlation function, the scales most
promising for our selection of symmetron models are between 15 and 50 Mpc/h. The 110 to
150 Mpc/h scale also looks promising, but here we need to worry about the box size to a larger
extent. Additionally, it is harder to measure ξv(r) for large r as distance measurement is harder
for galaxies far away from the observer and one needs to survey a very large a to get a good
enough sample of pairs.

4.2. VELOCITY CORRELATION FUNCTION 49

(a) (b)

Figure 4.11: ξv(r) relative deviation from ΛCDM plotted for F5 (a) and SymmD (b) with
different halo mass ranges (given in units of Msun/h in the legend) and 10 Mpc/h sized bins.

4.2.2 Dependence on mass and binning
Just like when we used mass bins on the pair-wise streaming velocities, the lighter halos do not
deviate more then the other bins at smaller scales like we would expect. The same logic holds
here; this could be something that varies with the seed used in the initial conditions to a large
extent and what environment the halos are in. Ideally we would want to run many simulations
using different realisations of the initial matter distribution and see if we on average would get
what we expect, stronger deviations for lighter halos. Also we could calculate ξv for halos in
different environments (different matter densities in the halos sorroundings). It could be that
this would give a much clearer signal than binning by mass.

50 CHAPTER 4. RESULTS AND ANALYSIS

Chapter 5

Conclusions and Discussion

In modern cosmology we have a model called ΛCDM that fits the data extremely well, but
even though there are no major empirical problems with the model, there are some very big
theoretical ones. In ΛCDM the needed dark energy content to cause the accelerated expansion
of the Universe is much less than the amount of vacuum energy predicted in particle physics,
so either all of it cancels somehow and something else is causing the acceleration, or all of it
except an extremely small part cancels (amounting to a 55 order fine-tuning [6, 7]). To solve
this problem a number of modified gravity theories have been proposed [8]. In order to confirm
or rule out these we need to test gravity.

The modified gravity theories need to evade the current constraints on gravity of which
the most stringent ones are from experiments and observations in high density environments,
e.g. the solar system. In order to do this the modified gravity theories employ what are called
screening mechanisms (e.g. chameleon and symmetron screening) to suppress their effects on
gravity in high density environments, resulting in an enhanced gravitational force working
with different strength on objects that are screened or unscreened (e.g. galaxies of different
sizes), causing apparent violations of the equivalence principle. The enhanced gravitational
force causes objects to move differently than in standard gravity and because of the screening
this deviation from standard gravity should be different for different objects, therefore using
velocities to test these theories should be quite promising. Using future surveys there is hope
we can measure the velocities well enough to be useful in testing gravity.

A novel part of our work is that we have compared velocity statistics for modified grav-
ity models using different screening mechanisms, as well as comparing the same model using
different parameters.

For each screening mechanism we tested different parts of the parameter space in separate
simulations, but using the same exact initial conditions for each. This allows us to compare
the data from the different simulations and be able to say that it is the difference between
the theories that cause the differences and not different initial conditions (e.g. using different
seeds).

We looked at two different velocity statistics, the streaming pair-wise velocities and the
velocity correlation functions. Different velocity statistics probe the velocity field in different
ways. The streaming pair-wise velocities measure the tendency for objects to approach each
other, while the velocity correlation functions measure how correlated the peculiar velocities of
objects along the line of sight from an observer are with each other. So we probe the velocity
field in two different ways, measuring two different properties.

We found that the streaming velocities for ΛCDM for the most part behaved the way we
expected, approaching zero when the distance of separation approaches zero, though gener-

51

52 CHAPTER 5. CONCLUSIONS AND DISCUSSION

ally the galaxies approach each other more rapidly the smaller the separation between them.
However, we found “step-like” features between the peak and 40 Mpc/h, and v12 never comes
close to zero for large scales like one would expect in a homogeneous universe. The amount
of deviation from ΛCDM for the f(R) models came in the order we expected with F4 having
the largest deviation, then F5 and F6. For the symmetron models we found that changing the
time of symmetry breaking (when the force is turned on) had a larger impact on the statistic
than changing the force strength. In all of the modified gravity models we found deviations
on much larger scales than the force length at the time of measurement (z = 0) we did not
inquire whether this was consistent with, the redshift dependence of the fifth force however.
We also found the streaming velocities are suppressed at large scales compared to ΛCDM , but
we were not able to figure out why and would have expected the opposite. We found puzzling
deviations from ΛCDM at large scales when using different mass bins, which we were unable
to immediately explain; this should be addressed in future work.

In the velocity correlation function ΛCDM behaved as expected, the line of sight peculiar
velocities were more and more correlated the lower the distance of separation. However, it
flattens out at right above 80 Mpc/h, we would expect it to approach no correlation at large
scales. For the f(R) models F4, though no longer a viable model [49], deviated more from
ΛCDM, with a larger correlation, the smaller a scale we go to. F5 was more correlated on
scales smaller than 20 Mpc/h compared to ΛCDM, while less correlated on larger scales than
20 Mpc/h. For the symmetron models we found deviations from ΛCDM with a wave-like shape,
but not understand why.

F6 was hard to distinguish from ΛCDM in either velocity statistic, except its large scale
suppression in v12 were similar to F5 in magnitude. In the streaming velocities we saw larger
deviations from ΛCDM for all models, than in the velocity correlation function, so the pair-wise
streaming velocity looked like the more promising statistic when it comes to distinguishing the
different theories from standard gravity.

The errorbars are not correct as we have for example not taken into account the covariance
between the different models due to using the same seed for our initial conditions. We need to
account for the following to make meaningful errorbars:

• Variations in the statistics caused by different realisations of the initial matter density
distributions, this should cause the errorbars to be a bit larger.

• The covariance between different models (the change from one realisation to another will
be somewhat similar for different models), this should cause the errorbars in the relative
deviations to become smaller.

• The covariance between bins, should make the errorbars on the absolute statistic smaller.

All of these can be done by running lots of simulations using different seeds to generate the
initial conditions and then using the distribution of the estimations of the statistic. This is
extremely computationally expensive and thus takes a very long time [21]. There may be a
faster way of doing this, e.g. by solving an informed approximation of the n-body simulation
equations [63].

Our linear approximations do not match our results on linear scales, so an even more thor-
ough examination of our approximations to the velocity statistics needs to be done. We should
also use the same initial power spectrum as in the simulations and extract the non-linear cor-
relation functions from the data. It is however, more likely that the approximations are wrong
than our calculations from the simulations as there are a lot more places to make mistakes when
calculating the approximations.

Also we are not sure to exactly how large a scale our results hold due to the limited box
size. We could check this by running simulations for different box sizes and then check how

53

much the statistics vary when adjusting the box size, like was done in [52] with the two-point
correlation function.

In future work one would want to calculate the statistics using halos in different environ-
ments, in hope of finding some stronger deviations from standard gravity, particularly in low
density environments. Then one would want to compare results to observations, like measure-
ments of f [34] and calculations of the statistics themselves using the galaxy/cluster catalogues
from redshift surveys and surveys using the kinematic Sunyaev Zel’dovich effect [61].

54 CHAPTER 5. CONCLUSIONS AND DISCUSSION

Bibliography

[1] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L.
Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss,
B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff,
and J. Tonry. Observational Evidence from Supernovae for an Accelerating Universe and
a Cosmological Constant. AJ, 116:1009–1038, September 1998. doi: 10.1086/300499.

[2] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua,
S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee,
N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin,
R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko,
T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C.
Project. Measurements of Ω and Λ from 42 High-Redshift Supernovae. ApJ, 517:565–586,
June 1999. doi: 10.1086/307221.

[3] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al.
Planck 2013 results. XVI. Cosmological parameters. A&A, 571:A16, November 2014. doi:
10.1051/0004-6361/201321591.

[4] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, Y. Akrami, M. I. R. Alves,
M. Arnaud, F. Arroja, J. Aumont, C. Baccigalupi, and et al. Planck 2015 results. I.
Overview of products and scientific results. ArXiv e-prints, February 2015.

[5] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M.
Smith, R. S. Hill, B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel,
E. Wollack, J. Dunkley, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright.
Nine-year wilkinson microwave anisotropy probe (wmap) observations: Final maps and
results. The Astrophysical Journal Supplement Series, 208(2):20, 2013. URL http://
stacks.iop.org/0067-0049/208/i=2/a=20.

[6] Steven Weinberg. The Cosmological Constant Problem. Rev.Mod.Phys., 61:1–23, 1989.
doi: 10.1103/RevModPhys.61.1.

[7] J. Martin. Everything you always wanted to know about the cosmological constant problem
(but were afraid to ask). Comptes Rendus Physique, 13:566–665, July 2012. doi: 10.1016/
j.crhy.2012.04.008.

[8] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis. Modified gravity and cosmology.
Phys. Rep., 513:1–189, March 2012. doi: 10.1016/j.physrep.2012.01.001.

[9] J. Amiaux, R. Scaramella, Y. Mellier, B. Altieri, C. Burigana, A. Da Silva, P. Gomez,
J. Hoar, R. Laureijs, E. Maiorano, D. Magalhães Oliveira, F. Renk, G. Saavedra Criado,

55

http://stacks.iop.org/0067-0049/208/i=2/a=20
http://stacks.iop.org/0067-0049/208/i=2/a=20

56 BIBLIOGRAPHY

I. Tereno, J. L. Auguères, J. Brinchmann, M. Cropper, L. Duvet, A. Ealet, P. Franzetti,
B. Garilli, P. Gondoin, L. Guzzo, H. Hoekstra, R. Holmes, K. Jahnke, T. Kitching,
M. Meneghetti, W. Percival, and S. Warren. Euclid mission: building of a reference
survey. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
volume 8442 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, page 0, September 2012. doi: 10.1117/12.926513.

[10] The Dark Energy Survey Collaboration. The Dark Energy Survey. ArXiv Astrophysics
e-prints, October 2005.

[11] M. D. Niemack, P. A. R. Ade, J. Aguirre, F. Barrientos, J. A. Beall, J. R. Bond, J. Brit-
ton, H. M. Cho, S. Das, M. J. Devlin, S. Dicker, J. Dunkley, R. Dünner, J. W. Fowler,
A. Hajian, M. Halpern, M. Hasselfield, G. C. Hilton, M. Hilton, J. Hubmayr, J. P. Hughes,
L. Infante, K. D. Irwin, N. Jarosik, J. Klein, A. Kosowsky, T. A. Marriage, J. McMahon,
F. Menanteau, K. Moodley, J. P. Nibarger, M. R. Nolta, L. A. Page, B. Partridge, E. D.
Reese, J. Sievers, D. N. Spergel, S. T. Staggs, R. Thornton, C. Tucker, E. Wollack, and
K. W. Yoon. ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Tele-
scope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
volume 7741 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, page 1, July 2010. doi: 10.1117/12.857464.

[12] J. E. Austermann, K. A. Aird, J. A. Beall, D. Becker, A. Bender, B. A. Benson, L. E.
Bleem, J. Britton, J. E. Carlstrom, C. L. Chang, H. C. Chiang, H.-M. Cho, T. M. Crawford,
A. T. Crites, A. Datesman, T. de Haan, M. A. Dobbs, E. M. George, N. W. Halverson,
N. Harrington, J. W. Henning, G. C. Hilton, G. P. Holder, W. L. Holzapfel, S. Hoover,
N. Huang, J. Hubmayr, K. D. Irwin, R. Keisler, J. Kennedy, L. Knox, A. T. Lee, E. Leitch,
D. Li, M. Lueker, D. P. Marrone, J. J. McMahon, J. Mehl, S. S. Meyer, T. E. Montroy,
T. Natoli, J. P. Nibarger, M. D. Niemack, V. Novosad, S. Padin, C. Pryke, C. L. Reichardt,
J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, E. Shirokoff, A. A. Stark,
K. Story, K. Vanderlinde, J. D. Vieira, G. Wang, R. Williamson, V. Yefremenko, K. W.
Yoon, and O. Zahn. SPTpol: an instrument for CMB polarization measurements with
the South Pole Telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 8452 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, page 1, September 2012. doi: 10.1117/12.927286.

[13] S.M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Ad-
dison Wesley, 2004. ISBN 9780805387322. URL http://books.google.no/books?id=
1SKFQgAACAAJ.

[14] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont,
C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, and et al. Planck 2015 results.
XIV. Dark energy and modified gravity. ArXiv e-prints, February 2015.

[15] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont,
C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results.
XIII. Cosmological parameters. ArXiv e-prints, February 2015.

[16] S. Dodelson. Modern Cosmology. Academic Press. Academic Press, 2003. ISBN
9780122191411. URL http://books.google.it/books?id=3oPRxdXJexcC.

[17] T. Baker, P. Ferreira, and C. Skordis. A fast route to modified gravitational growth.
Phys. Rev. D, 89(2):024026, January 2014. doi: 10.1103/PhysRevD.89.024026.

http://books.google.no/books?id=1SKFQgAACAAJ
http://books.google.no/books?id=1SKFQgAACAAJ
http://books.google.it/books?id=3oPRxdXJexcC

BIBLIOGRAPHY 57

[18] P. Brax. Lectures on Screened Modified Gravity. ArXiv e-prints, November 2012.

[19] T. P. Waterhouse. An Introduction to Chameleon Gravity. ArXiv Astrophysics e-prints,
November 2006.

[20] W. Hu and I. Sawicki. Models of f(R) cosmic acceleration that evade solar system tests.
Phys. Rev. D, 76(6):064004, September 2007. doi: 10.1103/PhysRevD.76.064004.

[21] C. Llinares, D. F. Mota, and H. A. Winther. ISIS: a new N-body cosmological code
with scalar fields based on RAMSES. Code presentation and application to the shapes of
clusters. A&A, 562:A78, February 2014. doi: 10.1051/0004-6361/201322412.

[22] K. Hinterbichler, J. Khoury, A. Levy, and A. Matas. Symmetron cosmology. Phys. Rev. D,
84(10):103521, November 2011. doi: 10.1103/PhysRevD.84.103521.

[23] J. Khoury and A. Weltman. Chameleon cosmology. Phys. Rev. D, 69(4):044026, February
2004. doi: 10.1103/PhysRevD.69.044026.

[24] L. Hui, A. Nicolis, and C. W. Stubbs. Equivalence principle implications of modified gravity
models. Phys. Rev. D, 80(10):104002, November 2009. doi: 10.1103/PhysRevD.80.104002.

[25] L.S. Sparke and J.S. Gallagher. Galaxies in the Universe: An Introduction. Cambridge
University Press, 2007. ISBN 9781139462389. URL https://books.google.no/books?
id=N8Hngab5liQC.

[26] L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blanton, A. S. Bolton,
J. Brinkmann, J. R. Brownstein, A. Burden, C.-H. Chuang, A. J. Cuesta, K. S. Daw-
son, D. J. Eisenstein, S. Escoffier, J. E. Gunn, H. Guo, S. Ho, K. Honscheid, C. Howlett,
D. Kirkby, R. H. Lupton, M. Manera, C. Maraston, C. K. McBride, O. Mena, F. Mon-
tesano, R. C. Nichol, S. E. Nuza, M. D. Olmstead, N. Padmanabhan, N. Palanque-
Delabrouille, J. Parejko, W. J. Percival, P. Petitjean, F. Prada, A. M. Price-Whelan,
B. Reid, N. A. Roe, A. J. Ross, N. P. Ross, C. G. Sabiu, S. Saito, L. Samushia, A. G.
Sánchez, D. J. Schlegel, D. P. Schneider, C. G. Scoccola, H.-J. Seo, R. A. Skibba, M. A.
Strauss, M. E. C. Swanson, D. Thomas, J. L. Tinker, R. Tojeiro, M. V. Magaña, L. Verde,
D. A. Wake, B. A. Weaver, D. H. Weinberg, M. White, X. Xu, C. Yèche, I. Zehavi, and
G.-B. Zhao. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic
Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. MN-
RAS, 441:24–62, June 2014. doi: 10.1093/mnras/stu523.

[27] C.-P. Ma and J. N. Fry. Nonlinear Kinetic Sunyaev-Zeldovich Effect. Physical Review
Letters, 88(21):211301, May 2002. doi: 10.1103/PhysRevLett.88.211301.

