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Abstract

The Plane Wave Semi-Continuous Galerkin method is an example of a method
where some of the expected structure of the solution is included in the finite
element space. The idea is that this will lead to a more accurate method
than the standard methods on problems where the solutions do have this
structure.

First, this thesis establishes the necessary theory for partial differential
equations. Next, some of the theory behind continuous and discontinuous
Galerkin methods is established, emphasizing the difference in how these
two methods handle the interfaces between elements. Using this, the semi-
continuous nature of the Plane Wave Semi-Continuous Galerkin method is
established.

Finally, the thesis provides a posteriori error estimates for the method,
comparing it to the standard ), method. In the provided result the method
proves promising for methods having solutions behaving like plane waves
locally.
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Chapter 1

Introduction

Solving general partial differential equations is notoriously hard, both an-
alytically and numerically. The solutions of these equations are often very
complicated, and most of them are impossible to write out explicitly, and in
many cases, even finding the most basic properties of the solutions is near
impossible. There are classes of equations, however, for which we have exten-
sive understanding of the behaviour. Probably not coincidentally, these are
also often the same kind of equations that arise in many practical problems.

As with algebraic equations, differential equations can have any number
of solutions, including both infinitely many and none. One major part of the
analytical study of PDEs is finding the number and characteristic properties
of solutions. Studying these properties can give vital insight, which can be
used to understand the physical or abstract behaviour of the process the
equation describes, even without actually solving the equation.

Even though we know there exists a solution to a particular partial differ-
ential equation, finding it can be a lot more difficult. Often the only option is
to seek an approximate solution trough the use of a numerical method. These
methods range from simple and intuitive methods such as the simplest finite
difference schemes, to more abstract and sophisticated methods making use
of the insight provided by the analytical studies. Common for all the methods
is that they convert the continuous problem into a discrete problem which
can be solved explicitly using only arithmetic operations which can be exe-
cuted by computers. Loosing information in this process is unavoidable, and
this is why such methods only generate approximations to solutions.

While analytical results alone can provide valuable insight in many prac-
tical problems, they also play a vital role when using numerical methods.
For instance, trying to use a numerical method to approximate a solution
that does not exist may cause problems. In many cases the method will,
after a lot of calculation, detect that the equation has no solution and fail.



1.1. ABOUT THE THESIS

Other methods, however, lack the ability to detect failure and may return
a solution, even if no solution actually exists. The situation can be just
as bad when solving an equation which has an infinite number of solutions.
Again, some methods will detect this and fail, but other methods may return
a function which in some way approximates a solution locally, but it may be
a different solution in different areas, resulting in a function which behaves
nothing like a true solution.

One of the more popular methods utilizing insight gained trough the an-
alytical studies of the equations is the finite element method, or FEM for
short. It consists of splitting the solution into pieces, each defined over a
small subset of the domain of definition of the equation. On each of these
parts, we assume the solution has a particularly simple form, usually a linear
combination of a finite number of predefined polynomials. We can then use
Galerkin approximation to select a linear combination which closely approx-
imates a solution of the equation, and the result is a method which can, for
large classes of PDEs, be proven to give arbitrarily good approximations if
we just make the discrete problem large enough.

While this seems to have pretty much solved our problem of finding so-
lutions to PDEs, this is far from the case. In reality, computers, with their
finite memory and speed, limit the size of the discrete problem. For many of
the trickier problems, not even supercomputers can hope to find acceptable
approximation in an acceptable amount of time using naive finite element
methods.

This is the reason we need FEMs which are particularly good at solving
just the kind of problem we want to solve. In this thesis we will introduce
the Plane Wave Semi-Continuous Galerkin method, which is a finite element
method designed to work particularly well with problems where the solutions
have plane wave-like behaviour locally. This is done by replacing the poly-
nomials used to approximate the solution on the elements with plane waves,
the idea being that this will allow for more of the behaviour of the continuous
problem to be preserved in the discrete problem.

1.1 About the thesis

The theory of PDEs includes a lot of results with long derivations, using
different techniques from different fields of mathematics. Since the main
focus of this thesis is to derive and test the Plane Wave Semi-Continuous
Galerkin method, I will only derive and state the simplest versions of the
results from PDE and Galerkin theory, since this will be enough to reason
about the expected properties of the relevant Galerkin methods.



CHAPTER 1. INTRODUCTION

In chapter 2, we start by looking at the classical theory for some partial
differential equations. This chapter lay the groundwork for our continued
treatment of these equations by stating some basic results and introducing
the notation which will be used later when discussing these equations.

In chapter 3, we will look at Galerkin methods and introduce the finite
element framework at a rather low level, emphasizing how the methods be-
have on the intersections between elements since this is an important aspect
of describing the semi-continuous nature of the plane wave method which is
introduced in chapter 4.

Chapter 4 uses the notion of finite elements introduced in chapter 3 to de-
rive the Plane Wave Semi-Continuous Galerkin method. In the second part of
this chapter, we look at some of the high-level aspects of the implementation
of the method.

Then in chapter 5, we look at how this method behaves numerically by
running the implementation for some interesting cases, and making some
a posteriori error estimates comparing the method to standard polynomial
elements.

1.2 Code

A considerable part of this project was writing an implementation of the
Plane Wave Semi-Continuous Galerkin method. The implementation is based
on the GetFEM++ [10] finite element framework. Since understanding most
of the code requires an understanding of the GetFEM+-+ library, I have
chosen not to include any actual code in the thesis. Instead, I have included
some more high-level notes on the implementation in the last part of chapter
4 and the results gained by running the code in chapter 5.

For readers interested in diving into the code, it is available on GitHub:
github.com/ANerd/PWSCG.


github.com/ANerd/PWSCG

Chapter 2

Introduction of relevant equations

Before we look at finite element methods, we need to introduce some of the
classical theory of PDEs. In this chapter, we will first look at a concrete
example of a PDE which will have a special role in deriving the plane wave-
methods discussed later. Next we will look at a more general class of problems
and develop the notation and some results which will be useful when working
with the numerical methods.

2.1 Helmholtz equation

The methods described in this thesis will mostly have advantages for equa-
tions with solutions of wave-like form. As an example of an equation that
has wave-like solutions, we look at the Helmholtz equation

2.1
U = Ug on 0f2 (2.1)

{Au+k2u:f in 2
where Q € R? is of C! class 9, p. 710], k: Q = R, u € C?(2), up € C*(09)
and f € C(Q).

2.1.1 Applications

The Helmholtz equation helps describing the behaviour of waves in multiple
fields of physics, including acoustics, electromagnetic radiation and seismol-
ogy. One way to arrive at Helmholtz equation is to look at the linear wave
equation

0%u

W = CQAU (22)

10
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If we use separation of variables and assume
u(x,t) =T(t) X (x)

where T' € C*(R) and X € C?%(Q), we get

1 0°T
———— X =AXT
cZ Ot?

1 0°T _AX
2T o2 X

and since the left hand and right hand side depend solely on ¢ and @ respec-

tively, they must both be constant.

1 0°T AX
—_—_— = —
AT ot? X
We then find a k& € R such that ¢ = —k? and we arrive at the homogeneous

Helmholtz equation in X (z)

AX
= =

The wave equation describes multiple phys-
ical phenomena. One example is the propaga-
tion of acoustic waves trough a 3 dimensional
medium where u represents the pressure in the
medium. Other applications include waves on a
2 dimensional elastic membrane where v then
represents the displacement of the membrane
in normal direction of the undisturbed mem-
brane. Another describe the vibration of a
string in 1 dimension, where again u represents
the displacement [4, p. 4|. There are also other
equations in physics which can be reduced to
Helmholtz equation, including the Schrédinger
equation and some aspects of Maxwell’s equa-
tions.

