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Notation

Abbreviations

• AV node - atrioventricular node

• CAMKII - Ca2+/calmodulin-dependent protein kinase II

• CMDN - calmodulin

• CSQN - calsequestrin

• CSR - corbular sarcoplasmic reticulum compartment

• FHN - FitzHugh-Nagumo

• JSR - junctional sarcoplasmic reticulum compartment

• Myo - bulk myoplasma compartment

• MYOPLASM - myoplasma compartment

• NSR - network sarcoplasmic reticulum compartment

• ODE - ordinary di�erential equation

• PDE - partial di�erential equation

• PCS - peripheral coupling subspace compartment

• PMJ - Purkinje-myocardial junction

• PRd - Purkinje cell model by Li and Rudy [17]

• SA node - sinoatrial node

• SCD - sudden cardiac death

• SR - sarcoplasmic reticulum

• SS(CaL) - ICaL subspace compartment

• SSL - subsarcolemmal compartment

• SS(SR) - sarcoplasmic reticulum subspace compartment

• TRPN - troponin
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Symbols

• [X], where X is an element - ionic concentration [mmol/L]

• α, β - rate constants [1/ms]

• σ - conductivity [mS/cm]

• σPMJ - conductance at the PMJs [mS]

• χ - amount of membrane surface area per unit volume of tissue [1/cm]

• Acap - capacitive membrane area [cm
2]

• B - magnetic �eld [N/(1010 µA cm)] = [0.01 T]

• c - ionic concentration [mmol/L]

• Cm - capacitance per area [µF/cm2]

• D - di�usivity, di�usion coe�cient [cm2/ms]

• DPMJ - �di�usion coe�cient� at the PMJs [cm3/ms]

• E - electric �eld [mV/cm]

• F - Faraday's constant [C/mol]

• Gmax - conductance per area with 1/Cm incorporated [mS/µF]

• I - current per area [µA/cm2], or [µA/µF] if 1/Cm is incorporated

• J - �ux de�ned with respect to a reference volume [mmol/(L ms)]

• M - conductivity [mS/cm]

• P - membrane permeability to an ion [cm/s]

• q - charge per area [nC/cm2]

• R - ideal gas constant [J/(kmol K)]

• T - temperature [K]

• t - time [ms]

• V - potential [mV]

• VX , where X is a compartment - compartment volume [µL]

• z - valence of an ion [1]
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Chapter 1

Introduction

�The single most important cause of death in the adult population
of the industrialized world is SCD [sudden cardiac death] due to
coronary disease.�

This is stated in a task force on sudden cardiac death (SCD) of the
European Society of Cardiology by Priori et al. [21, p. 1377]. At �rst this
might sound like an exaggeration because although too many die prematurily
very many people simply seem to die of old age, falling asleep never to wake
up again. But �old age� is not a scienti�cally accepted cause of death, there
is always a speci�c reason why the body stops working, and this very often
has to do with the heart. According to Mehra [20, p. S118] there are almost
17 million deaths annually resulting from cardiovascular disease, making up
30% of the global deaths. In turn 40-50% of these are assumed to be SCDs,
which amounts to between 6.8 million and 8.5 million people, and 80% of
these again are caused by ventricular tachyarrhythmias.

Medical problems are inverse: we see only the symptoms, not the cause.
To be able to treat a case in the best possible way, starting focused treatment
fast, it is crucial to know the cause. Computer models help researchers attain
this knowledge.

With a mathematical model of the case in study, it is possible to simulate
the time development of the system on a computer. Varying model param-
eters, the role of the di�erent parts of the model, and hopefully also of the
real physiological system, can be investigated. If the computer models give
strong indications that a speci�c symptom has a speci�c cause, this can be
further tested in clinical experiments, in the end leading to more targeted
and better treatment. Computer models have the superior advantage that
once they are made, they can be modi�ed to model many di�erent cases,
and they can be run as many times as desired for as long a time as deemed
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suitable.
The purpose of this thesis is to model the electrical activity in the ven-

tricles with the hope that this may contribute to the study of underlying
mechanisms of arrhythmia that cause SCD. Ventricular arrhythmias make
up the greatest part of the SCDs, so this is why the focus has been on the
ventricles.

The implemented models show how electrical signals spread through the
Purkinje network, and from there to the rest of the ventricular muscle tissue.
For Purkinje cells the PRd cell model by Pan Li and Yoram Rudy from
2011 is used [17], while the Decker et al. cell model by Decker et al. from
2009 [15] is used for the cells in the myocardium. These models consist of
ordinary di�erential equations (ODEs) governing a single cell, so to model
multiple cells, the cell models were coupled to the monodomain equation,
which is a partial di�erential equation (PDE). Using operator splitting on
the monodomain equation with a cell model coupled to it, this system was
split into a coupled system of nonlinear ODEs and a linear PDE. FEniCS
was used to solve the PDE, while the system of ODEs were solved with goss.

As the Purkinje cell model is relatively new, the hope is that it can give
some new insights about the electrical activity in the ventricles. While earlier
models have adopted intracellular calcium dynamics from the cell models of
ventricular myocytes, the PRd model has a newly developed mathematical
model of the Purkinje cell that represents its unique electrophysiological and
calcium handling properties.

The outline of the thesis is as follows: the physiological background for
understanding the electrical activity in the heart and how this controls the
blood �ow pumped through the heart is given in Chapter 2. In Chapter 3
models for the electrical signal in single cells and tissue are described. Next is
Chapter 4, where the numerical methods used on the model equations to get
them into a form that can be solved computationally are presented, as well
as how the coupling of the specialized conduction system of the heart and
the heart muscle is modeled. Following this, the implementation of several
models is explained in Chapter 5, validation and test cases being presented in
Chapter 6, as well as a few results for the �nal implementation. Finally, the
limitations and qualities of the models are discussed in Chapter 7, together
with some concluding remarks.
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Chapter 2

Physiological Background

As stated in the introduction, this thesis aims to simulate the electrical ac-
tivity in the ventricles in the heart. An overview of the workings of the
heart is presented, followed by a quick view on the physiology of a cell, but
�rst comes a closer look on the term �sudden cardiac death�, as this is the
motivation for the project.

2.1 Motivation: Sudden Cardiac Death

In the aforementioned task force by Priori et al. [21, p. 1377], sudden cardiac
death (SCD) is de�ned as:

�Natural death due to cardiac causes, heralded by abrupt loss of
consciousness within one hour of the onset of acute symptoms;
preexisting heart disease may have been known to be present, but
the time and mode of death are unexpected.�

This is one de�nition among a variety. As discussed in the paper, there
is no standard scienti�c de�nition of the term. The term �sudden cardiac
death� has been in use for several centuries, and in some sense it is self-
explanatory: death happening suddenly from causes that have to do with
the heart. But how fast is �sudden�? In the mentioned paper and many
others it is de�ned to be within one hour from the �rst symptoms. Earlier
the time frame was 24 hours, increasing the number of people included in
the de�nition. Another complicating factor is that many people pass away
without any witnesses, leaving at least the time frame of the symptoms an
open question, and in some cases also the actual cause of death. The lack of
one standardized de�nition leads to the number of people counted as dead
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from �sudden cardiac death� varying somewhat according to the de�nition,
making comparisons of di�erent studies problematic.

The de�nition is also quite wide as to the cause of death, it only has to
be �cardiac�. Thus �sudden cardiac death� consists of several ways a heart
can fail. Here again the fact that many people pass away unwitnessed -
and more again pass away unmonitored - is complicating, because then the
heart rhythm is not measured. In the introduction it was stated that there
are almost 17 million deaths annually resulting from cardiovascular disease,
making up 30% of the global deaths. In turn 40-50% are assumed to be SCDs,
which amounts to between 6.8 million and 8.5 million people. Out of these,
80% are caused by ventricular tachyarrhythmias according to Mehra [20, p.
S118]. The task force by Priori et al. [21, p. 1377] states that: �The �rst
recorded rhythm in patients presenting with a sudden cardiovascular collapse
is ventricular �brillation (VF) in 75�80%�. These numbers and causes are
similar, but not identical, showing that the results in this area are not global
truths, but varying due to many factors. Still, ventricular arrhythmia is
clearly the most common cause of SCD. During arrhythmia, the heart is
not stimulated according to its normal pattern. This can make parts of the
heart contract out of sync with the rest of the heart, leading to irregular
contraction of the heart muscle. This again causes ine�ective pumping of the
blood from the heart to the body, which in the worst case is lethal.

The incidence of SCD increases with age, male gender and a history of
cardiovascular disease. It also varies signi�cantly geographically and accord-
ing to the time frame. For a time frame of death occurring up to one hour
after the onset of the �rst symptoms an overall yearly incidence of about
1 per 1000 of the total population is assumed reasonable for both Europe
and the United States according to Priori et al. [21, p. 1377], making up
about 13% of all natural deaths. Increasing the time frame to 24 hours the
incidence increases to 18.5% following a report of the American College of
Cardiology, the American Heart Association and the European Society of
Cardiology [8, p. e395].

According to these �gures, about 5000-6000 Norwegians die annually from
SCD. Cause of death is registered for every individual in Norway and col-
lected in the Norwegian Cause of Death Registry (no: Dødsårsaksregisteret)
[9]. In 2012 this registry counted 41 913 deaths. Of these 13 010 people
were registered to die from cardiovascular disease (no: �sykdommer i sirku-
lasjonsorganene�), which is about 31%, matching well up to the stated 30%
of Mehra [20, p. S118].
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2.2 The Heart

The heart is a muscle. A human heart is approximately the size of a �st
and contracts about 60-80 times every minute on average. An overview of
the heart anatomy can be seen in Figure 2.1. Most of the heart is made up
of four cavities: the left and right atria at the top, and the left and right
ventricles at the bottom. During a heart cycle these cavities �ll with blood
and then empty as they pump the blood out in the body.

Figure 2.1: Schematic image of the heart showing the heart chambers and
the conduction system. RA = right atrium, LA = left atrium, RV = right
ventricle, LV = left ventricle.

2.2.1 The Circulatory System

The circulatory system is made up of the heart, the lungs and the blood
vessels. It is separated into the pulmonary system, which brings blood be-
tween the heart and the lungs, and the systemic system, which brings blood
between the heart and all parts of the body except the lungs. Together they
provide the body with the oxygen it needs.

Oxygen depleted blood from the blood vessels �lls the right atrium. From
there it �rst �ows passively into the right ventricle, before the atrium con-
tracts, pumping some more blood actively into the right ventricle. When
the right ventricle contracts, the blood is pumped into the lungs, where it is
�lled with oxygen. From the lungs the now oxygen enriched blood �ows into
the left atrium, from where it �ows and is pumped into the left ventricle.
When the left ventricle contracts, blood rich on oxygen is pumped through
the blood vessels to reach out into the whole body. The atria contracts
simultaneously, as do the ventricles.
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2.2.2 The Conduction System

The contraction of the heart cavities is controlled by an electrical signal
spreading through the conduction system of the heart. This signal starts
in the sinoatrial node (SA node), located in the upper back of the right
atrium. The SA node is also called the heart's pacemaker, due to it being self-
oscillatory. From this node, the signal spreads through the atria. Reaching
the atrioventricular node (AV node), at the border between the atria and
the ventricles, the signal slows down a bit, causing the atria to contract
before the ventricles. Then the signal spreads from the SA node through the
bundle of His and the Purkinje network. The ends of the Purkinje network
are connected to the endocardium of the ventricles, which is the inner surface
layer of the cavities. From these connection sites the electrical signal spreads
through the myocardium, which is the muscle tissue of the heart that makes
up most of the heart wall, causing the heart to contract.

All the cells in the heart's conduction system are potential pacemaker
cells, but the signal frequency is highest in the SA node and decreases moving
away from it. This means that the signal from the SA node will trigger a
new activation front in the rest of the conduction system before the other
cells have time to self-activate, and the other cells only become pacemaker
cells if the cells before them in the system fail.

The heart muscle consists of �bres, and the �bres are organized in sheets.
The conductivity is higher in the direction of the �bres than perpendicular
to them, and the conductivity in the sheets and perpendicular to them also
varies. Thus the conductive properties of the heart muscle tissue are strongly
anisotropic. Purkinje cells conduct electrical signals faster than other types
of cells, about 4 m/s in the �ber direction as opposed to about 0.5 m/s in
the �ber direction for ventricular myocytes (Klabunde [16]), thus the signal
is spread fast to the whole ventricles, and all the muscle tissue contracts at
almost the same time.

2.3 The Ventricles

During normal activation of the ventricles, the electrical signal moves from
the bundle of His through the Purkinje network, and from there it spreads to
the ventricular myocyte cells at the Purkinje-myocardial junctions (PMJs).
These junctions are spread out in the ventricular muscle tissue to ensure fast
activation of the whole tissue by stimulating many areas almost simultane-
ously. The activation of the tissue happens mainly from the apex to the base.
The activation times vary between persons and also for the same person, for
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example during di�erent activities, but in this thesis, the activation time for
the complete Purkinje system at rest is assumed to be about 25 ms, and the
time from His bundle stimulation until the full activation of the ventricu-
lar mass is assumed to be about 70 ms (based on Behradfar et al. (rabbit),
Ramanathan et al. (human) and Klabunde (human) [2, 22, 16], respectively).

When the signal moves through the Purkinje network to the ventricular
muscle tissue in the normal fashion it is called anterograde propagation. The
direction of the signal in each branch is then what is seen as the normal
direction. Retrograde propagation is when the signal moves in the direction
opposite to the normal direction. This happens when the signal goes from the
myocardial tissue into the Purkinje network. In the Purkinje network this will
give retrograde propagation in some branches and anterograde propagation in
others. Retrograde propagation can arise during arrhythmia, and contribute
to the arrhythmia being sustained and even forti�ed.

The ventricular muscle tissue consists of three main layers. From the in-
side and out these are the endocardium, the myocardium and the epicardium.
The PMJs are sites found on the subendocardial surface, where the muscle
tissue is activated from the Purkinje network. Between the Purkinje cells and
the ventricular muscle cells there are cells of another type, called transitional
cells. The transitional cells couple the ends of the Purkinje network to several
ventricular muscle cells. There is a relatively high-resistance barrier between
the Purkinje cells and the transitional cells and between the transitional cells
and the ventricular muscle cells leading to a signal delay at the PMJs, see
Tranum-Jensen et al. [25] and Rawling and Joyner [1]. Retrograde propaga-
tion is highly favored over anterograde propagation, as it is much easier to
excite the one dimensional Purkinje �bres than the much greater ventricular
mass. Behradfar et al. (rabbit) [2] considers anterograde delays in the range
4-14 ms and retrograde delays in the range 2-4 ms to be physiological, while
Boyle et al. (rabbit) [3] operates with a lower retrograde delay (0.89 ms).

2.4 Cell Physiology

To be able to model the electrical activity in the cardiac tissue, it is necessary
to be able to model the electrical activity in a single cell. There are two
types of cells being modeled in the present problem: cardiac Purkinje cells
and ventricular cardiomyocytes. These are both cardiac muscle cells, but
they di�er somewhat in cellular structure and electrical properties, so they
require di�erent cell models.
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2.4.1 Anatomy

A muscle consists of many cylinder-shaped fascicles, which again are built
from many muscle cells. A muscle cell, also called a muscle �ber, is shaped
like a cylinder. Its most dominating entity is the myo�brils. These are
cylinder-shaped structures running the length of the cell. Between the my-
o�brils and the other structures in the cell there is a liquid called cytoplasm.
There are many myo�brils in one mucle cell and together with the cytoplasm
they make up what is called the myoplasm. The myo�brils are built of many
shorter cylinders called sarcomeres. These are the contractile units of the cell.
The sarcomeres of the di�erent myo�brils are approximately level. They are
built of up thin and thick �laments, which are strands of di�erent protein
types. The thin �laments consist of actin, troponin and tropomyosin, while
the thick �laments consist of myosin. Troponin can bind calcium ions, and
is thus a bu�er. The myoplasm also has a bu�er type called calmodulin. An
illustration of a muscle cell can be seen in Figure 2.2.

Around the myo�brils there is a tubular network called the sarcoplasmic
reticulum (SR). The SR contains enlarged segments called cisternae, where
calcium ions bind to the protein bu�er calsequestrin. When triggered, the
SR can release calcium from these cisternae into the myoplasm. The calcium
is taken up again in the SR by the rest of the SR network, before it di�uses
back into the cisternae. The cisternae are located at speci�c places along the
sarcomeres.

The cell is surrounded by a cell membrane called the sarcolemma. In
some cell types the sarcolemma dimples into the cell in some places, creating
membrane tubules around the myo�brils that can stretch quite long into the
cell. These tubules are called transverse tubules or T-tubules, and in those
cardiac cells that have them they are normally opposed to a cisternae in
the SR that may wrap around it, creating a structure called a diad. The
T-tubules enable extracellular ions to rapidly reach to the center of the cell.
Ventricular myocytes have T-tubules, while Purkinje cells do not.

In addition to the mentioned structures, the cardiac cells also contain
one nucleus (while skeletal muscle cells contain several nuclei), and many
mitochondria, placed among the myo�brils.

2.4.2 The Cell Membrane

The cell membrane separates the intracellular space from the extracellular
space. The membrane itself is impermeable to ions, but it has embedded in
it some large proteins acting as specialized transport channels, the di�erent
proteins only letting certain ions pass. These ion channels can open and close
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Figure 2.2: Schematic image of a muscle cell1. The illustration is of a
skeletal muscle cell. In cardiac muscle cells the structure named �triad� in the
�gure is named �diad�, and consists of a T-tubule and one single cisternae, as
opposed to a T-tubule and two cisternae in skeletal muscle cells. In addition
cardiac muscle cells only has one nucleus, while skeletal muscle cells have
several nuclei.

in response to changes in the electric �eld or the ionic concentrations. They
can consist of several subunits and can portray a quite complex behaviour.

The passage of ions through an ion channel might be passive, the �ow
being driven by concentration gradients or electric �elds, or it may be active,
when the ions are being transported against mentioned gradients or �elds.
Active transport proteins are called pumps if they transport only one type of
ion, using chemically stored energy in the cell to do so. If they �exchange� two
types of ions, using the concentration gradient of one of the types to pump
the other type against its concentration gradient they are called exchangers.

Since the ion channels are specialized for certain ion types, and can open
and close as a reaction to changes in its environment, it is possible for a
potential di�erence to build up across the cell membrane. Let us say we start
out with two types of ions, oppositely charged, both present on the inside
and outside of the cell. We assume both to have a higher concentration on
the outside. Then the concentration gradients of both will work to bring the

1http://commons.wikimedia.org/wiki/File:Blausen_0801_SkeletalMuscle.png
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ions inside the cell. If the cell membrane only permits the entrance of one
of the ion types, this will create a potential di�erence across the membrane,
working to bring the ions entering the cell back outside. Thus the di�usive
and electrical powers work in opposite directions, and an equilibrium will
be reached where ions no longer �ow. In this resting state, the cardiac cell
will have di�erent internal and external ionic concentrations, resulting in
a potential di�erence across the cell membrane, called the transmembrane
potential, or simply membrane potential.

In this thesis the transmembrane potential is denoted by V . An i or e
as subscript signi�es that something is intracellular or extracellular, respec-
tively. The transmembrane potential is de�ned as the intracellular potential
minus the extracellular potential: V = Vi − Ve. The value of the transmem-
brane potential that gives zero �ux is called the Nernst equilibrium potential,
or the reversal potential. This will be further described in Chapter 3.

2.4.3 Action Potential and Ionic Currents

Cardiac cells are excitable. If the transmembrane potential is brought above a
threshold value this will trigger what is called an action potential. Instead of
just returning to resting state, the membrane potential will get more positive
very fast, until it is close to, or even well above, zero. This is called depolar-
ization. From here the membrane potential will slowly start to fall, making
its way back to the resting state. This is called repolarization. Sometimes
the potential will reach a slightly lower value than the resting state before
returning to rest. This is called hyperpolarization. The complete potential
excursion from the onset of the depolarization until the potential is back to
its resting value is called an action potential, and is illustrated in Figure 2.3
It can be split into �ve phases, in which di�erent ions and currents domi-
nate. The initial depolarization can come from an external stimulus, or for
pacemaker cells it can be caused by transmembrane currents controlled by
the cell itself.

• Phase 0: Depolarization.

Phase 0 starts by a depolarization bringing the transmembrane po-
tential above a threshold value. This allows the fast Na+ channels to
open, causing a rapid in�ux of Na+ ions by the fast Na+ current INa,
which raises the membrane potential signi�cantly (from about -85 mV
to about 40 mV for the two cell types of interest here) in a very short
time (about 1 ms).

• Phase 1: First part of the repolarization.
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Figure 2.3: Schematic illustration of an action potential. Phases and main
currents are shown. Time is on the �rst axis, typically a range of a few
hundred ms. Voltage is on the second axis, typically in the range from about
-85 mV to about 40 mV.

When the transmembrane potential approaches the Na+ equilibrium
potential, the fast Na+ channels are inactivated by a slow inactivation
gate. This is modeled by the slowly inactivating late Na+ current INaL.
At the same time, the 4AP-sensitive transient outward K+ current
Ito1 and the Ca2+ dependent transient outward Cl− current Ito2 (the
latter only in the ventricular myocyte model) start carrying K+ and
Cl− ions, respectively, out of the cell. For a little while the net current
is outwards, bringing the transmembrane potential down a little. The
Na+ channels stay in the inactivated state well into phase 3. This makes
it impossible to initiate a new action potential from the beginning of
phase 0 until the Na+ channels leave this state. This period is called
the refractory period.

• Phase 2: �Plateau� phase, second part of the repolarization.

Shortly after the inactivation of the fast Na+ channels, the Ca2+ current
through the L-type Ca2+ channel, ICaL, starts bringing Ca

2+ ions into
the cell, working against the e�ux of positive K+ ions, which are now
carried by the slow delayed recti�er K+ current IKs, giving the action
potential a �plateau� shape. In the ventricular myocytes the plateau
K+ current IKp contributes to the plateau shape.

• Phase 3: �Rapid repolarization� phase, last repolarization part.

The L-type Ca2+ channels depend on the membrane potential and local
Ca2+ concentrations in the cell. After a while they will close, while
IKs continues to bring K+ ions out of the cell, in addition to new K+

11



channels opening. Rapid K+ e�ux happens through the rapid delayed
recti�er K+ current IKr, while the time-independent K+ current IK1

gives K+ in�ux against the concentration gradient, but the net current
is still outward, and the repolarization happens fast.

• Phase 4: Diastolic depolarization phase. Resting phase.

When the cell is fully repolarized, the transmembrane potential is back
to its resting state. Pacemaker cells such as the Purkinje cell then
slowly starts to depolarize because of the hyperpolarization activated
Na+-K+ current If , while non-pacemaker cells such as the ventricular
myocyte stay relaxed until receiving a new external stimulus, and a
new action potential is triggered.

The Na+-K+ pump INaK and the Na+-Ca2+ exchanger INaCa are active
in phases 2 and 4. Their job is to maintain the membrane potential while
bringing the ionic concentrations back to the values they had before depo-
larization. During an action potential, Na+ ions enter the cell while K+ ions
leave, so INaK gives an e�ux of Na+ ions and an in�ux of K+ ions to restore
balance. The exchange rate is three Na+ ions to two K+ ions. Both ion types
are carried against their concentration gradient. The Na+-Ca2+ exchanger
is one of the most important mechanisms for removing Ca2+ ions from the
intracellular space. It brings one Ca2+ ion out of the cell and three Na+ ions
into it. To bring the Na+ concentration back to its original value, INaK must
be greater than INaCa, since INaCa brings Na+ ions back into the cell. In
addition to this, the IK1 current works along INaK in giving an in�ux of K+

ions, being active through phases 3 and 4, and the sarcolemmal Ca2+ pump
current IpCa works to remove Ca

2+ ions from the cell alongside INaCa.
There are two types of currents included in the Purkinje cell model but

not in the ventricular myocyte model, these are the Ca2+ current through
the T-type Ca2+ channel ICaT and If . In phase 2, the L-type Ca2+ cur-
rent (L for long-lasting) is important to give the action potential a plateau.
Pacemaker cells also have a T-type Ca2+current (T for transient) ICaT . The
T-type channels react to lower values of the membrane potential than the
L-type and open faster but close earlier. The consequence is that it plays a
part in initiating an action potential, rather than prolonging it. Since pace-
maker cells are able to spontaneously depolarize, it makes sense that they
have more mechanisms to get the depolarization started. Purkinje cells are
latent pacemaker cells, so they have T-type Ca2+ channels, while ventricular
myocytes do not.

The current responsible for the depolarization of pacemaker cells is the
If , which is a mixed Na+-K+ current (in the model the contributions from
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the di�erent types of ions are separated into two separate currents). The
channels of this current conduct more current as the membrane potential
becomes more negative. This current is also called the funny current or the
pacemaker current.

The cell models for the ventricular myocyte and the Purkinje cell both
assume that there are always some Ca2+ and Na+ ions passing the membrane.
The resulting currents are called background currents, or leakage currents,
ICab and INab for the Ca

2+ and Na+ background currents, respectively. The
model for a ventricular myocyte also models a background Cl− current IClb.
In the ventricular myocytes, cotransporter �uxes CTNaCl and CTKCl are
required alongside INab to maintain the correct Na+ concentration during
the resting state.

2.4.4 Excitation-Contraction Coupling

The sarcomeres are the contractile units of the muscle cells. They all contract
simultaneously and when they do, the whole cell becomes shorter. The sar-
comeres are built of thin and thick �laments, both types of constant length.
In resting state, the thin and thick �laments only overlap slightly - the thick
�laments in the center of the sarcomere, the thin �laments further out - but
during contraction they slide along the length of the myo�brils until they
overlap completely, shortening the length of the sarcomere. This sliding hap-
pens as part of the cross bridge cycle.