[28] P.J.E. Peebles. The Large-scale Structure of the Universe. Princeton series in physics.
Princeton University Press, 1980. ISBN 9780691082400. URL http://books.google.no/
books?id=O_BPaHFtX1YC.

[29] M. Vargas-Magaña, J. E. Bautista, J.-C. Hamilton, N. G. Busca, É. Aubourg, A. Labatie,
J.-M. Le Goff, S. Escoffier, M. Manera, C. K. McBride, D. P. Schneider, and C. N. A.
Willmer. An optimized correlation function estimator for galaxy surveys. A&A, 554:A131,
June 2013. doi: 10.1051/0004-6361/201220790.

[30] S. D. Landy and A. S. Szalay. Bias and variance of angular correlation functions. ApJ,
412:64–71, July 1993. doi: 10.1086/172900.

https://books.google.no/books?id=N8Hngab5liQC
https://books.google.no/books?id=N8Hngab5liQC
http://books.google.no/books?id=O_BPaHFtX1YC
http://books.google.no/books?id=O_BPaHFtX1YC

58 BIBLIOGRAPHY

[31] H. J. Mo and S. D. M. White. An analytic model for the spatial clustering of dark matter
haloes. MNRAS, 282:347–361, September 1996.

[32] W. H. Press and P. Schechter. Formation of Galaxies and Clusters of Galaxies by Self-
Similar Gravitational Condensation. ApJ, 187:425–438, February 1974. doi: 10.1086/
152650.

[33] R. K. Sheth, H. J. Mo, and G. Tormen. Ellipsoidal collapse and an improved model for
the number and spatial distribution of dark matter haloes. MNRAS, 323:1–12, May 2001.
doi: 10.1046/j.1365-8711.2001.04006.x.

[34] A. Johnson, C. Blake, J. Dossett, J. Koda, D. Parkinson, and S. Joudaki. Searching
for Modified Gravity: Scale and Redshift Dependent Constraints from Galaxy Peculiar
Velocities. ArXiv e-prints, April 2015.

[35] K. L. Masters, C. M. Springob, M. P. Haynes, and R. Giovanelli. SFI++ I: A New I-
Band Tully-Fisher Template, the Cluster Peculiar Velocity Dispersion, and H0. ApJ, 653:
861–880, December 2006. doi: 10.1086/508924.

[36] P. G. Ferreira, R. Juszkiewicz, H. A. Feldman, M. Davis, and A. H. Jaffe. Streaming
Velocities as a Dynamical Estimator of Ω. ApJ, 515:L1–L4, April 1999. doi: 10.1086/
311959.

[37] E. Bertschinger. Simulations of Structure Formation in the Universe. ARA&A, 36:599–654,
1998. doi: 10.1146/annurev.astro.36.1.599.

[38] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement. A new high
resolution code called RAMSES. A&A, 385:337–364, April 2002. doi: 10.1051/0004-6361:
20011817.

[39] A. V. Kravtsov, A. A. Klypin, and A. M. Khokhlov. Adaptive Refinement Tree: A New
High-Resolution N-Body Code for Cosmological Simulations. ApJS, 111:73–94, July 1997.
doi: 10.1086/313015.

[40] P. S. Behroozi, R. H. Wechsler, and H.-Y. Wu. The ROCKSTAR Phase-space Temporal
Halo Finder and the Velocity Offsets of Cluster Cores. ApJ, 762:109, January 2013. doi:
10.1088/0004-637X/762/2/109.

[41] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R. Nolta, C. L. Bennett, B. Gold,
M. Halpern, R. S. Hill, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, L. Page,
K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright.
Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra
and WMAP-derived Parameters. ApJS, 192:16, February 2011. doi: 10.1088/0067-0049/
192/2/16.

[42] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik,
D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon,
S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright.
Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological
Interpretation. ApJS, 192:18, February 2011. doi: 10.1088/0067-0049/192/2/18.

[43] E. Bertschinger. COSMICS: Cosmological Initial Conditions and Microwave Anisotropy
Codes. ArXiv Astrophysics e-prints, June 1995.

BIBLIOGRAPHY 59

[44] B. Li, W. A. Hellwing, K. Koyama, G.-B. Zhao, E. Jennings, and C. M. Baugh. The non-
linear matter and velocity power spectra in f(R) gravity. MNRAS, 428:743–755, January
2013. doi: 10.1093/mnras/sts072.

[45] G.-B. Zhao, B. Li, and K. Koyama. N-body simulations for f(R) gravity using a self-
adaptive particle-mesh code. Phys. Rev. D, 83(4):044007, February 2011. doi: 10.1103/
PhysRevD.83.044007.

[46] W. A. Hellwing, B. Li, C. S. Frenk, and S. Cole. Hierarchical clustering in chameleon f(R)
gravity. MNRAS, 435:2806–2821, November 2013. doi: 10.1093/mnras/stt1430.

[47] C. Corbett Moran, R. Teyssier, and B. Li. Chameleon $f(R)$ gravity on the Virgo cluster
scale. ArXiv e-prints, August 2014.

[48] E. Jennings, C. M. Baugh, B. Li, G.-B. Zhao, and K. Koyama. Redshift-space distortions
in f(R) gravity. MNRAS, 425:2128–2143, September 2012. doi: 10.1111/j.1365-2966.2012.
21567.x.

[49] H. Wilcox, D. Bacon, R. C. Nichol, P. J. Rooney, A. Terukina, A. K. Romer, K. Koyama,
G.-B. Zhao, R. Hood, R. G. Mann, M. Hilton, M. Manolopoulou, M. Sahlen, C. A. Collins,
A. R. Liddle, J. A. Mayers, N. Mehrtens, C. J. Miller, J. P. Stott, and P. T. P. Viana.
The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters. ArXiv
e-prints, April 2015.

[50] M. Kuhlen, M. Vogelsberger, and R. Angulo. Numerical simulations of the dark universe:
State of the art and the next decade. Physics of the Dark Universe, 1:50–93, November
2012. doi: 10.1016/j.dark.2012.10.002.

[51] T. Hamana, N. Yoshida, and Y. Suto. Reliability of the Dark Matter Clustering in Cos-
mological N-Body Simulations on Scales below the Mean Separation Length of Particles.
ApJ, 568:455–462, April 2002. doi: 10.1086/338970.

[52] C. Power and A. Knebe. The impact of box size on the properties of dark matter haloes in
cosmological simulations. MNRAS, 370:691–701, August 2006. doi: 10.1111/j.1365-2966.
2006.10562.x.

[53] J. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M. Warren, G. Yepes, S. Gottlöber,
and D. E. Holz. Toward a Halo Mass Function for Precision Cosmology: The Limits of
Universality. ApJ, 688:709–728, December 2008. doi: 10.1086/591439.

[54] S. Bhattacharya, A. Kosowsky, J. A. Newman, and A. R. Zentner. Galaxy peculiar ve-
locities from large-scale supernova surveys as a dark energy probe. Phys. Rev. D, 83(4):
043004, February 2011. doi: 10.1103/PhysRevD.83.043004.

[55] Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and other data: a
Monte- Carlo approach. Phys. Rev., D66:103511, 2002.

[56] Gnu scientific library: Qag adaptive integration, May 2015. URL http:
//www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.
html#QAG-adaptive-integration.

[57] R. Juszkiewicz, V. Springel, and R. Durrer. Dynamics of Pairwise Motions. ApJ, 518:
L25–L28, June 1999. doi: 10.1086/312055.

http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#QAG-adaptive-integration
http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#QAG-adaptive-integration
http://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#QAG-adaptive-integration

60 BIBLIOGRAPHY

[58] S. Bhattacharya and A. Kosowsky. Dark energy constraints from galaxy cluster peculiar
velocities. Phys. Rev. D, 77(8):083004, April 2008. doi: 10.1103/PhysRevD.77.083004.

[59] S. G. Murray, C. Power, and A. S. G. Robotham. HMFcalc: An online tool for calculating
dark matter halo mass functions. Astronomy and Computing, 3:23–34, November 2013.
doi: 10.1016/j.ascom.2013.11.001.

[60] B. Bassett and R. Hlozek. Baryon acoustic oscillations, page 246. 2010.

[61] E.-M. Mueller, F. de Bernardis, R. Bean, and M. Niemack. Constraints on gravity and
dark energy from the pairwise kinematic Sunyaev-Zeldovich effect. ArXiv e-prints, August
2014.

[62] W. A. Hellwing, A. Barreira, C. S. Frenk, B. Li, and S. Cole. Clear and Measurable
Signature of Modified Gravity in the Galaxy Velocity Field. Physical Review Letters, 112
(22):221102, June 2014. doi: 10.1103/PhysRevLett.112.221102.

[63] H. A. Winther and P. G. Ferreira. A Fast Route to Non-Linear Clustering Statistics in
Modified Gravity Theories. ArXiv e-prints, March 2014.

Appendices

61

Appendix A

Code

A.1 Calculating velocity statistics

A.1.1 main.cpp

1 // Standard Library and othe r s :
2 #inc lude <iostream>
3 #inc lude <cmath>
4 #inc lude <fstream>
5 #inc lude <sstream>
6 #inc lude <s t r i ng>
7 #inc lude <vector>
8 #inc lude <math . h>
9 #inc lude <s t d l i b . h>
10 #inc lude <time . h>
11 #inc lude <omp . h>
12 #inc lude <chrono>
13
14 // Debugging :
15 #inc lude <ca s s e r t >
16
17 // S e l f wr i t t en :
18 #inc lude " . . / gen_purpose/ f unc t i on s . h "
19 #inc lude " . . / gen_purpose/ s t a t i s t i c s . h "
20 #inc lude " ve l o_too l s . h "
21 #inc lude " bookkeeping . h "
22
23 #de f i n e N_cpu 64
24 #de f i n e runtime_mins std : : chrono : : duration_cast<std : : chrono : :

m i l l i s e c ond s >(std : : chrono : : h igh_reso lut ion_c lock : : now()−s t a r t) .
count () / (1000 . 0∗60 . 0)

25
26 us ing std : : cout ; us ing std : : endl ;
27 us ing std : : vec to r ; us ing std : : s t r i n g ;
28

63

64 APPENDIX A. CODE

29 vector<vector<double> > ve l o c o r r f un c (vector<double> o , vector<vector
<double> > H, vector<vector<double> >:: s i ze_type N, double
boxs ize , i n t b in s i z e , vector<double>& cos2 , vector<double>&
counter , s t r i n g stat , i n t sampling = 0 , i n t vbin = 0) ;

30 vector<double> ve l o c i t yCo r r e c t i o n (vector<double> d i s t s , vector<
double> o , vector<double> v , double boxs i z e) ;

31 vector<double> po s i t i onCo r r e c t i on (vector<double> d , double boxs i z e) ;
32 vector<vector<double> > std_jackkn i f e (vector<vector<double> >

samples) ;
33 vector<vector<vector<double> > > bootst rap (s t r i n g stat , s t r i n g cosmo

, i n t samples , vector<double> o , vector<vector<double> > relH ,
double boxs ize , i n t b in s i z e , vector<double> xvec , s t r i n g ext) ;

34 void pa i rB ins (const vector<vector<double> > &Halos , vector<vector<
int> > &pB, i n t b i n s i z e) ;

35 void pairCosThetas (const vector<vector<double> > &Halos , vector<
vector<double> > &pT, i n t b i n s i z e) ;

36
37 #de f i n e NDEBUG
38
39 auto s t a r t = std : : chrono : : h igh_reso lut ion_c lock : : now() ;
40
41 vector<vector<int> > pB;
42 vector<vector<double> > pT;
43
44 i n t main (i n t argc , char ∗∗ argv)
45 {
46 // Debugging s ec t i on , does not run i f NDEBUG i s de f ined :
47 #i f n d e f NDEBUG
48
49 s t r i n g t e s t s t a t = " v r e l " ;
50
51 i n t t e s t b i n s i z e = 2 ;
52 double t e s t b o x s i z e = 3 ;
53 i n t t e s tbox s i z e_ in t = sq r t (3∗ t e s t b o x s i z e ∗ t e s t b o x s i z e) ;
54 vector<double> te s t ob s = {1 .5 , 1 . 5 , 1 . 5 } ;
55 i n t tes t sumlength = te s tbox s i z e_ in t / t e s t b i n s i z e + 1 ;
56 cout << testsumlength << endl ;
57 vector<double> t e s t c o r r (tes t sumlength) ;
58 vector<double> t e s t c oun t e r (tes t sumlength) ;
59 vector<vector<double> > te s tHa lo s ;
60 i f (t e s t s t a t == " vcorr ")
61 {
62 t e s tHa lo s . push_back ({0 , 2 . 3 , 2 . 3 , 123 , 144 , 102 , 0}) ;
63 t e s tHa lo s . push_back ({1 . 2 , 2 . 9 , 1 . 4 , 70 , −120, −56, 0}) ;
64 t e s tHa lo s . push_back ({0 . 8 , 2 . 1 , 0 . 3 , −180, −4, 28 , 0}) ;
65 t e s tHa lo s . push_back ({0 . 3 , 1 . 3 , 2 . 3 , 90 , −24, −13, 0}) ;
66 }
67 e l s e i f (t e s t s t a t == " v r e l ")
68 {
69 t e s tHa lo s . push_back ({0 , 2 . 3 , 2 . 3 , 123 , 144 , 102 , 0}) ;

A.1. CALCULATING VELOCITY STATISTICS 65

70 t e s tHa lo s . push_back ({1 . 2 , 2 . 9 , 1 . 4 , 70 , −120, −56, 0}) ;
71 }
72
73 auto testN = te s tHa lo s . s i z e () ;
74 vector<vector<double> > te s t r e lH = posrad (te s tobs , te s tHa los ,

t e s t b o x s i z e) ;
75 // cout << " a " << endl ;
76
77 f o r (dec l type (testN) i = 0 ; i != testN ; ++i)
78 t e s t r e lH [i] . push_back (i) ;
79
80 // cout << "b" << endl ;
81 pa i rB ins (t e s t r e lH , pB, t e s t b i n s i z e) ;
82 // cout << " c " << endl ;
83 i f (t e s t s t a t == " v r e l ")
84 {
85 pairCosThetas (t e s t r e lH , pT, t e s t b i n s i z e) ;
86 }
87
88 // cout << "d" << endl ;
89 vector<vector<double> > tes t samp le s = ve l o c o r r f un c (te s tobs ,

t e s t r e lH , testN , t e s tbox s i z e , t e s t b i n s i z e , t e s t c o r r , t e s t counte r ,
t e s t s t a t) ;

90
91 // vector<vector<double> > samp = ve l o c o r r f un c (o , relH , N,

boxs ize , b i n s i z e , corr , counter , s tat , sampling) ;
92 // cout << " e " << endl ;
93 vector<double> t e s t x = {1 , 3 , 5} ;
94 // cout << " f " << endl ;
95 wr i t e (" t e s t c o r r . dat " , t e s t x . data () , t e s t c o r r . data () ,

te s t sumlength) ;
96 cout << "End o f t e s t . " << endl ;
97 whi l e (t e s t x [0] == 1) ;
98 #end i f
99
100 s t r i n g s t a t = argv [1] ; // " v r e l " ; / / " vcor r_noes t i " ; / / " vcorr " ; / / "

vcor r_noes t i " ;
101 s t r i n g cosmo = argv [2] ; // " lcdm " ;
102
103 //Observer p o s i s i o n s from (0 , 1) in each t imens ion :
104 double xpos = 0 . 5 ; double ypos = 0 . 5 ; double zpos = 0 . 5 ;
105
106 s t r i n g b i n s c a l e = " l i n e a r " ;
107 double boxs i z e = 256 ;
108
109 bool e r r o r s = true ; // t rue ;
110 i n t b i n s i z e = std : : s t o i (argv [5]) ;
111 double massFloor = std : : s tod (argv [4]) ;
112 double massCe i l ing = std : : stod (argv [7]) ;
113 i f ((massCei l ing < massFloor) and (massCei l ing >= 0))