2.1.2 Analytical solutions

The solutions of Helmholtz equation are in gen-

k2 = AX+EKX=0

Figure 2.1: A solution
of Helmholtz equation rep-
resenting a wave bending
around a circular obstacle.

eral very complex and can usually not be written explicitly. There are ex-
ceptions, however, some of which will be presented next.

11



2.1. HELMHOLTZ EQUATION

Plane waves

For the first solution we need k to be a constant vector. Let k € R?, and set
k from the equation such that k? = k2. If we then insert u = e**® into the
interior part of (2.1), we get

A (eik-m) + k2€ik-a: =0
_k2€ik~w + k2€ik-€l§ — 0

which holds. This kind of function is known as a plane wave along k. We
also know that since (—1)2 = 1 then u = e %*® must also be a solution.
Since the equation is linear, any linear combinations of these solutions will
also be solutions. Also, we may combine solutions with different directions
of k. While this may seem like a lot of flexibility, it is still not possible
to satisfy all boundary conditions by linear combinations of these functions.
Also, assuming constant k excludes a lot of useful solutions.

Radial waves

Another interesting function is

where r = | — x| for some x, € R For this to be a solution of (2.1) we
need to assume € C R? and that there exists a small neighborhood around
o which is not included in €2. We also have to assume constant k. Using
the Laplace operator in spherical coordinates [14, p. 111] we get

ikr ikr ikr
Lo ( 20 (e )) R = 10 (e (ikr — 1)) —l—kQGT

—_— /r’ —
r2 Or or r r r2 Or

ikr ikr
et e
= k2 k2
T T

=0

which is well formed since 2 does not include x.

Since this function is radial it can only satisfy boundary conditions which
are also radial. An example of a problem which is solved by this kind of
function is when €2 is on the form

Q={zcR’:0<0<|z| <R}

12
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for some 6, R € R and the Dirichlet condition enforces a constant value on
the inner boundary and another constant value on the outer boundary.
A way to relate this function to plane waves is to write

eikm
U= ———r

||

with .
k=k—

||

What prevents this from being a true plane wave is that a plane wave has
constant k. One thing this form does provide is an indication that radial
waves may have behaviour similar to plane waves locally.

2.2 Second-order elliptic boundary-value prob-
lems

To look at Galerkin methods, we must first establish some basic notation
and results for the equations we seek to solve. A class of problems that
usually works quite nicely with Galerkin methods are second-order elliptic
boundary-value problems.

We will always assume the complex-valued functions unless otherwise
specified. This means a function v € C(Q2) will be v : Q@ — C even tough
one usually defines these functions to be v : 2 — R. This also means we will
use the complex L? inner products when constructing the weak forms. We
denote the complex conjugate of v as .

We will look at problems on the form

Lu=f in{ (2.3)
U = U on 0f)

for Q C R, f € C(Q), up € C*(0N) given, u € C*(Q) the unknown and the
operator L defined as

Lu = —div (a(z) grad u) + B(x) - grad u + y(z)u

where a € [L®(Q)]7, B € [L=(Q)]* and v € L=(Q) are known coefficient
functions. We will also assume a(z) is symmetric.

Definition 2.1 (Strong solution). Assume « € [Cl(Q)]dXd, B e [C(Q)]" and
v € C(Q). If (2.3) holds for some u € C?*(Q) then u is a strong solution of
(2.3).

13



2.2. SECOND-ORDER ELLIPTIC BOUNDARY-VALUE PROBLEMS

Second-order means that the highest order derivatives of u included in
the equation is second derivatives, and boundary-value problem is a problem
defined by an equation on a domain and some condition on the behaviour on
the boundary. Both of these properties are implicit in the definition of (2.3),
but ellipticity needs to be defined explicitly

Definition 2.2 (Ellipticity). The partial differential operator L is elliptic if
there exist a constant 8 > 0 such that

¢Ta(a)¢ > 0[¢I (2.4)
for all ¢ € R? and almost every = € €.

Corollary 2.3. The Helmholtz equation is a second-order elliptic boundary
value-problem.

Proof. We can write the Helmholtz equation (2.1) on the form (2.3) with
a(z) =1I,B(z) = 0 and y(x) = k?, which means it’s a second order boundary-
value problem, and since

Ta(z)¢ = ¢TIC=1¢P > 0¢P
for any 0 < 1, it is also elliptic. O

The form (2.3) is called the strong form of the equation, and for it to be
well formed we need v € C*(Q2) which leads to f € C(2). This is a strong
requirement which turns out to exclude many useful cases. This is why we
in the next section introduce another form of the equation.

2.2.1 Weak form

We will now introduce the weak form of the problem. A way to handle
inhomogeneous Dirichlet boundary conditions will be presented in section
2.2.3, but for now we will assume u = 0 on 0€2. To derive the weak form of
(2.3) we multiply it by the complex conjugate of v € C§°(Q2) and integrate
over ). This gives us

/a(m) grad u - gradvdz + / B(x) - grad uv dx + / ~(z)uv dz
Q Q Q

:/fﬁdasjt/ gradu - nvds
Q o0

and since v|sq = 0 the boundary term disappears. Using this formulation as
a starting point, we can make another definition of what it means to solve
(2.3)

14



CHAPTER 2. INTRODUCTION OF RELEVANT EQUATIONS

Definition 2.4 (Weak solution). u € HJ () is a weak solution of (2.3) if
/a(x) gradu-gradvdw+/ B(x)-gradu@dx—l—/fy(:v)u@dx = (f,7) (2.5)
Q Q Q
for all v € HL(Q), where a € [L=(Q)]™, B € [L=(Q)]?, v € L=(Q,R),
f e H Q) and (-,-) is the pairing of H~(Q2) and H}(Q).

From this definition we introduce the bilinear and linear forms

a(u,v) = /Qa(ﬁ)gradu-gramdxjt/ﬂﬂ(x) -gradude%—/Qv(x)ude
l(v) = (f,0)
which give us the shorthand; find u € H}(Q) such that
a(u,v) =1(v) Yv € HL(Q) (2.6)

This form is called the weak form of the problem. Here, the requirement
that uw € C?() is replaced by the much weaker u € H}(Q2), and allowing
f € H7Y(Q) means we have a well formed problem even for a very irregular
f. In this form we call u the trial function and v the test function. This
form also fits very nicely into the framework of Galerkin methods which will
be presented in the next chapter.

Since C2(2) € H (), we have the following relation between strong and
weak solutions

Proposition 2.5. Assume a € [CH(Q)]™?, B € [C(Q)] and v € C(Q),
f€C(Q). Then for u € CZ(Q) the following are equivalent

(i) u is a strong solution of (2.3)
(i1) w is a weak solution of (2.3)

Proof. Assume u is a strong solution. We multiply (2.3) by any test function
v e C§°(R2), and integrate both sides of the equation over €.

/Lu@dx:/fidx
Q Q

Since u € C3(§2) we can perform the integration by parts without introducing
boundary terms

/ —div (a(x) gradw) vde = / a(z) gradu - grad v dx
Q Q

15
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Since this holds for any v € C*°(2), it must also hold in the closure. Hence
a(u,v) =1(v) Vv e Hy(Q)

and u is a weak solution. To prove the converse we use the same steps in
reverse to arrive at

/Lu@dm:/fﬁdx Vv e C5°(2)
Q 0

and since this holds for all v € C§°(2), we know that that Lu = f, hence u
is a strong solution. O]

2.2.2 Existence of solutions

By using the weak form we can now make a sufficient condition for the
existence of an unique solution. While this condition turns out to be too
strict for many problems, it gives insight into what kind of properties well
formed problems should have. It is also used as a starting point to develop
more sophisticated existence theorems.