As stated earlier, the thin �laments consist of the proteins actin, troponin
and tropomyosin, where troponin can bind calcium, while the thick �laments
consist of the protein myosin. Actin in the thin �laments has binding sites
for the myosin heads of the thick �laments. When the cell is in its resting
state these binding sites are blocked by tropomyosin, but if calcium binds to
troponin, troponin changes form and moves tropomyosin, letting the myosin
heads bind to actin in so-called cross bridges. Then the cross bridges move,
sliding actin towards the center of the sarcomere, before the myosin head lets
go of actin. This is repeated as long as the myosin binding sites on actin are
not covered by tropomyosin, i.e. as long as calcium is present, making the
cell shorter and shorter.

Calcium enters the cell during phase 2 of the action potential, the plateau
phase. This calcium is not enough to start the cross bridge cycle, but it
triggers the release of much more calcium from the cisternae in the SR. This
is enough for the cycle to begin and it does not stop before well into phase 4,
the resting phase. The same amount of calcium as entered the intracellular
space from the outside is then removed, and the rest is taken up again by the
SR. The calcium released from the SR in�uences the L-type calcium current.
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2.4.5 Cell Connectivity

Muscle cells are connected by large proteins embedded in the cell membrane.
These proteins form channels between adjacent cells, forming direct contact
between the inner spaces of the cells. These connections are called gap junc-
tions. Via the gap junctions, the ions leading to the depolarization of one
cell may move on to the next cell bringing about its depolarization as well.
In this way, an electrical stimulus in a small area of the heart may lead to a
depolarizing wave through the whole heart.

2.5 What to Model

The contraction of the heart, which controls the blood supply to the whole
body, is controlled by electrical signals in the heart's conduction system and
muscle tissue. This electrical signal is a di�erence in voltage across the
cell membrane, which can come into being because the cell membrane is
selectively permeable to di�erent ion types. Therefore, to model the electrical
activity, one must model the transmembrane potential of the cells. In a
single cell the transmembrane potential is controlled by transmembrane ionic
currents, and these again may depend on concentrations of di�erent ion types
in di�erent parts of the intracellular area, so these must also be modeled, as
well as intracellular �uxes. For a speci�c cell type, all these quantities are
described by a cell model. When looking at a tissue, di�usion between the
cells must be considered in addition. This is modeled by a tissue model,
which must be coupled together with a cell model.
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Chapter 3

Mathematical Models

In the previous chapter the biology of the problem was described, and it was
de�ned more accurately what it is desirable to model. The next step is to
�nd a way to model this in a way that gives us the necessary information.
A mathematical framework is perfect for this. In essence, everything that is
studied in this problem is how quantities change in space or time. If the cause
of change of a quantity is known, di�erential equations can be used to model
its development. If all causes of change are known and represented correctly,
and there are also su�cient initial conditions to de�ne the system properly,
di�erential equations hold the complete information about the quantity at all
times and/or in all space, depending on what the problem is. So, given the
equations and appropriate initial conditions in the form of numbers, numbers
representing the quantity are given in return. As stated in Section 2.5, the
goal is to model the processes in a single cell, as well as those on tissue level.
Both of these types of models will be considered: the PRd model [17] for a
Purkinje cell, the Decker et al. model [15] for a ventricular myocyte, and the
monodomain equation for cardiac tissue. In addition two simpler cell models
will be introduced: a cubic polynomial and the FitzHugh-Nagumo (FHN)
model.

3.1 Single Cell Models

The goal is to model the transmembrane potential V and how it changes in
time. To �nd a general expression for this, the procedure in Lines's doctoral
thesis [18, Section 3.1] was followed.

The cell membrane has properties corresponding to both a resistor and a
capacitor, see Figure 3.1 for an electric circuit model of the cell membrane.
Motivated by this, the transmembrane current Im [µA/cm2] is modeled as
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Figure 3.1: Electrical circuit model of the cell membrane consisting of a
resistance and a capacitance.

the sum of a capacitive current Ic and a resistive current Iion:

Im = Ic + Iion. (3.1)

The resistive current is called Iion because it carries ions across the mem-
brane, while the capacitive current represents the accumulation of charge
across the membrane, and doesn't move any ions.

The electrical potential across the membrane can be written as:

∆V =
∆q

Cm
, (3.2)

where q is the charge [nC/cm2] and Cm is the capacitance [µF/cm2] of the
membrane.

Current is de�ned as:

I = lim
∆t→0

∆q

∆t
, (3.3)

where t is time [ms].
Dividing equation (3.2) by ∆t and letting ∆t→ 0 gives a relation between

the change of the transmembrane potential and the capacitive current:

dV

dt
=

1

Cm
Ic = − 1

Cm
(Iion − Im). (3.4)

Often, Cm is incorporated into the ionic currents, so the ionic currents
I are measured in µA/µF instead of µA/cm2. This will be the case for
the currents in the rest of this thesis. In accordance with the naming in the
model, Iion is renamed Itot and Im is renamed Iapp, as this current corresponds
to external stimulus. The �nal equation is then:

dV

dt
= −(Itot(t, s)− Iapp(t)), (3.5)

where s denotes the state vector. This equation is the basis for all the cell
models.
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3.1.1 A Cubic Polynomial

The simplest cardiac cell model used in this thesis use a direct expression
for the right hand side of equation (3.5), so this model only consists of one
equation:

dV

dt
= f(V ), (3.6)

where f is:
f(V ) = −A2(V − Vrest)(V − Vth)(V − Vpeak). (3.7)

The cell model with this cubic polynomial as the right hand side of equa-
tion (3.5) is the simplest cell model that reproduces the main behaviour of
the depolarization phase of the action potential.

The function f has three zeros: Vrest, Vth and Vpeak. These values are
equilibrium points of V in equation (3.6), since f = 0 does not contribute any
change to V . If the initial value of V is smaller than Vth, V will tend towards
Vrest. Physiologically this corresponds to the cell receiving a small stimulus.
When the stimulus is removed, the cell will return to the resting potential,
here called Vrest. If V starts out greater than Vth, V will move towards Vpeak.
This corresponds to the cell receiving a stimulus large enough to bring the
transmembrane potential across the threshold value, here named Vth. Then
the cell enters its depolarization phase, the transmembrane potential growing
until it reaches a peak, here labeled Vpeak.

Having reached its peak, the transmembrane potential will enter its re-
polarization phase, where it returns to the resting state. The cubic f given
here is not able to reproduce this phase, since once the peak potential Vpeak
is reached, the transmembrane potential does not change any more.

The parameter A [mV−1 ms−1/2] controls the magnitude of f , and thus
the upstroke velocity of V . A high value of A gives a high change rate
and therefore a steep depolarization front. Physiologically A represents the
permeability of the membrane. A high value means a high permeability,
meaning that more ions are able to cross the membrane than with a low
permeability, leading to faster changes.
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3.1.2 The FHN Model

The next cell model to be considered is the FitzHugh-Nagumo (FHN) cell
model. It consists of two equations with two unknown variables. The equa-
tions are de�ned as by Keener and Sneyd [14, eqs.(5.38)-(5.40)]. The �rst
equation corresponds to the basis equation (3.5):

ε
dV

dt
= f(V )− w + Iapp, (3.8)

dw

dt
= V − γw, (3.9)

where

f(V ) = −V (V − α)(V − 1) (3.10)

for 0 < α < 1, ε� 1, where γ and ε are scalars and α a potential [mV].
The function f is on the same form as the f in the previous section, only

with A = 1 mV−1 ms1/2), Vrest = 0 mV, Vth = α mV and Vpeak = 1 mV. While
the cubic polynomial alone was only able to reproduce the characteristics of
the depolarization phase of the action potential, the FHN model is extended
to also incorporate the repolarization phase, as can be seen in Figure 3.2a.
This is done by adding a second variable w [µA/µF], called the recovery
variable since it enables the recovery of the membrane potential to its resting
potential. The idea is that w grows along with V , and at the same time w
is subtracted from the rate of change of V , eventually making V decrease.
Depolarization followed by repolarization now gives a wave front.
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Figure 3.2: Action potential for the FHN cell model. (a) Original model
with V (0) = 0.2 mV, w(0) = 0.0 µA/µF, γ = 0.5, ε = 0.01, α = 0.1 mV. (b)
Modi�ed model with parameters de�ned in the source code [12].
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The varible Iapp signi�es an external stimulus applied to the cell. To
achieve depolarization the transmembrane potential must either have an ini-
tial value higher than the threshold value, or there must be an external
stimulus.

A small value for the scalar ε makes V a fast variable compared to w,
since the change in transmembrane potential is magni�ed. This compensates
somewhat for the FHN model having a slower upstroke than a real cell.

A non-physiological feature of the FHN model is that the transmembrane
potential hyperpolarizes, i.e., at the end of the repolarization phase the po-
tential falls lower than the resting potential before returning to it. As a
remedy for this, Rogers and McCulloch, as referred by Sundnes et al. [24,
p.35], suggested that the term with the recovery variable w in equation (3.8)
be multiplied with the membrane potential variable V . The new equation
becomes:

ε
dV

dt
= f(V )− V w + Iapp. (3.11)

Since the modi�ed term will now approach zero as V approaches the
resting potential (here zero), V will no longer reach sub-zero values.

In both the original and the modi�ed FHN equations, the transmembrane
potential has values between 0 and 1 mV. The equations can be reparame-
terized to take on more physiological values by de�ning:

V ∗ = VampV + Vrest, (3.12)

where Vamp = Vpeak − Vrest (using only the values of Vpeak and Vrest, so Vamp
is dimensionless). Solving this equation for V and inserting into either the
original or modi�ed equations will give equations with values for V (now
called V ∗) in the desired range. The recovery variable w has no physiological
interpretation and does not need scaling, but for notational convenience it
can be useful to replace it by the new variable W de�ned as:

W = Vampw. (3.13)

An action potential for the modi�ed FHN cell model with physiological
values can be seen in Figure 3.2b.
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3.1.3 The PRd Model

The PRd cell model is a lot more complicated than the two previous mod-
els. While the cubic polynomial and the FHN equations are constructed
to reproduce observed behavior of cardiac cells on a macroscopic level, the
PRd model tries to describe the physiology of the cells. Only in this way
is it possible to investigate how changes in the physiology of the cells a�ect
the heart tissue, and possibly the whole heart. This section will present an
overview of the model and try to explain some of the physiology behind the
equations, but to know the complete model, the reader is referred to the
original publication by Li and Rudy [17].

The model describes a cardiac Purkinje cell. What is new about this
model is that the the authors have developed a mathematical model of the
Purkinje cell that represents its unique electrophysiological and calcium han-
dling properties instead of adopting that of ventricular myocytes. The com-
plete model consists of 38 ordinary di�erential equations (ODEs), many ex-
pressions and 80 parameters. The state vector consists of the transmembrane
potential, 11 ionic concentrations, 23 gating variables, two �uxes and one
variable that is involved in the expression for a �ux but is not a �ux itself.
The state variables can be seen in Table 3.1.

V [K+]i xs1 jL
[Ca2+]PCS [CAMK]trap xs2 jL3

[Ca2+]SSL m xr b
[Ca2+]JSR h a g
[Ca2+]CSR j i y
[Ca2+]NSR d i2 uIP3R

[Ca2+]i f mL JRyR2

[Na+]PCS f2 mL3 JRyR3

[Na+]SSL fca hL
[Na+]i fca2 hL3

Table 3.1: State variables in the PRd model. V is the transmembrane
potential, [X]y is the concentration of X in compartment y, JRyR2 and JRyR2

are �uxes, uIP3R is involved in the expression for the JIP3 �ux, and the rest
are gating variables involved in the current expressions.

The equation for the transmembrane potential is on the form of equation
(3.5), which is restated here for convenience:

dV

dt
= −(Itot(t, s)− Iapp(t)). (3.14)
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An action potential for a Purkinje cell modeled by the PRd cell model
can be seen in Figure 3.3.
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Figure 3.3: An action potential of a Purkinje cell for the PRd model.

Cell Structure

The PRd model is a compartmental model. This means that the cell vol-
ume is divided into separate parts and the ionic concentrations within each
compartment are assumed to be constant. Changes in the concentrations
happen as a result of �uxes between the compartments and ionic currents
across the cell membrane. Areas that are not adjacent can be modeled as
a single compartment, given that they have the same ionic concentrations
and these change similarly in time. The ionic �ows in the model should have
realistic physiological values.

The PRd cell model divides the cell into six compartments: the periph-
eral coupling subspace (PCS), the subsarcolemmal compartment (SSL), the
bulk myoplasm (Myo), the junctional sarcoplasmic reticulum (JSR), the net-
work sarcoplasmic reticulum (NSR) and the corbular sarcoplasmic reticulum
(CSR). An overview of the cell model is shown in Figure 3.4.

The volume immediately below the cell membrane is divided into two
compartments: PCS is a small compartment where the L-type Ca2+ chan-
nels and a small portion of the sodium-calcium-exchangers are placed, while
SSL is the rest of this area, where the rest of the ion channels are placed.
The myoplasma has its own compartment Myo, while the SR is divided into
three compartments: the NSR takes up calcium from the Myo and the SSL
compartments, from there it di�uses into the JSR and the CSR, which release
calcium into the Myo and the PCS, respectively, when triggered.
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Figure 3.4: A graphic overview of the PRd cell model for a canine cardiac
Purkinje cell. This is Figure 1.A from page 73 in the article �A Model of
Canine Purkinje Cell Electrophysiology and Ca2+ Cycling. Rate Dependence,
Triggered Activity, and Comparison to Ventricular Myocytes�, by authors
Pan Li and Yoram Rudy, published in Circulation Research 2011;109;71-79
[17]. Reproduced with permission.

There are di�erent types of calcium bu�ers in all the compartments except
the NSR: calsequestrin (CSQN) in the JSR and the CSR, troponin (TRPN)
and calmodulin (CMDN) in the Myo and (in the �gure) unspeci�ed bu�er
proteins in the PCS and the SSL. The di�erent transmembrane currents and
intracellular �uxes can be seen in the overview of the cell model in Figure
3.4.

Channel Gating

In Section 2.4.2 it was stated that the ion channels in the cell membrane
can open or close in response to the electrical �eld or ionic concentrations.
The mathematical models used in this thesis to describe the ion channels
consider the channels to consist of several sub-units, each of which can be
open or closed. The channel is only open for ions to pass when all units are
open.

Looking at a single unit, the change between the open and closed state
may be expressed as:

C
α

�
β
O, (3.15)
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where O and C are the open and closed states, respectively, and α and β
[1/ms] are the rates of opening and closing, respectively. The rate constants
often depend on the membrane potential. The law of mass action (see for
example Keener and Sneyd [14]) states that in a reaction of this kind, the
rate of change from one state to the other is proportional to the concentra-
tion of channel units in the state of origin. With [O] and [C] denoting the
concentration of open and closed states, respectively, this results in:

d[O]

dt
= α(V )[C]− β(V )[O]. (3.16)

Dividing this by the total concentration of channel units [O] + [C], which
is assumed to be constant, gives an equation for the portion of open channel
units g = [O]/([O] + [C]):

dg

dt
= αg(V )(1− g)− βg(V )g, (3.17)

or equivalently:
dg

dt
=
g∞ − g
gτ

, (3.18)

where g∞ = α/(α + β) and gτ = 1/(α + β). The variable g can also be
interpreted as the probability that the unit is open, and it is called a gating
variable.

Since α and β depend on V it is impossible to �nd a general solution of
equation (3.18), but with α and β constant, the analytical solution is:

g(t) = g∞ + (g0 − g∞)e−t/gτ , (3.19)

where g0 is the initial value of g. As t increases, g will approach g∞, the
rate of change depending on gτ . If gτ is small the change will be fast and g∞
can be a reasonable approximation to g. This approximation is used in the
equations for the currents IKr, IK1 and parts of Ito1.

The channel gates can be slow or fast activation or inactivation gates.
Assuming that the channel units open and close independent of each other,
the probability O that the channel is open is the product of the probabilities
that all the channel units are open. These probabilities can all be written on
the form of equations (3.17) or (3.18), but the rate constants α and β may
vary from one channel unit to the next. Since g and O are probabilities they
must have values in the interval [0, 1].

The expressions for α and β have no physiological meaning. They are
constructed to match experimental data and cannot be expressed in any
common general form. Given the expressions for the rate constants, and
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initial conditions, the ODEs for the gating variables are properly de�ned. If
g∞ is used directly to approximate g no ODE is required. For the explicit
expressions for the rate constants and initial conditions in the PRd model,
the reader is referred to the original publication [17].

Ionic Currents

Three types of ions are included in the model: sodium, potassium and cal-
cium. The total transmembrane current is described as a sum of the currents
of these individual ions, so equation (3.5) becomes:

dV

dt
= −(INa,tot + IK,tot + ICa,tot). (3.20)

Each of these currents are again described as sums of di�erent types
of currents of the same ion. These ion �ows can be passive �ow through
di�erent types of membrane channels, or active �ow in the form of pumps
or exchangers, as described in Section 2.4.2. The equations for the total
currents of the di�erent ion types are:

INa,tot = INa + INaL + INab + 3INaK + If,Na + 3(INCX,SSL + INCX,PCS),
(3.21)

IK,tot = IKr + IKs + IK1 − 2INaK + Ito1 + If,k, (3.22)

ICa,tot = ICaL + ICab + IpCa + ICaT − 2(INCX,SSL + INCX,PCS). (3.23)

All the individual currents and their roles during an action potential are
described in Section 2.4.3. In the overview of the cell model in Figure 3.4 the
currents are depicted with directions. The intracellular potassium concen-
tration is higher than the extracellular concentration, so this concentration
gradient leads to e�ux of potassium, while for sodium and calcium it is the
other way around. During the action potential, the membrane potential will
reach the equilibrium potentials of the di�erent ions, and the directions of
the ionic �ows will be reversed. This holds for all the passive ion channels,
where the �ows are driven by concentration gradients and electrical e�ects.

The Na+-K+ pump makes three Na+ ions leave the cell and two K+ ions
enter the cell, giving these two terms opposite signs. The same goes for the
Na+-Ca2+ exchanger, that sends one Ca2+ ion (with two positive charges)
out of the cell and three Na+ ions into the cell.

The concept of an equilibrium potential was introduced in Section 2.4.2.
The Nernst equilibrium potential of a speci�c ion is the transmembrane po-
tential that gives zero �ux of that same ion across the membrane. A further
increase in the transmembrane potential after this point is reached will give
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an ion �ux in the opposite direction of before, and for this reason it is also
called the reversal potential. The Nernst equation can be expressed as by
Sundnes et al. [24, eq.(2.52)]:

Veq =
RT

zF
ln

(
ce
ci

)
, (3.24)

where Veq is the equilibrium potential, R [J/(kmol K)] is the ideal gas con-
stant, T [K] is the temperature, F [C/mol] is Faraday's constant, z is the
valence of the ion [dimensionless], and ce and ci [mmol/L] are the extra- and
intracellular concentrations of the ion, respectively. The valence of an ion is
its excess or de�ciency of ions (with sign) compared to the neutral state and
says something about the ion's ability to bind to other ions.

The currents through the passive channels can be modeled in several ways.
Here two alternative models are used:

I = OGmax(V − Veq), (3.25)

I =
1

Cm
OP

z2F 2

RT
V
ci − ce exp(−zFVRT

)

1− exp(−zFV
RT

)
, (3.26)

where O is the probability that all the subunits of the channel are open to
let the �ux through, as de�ned under the headline �Channel Gating� earlier
in this section. For the background currents O = 1 since these currents
are assumed to be present all the time. The variable Gmax [mS/µF] is the
maximum conductance per area with 1/Cm incorporated (when all channels
are open) and P [cm/s] is the permeability of the cell membrane to the ion in
question. The division by Cm was explained in the beginning of this chapter.

The Nernst equation (3.24) holds in general, and one can see that V = Veq
in both expressions for current above gives I = 0. The linear model given by
equation (3.25) is the simplest formulation satisfying the Nernst equilibrium
equation, and is constructed for this purpose. The more complex model given
by equation (3.26) is obtained through a more physiologically meaningful
process, which will not be further explained here (see for example Keener
and Sneyd [14]). It is called the Goldman-Hodgkin-Katz (GHK) equation.
All the passive currents in equations (3.21)-(3.23) are on the form of equations
(3.25) or (3.26).

Pumps and Exchangers

There are four types of pumps or exchangers in the PRd model: the SERCA
pump, the Na+-Ca2+ exchanger, the Na+-K+ pump and the sarcolemmal
calcium pump (IpCa). The SERCA pump is treated in the next segment.
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These pumps and exchangers can be described in a number of ways. Di�erent
models can have a di�erent number of states, according to their detail level.
Since the equations describing these currents are not as general as many of
the other equations in the model, they are not further described. Details can
be found in the original publication [17].

SR Ca2+ Fluxes

The PRd model has three �uxes modeling the release of Ca2+ from the SR:
JRyR3 , JRyR2 and JIP3R. The formulations of these are modi�ed from earlier
models. For details about which models they are based on, the reader is
referred to the original publication [17]. The �uxes in the cell model are
de�ned with respect to a reference volume and have units mmol/(L ms).

The �ux JRyR3 goes from JSR to PCS. It depends on Ca2+ �uxes in the
PCS compartment as well as Ca2+ concentrations in the PCS and the JSR.
The �ux JRyR2 goes from CSR to Myo and depends on Ca2+ �uxes in the Myo
compartment and Ca2+ concentrations in the Myo and CSR compartments.
The formulation of the �uxes can be written in the following way, where x is
2 or 3:

dJRyRx
dt

=
RyRx∞ − JRyRx

τRyRx
. (3.27)

Here RyRx∞ [mmol/(L ms)] depends on the change of the Ca2+ concen-
tration in the compartment that the respective �ux releases Ca2+ into. If
the change is positive, RyRx∞ is proportional to it, so an increase in the
Ca2+ concentration in these compartments trigger the release of more Ca2+

from the SR. This is called Ca2+ induced Ca2+ release and is an important
part of the cell dynamics during an action potential. The given equation has
the same form as equation (3.18) for a gating variable, but since RyRx∞ and
τRyRx [ms] cannot be written as functions of any α and β in the speci�ed way,
these equations are di�erent, and JRyR2 and JRyR3 are not gating variables.

The �ux JIP3R goes from JSR to PCS. The equations for this �ux are on
a di�erent form than the equation for the JRyRs. The ODE is not for JIP3R

directly, but for the variable uIP3R included in the expression for JIP3R. This
state variable depends on the Ca2+ concentration in the PCS compartment,
which is where the JIP3R �ux releases Ca2+, but the expression for JIP3R

is more complex than those for the JRyR �uxes, and will not be further
discussed.

The SERCA pumps bring Ca2+ ions into the NSR from the SSL and
Myo compartments. The formulation for Ca2+ uptake via the SERCA pump
consists of two terms. The �rst term is on the same form as JRyRx∞ , so
a greater Ca2+ concentration in the compartment that the SERCA pump
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pumps Ca2+ from allows for a greater NSR uptake. The second term models
the leak of Ca2+ ions from the NSR. Writing Ileak on the form:

Ileak =
[Ca2+]NSR

τ NSR
, (3.28)

where τ [ms] is a time constant deciding the �ux rate and NSR [dimen-
sionless] is the maximum NSR Ca2+ concentration, Ileak is subtracted in the
expression for Ca2+ uptake via the SERCA pump. This means that the
positive direction of the leakage current is opposite of that of Ca2+ uptake
via the SERCA pump. The �ux Ileak grows as a function of [Ca2+]NSR and
is inversely proportional to NSR. This makes sense since a higher Ca2+

concentration enables a higher leakage current, while a high maximum NSR
Ca2+ concentration means that more calcium can stay in the NSR and so
the leakage current is lower than for a smaller maximum concentration.

The intracellular �uxes that are not involved in the SR are the results of
concentration di�erences: a �ux will go from areas with high concentration
to areas with lower concentration. This is the form of the �uxes Jtr,j, Jtr,c,
Jdiff and Jgap, that can be seen in the overview of the cell model in Figure
3.4, for example:

Jtr,j =
[Ca2+]NSR − [Ca2+]JSR

τtr
(3.29)

for Jtr,j, which is de�ned as the �ux from the NSR to the JSR, and τtr = 120
ms decides the �ux rate.

Ionic Concentrations

The PRd model has 11 ODEs describing ionic concentrations: one for Ca2+

in each of the six compartments, for Na+ in the Myo, SSL and PCS com-
partments, for K+ in the Myo, and one for CAMKII. First ODEs are set up
according to Figure 3.4, including all the �uxes. In this step it is important
to scale for the di�erent volumes that the �uxes are de�ned with respect to.
The next step is to include Ca2+ bu�ering.

For the �rst step, the Ca2+ concentration in the SSL compartment will
be used as an example. The equations for the other concentrations are found
in the exact same manner. First all �uxes and currents to or from the SSL
regarding Ca2+ are identi�ed from looking at the cell model �gure: ICaT ,
IpCa, ICab and INCX across the cell membrane, Jdiff between the SSL and
the PCS, Jgap between the SSL and the Myo and JSERCA,s between the SSL
and the NSR. Here Jdiff and Jgap signi�es the Ca

2+ part of the �uxes with
the same names in the model overview in Figure 3.4, the total �uxes also have
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a Na+ part. The total amount of Ca2+ contributed to the SSL compartment
from the outside of the cell is then:

−(ICaT + IpCa + ICab − 2INaCa,SSL)
AcapCm
zCaF

.