66 APPENDIX A. CODE

114 cout << " Inva l i d massbin ! ! ! " << endl ;
115 i n t boxs i ze_int = sq r t (3∗ boxs i z e ∗ boxs i z e) ;
116 i n t sumlength = boxs i ze_int / b i n s i z e + 1 ;
117 i n t samples = std : : s t o i (argv [3]) ; // 3 ;
118 i n t sampling = 0 ;
119 i f (samples == 0)
120 {
121 sampling = 1 ;
122 }
123 e l s e i f (samples == −1)
124 {
125 sampling = 2 ;
126 }
127 cout << " Sampling i s s e t to opt ion : " << sampling << endl ;
128 std : : s t r i ng s t r eam ext ;
129 ext << " binsca le_ " << b in s c a l e << " _binsize_ " << b i n s i z e << "

massfloor " << massFloor ;
130
131 vector<double> cor r (sumlength) ;
132 vector<double> counter (sumlength) ;
133 i n t Nran ;
134
135 unsigned i n t N_c = 7 ;
136 vector<int> co l = {2 , 8 , 9 , 10 , 11 , 12 , 13} ;
137 i n t header = 19 ;
138 vector<vector<double> > Halos ;
139 i f (cosmo != " random")
140 {
141 i f (cosmo == " random_lcdm")
142 Halos = load (" . . / . . / data/ runs /run_lcdm/halos_0 . 0 . a s c i i " ,

N_c, c o l) ;
143 e l s e
144 Halos = load (" . . / . . / data/ runs /run_" + cosmo + " /halos_0

. 0 . a s c i i " , N_c, c o l) ;
145
146 double m;
147 f o r (dec l type (Halos . s i z e ()) i = 0 ; i<Halos . s i z e () ; ++i)
148 {
149 m = Halos [i] [0] ;
150 Halos [i] . e r a s e (Halos [i] . beg in ()) ;
151 Halos [i] . push_back (m) ;
152 }
153
154 // El iminat ing ha lo s with masses below the s e t mass f l o o r :
155 auto i tHa l o s = Halos . begin () ;
156 whi l e (i tHa l o s != Halos . end ())
157 {
158 i f (massCei l ing < 0)
159 i f ((∗ i tHa l o s) [6] < massFloor)
160 i tHa l o s = Halos . e r a s e (i tHa l o s) ;

A.1. CALCULATING VELOCITY STATISTICS 67

161 e l s e
162 ++i tHa l o s ;
163 i f (massCei l ing >= 0)
164 i f ((∗ i tHa l o s) [6] < massFloor or (∗ i tHa l o s) [6] >

massCei l ing)
165 i tHa l o s = Halos . e r a s e (i tHa l o s) ;
166 e l s e
167 ++i tHa l o s ;
168 }
169
170 i f (cosmo == " random_lcdm")
171 {
172 Nran = 10000 ;
173 Halos = ranSe lectCat (Halos , Nran) ;
174 }
175 }
176
177 double vstd ;
178 unsigned i n t seed ;
179
180 i f (cosmo == " random")
181 {
182 Nran = std : : s t o i (argv [4]) ;
183 vstd = std : : stod (argv [6]) ; // 200 ;
184 seed = std : : s t o i (argv [7]) ; // time (NULL) ;
185 Halos = genRanCat (Nran , vstd , boxs ize , seed) ;
186 }
187
188 auto N = Halos . s i z e () ;
189 cout << "Number o f ha lo s above mass f l o o r : " << N << endl ;
190
191 // Set obse rve r p o s i t i o n :
192 vector<double> o = {xpos∗ boxs ize , ypos∗ boxs ize , zpos ∗ boxs i z e } ;
193 vector<vector<double> > relH = posrad (o , Halos , boxs i z e) ;
194
195 f o r (dec l type (N) i = 0 ; i != N; ++i)
196 relH [i] . push_back (i) ;
197
198 cout << " Sta r t i ng to c a l c u l a t e b inn ings . . . | At runtime : " <<

runtime_mins << " min . " << endl ;
199 pa i rB ins (relH , pB, b i n s i z e) ;
200 cout << "Done c a l c u l a t i n g b inn ings . " << " | At runtime : " <<

runtime_mins << " min . " << endl ;
201
202 i f (s t a t == " v r e l ")
203 {
204 cout << " Sta r t i ng to c a l c u l a t e p−s at runtime : " <<

runtime_mins << " min . " << endl ;
205 pairCosThetas (relH , pT, b i n s i z e) ;

68 APPENDIX A. CODE

206 cout << "Done c a l c u l a t h i n g p−s at runtime : " << runtime_mins
<< " min . " << endl ;

207 }
208
209 vector<vector<double> > samp = ve l o c o r r f un c (o , relH , N, boxs ize ,

b i n s i z e , corr , counter , s tat , sampling) ;
210
211 vector<double> xvec (sumlength) ;
212 double s tep = sq r t (3∗ boxs i z e ∗ boxs i z e) / ((double) sumlength − 1 . 0) ;
213 f o r (i n t i = 0 ; i<sumlength ; ++i) xvec [i] = i ∗ s tep + 0.5∗ s tep ;
214
215 // s t r i n g ve lo txt , counttxt , sampletxt ;
216 i n t vbincount = samp [0] . s i z e () ;
217 vector<double> vvec (samp [0] . s i z e ()) ;
218
219 vector<s t r i ng> f i l enames = f i l enamegen (stat , cosmo , ext . s t r () ,

Nran , vstd , seed , sampling , samples , massCei l ing) ;
220 s t r i n g v e l o t x t = f i l enames [0] ;
221 s t r i n g counttxt = f i l enames [1] ;
222 s t r i n g sampletxt = f i l enames [2] ;
223
224 wr i t e (v e l o t x t . c_str () , xvec . data () , co r r . data () , sumlength) ;
225 wr i t e (counttxt . c_str () , xvec . data () , counter . data () , sumlength) ;
226
227 i f (sampling == 1)
228 {
229 f o r (dec l type (samp . s i z e ()) i = 0 ; i<samp [0] . s i z e () ; ++i)
230 vvec [i] = (i−vbincount /2 . 0) ∗25 .0 − 1 2 . 5 ;
231 }
232 e l s e i f (sampling == 2)
233 {
234 f o r (dec l type (samp . s i z e ()) i = 0 ; i<samp [0] . s i z e () ; ++i)
235 vvec [i] = (i +1.0) ∗25 .0 + 12 . 5 ;
236 }
237 samp . push_back (vvec) ;
238 writeMatr ix (sampletxt , samp) ;
239 cout << "Runtime i s : " << runtime_mins << " mins . " << endl ;
240
241 s t r i n g c o r r s t r , c oun t e r s t r ;
242 vector<vector<vector<double> > > sampvec ;
243 i f (sampling == 2)
244 e r r o r s = f a l s e ;
245 i f (e r r o r s)
246 {
247 sampvec = bootst rap (s tat , cosmo , samples , o , relH , boxs ize ,

b i n s i z e , xvec , ext . s t r ()) ;
248
249 s t r i n g c o r r s t r = f i l enames [3] ;
250 s t r i n g coun t e r s t r = f i l enames [4] ;
251

A.1. CALCULATING VELOCITY STATISTICS 69

252 writeMatr ix (c o r r s t r , sampvec [0]) ;
253 writeMatr ix (counte r s t r , sampvec [1]) ;
254 }
255 /∗
256 i f (e r r o r s)
257 {
258 cout << " Ca l cu l a t ing standard dev i a t i on s . . . " << endl ;
259 vector<vector<double> > std_mean = std_jackkn i f e (samples) ;
260 auto N_bins = std_mean . s i z e () ;
261
262 f o r (dec l type (N_bins) i = 0 ; i != N_bins ; ++i)
263 {
264 std_mean [i] . i n s e r t (std_mean [i] . begin () ,1 , xvec [i]) ;
265 }
266
267 writeMatr ix (" std_jack . dat " , std_mean) ;
268 }
269 ∗/
270 return 0 ;
271 }
272
273 void pa i rB ins (const vector<vector<double> > &Halos , vector<vector<

int> > &pB, i n t b i n s i z e)
274 {
275 auto N = Halos . s i z e () ;
276 vector<int> empty ; // (N) ;
277 double boxs i z e = 900 ;
278 double d i s t ;
279 i n t bin ;
280 f o r (dec l type (N) i = 0 ; i < N; ++i)
281 {
282 pB . push_back (empty) ;
283 f o r (auto j = i ; j<N; ++j)
284 pB [i] . push_back (0) ;
285 }
286 #pragma omp p a r a l l e l f o r ordered num_threads (N_cpu) schedu le (

dynamic) p r i va t e (d i s t , bin)
287 f o r (dec l type (N) i = 0 ; i < N; ++i)
288 {
289 f o r (auto j = i ; j<N; ++j)
290 {
291 d i s t = r f i n d (Halos [i] [0] , Halos [i] [1] , Halos [i] [2] ,

Halos [j] [0] , Halos [j] [1] , Halos [j] [2] , boxs ize , 0) ;
292 bin = d i s t / b i n s i z e ;
293 i f (bin < 0 or bin > 221)
294 cout << bin << " i : " << i << " j : " << endl ;
295 i f (i == j)
296 bin = 0 ;
297 pB [i] [j−i] = bin ;
298 }

70 APPENDIX A. CODE

299 }
300 }
301
302 void pairCosThetas (const vector<vector<double> > &Halos , vector<

vector<double> > &pT, i n t b i n s i z e)
303 {
304 auto N = Halos . s i z e () ;
305 vector<double> empty ;
306 double boxs i z e = 900 ;
307 double cos_theta , theta ;
308 vector<double> d1 (3) ;
309 vector<double> d2 (3) ;
310 vector<double> ru ;
311 vector<double> d1u (3) ;
312 vector<double> d2u (3) ;
313 double ru l , d1l , d2 l ;
314 double p ;
315 //#pragma omp p a r a l l e l f o r ordered num_threads (N_cpu) schedu le (

dynamic)
316 f o r (dec l type (N) i = 0 ; i < N; ++i)
317 {
318 pT. push_back (empty) ;
319 f o r (auto j = i ; j<N; ++j)
320 {
321 pT[i] . push_back (0) ;
322 }
323 }
324 #pragma omp p a r a l l e l f o r ordered num_threads (N_cpu) schedu le (

dynamic) p r i va t e (d1 , d2 , ru , p , ru l , d1l , d2l , d1u , d2u)
325 f o r (dec l type (N) i = 0 ; i < N; ++i)
326 {
327 d1u = {0 , 0 , 0} ; d2u = {0 , 0 , 0} ;
328
329 f o r (auto j = i ; j<N; ++j)
330 {
331 i f (i == j)
332 p = 0 ;
333 e l s e
334 {
335 d1 = {Halos [i] [0] , Halos [i] [1] , Halos [i] [2] } ;
336 d2 = {Halos [j] [0] , Halos [j] [1] , Halos [j] [2] } ;
337 ru = vec_subtract (d1 , d2) ;
338 ru l = vec_length (ru) ;
339 d1l = vec_length (d1) ;
340 d2l = vec_length (d2) ;
341 f o r (i n t k = 0 ; k<3; ++k)
342 {
343 ru [k] = ru [k] / ru l ;
344 d1u [k] = d1 [k] / d1 l ;
345 d2u [k] = d2 [k] / d2 l ;

A.1. CALCULATING VELOCITY STATISTICS 71

346 }
347 p = dot_product (ru , vec_add (d1u , d2u)) ;
348 #i f n d e f NDEBUG
349 cout << " ru : (" << ru [0] << " , " << ru [1] << " , " <<

ru [2] <<") " << endl ;
350 cout << "d1u : (" << d1u [0] << " , " << d1u [1] << " , "

<< d1u [2] << ") " << endl ;
351 cout << "d2u : (" << d2u [0] << " , " << d2u [1] << " , "

<< d2u [2] << ") " << endl ;
352 #end i f
353 }
354
355 pT[i] [j−i] = p ;
356 }
357 }
358 }
359 vector<vector<vector<double> > > bootst rap (s t r i n g stat , s t r i n g cosmo

, i n t samples , vector<double> o , vector<vector<double> > relH ,
double boxs ize , i n t b in s i z e , vector<double> xvec , s t r i n g ext)

360 {
361 auto N = relH . s i z e () ;
362 vector<double> nul lVec = xvec ;
363 f o r (dec l type (N) i = 0 ; i != nul lVec . s i z e () ; ++i)
364 nul lVec [i] = 0 ;
365 vector<double> fourVec = {0 , 0 , 0 , 0} ;
366 vector<vector<double> > s ;
367 vector<vector<double> > cor r (samples+1, nul lVec) ;
368 vector<vector<double> > counter (samples+1, nul lVec) ;
369 vector<vector<double> > ranHorg (N, fourVec) ;
370 vector<vector<double> > ranH ;
371 co r r [0] = xvec ; counter [0] = xvec ;
372 bool seeded = f a l s e ;
373 std : : mt19937 genera tor (42u) ;
374 i f (! seeded)
375 {
376 generator . seed (s ta t i c_cas t<unsigned int >(time (NULL))) ;
377 seeded = true ;
378 std : : cout << " Seeded uniform RNG engine f o r boots t rap . " <<

std : : endl ;
379 }
380 boost : : uniform_int<> uni_dist (0 , N−1) ;
381 boost : : var iate_generator<std : : mt19937&, boost : : uniform_int<> >

uni (generator , uni_dist) ;
382
383 //#pragma omp p a r a l l e l l num_threads (N_cpu)
384 //{
385 // vector<vector<double> > ranH(N, fourVec) ;
386 #pragma omp p a r a l l e l f o r ordered num_threads (N_cpu) schedu le (

dynamic) p r i va t e (ranH , s) shared (N, o , boxs ize , b i n s i z e , corr ,
counter , s tat , ranHorg)

72 APPENDIX A. CODE

387 f o r (i n t i = 0 ; i < samples ; ++i)
388 {
389 ranH = ranHorg ;
390 i f (i %100 == 0)
391 cout << " Sample number " << i+1 << " out o f " << samples

<< " . | Ca lcu lated by thread number " << omp_get_thread_num () <<
" . | At runtime : " << std : : chrono : : durat ion_cast<std : : chrono : :

m i l l i s e c ond s >(std : : chrono : : h igh_reso lut ion_c lock : : now()−s t a r t) .
count () / (1000 . 0∗60 . 0) << " min . " << endl ;

392
393 f o r (dec l type (N) j = 0 ; j != N; ++j)
394 {
395 ranH [j] = relH [uni ()] ;
396 }
397 s = ve l o c o r r f un c (o , ranH , N, boxs ize , b i n s i z e , c o r r [i +1] ,

counter [i +1] , s t a t) ;
398 }
399
400 return { corr , counter } ;
401 }
402
403 vector<vector<double> > ve l o c o r r f un c (vector<double> o , vector<vector

<double> > H, vector<vector<double> >:: s i ze_type N, double
boxs ize , i n t b in s i z e , vector<double>& corr , vector<double>&
counter , s t r i n g stat , i n t sampling , i n t vbin)

404 {
405 double v_max = 1e6 ;
406 double v_min = −v_max ;
407 double vb inS i ze = 25 ;
408
409 i n t vbincount ;
410 i f (sampling == 1)
411 vbincount = 2∗v_max/ vb inS i ze + 2 ;
412 e l s e i f (sampling == 2)
413 vbincount = v_max/ vb inS i ze + 1 ;
414 double d i s t ;
415 i n t bin , vb inSe l e c t ;
416 auto N_bins = cor r . s i z e () ;
417 vector<double> cos2 (N_bins) ;
418 vector<double> empty (vbincount) ;
419 vector<vector<double> > samples ;
420 f o r (dec l type (N_bins) i = 0 ; i<N_bins ; ++i)
421 samples . push_back (empty) ;
422
423 double theta ;
424 double cos_theta ;
425
426 vector<double> p1 (3) ;
427 vector<double> p2 (3) ;
428 vector<double> d1 (3) ;

A.1. CALCULATING VELOCITY STATISTICS 73

429 vector<double> d2 (3) ;
430 vector<double> v1Vec (3) ;
431 vector<double> v2Vec (3) ;
432
433 double v1 , v2 ; // r a d i a l v e l o c i t i e s
434 double p , d1l , d2l , ru l , over , under ;
435 vector<double> d1u (3) ;
436 vector<double> d2u (3) ;
437 vector<double> ru (3) ;
438 i n t i_ind , j_ind ;
439 f o r (dec l type (N) i = 0 ; i<N; ++i)
440 {
441 // i f (i%10 == 0) cout << i << " | Runtime : " << runtime_mins