Theorem 2.6 (Lax-Milgram). Let H be a Hilbert space and assume

a: Hx H—=R
l[:H—R

are linear functionals. Then, if there exists ¢y, co,c3 > 0 such that
(1) |a(u,v)| < cllul|lllv] Yu,v e H (continuity of a)
(ii) a(u,u) > co||ull*> Yu € H (coercivity of a)
(iii) |l(v)| < c3||v]|> Vv € H (continuity of 1)
then there exists a unique element u € H such that
a(u,v) =1l(v) Yve H

Proof. Let (-,-) be an inner product over H. For any u € H the mapping
v — a(u,v) is a bound linear functional. From Riesz Representation Theorem
[9, p. 722| we know there exists an unique element w € H such that

a(u,v) = (w,v) YveH

16



CHAPTER 2. INTRODUCTION OF RELEVANT EQUATIONS

and we write Au = w such that
a(u,v) = (Au,v) Yv e H (2.7)
First we show that A : H — H is linear. For any v € H we have
(A(Mur + Agug),v) = a(Ajug + Aug,v)  from (2.7)
= Aa(ug,v) + Aaa(ug,v) by linearity of a

= A (Auy,v) + Ag(Aug,v) by (2.7) again
= (M Auy + Ao Aug,v) by linearity of the inner product

Since this holds for all v € H, we know A is linear. Furthermore

[ Aul* = (Au, Au)
= a(u, Au) from (2.7)
< ¢||ul|||Au||  from property (i) in the theorem

and hence ||Au|| < ¢q||ul| and A is bounded. Next we observe that property
(ii) gives us
callull® < a(u, u) = (Au, u) < || Aul|]Ju]

hence co||u|| < ||Au|| which implies the two properties
A is injective
{The range of A (denoted imA) is closed in H
Using this we can prove that
imA=H

by contradiction. Since imA is closed there would exist a nonzero element
w € H with w € imA*, but since

02||w|]2 < a(w,w) = (Aw,w) =0

this is a contradiction. Lastly, from property (iii) in the theorem, [ is a
bounded linear functional and we can use Riesz Representation to find the
unique w € H such that (w,v) = l(v) Vv € H. Since A is bijective, there
exists exactly one u € H such that Au = w and this gives us

l(v) = (w,v) = (Au,v) = a(u,v) Yv € H

17



2.2. SECOND-ORDER ELLIPTIC BOUNDARY-VALUE PROBLEMS

Since H} is a Hilbert space, Lax-Milgram gives a sufficient condition for
existence and uniqueness of solutions of (2.6) given the three properties. It
turns out, however, it is not that simple. The first and third property holds
since

a(u,v) < ||Oé||Loo(Q)/ lgrad u| |grad v| dx
Q

118l / lgrad ul o] d + 7]l / ful Jo] de
9] U

< e[z (o |l grad u| 2l grad v||z2(q)
+ |8 2o o | grad ul| 2y ||| 20y + |7l @)llullz2 @) V] 22 (@)
< alull gaoylvll 50 (2.8)

and
W) = {£,0) < fllz—@lvlm@ < cllvlme (2.9)

but if we try to verify coercivity we get

9/ lgrad u|® dz < / a(z)gradu - gradudz  from ellipticity (2.4)
0 Q
< a(u,u) — / (B(x) - grad uu + v(x)uu) dx
Q

< a(u,w) + 18] o / jgrad uf [u] dz + || z=yllul 22

and from Cauchy’s inequality with € we have

1
/ lgrad ul |u] do < e/ lgrad ul” dz + —/ lul* dz
Q Q 4e Jq

and choosing € > 0 such that

0

ellBllre=(o) < 3

gives

0
2 /Q \gradu|2 < a(u,u) + Cllul| 2

and from Poincaré’s inequality we can make the semi norm on the left side
into a full norm for appropriate constants cg, c3 > 0 such that

C2||U||§15(9) < a(u,u) + cslull72(q)

which is the closest we get, but not exactly what we need to use the Lax-
Milgram theorem. Existence and uniqueness for the general second order

18



CHAPTER 2. INTRODUCTION OF RELEVANT EQUATIONS

elliptic equation can be shown using that the highest order term in a is
coercive and that the lower order terms can be interpreted as a compact
perturbation of this. Using the Fredholm theory for compact operators we
get insight into what is needed of the problem for it to have a unique solution
|9, p. 321]. The proof of this is rather long and outside the scope of this
introduction.

Helmholtz equation is not coercive and consequently is not covered by
Lax-Milgram. If we instead look at the equation where the sign of the terms
in (2.1) are opposite, we get a unique solution. This equation arises from
looking at the spatial part of the heat equation.

Corollary 2.7. The equation

—-A 2u= n €
{ u+ku=f in (2.10)

u=0 on 02

has a unique weak solution for all f € H=(Q).

Proof. The weak form of (2.10) becomes

a(u,v) = /Qgradu'gradvdx—i- /Q (k(z)*wu) dz

I(v) = /Q fodz

Since property (i) and (iii) of the Lax-Milgram theorem is always satisfied,
we only need to show property (ii), the coercivity of a.

9/ grad u|? d:z:g/gradu-gradudx
Q Q

< a(u,u) — / k(x)*uw dz
Q

and using Poincaré’s inequality we get the result. ]

2.2.3 Boundary function

When introducing weak solutions we assumed the Dirichlet boundary condi-
tion to be homogeneous (v = 0 on 9f). One of the advantages of this is that
the H' seminorm is equivalent to the full H' norm. This is especially useful

19



2.2. SECOND-ORDER ELLIPTIC BOUNDARY-VALUE PROBLEMS

when showing coercivity since ellipticity of second order equations can be
used to bound the seminorm of the function by the bilinear form applied to
the function. One way to use the same analysis as we did above on problems
with non-homogeneous Dirichlet boundary is to use boundary functions. The
weak formulation of problem (2.3) with inhomogeneous Dirichlet boundary
condition is to find u € H'(Q) such that

{a(u,v) =l(v) Yve H'(Q) (2.11)

Tu = ug

for ug € HY?(08)) where T is the trace operator [9, p. 272]. The idea of
boundary functions is to find a function u, such that

u—uy, € Hy(Q)

and then use uj; = v — up as the unknown in a problem with homogeneous
Dirichlet conditions.

When proving existence of solution of the weak formulation with ho-
mogeneous Dirichlet conditions (2.6) we did not consider the existence of
functions satisfying the boundary condition since H}(2) obviously contains
functions which satisfy Tu = 0. Now, however, we have to show that for any
ug € HY2(0N) there exists a function u € H*(Q) such that Tu = uy. To
show this we need a result from functional analysis [8, p. 130]

Proposition 2.8. Let Q be a C' class open set; then the image of the trace
map on WP(Q) satisfies

T (W' (Q)) = W=1/PP(00)

Here the notation 7'(X) means 7'(X) = im7 when 7" : X — Y. Since we
want u, € H'()) we use that

T (H'(©) = H'(00)
and we can formulate the needed result.

Corollary 2.9. For any uy € HY?(00) we can find a function w, € H' ()
such that Tu, = ug.

Proof. The result follows directly from proposition 2.8. O]

20
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We can now transform problem (2.11) to a form where we will be able to
apply the analysis from the previous sections. We find u;, such that Tu, = ug
and set uj; = u — up. The equation from (2.11) then becomes

a(uipt + s, v) = (v)
a(uipt,v) = l(v) — a(up, v)

and by defining @ : H}(Q) x H}(Q) — R as the restriction of a and

7. {Hé(ﬂ) - R
o= () — alug, v)

we have reduced the problem to finding u;,; € Hj () such that

~

i) = () VH(Q) (2.12)

which is on the form we have studied. The solution of (2.11) will then be
u = ujpt + up. Now we can state a existence and uniqueness result which do
not require coercivity on all of H'(Q).