All the membrane currents have positive direction outwards by de�nition,
therefore a positive membrane current contributes with a negative growth of
the concentration, bringing ions out of the cell. This explains the minus
sign in front of all the currents. However, the Na+-Ca2+ exchanger current
INaCa,SSL is de�ned as positive when it brings Na+ ions out of the cell and
Ca2+ ions into the cell, increasing the intracellular Ca2+ concentration, there-
fore an extra minus sign is needed to cancel the �rst one. The �2� in front
of the Na+-Ca2+ exchanger-term is because Ca2+-ions have a surplus of two
positive charges. The naming in the original article is not completely con-
sistent, but hopefully the meaning is clear from the context. Here INaCa,SSL
signi�es the current throught the Na+-Ca2+ exchanger in the SSL compart-
ment. In the overview in Figure 3.4 this is simply called INCX . To get the
�uxes from the currents, the currents were divided by zCaF , and to get the
total amount of Ca2+, this was multiplied with the capacitive membrane area
Acap [cm

2].
The �ux Jdiff has positive direction from the PCS to the SSL, giving a

plus sign, while Jgap has positive direction from the SSL to the Myo, giving
a minus sign, and JSERCA,s pumps Ca

2+ ions from the SSL into the NSR
against the concentration gradient, giving a minus sign. All the �uxes are
de�ned with respect to a reference volume [µL] (the smallest volume of the
two compartments involved), and they are scaled by this volume in the equa-
tions, for example is JSERCA,s multiplied by the NSR volume. A form of
scaling is necessary because a �ux between two compartments will a�ect the
concentration in the smallest volume the most. The scaling used here is quite
standard for cell models.

These are the contributions to the change in the total amount of Ca2+ in
the SSL, d(VSSL[Ca2+]SSL)/dt. Since the model assumes that the compart-
mental volumes do not change, all terms can be divided by the SSL volume
VSSL, arriving at the �nal formulation:

d[Ca2+]SSL
dt

= −(ICaT + IpCa + ICab − 2INaCa,SSL)
AcapCm
VSSL zCaF

+ Jdiff
VPCS
VSSL

− JSERCA,s
VNSR
VSSL

− Jgap (3.30)

The next step is to include the e�ects of Ca2+ bu�ers. Di�erent types of
such bu�ers are found in all compartments but the NSR. In these compart-
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ments the total amount of Ca2+ consists of the free amount and the bu�ered
amount. The ODEs for the ionic concentrations model the free amount, but
the free Ca2+ is in�uenced by the bu�ered Ca2+, therefore this must also be
included in the model. Following Keener and Sneyd [14, eq.(7.69)], the basic
chemical reaction for Ca2+ bu�ering can be represented by:

P + Ca2+
k+

�
k−

B, (3.31)

where P is the free bu�ering protein, �Ca2+� is the free Ca2+ and B is the
complex of bu�ered Ca2+. The variables k− and k+ are a kind of rate con-
stants. Letting Buf [mmol/L] denote the concentration of bu�er with Ca2+

bound, corresponding to B, [Ca2+] be the concentration of free Ca2+, and
Buf be the total bu�er concentration (which is assumed to be constant),
corresponding to P +B, a simple model of Ca2+ bu�ering is:

∂[Ca2+]

∂t
= Dc∇2[Ca2+] + f([Ca2+]) + k−Buf − k+[Ca2+](Buf −Buf),

(3.32)

∂Buf

∂t
= Db∇2Buf − k−Buf + k+[Ca2+](Buf −Buf). (3.33)

Here f([Ca2+]) denotes all the other reactions involving free Ca2+. The
variables k− and k+ have units 1/ms and L/(mmol ms), respectively. The
di�usion coe�cients Dc and Db have units cm2/ms. Compartment can be
denoted by a subscript. The bu�er type Buf is either calsequestrin (CSQN),
troponin (TRPN) or calmodulin (CMDN). Since the compartmental model
assumes constant concentrations within each compartment, the �rst term
on the right hand side of both equations vanish. If the bu�er reactions are
fast compared to the other Ca2+-reactions, Buf can be assumed to be in
quasi-steady state:

k−Buf − k+[Ca2+](Buf −Buf) = 0, (3.34)

which gives:

Buf = Buf
[Ca2+]

[Ca2+] +Km,Buf

, (3.35)

where Km,Buf = k−/k+ [mmol/L]. From here, two di�erent approaches can
be chosen. These will be explained consecutively. The �rst approach is as
follows:

Assuming that the amount of free calcium at one time step is known, the
bu�ered amount of calcium at the same time step can be found from equation
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(3.35). From the ODEs on the form of equation (3.30) found earlier in this
segment, an approximate value for the change in calcium during one time
step, not including bu�er e�ects, can be found. These three values are then
added to approximate the total amount of calcium at the next time step.
Now, keeping the values for the total amount of calcium and the change in
calcium, and inserting the expressions for the free and bu�ered amount at
the previous time step, one gets:

[Ca2+]tot = Buf + [Ca2+] + d[Ca2+] (3.36)

where [Ca2+]tot and d[Ca2+] are known values, and Buf and [Ca2+] are un-
known variables. Inserting the right hand side of equation (3.35) for Buf ,
this gives a polynomial equation with [Ca2+] as the unknown. Solving the
equation for the free amount gives a new approximate expression for the free
calcium concentration where bu�er e�ects are included. The solution will
depend on [Ca2+]tot and d[Ca2+], so for each time step the ODEs must be
solved to give d[Ca2+], while equation (3.35) must be used to �nd Buf .

The expression for the JSR and CSR compartments will have a single
bu�er term since they have only one bu�er type, CSQN, while the expressions
for the Myo, SSL and PCS compartments will have two bu�er terms since
they all have two types of calcium bu�ers, TRPN and CMDN:

[Ca2+]tot = CSQN + [Ca2+] + d[Ca2+], (3.37)

[Ca2+]tot = TRPN + CMDN + [Ca2+] + d[Ca2+]. (3.38)

For the JSR and the CSR compartments, both having a single calcium
bu�er, this yields a quadratic equation on the form:

(Ca)2 + b(Ca)− c = 0, (3.39)

with the free calcium as the unknown Ca and

b = CSQN − [Ca2+]tot +Km,CSQN ,

c = Km,CSQN [Ca2+]tot.

The quadratic equation (3.39) can be easily solved with the quadratic formula
giving:

[Ca2+] =
−b±

√
b2 + 4c

2
. (3.40)

Subtracting the square root will give a negative concentration, which does
not make sense. Since the square root is greater than bx, adding the square
root will give a positive concentration, so this is the only valid solution.
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The Myo, SSL and PCS compartments all have two types of calcium
bu�ers, thus the given procedure results in a cubic equation for the amount
of free calcium at the next time step:

(Ca)3 + b(Ca)2 + c(Ca) + d = 0, (3.41)

with

b = TRPN + CMDN − [Ca2+]tot +Km,TRPN +Km,CMDN ,

c = Km,TRPNKm,CMDN − [Ca2+]tot(Km,TRPN +Km,CMDN)

+ TRPNKm,CMDN + CMDNKm,TRPN ,

d = −Km,TRPNKm,CMDN [Ca2+]tot.

The cubic equation (3.41) can be solved analytically, assuming as before
that d[Ca2+] is a number. The process of solving this equation is not shown
here, but solution algorithms can be found (for example on wikipedia1) arriv-
ing at the solution through several steps with substitution of variables. The
polynomial has three roots. As with the quadratic polynomial only one solu-
tion is valid in the context, the other two being either complex or negative.
The solution is:

[Ca2+] =
2

3

√
b2 − 3c cos

(
1

3
cos−1

(
9bc− 2b3 − 27d

2(b2 − 3c)1.5

))
− b

3
. (3.42)

Returning to equation (3.35) the second approach is described. This
approach corresponds to adding together equations (3.32) and (3.33), with
di�usion terms equal to zero, inserting the expression from equation (3.35)
for Buf , and solving for ∂[Ca2+]/∂t. This yields an ODE for the amount of
free calcium, including the bu�er e�ects.

To get the exact same expressions as the ones that are used, a slightly
di�erent approach is chosen. Instead of adding the expressions for the time
derivatives of [Ca2+] and Buf , one de�nes:

v ≡ Buf −Buf =
BufKm,Buf

[Ca2+] +Km,Buf

, (3.43)

and subtracts the time derivative of v from the time derivative of [Ca2+]:

∂([Ca2+]− v)

∂t
=

∂

∂t

(
[Ca2+]− BufKm,Buf

[Ca2+] +Km,Buf

)
=

(
1 +

BufKm,Buf

([Ca2+] +Km,Buf )2

)
∂[Ca2+]

∂t
= f([Ca2+]).

1https://en.wikipedia.org/wiki/Cubic_function
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Rearranging this gives:

∂[Ca2+]

∂t
=

(
1 +

BufKm,Buf

([Ca2+] +Km,Buf )2

)−1

f([Ca2+]) ≡ βf. (3.44)

This expression only includes one bu�er type. To include several bu�er
types, add a system on the form of (3.31) for each bu�er. The variables
P and B vary for each bu�er, while Ca2+ is the same in all reactions. For
each additional bu�er, the equation for the time derivative of [Ca2+] must be
modi�ed by adding two terms on the form k−Buf − k+[Ca2+](Buf −Buf),
and an extra equation on the form of equation (3.33) must be added to
the system. Each bu�er is assumed to be in quasi-steady state, giving an
expression on the form of equation (3.35) for each bu�er. A v is de�ned in the
same manner as before, and all v's are subtracted from the time derivative
of [Ca2+]. In the end, each bu�er type contributes to β with a term on the
form:

θBuf =
BufKm,Buf

([Ca2+] +Km,Buf )2
, (3.45)

yielding:

β =
1

1 +
∑
Buf

θBuf
. (3.46)

This formulation is used for the PCS compartment, while the other com-
partments use the �rst bu�er approach. However, all the bu�er equations
had to be formulated this way to be de�ned in gotran format.

CAMKII.

CAMKII stands for Ca2+/calmodulin-dependent protein kinase II. Calmod-
ulin is short for Ca2+-modulated protein. It is a protein binding Ca2+-ions
and other proteins. Many of these other proteins are not able to bind Ca2+

themselves, and use calmodulin as a Ca2+ sensor. A kinase is a type of en-
zyme catalyzing phosphorylation, which is the addition of a phosphate group
to a protein. This can turn protein enzymes on or o�, changing the function
and activity of the protein. CAMKII is then a type of enzyme regulating the
activity of a protein, and this enzyme again depends on the Ca2+/calmodulin-
complex. There are several groups of such enzymes, II refers to the speci�c
group.

CAMKII plays an important role in regulating the release and uptake
of Ca2+, and thus in controlling the intracellular Ca2+-concentration. It is
included in the ODEs for the �uxes JRyR2 and JRyR3 , where it plays a role
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in regulating Ca2+ release via the Ryanodine receptor (RyR) channels, it
is taken into account in the expressions for the SERCA-pumps, regulating
the uptake of Ca2+ to the SR, and �nally, it is found in the expression for
the ICaL current, regulating the transmembrane in�ow of Ca2+ to the PCS
compartment.

3.1.4 The Decker et al. Model

The Decker et al. cell model models an epicardial myocyte. This model is
used for all the ventricular muscle cells. For the full model the reader is
referred to the original publication [15], but an overview will be presented
here. The cell model consists of 46 coupled ODEs, lots of expressions and
85 parameters. The state vector consists of the transmembrane potential, 11
ionic concentrations, 23 states, 10 gating variables and one �ux. The state
variables can be seen in Table 3.2.

V [K+]i C∗ mL

[Ca2+]SS,CaL [Cl−]SS,SR O∗ hL
[Ca2+]SS,SR [Cl−]i CI∗ Xr

[Ca2+]JSR [CAMK]trap C1 − C15 a
[Ca2+]NSR C O1 i1f
[Ca2+]i O m i1s
[Na+]SS,SR CI h i2f
[Na+]i OI j Irel

Table 3.2: State variables in the Decker et al. model. V is the trans-
membrane potential, [X]y is the concentration of X in compartment y, the
variables from C to O1 are states in Markov models and the rest are gating
variables in the expressions for the ionic currents.

Many of the model equations and expressions are on similar form as
in the PRd model but with di�erent parameter values. The equation for
the transmembrane potential is on the same form as in the PRd model,
see equation (3.5), where Cm is incorporated into the expressions for the
transmembrane currents, which then have units µA/µF . The action potential
can be seen in Figure 3.5.

The ionic currents have the same form as in equations (3.25) and (3.26),
but the collective open probability O of the subunits of an ion channel is
modeled in two ways: by gating variables, as in the PRd model, and by
Markov models, which will be further explained below.
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Figure 3.5: Action potential for a ventricular myocyte with the Decker et
al. cell model.

The expressions for the ionic concentrations are found in the same way
as in the PRd model and will not be further explained here. For those
compartments containing Ca2+ bu�ers the formulations were either on ODE
form or solutions of second and third order polynomial equations, as for the
PRd model. However, in the CellML code for the model [23] these were
all formulated as ODEs, so no modi�cations were necessary to get these
equations on gotran form. In addition to the pumps and exchangers found
in the PRd model, the Decker et al. model also have Na+-Cl−- and K+-Cl−

cotransporters.
CAMKII was described in the PRd model. In the Decker et al. model

it is included in the expressions for SR Ca2+ release via the IRel current
and uptake via the Iup current (this uptake is through a SERCA-pump). In
addition the e�ects from CAMKII is included in the Markov model for the
ICaL current.

Cell Structure

The Decker et al. cell model is a compartmental model with �ve compart-
ments: the myoplasma (MYOPLASM), the network sarcoplasmic reticulum
(NSR), the junctional sarcoplasmic reticulum (JSR), the sarcoplasmic retic-
ulum subspace (SS(SR)) and the ICaL subspace (SS(CaL)). An illustration
of the model can be seen in Figure 3.6.

The cell myoplasma is divided into three compartments: SS(CaL) is a
small compartment where the L-type Ca2+ channels are placed, SS(SR) is
another small compartment into which Ca2+ ions are released from the SR,
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and the rest is MYOPLASM, which contains most of the transmembrane ion
channels. This last compartment also has two types of bu�ers: calmodulin
(CMDN) and troponin (TRPN).

Figure 3.6: A graphic overview of the Decker et al. cell model for a ca-
nine epicardial myocyte. This is Figure 1 from page H1018 in the article
�Properties and ionic mechanisms of action potential adaptation, restitution,
and accomodation in canine epicardium�, by authors Keith F. Decker, Jordi
Heijman, Jonathan R. Silva, Thomas J. Hund and Yoram Rudy, published
in American Journal of Physiology - Heart and Circulatory Physiology 2009,
Vol. 296, no. 4, H1017-H1026 [15]. Reproduced with permission.

The SR is divided into two compartments: the NSR takes up calcium
from the myoplasma, from here it di�uses into the JSR, which release cal-
cium back into the myoplasma when triggered. The JSR contains a calcium
bu�er called calsequestrin (CSQN). The di�erent transmembrane currents
and intracellular �uxes can be seen in the overview of the cell in Figure 3.6.

Markov Models

The Decker et al. cell model uses Markov models to �nd the open probabil-
ities in the ICaL and IKs currents. A Markov model is a stochastic model
used to model systems changing randomly between states, where it is as-
sumed that future states depend only on the present state. In cell models the
Markov models model the states of single ion channels. While the Hodgkin-
Huxley formulation assumes independent gating for each ion channel, which
is typically not the case, the advantage of Markov models is that they enable
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more speci�c modeling of each ion channel, including dependencies between
the states. In the case of independent gating the Markov model and the
Hodgkin-Huxley formulation are equivalent (based on lecture notes from the
course INF5610 taught at the University of Oslo [19]).

The main state conformations in a cell model are the open and closed
states. If a channel consists of several subunits, there are several closed
states and the open state signi�es that all subunits are open. In addition
there is inactivation. This can be treated as one state, or it can be split into
open inactivated and closed inactivated, which allows for di�erent transition
rates for these two cases. When an ion channel is in the open activated state
it can conduct current, otherwise not. The inactivated property accounts for
the refractory period of an action potential. If a channel has been in the open
state, leading to the depolarization of the cell, and then transitions directly
into a closed state, it can be opened again without delay, depending on the
membrane potential. Instead it transitions from the open activated state
into an inactivated state where no stimulus can trigger a new depolarization.
After a while it transitions from the inactivated state to the closed activated
state, ready for a new action potential.

Transition rates decide the probability of transition from one state to
another. Together the states and transition rates make up the complete
model, which can be expressed in a Markov state diagram. The diagrams for
ICaL and IKs are shown in Figure 3.7.

The Markov model for ICaL in the Decker et al. model is new. It has four
open and four closed states, as can be seen in Figure 3.7a. From the �gure
one can set up the ODE governing each state. This gives a system of coupled
ODEs. For O∗ for example, there are three states that can move into state
O∗, and state O∗ can also move into these three states. The change in time of
a state's �concentration� is equal to the sum of all possible transitions. Each
transition is proportional to the concentration of the state that is being left,
and the transition rates are the proportionality constants:

dO∗

dt
= −(β + θ + y∗)O∗ + δ O + αC∗ + x∗OI∗. (3.47)

The probability used in equations (3.25) or (3.26) for the transmembrane
current, replacing the gating probability O in equation (3.15), is O + O∗,
where O here is a state in the Markov model, as seen in Figure 3.7a. The
transition rates depend on the transmembrane current V and the calcium
concentration in the SS(CaL) compartment [Ca2+]SS,CaL.

The Markov model for IKs has adjusted parameters from the original
model by Silva and Rudy (see reference in Decker et al. [15]), to �t data
for canine myocytes. It has 17 states, 15 closed and two open, as shown

36



(a) ICaL (b) IKs

Figure 3.7: Markov models for the (a) ICaL and (b) IKs currents. (a)
and (b) are Figures S1 and S2 from pages 7 and 10, respectively, in the
online supplement to the article �Properties and ionic mechanisms of action
potential adaptation, restitution, and accomodation in canine epicardium�,
by Decker et al., published in American Journal of Physiology - Heart and
Circulatory Physiology 2009, Vol. 296, no. 4, H1017-H1026 [15]. Reproduced
with permission.

in Figure 3.7b. The ODEs are set up as before, and solved, yielding the
open probability O = O1 + O2. The transition rates depend only on the
transmembrane current V .

Ionic Currents

Four types of ions are included in the Decker et al. model: sodium, potas-
sium, calcium and chloride. The total transmembrane current is described
as a sum of the currents of these individual ions, so equation (3.5) becomes:

dV

dt
= −(INa,tot + IK,tot + ICa,tot + ICl,tot). (3.48)

Each of these currents are again described as sums of di�erent types of
currents of the same ion, in the same manner as for the PRd cell model. The
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equations for the total �ow of the di�erent ion types are:

INa,tot = INa + INaL + INab + 3INaK + 3(INaCa + INaCa,ss), (3.49)

IK,tot = IKr + IKs + IK1 + IKp − 2INaK + Ito1, (3.50)

ICa,tot = ICaL + ICab + IpCa − 2(INaCa + INaCa,ss), (3.51)

ICl,tot = IClb + Ito2. (3.52)

These currents follow the same rules as those of the PRd cell model.

SR Ca2+ Fluxes

The model for Ca2+ �uxes in the Decker et al. model di�ers from that of the
PRd model since the compartments are di�erent. This model has only one
�ux that releases Ca2+ from the SR. It is called Irel:

Irel = − Irel,∞ + Irel
Irel,τ

. (3.53)

The form di�er slightly from that of the JRyR �uxes in the PRd model,
having a minus sign in front of Irel,∞, but similar to the PRd case, Irel is a
function of variables Irel,τ and Irel,∞. The variable Irel,τ is on the same form
as τRyRx . The expression for Irel,∞ is similar to the expression for RyRx∞ ,
but it is not on the exact same form. The di�erence in form accounts for the
opposite signs.

The remaining expressions for SR Ca2+ �uxes are on the same form as
in the PRd model, only with di�erent parameters, and what is termed Ca2+

uptake via SERCA in the PRd model is split in two in the Decker et al.
model: SR uptake (Iup, corresponds to the �rst term in JSERCA) and SR
leak (Ileak).

3.1.5 Comparing the PRd and the Decker et al. Models

From sections 2.4.3, 3.1.3 and 3.1.4 it is known that the PRd and the Decker
et al. cell models model the same currents with only a few exceptions. The
phases and roles of the individual currents during an action potential were
treated in Section 2.4.3. Still, the action potentials of these two cell types
are quite di�erent, as can be seen in Figure 3.8.

The shapes have marked di�erences, most notably the action potential
duration and presence, or lack thereof, of a phase 1 notch. They both have
sharp phase 0 upstrokes, but while the membrane potential of the Purkinje
cell falls monotonically from its peak, faster during phases 1 and 3 than
during the plateau phase, the myocyte potential has a deep notch (more than
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Figure 3.8: Action potentials for the PRd and the Decker et al. cell models.
The �ve phases were described in Section 2.4.3, see Figure 2.3: 0:depolar-
ization, 1:�rst part of repolarization/notch, 2:plateau, 3:rapid repolarization,
4:diastolic depolarization/resting state.

20 mV) during phase 1, before the plateau phase, where it falls considerably
faster than the Purkinje potential, �nally diving steeply during phase 3. The
action potential duration of the ventricular myocyte of the Decker et al.
model is about 220 ms, which is much shorter than the about 380 ms for the
Purkinje cell of the PRd model.

An important current regarding the action potential duration is INaL. If
this current is removed, the action potential duration for the Decker et al.
model reduces from about 220 ms to about 190 ms, while the action potential
duration for the PRd model reduces from about 380 ms to 190 ms, a much
more dramatic change. The greater e�ect for the PRd model comes from a
higher expression level of INaL in this model than in the Decker et al. model.
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3.2 Cardiac Tissue Model

3.2.1 The Monodomain Equation

The monodomain equation is a simpli�cation of the bidomain equations,
which is a mathematical model for electrical signal propagation in the car-
diac tissue. The basic assumption of the bidomain model is that the heart
consists of two separate, continuous domains: the intracellular and extra-
cellular spaces, separated by the cell membrane. Viewing the intracellular
space as continuous is quite reasonable because of the gap junctions. It is
a continuous model, using a volume-averaging approach. This means that
instead of modeling the individual cells of the tissue, the tissue is viewed as
continuous: a quantity at a point is modeled as the average over a small but
multicellular volume around the point.

The heart tissue is modeled as a volume conductor. One of Maxwell's
equations is:

∇× E +
∂B

∂t
= 0, (3.54)

where E [mV/cm] and B [N/(1010 µA cm)] are the strengths of the electric
and magnetic �elds, respectively. For the heart it is reasonable to treat
the �elds as static for each moment in time. This is called the quasi-static
condition. Then equation (3.54) reduces to:

∇× E = 0. (3.55)

This again ensures that E can be written as the gradient of a scalar-valued
potential u [mV]:

E = −∇u. (3.56)

The current J [µA/cm2] in a conductor is given as the product of the
conductivity M [mS/cm] of the tissue and the electrical �eld E, giving:

J = ME = −M∇u. (3.57)

The quasi-static assumption demands conservation of current, so the cur-
rent leaving the extracellular space in a point must be equal in size and
opposite in direction to the current leaving the intracellular space in the
same point:

∇ · Ji = −χIm, (3.58)

∇ · Je = χIm. (3.59)

The transmembrane current Im [µA/cm2] is per unit area of membrane
surface. The variable χ [cm−1] is the amount of membrane surface area per
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unit volume of tissue. Thus multiplication by χ scales the current to be per
unit volume, which is in accordance with the divergence on the left hand
sides.

Using equation (3.57) for Ji and Je, replacing Vi by V + Ve and inserting
for Im from equation (3.4), equations (3.58) and (3.59) can be written as
equations (3.60) and (3.61), which is the standard formulation of the bido-
main equations. The �rst equation follows directly from equation (3.58),
while the second results from adding the two equations:

∇ · (Mi∇V ) +∇ · (Mi∇Ve) = χCm
∂V

∂t
+ χIion, (3.60)

∇ · (Mi∇V ) +∇ · ((Mi +Me)∇Ve) = 0. (3.61)

Here Cm is the capacitance of the cell membrane and Iion is the resistive
current carrying ions across the cell membrane, as described in Section 3.1.

As explained in Section 2.2.2 the heart tissue is strongly anisotropic,
making the conductivities Mi and Me tensor quantities. By assuming a sim-
pli�cation of the conductive properties of the heart, the bidomain equations
can be transformed into the monodomain equation. The intracellular and
extracellular conductivities are di�erent, but choosing Me = λMi, where λ
is a constant scalar, the bidomain model can be reduced to the monodomain
model.

Replacing Me in equation (3.61) by λMi yields:

∇ · (Mi∇Ve) = − 1

1 + λ
∇ · (Mi∇V ). (3.62)

Inserting this into equation (3.60) and rearranging gives the standard
formulation of the monodomain model (Sundnes et al. [24, eq.(2.35)]):

λ

1 + λ
∇ · (Mi∇V ) = χCm

∂V

∂t
+ χIion. (3.63)

Equating the right hand side of equation (3.63) with zero, equation (3.4)
for the membrane potential in a single cell model will no applied stimulus
current can be recognized. The extra term adds spatial di�usion since it is
now a tissue that is being considered, and the result is a reaction-di�usion
PDE.

The boundary condition is given as:

n · (Mi∇V ) = 0, (3.64)

but this will be treated more closely in Section 4.3.
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Fiber directions in the myocardial tissue are not included in this thesis,
so Mi is assumed to be spatially independent and can be drawn outside the
divergence operator. Deo et al. [6] de�ne the intracellular conductivity in
the tissue by σ = Mi

λ
1+λ

[mS/cm]. In this thesis the monodomain equation
is rewritten to contain a di�usion coe�cient, as this will be practical for
implementational purposes. The di�usivity D [cm2/ms] of the tissue is found
by dividing the conductivity σ by χCm: D = σ

χCm
. Now, incorporating Cm

into Iion, as described in the beginning of Section 3.1, usingD and rearranging
the terms, the monodomain equation can be written as:

∂V

∂t
= D∆V + Iion(s), (3.65)

where s signi�es the state vector of the cell model (this includes the membrane
potential). This equation is quite similar to equation (3.5) except it has a
spatial term not present in equation (3.5). Since Iion depends on a number
of variables, collectively labeled s, it is necessary to solve a set of equations
on the form

∂s

∂t
= f(s, t) (3.66)

for each s, except that the equation governing the membrane potential V is
now replaced by the monodomain equation. So the complete monodomain
model is given by equations (3.65) and (3.66), where the �rst equation (the
monodomain equation) also needs a boundary condition. This gives a coupled
system of nonlinear ODEs, as for the single cell models, but in addition there
is also a nonlinear PDE. In general, there is no analytical solution to this
problem, and no simple numerical solution either. To simplify the problem,
operator splitting was used on the monodomain equation.
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Chapter 4

Numerical Methods

The PRd [17] and Decker et al. [15] cell models and the monodomain equa-
tion, combined with su�cient initial conditions, hold all the information
necessary to simulate the electrical activity in the ventricles. To get access
to this information, the di�erential equations must be solved. This can be a
very challenging task. Only some types of di�erential equations have known
analytical solutions. Not surprisingly, the equations in this problem are not
among them, therefore it is necessary to turn to numerical methods. To
solve these equations numerically one must �rst split the problem into sim-
pler parts, and then solve each part using known methods. This procedure
is described in this chapter.