<< " min . " << endl ;
442 f o r (auto j = i +1; j<N; ++j)
443 {
444 i f (H[i] [4] > H[j] [4])
445 {
446 i_ind = H[j] [4] ;
447 j_ind = H[i] [4] ;
448 }
449
450 e l s e
451 i_ind = H[i] [4] ;
452 j_ind = H[j] [4] ;
453 i f (i_ind == j_ind)
454 cont inue ;
455 bin = pB [i_ind] [j_ind−i_ind] ;
456
457 v1 = H[i] [3] ; // r ad i a l_ve l o c i t y (d1 , v1Vec) ;
458 v2 = H[j] [3] ; // r ad i a l_ve l o c i t y (d2 , v2Vec) ;
459
460 #i f n d e f NDEBUG
461 cout << " i , j : " << i << " , " << j << endl ;
462 cout << " d i s t : " << d i s t << endl ;
463 cout << " bin : " << bin << endl ;
464 cout << " vi , v j : " << v1 << " , " << v2 << endl ;
465
466 #end i f
467
468 i f (s t a t == " vco r r_es t i ")
469 {
470 over = v1∗v2∗ cos_theta ;
471 under = cos_theta ∗ cos_theta ;
472 co r r [bin] += over ;
473 cos2 [bin] += under ;
474 }
475 e l s e i f (s t a t == " vcorr ")
476 {
477 over = v1∗v2 ;

74 APPENDIX A. CODE

478 under = 1 ;
479 co r r [bin] += over ;
480 cos2 [bin] += under ;
481 }
482 e l s e i f (s t a t == " v r e l ")
483 {
484 p = pT[i_ind] [j_ind−i_ind] ;
485 over = 2∗(v1 − v2) ∗p ;
486 under = p∗p ;
487 co r r [bin] += over ;
488 cos2 [bin] += under ;
489 #i f n d e f NDEBUG
490 cout << "p : " << p << endl ;
491 #end i f
492 }
493 counter [bin] += 1 ;
494 i f (sampling == 1)
495 {
496 // over = −120;
497 //under = 1 ;
498 vb inSe l e c t = vbincount /2 + (i n t) ((over /under)) /

vb inS i ze ;
499 i f (vb inSe l e c t < 0)
500 vb inSe l e c t = 0 ;
501 e l s e i f (vb inSe l e c t > vbincount−1)
502 vb inSe l e c t = vbincount −1;
503 samples [bin] [vb inSe l e c t] += 1 ;
504 }
505
506 e l s e i f (sampling == 2)
507 {
508 vb inSe l e c t = (i n t) abs (over) / vb inS i ze ;
509 i f (vb inSe l e c t > vbincount−1)
510 vb inSe l e c t = vbincount −1;
511 samples [bin] [vb inSe l e c t] += 1 ;
512 }
513 }
514 }
515 f o r (dec l type (N_bins) i = 0 ; i<N_bins ; i++)
516 {
517 // i f (samples [i] . s i z e () != counter [i])
518 // std : : c e r r << "The number o f samples in bin " << i << "

i s not equal to the pa i r count ! ! ! " << endl ;
519 // e l s e
520 // ;
521 i f (cos2 [i] != 0 . 0)
522 {
523 co r r [i] = co r r [i] / cos2 [i] ; // counter [i] ;
524 }
525 // e l s e

A.1. CALCULATING VELOCITY STATISTICS 75

526 // cout << " cos2 has a 0 value . " << endl ;
527 }
528 return samples ;
529 }
530
531 vector<double> ve l o c i t yCo r r e c t i o n (vector<double> d i s t s , vector<

double> o , vector<double> v , double boxs i z e)
532 {
533 double boxs i z e_ha l f = boxs i z e / 2 . 0 ;
534 f o r (i n t i = 0 ; i != 3 ; ++i)
535 {
536 i f (abs (d i s t s [i]) > boxs i z e_ha l f)
537 v [i] = −v [i] ;
538 }
539
540 return v ;
541 }
542
543 vector<double> po s i t i onCo r r e c t i on (vector<double> d , double boxs i z e)
544 {
545 double L = boxs i z e / 2 . 0 ;
546 f o r (i n t i = 0 ; i <3; ++i)
547 {
548 i f (d [i] > L) d [i] −= boxs i z e ;
549 e l s e i f (d [i] < −L) d [i] += boxs i z e ;
550 }
551 return d ;
552 }
553
554 vector<vector<double> > std_jackkn i f e (vector<vector<double> >

samples)
555 {
556 auto N_bins = samples . s i z e () ;
557 vector<double>nul lVec (2) ;
558 vector<vector<double> > std_mean (N_bins , nul lVec) ;
559 #pragma omp p a r a l l e l f o r num_threads (N_cpu) schedu le (dynamic)
560 f o r (dec l type (N_bins) i = 0 ; i<N_bins ; ++i)
561 {
562 i f (samples [i] . s i z e () == 0) cont inue ;
563 i f (t rue) // i%10 == 0)
564 cout << " \n" << "Bin number " << i << " : Samples ize to

j a c kkn i f e : " << samples [i] . s i z e () << endl ;
565 cout << " Calcu lated by thread number : " <<

omp_get_thread_num () << " At runtime : " << std : : chrono : :
duration_cast<std : : chrono : : m i l l i s e c ond s >(std : : chrono : :
h igh_reso lut ion_c lock : : now()−s t a r t) . count () / (1000 . 0∗60 . 0) << "
min . " << endl ;

566 std_mean [i] [0] = boots t rap (samples [i] , std_mean [i] [1] , "symm
") ;

567 }

76 APPENDIX A. CODE

568
569 return std_mean ;
570 }

A.1. CALCULATING VELOCITY STATISTICS 77

A.1.2 velo_tools.h

1 #i f n d e f VELO_TOOLS
2 #de f i n e VELO_TOOLS
3
4 #inc lude <iostream>
5 #inc lude <cmath>
6 #inc lude <random>
7 #inc lude <boost /random/uni form_real . hpp>
8 #inc lude <boost /random/ normal_di s t r ibut ion . hpp>
9 #inc lude <boost /random/ var ia te_generator . hpp>
10
11 #inc lude " . . / gen_purpose/ f unc t i on s . h "
12
13 us ing std : : cout ; us ing std : : endl ;
14
15 i n l i n e double r ad i a l_ve l o c i t y (std : : vector<double> x , std : : vector<

double> v) ;
16 std : : vector<std : : vector<double> > posrad (std : : vector<double> o , std

: : vector<std : : vector<double> > H, double boxs i z e) ;
17 i n l i n e std : : vector<double> ve l o c i t yCo r r e c t i o n (std : : vector<double> d ,

std : : vector<double> o , std : : vector<double> v , double boxs i z e) ;
18 i n l i n e std : : vector<double> po s i t i onCo r r e c t i on (std : : vector<double> d ,

double boxs i z e) ;
19
20 std : : vector<double> pairRanger (std : : vector<std : : vector<double> > H) ;
21
22 std : : vector<std : : vector<double> > genRanCat (const unsigned i n t N,

const double vstd , const double boxs ize , const unsigned i n t seed
= time (NULL)) ;

23 std : : vector<std : : vector<double> > ranSe lectCat (std : : vector<std : :
vector<double> > Org , const i n t Npick , unsigned i n t seed = −1) ;

24
25 #inc lude " ve l o_too l s . cpp "
26 #end i f

78 APPENDIX A. CODE

A.1.3 velo_tools.cpp

1 double r ad i a l_ve l o c i t y (std : : vector<double> x , std : : vector<double> v)
2 {
3 // Parameters :
4 // x : vec to r (x , y , z) from the po s i t i o n o f the s t a t i ona ry

obse rve r to the halo .
5 // v : vec to r with (v_x , v_y , v_z) v e l o c i t y o f the halo .
6
7 // Returns :
8 // v_r : The r a d i a l v e l o c i t y o f the halo seen from the obse rver .
9
10 double v_r = dot_product (x , v) / sq r t (dot_product (x , x)) ;
11 re turn v_r ;
12 }
13
14 std : : vector<std : : vector<double> > posrad (std : : vector<double> o , std

: : vector<std : : vector<double> > H, double boxs i z e)
15 {
16 auto N = H. s i z e () ;
17 double vr ;
18 std : : vector<double> nul lVec (4) ;
19 std : : vector<std : : vector<double> > relH (N, nul lVec) ;
20 std : : vector<double> d (3) ; s td : : vector<double> v (3) ;
21 f o r (dec l type (N) i = 0 ; i != N; ++i)
22 {
23 relH [i] [0] = H[i] [0] − o [0] ; re lH [i] [1] = H[i] [1] − o [1] ; re lH [i

] [2] = H[i] [2] − o [2] ;
24 d = { relH [i] [0] , re lH [i] [1] , re lH [i] [2] } ;
25 v = {H[i] [3] , H[i] [4] , H[i] [5] } ;
26 v = ve l o c i t yCo r r e c t i o n (d , o , v , boxs i z e) ;
27 d = po s i t i onCo r r e c t i on (d , boxs i z e) ;
28 vr = rad i a l_ve l o c i t y (d , v) ;
29 relH [i] [3] = vr ;
30 }
31
32 return relH ;
33 }
34
35 std : : vector<double> pairRanger (std : : vector<std : : vector<double> > H)
36 {
37 std : : vector<double> r ;
38 auto N = H. s i z e () ;
39 double boxs i z e = 900 ;
40 f o r (dec l type (N) i = 0 ; i != N; ++i)
41 {
42 f o r (dec l type (N) j = 0 ; j != i ; ++j)
43 {
44 r . push_back (r f i n d (H[i] [0] , H[i] [1] , H[i] [2] , H[j] [0] , H[

j] [1] , H[j] [2] , boxs i z e)) ;

A.1. CALCULATING VELOCITY STATISTICS 79

45 }
46 }
47
48 return r ;
49 }
50
51 std : : vector<std : : vector<double> > genRanCat (const unsigned i n t N,

const double vstd , const double boxs ize , const unsigned i n t seed)
52 {
53 // Generates random cata logue f o r use in v e l o s t a t s .
54 // Format : {x , y , z , vx , vy , vz}
55 std : : mt19937 genera tor (42u) ;
56 cout << " asd " << endl ;
57 generator . seed (s ta t i c_cas t<unsigned int >(seed)) ;
58 boost : : uniform_real<> uni_dist (0 , boxs i z e) ;
59 boost : : var iate_generator<std : : mt19937&, boost : : uniform_real<> >

uni (generator , uni_dist) ;
60 cout << " a " << endl ;
61 boost : : var iate_generator<std : : mt19937 , boost : :

normal_distr ibut ion<> >
62 norm(std : : mt19937 (seed) ,
63 boost : : normal_distr ibut ion <>(0, vstd)) ;
64
65 std : : vector<double> nul lVec (7) ;
66 std : : vector<std : : vector<double> > cat (N, nul lVec) ;
67 f o r (unsigned i n t i = 0 ; i<N; ++i)
68 {
69 cat [i] [0] = uni () ;
70 cat [i] [1] = uni () ;
71 cat [i] [2] = uni () ;
72 cat [i] [3] = norm () ;
73 cat [i] [4] = norm () ;
74 cat [i] [5] = norm () ;
75 }
76
77 return cat ;
78 }
79
80 std : : vector<std : : vector<double> > ranSe lectCat (std : : vector<std : :

vector<double> > Org , const i n t Npick , unsigned i n t seed)
81 {
82 i f (seed == −1)
83 seed = time (NULL) ;
84 std : : mt19937 genera tor (42u) ;
85 generator . seed (s ta t i c_cas t<unsigned int >(seed)) ;
86 boost : : uniform_int<> uni_dist (0 ,Org . s i z e ()−1) ;
87 boost : : var iate_generator<std : : mt19937&, boost : : uniform_int<> >

uni (generator , uni_dist) ;
88
89 std : : vector<std : : vector<double> > New;

80 APPENDIX A. CODE

90 f o r (i n t i = 0 ; i<Npick ; ++i)
91 {
92 New. push_back (Org [uni ()]) ;
93 }
94
95 return New;
96 }

A.1. CALCULATING VELOCITY STATISTICS 81

A.1.4 bookkeeping.h

1 #i f n d e f BOOKKEEPING_H
2 #de f i n e BOOKKEEPING_H
3
4 std : : vector<std : : s t r i ng> f i l enamegen (std : : s t r i n g stat , s td : : s t r i n g

cosmo , std : : s t r i n g ext , i n t Nran , double vstd , unsigned i n t seed ,
i n t sampling , i n t samples , double massCei l ing) ;

5
6 #inc lude " bookkeeping . cpp "
7 #end i f

82 APPENDIX A. CODE

A.1.5 bookkeeping.cpp

1 std : : vector<std : : s t r i ng> f i l enamegen (std : : s t r i n g stat , s td : : s t r i n g
cosmo , std : : s t r i n g ext , i n t Nran , double vstd , unsigned i n t seed ,
i n t sampling , i n t samples , double massCei l ing)

2 {
3
4 std : : s t r i n g c o r r s t r , c oun t e r s t r ;
5 std : : s t r i ng s t r eam n , mC;
6 n << samples ;
7 mC << massCei l ing ;
8
9 std : : s t r i n g ve lo txt , counttxt , sampletxt ;
10 std : : s t r i ng s t r eam vstds t r , Nranstr , s e e d s t r ;
11 v s td s t r << vstd ; Nranstr << Nran ; s e ed s t r << seed ;
12
13 std : : s t r i n g f o l d e r ;
14 i f (cosmo != " random" and cosmo != " random_lcdm")
15 {
16 f o l d e r = " cosmoruns/ " ;
17 i f (massCei l ing > 0)
18 ext = ext + " _massCeiling_ " + mC. s t r () ;
19 v e l o t x t = f o l d e r + s t a t + "_" + ext + "_" + cosmo + " . txt " ;
20 counttxt = f o l d e r + " count_ " + ext + "_" + cosmo + " . txt " ;
21 sampletxt = f o l d e r + " samples /samples_ " + ext + "_" + cosmo

+ " . txt " ;
22 i f (sampling == 2)
23 sampletxt = f o l d e r + " samples /samples_over_ " + ext + "_"

+ cosmo + " . txt " ;
24 c o r r s t r = f o l d e r + " bootstrap_ " + s t a t + "_" + ext + "_" +

cosmo + "_" + n . s t r () + " . txt " ;
25 coun t e r s t r = f o l d e r + " bootstrap_count_ " + ext + "_" + cosmo

+ "_" + n . s t r () + " . txt " ;
26 }
27
28 e l s e i f (cosmo == " random")
29 {
30 ve l o t x t = " randomcat/ " + s t a t + "_vstd_" + vs td s t r . s t r () + "

Nran" + Nranstr . s t r () + "_seed_ " + s e ed s t r . s t r () + " . txt " ;
31 counttxt = " randomcat/count_ " + vs td s t r . s t r () + "_Nran_" +

Nranstr . s t r () + "_seed_" + s e ed s t r . s t r () + " . txt " ;
32 sampletxt = " randomcat/sample_ " + s t a t + "_vstd_" + vs td s t r .

s t r () + "_Nran_" + Nranstr . s t r () + "_seed_" + s e ed s t r . s t r () + " .
txt " ;

33
34 c o r r s t r = " randomcat/bootstrap_random_ " + n . s t r () + "_" +

s t a t + "_vstd_" + vs td s t r . s t r () + "_Nran_" + Nranstr . s t r () + "
seed " + s e ed s t r . s t r () + " . txt " ;

35 coun t e r s t r = " randomcat/bootstrap_count_ " + n . s t r () + "_" +
s t a t + "_vstd_" + vs td s t r . s t r () + "_Nran_" + Nranstr . s t r () + "

A.1. CALCULATING VELOCITY STATISTICS 83

seed " + s e ed s t r . s t r () + " . txt " ;
36
37 i f (sampling == 2)
38 sampletxt = " randomcat/sample_over_ " + s t a t + "_vstd_" +

vs td s t r . s t r () + "_Nran_" + Nranstr . s t r () + "_seed_ " + s e ed s t r .
s t r () + " . txt " ;