Proposition 2.10. Let a from problem (2.11) restricted to H}(Q) be coer-
cive. Then (2.11) has a unique solution.

Proof. First we show existence. Let [ and a be the linear and bilinear form
from (2.11). We have from (2.8) and (2.9) that a and [ are bounded on
H'(£2). This implies that the mapping v — [(v) — a(u,v) is bounded for all
u € H'(Q), hence [ from (2.12) is continuous. @ is the restriction of a to
H;3 () which we assumed to be coercive, and it is obviously also continuous.
Hence, we know from theorem 2.6 that (2.12) has a unique solution for every
up € H'. Since we know from corollary 2.9 that a suitable u, can always be
found, we know we always have a solution.

To show uniqueness we assume u; and uy are two solutions of (2.11).
Then

T(uy —ug) =Tuy — Tug = ug —ug =0

hence (u; — uy) € H}(2). This means we can use coercivity of a
cllur — ual| g1 (o) < alur — ug, uy — uy)
< a(uy,us — ug) — alug, uy — us)
S l(u1 — Ug) — l(u1 — UQ)
<0

since both functions are solutions. Hence, u; = us and we have uniqueness.
O
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Chapter 3

Galerkin methods

In this chapter, we will look at Galerkin methods for second-order elliptic
boundary-value problems. First we will look at the standard conforming
Galerkin method which poses restrictions on the finite function spaces used
by the method, making the calculations easier from both an analytical and
numerical point of view. Next we will look at discontinuous Galerkin methods
which do not impose the same requirements, gaining flexibility at the cost of
complexity.

3.1 Conforming Galerkin methods

Conforming Galerkin methods are usually the easiest and most suitable meth-
ods to use on well-behaved problems. They are derived from the weak for-
mulation (2.6) of the problem by limiting the function spaces of the test and
trial functions to finite function spaces. We also require the space of trial
functions to be the same as the space of test functions. Methods using dif-
ferent spaces for test and trial functions are called Petrov-Galerkin methods
[4, p. 54], and will not be covered in this thesis.

A method is conforming if the finite function spaces used for test and
trial functions are subspaces of the definition spaces of the bilinear form a
of the weak formulation. This ensures we can insert the test and trial func-
tions directly into the weak formulation, which is required for the derivation
shown here. Non-conforming methods give more flexibility to solve difficult
problems, but require more care to ensure the discrete formulation is well
posed.
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CHAPTER 3. GALERKIN METHODS

3.1.1 Derivation

Deriving the Galerkin method is rather straightforward. Let €2 be the domain
on which the problem is defined. First, we choose a finite dimensional space
X5, C H}(Q), a basis span{¢;} = X},, and let m = dim Xj,. If we then write
the weak formulation (2.6), but instead of using u, v € Hj we use up,, v, € Xp,
we get the discrete problem of finding u, € X} such that

a(uh, ’Uh) = l(vh) Yo, € X}, (31)

Since X, C H}, we know this problem is well posed. Now, since X}, has a
finite basis, we can write
m
Up = Z bic;
i=1

and make m equations, one for each v, = ¢;

G(Z pici, b;) = Ud;) Vi€ [1,m]

and since a is linear this can be written
m

> albi, dj)e = 1Ue;) Vi€ [l,m]

i=1

which is a set of linear equations. Written in matrix form for this becomes

a(¢r, 1)  aldz, ¢1) -+ algm,d1) | | [(¢1)
a(pr,d2) alp2,02) - alPm,P2) | | C2 [(p2)

a(¢1; ¢m) a(¢2; ¢m> o a(¢m.a ¢m) C;n l(¢m>

which can be solved by numerical methods from linear algebra.

Deriving the method can be done with very little restriction on X}, or the
basis used, but while deriving the method is simple, proving it will result in
a good approximation to the problem requires us to be more specific about
the properties of X;. This is what the elements in the finite element method
provide.

3.1.2 Finite element methods

The choice of finite element space X, greatly affects the properties of the
method. While doing analysis separately for each X, is possible, it may not

23



3.1. CONFORMING GALERKIN METHODS

be very effective. There are some assumptions we can do which makes it
possible to generalize some of the analysis to a wide class of methods, only
leaving out the parts unique to each method. To analyze a finite element
method we first need to define the elements.

Finite element

In the most general sense, an element can be defined as a triple (7', X1, X7)

[4, p. 70].

Definition 3.1. A finite element is a triple (T, X7, ¥r) where T' is a closed
domain, X7 C C(T) is a space of continuous functions with dim X7 = mr,
and Y7 = {0} }ic[1,my) Is an indexed family of linear functionals on Xr called
the local degrees of freedom on the element. We also require the mapping

.{XT—HRT”T

v > [07(0)]ie1ma)
to be bijective.

We will often use the abbreviation dof for degrees of freedom.
A finite element method then consists of defining n elements
{(T}, X1, X7,) }rep,n) in such a way that

O Q=U_T
(ii) dim (7, NT,) <dimQ Vr,se[l,n],r#s
(i) X, ={ueC(Q) :re(l,n], up € X}

where © denotes the closure of €.

We name the set 7 = {7 },cpn the mesh of the finite element method.
Note that we require functions in X}, to be continuous. Since this restricts
how we can combine functions from different elements it will impact how we
construct the global degrees of freedom. This is where continuous Galerkin
diverges from discontinuous Galerkin, which will be discussed in further detail
later in this chapter.

Requirement (i) may be hard to accommodate. For example, if € is a cir-
cle and T is a set of triangles, it will be impossible to satisfy this requirement
with a finite number of elements. While this may introduce an additional
approximation error, it is usually ignored by assuming €2 can be written as
the union of the element domains.
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CHAPTER 3. GALERKIN METHODS

The finite element method also needs an indexed family of global degrees
of freedom. We call this set X, = {o"}ic1,m and define the mapping

X, > R™
Dhi{ 4

v —= [Oi(v)]ie[l,m]

which we require to be bijective. The most natural way of defining >, would
be to include all the local degrees of freedom

o €Y, < o(v) =or(v|r) where o € X for some T € T

which would imply m = ), mp, but then in general, the resulting Dy,
would not be surjective. To show this we first introduce the set

F:U@T

TeT

and introduce the function v : Q \ I' — R on the form

vo(z) x€Ty\ Iy

o(z) = ’Ul(l’) reTy\ ol

vp(z) xeT,\ 0T,

where v; € X, i € [1,n]. Since Dy, is bijective, we can uniquely identify
v; by d; = Dr,v;, so given the values of d; for all i € [1,n] we can uniquely
identify v. Next we let e = T, N T for r,s € [1,n] such that e # (), and let
xo € e. Since we choose the values of d, and d, independently, we can make
a case where

lim v(z) = v,.(x) # vs(xo) = lim v(z)

Tr—TQ T—xQ
z€Tr z€Ty

hence, there are no v. € C(2) such that
Veloyr = v

and since X, C C(Q), there are no u € X, for which Dju will result in this
set of dof values, and D}, is not surjective. There are two ways to solve this,
one is to extend X}, the other is to restrict the dofs so that imD; = R™ for
some m < ) p.rmyp. Discontinuous Galerkin, which is discussed later in
this chapter, takes the first approach. For now, we will keep X}, the same
and take the second approach.
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3.1.3 Degrees of freedom