4.1 Time Discretization

The original problem is continuous both in time and space, but to be able
to solve the equations numerically they must be restricted to discrete times
and spatial points. Uniformly spaced time points are used for the time dis-
cretization. If the problem is to be solved for the time interval [0, T ], at
N + 1 times, where N can be �tted to the required resolution, the times are
tn = n∆t, n = 0, 1, 2, ..., N , where ∆t = T/N . The approximate solution at
time tn is denoted by the superscript n, for example V n.

4.1.1 Operator Splitting

Operator splitting is a technique for solving coupled systems of PDEs by
splitting the system into smaller parts, each of which can be solved more
easily than the complete system. Here the �rst-order method of Godunov
splitting is used, as described in Sundnes et al. [24, sections 3.2.1 and 3.2.2].
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For a general problem on the form:

∂u

∂t
= (L1 + L2)u, u(0) = u0, (4.1)

where L1 and L2 are operators on u, and u0 is the initial condition, an
approximation of the solution at t = ∆t can be found by �rst solving the
problem:

∂v

∂t
= L1v, v(0) = u0 (4.2)

for t ∈ [0,∆t], then solving the problem:

∂w

∂t
= L2w, w(0) = v(∆t) (4.3)

for t ∈ [0,∆t].
A �rst-order approximation to the true solution u at t = ∆t is given by

w(∆t). For the monodomain equation on the form (3.65), one can de�ne the
operators L1 and L2 in the following way:

L1V = Iion(s), (4.4)

L2V = D∆V. (4.5)

If V n = V (tn) and sn = s(tn) are known solutions to the monodomain
equation and equation (3.66) at time t = tn, an approximation at t = tn+∆t
can be found by �rst solving the system of nonlinear ODEs:

∂V

∂t
= Iion(s), V (tn) = V n, (4.6)

∂s

∂t
= f(s), s(tn) = sn, (4.7)

for tn < t < tn + ∆t (where the equation for V is excepted from the sec-
ond equation). Since the di�usion term is removed from the monodomain
equation in this �rst step, the equation for V is reduced to the equation for
V in the single cell models, so the complete step corresponds to solving the
coupled system of ODEs for a single cell. These equations were described
earlier in this chapter.

The next step is to solve the linear PDE:

∂V

∂t
= D∆V, V (tn) = V n

∗ (4.8)

for tn < t < tn + ∆t, where V n
∗ is the solution yielded by solving (4.6) in the

previous step. This procedure is repeated for each time step.
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4.1.2 The Finite Di�erence Method

Di�erences between solutions at di�erent time steps are used to approximate
the time derivative, hence the name of the method. There are many di�erent
approximation schemes, of varying order.

FHN Model

The equations in the FHN cell model are repeated here for convenience:

ε
dV

dt
= f(V )− w + Iapp, (4.9)

dw

dt
= V − γw. (4.10)

Since this is a test problem, the simplest �nite di�erence method is used,
a forward Euler sceme:

∂V n

∂t
≈ V n+1 − V n

∆t
, (4.11)

and the rest of the terms are at time step n.
This results in an explicit scheme, which is very unstable with respect

to the time resolution, but as the problem is quite small (only two ODEs),
and an explicit scheme is fast to solve, this is remedied simply by re�ning
the time step enough to give a stable solution. The resulting scheme is �rst
order, so the error is proportional to ∆t. The complete scheme is:

V n+1 = V n +
∆t

ε
(f(V n)− wn + Iapp), (4.12)

wn+1 = wn + ∆t(V n+1 − γw). (4.13)

Monodomain Equation

Since this is the main problem it is easy to think that the best solution is
to use a very high order scheme, so the error will be as small as possible.
This is of course correct in one respect, but the higher order the scheme,
the more demanding it will be to solve. Therefore it is necessary to �nd
the balance between time consumption to �nd the solution, and the required
accuracy. The other aspect to bear in mind is that the accuracy of the
approximate solution is limited by the lowest order scheme that is used to
�nd it, to use higher order schemes for parts of the problem will only be a
waste. The numerical scheme used for operator splitting on the monodomain
problem was �rst order, therefore a �rst-order method is also chosen for the
other time discretization. There are two natural choices for �rst order �nite
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di�erence schemes: forward Euler and backward Euler. Since the forward
Euler scheme can be unstable, depending on the time step, a backward Euler
scheme is chosen:

∂V n

∂t
≈ V n − V n−1

∆t
. (4.14)

The nonlinear PDE resulting from operator splitting on the monodomain
equation is:

∂V

∂t
= D∆V (4.15)

Using the scheme in equation (4.14) on this gives:

V n+1 − V n

∆t
= D∆V n+1. (4.16)

4.2 Spatial Discretization

The �nite element method is used to solve PDEs. In this method the area on
which the problem is to be solved, called Ω, is approximated by many small,
non-overlapping areas called elements. In 1D these elements are intervals, in
2D they are surfaces and in 3D they are volumes. Here triangles are used
in 2D and tetrahedra in 3D. Together the elements make up a polygonal
approximation of the original area. This polygonal approximation is labeled
Ωh, and as the element size decreases, it will approach Ω. Ωh is called a
mesh and Ωh ⊂ Ω, with equality if Ω is a polygonal area and Ωh has enough
elements.

A facet has dimension D − 1. In 1D it is an end point of an interval
element, in 2D it is an interval edge of a surface element and in 3D it is a
surface on a volume element.

The vertices, also called nodes, are the grid points in the mesh Ωh. The
elements are drawn up between the vertices, and the boundary vertices in Ωh

are on the boundary of Ω, ∂Ω. For each vertex in the mesh grid one de�nes
a piecewise polynomial basis function φ. Basis function number i is de�ned
to have the value one at grid point i and zero at all other grid points:

φi(xj) =

{
1 if j = i,

0 otherwise.
(4.17)

The polygonal order of the basis functions decide the order of accuracy
of the �nite element method. The lowest order functions giving a continuous
solution are linear elements. This gives second order accuracy (in space) and
was chosen here.
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The solution of the weak formulation (see Section 4.2.1) of the problem is
in a suitably de�ned function space H1 de�ned over the domain Ω. Through
the �nite element method a �nite dimensional approximation to this solution
is found in the function space H1

h of dimension n, de�ned over the domain
Ωh. The function space H1

h is the space that has φi, i = 1, ..., n as basis
functions, and any function uh ∈ H1

h can be written as a linear combination
of these functions:

uh =
n∑
j=1

αjφj, (4.18)

where the α's are scalars. H1
h ⊂ H1.

4.2.1 Weak Form

The weak form, or variational formulation, of a PDE is found by multiplying
the equation by a test function ψ ∈ V and integrating over the whole domain
Ω. Operator splitting on the monodomain equation resulted in a linear PDE
(eq.(4.8)):

Vt = D∆V. (4.19)

From this one gets: ∫
Ω

Vt ψ dx =

∫
Ω

D∆V ψ dx. (4.20)

This is required to be ful�lled for all ψ ∈ H1. Independence of space has
already been assumed forD, so it can be taken outside the integral. Applying
Green's lemma to the right hand side and rearranging the terms, one arrives
at the weak form:∫

Ω

Vt ψ dx−D
∫
∂Ω

(∇V ·n)ψ ds+D

∫
Ω

∇V ·∇ψ dx = 0 ∀ ψ ∈ H1. (4.21)

This form is weaker than the original formulation in two respects. First,
the original formulation required that the PDE was satis�ed for all points
in Ω, while the weak form requires that the integral equation of the weak
form holds for all ψ in H1. Since the integral represents a form of averaging,
this second requirement is weaker than the original one. Secondly, the weak
form only involves �rst derivatives of V , while the original PDE has a second
derivative, which imposes stricter smoothness requirements on V . It can be
proven that any solution of the weak form that is twice di�erentiable is also
a solution of the original PDE.
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The 1D version of equation (4.21) is obtained by the 1D version of Green's
lemma. Since this equation is easier to work with and the mesh for the
Purkinje tree will be in 1D, this version is also presented explicitly:∫

Ω

Vt ψ dx−DVx(B)ψ(B) +DVx(A)ψ(A) +D

∫
Ω

Vx ψx dx = 0 ∀ ψ ∈ H1,

(4.22)
where Ω is the interval from A to B.

The �nite element method solves the discrete version of equation (4.21):∫
Ωh

Ut ψ dx−D
∫
∂Ωh

(∇U · n)ψ ds+D

∫
Ωh

∇U · ∇ψ dx = 0 ∀ ψ ∈ H1
h,

(4.23)
where U approximates V . In the following, U will not be kept as notation,
and the real and approximate solution will not be notationally distinguished,
but which solution is relevant should be clear from the context.

Using the time discretization introduced in the previous section on Ut one
gets:∫

Ωh

V n+1 − V n

∆t
ψ dx−D

∫
∂Ωh

(∇V n+1 · n)ψ ds+D

∫
Ωh

∇V n+1 · ∇ψ dx = 0,

(4.24)
where V n+1 is unknown. Since V n+1 ∈ H1

h, it can be written as:

V n+1 =
n∑
j=1

vjφj, (4.25)

where the v's are unknown scalars. If these are found, V n+1 is known.
Equation (4.24) must hold for all ψ ∈ H1

h. This is ful�lled if it holds
for all basis functions of H1

h, i.e., if it holds for ψ = φi for all i. Inserting
equation (4.25) for V n+1 gives n linear equations with the n v's as unknows.
This is solvable.

Neumann boundary conditions appear naturally in the formulation as a
boundary integral, and are called natural boundary conditions, while Dirich-
let boundary conditions must be forced, and are called essential boundary
conditions.
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4.2.2 One Equation on the Whole Purkinje Domain

An illustration of the Purkinje network used in this thesis can be seen in
Figure 4.1.

Figure 4.1: Purkinje network

The branches in the Purkinje network are described by the 1D mon-
odomain model:

vt = Dvxx + Iion, (4.26)

where v is the transmembrane potential. There is one such equation for
each segment ei. The weak form resulting from this (where the Iion term is
removed because of operator splitting) is given in equation (4.22). On the
junctions between branches there are made two assumptions: continuity of
potentials and conservation of current. For a general junction J which joins
a set of n segments ei, i = 1, . . . n with solutions vi and conductivity σi, the
following hold:

vi = vj ∀ i, j, (4.27)∑
i

σi(vi)x = 0. (4.28)

Summing the equations for all the branches, which are all on the form of
equation (4.22), the boundary terms become:∑

i

(−Di (vi)x(Bi)ψi(Bi) +Di (vi)x(Ai)ψi(Ai)) . (4.29)

In Section 3.2.1, the di�usion coe�cientD was de�ned as the conductivity
σ divided by χCm: D = σ/(χCm). Since all the branches are built up of
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Purkinje cells, χ and Cm are the same on all the branches, so equation (4.28)
can be replaced by: ∑

i

Di(vi)x = 0, (4.30)

where Di = σi/(χCm).
All boundary terms at junctions vanish because of condition (4.30) and

because it is possible to choose local test functions ψ such that ψi(J) = ψj(J),
where J is the junction between two or more branches, and thus a common
facet on adjacent elements. (This is not ful�lled for all choices of local test
functions, but it is always possible to choose test functions that ful�ll this
requirement.) On the global domain Ω =

⋃
i

Ωi all test functions are united

to one global test function. Thus, only the boundary terms at the ends of
the Purkinje network are left.

Furthermore, equation (4.27) can be used to de�ne a single potential V
and formulate the problem as a single variational form:∫

Ω

Vt ψ dx−
∑
i

DVx(Ei)ψ(Ei) +DVx(A0)ψ(A0) +D

∫
Ω

Vx ψx dx = 0,

(4.31)
where A0 is the position of the AV node and the E's are the junctions between
the Purkinje tree and the myocardial tissue. The global D is de�ned from
all the local Di's.

4.3 Coupling the Purkinje Network and the My-

ocardial Tissue

To be able to couple the Purkinje network and the myocardial tissue it is
�rst necessary to know what the equations on each of these domains look
like. The equation for the whole Purkinje tree was described in the previous
section. For the myocardium a 3D model is necessary. The weak formulation
is given by equation (4.21). Except for at the interface between the Purkinje
tree and the myocardium, homogenuous Neumann conditions are assumed:∫

∂Ω

(∇V · n)ψ ds = 0. (4.32)

This corresponds to the myocardium being electrically insulated from its
surroundings, the signal not crossing the borders of the myocardium.

There are many ways to connect the Purkinje network and the myocardial
muscle tissue. In Section 2.3, it was brie�y described how the exchange of
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signals between these two areas happen via transitional cells at the Purkinje-
myocardial junctions (PMJs). At the PMJs there is continuity of the trans-
membrane potential and conservation of current between the Purkinje tree
and the transitional cells and between the transitional cells and the my-
ocardium, but the transmembrane potential is discontinuous between the
Purkinje network and the myocardium. In this thesis, transitional cells were
not explicitly incorporated. Instead, information was exchanged directly be-
tween Purkinje cells in the Purkinje network and ventricular myocytes in the
ventricular muscle. For all approaches it must be decided which areas should
be considered to be part of the interface between the Purkinje network and
the myocardium, and how information should be exchanged at these connec-
tions. Several approaches were considered and some of them implemented.

4.3.1 Coupling Through Boundary Conditions

The Purkinje tree and the myocardium are represented as separate domains.
This gives a decoupled problem, which makes it necessary to explicitly assign
boundary conditions on both domains to enable two-way signal propagation.
To begin with, it was assumed that the terminal point of a Purkinje branch
connects to a small area AM of myocardial surface, typically a single facet.
The terminal Purkinje node is denoted by P , so VP is the membrane potential
in that node. The area AM is assumed to contain k myocyte nodes, denoted
by M , where M is then an integer ranging from 1 to k. The membrane
potential in such a node is given by VM . To make the notation for the
Purkinje and the myocardial problems alike, the end node P in the Purkinje
tree is assumed to have cross-sectional area AP . The Purkinje conditions are
then formulated in a general dimension, which is in accordance with how it
is implemented in FEniCS.

Continuity of voltage now gives:

VP = VM (4.33)

for all nodes M in AM , and conservation of current gives:∫
AP

σP
∂VP
∂n

ds = −
∫
AM

σM
∂VM
∂n

ds, (4.34)

where the total current out of the Purkinje end equals the total current enter-
ing the myocardium at that PMJ area. The variables σP and σM [mS/cm] are
the conductivities in the Purkinje and the myocardial tissues, respectively.

Two alternative implementations of equations (4.33) and (4.34) were con-
sidered. The �rst alternative is a Neumann condition for the Purkinje node
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and Dirichlet conditions for the myocardial nodes:

σP
∂V n+1

P

∂n
= − 1

AP

∫
AM

σM
∂V n

M

∂n
ds, (4.35)

V n+1
M = V n

P , (4.36)

where the superscript denotes the time step.

Next is the reverse: Dirichlet condition for the Purkinje node and Neu-
mann conditions for the myocardial nodes:

V n+1
P =

1

k

k∑
M=1

V n
M , (4.37)

σM
∂V n+1

M

∂n
= − 1

AM

∫
AP

σP
∂V n

P

∂n
ds. (4.38)

These two methods ensure continuity of membrane potential and conser-
vation of current at the PMJs. To be able to include the condition in equa-
tions (4.35) and (4.38) as a natural boundary condition in equation (4.21),
it must be expressed with a di�usion coe�cient D rather than a conduction
coe�cent σ, where D = σ/(χCm). This was also done when coupling the
branches in the Purkinje network. Then χ and Cm were assumed to have the
same values on all branches, so the resulting condition for conservation of
current was equal to the original formulation. Here the coupling is between
Purkinje cells in the Purkinje network and ventricular myocytes in the my-
ocardium. The cell models used (PRd for Purkinje cells, Decker et al. for
ventricular myocytes) use the same value for Cm, but since the cells volumes
of Purkinje cells and ventricular myocytes di�er, χ is likely to have di�erent
values for the two tissue types. Assuming that χP = χM , a possible source
of error is introduced in the model, but allows conservation of current in
equation (4.34) to be expressed as:∫

AP

DP
∂VP
∂n

ds = −
∫
AM

DM
∂VM
∂n

ds. (4.39)

The corresponding changes in equations (4.35) and (4.38) are substitution
of σP and σM with DP and DM , respectively.

A third alternative was also considered. This ful�lls equation (4.39), so
current is (almost) conserved, but this method allows for a discontinuous
membrane potential at the PMJs. This alternative is Robin conditions for
both sides. The �ux [µA/cm2] out of the Purkinje tree depends on voltage
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di�erences, and so does the �ux into the myocardium:

−σP
∂V n+1

P

∂n
=
σPMJ

AP
(V n+1

P − 1

k

k∑
M=1

V n
M), (4.40)

σM
∂V n+1

M

∂n
=
σPMJ

AM
(V n

P − V n+1
M ). (4.41)

Here σPMJ can be seen as the conductance [mS] (not conductivity, so
σPMJ is not directly comparable to σP and σM) of the Purkinje-myocardium
coupling, and can represent the high-resistance barrier of the transitional
cells. As before, χ and Cm are assumed to be the same for all cell types (here
also transitional cells), and included on both sides to make the conditions
natural boundary conditions in the weak form. Along the line of how it was
de�ned for the Purkinje and myocardial di�usion coe�cients, one can de�ne
DPMJ = σPMJ/(χCm) [cm3/ms] (which is not directly comparable to DP

and DM because of di�erent units).

The �rst and third alternatives were implemented. With some adjust-
ments (which will be further elaborated on in Chapter 5), they were both
able to give both anterograde and retrograde propagation. However, none of
them were able to reproduce de�ned delay times for the transmission between
the Purkinje network and the myocardial tissue (see Section 2.3).

4.3.2 Coupling Through a Stimulus Current

To achieve substantial delay times, the approach of Deo et al. [6] and [7],
Boyle et al. [3] and Vigmond and Clements [26] was tested. As for the cases
already described, the mentioned articles couple one Purkinje node to all the
myocyte nodes in an area A. Here A is the area within a speci�ed radius
from the Purkinje cell. The current �owing from the Purkinje cell into the
myocardium is implemented as a boundary condition when solving for the
Purkinje system, and as a stimulus current when solving for the myocardium
(Vigmond and Clements [26]). The current [µA] in a Purkinje branch is given
by:

iL = −πρ2σi
∂φ

∂x
, (4.42)

where ρ [cm] is the radius of the branch, σi [mS/cm] is the intracellular
conductivity and φi [mV] is the intracellular potential. This equation is
quite similar to the left hand side of equation (4.34). At the PMJs, the
expression for the current is taken to depend on the voltage di�erences across
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the junction gap:

iL =
∑
k

φi(xe)− φMi (xk)

RPMJ

, (4.43)

where φi(xe) is the intracellular potential of the terminal Purkinje cell in
point xe and φ

M
i (xk) is the intracellular potential of the k'th myocardial node

inside the junctional radius. The resistance at the PMJs, RPMJ [1/mS], is
between one Purkinje node and one myocyte node. Each term in the sum
thus gives the electrotonic load of one myocyte node on the Purkinje node,
so to get the total loading of the tissue on one end in the Purkinje tree, the
sum of all these individual loads must be added. In Deo et al. [6] the last
equation is multiplied by a factor KPMJ [dimensionless], which is described
as a loading factor to account for sink e�ects from surrounding tissue that is
not directly coupled.

For the boundary condition in the Purkinje problem, this approach is
really just the Robin condition above. The di�erence in formulation is that
the Robin condition in equation (4.40) use the average value of the myocyte
nodes, while Vigmond and Clements use the sum of individual di�erences.
The two approaches are equivalent if the correct resistances are used. Using
the notation introduced earlier in this thesis, equation (4.43) from Vigmond
and Clements can be written in the following way:

∑
k

φi(xe)− φMi (xk)

RPMJ

=
k∑

M=1

VP − VM
RPMJ

, (4.44)

and then further rewritten:

k∑
M=1

VP − VM
RPMJ

=
k

RPMJ

(VP −
1

k

k∑
M=1

VM) =
1

rPMJ

(VP −
1

k

k∑
M=1

VM), (4.45)

where rPMJ = RPMJ/k is the resistance between the Purkinje node and the
collection of myocyte nodes to which it is coupled. This resistance is a factor k
smaller than the individual resistance between two nodes. The last term is on
the form used in equation (4.40) for the Robin condition. Equating equations
(4.42) and (4.43) for iL at the PMJs, using the substitution from equation
(4.45) for equation (4.43), using σP = σi, AP = πρ2 and 1/(rPMJ) = σPMJ

for conductance, results in equation (4.40).
For the myocardial problem, Vigmond and Clements [26] state that the

current given by equation (4.42) is used as stimulus current at the PMJs.
Since this is the total current [µA] and a cell models models the currents per
area [µA/cm2] or per area divided by Cm [µA/µF], it is not completely clear
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how this current is applied as stimulus current, but if one assumes that it is
divided by the myocardial PMJ area the stimulus measured in µA/µF can
be written:

Istim = − 1

Cm

AP
AM

σP
∂VP
∂x

. (4.46)

In this thesis σ and χ are lumped together in the di�usion coe�cient D,
and the individual values for σ and χ are not known. The expression used
in the place of equation (4.46) is:

Istim = −DP
∂VP
∂x

. (4.47)

The di�erence between these two equations is that the dimensionless fac-
tor AP/AM in equation (4.46) is represented by 1/χ with units cm in equation
(4.47). This last term gives equation (4.47) the wrong units but ignoring this,
the term 1/χ can be seen as a representative of the relationship between the
PMJ areas in the Purkinje tree and the myocardium. With a known value
for χ this solution could have been improved, but as it is it can probably at
least partly account for the scaling necessary in the implementation.

Di�erent myocardial PMJ areas were tested. First the nodes of a single
facet were used, then the whole cell of that same facet, and then several cells
building from this single cell.
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Chapter 5

Implementation

To model the electrical activity in the ventricles, the monodomain equation
with cell models should be solved on the Purkinje network domain and on
the myocardial tissue domain on a time interval. In the previous chapter it
was explained how an approximate solution at discrete times and discrete
spatial points could be found by solving a coupled system of ODEs in each
spatial point and a linear PDE, for each time step. A solver must then have
one part responsible for solving the system of ODEs, and one part for solving
the PDE. This �rst part will be presented in Section 5.3, and the second in
Section 5.4. The equations are de�ned for the Purkinje network and the
myocardial tissue, the meshes representing these domains are described in
Section 5.2. The coupling of the two meshes is treated in Section 4.3.

The problem is de�ned in two separate classes, one for each of the two
meshes, and the class for the Purkinje tree holds an object of the class for
the myocardial tissue. Coupling information must be sent from the Purkinje
tree to the myocardium, and in the myocardium class it must be stored in
variables that can be accessed by the Purkinje tree. The class for the Purkinje
network controls the solving sequence. It contains a method solve that has
a loop over all time steps. For each time step a method step is called in
both solver-classes, that integrates both the system of ODEs and the PDE
one time step forward. In addition to these main methods, both classes have
many methods and much structure in connection with visualization and the
coupling of the meshes.

Beginning with a single cell, the implementation proceeds gradually to-
wards solving the equations on the whole Purkinje network, and then for
both the Purkinje network and the myocardial tissue. This process will be
described in detail, but �rst a presentation of the framework.
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5.1 Programming Packages and Received Code

The code developed during the work with this thesis is written in the pro-
gramming language Python. Some programming packages that have been
important for the work but might not be generally known are presented in
this section, as well as code that has been provided by other people, but is
not publicly accessible.

5.1.1 FEniCS

�The FEniCS Project is a collaborative project for the develop-
ment of innovative concepts and tools for automated scienti�c
computing, with a particular focus on automated solution of dif-
ferential equations by �nite element methods.�

This is how FEniCS presents itself in its �about� section on its webpage
[10]. As stated, FEniCS provides an easy interface to solve many di�erent
kinds of di�erential equations using �nite element methods. It consists of
di�erent components written in C++, and provides among other things a
Python interface. FEniCS is an open source project, and can be downloaded
for free. The complete code can be found in a bitbucket repository, the
link of which can be found on the FEniCS webpage [10]. One of the main
contributors to the FEniCS Project is Simula Research Laboratory.

In this thesis FEniCS is used to de�ne the whole problem, and to solve
the PDE part of the problem.

5.1.2 Gotran

Gotran stands for �general ODE translator�. It is a programming package
providing among other things a Python interface to declare arbitrary ODEs.
It can also load models from external ODE desciption �les such as CellML.
The code is developed by Johan Hake and can be found in his Bitbucket
repository [13]. In this thesis, gotran was used to declare the cell models,
which are systems of ODEs.

Gotan de�nes the equations in three parts: states, parameters and
component. There are several of these, making the �le well arranged. For
potassium for example, one can de�ne:
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states("K",

K_i = ScalarParam(136.422946, unit="mmole*l**-1"))

parameters("K",

zK = 1.)

component("K")

dK_i_dt = -IKtot*Acap/((Vmyo + Vss_CaL + Vss_sr)*zK*F)

The three parts are given the same name, K, to group them together. The
variable states de�nes the state variables of interest in this group, and gives
them initial values, parameters should be self-explaining and component

de�nes everything else, most importantly the ODEs, but also all other equa-
tions and variables included in the cell model. It is not strictly necessary to
split the code into these three parts, but for large systems of ODEs it makes
it much easier to get an overview of the model.