39
40 }
41
42 e l s e i f (cosmo == " random_lcdm")
43 {
44 f o l d e r = " ranlcdmruns / " ;
45 v e l o t x t = f o l d e r + s t a t + "_" + ext + "_" + cosmo + "_Npick_

" + Nranstr . s t r () + " . txt " ;
46 counttxt = f o l d e r + " count_ " + ext + "_" + cosmo + "_Npick_"

+ Nranstr . s t r () + " . txt " ;
47 sampletxt = f o l d e r + " samples /samples_ " + ext + "_" + cosmo

+ "_Npick_" + Nranstr . s t r () + " . txt " ;
48 i f (sampling == 2)
49 sampletxt = f o l d e r + " samples /samples_over_ " + ext + "_

" + cosmo + "_Npick_" + Nranstr . s t r () + " . txt " ;
50 c o r r s t r = f o l d e r + " bootstrap_ " + s t a t + "_" + ext + "_" +

cosmo + "_" + n . s t r () + "_Npick_" + Nranstr . s t r () + " . txt " ;
51 coun t e r s t r = f o l d e r + " bootstrap_count_ " + ext + "_" + cosmo

+ "_" + n . s t r () + "_Npick_" + Nranstr . s t r () + " . txt " ;
52 }
53
54
55
56 return { ve lo txt , counttxt , sampletxt , c o r r s t r , c oun t e r s t r } ;
57 }

84 APPENDIX A. CODE

A.2 Approximating the velocity correlation function

A.2.1 main.cpp

1 // Standard l i b r a r y :
2 #inc lude <iostream>
3 #inc lude <sstream>
4 #inc lude <cmath>
5 #inc lude <vector>
6 #inc lude <s t r i ng>
7 #inc lude <ca s s e r t >
8
9 // GNU S c i e n t i f i c L ibrary :
10 #inc lude <g s l / gs l_errno . h>
11 #inc lude <g s l / gsl_matrix . h>
12 #inc lude <g s l / gs l_odeiv2 . h>
13 #inc lude <g s l / g s l_s f_be s s e l . h>
14 #inc lude <g s l / g s l_ sp l i n e . h>
15 #inc lude <g s l / g s l_ in t e g r a t i on . h>
16
17 // S e l fw r i t t e n f i l e s :
18 #inc lude " . . / gen_purpose/ f unc t i on s . h "
19 #inc lude " . . / gen_purpose/ s t a t i s t i c s . h "
20
21 s t r u c t s p l i n e { gs l_ inte rp_acce l ∗ acc ; g s l_ sp l i n e ∗ sp l i n ed ; } ;
22
23 #inc lude " t o o l s . cpp "
24 #inc lude " c a l c . cpp "
25
26 us ing std : : cout ; us ing std : : endl ;
27 us ing std : : vec to r ; us ing std : : s t r i n g ;
28
29 i n t t e s t f un c (double x , const double y [] , double f [] , void ∗ params) ;
30 i n t t e s t j a c (double x , const double y [] , double ∗dfdy , double dfdx [] ,

void ∗params) ;
31
32 //We use that approximation f = Omega_m∗∗0 . 6 .
33
34 i n t main ()
35 {
36 //Test ing :
37 #i f n d e f NDEBUG
38 /∗
39 vector<double> xt = {3 .0 , −2.5 , 0 . 0 9 } ;
40 vector<double> yt = {−8.9 , 4 . 2 , −7.3};
41 cout << angle_vector (xt , yt) << endl ;
42 a s s e r t (dot_product (xt , yt) == −37.857) ;
43 cout << " angle_vector (xt , yt) == 2 .48315 : " << angle_vector (xt ,

yt) << endl ; ; / / abs (acos (−37.857/(sq r t (15 . 2581) ∗ s q r t (150 . 64))))) ;

A.2. APPROXIMATING THE VELOCITY CORRELATION FUNCTION 85

44 ∗/
45
46 // Example 1 :
47 vector<double> Ex1_o = {1 .5 , 1 . 5 , 1 . 5 } ;
48 vector<double> Ex1_p1 = {2 .1 , 2 . 9 , 0 . 0 } ;
49 vector<double> Ex1_p2 = {0 .6 , 2 . 3 , 0 . 0 } ;
50 vector<double> Ex1_theta = anglepos (Ex1_p1 , Ex1_p2 , Ex1_o , 3) ;
51 cout << "Example 1 : " << " \n" ;
52 cout << " theta_1 = " << Ex1_theta [0] << " \n" ;
53 cout << " theta_2 = " << Ex1_theta [1] << " \n" ;
54 cout << " | x | = " << Ex1_theta [2] << " \n" ;
55 cout << " cos (theta_1) ∗ cos (theta_2) = " << cos (Ex1_theta [0]) ∗ cos (

Ex1_theta [1]) << " \n" ;
56 cout << " s i n (theta_1) ∗ s i n (theta_2) = " << s in (Ex1_theta [0]) ∗ s i n (

Ex1_theta [1]) << endl ;
57 cout << " \n" ;
58
59 cout << "Example 1 r eve r s ed : " << endl ;
60 Ex1_theta = anglepos (Ex1_p2 , Ex1_p1 , Ex1_o , 3) ;
61 cout << " theta_1 = " << Ex1_theta [0] << " \n" ;
62 cout << " theta_2 = " << Ex1_theta [1] << " \n" ;
63 cout << " | x | = " << Ex1_theta [2] << endl ;
64 cout << " cos (theta_1) ∗ cos (theta_2) = " << cos (Ex1_theta [0]) ∗ cos (

Ex1_theta [1]) << " \n" ;
65 cout << " s i n (theta_1) ∗ s i n (theta_2) = " << s in (Ex1_theta [0]) ∗ s i n (

Ex1_theta [1]) << endl ;
66 cout << " \n" ;
67
68 cout << "Example 2 : " << endl ;
69 vector<double> Ex2_o = {1 .5 , 1 . 5 , 1 . 5 } ;
70 vector<double> Ex2_p1 = {1 .5 , 2 . 5 , 1 . 5 } ;
71 vector<double> Ex2_p2 = {1 .5 , 0 . 5 , 1 . 5 } ;
72 vector<double> Ex2_theta = anglepos (Ex2_p1 , Ex2_p2 , Ex2_o , 3) ;
73 cout << " theta_1 = " << Ex2_theta [0] << " \n" ;
74 cout << " theta_2 = " << Ex2_theta [1] << " \n" ;
75 cout << " | x | = " << Ex2_theta [2] << endl ;
76 cout << " cos (theta_1) ∗ cos (theta_2) = " << cos (Ex2_theta [0]) ∗ cos (

Ex2_theta [1]) << " \n" ;
77 cout << " s i n (theta_1) ∗ s i n (theta_2) = " << s in (Ex2_theta [0]) ∗ s i n (

Ex2_theta [1]) << endl ;
78 cout << " \n" ;
79
80 i n t l = 0 ;
81 // whi l e (l == 0) ;
82 #end i f
83 //#i f d e f NDEBUG
84
85 // Se t t i ng co smo log i ca l parameters :
86 double h = 0 . 7 1 9 ;
87 double H0 = h∗100 ;

86 APPENDIX A. CODE

88 double Omega_m = 0 . 2670 ;
89 // double f = pow(Omega_m, 0 . 6) ;
90
91 double k_min ;
92 double k_max ;
93 double massFloor = 7 .0 e12 ; // M_sun/h
94 double L = 256 . 0 ; // s i d e l e ng th o f s imu la t i on box in Mpc/h .
95 i n t b i n s i z e = 2 ; // Mpc/h .
96
97 vector<double> o = {0.5∗L/2 ,0 .5∗L/2 ,0 .5∗L/2} ; // Observer

p o s i t i o n in the box .
98 cout << " Observer p o s i t i o n s e t to , x : " << o [0] << " y : " << o

[1] << " z : " << o [2] << endl ;
99
100 // Importing powerspectrum and mul t ip ly ing P(k) by h^2 to get km

^s as un i t s f o r the v e l o c i t y c o r r e l a t i o n :
101 // vector<vector<double> > P = load (" kVector_simu . txt " , 2 , {0 ,

1} , 4) ;
102 vector<vector<double> > P = load (" test_matterpower . dat " , 2 , {0 ,

1}) ;
103 // vector<vector<double> > P = load (" . . / . . / ph i l code / v e l o c o r r /

pspec . dat " , 2 , {0 , 1}) ;
104 vector<double> kvec (P. s i z e ()) ; vector<double> Pvec (P. s i z e ()) ;
105 f o r (dec l type (P. s i z e ()) i = 0 ; i<P. s i z e () ; ++i)
106 {
107 kvec [i] = P[i] [0] ; Pvec [i] = P[i] [1] / (h∗h) ;
108 }
109
110 // Se t t i ng i n t e g r a t i o n boundar ies :
111 k_min = kvec [0] ; k_max = kvec [kvec . s i z e () −1];
112
113 // A l l o ca t i ng f o r and s p l i n i n g the power spectrum :
114 gs l_ inte rp_acce l ∗ ps_acc = gs l_ in t e rp_acce l_a l l o c () ;
115 g s l_ sp l i n e ∗ ps_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine , (

i n t)P. s i z e ()) ;
116 g s l_ sp l i n e_ in i t (ps_spl ine , kvec . data () , Pvec . data () , (i n t)P. s i z e

()) ;
117
118 cout << " ps sp l i n ed " << endl ;
119
120 //myparams params = {H0 , Omega_m, 1 . 0 , ps_acc , ps_spl ine } ;
121
122 // Se t t i ng minimum and maximum ha los s ep e r a t i on :
123 double r_min = 0 . 0 1 ;
124 double r_max = sq r t (3∗L∗L) ;
125
126 // A l l o ca t i ng ar rays to hold the p a r a l l e l l and pe rpend i cu l a r

v e l o c i t y c o r r e l a t i o n func t i on s from l i n e a r theory :
127 i n t N2 = 1000 ;
128 double dr = (r_max − r_min) /(double) (N2−1) ;

A.2. APPROXIMATING THE VELOCITY CORRELATION FUNCTION 87

129 double ∗ r = new double [N2] ;
130 double ∗ xi_para = new double [N2] ;
131 double ∗ xi_perp = new double [N2] ;
132
133 // Ca l cu l a t ing the p a r a l l e l l and perpend i cu la r v e l o c i t y

c o r r e l a t i o n func t i on s from l i n e a r theory :
134 const double h s t a r t = 1e−2;
135 const double epsabs = 0 ;
136 const double e p s r e l = 1e−5;
137 cout << "k−range : [" << k_min << " , " << k_max << "] " << endl ;
138 cout << " Se l e c t ed k−range f o r i n t e g r a t i o n : [" << k_min << " , "

<< k_max << "] " << endl ;
139 gs l_ funct i on F_para , F_perp ;
140 F_para . f unc t i on = ¶ ;
141 F_perp . func t i on = &perp ;
142 s i z e_t l im i t = 1e6 ;
143 double r e su l t , e r r o r ;
144 gs l_integrat ion_workspace ∗ w;
145 f o r (i n t i = 0 ; i<N2 ; i++)
146 {
147 w = gs l_integrat ion_workspace_al loc (l im i t) ;
148 i f (i % 100 == 0) cout << i << endl ;
149 r [i] = r_min + i ∗dr ;
150 s t r u c t myparams par = {H0 , Omega_m, r [i] , ps_acc , ps_spl ine

} ;
151 F_para . params = &par ;
152 F_perp . params = &par ;
153 gs l_integrat ion_qag(&F_para , k_min , k_max, epsabs , ep s r e l ,

l im i t , 6 , w, &r e su l t , &e r r o r) ;
154 xi_para [i] = r e s u l t ;
155 gs l_integrat ion_workspace_free (w) ;
156 w = gs l_integrat ion_workspace_al loc (l im i t) ;
157 gs l_integrat ion_qag(&F_perp , k_min , k_max, epsabs , ep s r e l ,

l im i t , 6 , w, &r e su l t , &e r r o r) ;
158 xi_perp [i] = r e s u l t ;
159 gs l_integrat ion_workspace_free (w) ;
160 }
161
162
163 // A l l o ca t i ng f o r and s p l i n i n g the two components :
164 gs l_ inte rp_acce l ∗ para_acc = gs l_ in te rp_acce l_a l l o c () ;
165 gs l_ inte rp_acce l ∗ perp_acc = gs l_ in te rp_acce l_a l l o c () ;
166 g s l_ sp l i n e ∗ para_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine ,

N2) ;
167 g s l_ sp l i n e ∗ perp_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine ,

N2) ;
168 g s l_ sp l i n e_ in i t (para_spl ine , r , xi_para , N2) ;
169 g s l_ sp l i n e_ in i t (perp_spl ine , r , xi_perp , N2) ;
170
171

88 APPENDIX A. CODE

172 /∗// Use t h i s i f import ing the two components from somewhere
e l s e :

173 vector<vector<double> > Imp_para = load (" . . / . . / ph i l code / v e l o c o r r
/para . dat " , 2 , {0 , 1}) ;

174 vector<vector<double> > Imp_perp = load (" . . / . . / ph i l code / v e l o c o r r
/perp . dat " , 2 , {0 , 1}) ;

175 auto N_Imp = Imp_para . s i z e () ;
176 vector<double> Im_para (N_Imp) ; vector<double> Im_perp (N_Imp) ;
177 vector<double> r_imp(N_Imp) ;
178 f o r (dec l type (N_Imp) i = 0 ; i<N_Imp; ++i)
179 {
180 r_imp [i] = Imp_para [i] [0] / h ;
181 Im_para [i] = Imp_para [i] [1] ; Im_perp [i] = Imp_perp [i] [1] ;
182 }
183 r_min = r_imp [0] ;
184 r_max = r_imp [N_Imp−1] ;
185
186 gs l_ inte rp_acce l ∗ para_acc = gs l_ in te rp_acce l_a l l o c () ;
187 gs l_ inte rp_acce l ∗ perp_acc = gs l_ in te rp_acce l_a l l o c () ;
188 g s l_ sp l i n e ∗ para_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine ,

N_Imp) ;
189 g s l_ sp l i n e ∗ perp_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine ,

N_Imp) ;
190
191 g s l_ sp l i n e_ in i t (para_spl ine , r_imp . data () , Im_para . data () , N_Imp

) ;
192 g s l_ sp l i n e_ in i t (perp_spl ine , r_imp . data () , Im_perp . data () , N_Imp

) ;
193
194 wr i t e (" para_imp . dat " , r_imp . data () , Im_para . data () , N_Imp) ;
195 wr i t e (" perp_imp . dat " , r_imp . data () , Im_perp . data () , N_Imp) ;
196 ∗/
197
198 // I n i t i a l i z i n g s p l i n e s t r u c t ho ld ing the s p l i n e s o f the two

components :
199 s p l i n e sp_para = {para_acc , para_spl ine } ;
200 s p l i n e sp_perp = {perp_acc , perp_spl ine } ;
201
202 // Writing the two components to one f i l e each :
203 wr i t e (" para . dat " , r , xi_para , N2) ;
204 wr i t e (" perp . dat " , r , xi_perp , N2) ;
205
206 // Re leas ing ar rays :
207 d e l e t e [] r ; d e l e t e [] xi_para ; d e l e t e [] xi_perp ;
208
209 cout << " Calcu lated and i n t e r po l a t ed both the p a r a l l e l and the

pe rpend i cu la r component . " << endl ;
210
211 // Reading in halo cata logue :

A.2. APPROXIMATING THE VELOCITY CORRELATION FUNCTION 89

212 s t r i n g haloCatLoc = " . . / . . / data/ runs /run_lcdm/halos_0 . 0 .
a s c i i_ s t r i pp ed " ;

213 vector<vector<double> > ha lo s = load (haloCatLoc , 4 , {0 , 1 , 2 ,
6}) ;