We want to define an indexed family of global degrees of freedom 3, which

makes Dj, surjective trough reducing the set of all the local degrees of freedom

to a smaller set which can only represent continuous functions. To do this we

will pose some requirements on how dofs act on the boundaries of elements.
Let T,,T, € T be element domains such that for e =T, N T§,

dim (e) = dimQ — 1

We call any such e an interior edge. Let v, € Xp, vs € X, and let v :
X1, UXr, \ e = R be defined as

o(x) = {UT(ZE) re Xy \e

vs(x) zeXp \e
We will also need the space
XTn@ = {’U|e HONS XTT}

Since X7, C C(Ty) for all T, € T, we know that v is continuous everywhere
except on e, and it will be possible to find a function v. € C(T, U T;) such
that ve|r,ur\e = v if and only if

ve(z0) = vs(xg) Vg €e (3.2)

To ensure this trough our degrees of freedom we must have a set Jr, . of
indices and a set of functionals ajThe : X7, — R such that

0-%17» (,UT) = O-%‘“T,e(vrlt?) V] € ‘]Tr,e (33)

where the values of [o7, e(Ur|e)L-e ;. uniquely identify v;|.. We must also
T Ty e

assume there exists a similar Jg, . and a similar set of o7, , for Ty and a
bijection E : Jg, . — Jr, . such that

o (0l = oh D (v,]e) Vi€ e (3.4)

if and only if (3.2). Hence, enforcing (3.3) and (3.4) will ensure we can only
represent continuous functions.

We may then define the indexed family of m linearly independent global
degrees of freedom

Xp = {O-i}ie[l,m]
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where
o' e{o(): X, >R :a(v)=0} (v|r,) ¥V j€[l,mg],r € [1,n]}

Finding a linearly independent subset might not be trivial in general, but
using the assumptions we made on the degrees of freedom, we have a natural
solution to this. Since we required the local dofs to be linearly independent
on the element domain, two linearly dependent dofs must be from different
elements. Since a local dof only depend on the function inside its own domain,
this may only happen where two domains intersect, which is on the interior
edges. From the assumptions above we have that if e is an interior edge and
J € Jr, e then

0i(v) = o7, (vlr,) = 07, (v]) = o7 (v]e) = o7 (vlr,) = ow(v)  (3.5)

Hence, provided the mapping E, we have a trivial way to collapse local dofs
into a linearly independent set of global dofs.

While a local dof can be indexed by the tuple (r,j) where r is the index
of the element and j is the index of the local dof, a global dof is indexed with
a single integer i. We refer to the map (r, j) — i as the dof map. Note that
the dof map is surjective but will not be injective in general because of the
way we collapse local dofs into global ones. This is not a problem though,
since all local dofs mapping to the same global dof will yield the same linear
mapping.

The introduction of elements does not restrict the choices of X; or the
basis u; = Z:’;l ¢ic; we used when deriving the Galerkin method. Given
any X;, C H}(Q)) we may assume a single element (n = 1), set T} = ,
X1, = X, and the degrees of freedom of, = ¢;. Obviously, this does not give
us any more insight. The problem of defining X, directly is that it is tightly
coupled with the domain €2 and there is no general discretization parameter.
By instead defining an element (7', X,Y), we can apply it to any domain
by splitting it into elements. We will also have flexibility in the size of the
elements we use, and by requiring

dlamT <h VT €T (3.6)

where diam 7" is the diameter of T', we have a general discretization parameter
h, the goal being
lim [ju — [ 10) = 0

where u is a solution of (2.6) and wy, a solution of (3.1). Whether this is true
will be discussed in section 3.1.4. Whenever we write 7, we assume (3.6)
holds for each T' € 7},
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Assumption (3.4) gives us one more useful property. While we require
function values to be uniquely defined by the dofs values on edges, nothing
prevents us from making other quantities uniquely defined as well. We may
for instance make the first derivatives uniquely defined which allows us to
ensure X;, € C'(Q).

To use the Galerkin method from the previous section we need two things;
a space X, € Hj(Q) with a basis {¢; }iep1,m). First, the X}, derived here will
be in H'(Q), but in general not in Hy(2). This is solved in different ways
in different implementations and it will not be covered in this section. Two
ways of solving this are presented in section 4.2.4. We can use any basis for
Xp, but if we have defined the method through elements the most natural
basis to use is {¢;}icpi,m) such that

v@) = 3 ei@)o'(v)

Nodal elements

We will now look at some common elements. One simple choice of dof is
taking a point value of the function

Definition 3.2. If . .
or(v) =v(ry) i€ [l,mr]

for some x%. € T, we say ok is a nodal dof in the node z%. Elements which
only contain nodal dofs are called nodal elements.

For nodal elements we find a basis satisfying
() = 0y Vi, j € [1,my]

where 9;; is the Kronecker delta, defined

by = {1 =

0 i#7
This will ensure v = >_1" | ¢;0"(v) Vv € X},. For this finite element space to
be continuous, we need conditions (3.3) and (3.4) to hold. Let e = T,NT} # 0.
The first condition holds if basis functions corresponding to dofs outside the
edge has a zero value on e, or more formally ¢/, () =0 Va € e when 2%, ¢ e.

This will ensure that the function values on e only depends on the dofs on e.
The second condition holds if

XTT,e = XTS,e (37)
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SN

a) P element b) P, element c) P3 element

Figure 3.1: Examples of P, elements in 2D. A dot represents a point z..

L Loiinon

a) Q1 element b) Q2 element ¢) Q3 element

Figure 3.2: Examples of Qj, elements in 2D. A dot represents a point z%.

and there for every point xﬁ;pr € e exists a point x]T € e such that
Th = Ié«s (3.8)

Lagrange elements

One very popular family of elements is the Lagrange elements. These are
nodal elements where the nodes z%. are arranged in a particular fashion (see
figure 3.1) and the function space is the space of polynomials of degree < k
denoted X1 = P,. We then want a basis for P, satisfying

¢p(ah) =6 Vi, j € [1,mr]

which is exactly the Lagrange polynomials |7, p. 354]

;
= xh -
0<j<p =T T
J#i

When the domains are simplexes, these elements are called Py elements where
the k is the degree of the polynomial, and similarly when elements are Carte-
sian products of 1D P, elements we call them (), elements. For instance, a
2D Q. element is Q) = P, ® Py, see figure 3.2.

When connecting multiple elements, we need to ensure the continuity
conditions still hold. If we for instance look at ()1 elements, we cannot allow
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a corner of one element to intersect the interior of an edge of another element
(see figure 3.3a) as this would break condition (3.8). Even in the case where
the connecting element have a node in the intersection and (3.8) is satisfied,
we still need (3.7), which would not be the case with Q) and Q1 elements
(see figure 3.3b).

® ® o ® @ o ®
@1 el
@ o—o [ [ *o—o
f Q2
@ o)

o L L o @ L L
(a) The value at f will be a dof (b) Here there are no hanging
for the two small elements, but nodes, but edge e has different
not the larger. Such a node is function spaces on each side.

called a hanging node.

Figure 3.3: Examples of two invalid compositions of (), elements

3.1.4 Error estimate

As most other numerical methods, this method finds an approximate solution
to our problem. If u is the exact solution to the continuous problem (2.6)
and wuy, is the solution of (3.1), then we want a bound on the error ||u, — ul|
in some norm || - ||. Since both wy;, and u are in Hj (), it is natural to look at
the error in H'-norm. It also turns out that because a(u,v) satisfies theorem
2.6 using the H'-norm, this is also the easiest to derive.