5.1.3 Goss

Goss stands for �general ODE system solver�. In this thesis it is used to
solve the system of linear ODEs resulting from operator splitting on the
monodomain equation for each point in the Purkinje and myocardial grids.
The ODEs are speci�ed in gotran format. The code is developed by Johan
Hake and can be found in his Bitbucket repository [11].

5.1.4 Plotting Packages

FEniCS uses vtk as standard. This gave reasonable visualization for wave
simulations in 1D, as can be seen for example in Figure 6.1, and for simula-
tions on the myocardial mesh, see Figure 6.14 (left). However, it failed for
the Purkinje tree, visualizing only the topological dimension (1D), as can be
seen in Figures 6.8 and 6.9. Using vtk imported in Python, the Purkinje tree
could be visualized in 3D by drawing lines between two consecutive points,
giving the whole line between two points a color corresponding to the middle
value of the potential in the two points. This worked reasonably well for
small trees, up to about 40-50 branches, for a short time scale, but a bigger
tree and longer time scale was too demanding. The resulting visualization
can be seen in Figure 6.10.

The plotting package Mayavi2 was used for plotting the Purkinje tree in
3D, as can be seen for example in Figure 6.11. For e�ciency, all the branches
in the Purkinje tree were combined to de�ne a single object. This only needs
to be done once, so at each time step the only necessary change is to update
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the potential value in each point. This plotting is much less demanding than
vtk and looks much better for the Purkinje tree used in this thesis. Mayavi2
for the Purkinje tree and FEniCS's vtk for the myocardium were used for
real-time visualizations of the electrical activity in the ventricles, see Figure
6.14.

Paraview was used for plotting the Purkinje and myocardial meshes sep-
arately and together, see for example Figure 6.16 (d-f). All the information
(coordinates and values) is written to �le for each time step, and one can read
as many meshes into Paraview as desired, and they will be placed correctly
with respect to each other. This was the superior package for 3D plotting.
It did not o�er real-time visualization (which makes it faster), so Mayavi2
and FEniCS's vtk were still useful for testing purposes, but Paraview saves
everything, so once a simulation has been run, all time steps can be visited
separately and all viewing settings can be chosen as desired. The last fact
means for example that the mesh can be rotated so as to be seen from all
angles as desired, it is possible to change time and color scales, and to make
cuts in the mesh. Isochrone maps are also shown in Paraview. For a cut
isochrone map, see for example Figure 6.16f. The only drawback with saving
each time step in Paraview is the large �le size.

Python's pylab was used for time series in points, see for example Figure
6.16a, and for comparison between graphs in 1D, as seen for example in
Figure 6.2.

5.1.5 PRd Cell Model and Monodomain Solver

Code implementing the PRd cell model in the C programming language can
be found through a link [4] that is given in the original publication of the
model [17]. For this thesis it was provided by Pan Li. The code for the PRd
model used in this thesis is based on this code.

The code for solving the monodomain equation is based on existing code
developed at Simula Research Laboratory. The original code provided a
simple, general 3D solver.

5.1.6 Code to De�ne the Myocardium and Generate a

Purkinje Network

Code to generate a Purkinje network was provided by Glenn Terje Lines and
Siri Kallhovd. Lines's code can be used to generate and visualize a realistic
Purkinje network in the ventricles. Kallhovd's code modi�es and adds to
Lines's code. The following �les were used (and modi�ed as seen �t), all of
which are from Kallhovd:
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• diastole115_purkinje.msh: This is a text �le with numbers that
de�ne the myocardial mesh. The information is given as nodes and
elements. From MR images from a human patient, 3584 points spread
out on the whole myocardial tissue give the node coordinates. An
element is speci�ed by listing which nodes it is drawn up between.
There are several types of elements. Line elements de�ne the outer
edge of the base of the ventricles. Triangle elements are separated into
four groups: the endocardial surface of the left and right ventricles (two
groups), the epicardial surface and the surface of the base. Tetrahedra
elements de�ne the volume of the ventricles.

• call_tree_msh.py: This �le reads the necessary information about
nodes and elements from diastole115_purkinje.msh. From this it
�nds a node in the base plane that is suitable as a common root node
for the Purkinje trees in the left and right ventricles. The trees them-
selves are built by �le get_tree_msh.py. At last a method in the �le
vtk_transform_purkinje.py re�nes the network. The information
about the network is stored in a dictionary called cable_dict.

• get_tree_msh.py: Given a root node and an endocardial surface (ele-
ments), this �le builds the tree from base (where the root is) to apex.
Starting at the root node, all nodes in all elements containing this node
are evaluated. If a node among those being evaluated is not already in
the tree and is more apical than the root node, this new node is added
to the tree. For each node that was added during this �level�, this pro-
cess is repeated, so the tree is built generation-wise until it reaches the
apex. The original code allows a junction to split a branch into three
new branches, this was modi�ed to only allow two new branches. The
information about the tree is stored in several variables, among them
the dictionary cable_dict.

• vtk_transform_purkinje.py: This �le has several methods, but only
the method tree_to_carp_purkinje_format is used in this thesis.
Given a Purkinje tree (in the form of cable_dict) and a resolution
ds (given in cm), it re�nes the network so that each branch stores the
coordinates of points along it with approximate distance ds between
them. These points are called local nodes and have local numbering on
each branch.

From the above descriptions it should be clear that the dictionary cable_dict
is important. Information about a speci�c cable or branch can be reached
through cable_dict["cable_nr"]. Assigning this to a new variable cable,
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the number of local nodes it is made up of is given by cable["nr_nodes"],
and the coordinates of local node i can be found in cable["Node_i"], the
node numbers increasing from less to more apical. The cables are numbered
generationwise (this follows from the process described for get_tree_msh.py),
�rst the right ventricle, then the left (this is just the order of building the
trees in call_tree_msh.py).

Code for visualizing the Purkinje tree in matplotlib could be found in the
�le plot_tree_msh.py. This was only used for initial inspection of the tree.

5.2 Meshes

As described in Chapter 2, the Purkinje network is a network of specialized
cells spreading from the SA node out on the endocardial surface of the ven-
tricles, the cells on the ends of the network being (indirectly via transitional
cells) connected to cells in the myocardial tissue, allowing signals to pass
between the Purkinje network and the myocardium. The myocardium is car-
diac tissue making up most of the heart wall. Both of these objects must be
de�ned as FEniCS meshes in the implementation.

Some simpler meshes are used as test cases. These are most often unit
intervals, squares and cubes, and are created very easily in FEniCS:

1Dmesh = UnitIntervalMesh(nx)

2Dmesh = UnitSquareMesh(nx, ny)

3Dmesh = UnitCubeMesh(nx, ny, nz)

Here nx signi�es the number of elements in the x-direction, and corre-
spondingly for ny and nz. Other types of meshes will be presented where
they occur.

5.2.1 The Purkinje Network

The Purkinje network is modeled as a collection of branches in 1D. More
speci�cally each branch is modeled as many short 1D elements in FEniCS,
i.e. they are intervals, but all vertices have 3D coordinates. This gives a 3D
tree, but built with the simplest elements possible, creating much less data
than if a complete 3D environment was to be used. Combining a 1D and a
3D framework in this way is achieved through MeshEditor, which is a feature
in FEniCS that can be used to build meshes with di�erent topological and
geometrical dimensions. The Purkinje tree has topological dimension one
(1D elements) and geometrical dimension three (3D coordinates). The 389
branches in the tree are built up of a total of 6357 nodes and 6356 elements.
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The information about the Purkinje tree comes from the code from Lines
and Kallhovd. The tree is completely de�ned by the dictionary cable_dict

and the array N, where all the node coordinates are stored, but not on a form
that allows directly building of a FEniCS mesh with MeshEditor. To build
the mesh one must have a global numbering for all the nodes and elements,
and for each element one must know which nodes it is built up of.

First the total number of elements and vertices must be known. The
number of vertices is found by adding all local nodes on all the cables, making
sure no node is counted twice. The number of elements is one less than the
number of vertices. The code for this is:

n_cables = len(cable_dict)

nr_nodes = 1

for i in xrange(n_cables):

nr_nodes += cable_dict[str(i)]["nr_nodes"] - 1

If a smaller tree is wanted, the number of cables can be set to any num-
ber in the interval [3, 839]. Three is the lowest number because this corre-
sponds to the �rst three branches connecting the Purkinje trees in the left
and right ventricles, while 839 is the length of cable_dict. Next a mesh
and a MeshEditor are initialized:

mesh3d = Mesh()

e = MeshEditor()

e.open(mesh3d, 1, 3)

The last line gives 1 as topological dimension (the dimension of the ele-
ments) and 3 as geometric dimension (the dimension of the vertices). Then
the vertices are initialized, created and added, and the same for the elements:

e.init_vertices(nr_nodes)

e, firstNodes_dict = create_nodes(cable_dict, e, n_cables)

e.init_cells(nr_nodes - 1)

e = create_elements(cable_dict, e, firstNodes_dict, n_cables)

The actual creation of vertices and elements are done in separate methods.
The main part of method create_nodes is a loop over all the cables, calling
method create_nodes_sub, which again loops over all the local nodes on the
given cable, adding all but the �rst node as vertices. The exception of the
�rst node is to avoid duplicates, because the �rst node on a cable is also the
last node on another cable for all cables except the �rst. The �rst node on
the �rst cable is added separately in the beginning of method create_nodes.
The global node number increases with one for each added vertex. To add

63



a vertex one needs to know the global node number and the position. The
rest of the code in these two methods is for use when creating the elements.

def create_nodes(cable_dict, e, n_cables):

pos = cable_dict["0"]["Node_0"] #first node on first cable

e.add_vertex(0, pos[0], pos[1], pos[2])

firstNode = str(pos[0]) + str(pos[1]) + str(pos[2])

#first node on every cable.

#Position is key, global node number is value

firstNodes_dict = {}

firstNodes_dict[firstNode] = 0

start = 1

for i in xrange(n_cables):

e, start = create_nodes_sub(cable_dict, e, firstNodes_dict, \

i, start)

return e, firstNodes_dict

def create_nodes_sub(cable_dict, e, firstNodes_dict, cable, start):

cable = cable_dict[str(cable)]

cable["secondNode"] = start #global node number of Node_1

nr_nodes = cable["nr_nodes"]

for i in xrange(nr_nodes-1):

pos = cable["Node_"+str(i+1)]

e.add_vertex(start+i, pos[0], pos[1], pos[2])

pos = cable["Node_"+str(nr_nodes-1)]

#might be the first node on another branch

endNode = str(pos[0]) + str(pos[1]) + str(pos[2])

firstNodes_dict[endNode] = start + nr_nodes - 2

return e, start + nr_nodes - 1

The main parts of the methods for creating the elements are the same as
for the vertices: a loop over each branch, and for each branch a loop over
all local elements, but there is one extra consideration to make. To add an
element one has to know the global element number and the global node
number of the vertices in the element.

The global element number increases with one per added element, as for
the nodes, therefore the global element number of the next element to be
added is always known. However, for the �rst element on a random branch,
the global node numbers of the two �rst nodes on the branch (which de�ne
the element) are not known. If the global number of the second node is
known, the global number of the more apical local nodes are known, as they
simply increase by one per node, but for the �rst two nodes on each branch,
special measured must be made.
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The solution here is to add the coordinates and global node number as
a key-value pair in a dictionary firstNodes_dict for the �rst node on each
branch when the nodes are created, while the global number of the second
node is stored as a separate entry in cable_dict. When creating an element
the node coordinates are known from cable_dict, so the global node number
of the �rst local node can be found from firstNodes_dict, while the global
node number of the second local node can be found directly in cable_dict.
The reason why the global numbers of the �rst and second nodes are stored
di�erently is that when creating global nodes on a branch, the global number
of the second node is always known because it is created on that branch, while
the �rst node was created on an earlier branch, so the global node number
is not known, only the coordinate.

def create_elements(cable_dict, e, firstNodes_dict, n_cables):

start = 0

for i in xrange(n_cables):

e, start = create_elements_sub(cable_dict, e, firstNodes_dict, \

i, start)

return e

def create_elements_sub(cable_dict, e, firstNodes_dict, cable, start):

cable = cable_dict[str(cable)]

nr_nodes = cable["nr_nodes"]

pos = cable["Node_0"]

firstNode = str(pos[0]) + str(pos[1]) + str(pos[2])

firstNode = firstNodes_dict[firstNode]

secondNode = cable["secondNode"]

e.add_cell(start, firstNode, secondNode)

currNode = secondNode

for i in xrange(1, nr_nodes-1):

e.add_cell(start+i, currNode+i-1, currNode+i)

return e, start + nr_nodes - 1

The resulting mesh is shown in Figure 5.1a. It is not completely identical
to the original tree, because that tree allowed for junctions to split a branch
in three, while this tree only allows splitting into two new branches. This is
controlled in �le get_tree_msh.py.

In the original mesh shown in Figure 5.1a, the connection between the
ventricles has very long cables compared to the cables in the two trees. This
was adjusted in the �le call_tree_msh.py. The code for this is quite easy,
but requires some tedious adjustments of cable_dict entries, which is not
shown here. The tree where the �rst three branches are adjusted is shown in
Figure 5.1b.
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(a) Original (b) Modi�ed start

Figure 5.1: Purkinje tree mesh

(a) 5 cables (b) 50 cables (c) 500 cables

Figure 5.2: Di�erent sizes of Purkinje tree mesh

Some trees for other values of n_cables are shown in Figure 5.2. One
can see that the tree for the right ventricle is built �rst.

5.2.2 The Myocardial Tissue

The myocardial tissue is modeled in 3D by tetrahedra. The mesh consists of
3584 vertices and 10 931 elements and can be seen in Figure 5.3. The grid is
quite coarse, and it is possible to see some of the individual elements.

Meshes in FEniCS are often de�ned as xml-�les that can be read directly
into FEniCS. This mesh is de�ned by nodes and elements that can be found
in the �le diastole115_purkinje.msh. This is practical with respect to
the Purkinje tree since the nodes of the tree can then be made from nodes
on the myocardial surface, but it enforces manual creation of the nodes and
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Figure 5.3: Mesh for the myocardial tissue.

elements. This is done using MeshEditor, as for the Purkinje mesh, but it
is much easier to make than the Purkinje mesh. A mesh and a MeshEdi-
tor is created as before, but with algebraic and geometric dimensions both
equal to 3. The node information of interest is read into N, and the element
information into E, and all that is left is a simple looping:

e.init_vertices(len(N))

for i in xrange(len(N)):

e.add_vertex(i, N[i,0], N[i,1], N[i,2])

e.init_cells(len(E))

for i in xrange(len(E)):

e.add_cell(i, E[i,0], E[i,1], E[i,2], E[i,3])

The nodes in the original Purkinje network (before the re�nement result-
ing from vtk_transform_purkinje.py) are also nodes in the myocardial
mesh, but after re�nement of the Purkinje tree these nodes no longer have
the same numbering in the Purkinje and myocardial meshes.

5.3 Cell Models

In the previous chapter it was explained how operator splitting on the mon-
odomain equation resulted in a linear system of ODEs and a linear PDE that
could be solved sequentially. The system of ODEs is de�ned by a cell model,
in this thesis the PRd model is used for Purkinje cells and the Decker et al.
model is used for ventricular myocytes. Here it is shown how this system is
solved numerically.

A cell model can be included in the program by direct implementation
of the equations in the model, and stepping all of the ODEs one time step
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forward with a numerical method. This was done for test cases, using the
midpoint method to step the solution forward. For large systems of ODEs
this is an impractical approach since the midpoint method must be imple-
mented for each ODE. Luckily goss has a FEniCS interface that can be used.
All that is needed is to de�ne the cell model in a spe�cied format, and to
de�ne an appropriate goss-solver. When the cell model is used in space, it is
used together with a tissue model, in this case the monodomain equation.

5.3.1 A Single Cell

As described above, two di�erent cell models were used in this work. The
Decker et al. cell model [15] can be found in CellML format on CellML's
website [5]. Running cellml2gotran in gotran, with the CellML �le as
command line argument, this was translated to the �le decker_2009.ode

in gotran format. Thereafter the membrane potential, called Vm, had to be
renamed V, so that the model could be run with gotranrun.

Next, the PRd model was to be de�ned in gotran format. This �le was
written from scratch, reusing parts of the code from the decker_2009.ode

�le. To begin with, equations for the intracellular calcium concentrations
without bu�er adjustments were used, and the stimulus current was given
as:

I_stim = Conditional(And(Ge(time - past, stim_offset), Le(time - past,

stim_offset + stim_duration)), stim_amplitude, 0)

The resulting plot can be seen in Figure 5.4a. One can see that the
solution given by gotran have too few peaks compared to the solution given
by the original C program, and it has small oscillations in the resting potential
that should not be there. Too few peaks is due to the goss-solver missing
out on some of the very abrupt upstrokes. This can be remedied by using a
di�erent expression for the stimulus current. If the following expression for
stimulus current is used instead, the model gives the right number of peaks,
see Figure 5.4b:

I_stim = stim_amplitude*ContinuousConditional(Ge(time - past,

stim_start), 1, 0, 0.2)*ContinuousConditional(Le(time - past,

stim_start + stim_duration), 1, 0, 0.2)

Varying the parameter that here is set to 0.2 will produce various number
of peaks, and will also a�ect an o�set in the beginning that can be seen in
plots showing only a short timespan, as in Figure 5.5e.

The PRd cell model includes calcium bu�ers in all the compartments
except the NSR compartment. The formulation for the PCS compartment is
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Figure 5.4: Action potentials of a Purkinje cell for the PRd cell model for
C and gotran code. In (a) the stimulus function is the same as in the gotran
version of the Decker et al. cell model, while in (b) a more complicated
stimulus function is used.

on ODE form, while the others are formulated as solutions of second or third
degree polynomial equations, as described in Section 3.1.3. To begin with,
bu�ers were not included in the implementation of the PRd cell model for
those formulations that were not on ODE form because they could not easily
be de�ned on gotran form. The resulting action potential had oscillations
in the resting phase, as can be seen in Figure 5.5a. All bu�er equations
were then implemented on ODE form in gotran. When this was done, the
oscillations almost disappeared, see Figure 5.5b. Details of the oscillations
can be seen in Figures 5.5c and 5.5d for formulations excluding and including
calcium bu�ers, respectively. This demonstrates how the calcium bu�ers
contribute in stabilizing the membrane potential.

In Figure 5.5d one can also see how the Purkinje potential slowly depo-
larizes during phase 4 of the action potential. This is caused by the funny
current If , as described in Section 2.4.3.

Looking at the plot with the bu�er adjusted equations at a shorter time
scale, reveals a small o�set in the beginning compared to the plot from the
C program, see Figure 5.5e, but the o�set is so short in time this is not a
problem.
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Figure 5.5: Action potentials of a Purkinje cell for the PRd cell model for
C and gotran code. In (a) most of the bu�er e�ects are left out, while in
(b) they are included on ODE form. (c) is a detail from (a), (d) and (e) are
details from (b). (a) is a cropped version of Figure 5.4b
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5.3.2 Cell Models in Space: Goss-Solver

With a coupled system of ODEs in gotran format, that part of the problem
can be solved by a goss-solver, which steps the ODEs one time step forward:

goss_solver.step((t, t+dt), self.v_p)

Here self.v_p is the solution at the previous time step, i.e. V n if the
problem involves V n and V n+1. To create a goss-solver, one or more cell
models in gotran format are loaded into the program, and assigned to the
correct areas. Together these areas make up the mesh where the problem is
de�ned. If there is one cell model on the whole mesh, this can be coded as:

def ode_system(self):

"""Creates a goss ODESystemSolver"""

cellmodel = goss.dolfin_jit(load_ode("fhn.ode"),

field_states = ["v"])

solver = goss.DOLFINODESystemSolver(self.mesh(), cellmodel)

return solver

Here the cell model de�ned in the �le fhn.ode is used for the whole
mesh. If there are several cell models, it must be speci�ed which models
are to be used where. In this case, di�erent cell models come in the form
of one part of the domain receiving a stimulus, while the rest of the domain
does not. Since these two cell models di�er by a stimulus term, they count
as di�erent models. The method goss.DOLFINODESystemSolver now takes
a MeshFunction as an additional argument, marking the di�erent areas of
the domain, and the cellmodel argument must be a dictionary mapping the
correct cell model to the correct area. The new code can be written as:

class StimDomain(SubDomain):

def inside(self, x, on_boundary):

something...

# Create mesh functions over the cell facets

domains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)

domains.set_all(0)

mesh_stim = StimDomain()

mesh_stim.mark(domains, 1)

cellmodels = {1:cellmodel_stim, 0:cellmodel}

solver = goss.DOLFINODESystemSolver(mesh, cellmodels, domains)

The goss-solver contains a loop in C that loops over all the nodes in the
mesh, solving the speci�ed system of ODEs for each node over the given time
interval with a Newton solver.
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5.4 Tissue Model

In Section 4.1.1 it was shown how the solution of a coupled system of ODEs
coupled to a PDE could be approximated by splitting the problem into a
system of ODEs and a linear PDE and solving these two parts sequentially.
The implementation of the system of ODEs was explained in the previous
section. This section will explain the implementation of the linear PDE. This
is used for both the Purkinje tree and the myocardial tissue. The explanation
will focus on the Purkinje �bres, but the implementation for the myocardium
is identical. The tissue model used in this thesis is the monodomain equation.

5.4.1 The Linear PDE

In Section 4.2.2, it was shown that the linear PDE resulting from operator
splitting on the monodomain equation could be written as a single weak form
on the whole Purkinje domain:∫

Ω

Vt ψ dx−
∑
i

DVx(Ei)ψ(Ei)+DVx(A0)ψ(A0)+D

∫
Ω

Vx ψx dx = 0. (5.1)

Assuming homogenuous Neumann conditions on all the boundaries for
now, the boundary terms vanish. Using the speci�ed time discretization and
a more dimensionally general form for the derivative in space gives:∫

Ω

(V n+1 − V n)ψ dx+ ∆tD

∫
Ω

∇V · ∇ψ dx = 0. (5.2)

In FEniCS this is implemented as:

form = ((v-v_p)*psi + dt*D*inner(nabla_grad(v), nabla_grad(psi)))*dx

It should be clear what variables in the code represents what as the FEn-
iCS notation is very similar to the mathematical formulation. The functions
are de�ned like this:

v = TrialFunction(scalar)

psi = TestFunction(scalar)

v_n = Function(scalar)

v_p = project(Constant(-84.058830), scalar)

where v_n is used to store the new solution, and the function space scalar
is of the continuous Galerkin family and uses �rst order polynomials:

scalar = FunctionSpace(mesh, "CG", 1)
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It is usual to collect the terms with unknowns on the left hand side and
call them a, and the terms with only known quantities on the right hand side
and call them L, such that a = L. In the code one can simply write:

(self.a, self.L) = system(form)

The solution of the weak form is then found by a call to solve, which
must be repeated for each time step:

solve(a == L, self.v_n)

self.v_p.assign(self.v_n)

5.5 Coupling the Purkinje Network and the My-

ocardial Tissue

To connect the Purkinje network to the surrounding myocardial tissue of the
ventricles, it was assumed that the only interaction happens at the ends of the
network, at the PMJs. This is in accordance with physiological knowledge
as the Purkinje network is assumed to be electrically insulated from the
myocardium at all other places. During normal activation the signal in the
ventricles starts at the bundle of His (see overview of the heart in Figure 2.1)
at the beginning of the Purkinje network, spreads through all the branches
of the tree and travels from the ends of the tree into the myocardial tissue,
where it continues until the whole ventricles are activated and the muscles
contract. During abnormal heart conditions, there may be retrograde activity
as well. For the model to be able to simulate dysfunctional propagation in
the ventricles in the best way possible, it is important that the signal is able
to move both ways between the Purkinje tree and the myocardial tissue.
Some ways to couple these two systems were described in Chapter 4.

5.5.1 One-Way Coupling

To begin with, the coupling between the Purkinje network and the myocardial
tissue was modeled by homogenuous Neumann conditions for the Purkinje
tree (natural boundary conditions) and Dirichlet boundary conditions for the
myocardial problem at the connection points, where the Dirichlet values were
given by the values at the end points of the Purkinje network. Homogenuous
Neumann conditions for the Purkinje tree corresponds to this system being
electrically insulated, so no signal can go from the myocardium to the Purk-
inje tree, while Dirichlet conditions (almost, because of operator splitting)
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ensure continuity of the membrane potential at the PMJs, so a signal at the
ends in the Purkinje tree will travel into the myocardium. These boundary
conditions therefore describe a one-way connection between the Purkinje tree
and the myocardium. Results for a myocardial test mesh, and for realistic
Purkinje and myocardial meshes can be found in Section 6.2.1.

To be able to apply Dirichlet conditions on the PMJ nodes in the my-
ocardium with values from the PMJ nodes in the Purkinje tree, these Purk-
inje values must be known, as well as the area to enforce them in the my-
ocardium.

The �le call_tree_msh.py, which was described in Section 5.1.6, creates
an overview over the end nodes in the Purkinje tree. This is an array with
length equal to the number of vertices before re�nement of the branches,
where a �1� signi�es that the vertex in that index is an end in the tree, while
a �0� means that it is not. From this one can get a set of indices for the ends
holding for the unre�ned mesh. The coordinates of the ends can be found
from looking up these indices in the list N of the original nodes. The end
values are then found simply by calling the wanted function with the wanted
coordinates as input argument.

Dirichlet conditions were then tried enforced by using FEniCS's feature
for this, but this procedure proved too ine�cient to be of any use. The
procedure used could probably have been improved, but there can be no
more e�cient way than setting the relevant entries in the myocardial function
directly, so this approach was chosen. The indices of the PMJ nodes in the
myocardial mesh must then be known. All end nodes in the tree mesh are also
nodes in the myocardial mesh. Since the myocardial mesh is not changed in
any way from the information stored in the �le diastole115_purkinje.msh,
the indices found in call_tree_msh.py apply directly for this mesh.