214 auto i t h a l o s = ha lo s . begin () ;
215 whi l e (i t h a l o s != ha lo s . end ())
216 {
217 i f ((∗ i t h a l o s) [3] < massFloor)
218 i t h a l o s = ha lo s . e r a s e (i t h a l o s) ;
219 e l s e
220 ++i t h a l o s ;
221 }
222 cout << "Number o f ha lo s above mass f l o o r : " << ha lo s . s i z e () <<

endl ;
223
224 // Ca l cu l a t i on the p e cu l i a r v e l o c i t y c o r r e l a t i o n func t i on from

us ing a p r ed i c t i on f o r each halo
225 // pa i r from l i n e a r theory :
226 vector<double> x i = l inVe loCorr (halos , o , L , r_min , r_max ,

b in s i z e , &sp_para , &sp_perp) ;
227
228 i n t L_int = sq r t (3∗L∗L) ; // Maximum d i s t ance between two ha lo s

in the box .
229 i n t N_bins = L_int/ b i n s i z e + 1 ; // Number o f d i s t ance b ins .
230
231 i n t N_halos = ha lo s . s i z e () ;
232 vector<double> x(N_bins) ;
233 double dx = (r_max − r_min) /(N_bins−1) ;
234 f o r (i n t i = 0 ; i != N_bins ; ++i)
235 x [i] = i ∗dx+0.5∗dx ;
236
237 wr i t e (" xi_tot . dat " , x . data () , x i . data () , N_bins) ;
238
239 // For p l o t t i n g the integrand o f the x i components :
240 double I [1] = {0} ;
241 s t r u c t myparams paramsI = {H0 , Omega_m, 50 . 0 , ps_acc , ps_spl ine

} ;
242 double y [2] = {0 , 0} ;
243 double klogmin = log (k_min) ;
244 double klogmax = log (k_max− 0 .0001) ;
245 i n t NI = 2000 ;
246 double l o g s t ep = (klogmax − klogmin) /(NI−1) ;
247 vector<double> Iperp (NI) ; vector<double> Ipara (NI) ;
248 vector<double> kvec_pl (NI) ;
249 f o r (i n t i = 0 ; i<NI ; ++i)
250 {
251 kvec_pl [i] = exp (klogmin + i ∗ l o g s t ep) ;
252 }
253 i n t s t a tu s ;
254 /∗ cout << " Ca l cu l a t ing in teg rands . . . " << endl ;

90 APPENDIX A. CODE

255 f o r (i n t i = 0 ; i != NI ; ++i)
256 {
257 // cout << i << " " << kvec_pl [i] << endl ;
258 s t a tu s = perp (kvec_pl [i] , y , I , ¶msI) ;
259 Iperp [i] = I [0] ;
260 I [0] = 0 . 0 ;
261 s t a tu s = para (kvec_pl [i] , y , I , ¶msI) ;
262 Ipara [i] = I [0] ;
263 I [0] = 0 . 0 ;
264 }
265
266 wr i t e (" Iperp . dat " , kvec_pl . data () , Iperp . data () , NI) ;
267 wr i t e (" Ipara . dat " , kvec_pl . data () , Ipara . data () , NI) ;
268 //#end i f
269 ∗/
270 #i f n d e f NDEBUG
271 // Test ing i n t e g r a t i o n :
272 i n t n t e s t = 100 ;
273 double test_xmin = k_min∗r_min ;
274 double test_xmax = 100 ;
275 double t e s t_ l o g d i f f = (log (test_xmax) − l og (test_xmin)) /(ntest

−1) ;
276 vector<double> j 0 i n t (n t e s t) ;
277 vector<double> j 1 i n t (n t e s t) ;
278 vector<double> xt e s t (n t e s t) ;
279 f o r (i n t i = 0 ; i != nt e s t ; ++i)
280 x t e s t [i] = exp (l og (test_xmin) + i ∗ t e s t_ l o g d i f f) ;
281
282 // gs l_ inte rp_acce l ∗ ps_acc = gs l_ in t e rp_acce l_a l l o c () ;
283 // g s l_ sp l i n e ∗ ps_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine ,

100) ;
284
285 s t r u c t myparams j0 = {0 , 2 . 0 , 3 . 0 , ps_acc , ps_spl ine } ;
286 s t r u c t myparams j1 = {1 , 2 . 0 , 3 . 0 , ps_acc , ps_spl ine } ;
287 const double t e s t h s t a r t = 1e−8;
288 const double t e s t ep sab s = 1e−8;
289 const double t e s t e p s r e l = 0 . 0 ;
290 /∗
291 f o r (i n t i = 1 ; i != nt e s t ; ++i)
292 {
293 j 0 i n t [i] = i n t e g r a t i o n (t e s t func , t e s t j a c , t e s t h s t a r t ,

t e s t epsabs , t e s t e p s r e l , j0 , test_xmin , x t e s t [i]) ;
294 j 1 i n t [i] = i n t e g r a t i o n (t e s t func , t e s t j a c , t e s t h s t a r t ,

t e s t epsabs , t e s t e p s r e l , j1 , test_xmin , x t e s t [i]) ;
295 }
296
297 wr i t e (" j 0 . dat " , x t e s t . data () , j 0 i n t . data () , n t e s t) ;
298 wr i t e (" j 1 . dat " , x t e s t . data () , j 1 i n t . data () , n t e s t) ;
299 ∗/
300 #end i f

A.2. APPROXIMATING THE VELOCITY CORRELATION FUNCTION 91

301 return 0 ;
302 }
303
304
305 i n t t e s t f un c (double x , const double y [] , double f [] , void ∗ params)
306 {
307 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
308 // cout << mu−>a << endl ;
309 // cout << mu−>b << endl ;
310 i f (mu−>a == 0)
311 f [0] = s i n (x) /x ; // j0 (x)
312 e l s e i f (mu−>a == 1)
313 f [0] = s i n (x) /(x∗x) − cos (x) /x ; // j1 (x)
314 re turn GSL_SUCCESS;
315 }
316
317 i n t t e s t j a c (double x , const double y [] , double ∗dfdy , double dfdx [] ,
318 void ∗ params)
319 {
320 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
321 // cout << mu << endl ;
322 gsl_matrix_view dfdy_mat
323 = gsl_matrix_view_array (dfdy , 1 , 2) ;
324 gsl_matrix ∗m = &dfdy_mat . matrix ;
325 gsl_matrix_set (m, 0 , 0 , 0 . 0) ;
326 gsl_matrix_set (m, 0 , 1 , 0 . 0) ;
327 i f (mu−>a == 0)
328 dfdx [0] = cos (x) /x − s i n (x) /(x∗x) ; // Der iva t iv e o f j 0 (x)
329 e l s e i f (mu−>a == 1)
330 dfdx [0] = (x∗ cos (x) − 2∗ s i n (x)) /pow(x , 3) + (x∗ s i n (x) + cos (

x)) /(x∗x) ; // Der iva t iv e o f j 1 (x)
331 re turn GSL_SUCCESS;
332 }

92 APPENDIX A. CODE

A.3 Approximating pair-wise streaming velocities

A.3.1 v12.cpp

1 // Standard l i b r a r y :
2 #inc lude <iostream>
3 #inc lude <sstream>
4 #inc lude <cmath>
5 #inc lude <vector>
6 #inc lude <s t r i ng>
7 #inc lude <ca s s e r t >
8
9 // GNU S c i e n t i f i c L ibrary :
10 #inc lude <g s l / gs l_errno . h>
11 #inc lude <g s l / gsl_matrix . h>
12 #inc lude <g s l / gs l_odeiv2 . h>
13 #inc lude <g s l / g s l_s f_be s s e l . h>
14 #inc lude <g s l / g s l_ sp l i n e . h>
15 #inc lude <g s l / g s l_ in t e g r a t i on . h>
16
17 // S e l fw r i t t e n f i l e s :
18 #inc lude " . . / gen_purpose/ f unc t i on s . h "
19 #inc lude " . . / gen_purpose/ s t a t i s t i c s . h "
20
21 s t r u c t s p l i n e { gs l_ inte rp_acce l ∗ acc ; g s l_ sp l i n e ∗ sp l i n ed ; } ;
22
23 #inc lude " t o o l s . cpp "
24 #inc lude " c a l c . cpp "
25
26 us ing std : : cout ; us ing std : : endl ;
27 us ing std : : vec to r ; us ing std : : s t r i n g ;
28
29 i n t t e s t f un c (double x , const double y [] , double f [] , void ∗ params) ;
30 i n t t e s t j a c (double x , const double y [] , double ∗dfdy , double dfdx [] ,

void ∗params) ;
31
32 //We use that approximation f = Omega_m∗∗0 . 6 .
33
34 i n t main (i n t argc , char ∗∗ argv)
35 {
36 //Test ing :
37 #i f n d e f NDEBUG
38 #end i f
39
40 // Se t t i ng co smo log i ca l parameters :
41 double h = 0 . 7 1 9 ;
42 double H0 = h∗100 ;
43 double Omega_m = 0 . 2670 ;
44 double f = pow(Omega_m, 0 . 6) ;

A.3. APPROXIMATING PAIR-WISE STREAMING VELOCITIES 93

45
46 double k_min ;
47 double k_max ;
48 double massFloor = 7 .0 e12 ; // M_sun/h
49 double L = 256 . 0 ; // s i d e l e ng th o f s imu la t i on box in Mpc/h .
50 i n t b i n s i z e = 2 ; // Mpc/h .
51
52 vector<double> o = {0.5∗L/2 ,0 .5∗L/2 ,0 .5∗L/2} ; // Observer

p o s i t i o n in the box .
53 cout << " Observer p o s i t i o n s e t to , x : " << o [0] << " y : " << o

[1] << " z : " << o [2] << endl ;
54
55 // Importing powerspectrum and mul t ip ly ing P(k) by h^2 to get km

^s as un i t s f o r the v e l o c i t y c o r r e l a t i o n :
56 vector<vector<double> > P = load (" kVector_simu . txt " , 2 , {0 , 1} ,

4) ;
57 // vector<vector<double> > P = load (" test_matterpower . dat " , 2 ,

{0 , 1}) ;
58 // vector<vector<double> > P = load (" . . / . . / ph i l code / v e l o c o r r /

pspec . dat " , 2 , {0 , 1}) ;
59 vector<double> kvec (P. s i z e ()) ; vector<double> Pvec (P. s i z e ()) ;
60 f o r (dec l type (P. s i z e ()) i = 0 ; i<P. s i z e () ; ++i)
61 {
62 kvec [i] = P[i] [0] ; Pvec [i] = P[i] [1] ;
63 }
64
65 // Se t t i ng i n t e g r a t i o n boundar ies :
66 k_min = kvec [0] ; k_max = kvec [kvec . s i z e () −1];
67
68 // A l l o ca t i ng f o r and s p l i n i n g the power spectrum :
69 gs l_ inte rp_acce l ∗ ps_acc = gs l_ in t e rp_acce l_a l l o c () ;
70 g s l_ sp l i n e ∗ ps_spl ine = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine , (

i n t)P. s i z e ()) ;
71 g s l_ sp l i n e_ in i t (ps_spl ine , kvec . data () , Pvec . data () , (i n t)P. s i z e

()) ;
72
73 cout << " ps sp l i n ed " << endl ;
74
75 //myparams params = {H0 , Omega_m, 1 . 0 , ps_acc , ps_spl ine } ;
76
77 // Se t t i ng minimum and maximum ha los s ep e r a t i on :
78 double r_min = 0 . 0001 ;
79 double r_max = sq r t (3∗L∗L) ;
80
81 // A l l o ca t i ng ar rays to hold the c o r r e l a t i o n func t i on from

l i n e a r theory :
82 i n t N2 = 5000 ;
83 double dr = (r_max − r_min) /(double) (N2−1) ;
84 vector<double> r (N2) ;
85 vector<double> x i (N2) ;

94 APPENDIX A. CODE

86
87 k_min = k_min∗1 ; k_max = k_max/ 1 . 0 ;
88 cout << "k_min : " << k_min << " | k_max : " << k_max << endl ;
89 const double epsabs = 1e−2;
90 const double e p s r e l = 1e−3;
91 s i z e_t l im i t = 1e6 ;
92 double r e su l t , e r r o r ;
93 gs l_integrat ion_workspace ∗ w;
94 gs l_ funct i on F_xi ;
95 F_xi . f unc t i on = &Ico r r f un c ;
96 f o r (i n t i = 0 ; i<N2 ; ++i)
97 {
98 i f (i%100==0) cout << i << endl ;
99 w = gs l_integrat ion_workspace_al loc (l im i t) ;
100 r [i] = r_min + i ∗dr ;
101 s t r u c t myparams par = {H0 , Omega_m, r [i] , ps_acc , ps_spl ine

} ;
102 F_xi . params = &par ;
103 gs l_integrat ion_qag(&F_xi , k_min , k_max, epsabs , ep s r e l ,

l im i t , 6 , w, &r e su l t , &e r r o r) ;
104 x i [i] = r e s u l t ;
105 gs l_integrat ion_workspace_free (w) ;
106 }
107
108 wr i t e (" ana l x i . txt " , r . data () , x i . data () , x i . s i z e ()) ;
109 cout << "Wrote a n a l y t i c a l c o r r e l a t i o n func t i on to ana lx i . txt . "

<< endl ;
110
111 // A l l o ca t i ng f o r and s p l i n i n g the c o r r e l a t i o n func t i on :
112 gs l_ inte rp_acce l ∗ xi_acc = gs l_ in t e rp_acce l_a l l o c () ;
113 g s l_ sp l i n e ∗ x i_sp l in e = g s l_sp l i n e_a l l o c (g s l_ inte rp_csp l ine , (

i n t) x i . s i z e ()) ;
114 g s l_ sp l i n e_ in i t (x i_sp l ine , r . data () , x i . data () , (i n t) x i . s i z e ()) ;
115
116 double gamma = std : : stod (argv [1]) ;
117 double alpha = 1 .2 − 0 .65∗gamma;
118 double xibb ;
119 gs l_ funct i on F_v_12 , F_xiBar ;
120 F_v_12 . func t i on = &Iv_12 ;
121 F_xiBar . f unc t i on = &IxiBar ;
122 vector<double> v_12(N2) ;
123 f o r (i n t i = 0 ; i<N2 ; ++i)
124 {
125 i f (i%100==0) cout << i << endl ;
126 w = gs l_integrat ion_workspace_al loc (l im i t) ;
127 r [i] = r_min + i ∗dr ;
128 s t r u c t myparams par = {H0 , Omega_m, r [i] , ps_acc , ps_spl ine

} ;
129 //F_v_12 . params = &par ;
130 F_xiBar . params = &par ;

A.3. APPROXIMATING PAIR-WISE STREAMING VELOCITIES 95

131 // gs l_integrat ion_qag(&F_v_12 , k_min , k_max, epsabs , ep s r e l ,
l im i t , 6 , w, &r e su l t , &e r r o r) ;

132 gs l_integrat ion_qag(&F_xiBar , r_min , r [i] , epsabs , ep s r e l ,
l im i t , 6 , w, &r e su l t , &e r r o r) ;

133 //v_12 [i] = −H0∗ r [i]∗2∗pow(Omega_m, 0 . 6) ∗ r e s u l t /(1+ x i [i]∗h) ;
134 xibb = r e s u l t /(1.0+ x i [i]) ;
135 v_12 [i] = −(2 .0/3 .0) ∗H0∗ r [i]∗ f ∗xibb ∗(1.0+ alpha ∗xibb) /h ;
136 gs l_integrat ion_workspace_free (w) ;
137 }
138 std : : s t r i ng s t r eam analv_12txt ;
139 analv_12txt << "analv_12_gamma_" << gamma << " . txt " ;
140 wr i t e (analv_12txt . s t r () . c_str () , r . data () , v_12 . data () , (i n t)

v_12 . s i z e ()) ;
141
142 return 0 ;
143 }

96 APPENDIX A. CODE

A.4 Files used to approximate velocity statistics

A.4.1 tools.cpp

1 us ing std : : cout ; us ing std : : endl ;
2 us ing std : : vec to r ; us ing std : : s t r i n g ;
3 us ing std : : s t r i ng s t r eam ;
4
5 s t r u c t myparams {double a ; double b ; double c ;
6 g s l_ inte rp_acce l ∗ acc ; g s l_ sp l i n e ∗ s p l i n e ; } ;
7
8 vector<double> anglepos (vector<double> p1 , vector<double> p2 , vector