Making a H'! error estimate consists of two steps, the first one being Céa’s
lemma [4, p. 55]

Lemma 3.3 (Céa’s lemma). Assume the bilinear form a satisfies the condi-
tions of theorem 2.6 with H™-norm and assume v € HJ'(2) solves (2.6) and
up € Xy, C HY(SY) solves (3.1). Then

o= unllmiey < € inf = vlmiey

Proof. Since uy,, u are solutions, we have

a(u,w) =l(w) Yw e H'()
a(up, w) =l(w) Yw € X,

30



CHAPTER 3. GALERKIN METHODS

and since X, C H{'(§2), we can subtract them and get
a(u —up,w) =0 Yw € X, (3.9)

Now, introduce a v € X}, and set w = v — u;, and using property (i) and (ii)
from theorem 2.6 we get

collu — uh||§{m(9) < a(u — up,u — up) from property (ii)
<a(u—up,u—2v)+alu—upv—uy)  from linearity
collu — uh||§{m(9) < cillu — up|lgm@)l|lu — vl Em @) from (3.9) and property (i)

Dividing by |lu — up|| gm (@) gives
&1
lu = unl[gm@) < —llu—vl[gm@)
Co

and since this holds for all v € X,, it will also hold for the infimum. ]

Remark. Property (3.9) is called Galerkin orthogonality. The reason for this
is that if we look at a as an inner product on H™(f2), the property states
that v —wuy, or the error of the approximation, is orthogonal to every element
in X}, with respect to that inner product.

Remark. In Céa’s lemma we assumed that a is coercive. As noted before,
this is not true for many important cases. There are generalizations to Céa’s
lemma where we replace the assumption of coercivity with the assumption
that a satisfies a discrete inf-sup condition. These generalizations does also
provide results for non-conforming methods.

Best approximation error

The quantity inf,cx, || — v||gm(q) is called the best approximation error
since it is the error of the best possible approximation of u in X,. To get a
more useful error bound, we need a bound for the best approximation error.
Proving regularity and bounds for the best approximation error will require
introducing several new concepts which are outside the scope of this thesis.
Hence, the following results will be provided with only proof sketches.

To state a meaningful result we need one definition [4, p. 61]

Definition 3.4 (Shape regularity). Let 7 be a mesh and let hy = § diam T
for each T' € T. The mesh is called shape reqular if there exists a number x
such that every T' € T contains a circle with radius pr where

pr = —
K
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Since the best approximation error is a lower bound of the error of any
approximation, it suffices to show that there exists one approximation for
which we can control the error.

Lemma 3.5. (Bramble-Hilbert lemma) Let t > 2, and suppose Ty, is a shape-
regqular triangulation of Q2 € RY. Then there exists a constant ¢ = (), k, t)
such that

lu — Iyullgm@) < ch™* ulpreeqy  Vu € H'(Q), 0<m<t (3.10)

where I, denotes interpolation by a piecewise polynomial of degree t — 1.

Proof sketch. As noted above, the result will not be proved, but a sketch of
how the result can be proved is provided here.

Now let T' € T;, and let T be a scaled version of T such that diam 7 = 1.
The first step is to create a bound on the form

lu— Tull oy < clulezy Yo e H(T) (3.11)

where [ is a polynomial interpolation operator on T € RY. This result is
provided trough Deny-Lions lemma [5, p. 120]. This result requires u €
H?(Q) which is why we need ¢ > 2 in the lemma. We write hy = diam T
and let S be the isomorphism

T—>T
S
T hrx
If « is a multi-index, let 9%v denote the weak derivative of v with respect to

the indices in a. We know that the chain rule applies to weak derivatives,
hence 0%(vo S) = h'ﬁ |90, Using this we can scale the semi-norm

|UOS|iI,§(f) = Z /f(aaUOS)de

|a|=t

-y / B2 (070)2hat d(S)

|a|=t
= h¥_d‘v‘Ht(T) (3.12)

where we have used dz = h;?d(Sxz). Using this we can do something similar
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to the full norm, only scaling the other way around

2
H’UH%{m(T) = Z |U’HZ(T)
=0
— Z/ hﬂ;QH—d |'U (e} Sﬁ-]l(j"\)
1=0 /T
S h;zm—"—dHU o SHHt(T) (313)

where we have assumed hy < 1 so hy?™ < h?™* when | < m. Combining
this scaling with (3.11), we arrive at the following

lu — Tul| gmry < h;erd/QHu oS —TIuo SHHm(f) from (3.13)
§h;m+d/2||uoS—[uoS||Ht<f) since m < t
< ™ o S|Ht(f) from (3.11)
< ™ [l gy from (3.12)

since this holds for every 7" and the mesh is shape regular with maxyez, hy <
h, we can sum the error without loosing any exponent of h, and the result
follows. u

Combining these to lemmas we can state a proper error bound

Theorem 3.6. Assume the bilinear form a satisfies the conditions of theorem
2.6 with H™-norm and assume u € HE(Q) solves (2.6) and uy, € X;, C HE(Q)
solves (3.1) for some t > max{2,m}. Then

|w = wp || grm ey < ch™ Ul g (o)

Proof. Combining lemma 3.3 with 3.5 gives the result. ]

Regularity

Note that for the convergence theorem to be applicable we need at least
u € HZ(2). Since a solution of (2.6) may only be in H}(Q), we need some
way of predicting when the solution will be more regular.

Theorem 3.7. Let k be a nonnegative integer and o, 3,7 be the coefficients
from (2.5) and assume

a e [ @) 8 e [cm (@) v € C™TY(Q)
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and
fe H™(Q)
Suppose that u € H}(Q) is a weak solution of (2.6) and finally assume
o0 is of class C™+?

Then
u€ H™2(Q)

Motivation. This is proved in [9, p. 340], but the proof is too long to include
here. Instead, we will look at a brief motivation for why one can expect such
a result to exist. Let us look at the Poisson problem

—Au=f in)
u=>0 on 0f

and assume u € C§°(€2). We then square the equation and integrate over €2

/Q fide = /Q (Au)?de = Ed: /Q (0'0u) (& u) dw

3,j=1

d
= — Z /(8i8i8ju)8ju dz
Q

,j=1

-y /Q (0P u) (@) da

,j=1

= Z /Q(ﬁo‘u)2 dz

|a|=2

hence
|U|H2(Q) = I fllr2)

or, using Poincaré’s inequality

[ullz2@) < Cllfllz2@
for some C' € R. Similarly, looking instead at

—Au=f
where @ = 0%u, f = 8 f, we conclude that we can find a C' € R such that

ull 2y < C| fllam e
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3.2 Discontinuous Galerkin method

The discontinuous Galerkin method may seem quite similar to the continuous
variant, formally the only difference being lifting one assumption on how to
assemble the elements. This does, however, change many aspects of both
implementation and analysis of the methods. It even requires us to derive
a different weak formulation of the discrete problem since the normal weak
formulation does not support the double-valued functions that will arise.

3.2.1 Finite element space

In section 3.1.2 we defined a finite element method to consist of n elements
such that

1 Q=U"_T
i dim (7, NT,) <dimQ Vr,se[l,n],r#s
i X, ={ueCQ):relln]|, up € X}

The discontinuous Galerkin method only changes property (iii) to remove
the requirement that X} is continuous, and instead looking at elements in
the function space X} as multiple separate functions

Xp = H X7,
r=1

This means we do not need the restriction on the dofs as introduced in
3.1.3, and it makes the dof map bijective using all the local dofs as global
ones. While giving us more flexibility, it also has some drawbacks. First,
not collapsing dofs means we will have more global dofs which results in
a bigger linear system. Secondly, we need to derive the weak formulation
differently since X;, ¢ H'(Q) but a only takes values on H'(Q). Because of
this, discontinuous Galerkin is an example of a non-conforming method.