When working directly with FEniCS vectors, one must make sure that the
internal numbering in FEniCS is used. This is ensured by using the mapping
returned by function vertex_to_dof_map on the node numbers given to the
nodes when creating them. The following code snippet should clarify the
use:

vd = vertex_to_dof_map(scalar)

internal_indices = vd[original_indices]

v_p.vector()[internal_indices] = Purkinje_values

Here the last line implements equation (4.36), which is continuity of the
transmembrane potential V .
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5.5.2 Two-Way Coupling

To achieve a two-way coupling at the PMJs such that the electrical signal
can move both from the Purkinje tree to the myocardium and the other way
around, some sort of boundary conditions able to transfer signal must be im-
plemented for both the Purkinje problem and the myocardial problem. Four
suggestions for such boundary conditions were given in Chapter 4: Neumann
conditions for the Purkinje tree and Dirichlet conditions for the myocardium,
the other way around, Robin conditions for both, and Robin conditions for
the tree and stimulus currents for the myocardium. Of these suggestions, the
�rst, third and fourth were implemented for test cases.

Robin conditions for the tree and stimulus currents for the myocardium
were also implemented for the realistic meshes. The results from the test
case and the realistic case can be found in Section 6.2.2.

Neumann and Dirichlet Boundary Conditions

First (non-homogenuous) Neumann conditions for the Purkinje tree and
Dirichlet conditions for the myocardium were implemented. The Dirichlet
conditions correspond to continuity of the transmembrane potential, as ex-
plained for the one-way coupling, while the Neumann conditions correspond
to conservation of current.

The code for these boundary conditions is an extension of the code for
one-way connection, which has Dirichlet conditions for the myocardium in
one myocardial node per PMJ. Here this is extended to Dirichlet conditions
on all three nodes of a facet. This way, the �ux through such a facet can
be used for the corresponding Neumann condition in the Purkinje tree. The
Neumann condition is incorporated by adding the term:

−D
∫
∂Ω

(∇V · n)ψ ds (5.3)

to the weak form, as in equation (4.21), implementation shown in Section
5.4.1. This was done by substituting D∂V/∂n as given by equation (4.35)
for conservation of current, but adjusted according to equation (4.39), giving:

DP
∂V n+1

P

∂n
= − 1

AP

∫
AM

DM
∂V n

M

∂n
ds, (5.4)

The code for a general number of PMJs, num_PMJs, is shown:

for i in xrange(num_PMJs):

form += dt*D_M/FacetArea(mesh)*M_grad[i]*psi*self.ds(i+1)
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Here D_M is the myocardial di�usion coe�cient, M_grad[i] holds the po-
tential gradient integrated over the i'th myocardial PMJ facet, self.ds(i+1)
(the complete mesh is marked as 0 in the beginning, so the PMJ facets are
marked from 1) marks the corresponding facet in the Purkinje tree (which is
an end node) and FacetArea(mesh) (where mesh is the Purkinje mesh) will
give the facet area corresponding to self.ds(i+1) when integrated over this
area. The sign was changed to �t the normal directions in FEniCS.

Since the potential gradients are integrated over the myocardial PMJ
facets, it is desirable for e�ciency to gather all the integrands in a common
expression before calling assemble, which performs the integration. In FEn-
iCS this is achieved by multiplying with a test function, in the code denoted
v_grad from a specialized space R, where v_grad[i] is then the ith unity
vector on an appropriate format. As in the code above, self.ds marks the
facets but now in the myocardium. The de�nitions of the necessary variables
are like this:

R = VectorFunctionSpace(mesh, "Real", 0, dim=num_PMJs)

v_grad = TestFunction(R)

gradients = zeros(num_PMJs)

self.ds = ds[facet_domains]

Here facet_domains is a FacetFunction marking the needed facets with
di�erent numbers.

Now that everything that is needed is properly de�ned, the integrated
gradients can be found. This must be done in each time step by running the
following code:

grad_vals = 0

for i in xrange(num_PMJs):

grad_vals += Dn(v_p)*v_grad[i]*self.ds(i+1)

grad_vals = assemble(grad_vals)

gradients[:] = grad_vals[:]

Initially this code only gave retrograde propagation. To investigate if any
problems arose as a result of the connection being between a 1D and a 3D
mesh, a unit interval and a unit square were also tested in the place of the
unit cube. The 1D-1D coupling gave propagation both ways, while the 1D-
2D coupling did not, but the signal travelling from the tree to the tissue was
not subdued as fast as in the case of 1D-3D coupling. With some adjustments
the model was able to give propagation both ways for both 1D-2D and 1D-3D
coupling. Scaling the Neumann condition in the Purkinje problem slightly
down (a bit more for 3D than for 2D) made sure the values at the ends of
the Purkinje tree were not pulled down so fast by the myocardium, leading
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to a longer stimulus (through Dirichlet conditions) of the myocardial nodes.

A drawback with this coupling is that it is under no circumstances able
to reproduce any noticeable delay times at the PMJs. This is no surprise, as
Dirichlet conditions on the myocardium (almost) ensures continuity of the
membrane potential across the junctions.

Robin Boundary Conditions

Robin boundary conditions were implemented both for the Purkinje and
the myocardial problems. This corresponds to conservation of current but
allows for disconyinuity of the membrane potential at the PMJs. This type
of boundary condition is implemented in a similar way as the Neumann
conditions above, acting as natural boundary conditions, but the addition to
the weak form looks a bit di�erent. Instead of equation (5.4) above, equation
(4.40) adjusted according to equation (4.39) gives:

DP
∂V n+1

P

∂n
= −DPMJ

AP
(V n+1

P − 1

k

k∑
M=1

V n
M) (5.5)

Here the condition for the Purkinje tree is shown. The corresponding
condition for the myocardium has replaced the average value of the myocyte
nodes with the single Purkinje value. The implementation is as follows:

for i in xrange(num_PMJs):

form += dt*diff_PMJ/FacetArea(mesh)*(v - v_M[i])*psi*self.ds(i+1)

where v_M[i] is the average value of the myocyte nodes at PMJ area number
i. This average is not very di�cult to implement, but it requires a little bit
of extra e�ort, which will not be shown here. The rest of the variables should
be clear from earlier explanations. As before, the sign was �tted to be correct
in the FEniCS implementation.

The variable diff_PMJ corresponds to DPMJ = σPMJ/(χCm), where
σPMJ is the conductance between the Purkinje cells and the transitional
cells and between the transitional cells and the ventricular myocytes. Con-
ductance is proportional to conductivity, but they are not the same. The
conductivity at the PMJs should have values between the conductivities in
the Purkinje tissue and the myocardial tissue. If the PMJ conductivity is
too high, the electrotonic load from the tissue on the Purkinje tree through
the PMJs will be too high, so the ends of the Purkinje tree will be drained
before they have time to activate the myocardium. If the value is too low, the
stimulus from the tree to the myocardium is not given enough time to build
up before it di�uses into the surrounding tissue in the myocardium. The
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variable DPMJ is proportional to the PMJ di�usivity, but they are not the
same, so one cannot compare the values of the di�usivities DP and DM for
the Purkinje tree and the myocardium, respectively, directly with the value
for DPMJ at the PMJs.

This code also needed some adjustment for the propagation to work both
ways. The Robin condition in the Purkinje problem was scaled up a bit
(multiplied by 3), while the Robin condition in the myocardial problem was
scaled down a bit (multiplied by 0.3).

Robin Boundary Conditions and Stimulus Currents

The third and last type of boundary conditions implemented was Robin
conditions for the ends of the Purkinje network and stimulus currents for the
PMJ nodes in the myocardium. This should ensure conservation of current
but allow for a discontinuous membrane potential at the PMJs. The code
for the Robin conditions is as above.

To be able to change the stimulus current in the Decker et al. cell model,
I_stim must be de�ned as a parameter both in the gotran �le and when
loading this �le into the program. The last part is demonstrated in the code
below. This single line is the only change necessary in method ode_system,
presented in Section 5.3.2:

cellmodel = goss.dolfin_jit(load_ode("decker_2009_Istim.ode"),

field_states=["V"], field_parameters=["I_stim"])

The stimulus current can then be set outside the gotran �le at any time:

self.goss_solver._ode_system_solvers[0].set_field_parameters(I_stim)

Here self.goss_solver is the solver returned by method ode_system,
and the 0 signi�es subdomain 0. In this thesis the only reason for having
several subdomains is to have di�erent stimuli on di�erent areas. When the
stimulus current is controlled from the outside there is no reason for splitting
the domain, and the whole domain is subdomain 0.

The stimulus variable I_stim is a numpy array of the same length as
the number of vertices in the mesh, thus the current given to each node is
speci�ed. To do so it is necessary to know which entries to give which values.
The nodes that should receive a stimulus are those coupled to the ends of the
Purkinje tree. Since the myocytes at di�erent PMJs should receive di�erent
stimuli, one must keep track of which nodes belong to which PMJs. This
information is stored in a numpy array stim_nodes, where each entry is
a list of the node numbers corresponding to the PMJ given by the array
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index. Using the function vertex_to_dof_map introduced in Section 5.5.1,
the entries of I_stim can be �lled.

In Section 4.3.2, the stimulus current was de�ned by equation (4.47) as:

Istim = −DP
∂VP
∂x

. (5.6)

The implementation is given by:

I_stim = np.array([0]*mesh.num_vertices(), dtype=np.float)

for i in xrange(len(stim_nodes_dof)):

I_stim[stim_nodes_dof[i]] += diff_P*P_grad[i]

Here P_grad is de�ned almost as M_grad (which was not really a gradi-
ent) in the implementation of Neumann conditions above. The di�erence is
that now grad_vals is divided by the facet area when it is multiplied by
self.ds(i+1).

To get propagation both ways this model too needed some adjustment.
The Robin condition was scaled up by a factor labeled K1 [dimensionless],
while the stimulus current was scaled up by a factor labeled K2 [dimen-
sionless]. Together with the PMJ �di�usion coe�cient� DPMJ (described in
Section 4.3.1) and the number of myocyte nodes receiving a stimulus, these
two factors were balanced against each other to give bidirectional propaga-
tion. Since DPMJ is not a true di�usion coe�cient it may account at least
partly for the need to scale by K1 and K2.

Robin Conditions and Stimulus Currents in the Realistic Case

The code for the Robin conditions and the stimulus currents for the realistic
Purkinje tree and myocardial meshes is as in the code above. What has been
left out till now is how to �nd the PMJ vertices, labeled stim_nodes. For
the test unit cube there was only one PMJ, and it was unimportant where
it was placed. In the realistic tree used there are 157 ends that should be
connected to the myocardium. In the Purkinje network there is one end
node per PMJ, which is also the facet through which the �ux �ows between
the two systems. In the myocardium there are several nodes per PMJ, and
several exterior facets in some cases.

As mentioned in Section 5.5.1 the �le call_tree_msh.py stores the in-
dices of the end nodes in the Purkinje tree before re�nement of the tree. The
original Purkinje nodes are also nodes in the myocardial mesh. Since the
myocardial mesh is not changed, the original indices of the end nodes are
valid for the myocardial mesh. From this the corresponding vertex objects

79



can be found. Having the vertex object at a myocardial PMJ, all facets hav-
ing this node as one of its own can easily be found by calling facets(vertex

object), and the same way with elements. Given a facet object it can be
assessed whether it is an external facet or not by calling facet.exterior().

The process of �nding one facet per PMJ in the myocardium was the
�rst step towards �nding a bigger area. However, �nding these facets proved
to be a problem since the PMJs in some areas have such high density with
respect to the mesh resolution that the facets overlapped. Overlapping areas
means that one node would receive a stimulus from two or more Purkinje
ends, which easily leads to divergence of the cell model solver (goss), and
also is not physiologically representative. It was therefore decided that each
myocardial end node should only belong to one PMJ area. Because of this
only 109 of the 157 PMJs could be used. It would probably not be too hard
to adjust the code so that some more facets could be found, but 109 facets
was assumed to be enough on such a coarse grid. The Purkinje branches
of the 48 excluded PMJs were not removed from the tree but simply not
coupled to the myocardium neither through Robin conditions nor stimulus
currents. In this way, the non-connected end branches are still visible in the
plots, but as long as one is aware that there are 48 ends where no interaction
should happen between the meshes, this should not be a problem.

With the two-way coupling for the Purkinje network and the myocardium
implemented, anterograde and retrograde propagation was possible for the
realistic meshes. Some parameter sets experienced divergence problems, but
the �nal values from the test case, K1 = 3, K2 = 2.945 and DPMJ = 0.06
cm3/ms, with DP = 0.106 cm2/ms and DM = 0.013 cm2/ms worked well,
giving quite realistic activation times for the Purkinje network and the my-
ocardium.
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Chapter 6

Results

During the implementation process a number of test cases were run to vali-
date the implementation. The �rst section describes various test cases for the
Purkinje network, while the second focuses on the coupling of the Purkinje
network and the myocardial tissue. The last section shows some results from
a simple implementation of left bundle branch block. The variable x [cm] is
the spatial coordinate in 1D.

6.1 Tissue Model

6.1.1 First Test Case: The Bistable Equation

In section 3.1.1 it was said that a cubic polynomial is the simplest cell model
that can reproduce the main behaviour of the depolarization phase of an
action potential. When the cubic polynomial described is combined with the
monodomain equation it is called the bistable equation.

This cell model consisting of a single ODE was implemented directly and
stepped forward with the midpoint method. For the cubic polynomial it was
stated that if the membrane potential was given a stimulus that makes it cross
its threshold value Vth, it rises to Vpeak, representing the depolarization phase,
while if given only a small stimulus, the membrane potential will resturn to
resting state Vrest. In space depolarization can spread with di�usion, resulting
in a traveling wave front.

The bistable equation was tested with di�erent values of A and Vth and
di�erent initial conditions on a unit interval domain. Some results for dif-
ferent values of Vth are shown in Figure 6.1. The value 0.01 cm2/ms for the
di�usion coe�cient D gave wave fronts. If the di�usivity is too large, the
wave will die out. With initial condition V = e−10x2 mV, see Figure 6.1a, the
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Figure 6.1: Membrane potential V in the bistable equation on a unit in-
terval at a chosen time (ms). The axes are not physiologically valid, as they
both range from 0 to 1 mV in this test case. A = 10 mV−1 ms−1/2, D = 0.01
cm2/ms, the unit interval consists of 40 elements and ∆t = 0.01 ms. The
initial condition in (a) is V = e−10x2 mV, (b) shows a traveling front.

initial values vary between 0 and 1 mV. The areas that have values above
the threshold value will rise, while those with lower values will fall. For a
low threshold value much of the area will be above the threshold, the values
in this area will increase, and a wave front starts traveling towards the right.
This can be seen in Figure 6.1b for Vth = 0.1 mV.

6.1.2 Validating the Midpoint Method: FHN Cell Model

To validate the implementation of the midpoint method, the monodomain
equation was tested with no spatial di�usion (D = 0) and constant initial
condition. Then all points should have the same value at all times, so a
time series in an arbitrary point should equal the time series given by the
non-spatial equations in the cell model. The FHN equations were used as
cell model. When D = 0, the linear PDE reduces to V n+1 = V n, so the only
change comes from the system of ODEs, which are here stepped forward
using the midpoint method. The cell model equations in the non-spatial
model were approximated by a �nite di�erence scheme.

With the parameter values used by Keener and Sneyd [14], the resulting
plots can be seen in Figure 6.2. The two schemes are almost identical, and
closely resemble the relevant plots in Keener and Sneyd [14, Figs. 5.15 and
5.16]. Because of this it is reasonable to assume that the �nite di�erence
scheme and the midpoint method are both correctly implemented.
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Figure 6.2: Phase portrait for the FHN equations (3.8) - (3.10) for the �nite
di�erence method (FDM) given by equations (4.12) - (4.13) and an arbitrary
point in a �nite element method (FEM) for the monodomain equation with
midpoint method, with FHN cell model, no spatial di�usion (D = 0 cm2/ms)
and constant initial condition. A = 1 mV−1 ms−1/2, α = 0.1 mV, γ = 0.5 and
ε = 0.01. In (a) and (b) Iapp = 0 µA/µF and initial conditions are V = 0.2
mV, w = 0.0 µA/µF. In (c) and (d) Iapp = 0.5 µA/µF and initial conditions
are V = 0.4 mV, w = 0.5 µA/µF. ∆t = 0.0001 ms for FDM. ∆t = 0.01 ms
for FEM, and the spatial area is a unit interval with 100 elements.
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6.1.3 Validating the Goss-Solver: FHN Cell Model

To validate the implementation of the goss-solver, results using the goss-
solver and the midpoint method were compared. The cell model used was a
slightly adjusted FHN model.

When the midpoint method was used, the ODEs were explicitly imple-
mented. To use a goss-solver, the ODEs had to be declared in gotran format,
and a solver had to be de�ned. There is one cell model for the whole domain.
The gotran �le looks as follows:

# Cell model file for the modified FitzHugh-Nagumo model

# States with default initial conditions

states(v=0.5,

w=0.5)

# Parameters

eps = 0.01; I_stim = 0.5; alpha = 0.1; gamma = 0.5

# Time derivatives

dv_dt = (-v*(v - alpha)*(v - 1) - w + I_stim)/eps

dw_dt = 0.8*(v - gamma*w)

Di�erent values were tested for the spatial di�usion and initial conditions.
The initial condition V = 0.5 (1 − tanh(18x − 2)) mV, which can be seen
in Figure 6.3a, is a traveling wave pro�le on the same form as in Keener
and Sneyd [14, eq.(6.19)], but adjusted with respect to placement, traveling
direction and steepness of the wave front.

With initial condition w = 0 µA/µF, Iapp = 0 µA/µF, and the right hand
side of equation (3.9) for w multiplied by 0.8 to lessen the dampening e�ect
of w, the result is a traveling pulse, see Figure 6.3b. If equation (3.9) is not
adjusted, the traveling pulse will die out. For Iapp 6= 0, a more complicated
picture arises, since Iapp is applied to all points in the domain. The result,
which can be seen in Figure 6.3c for Iapp = 0.5 µA/µF and initial condition
w = 0.5 µA/µF, is some kind of waves. The initial wave front is traveling
towards the right, while at the same time, the whole solution grows because
of the stimulation from Iapp. The results from the midpoint method and the
goss-solver are similar, but the goss-solver seems to make the wave move a
bit faster.
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(c) Iapp = 0.5, t = 0.2.

Figure 6.3: Membrane potential in space for the monodomain equation with
midpoint method and goss-solver, with slightly adjusted FHN cell model.
Equation (3.9) is multiplied by 0.8. The spatial area is a unit interval with
100 elements. The spatial di�usion coe�cient D = 0.01 cm2/ms, ∆t = 0.01
ms, A = 1 mV−1 ms−1/2, α = 0.1 mV, γ = 0.5 and ε = 0.01. (a) shows the
initial condition of V : 1

2
(1− tanh(18x− 2)) mV, (b) shows a traveling pulse

resulting from Iapp = 0 µA/µF and initial condition w = 0.0 µA/µF. In (c)
Iapp = 0.5 µA/µF and initial condition for w is 0.5 µA/µF.
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6.1.4 Testing the Modi�ed FHN Cell Model

Here the FHN cell model modi�ed by Rogers and McCulloch, as referred by
Sundnes et al. [24, p.35] is studied. In goss there is already a gotran �le
for this [12]. Only a part of the domain will be stimulated. The cell model
that is not going to be stimulated is created by just removing the stimulus
term from the model with stimulus. The goss-solver is created in the way
described in Section 5.3.2.

In Figure 6.4 two images are shown at di�erent times of the growing and
then traveling pulse for di�usion factor D = 0.0001 cm2/ms. If the di�usion
is too low, the wave don't move, and if it is too high, the wave dies out.
To �nd a di�usion factor that gives a traveling wave, di�erent values were
tested, and the resulting animations studied.
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Figure 6.4: Membrane potential in space for the monodomain equation with
goss-solver, with modi�ed FHN cell model at two chosen points in time. The
spatial area is a unit interval with 50 elements. The area to the left, where x <
0.05 cm receives a stimulus, while the rest of the area does not, resulting in a
wave traveling from left to right. The spatial di�usion coe�cient D = 0.0001
cm2/ms, ∆t = 1.0 ms. Initial conditions are V = −84.058830 mV, w = 0.0
µA/µF.

The time series in x = 0.9 cm is shown in Figure 6.5. The point is
arbitrary, the only thing that should vary for di�erent points is the time. This
plot is of similar shape and time scale as Figure 2.3 in Sundnes et al. [24],
which is for a single cell, indicating that the model is correctly implemented,
but the shapes are not identical. The upstroke velocity in Figure 6.5 is lower
than that in Figure 2.3 Sundnes et al. [24], probably as a result of di�erent
stimuli and because of di�usion.
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Figure 6.5: Membrane potential in time in the spatial point x = 0.9 cm for
the case described in Figure 6.4.

6.1.5 Testing the PRd Cell Model

Unit Interval

The PRd model was run with a stimulus on part of the domain. Di�erent
di�usion coe�cients were tested to �nd some values that give a traveling
wave. In Figure 6.6 there are two images at di�erent times of the growing
and then traveling wave, in the same way as was done for the modi�ed FHN
model in Figure 6.4. This wave returns to its resting state much slower.

The time series in a point is shown in Figure 6.7, together with the time
series of the original PRd model in C code. One can see that the shape of the
two action potentials are the same, but the original model has a higher peak.
A possible reason for this could be that the C code has a dynamic time step,
while the monodomain solver does not. A dynamic time step will decrease
its step length when changes are rapid, as they are in the depolarization
phase, giving a more correct wave pro�le. The monodomain solver might not
capture all the rapid changes.

However, Decker et al. [15] also get lower action potential peak for tissue
than for single cells in their model, and this has also been observed in several
experimental studies referred by Decker et al. This is due to the electrotonic
load during propagation. The results in Figure 6.7 are therefore as should
be expected, in accordance with observations and other studies.
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Figure 6.6: Membrane potential in space for the monodomain equation with
goss-solver, with PRd cell model at two chosen points in time. The spatial
area is a unit interval with 130 elements. The area to the left, where x <
0.05 cm receives a stimulus, while the rest of the area does not, resulting in a
wave traveling from left to right. The spatial di�usion coe�cient D = 0.001
cm2/ms, ∆t = 0.1 ms. Initial condition is V = −84.058830 mV.
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Figure 6.7: Membrane potential in time for the PRd model on a single cell
(C code) and on a unit interval tissue (gotran code). The graph for the tissue
is in the spatial point x = 0.9 cm for the case described in Figure 6.6. The
tissue graph is given an o�set to make the two graphs overlap as much as
possible, as the starting point is unimportant. (b) is a detail from (a).
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Small Trees

Solving the monodomain equation with the PRd cell model on the mesh in
Figure 6.8a, where each branch has length 1 cm, gives the rest of the plots
in Figure 6.8. The plotting used is in 1D, which is obviously not �t for
this purpose, but it was only used as a �rst test to see if the results were
reasonable.

The mesh consists of three branches of equal length and 120 elements.
The 40 �rst elements make up the �rst branch, the next 40 the upper right
branch and the last 40 the bottom right branch. The angle between the right
branches is 60 degrees.

The wave starts out normally, but when it has moved 1/3 of the length
of the mesh, a new wave pops up at 2/3 of the length. This corresponds
to the wave reaching the branching point, splitting into two waves, one in
each of the two right branches. The wave in the upper branch looks like a
continuation of the original wave, while the lower branch make up the last
1/3 of the mesh, which is where wave number two pops up.

Next another branching point was added, as can be seen in Figure 6.9a.
Here the elements of the �rst single branch, the upper branch, and the �rst
half of the lower branch are as in the previous case. The lower branch is then
split in two, where the upper part has elements 101 to 110, and the lowest
part has element numbers 111 to 120. From this the wave is expected to
start o� as before: �rst there is one wave, when this wave reaches 1/3 of the
length of the mesh it should continue together with a new wave popping up
at 2/3 of the length of the mesh. This last wave is the wave in the lower
branch, so when this has gone 1/2 of its stretch it splits in two, the one in the
upper branch looking as a continuation, the one in the lower branch popping
up at the last 1/4 of the last 1/3 of the mesh. This is exactly what happens,
see Figure 6.9.

In the top and bottom rows of Figure 6.10 the signal propagation through
another small test tree is shown in a more appropriate way. The tree consists
of the �rst �ve cables in the Purkinje network.
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Figure 6.8: Membrane potential in space for the PRd cell model at four
chosen points in time (ms). The mesh is the one in Figure 6.8a, where each
branch has length 1 cm. The mapping of the branches to the unit interval
is described in the text. The area to the left in the mesh, where x < 0.05
cm receives a stimulus, while the rest of the area does not. Since the mesh
is mapped to 1D, the spatial variable x in the plots is scaled, so it is not
measured in cm. D = 0.0005 cm2/ms, ∆t = 0.1 ms. Initial condition is
V = −84.058830 mV.
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Figure 6.9: Membrane potential in space for the monodomain equation
with goss-solver, with PRd cell model at four chosen points in time (ms).
The mesh is the one in Figure 6.9a, where the leftmost branch has length
1 cm and the others have lengths as seen relative to this. The mapping of
the branches to the unit interval is described in the text. The area to the
left, where x < 0.05 cm receives a stimulus, while the rest of the area does
not. Since the mesh is mapped to 1D, the spatial variable x in the plots
is scaled, so it is not measured in cm. D = 0.0005 cm2/ms, ∆t = 0.1 ms.
Initial condition is V = −84.058830 mV.
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6.1.6 Signal Propagation in the Opposite Direction

Here the mesh consisting of the �rst �ve cables in the Purkinje network,
as shown in Figure 5.2a, was used. The top row in Figure 6.10 shows the
propagation through the tree when the �rst branch was stimulated. The
bottom row shows the propagation when a di�erent area (y > 2.6 cm) was
stimulated. A di�erent stimulus area was chosen to check whether a signal
could travel both ways at junctions, which it did, giving both anterograde
and retrograde propagation.