<double> o , double L)
9 {
10 // Finding x1 x2 and x in f i g u r e 9 .8 in Dodelson :
11
12 // E l e c t i ng the c l o s e s t copy o f each halo to the obse rve r
13 // assuming the s imu la t i on box has p e r i o d i c boundar ies .
14 // I f t h i s i s undes i red one can j u s t s e t the boxlength in s ane l y

long .
15
16 // x1 and x2 i f we say that the obse rve r i s at o r i go :
17 vector<double> x1 , x2 ;
18 x1 . push_back (p1 [0] − o [0]) ; x1 . push_back (p1 [1] − o [1]) ;
19 x1 . push_back (p1 [2] − o [2]) ;
20 x2 . push_back (p2 [0] − o [0]) ; x2 . push_back (p2 [1] − o [1]) ;
21 x2 . push_back (p2 [2] − o [2]) ;
22 double L2 = L/2 . 0 ; // Hal f o f the box length ;
23
24 i f (x1 [0] > L2) x1 [0] −= L ;
25 e l s e i f (x1 [0] < −L2) x1 [0] += L ;
26 i f (x1 [1] > L2) x1 [1] −= L ;
27 e l s e i f (x1 [1] < −L2) x1 [1] += L ;
28 i f (x1 [2] > L2) x1 [2] −= L ;
29 e l s e i f (x1 [2] < −L2) x1 [2] += L ;
30
31 i f (x2 [0] > L2) x2 [0] −= L ;
32 e l s e i f (x2 [0] < −L2) x2 [0] += L ;
33 i f (x2 [1] > L2) x2 [1] −= L ;
34 e l s e i f (x2 [1] < −L2) x2 [1] += L ;
35 i f (x2 [2] > L2) x2 [2] −= L ;
36 e l s e i f (x2 [2] < −L2) x2 [2] += L ;
37
38 // The vec to r between the ha lo s :
39 vector<double> x (3) ;
40 x = {x2 [0] − x1 [0] , x2 [1] − x1 [1] , x2 [2] − x1 [2] } ;
41
42 // theta_1 and theta_2 :
43 // theta_2 i s the ang le between x1 and theta_1 i s the :

A.4. FILES USED TO APPROXIMATE VELOCITY STATISTICS 97

44 double x l = sq r t (dot_product (x , x)) ;
45 double x1 l = sq r t (dot_product (x1 , x1)) ;
46 double x2 l = sq r t (dot_product (x2 , x2)) ;
47
48 double theta_1
49 = angle_vector (x1 , x) ;
50 double theta_2
51 = angle_vector (x2 , x) ;
52
53 re turn {theta_1 , theta_2 , x l } ;
54 }
55
56 // 3d window func t i on in f o u r i e r space :
57 double W2(double kR)
58 {
59 double w;
60 w = 3 .0∗ (s i n (kR) − kR∗ cos (kR)) /pow(kR, 3 . 0) ;
61 re turn w∗w;
62 }
63
64 // Perpend icu lar component :
65 double perp (double k , void ∗ params)
66 {
67 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
68 double P = gs l_sp l ine_eva l (mu−>sp l i n e , k , mu−>acc) ;
69 double x = mu−>c ;
70 double kx = k∗x ;
71 double j1_0 =
72 (kx∗ cos (kx) − s i n (kx)) /(kx∗kx) ; // j ’_0(kx)
73 // j_0 (kx) = s i n (kx) /kx .
74
75 double f 2 = pow(mu−>b , 2 . 0 ∗ 0 . 6) ;
76 double H02 = pow(mu−>a , 2 . 0) ;
77 double f = −P∗ f 2 ∗H02∗ j1_0 /(2∗M_PI∗M_PI∗kx) ;
78
79 re turn f ;
80 }
81
82 // P a r a l l e l l component :
83 double para (double k , void ∗ params)
84 {
85 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
86 double P = gs l_sp l ine_eva l (mu−>sp l i n e , k , mu−>acc) ;
87 double x = mu−>c ;
88 double kx = k∗x ;
89 double j2_0 =
90 2∗ s i n (kx) /pow(kx , 3 . 0) − s i n (kx) /kx − 2∗ cos (kx) /(kx∗kx) ;

// j ’ ’_0(kx)
91 // j_0 (kx) = s i n (kx) /kx .
92

98 APPENDIX A. CODE

93 double f 2 = pow(mu−>b , 2 . 0 ∗ 0 . 6) ;
94 double H02 = pow(mu−>a , 2 . 0) ;
95 double f = −P∗ f 2 ∗H02∗ j2_0 /(2∗M_PI∗M_PI) ;
96 /∗ cout << "P: " << P << "\n " ;
97 cout << "k : " << k << "\n " ;
98 cout << " r : " << x << "\n " ;
99 cout << " f2 : " << f2 << "\n " ;
100 cout << "H02 : " << H02 << "\n " ;
101 cout << " j2_0 : " << j2_0 << "\n " ;
102 cout << " para : " << f << endl ;
103 ∗/
104 return f ;
105 }
106
107 // Cor r e l a t i on func t i on without cons tant s :
108 double I c o r r f un c (double k , void ∗ params)
109 {
110 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
111 double P = gs l_sp l ine_eva l (mu−>sp l i n e , k , mu−>acc) ;
112 double kr = k∗(mu−>c) ;
113 double x i = k∗k∗P∗ s i n (kr) /(kr ∗2∗M_PI∗M_PI) ;
114
115 return x i ;
116 }
117
118 double Ix iBar (double x , void ∗ params)
119 {
120 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
121 double x i = gs l_sp l ine_eva l (mu−>sp l i n e , x , mu−>acc) ;
122 double r = (mu−>c) ;
123 double xiB = 3.0∗ x i ∗x∗x/pow(r , 3 . 0) ;
124
125 return xiB ;
126 }
127
128 double Iv_12 (double k , void ∗ params)
129 {
130 s t r u c t myparams ∗mu = (s t r u c t myparams ∗) params ;
131 double P = gs l_sp l ine_eva l (mu−>sp l i n e , k , mu−>acc) ;
132 double kr = k∗(mu−>c) ;
133 double H_0 = mu−>a ;
134 double j_1 = s in (kr)− kr∗ cos (kr) /(kr∗kr) ;
135 double I = k∗k∗P∗ j_1/kr ;
136
137 return I ;
138
139 }

A.4. FILES USED TO APPROXIMATE VELOCITY STATISTICS 99

A.4.2 calc.cpp

1 us ing std : : cout ; us ing std : : endl ;
2 us ing std : : vec to r ; us ing std : : s t r i n g ;
3
4 vector<double> l inVe loCorr (vector<vector<double> > halos , vector<

double> o , double L , double r_min , double r_max , i n t b in s i z e ,
s p l i n e ∗para , s p l i n e ∗perp)

5 {
6 gs l_ inte rp_acce l ∗ para_acc = para−>acc ; g s l_ sp l i n e ∗ para_spl ine

= para−>sp l i n ed ;
7 gs l_ inte rp_acce l ∗ perp_acc = perp−>acc ; g s l_ sp l i n e ∗ perp_spl ine

= perp−>sp l i n ed ;
8 i n t L_int = sq r t (3∗L∗L) ; // Maximum d i s t ance between two ha lo s

in the box .
9 i n t N_bins = L_int/ b i n s i z e + 1 ; // Number o f d i s t ance b ins .
10
11 vector<double> x i (N_bins) ;
12 vector<double> cnt (N_bins) ;
13
14 i n t bin ; double xpara , xperp ;
15 vector<double> the ta s ;
16 vector<double> p1 (3) ;
17 vector<double> p2 (3) ;
18 vector<double> A(N_bins) ;
19 vector<double> B(N_bins) ;
20 vector<double> para_comp(N_bins) ;
21 vector<double> perp_comp(N_bins) ;
22 double A_temp ; double B_temp ;
23 i n t N_halos = ha lo s . s i z e () ;
24 f o r (i n t i = 0 ; i != N_halos ; ++i)
25 {
26 // cout << " i : " << i << endl ;
27 i f (i %100 == 0)
28 cout << i << endl ;
29 f o r (i n t j = 0 ; j != i ; ++j)
30 {
31 // cout << " j : " << j << endl ;
32 p1 = { ha lo s [i] [0] , ha lo s [i] [1] , ha lo s [i] [2] } ;
33 p2 = { ha lo s [j] [0] , ha lo s [j] [1] , ha lo s [j] [2] } ;
34 the ta s = anglepos (p1 , p2 , o , L) ;
35 // cout << r_max << " c " << the ta s [2] << " i , j " << i <<

" , " << j << endl ;
36 i f (the ta s [2] < r_min or the ta s [2] > r_max)
37 cont inue ;
38 e l s e
39 {
40 xpara = gs l_sp l ine_eva l (para_spl ine , the ta s [2] ,

para_acc) ;

100 APPENDIX A. CODE

41 xperp = gs l_sp l ine_eva l (perp_spl ine , the ta s [2] ,
perp_acc) ;

42 bin = the ta s [2] / b i n s i z e ;
43 A_temp = s in (the ta s [0]) ∗ s i n (the ta s [1]) ;
44 B_temp = cos (the ta s [0]) ∗ cos (the ta s [1]) ;
45 A[bin] += A_temp ;
46 B[bin] += B_temp ;
47 perp_comp [bin] += A_temp∗xperp ;
48 para_comp [bin] += B_temp∗xpara ;
49 x i [bin] += A_temp∗xperp + B_temp∗xpara ;
50 cnt [bin] += 1 ;
51 }
52 }
53 }
54 cout << " a f t e r " << endl ;
55
56 f o r (i n t i = 0 ; i != N_bins ; ++i)
57 {
58 i f (cnt [i] != 0)
59 {
60 x i [i] = x i [i] / cnt [i] ;
61 A[i] = A[i] / cnt [i] ; B[i] = B[i] / cnt [i] ;
62 perp_comp [i] = perp_comp [i] / cnt [i] ;
63 para_comp [i] = para_comp [i] / cnt [i] ;
64 }
65 }
66
67 // Output o f l i n e a r cons tant s :
68 vector<vector<double> > Out ;
69 vector<double> x(N_bins) ;
70 double dx = sq r t (3∗L∗L) /(N_bins−1) ;
71 f o r (i n t i = 0 ; i != N_bins ; ++i)
72 {
73 x [i] = i ∗dx ;
74 Out . push_back ({x [i] , A[i] , B[i] , perp_comp [i] , para_comp [i

] }) ;
75 }
76 writeMatr ix (" components . dat " , Out) ;
77
78 re turn x i ;
79 }

A.5. GENERAL TOOL SET 101

A.5 General tool set

A.5.1 functions.h

1 #i f n d e f FUNCTIONS_H
2 #de f i n e FUNCTIONS_H
3 #inc lude <iostream>
4 #inc lude <fstream>
5 #inc lude <sstream>
6 #inc lude <s t r i ng>
7 #inc lude <vector>
8 #inc lude <math . h>
9 #inc lude <s t d l i b . h>
10 #inc lude <time . h>
11 #inc lude <omp . h>
12 #inc lude <random>
13
14 double int_trapez (double (∗dydx) (double x , double y) , double x_min ,

double x_max, double y_ini , i n t N, double R) ;
15 void load (const char ∗ f i l ename , double ∗∗A, i n t N_r , i n t N_c, i n t ∗

columns , const char ∗ f o l d e r = " ") ;
16 std : : vector<std : : vector<double> > load (std : : s t r i n g f i l ename , i n t N_c

,
17 std : : vector<int> columns , i n t header = 0 , std : : s t r i n g f o l d e r

= " ") ;
18 i n t l ineCount (std : : s t r i n g f i l e l o c) ;
19
20 // Writing to f i l e :
21 void wr i t e (const char ∗ f i l ename , double ∗x , double ∗A, i n t Nhalos ,

const char ∗ f o l d e r = " ") ;
22 void writeMatr ix (std : : s t r i n g f i l ename , std : : vector<std : : vector<

double> > A) ;
23
24 double r f i n d (double x1 , double y1 , double z1 , double x2 , double y2 ,

double z2 , double boxs ize , i n t t r i g g e r =0) ;
25 double r 2 f i nd (double x1 , double y1 , double z1 , double x2 , double y2 ,

double z2 , double boxs ize , i n t t r i g g e r =0) ;
26
27 i n l i n e
28 double dot_product (std : : vector<double> x , std : : vector<double> y) ;
29 i n l i n e
30 double angle_vector (std : : vector<double> x , std : : vector<double> y) ;
31 i n l i n e
32 double vec_length (std : : vector<double> x) ;
33 i n l i n e
34 std : : vector<double> vec_add (std : : vector<double> x , std : : vector<

double> y) ;
35 i n l i n e

102 APPENDIX A. CODE

36 std : : vector<double> vec_subtract (std : : vector<double> x , std : : vector<
double> y) ;

37
38 double var iance (double ∗x , i n t N) ;
39
40 #inc lude " f unc t i on s . cpp "
41 #end i f

A.5. GENERAL TOOL SET 103

A.5.2 functions.cpp

1 #inc lude " f unc t i on s . h "
2 // us ing namespace std ;
3
4 double int_trapez (double (∗dydx) (double x , double y) , double x_min ,

double x_max, double y_ini , i n t N, double R)
5 {
6 double dy ;
7 double dx = (x_max − x_min) /(double) (N−1) ;
8 double y = y_ini ;
9 double x = x_min ;
10 f o r (i n t i = 0 ; i<N−1; i++)
11 {
12 dy = (dydx (x , R) + dydx (x+dx ,R)) / 2 . 0 ;
13 y += dy∗dx ;
14 x += dx ;
15 }
16 return y ;
17 }
18
19
20 void load (const char ∗ f i l ename , double ∗∗A, i n t N_r , i n t N_c, i n t ∗

columns , const char ∗ f o l d e r)
21 {
22 std : : s t r i n g l i n e ;
23 i n t rows , co l s , co l_ i ;
24 double dummy;
25 // double A[4 4 5 2 4] [1 0] ;
26 std : : s t r i ng s t r eam f i l e a n d f o l d e r ;
27 f i l e a n d f o l d e r << f o l d e r << f i l ename ;
28 std : : i f s t r e am pFi l e (f i l e a n d f o l d e r . s t r () . c_str ()) ;
29 i f (pF i l e . is_open ())
30 {
31 rows = 0 ;
32 whi l e (rows < N_r) // ! pF i l e . e o f ()
33 {
34 g e t l i n e (pFi le , l i n e) ;
35 std : : s t r i ng s t r eam ss (l i n e) ;
36 // cout << rows << "\n " ;
37 c o l s = 0 ;
38 co l_i = 0 ;
39 whi l e (co l_i < N_c) // s s >> A[rows] [c o l s]
40 {
41 // std : : cout << rows << " " << co l s << " " << co l_i

<< std : : endl ;
42 i f (c o l s == columns [co l_i])
43 {
44 s s >> A[rows] [co l_ i] ;
45 co l_i++;

104 APPENDIX A. CODE

46 }
47 e l s e {
48 s s >> dummy;}
49 // cout << co l s << "\n " ;
50 c o l s++;
51 }
52 rows++;
53 }
54 pF i l e . c l o s e () ;
55 }
56 e l s e
57 std : : cout << "Unable to open f i l e : " << f i l ename << std : :

endl ;
58 }
59
60 std : : vector<std : : vector<double> > load (std : : s t r i n g f i l ename , i n t N_c

, std : : vector<int> columns , i n t header , s td : : s t r i n g f o l d e r)
61 {
62 std : : s t r i n g l i n e ;
63 i n t rows , co l s , co l_ i ;
64 double dummy;
65
66 std : : s t r i n g f i l e a n d f o l d e r ;
67 f i l e a n d f o l d e r = f o l d e r + f i l ename ;
68 std : : i f s t r e am pFi l e (f i l e a n d f o l d e r . c_str ()) ;
69 i f (pF i l e . is_open ())
70 {
71 std : : vector<std : : vector<double> > A;
72 rows = 0 ;
73 std : : vector<double> i n i v e c (N_c) ;
74 f o r (i n t i = 0 ; i<header ; ++i)
75 g e t l i n e (pFi le , l i n e) ;
76 whi l e (! pF i l e . e o f ()) // ! pF i l e . e o f ()
77 {
78 g e t l i n e (pFi le , l i n e) ;
79 std : : s t r i ng s t r eam ss (l i n e) ;
80 // cout << rows << "\n " ;
81 c o l s = 0 ;
82 co l_i = 0 ;
83 // std : : cout << "A. s i z e () : " << A. s i z e () << std : : endl ;
84 A. push_back (i n i v e c) ;
85 whi l e (co l_i < N_c) // s s >> A[rows] [c o l s]
86 {
87 i f (c o l s == columns [co l_i])
88 {
89
90 s s >> A[rows] [co l_ i] ;
91 ++co l_i ;
92 }
93 e l s e {