3.2.2 Flux formulation

There are two weak forms that appear in the study of discontinuous Galerkin
method, the flux formulation and the primal formulation. We will derive the
flux formulation and then discuss what is needed to transform it to a primal
formulation. The primal formulation often has most terms in common with
the continuous weak form, only adding some integrals over the interior edges.
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The flux formulation, however, will look quite different since it is a mixed
formulation between the original unknown » and an auxiliary variable.

Let us look at how the Helmholtz equation looks in discontinuous Ga-
lerkin. We consider the Helmholtz equation with homogeneous Dirichlet
boundary conditions

{—Au —Ku=f inQ (3.14)

u=20 on 0f)

where ) and all the finite element domains 7, are Lipschitz domains in R?.
We also assume f € L?(£2). Since the functions to be used as test and trial
functions are not smooth enough, we cannot do integration by parts over
Q). Instead, we have to look at the equation on a single element. Since the
functions are continuous on each domain 7}, we can use techniques similar to
those used to derive the weak formulation for continuous functions, but first
we split this second order equation into a set of two first order equations by
introducing the auxiliary variable p € Vi, C [L2(T})]*

~gradu
ik

u

Now that we have two variables, we also need two function spaces for the
element. We do this by replacing X+ with Ur and V. This gives us the local
problem of finding v € U, and g € V. such that

{z’ku = gradu in T, (3.15)

ik‘u—divu:if in T,

Analog to what was done in section 2.2.1, we multiply by test functions
v € Ur, and 7 € V. and assume the function spaces Ur,, V. are continuous
enough to do the integration by parts. This gives us the weak formulation
on the element 7,

/iku-FdV—i—/ udiVde—/ uT -neds =0 (3.16)
) A aT,

- 1
/ik:u@d:p—k/ p,-gradvdw—/ u-n@ds:_—/fﬂdm (3.17)
S \ o, ik Jo

where np, is the outward pointing normal vector of 07, and v denotes the
complex conjugate of v. We may then drop the assumptions that Ur., Vp
are continuous and instead assume Uy, C H2(T,) and Vi, C [HY(T,)]".
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To reason further we define the global function spaces
U—HUTT v=]] v =[] r*(or)
re(l,n] re(l,n] re(l,n]

We also need some notation. Let e = T, NT, for 1 < r;s < n,r # s
and e # (), then we can define most common operations on T'(T") as linear
operators. First, we can define the average operators

o {T(F) — L(T)
. [qi]ie[l n ZeEF % (¢"+¢°)
o {[T( N = LA
[qz]ze in 7 2cer 5@ +q°)

and the jump operators

- {T<F) = (L))"

[qi]ie[l n Y eer (@1, +¢*nr,)

- {[ D))" — LA(D)
[ ]ze[ln] HZeeF(‘fn'nTr"'_qs'nTs)

where np,. is the outward pointing normal from 7, on e.
We can also define a trace operator

U —-T()
b {[Ui]ie[l,n] = [T@i)]ig[l’n]

where T : HY(T) — L?*(9T) denotes the standard H' trace. Similarly, we
can define a trace operator on V, T : V — [T(I')]*. Using these traces we
define [v] = [T'(v)] and {v} = {T(v)} for v € U and v € V.

Intuitively, the jumps should be something like [¢] = ¢" — ¢*, but this
form would change sign depending on the order of T, and T§. Instead, since
nr, = —nr,, we have [¢] = (¢" — ¢*)nr,. This way they are completely
symmetric in the order of T, and 7.

Now we have all we need to assemble a global weak formulation of our
discontinuous problem. We do, however, want one more change first. Since
the discontinuities are a crucial part of how this method behaves, we want
more flexibility in how they are handled. We do this by introducing the flux

functions|6]

u: (U,V)

=
S
=

37



3.2. DISCONTINUOUS GALERKIN METHOD

and replace v and g in the boundary terms of (3.16) and (3.17) with a(u, p)
and f1(u, p) to get the local flux formulation

/iku~?dx+/ udivrdx—/ T -mds =0 (3.18)
. . or,

-~ 1
/iku@dx—i—/ p,-gradvd:v—/ ﬂ-n@ds:_—/ fodz  (3.19)
v . T: ik Jr,

where u,v € Up, and p, 7 € V.

Using the notation we introduced, we may also construct the global flux
formulation by assuming u,v € U, u, 7 € V and summing these integrals for
each element domain 7,. For [¢'] =¢ € U and [q"] =qecV, we
have the identity

> [ oannde= [ Wl-{ayas+ [ {0} (3.20)

re(l,n] oTr

re(l,n] — re[l,n] —

where we have assumed
SRR
re[ln) Y OT-N00

which is true if ¢ or q satisfies homogeneous Dirichlet boundary conditions.
To simplify notation we will also use the notation

/(bdx— > qudx (3.21)
re(l,n]

for [gb’"]re[M] = ¢ € U. Using this we can obtain the global flux formulation
of the problem

/szufdm/udwfdx—/ro ATHs - | {ajlTlds =0 (322)

/Qz'kuﬁdzlt—l—/u, gradvdx—/ro {v}ds—/ {p}-[ :—/fvdx

(3.23)
for u,v € U and p, 7 € V.

3.2.3 Flux functions

The choice of flux functions greatly affects stability and accuracy of the
method and also the runtime of the linear solver through sparsity and con-
dition number of the resulting linear system [2, p. 1750|. We will not go
in detail on different choices of flux functions, but there are some important
properties that characterize them.
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Definition 3.8 (Locality). Let e = T, N Ty for some 1 < r;s < n,r # s,
ve U, v eV and assume e # (). If the fluxes on e only depend on the traces
of its argument restricted to e

(v, v)|e = te (T(V")]e; T(v%)]e
ﬂ(v, V)‘e = Ijl’e (T(vr”e’ T(US)|

uﬂi
tﬁfj
=T
N N
S
=

we say the fluxes are local.

Local fluxes give a computational advantage in that we may only provide
the function values on the edge in question to compute integrals over the
flux.

Definition 3.9 (Consistency). Let v = [v"],cp,n) € U such that
30 € C*(Q) : 0|, =" Vr € [1,n]
The fluxes are consistent if
u(v, gradv) = v|p
(v, gradv) = (grad v)|r
Consistency ensures that if we assume smooth enough functions, the dis-

continuous Galerkin method will be equivalent to the corresponding contin-
uous Galerkin method.

Definition 3.10 (Conservation). If the p flux is single valued, we say the
fluxes are conservative. If the u flux is also single valued, then the fluxes are
completely conservative.

If we let u represent some physical quantity in our domain and the flux u
represent some physical flux of this quantity through the boundaries of the
element domains, then completely conservative fluxes will ensure that the
flux out of one element is exactly the same as the flux into the other element,
and the quantity will in some sense be preserved.

The most common fluxes can be written as only functions of the jump
and average operators.

i(v,v) = a({v}, o] {v}, [v])

pv,v) = p({v, [o], {v}, [V])
We observe from the definition of the operators that the fluxes will be local.
Also, since the operators are single valued, the fluxes will be completely

conservative. Finally, making them consistent is usually trivial since for
v € C'*° we have

[v] =0 {v}=w
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3.2. DISCONTINUOUS GALERKIN METHOD

3.2.4 Primal formulation

While the flux formulation provides a lot of flexibility and insight, it takes us
quite far from the continuous formulation. Using a mixed formulation may
complicate further analysis by having more complicated inf-sup conditions,
and it may also make numerical implementations less efficient since we have
to solve for p, which we are not really interested in. Deriving the primal
formulation consists of eliminating the auxiliary variable p [2, p. 1757].