(a) t = 6.0 (b) t = 14.7 (c) t = 20.0

(d) t = 1.8 (e) t = 11.3 (f) t = 25.0

Figure 6.10: Membrane potential in space for the monodomain equation
with goss-solver, with PRd cell model at chosen points in time (ms). The
mesh is the one in Figure 5.2a. D = 0.0008 cm2/ms, ∆t = 0.1 ms. Initial
condition is V = −84.058830 mV. The colorscale ranges from -85 mV (dark
blue) to 30 mV (red). The top row shows the signal starting in the �rst
branch. The �rst cable receives a stimulus, while the rest of the area does
not. The bottom row shows the signal starting in an other branch than the
�rst, giving retrograde propagation. The area where y > 2.6 cm receives a
stimulus, while the rest of the area does not.
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6.1.7 Realistic Tree

With the signal propagating correctly through a test tree, both in the an-
terograde and retrograde directions, the next step was to take the realistic
Purkinje tree to the test. To get propagation, di�erent di�usion coe�cients
were tested as before until some suitable values were found. For the FHN
model this testing stopped as soon as a di�usivity that gave propagation was
found. Plots of the propagation is shown at four time steps in Figure 6.11.

For the PRd model it was desirable to achieve realistic activation times
for the Purkinje tree. In Chapter 2 it was stated that it took approximately
25 ms from the stimulation of the bundle of His until the whole Purkinje
tree was activated. The fastest activation time achieved in this thesis was
27.8 ms, which is within reasonable range from the desired value. This was
achieved for a tissue di�usivity of 0.106 cm2/ms. Four time steps are shown
in Figure 6.12.

What would have been more interesting to know than the di�usivity is the
conductivity, so it could be compared to other cases. The di�usion coe�cient
is de�ned as D = σ/(χCm), where σ is the conductivity. The PRd cell model
de�nes Cm = 1 µF/cm2. With a value for χ, the conductivity could be found.
In Sundnes et al. [24, Table 2.1], χ = 2000 cm−1. This might not hold here,
but it could still be interesting to see what conductivity this would yield:

D = 0.106 cm2/ms = σ cm/2000 cm2/µF.

⇒ σ = 2000 · 0.106 µF/(cm ms) = 212 mS/cm.

Deo et al. [6] operate with an intracellular conductivity in the Purkinje
tree of 15 mS/cm, so 212 mS/cm is very high, but realistic conductivity
values cannot be expected unless a very �ne grid is used.

Comparing the plots for the FHN and the PRd cell models, at �rst sight
it might seem like the FHN action potential is very short compared to the
PRd model. Returning to Figures 3.2b and 3.3 one can see that the modi�ed
FHN cell model has an action potential duration of about 250 ms, while the
PRd model has an action potential duration of about 400 ms. This is a
signi�cant di�erence, but not enough to explain the di�erences in the plots
of propagation through the tree. The explanation comes from looking at
the time scale. The FHN wave front moves very slowly through the tree
compared to the PRd wave.

Figure 6.12e shows the action potentials of four points in the Purkinje
tree. The points are shown in Figure 6.12f. The �rst point is in the beginning
of the tree. This node gets a stimulus current, so its upstroke looks a bit
di�erent from the others. The next point is somewhere in the middle of the
tree, and is a �normal� action potential. The last two action potentials are
from end nodes in the tree. They both have higher upstroke amplitude than
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Figure 6.11: Membrane potential in the Purkinje network for the mon-
odomain equation with goss-solver, with FHN cell model at four chosen points
in time (ms). The �rst branch and a small area close to it receives a stim-
ulus while the rest of the area does not. ds = 0.05 cm, D = 0.001 cm2/ms,
∆t = 30 ms. Initial condition is V = −84.058830 mV.
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Figure 6.12: Membrane potential in the Purkinje network for the mon-
odomain equation with goss-solver, with PRd cell model at four chosen points
in time (ms) (a)-(d), and action potentials in four points in space (e)-(f). The
�rst branch and a small area close to it receives a stimulus while the rest of
the area does not. ds = 0.05 cm, D = 0.106 cm2/ms, ∆t = 0.1 ms. Initial
condition is V = −84.058830 mV.
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the two �rst points. This is due to the homogenuous Neumann conditions on
all ends in the Purkinje network. They make the ends in the tree electrically
insulated, so the signal arriving has nowhere to �escape� fast enough to keep
the amplitude to its normal height. This e�ect should disappear when the
Purkinje tree is properly coupled to the myocardium because of electrotonic
loading from the myocardial mass.

6.2 Coupling the Purkinje Network and the My-

ocardial Tissue

6.2.1 One-Way Coupling

The �rst test case was a unit square connected to the end of a Purkinje tree
in a single point in the lower left corner of the square. The initial condition is
V = −84.058830 mV on the whole area, while the stimulus is simply kept at
0 mV. It is expected that a wave will spread from the corner that is connected
to the Purkinje tree to the rest of the area, falling to rest when the whole area
has transmembrane potential equal to zero. This is exactly what happens,
as can be seen in the top row of Figure 6.13, where the time increases from
left to right.

Next two ends of the Purkinje network were connected to a unit square,
see the middle row in Figure 6.13, and and a unit cube, see Figure 6.13,
bottom row. This worked well, giving wave propagation as expected, so
the same coupling method was tested on the realistic Purkinje network and
myocardial tissue meshes. In the test case the myocardial di�usivity DM

was set to 1.0 cm2/ms. This proved too high for the realistic mesh. The
di�usivity DM = 0.01 cm2/ms gave activation of the myocardial tissue, the
membrane potential in space is shown for both the Purkinje tree and the
myocardium at three time steps in Figure 6.14.

The total activation time of the ventricles was about 84 ms, which is a
bit high, but this will be better adapted for the model that can conduct the
signal both ways at the PMJs.
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(a) t = 0.0 (b) t = 0.25 (c) t = 1.0 (d) t = 4.2

(e) t = 0.0 (f) t = 0.05 (g) t = 0.2 (h) t = 0.5

(i) t = 0.0 (j) t = 0.5 (k) t = 1.2 (l) t = 5.0

Figure 6.13: Membrane potential in space for the di�usion equation. All
times are in ms. DM = 1.0 cm2/ms, ∆t = 0.01 ms. Initial condition is
V = −84.058830 mV. A pointwise Dirichlet boundary condition of V = 0.0
mV is enforced in speci�ed points. The colorscale ranges from −85 mV (dark
blue) to 0 mV (orange). Top row: the domain is the unit square with 10 × 10
elements, Dirichlet condition is enforced in point (0.0, 0.0), i.e. the bottom
left corner. Middle row: the domain is the unit square with 10 × 10 elements,
Dirichlet conditions are enforced in points (0.8, 0.3) and (0.8, 0.6). Bottom
row: the domain is the unit cube with 10 × 10 × 10 elements, Dirichlet
conditions are enforced in points (0.8, 0.3, 1.0) and (0.8, 0.6, 1.0).
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Figure 6.14: Membrane potential in the Purkinje network (right) and the
myocardium (left). The Purkinje network uses the PRd cell model with
DP = 0.106 cm2/ms, while the myocardium uses the Decker et al. cell model
with DM = 0.01 cm2/ms. The �rst branch and a small area close to it in the
Purkinje network receives a stimulus while the rest of the area does not. The
end values in the Purkinje network are used as Dirichlet boundary conditions
for the myocardium. Initial condition is V = −84.058830 mV for both models
and ds = 0.05 cm, ∆t = 0.1 ms. All times are in ms. The colorscales have
units mV.
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6.2.2 Two-Way Coupling

Robin Boundary Conditions and Stimulus Currents

In the test case for Robin conditions on the Purkinje tree and stimulus cur-
rents for the myocardium, a unit cube consisting of 10 × 10 × 10 elements
represented the myocardium and the �rst four branches in the realistic Purk-
inje tree, with element lengths of about 500 µm, represented the Purkinje
tree. These tissues had one PMJ between them.

Many parameter sets were tested. The overall tendency seemed to be that
without both scaling up the stimulus current by a factor K2 and increasing
the number of myocytes to receive a stimulus from the original three myocyte
nodes on a facet, anterograde propagation was impossible. With the scaling
factor K2 present, it seemed impossible to get retrograde activation without
introducing a scaling factor K1 for the Robin condition. In addition DPMJ

must make sure that the Purkinje tree is not drained too fast so the signal
dies out in the tree, and the myocardium not �lled too slowly, so the signal
di�uses out in the myocardial tissue before activation can happen.

To study the e�ect of the number of myocyte nodes to receive a stimulus,
a stimulus was started in the myocardial tissue, varying the strength of the
stimulus and the number of nodes. It was found that if the number of nodes
was very small the activation died out locally, not managing to activate the
rest of the tissue, no matter how strong the stimulus was. For a stimulus area
a bit larger, the activation could spread to the rest of the tissue given a strong
enough stimulus. If the stimulus area consisted of quite many nodes it would
activate the whole tissue at much lower stimuli strengths. It seemed that
with more nodes receiving a stimulus, the nodes at the edge of the stimulus
area act as a bu�er between the nodes in the middle of the stimulus area and
the nodes outside the stimulus area. In this way, the nodes in the middle
of the area have time to build their action potential higher than they would
have been able to if their immediate neighbouring nodes were draining them
fully. When these middle nodes have reached a high enough potential, an
activation wave starts to spread from them through the rest of the tissue.

Extending the original stimulus area of three myocyte nodes to the fourth
node of the element with the same facet, all nodes in elements bordering to
the �rst element were added. This process can be repeated as many times
as necessary. In this way, each extension round would add another �layer�
of cells to a sort of hemisphere with the original facet in the center. In
the article by Deo et al. [7], the PMJ areas consist of a single node in the
Purkinje tree and all the myocyte nodes within a radius of 500 µm from the
Purkinje node. The average number of myocyte nodes coupled to a Purkinje
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node is 56. Because the myocardial mesh used in this thesis is quite coarse,
a volume much greater than 500 µm in radius must be stimulated to come
close to 56 nodes.

Table 6.1 shows how a higher value of the scaling factor K2 for the stim-
ulus currents allows for a smaller number of stimulus nodes to still achieve
propagation in both directions for the scaling factor for the Robin condition
K1 = 3. The �extension levels� result from the process described above of
adding a layer of cells to the group of initial elements. Extension level 0
consists of all nodes in all cells where the original node is a node, then the
level increases with one for each added cell layer.

Extension level Num nodes Num cells K2 Activation
0 11 6 13 −

14 +
1 42 96 2 −

3 +
2 106 324 1 −

2 +
3 215 768 1 −
4 375 1484 1 +

Table 6.1: Overview over how the extension level and K2 work together.
A �+� means that this parameter set gives both anterograde and retrograde
propagation, while �−� means that propagation in at least one of the di-
rections fails. K1 = 3, DPMJ = 0.06 cm3/ms, DP = 0.106 cm2/ms and
DM = 0.01 cm2/ms

Next, Table 6.2 shows how a higher value of K1 allows for a smaller
value of K2 to achieve bidirectional propagation. In Table 6.1 it can be
seen that the combination K1 = 3, K2 = 2 at extension level 1 did not
give bidirectional propgation. If K1 is increased to 7 one gets bidirectional
propgation, as shown in Table 6.2. No value for K1 could be found that gave
propagation both ways for K2 = 1 at extension level 1.

In the same way, Table 6.1 also shows that the combination K1 = 3,
K2 = 13 at extension level 0 did not give bidirectional propgation. If K1

is increased to 10 one gets bidirectional propgation, as shown in Table 6.2.
For K1 = 10, K2 can be lowered to 9 and this will still give propagation
both ways. For K2 = 8, a value of 15 or higher for K1 is needed to give
bidirectional propgation.

However, this tendency of higher K1 values allowing for smaller K2 values
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does not hold forever. Too high values for K1 will drain the Purkinje tree
too much too fast, and again, there is no activation of the myocardium.

Extension level K2 K1 Activation
1 2 7 +

2 6 −
1 x x

0 13 10 +
13 9 −
9 10 +
8 10 −
8 15 +
8 14 −

Table 6.2: Overview over how K1 and K2 work together. A �+� means that
this parameter set gives both anterograde and retrograde propagation, while
�−� means that propagation in at least one of the directions fails. The �x�
means that for K2 = 1, no value for K1 was found that gave propagation in
any direction. DPMJ = 0.06 cm3/ms, DP = 0.106 cm2/ms and DM = 0.01
cm2/ms.

Now it might seem that the best choice of parameters is simply a rela-
tively high value for both K1 and K2 (but not so high that the Purkinje tree
becomes too drained) as this gives both anterograde and retrograde propa-
gation for a small stimulus area in the myocardium. The problem with this,
in addition to the fact that it would have been preferable not to need these
factors at all, so high values are not desirable, is that high values of both K1

and K2 diminsh PMJ delay times.

Of the boundary conditions giving a two-way connection between the
Purkinje network and the myocardial tissue, only Robin conditions for the
Purkinje problem and stimulus currents for the myocardial problem gave
any noticeable delay for anterograde and retrograde propagation. Time of
activation for a node was taken to be the time of the steepest upstroke.
Delay times at PMJs were de�ned as the di�erence between the activation
time of the single Purkinje node and the average of the activation times for
the coupled myocyte nodes. Lower values of each of the factors K1, K2 and
DPMJ gave a higher PMJ delay, but too low values of any of them, and
bidirectional propagation was lost. It was not easy to �nd a clear pattern for
the in�uence of K1 and K2, but the best delay times came from giving them
quite similar and low values.
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The values found that gave the highest anterograde delay for the unit
cube were K1 = 3, K2 = 2.945 and DPMJ = 0.06 cm3/ms when DP = 0.106
cm2/ms, DM = 0.01 cm2/ms and the myocardial stimulus area consisted
of 42 nodes (extension level 1). This gave an anterograde delay of about 5
ms. In Section 2.3 it was stated that physiological times for anterograde and
retrograde delay were in the intervals 4-14 ms and 2-4 ms, respectively, while
some articles operate with lower retrograde delay times. An anterograde
delay of about 5 ms is within the given physiological range. The membrane
potentials of the Purkinje node and a myocyte node close to the center of
the stimulated area can be seen in Figure 6.15c.

For retrograde delay two plots are shown: Figure 6.15b shows the mem-
brane potentials of the same Purkinje and myocyte nodes when a small part
of the tissue (31 nodes out of 1331) is stimulated, of which the myocardial
PMJ area is no part. In Figure 6.15d the whole tissue is stimulated at once.
The �rst plot models a more realistic situation, and gives a delay of about
3 ms, which is within the physiological range (this value is read from the
plot, and is thus not an average value over all the PMJ myocytes). The next
plot is included for comparison with the realistic tree and tissue, and shows
a delay of only about 1.2 ms. Stimulus on the whole tissue activates all the
nodes at the same time, resulting in a great, immediate voltage di�erence
across the PMJ, which again the Robin condition in the Purkinje problem
works to diminsh. On the other hand, an activation wave coming at the PMJ
area from a limited area will use some time to activate all the PMJ myocyte
nodes. This will delay both the average activation time of the myocytes and
the activation of the Purkinje end, as the non-activated myocytes keep the
e�ect from the Robin condition down. From Figure 6.15b it seems that this
last e�ect is greater than the e�ect on the myocardial delay, since this gives
greater delay than stimulus on a limited myocardial area.

Figure 6.15a shows the action potentials at four points in space: the start
node in the Purkinje tree, representing the bundle of His, a node in the middle
of the tree, the end node, and the PMJ myocyte node used in the other plots
just described. This �gure is inspired by Figure 1.C in Deo et al. [6]. The
action potentials of the Purkinje cell and the ventricular myocyte di�er in
duration and shape, but the model gives a gliding transition between the
two, gradually shortening the action potential and creating a phase 1 notch
in the Purkinje tree for cells closer to the PMJ. In this plot the di�erences
are not very pronounced, but the tendency is still evident. The myocardium
clearly a�ects the action potential duration in the whole tree since even the
action potential at the bundle of His lasts such a short time. For such a
small Purkinje tree, where the PMJ node is only three branches from the
start point, this is not surprising.
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Figure 6.15: Action potentials. (a)-(d) are for a Purkinje tree with four
branches connected at one site to a unit cube with 10 × 10 × 10 elements
representing the myocardium. DM = 0.01 cm2/ms. (a) shows the complete
action potentials for di�erent points. (b) and (c) both show retrograde prop-
agation, but in (b) the whole tissue is stimulated (1331 nodes), while in (c)
only a limited number of nodes (31), of which none are directly coupled to
the Purkinje network, are stimulated. (e) and (f) are for the realistic tree
and myocardium. DM = 0.013 cm2/ms. The points in (e) are Point 1 (black)
(below Point 14) and Point 4 (gray) shown in Figure 6.16c. DPMJ = 0.06
cm3/ms, K1 = 3, K2 = 2.945.
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Robin Conditions and Stimulus Currents in the Realistic Case

The parameter setK1 = 3, K2 = 2.945 andDPMJ = 0.06 cm3/ms, withDP =
0.106 cm2/ms and DM = 0.013 cm2/ms also worked well for the realistic
case, giving quite realistic activation times for the Purkinje network and the
myocardium of 27.8 ms and 65.9 ms, respectively. The activation times of
the two tissues are shown in isochrone maps in Figure 6.16. An isochrone
map shows when the tissue was activated. Activation is here counted as the
time with steepest upstroke. The average number of myocyte nodes per PMJ
was 11.

Figure 6.16d shows the activation times for the Purkinje tree. The acti-
vation starts in the bundle of His at the top of the tree, and travels evenly
downwards in the left and right trees, activating the left apex last at 27.8 ms
after His stimulation.

The activation times in the myocardium are shown in Figures 6.16e and
6.16f, which emphasize the left and right ventricles, respectively. The �rst
sites to activate are those near the Purkinje ends closest to the bundle of His.
In the left ventricle these points are on the septum wall separating the two
ventricles, close to the top. In the right ventricle the septum is also soon to
activate, as well as an area further out on the right side of the front of the
heart. This last site is the �rst place where the activation front arrives at the
epicardium (which is the outer part of the heart muscle) and breaks through
the surface. This is in accordance with physiological observations, where
the �rst epicardial breakthrough occurs in the right ventricular anterior-
paraseptal region, as reported by Ramanathan et al. [22].

As the activation front continues to travel down the Purkinje tree more
myocardial sites are activated, and several activation fronts in the tissue ac-
tivates more tissue. The main activation pattern is apex-to-base, which also
�ts well with observed behaviour. This is particularly true for the posterior
heart and the sides. The outer side bases of both the left and right ventricles
are the last to activate, at 65.9 ms.

Anterograde and retrograde delay times, as well as action potentials in
various parts of the Purkinje tree were studied. This was done in a manner
similar to that used for the test case wirth a unit cube. Six PMJs out
of the total of 109 were chosen for the study of delay times. For these
PMJs, the action potentials in the Purkinje nodes and the same nodes in
the myocardium were traced. The chosen points can be seen in Figure 6.16c,
where they are labeled 0-5 (point 1 is below point 14, and point 2 is below
and between points 13 and 16, the rest should be visible). From simulations,
these myocardial sites were seen to be activated through the PMJs and not
through the tissue. In addition the average delay times for all 109 PMJs
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Figure 6.16: Normal activation of the Purkinje tree and myocardium.
DPMJ = 0.06 cm3/ms, DM = 0.013 cm2/ms, K1 = 3, K2 = 2.945. (a)
shows the timeseries of chosen points in the Purkinje tree, denoted Point x,
and the myocardium, denoted Point xM. The points in the tree are shown
in (c). The points in the myocardium are further described in the text. (b)
shows the timeseries at chosen PMJs in the tree. (d)-(f) are isochrone maps
showing the activation times of the tree and the ventricles (left and right
ventricles to the left and right, respectively). (e) and (f) have the same
colorscale. All colorscales have units ms.
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were found. The action potentials for the Purkinje and myocardial nodes at
the six PMJs showed two types of behaviour for anterograde propagation.
Two representative PMJs are shown in Figure 6.15e, where the value of the
membrane potential in one myocyte shoots markedly higher than the other.
The delay time is signi�cantly lower than for the unit cube, 1.63 ms on
average for all the PMJs, but at least there are evident delays.

Starting a stimulus in a limited area of the myocardium and looking at
the average retrograde delay makes no sense for the full Purkinje tree. The
activation would then enter the Purkinje tree, and from there new myocar-
dial sites would be activated, giving a mixture of anterograde and retrograde
propagation at the PMJs. For stimulus on the whole myocardium, the mem-
brane potentials at the six traced PMJs all showed similar behaviour. The
results for one of the PMJs are shown in Figure 6.15f. This behaviour is
pretty similar to the corresponding result for the unit cube. The average
retrograde delay was 1.11 ms.

To see how the complete action potentials change throughout the Purkinje
tree, and how they compare to results from the myocardium, action potentials
were traced in all 17 points shown in Figure 6.16c, the six nodes in the
myocardium corresponding to points 0-5 in the Purkinje tree, and four more
points in the myocardium. Some of the results are shown in Figures 6.16a
and 6.16b.

In Figure 6.16a, the bundle of His is represented by Point 6 (blue), which
is the �rst node in the tree. This action potential looks like the action
potential of a Purkinje cell. The next point, number 7 (green), is also high
up in the tree, representing the right bundle branch. The upstroke of this
second graph happens a little later than the upstroke of the �rst graph, but
they both come together towards the end. This means that, although this
action potential still looks like that of a Purkinje cell, it is a little in�uenced by
the myocardium, which has shortened its action potential duration slightly,
and also given it a barely visible sort of phase 1 notch. Further down the left
tree is Point 16, which is nowhere near any PMJs and therefore not much
in�uenced by the myocardium. The graph looks much the same as the �rst
two. Shifting it along the time axis according to its later activation, the
action potential duration seems to be approximately the same.

Next one PMJ is chosen, number three (cyan). The reason for this will
soon be explained. This action potential clearly lasts shorter than the three
before, and also has an evident phase 1 notch. The result at the correspond-
ing myocardial node is labeled �Point 3M�, and although these graphs are
very similar, there are visible di�erences. The last two points are from the
myocardium. Point 6M (yellow) is found at the outer left top of the left
ventricle, in the area that is activated the last, while Point 7M (black) is
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found at the inner apex of the left ventricle. The action potential of Point
6M looks like that of a ventricular myocyte (a reduced upstroke amplitude
for tissue compared to a single cell is in accordance with results from Decker
et al. [15]). However, Point 7M exercise an action potential duration close
to Point 3M. The reason for this is its proximity to (it might even be a part
of) a PMJ area, as these are quite dense in both apexes. This was con�rmed
by the other two myocardial points, one of which was close to another PMJ
area, and showed the same behaviour as Point 7M, while the other was far
away from any PMJs (though not as far away as Point 6M), and had the
same behaviour as Point 6M.

In Figure 6.16b the action potentials in three PMJ nodes in the tree are
shown. They exhibit a marked di�erence in action potential duration. Six
PMJs were traced. The three that are not shown were close to that of Point
3. The graph closest to an average was Point 3, which is why this point was
used in Figure 6.16a.

6.3 Left Bundle Branch Block

Left bundle branch block (LBBB) is when the left bundle branch in the Purk-
inje system is blocked, so that no electrical signal can pass. This leads to
asymmetric activation of the ventricles, as the signal propagates normally
through the right ventricle, while the left ventricle is only activated from
transmural crossing of the right ventricle signal. Here LBBB is simulated
simply by setting the di�usivity coe�cient, which is denoted D in the pro-
gram, in a node in the �rst branch in the left Purkinje tree equal to zero.
The di�usivity in the other nodes have the same value (0.106 cm2/ms) as
before. This is done in the following code snippet:

V0 = FunctionSpace(mesh, 'DG', 0)

D = Function(V0)

D.vector()[:] = 0.106

D.vector()[27] = 0.0

The resulting signal propagation is shown as isochrone maps of the Purk-
inje tree and the myocardium and can be seen in Figures 6.17a, 6.17c and
6.17d. In the given order they show the Purkinje tree, the left ventricle and
the right ventricle. The �gures are comparable, still in the listed order, to
Figures 6.16d, 6.16e and 6.16f. Comparing the plots for the Purkinje tree
and the left ventricle it is clear that the activation patterns of the normal
case and the LBBB case di�er signi�cantly.

Looking at the plot of the Purkinje tree it is evident that the left ventricle
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(a) DM = 0.013 (b) DM = 0.01

(c) DM = 0.013 (d) DM = 0.013

(e) DM = 0.01
(f) DM = 0.01

Figure 6.17: Isochrone maps for left bundle branch block. All colorscales
have units ms. DP = 0.01 cm2/ms, DPMJ = 0.06 cm3/ms, K1 = 3, K2 =
2.945. (a), (c) and (d) have DM = 0.013 cm2/ms, while (b), (e) and (f) have
DM = 0.01 cm2/ms. (c) and (d) have the same colorscale.
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is activated later than the right ventricle. The part of the left ventricle that
activates the last activates at 47.1 ms, while the in the normal case the last
part activated at 27.8 ms. All times are relative to His stimulation. The
colors for the normal case and the LBBB case are not directly comparable
since the scales are not the same. This also holds for the Purkinje plots and
the myocardial plots.

This is what happens: The signal starts out at the bundle of His as nor-
mal. When it reaches the �rst junction, that splits the network into a left
and a right tree, the signal propagates onward into the right tree, while pas-
sage into the left tree is blocked. In the right tree the signal propagates as
in the normal case and travels into the myocardial tissue. The �rst stimula-
tion of the myocardium happens at 12.1 ms, while for the normal activation
this happens at 11.9 ms. This means that during normal activation the �rst
endocardial breakthrough site is in the left ventricle.

Among the �rst endocardial breakthrough sites are some sites on the
upper part of the septum wall separating the left and right ventricles. From
Figure 6.17c one can see that once the septum begins to activate in the
right ventricle, the signal travels across the septum into the left ventricle.
There is no marked delay in the activation of the septum on the side of the
right ventricle as compared to the left ventricle. Now that part of the left
ventricular tissue is activated, while the left Purkinje tree is not, the signal
travels from the tissue into the tree. That the activation sequence is indeed
this way and not the other way around can be seen from the isochrone maps.
The tissue and the tree on the septum wall are both activated at around 18
ms, but while there is no visible delay between the right and left activation
of the myocardium at the septum wall, there is an obvious delay between the
corresponding places in the Purkinje tree (yellow in the right ventricle, green
in the left ventricle). Here the delay times at the PMJs make themselves
known, even though they are smaller than wanted.