A.5. GENERAL TOOL SET 105

94 s s >> dummy;}
95 // cout << co l s << "\n " ;
96 ++co l s ;
97 }
98 ++rows ;
99 }
100 pF i l e . c l o s e () ;
101 A. pop_back () ;
102 // std : : cout << " rows : " << rows << " " << A. s i z e () << std : :

endl ;
103 re turn A;
104 }
105 e l s e {
106 std : : cout << "Unable to open f i l e : " << f i l ename << std : :

endl ;
107 }
108 }
109
110 i n t l ineCount (std : : s t r i n g f i l e l o c)
111 {
112 std : : s t r i n g l i n e ;
113 std : : i f s t r e am pFi l e (f i l e l o c . c_str ()) ;
114 i f (pF i l e . is_open ())
115 {
116 i n t l c n t = −1;
117 whi l e (! pF i l e . e o f ())
118 {
119 g e t l i n e (pFi le , l i n e) ;
120 ++l cn t ;
121 // std : : cout << l cn t << std : : endl ;
122 }
123 return l c n t ;
124 }
125 e l s e
126 {
127 std : : cout << "Could not open f i l e g iven to l ineCount . " <<

std : : endl ;
128 re turn −1;
129 }
130 }
131
132 void wr i t e (const char ∗ f i l ename , double ∗x , double ∗A, i n t Nhalos ,

const char ∗ f o l d e r)
133 {
134 std : : s t r i ng s t r eam f i l e a n d f o l d e r ;
135 f i l e a n d f o l d e r << f o l d e r << f i l ename ;
136 std : : o f s tream f i l e (f i l e a n d f o l d e r . s t r () . c_str ()) ;
137 f o r (i n t i = 0 ; i<Nhalos ; i++)
138 {
139 f i l e << x [i] << " " << A[i] << std : : endl ;

106 APPENDIX A. CODE

140 }
141 f i l e . c l o s e () ;
142 }
143
144 void writeMatr ix (std : : s t r i n g f i l ename , std : : vector<std : : vector<

double> > A)
145 {
146 std : : o f s tream f i l e (f i l ename) ;
147
148 f o r (auto i t tA = A. begin () ; i t tA != A. end () ; ++ittA)
149 {
150 f o r (auto itsubA = ittA−>begin () ; itsubA != ittA−>end () ; ++

itsubA)
151 f i l e << ∗ itsubA << " " ;
152 f i l e << std : : endl ;
153 }
154 f i l e . c l o s e () ;
155 }
156
157 double r f i n d (double x1 , double y1 , double z1 , double x2 , double y2 ,

double z2 , double boxs ize , i n t t r i g g e r)
158 {
159 double xd i s t = x2−x1 ;
160 double yd i s t = y2−y1 ;
161 double z d i s t = z2−z1 ;
162 double boxs i z e_ha l f = 0 .5∗ boxs i z e ;
163
164 i f (t r i g g e r != 0) {
165 //Correct f o r p e r i o d i c boundary cond i t i on s :
166 i f (xd i s t > boxs i z e_ha l f) xd i s t −= boxs i z e ;
167 e l s e i f (xd i s t < −boxs i z e_ha l f) xd i s t += boxs i z e ;
168
169 i f (yd i s t > boxs i z e_ha l f) yd i s t −= boxs i z e ;
170 e l s e i f (yd i s t < −boxs i z e_ha l f) yd i s t += boxs i z e ;
171
172 i f (z d i s t > boxs i z e_ha l f) z d i s t −= boxs i z e ;
173 e l s e i f (z d i s t < −boxs i z e_ha l f) z d i s t += boxs i z e ; }
174
175 // std : : cout << " xdi s t , yd i s t , z d i s t : " << xd i s t << " , " << yd i s t

<< " , " << zd i s t << std : : endl ;
176 double r = sq r t (xd i s t ∗ xd i s t + yd i s t ∗ yd i s t + zd i s t ∗ z d i s t) ;
177 re turn r ;
178 }
179
180 double r 2 f i nd (double x1 , double y1 , double z1 , double x2 , double y2 ,

double z2 , double boxs ize , i n t t r i g g e r)
181 {
182 double xd i s t = x2−x1 ;
183 double yd i s t = y2−y1 ;
184 double z d i s t = z2−z1 ;

A.5. GENERAL TOOL SET 107

185 double boxs i z e_ha l f = 0 .5∗ boxs i z e ;
186
187 i f (t r i g g e r != 0) {
188 //Correct f o r p e r i o d i c boundary cond i t i on s :
189 i f (xd i s t > boxs i z e_ha l f) xd i s t −= boxs i z e ;
190 e l s e i f (xd i s t < −boxs i z e_ha l f) xd i s t += boxs i z e ;
191
192 i f (yd i s t > boxs i z e_ha l f) yd i s t −= boxs i z e ;
193 e l s e i f (yd i s t < −boxs i z e_ha l f) yd i s t += boxs i z e ;
194
195 i f (z d i s t > boxs i z e_ha l f) z d i s t −= boxs i z e ;
196 e l s e i f (z d i s t < −boxs i z e_ha l f) z d i s t += boxs i z e ; }
197
198 double r = xd i s t ∗ xd i s t + yd i s t ∗ yd i s t + zd i s t ∗ z d i s t ;
199 re turn r ;
200 }
201
202 double dot_product (std : : vector<double> x , std : : vector<double> y)
203 {
204 double dp = 0 ;
205 auto N = x . s i z e () ;
206 i f (N != y . s i z e ())
207 std : : c e r r << "To take the dot product between two vec to r s

they need to be o f an equal number o f e lements . " << std : : endl ;
208 f o r (dec l type (N) i = 0 ; i<N; ++i)
209 {
210 dp += x [i]∗ y [i] ;
211 }
212
213 return dp ;
214 }
215
216 double angle_vector (std : : vector<double> x , std : : vector<double> y)
217 {
218 double theta = acos (dot_product (x , y) /(vec_length (x) ∗vec_length (

y))) ;
219 // std : : cout << " In s i d e angle_vector : " << std : : endl ;
220 // std : : cout << vec_length (x) << std : : endl ;
221 // std : : cout << vec_length (y) << std : : endl ;
222 // std : : cout << dot_product (x , y) << std : : endl ;
223
224 return theta ;
225 }
226
227 double vec_length (std : : vector<double> x)
228 {
229 double sum = 0 . 0 ;
230 f o r (dec l type (x . s i z e ()) i = 0 ; i<x . s i z e () ; ++i)
231 {
232 sum += x [i]∗ x [i] ;

108 APPENDIX A. CODE

233 }
234
235 return sq r t (sum) ;
236 }
237
238 std : : vector<double> vec_add (std : : vector<double> x , std : : vector<

double> y)
239 {
240 auto N = x . s i z e () ;
241 std : : vector<double> z (N) ;
242 i f (N != y . s i z e ())
243 std : : c e r r << " Trying to add toge the r two vec to r s with a

d i f f e r e n t number o f e lements in them ! " << std : : endl ;
244 f o r (dec l type (N) i = 0 ; i != N; ++i)
245 z [i] = x [i] + y [i] ;
246 re turn z ;
247 }
248
249 std : : vector<double> vec_subtract (std : : vector<double> x , std : : vector<

double> y)
250 {
251 auto N = x . s i z e () ;
252 std : : vector<double> z (N) ;
253 i f (N != y . s i z e ())
254 std : : c e r r << " Trying to add toge the r two vec to r s with a

d i f f e r e n t number o f e lements in them ! " << std : : endl ;
255 f o r (dec l type (N) i = 0 ; i != N; ++i)
256 z [i] = x [i] − y [i] ;
257 re turn z ;
258 }
259
260 double var iance (double ∗x , i n t N)
261 {
262 double mean = 0 . 0 ;
263 double sum = 0 . 0 ;
264 f o r (i n t i = 0 ; i<N; i++)
265 {
266 sum += x [i] ;
267 }
268 mean = sum/(double)N;
269 std : : cout << "Mean : " << mean << std : : endl ;
270 sum = 0 . 0 ;
271 double dummy;
272 f o r (i n t i = 0 ; i<N; i++)
273 {
274 dummy = x [i] − mean ;
275 sum += dummy∗dummy;
276 }
277 double var = sum/(double)N;
278 re turn var ;

A.5. GENERAL TOOL SET 109

279 }
280 /∗
281 double rng_uniform_real (double min , double max)
282 {
283 mt19937 generato r (42u) ;
284 generator . seed (s ta t i c_cas t<unsigned int >(time (NULL))) ;
285 boost : : uniform_real<> uni_dist (min ,max) ;
286 boost : : var iate_generator<mt19937&, boost : : uniform_real<> > uni (

generator , uni_dist) ;
287 re turn uni () ;
288 }
289 ∗/

110 APPENDIX A. CODE

A.5.3 statistics.h

1 #i f n d e f STATISTICS_H
2 #de f i n e STATISTICS_H
3
4 #inc lude <iostream>
5 #inc lude <vector>
6 #inc lude <s t r i ng>
7 #inc lude <random>
8 #inc lude <algorithm>
9
10 #inc lude <boost /random/uniform_int . hpp>
11 #inc lude <boost /random/ var ia te_generator . hpp>
12
13 bool seeded = f a l s e ;
14
15 double j a c kkn i f e (std : : vector<double> v , double& jackmean) ;
16 double boots t rap (std : : vector<double> v , double& bootmean , std : :

s t r i n g opt ion = "asymm") ;
17
18 #inc lude " s t a t i s t i c s . cpp "
19 #end i f

A.5. GENERAL TOOL SET 111

A.5.4 statistics.cpp

1 double j a c kkn i f e (std : : vector<double> v , double& jackmean)
2 {
3 auto M = v . s i z e () ; double sum ;
4 // std : : cout << M << std : : endl ;
5 double dp = 0 ;
6 jackmean = 0 ;
7 std : : vector<double> p_m(M) ;
8 f o r (dec l type (M) i = 0 ; i<M; ++i)
9 {
10 sum = 0 ;
11 f o r (dec l type (M) j = 0 ; j<M; ++j)
12 {
13 i f (j != i)
14 sum += v [j] ;
15 e l s e
16 cont inue ;
17 }
18 p_m[i] = sum/(M−1) ;
19 jackmean += p_m[i] ;
20 }
21 jackmean = jackmean/M;
22 double f a c ;
23 f o r (dec l type (M) i = 0 ; i<M; ++i)
24 {
25 f a c = p_m[i] − jackmean ;
26 dp += fac ∗ f a c ;
27 }
28 dp = sq r t ((double) (M−1)∗dp/(double)M) ;
29
30 re turn dp ;
31 }
32
33 double boots t rap (std : : vector<double> v , double& bootmean , std : :

s t r i n g opt ion)
34 {
35 i n t s t r ap s = 10000 ;
36 i n t N = v . s i z e () ;
37 std : : vector<double> n(N) ;
38 std : : vector<double> p(s t r ap s) ;
39 // std : : vector<int> i n d i c i e s (N) ;
40 std : : mt19937 genera tor (42u) ;
41 i f (! seeded)
42 {
43 generator . seed (s ta t i c_cas t<unsigned int >(time (NULL))) ;
44 seeded = true ;
45 std : : cout << " Seeded uniform RNG engine in STATISTICS_H. " <<

std : : endl ;
46 }

112 APPENDIX A. CODE

47 boost : : uniform_int<> uni_dist (0 , N−1) ;
48 boost : : var iate_generator<std : : mt19937&, boost : : uniform_int<> >

uni (generator , uni_dist) ;
49
50 double p_m;
51 f o r (i n t i = 0 ; i != s t r ap s ; ++i)
52 {
53 // i f (i %100 == 0) std : : cout << i << std : : endl ;
54 p_m = 0 ;
55 f o r (i n t j = 0 ; j != N; ++j)
56 {
57 p_m += v [uni ()] ;
58 }
59 p_m = p_m/N;
60 p [i] = p_m;
61 }
62
63 std : : s o r t (p . begin () , p . end ()) ;
64
65 i n t a_int = 0 .16∗ (double) s t r ap s ; i n t b_int = 0 .84∗ (double) s t r ap s

;
66 double std ;
67 i f (opt ion == "symm")
68 std = (p [b_int] − p [a_int]) / 2 . 0 ;
69 e l s e i f (opt ion == "asymm")
70 std = p [a_int] ;
71 bootmean = p [b_int] ;
72
73 re turn std ;
74 }
75
76 /∗
77 double boots t rap (std : : vector<std : : vector<double> > v , double&

bootmean , std : : s t r i n g opt ion)
78 {
79 i n t s t r ap s = 10000 ;
80 i n t N = v . s i z e () ;
81 std : : vector<double> n(N) ;
82 std : : vector<double> p(s t r ap s) ;
83 // std : : vector<int> i n d i c i e s (N) ;
84 std : : mt19937 genera tor (42u) ;
85 i f (! seeded)
86 {
87 generator . seed (s ta t i c_cas t<unsigned int >(time (NULL))) ;
88 seeded = true ;
89 std : : cout << " Seeded uniform RNG engine in STATISTICS_H . " <<

std : : endl ;
90 }
91 boost : : uniform_int<> uni_dist (0 , N−1) ;

A.5. GENERAL TOOL SET 113

92 boost : : var iate_generator<std : : mt19937&, boost : : uniform_int<> >
uni (generator , uni_dist) ;

93
94 double p_m;
95 f o r (i n t i = 0 ; i != s t r ap s ; ++i)
96 {
97 // i f (i %100 == 0) std : : cout << i << std : : endl ;
98 n [i] = v [uni ()] ;
99 p_m = p_m/N;
100 p [i] = p_m;
101 }
102
103 std : : s o r t (p . begin () , p . end ()) ;
104
105 i n t a_int = 0 .16∗ (double) s t r ap s ; i n t b_int = 0 .84∗ (double) s t r ap s

;
106 double std ;
107 i f (opt ion == "symm")
108 std = (p [b_int] − p [a_int]) / 2 . 0 ;
109 e l s e i f (opt ion == "asymm")
110 std = p [a_int] ;
111 bootmean = p [b_int] ;
112
113 return std ;
114 }
115 ∗/

	Abstract
	Acknowledgments
	Introduction
	General Relativity
	GR building blocks
	Friedmann equations
	Linear cosmological perturbation theory

	Modified Gravity
	The alternatives
	Conformal transformations
	Scalar-tensor Theories
	Screening mechanisms

	Large scale structure
	Dark matter halos
	Galaxy correlation function
	Bias

	Velocity statistics
	Peculiar velocities
	Velocity correlation function
	Streaming pairwise velocity

	N-body simulations
	Background on the code used
	Background cosmology and initial conditions
	Symmetron Simulations
	f(R) Simulations
	Limitations
	Halo finding

	Method
	Calculating from simulation data
	Correcting for observer position
	Estimators
	Algorithm
	Constructing the errorbars
	Random poisson catalogues

	Validating the results

	Results and analysis
	Streaming velocities
	Comparison between models: f(R)
	Comparison between models: Symmetron
	Dependence on mass and binning
	Cumulative streaming velocity distribution

	Velocity correlation function
	Comparison between models
	Dependence on mass and binning

	Conclusions and Discussion
	Appendices
	Code
	Calculating velocity statistics
	main.cpp
	velo_tools.h
	velo_tools.cpp
	bookkeeping.h
	bookkeeping.cpp

	Approximating the velocity correlation function
	main.cpp

	Approximating pair-wise streaming velocities
	v12.cpp

	Files used to approximate velocity statistics
	tools.cpp
	calc.cpp

	General tool set
	functions.h
	functions.cpp
	statistics.h
	statistics.cpp