From this point on the signal in the left tree spreads anterogradely towards
the left apex and retrogradely towards the left bundle branch. The tissue in
the left ventricle that is normally activated from the Purkinje tree is now some
places activated by the tree, some places through the myocardial tissue, and
some places by a combination of the two. Where the Purkinje tree is the main
activation source, the myocardial activation wave is not far away, as there
are no distinct places that were activated earlier than the surrounding tissue.
From this it seems that the Purkinje network does not play an important role
in activating the left ventricle in this particular case, as it does not manage
to overtake the myocardial propagation. This will of course depend on the
conductivities in both the Purkinje tree and the myocardial tissue.

The total activation time for the myocardium is 75.3 ms compared to 65.9
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ms for the normal case. In the normal case the last two sites to be activated
are on the top of the left and right ventricle, as can be seen in Figure 6.16e.
This also holds for the LBBB case, but while the top of the right ventricle
activates at about the same time as before (if there is any variation, it is
so small it cannot be seen in the �gures), the top of the right ventricle now
activates almost 10 ms later.

The LBBB case was repeated with a slightly lower di�usion coe�cient in
the myocardium, 0.01 cm2/ms instead of 0.013 cm2/ms, to see if the Purkinje
tree in the left ventricle would then activate more of the myocardium. In the
simulation it is possible to see that it does, but there is such a short di�erence
in time between the activation from the Purkinje tree to the arrival of the
activation front in the myocardium that with a scale covering the activation of
the whole ventricles it is di�cult to see. To make it very clear that the signal
can enter the Purkinje tree through the myocardium, then move fast through
the tree and activate a di�erent part of the myocardium before the activation
wave in the myocardial tissue gets to that part, the time scale was locked close
to the activation time of such sites, see Figures 6.17e and 6.17f. For greater
di�erences in the conductivities in the Purkinje network and the myocardium
it seems probable that this e�ect will be stronger, and the Purkinje system
will play a more prominent role in activating the left ventricle. Other than
this feature, this LBBB case did not contribute anything new compared to
the �rst LBBB case, and the isochrone map for the whole time span of the
myocardium is omitted. The isochrone map for the Purkinje tree is shown
in Figure 6.17b. The total activation times for the tree and the myocardium
were 48.2 ms and 89.4 ms, respectively.
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Chapter 7

Discussion and Concluding

Remarks

A model simulating the electrical activity in the ventricles of the heart has
been implemented and applied to a number of test cases. Important aspects
of the model and its implementation are the representation of the ventricles
and the electrical activity through meshes, cell models, tissue model, nu-
merical methods and resolutions. Limitations of these, their importance and
possible remedies are discussed below. Finally the model is evaluated in its
entirety with respect to how well it represents the electrical activity in the
ventricles, and what can be learned from it.

The electrical signal in the ventricles is modeled, therefore all parts con-
ducting electrical signals must be represented. These parts are the Purkinje
network and the ventricular muscle tissue. Between these two systems there
is another type of cells called transitional cells, which are discussed further
in Section 7.3. The data on which the representation of the Purkinje net-
work and the myocardium are based, are based on MR images from a living
human.

7.1 The Purkinje Network

The Purkinje system is a tree-like structure going from the SA node, branch-
ing into each of the ventricles. Purkinje �bers are very thin, which makes
it challenging to obtain information about the Purkinje network through ex-
periments. Because of this, much is still unknown, and also, interindividual
structural di�erences seem to be large, but some characteristics seem to hold
generally. According to Boyle et al. [3], the network has two distinct fascicles
(main braches) in the right ventricle and three in the left ventricle. Phys-
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ical observations cited in the same paper suggest that the network is quite
dense. Most of the network lies on the endocardial surface, but it also has
free-running components. The ends of the Purkinje network are connected
to the myocardial tissue at Purkinje-myocardial junctions (PMJs). This will
be further discussed in Section 7.3.

The structure of the Purkinje network in�uences the activation pattern
and thus the activation times of the ventricular muscle tissue. It is unclear
how important the exact number of fascicles in each ventricle is, but the
network seems to branch more in the left ventricle than in the right. Given
the larger muscle mass of the left ventricle compared to the right, a slightly
larger network in the left ventricle makes sense.

A dense network means that there are many PMJs. Since this is where
the electrical signal is transferred to the myocardium, the PMJ number and
density plays an important role in the activation of the ventricles. In their
article Behradfar et al. [2] vary the number of PMJs, using 74, 105, 166, 244,
325, 451 and 516 PMJs. They found that up to a limit, the PMJ density
increases the role of the Purkinje system in activating the ventricles. For 74
PMJs, the total activation time of the ventricles was 66 ms, while for 516
PMJs this decreased to 58 ms. Increased PMJ density also increases the rate
of PMJ propagation success, especially in the anterograde direction. This
will be further discussed in Section 7.3.

The importance of free-running components of the Purkinje network is
not yet known, but because this allows for more �ber directions than the
endocardial surface this might increase the sensitivity of the ventricles to
external shock (for example during de�brillation), as the activation from
external stimuli depends on the orientation of the �bers with respect to the
external electrical �eld. Free-running components might therefore introduce
new activation sites. Another possible e�ect of free-running components is
that if they are at the ends of the Purkinje network, they may change the
angle of the Purkinje �ber with respect to the endocardial tissue.

The Purkinje network topology used in this thesis is a simpli�cation of
the physiological system. It is based on point data for the endocardial sur-
face, which are based on measurements on a living human, and the program
�les described in Section 5.1.6, building a tree structure from these points.
The branches of the Purkinje tree are represented in 1D. The complete tree
consists of 839 branches, 389 in the right ventricle and 450 in the left, lying
on the endocardial surface. Communication with the myocardium only takes
place at the PMJs.

Purkinje �bers are represented as 1D structures. Since the �bres are very
thin, 17.5 µm in radius in the PRd model [17], and are only coupled in one
dimension (Decker et al. [15]), this is a reasonable approximation adopted
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in several articles (for example Deo et al. [6] and Boyle et al. [3]).
The tree used does not exhibit the arborization pattern described by

Boyle et al. [3] with two distinct fascicles in the right ventricle and three in
the left ventricle. If this proves to be a severe drawback of the model, it can
be remedied by manually enforcing such a structure, as done by Boyle et al.
This might require substantial rewriting of the routine building the tree, but
should not be too hard with that code as basis. The tree in the left ventricle
has more branches than the right (450 to 389), so this characteristic of a
slightly more developed tree in the left ventricle is well represented.

In this thesis, the number of ends in the Purkinje tree is 157, but because
this lead to overlapping PMJ areas, the number of PMJs was reduced to 109.
It is reasonable to assume that both 157 and 109 are much lower than the
number of PMJs in any real heart. Given the results of Behradfar et al. [2], it
is likely that this low number will yield the Purkinje tree a smaller activation
role than it really has, increasing the activation times of the ventricles. With
109 PMJs a total activation time of the ventricles of 65.9 ms was achieved,
which is in good accordance with the results of Behradfar et al. for 74 PMJs.
However, other parameters play an important role too. The parameters for
this particular case are given in Section 6.2.2. If the tree proves to have too
low density, the tree-building routine must be given a more densely populated
endocardial surface. The limitation here is thus the mesh data, not the tree-
building routine.

The Purkinje tree in this thesis is built from point data, so given points
that are not on the endocardial surface, a free-running component requires
no change of code and is trivial. The limitation comes from the data that
the tree is built from. Since external stimuli was not enforced in this thesis,
and �ber directions not incorporated, the lack of free-running components
should be of no importance.

It is reasonable to assume that modi�cations of the geometry of the Purk-
inje system would alter activation patterns. Here the relevant traits are spe-
ci�c characteristics of the structure of the tree and the density of branches,
in particular PMJ density. However, despite the lack of correct number of
fascicles in the ventricles and a quite limited number of PMJs, the overall
behaviour of the Purkinje tree used seems to be correct, as it is able to repro-
duce important features such as earliest epicardial breakthrough site (in the
right anterior-paraseptal region), a general pattern of apex-to-base activation
and a reasonable total activation time of the network. The conclusion is then
that the Purkinje tree seems to work reasonably well, and if need be, it is
possible to give the tree a more correct structure and given the data points,
to build a denser tree and incorporate free-running components.

The PRd cell model is used for a Purkinje cell. With its 38 ODEs this is
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a very detailed model. However, the model is �tted to canine experimental
data, while in this thesis the model is for a human heart. Data from mam-
mals are often mixed and used without considerations for the speci�c species
because they are considered to be �similiar enough�. Therefore it should not
be a major obstacle that the PRd model is a canine model rather than hu-
man, but this will depend on exactly what is under investigation. To the
author's knowledge, there is no Purkinje cell model for humans yet.

The monodomain equation is used as tissue model for both the Purkinje
network and the myocardial tissue. When coupled with a cell model it models
the transmembrane potential V = Vi−Ve. As described in Section 3.2.1 it is a
simpli�cation of the more general bidomain equations obtained by assuming
equal anisotropy rates for the intracellular and extracellular space. Since the
Purkinje branches are modeled as 1D strands, they can be viewed as only
consisting of intracellular space (in 1D), so the signal always moves in the
�ber direction in the intracellular space. This way, the monodomain model
with isotropy fully represents the signal propagation in the Purkinje network.

7.2 The Myocardial Tissue

The focus of this thesis has been on the Purkinje network and the coupling
between the Purkinje network and the myocardial tissue. To model the
details of myocardial activity has not been a main priority, therefore several
simpli�cations a�ecting myocardial signal propagation have been used. This
way, more time could be used on other topics, also in the way that a more
detailed myocardial model would have greatly increased computation times,
making adjustments of model parameters a very slow task.

The myocardial mesh is built from points based on data from a patient,
so the myocardium has a realistic shape. As mentioned in the previous
section, the monodomain model is used as tissue model for the myocardial
tissue. This is not a very serious limitation for what is being studied here,
but if need be, the monodomain equation can be extended to the bidomain
equations relatively easy in FEniCS.

An additional simpli�cation made in this thesis is to assume isotropy,
so the tissue conductivity is the same in all directions. The muscles of the
myocardium are organized in a swirling pattern, which makes the heart con-
tract and pump blood e�ciently, so isotropy is not a realistic approximation.
This simpli�cation is made because the model does not incorporate �ber
directions, so anisotropy would not be meaningful. If �ber directions are in-
cluded, anisotropy can easily be implemented. The lack of �ber directions is
the greatest limitation of the model in this thesis, and these must be included

114



to model realistic activation in the myocardium.

The ventricular muscle tissue consists of several layers. From the inside
out one �nds the endocardium, the myocardium and the epicardium. In
this thesis the endocardium, the myocardium and the epicardium are all
represented as the myocardium, as is also the case in the articles by Vigmond
and Clements [26], Deo et al. [6] and [7], Boyle et al. [3] and Behradfar et
al. [2]. Depending on what is being studied this can be a serious limitation
but should not be so here.

The Decker et al. cell model is used to model the cells in the myocardium.
As the PRd cell model this is a highly detailed model, with 46 ODEs. This
model is for a canine epicardial myocyte not for a human ventricular my-
ocyte. If detailed myocardial activation is in focus other models exist, also
for humans. Since human data exist for ventricular cells it is also possible to
adjust model parameters to better reproduce observational data.

7.3 Coupling of the Purkinje Network and the

Myocardial Tissue

Communication between the Purkinje network and the myocardium only
happens where the ends of the Purkinje network meet the myocardial tissue.
The coupling sites are called Purkinje-myocardial junctions (PMJs), and the
communication happens via transitional cells, as described in Section 2.3.
One Purkinje cell is indirectly coupled to several ventricular myocytes. The
transitional cells work as a high resistance barrier between the Purkinje net-
work and the myocardial tissue. This barrier gives delay times at the PMJs.
Retrograde propagation is highly favored over anterograde propagation. The
angle between the ends of the Purkinje network, ending in transitional cells,
and the �bre direction of the myocardial tissue in�uence the probability of
propagation success or failure.

The model in this thesis only allows for communication between the Purk-
inje tree and the myocardium at the PMJs, so this characteristic is well
represented. The Purkinje tree and the myocardium are represented as two
separate meshes, so communication between them must be implemented ex-
plicitly. Aspects that need to be considered are which areas in the Purkinje
mesh that should be coupled to which areas in the myocardial mesh, and
how this coupling should be done. Several alternatives were tested for each
of these aspects.

In the Purkinje tree the end nodes were used as PMJ areas, so there is one
Purkinje node per PMJ. It is not as obvious what should be chosen as PMJ
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areas in the myocardium. In the meshes used, the end nodes in the Purkinje
tree are also nodes in the myocardial mesh, so it seemed natural that these
nodes should at least be part of the myocardial PMJ areas. Alternatives that
were tested were a single myocyte node per PMJ area, one facet including
the original node, one element including the mentioned facet, all facets in-
cluding the original node, all elements including the mentioned facets, and
then more elements building from the two element-alternatives mentioned,
where �layers� of adjacent elements were added in a hemispherical way as
many times as wanted.

The ends of the Purkinje tree are assumed to go a bit into the my-
ocardium. Exacty how far in they go is not yet known, di�erent studies
operate with di�erent distances, but Boyle et al. [3] let the ends go up to
20 % into the thickness of the endocardial tissue. This feature is not at all
represented when the myocardial PMJ areas are single nodes or facets, but
when they are elements this is somewhat represented. The PMJ areas have
room for improvement regarding shape, but at the present the mesh resolu-
tion is probably a greater limitation. Given a �ner mesh the present solution
will better represent reality, and if need be it should not be very di�cult to
improve these areas.

The angle between the ends of the Purkinje network and the myocardial
�ber directions in�uence the propagation success, a lower angle increasing
the success rate. Especially anterograde propagation success is a�ected by
the angles as this is already the least favored propagation direction. Boyle et
al. [3] found that in their model about 75 % of the PMJs remained quiescent
during anterograde propagation even though the complete Purkinje system
was activated. Since �ber directions are not incorporated into this model
at the present, the feature of angles has not been considered, but important
activation characteristics are still reproduced (see Section 5.2.1).

As mentioned in Section 5.2.1, PMJ density also a�ects propagation suc-
cess. This is probably because stimulus on a larger area increase the prob-
ability of successful activation and if the PMJ density is high, several such
areas combined can create a larger, almost continuous, activation area. This
e�ect should be present in the model but is probably not very visible, PMJ
areas being as large as they are.

The methods used for coupling the Purkinje network and the myocardial
tissue were Dirichlet conditions for the myocardium for a one-way coupling,
enabling propagation from the Purkinje tree to the myocardium, and for
a two-way coupling Dirichlet conditions for the myocardium and Neumann
conditions for the Purkinje tree, Robin conditions for both systems, and
Robin conditions for the Purkinje network and stimulus currents for the
myocardium. The values at the ends of the Purkinje tree were used in the

116



Dirichlet conditions and the �ux out of these ends were used for the stimulus
currents. The �ux through PMJ facets in the myocardium were used as
Neumann conditions for the Purkinje tree.

For the one-way coupling with Dirichlet conditions for the myocardium,
only one myocyte node was used per PMJ area. This gave anterograde prop-
agation and worked well for a one-sided connection where PMJ delay times
were not considered. For the two-way coupling with Dirichlet conditions for
the myocardium and Neumann conditions for the Purkinje tree, a myocar-
dial facet was needed for the Neumann condition for each PMJ, therefore the
myocyte area was extended to a facet. This PMJ area better represents that
one Purkinje cell is indirectly coupled to several ventricular myocytes. To
achieve propagation both ways at the PMJs for this coupling method, some
adjustments were needed. This method is supposed to give continuity of the
membrane potential and conservation of current at each PMJ. However, non-
physical scaling of parameters in the implementation leads to this no longer
being completely maintained.

Transitional cells are not included explicitly in this model or any other
model to date to the author's knowledge. Instead parameters and equations
are tuned to reproduce physiologically valid PMJ delay times both in the
anterograde and retrograde directions. Delay times at the PMJs presuppose
discontinuities between the Purkinje network and the myocardial tissue. In
reality there is, of course, continuity, but this is between the Purkinje tree and
the transitional cells and between the transitional cells and the myocardium.
The membrane potential is not continuous between the Purkinje tree and the
myocardium. The two methods described above using Dirichlet conditions
strive for continuity of membrane potentials at the PMJs, so they cannot give
marked delay times. For a model to be able to reproduce such delay times
the characteristics of the transitional cells must somehow be represented in
the coupling.

The expressions for the Robin conditions include a term representing the
conductance between the Purkinje tree and the myocardium: σPMJ . This
can be seen as a representation of the transitional cells between the Purkinje
cells and the ventricular myocytes. The conductance at the PMJs should
be between the conductances in the Purkinje and myocardial tissues. If the
PMJ conductance is too high it represents too high electrotonic loading from
the myocardium so the potential in the Purkinje ends will die out, and if it
is too low, the signal dies out in the myocardium. In the implementation,
di�usivities, rather than conductivities, are used for the Purkinje tree and
the myocardium. At the PMJs it is not exactly the di�usivity that is used, so
the values are not directly comparable, and the expression for the stimulus
currents is not completely correct, which may account, at least in part, for
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the scaling necessary to get bidirectional propagation.
Robin conditions for both the Purkinje and the myocardial problems were

combined with facets as myocardial PMJ areas, while Robin conditions for
the Purkinje tree and stimulus currents for the myocardium were tested with
all mentioned areas except for a single node (some areas on a unit cube,
some on the realistic meshes). Both methods needed adjustments to give
bidirectional propagation. The last approach was able to give noticeable
PMJ delay times and higher anterograde than retrograde delay times, but
not quite in the range assumed to be physiologically reasonable.

A possible source of trouble for the coupling is that the myocardial PMJ
areas do not hold enough nodes. More nodes favor anterograde propagation
to a greater extent but in a mesh as coarse as the one used, all areas that
consist of several nodes are larger than what is physiologically reasonable.
Even a single facet per PMJ leads to overlapping areas, and enlarging the
area even more without special treatment of each single area will also lead to
either even more overlap or weirdly shaped areas. This is a drawback with
all the myocardial PMJ areas that consist of several nodes and is a limitation
due to the resolution of the myocardial mesh. For coarse meshes there must
be a balance between the size of the PMJ areas and the number of nodes
in them. Too few myocardial PMJ nodes might account for the adjustments
necessary to achieve bidirectional propagation. These adjustments favor PMJ
propagation, so if they were rendered unnecessary one could hope to get delay
times closer to the physiological range.

It might be that other myocardial PMJ areas for Robin conditions for
both problems would have been able to give PMJ delay times, but this was
not tested. Still, it is reasonable to assume that this would not have given
as pronounced delay times as stimulus currents for the myocardium since
stimulus currents give a lower slope in the beginning of the depolarization
phase of an action potential. This lower slope occurring in the anterograde
direction may also make the delay time in this direction greater than in
the retrograde direction, in accordance with observations. This last feature
is then a phenomenological property of the model, as in reality one must
assume that this characteristic is only caused by the greater mass of the
myocardium compared to the Purkinje tree and the one dimensionality of
the Purkinje tree.

To sum up, two main aspects were found to be important when imple-
menting the Purkinje-myocardial coupling. These were the choice of myocar-
dial PMJ areas and the coupling method. All the two-way methods needed
parameter adjustments to give bidirectional propagation. The greatest lim-
itation of the coupling is probably due to the resolution of the myocardial
mesh, which restricts the choice of PMJ areas.
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7.4 Resolution

Sundnes et al. [24, p.17] state that for realistic heart cell models, resolving
the fast dynamics of the upstroke properly requires a spatial discretization of
about 0.2 mm and a temporal resolution of about 0.1 ms. In accordance with
this a temporal resolution of 0.1 ms was used in this thesis, which seemed to
work well, giving propagation through the Purkinje and myocardial meshes.

The spatial resolution of the Purkinje network can be controlled in the �le
call_tree_msh.py by the parameter ds, which is measured in cm. Choosing
ds = 0.05 yields most element lengths equal to 0.5 mm, but some can be up
to 1.0 mm. This is considerably higher than the value of 0.2 mm given
by Sundnes et al. but gave reasonable signal conduction, as could be seen
from the simulations. The present Purkinje tree has 6357 nodes. If higher
resolution is needed this can easily be �xed by giving ds a lower value.

The size of an element in FEniCS is characterized either by the diameter of
the sphere circumscribing the element or the diameter of the inscribed sphere.
For a mesh, the maximum and minimum values of both these measures can be
given by built-in functions. For the myocardial mesh used here, the diameters
of the circumscribed circles are in the range 1.559-15.747 mm, while the
diameters of the inscribed circles are in the range 0.202-3.718 mm. Except
for the lowest value of the inscribed circles these values are much higher than
the desired value of 0.2 mm. This makes it di�cult to de�ne good myocardial
PMJ areas, as discussed earlier, and to get propagation in the myocardial
mesh one must use unrealistic conductivity values (di�usion coe�cients in
the program). The mesh used for the myocardium consists of 3584 nodes.

In FEniCS it is easy to re�ne meshes. The reason this was not done in
this thesis is that the number of nodes increases very fast, and with it the
simulation times. The total number of nodes in this problem was 9941. This
is not much considering the problem, in the simulations of Deo et al. [6]
they use about 550 000 nodes, which gives element edge lengths of about 0.3
mm, but special computers are required for such heavy calculations. The
computer used to run the simulations in this thesis was a MacBook Pro
with an Intel Core 2 Duo processor and 4 GB RAM. A virtual machine with
ubuntu 64 bit was run on this machine, with access to 2560 MB RAM.

7.5 Numerical Methods

A combination of numerical methods were applied to solve the monodomain
equation for the Purkinje system and the myocardium. The error due to
time discretization is proportional to the time step ∆t raised to the power of
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the order of the method, and the same holds for spatial methods only with
the spatial step ∆x. This means that the orders of the methods in time and
space need not be the same. The accuracy of the solution is limited by the
lowest accuracy of all the methods. Better accuracy can be achieved either
by increasing the order of the methods or by decreasing the discretization
steps. The methods that were applied were operator splitting and the �nite
di�erence method in time, and the �nite element method in space.

For operator splitting Godunov splitting was used. This method is �rst-
order in time, so the error is proportional to ∆t. The time step used is
∆t = 0.1 ms. Since the accuracy of the solution is limited by the method
with the lowest accuracy, a �rst-order method was also chosen for the �-
nite di�erence method in time. One can then choose between the forward
and backward Euler methods, but since the forward Euler method can be
unstable, depending on the time step, the backward Euler method was used.

In the �nite element method the simplest basis functions that give a con-
tinuous solution are linear functions. While the original problem demands
that the solution is twice di�erentiable, the weak problem only requires that
the squares of the derivatives are integrable (Lines [18, p.41]), which is ful-
�lled for linear functions. Linear functions give second order accuracy, so
the error is proportional so ∆x2. As described in Section 7.4 the spatial
discretization used for the myocardium in this thesis is very coarse.

The orders of the methods are based on Lines [18, Chapters 4 and 6].
There a �rst order method is used in time and linear elements in space for
a bidomain model of the ventricles embedded in a torso. Lines found that a
spatial resolution of 0.2 mm and a time resolution of 0.125 ms are reasonable
for that problem. In this thesis a time step of the same magnitude as Lines
found reasonable is used, while the spatial resolution is coarser, which is �ne
since other conductivity values are used.

7.6 Concluding Remarks

The goal of this thesis was to model the electrical activity in the ventricles
with particular focus on the Purkinje-myocardial coupling. Several models
that are able to simulate the activation of the ventricles through the Purkinje
tree and the myocardial tissue have been implemented, where the Purkinje-
myocardial junctions (PMJs) are represented in various ways.

The representations of the PMJs have been attacked from a physiologi-
cal, mathematical/numerical and implementational point of view. Through
literature studies the PMJ physiology at the cell-level and its implications
for organ-level behaviour have become known. The representation of PMJs
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in earlier modeling studies have been mathematically described (Robin con-
ditions for the Purkinje problem and stimulus currents for the myocardial
problem), as well as other known coupling methods. Several methods have
been implemented, particular care being invested in achieving reasonable
myocardial PMJ areas and reproducing known activation characteristics and
special PMJ e�ects.

Major drawbacks of the models are that �ber directions in the myocardium
are not represented and the resolution of the myocardial mesh is too coarse,
which can be a problem in itself, but also causes problems for the choice
of myocardial PMJ areas. It can also be desirable with a denser Purkinje
network and to extend the monodomain model to the bidomain model. As
mentioned earlier in this chapter, it is relatively easy to extend the mon-
odomain equations to the bidomain model and to include myocardial �ber
directions. The reason this was not done in this thesis was that the focus was
on PMJ coupling, and these changes would substantially increase computa-
tion times. The same is true for re�nement of the myocardial mesh, which
would have allowed realistic conductivity values. A denser Purkinje tree is
probably the greatest challenge but should not be unsurmountable. Also, this
is not really a drawback of the models but a result of limited observational
data.

Despite the drawbacks of the models, they are able to activate the ven-
tricles in a convincing manner. The model with Robin conditions for the
Purkinje problem and stimulus currents for the myocardial problem is able
to reproduce important features such as bidirectional propagation at the
PMJs, earliest epicardial breakthrough site in the right anterior-paraseptal
region, a general pattern of apex-to-base activation, PMJ delay times in both
directions, favoring retrograde propagation, and reasonable total activation
times for the Purkinje network and the myocardial tissue.

The purpose behind the implemented models is that they should be able
to simulate realistic cases of ventricular arrhythmia. In this thesis time did
not allow for investigations of arrhythmia beyond the simple study of left
bundle branch block presented in Section 6.3, which was done with the model
with Robin conditions for the Purkinje problem and stimulus currents for
the myocardial problem. For more realistic simulations, the models and
their implementations should be further validated, and the major drawbacks
mentioned above must be addressed.
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