We start by looking at the second term of (3.18). Trough integration by
parts we get

—/ udiVde:/ gradu-?da:—/ uT - np ds
. " T,

Summing over all the element domains and using (3.20) with ¢ = u, ¢ = 7
we get

_/Qumdx:/ﬂgradu~?dx—/ro{7}'[[U]]dS—/FO[[T]]{U}dS

which can be inserted into (3.22)

/Qz'k;;u,-Fdx = Agradu~7dx+éoﬂﬁ—uﬂ~{7} ds—i—/ro{ﬂ—u}[[T]] ds (3.24)

which then holds for all 7 € V. Since gradv € V Vv € U, we can set
7 = grad v which makes the left hand side of (3.24) match the second term
of (3.23). Inserting it gives us the primal formulation

/Qgradu -gradvdz — /Q k2uv dz + /FO ([[ﬂ — ] - {gradv} — {1} - [[6]]) ds
+ [ (= ferade] ~ [al (o) ds = [ foda
(3.25)

This expression is still not completely independent of p since both the flux
functions @ and fi may depend on it. If we still want to allow the fluxes to
depend on p, we can use (3.24) as a way of computing p from u, but it is
also possible to instead require

= t(u, grad u)
o = fu(u, grad )

which completely removes g from the formulation.
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We can now see the relation between the weak formulation for the con-
tinuous problem and the primal formulation. Let a and [ be the bilinear and
linear form of the standard weak formulation of (3.14)

a(u,v) = /Qgradu~gradvdx - /Qk2uﬂda:

l@:Lﬁm

We can then make a, : U x U — R and [, : U x U — R where

a.(u,v) = /Qgradu-gradvdx—/ﬂk%ﬂdx

L(v) = /Q foda

which is exactly the same expressions, only here we use the notation trick
(3.21) to allow functions from U to be integrated.
The primal formulation can then be written

ac(u,v) + aq(u,v) = U(v)

where
catu,0) = [ (i— ] fgrado} — i} - ) ds
+ /1“0 ({ﬁ —u}[grad v] — [[ﬂ]]{@}) ds

Let u = [u"],¢;,) € U and v = [v"]
4,0 € H} such that

refin] € U, and assume there exists

|y, =u" Ve[l n]
Olp, =u" Vrell,n]

then
a.(u,v) = / gradu - gradvdz — / k*uv dx
Q Q

= Z </ gradu” - grad v” dx—/ Ic?u”de)

TE[l,n}
= Z </ grad{L.de_/ kaLTng;>
re[l,n] T T,
:/gradﬂ'mdx—/k%rﬁdx
@ Q
= a(a, D)
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3.2. DISCONTINUOUS GALERKIN METHOD

and similarly for [ and [.. Also, since the trace on any interior edge would
have to be the same from any side, all the jump operators in ay; will be
zero, which means a4(u,v) = 0. Hence, if we restrict U to only contain
sets of functions which can be assembled to H{ functions, then the primal
formulation and the continuous weak formulation are equivalent.
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Chapter 4

Plane Wave Semi-Continuous
Galerkin method

In this chapter we will define the Plane Wave Semi-Continuous Galerkin
method, or the PWSCG-method for short. This is a finite element method
which incorporates some of the structure of the expected solutions into the
discrete spaces used in the elements. This is done by assuming the solution
will behave like a plane wave locally and hence may be approximated by
plane waves on each element.

One way of using plane waves to approximate solutions to Helmholtz
equation locally was explored in [11] and [12] where they used the space of
a finite number of plane waves in different directions as discrete function
space on each element. One thing to consider with this method is that the
number of dofs may be high since we need a lot of different wave directions
on each element, while the number of elements must also be high since we
only assume the solution behaves like a plane waves locally.

A different approach is assuming the wave direction is known for each
element. This can be done either by deriving k from the problem being solved
or it may be determined adaptively by solving the equation with simpler
spaces first and then extracting the oscillatory behaviour at different points.

The PWSCG-method assumes k, or at least an approximation of k is
known. Using this we may rewrite Helmholtz equation resulting in an equa-
tion for which the space of solutions has a natural finite dimensional subspace.
Using this space we then derive a nodal semi-continuous finite element basis
which we use with the Galerkin method to find a solution.
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4.1. THE PWSCG FINITE ELEMENT SPACE

4.1 The PWSCG finite element space

To derive the PWSCG element we first need to define the function space we
will use locally, and then find a useful basis of that space.

4.1.1 Plane wave function spaces

We want to construct a function space which contains functions with some of
the structure we expect from solutions of the Helmholtz equation. To achieve
this we will look at the homogeneous Helmholtz equation

Au+ k*u=0 (4.1)

where k € R? as in section 2.1.2. In [11, p. 303| the space PW,(R?) is
defined, and the definition expanded to R? will be as follows

Definition 4.1 (Plane wave space).
PWi(R?) = {ue C*(R?) : Au+k’u=0in R’}
where k € R? is constant.

While k is a vector and w is a scalar, the spaces are equivalent as long as
k| = w.

We will define another space PW," (R%) which preserves some of the struc-
ture of PWp(R?) while having a finite dimensional subspace of dimension 24
which turns out to be useful when using it as a finite element space. To
derive the space we start by assuming the solution will be on the form

u = ek (4.2)

We know from section 2.1.2 that (4.2) is a solution to (4.1) with constant
k, and we assume it will be a good approximation locally to a solution of
Helmholtz equation with non-constant k in an area where k does not change
rapidly.

Assuming constant k and using the identity

ik-x

grad e’*® = ke’ ® = gradu = iku

we have

ik - gradu = —k - ku = — [k|*u

and hence we may rewrite (4.1) to

Au — ik - gradu =0 (4.3)
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—ik-x

Then, multiplying the equation by e gives
e *® div grad u + grad (e‘“‘“'“’) -gradu =0

which is equivalent to
div (e "** gradu) = 0 (4.4)

from the identity [14, p. 78]
div (ab) = adivb+grada - b
with @ = e7*® and b = grad u. We the define the space
Definition 4.2 (The PW, (R?) space).
PW(R?Y) = {ue C*(R?) : div (e ** gradu) = 0}

The + in the space name means we chose positive exponent in (4.2). A
similar space PW,, (R?) may be constructed by using —ik - & as exponent in
(4.2).

Functions in PW,/(R?)

Equations (4.3) and (4.4) are equivalent, but in the transition from (4.1) to
(4.3) we have introduced some new solutions and lost others. First, we show
that v = e™*® is a solution of (4.4)

div (e_ik'm grad eik'w) = div (ike‘ik'meik'm)

= div (ik)
=0
hence v € PW,5(R%) N PW(RY).
Now we look at the solutions we have gained. Let k = [ky,...,kq] and

x = [x1,...24), then
v=e%%  jell,d

is a solution of (4.4) since

div (e_“”’ grad eikﬂj) = div (ikjeje_ik'meikjmj)

o —i3re[1,d) Frer
= — (’lkle r#j >
Oz

=0
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but if we insert it into (4.1) we get
Aeikj:rj + k26ikaj — _k?elk]$] _|_ eriijj

which is only zero if k = k;e;. Hence, as long as k # kj;e; we have that
v € PWF(R?Y)\ PWg(RY). Another function in PW,! (RY) \ PW(R?) is the

constant function v = 1 since
div (e‘““’m grad 1) =0
Al +E* x1=EKk>#0
More generally we state

Lemma 4.3. If v is on the form

where
Y= [alkly s ,Oédkd], a; € {07 1}

and k = [k;] then v € PW,(RY).

jelldP

Proof. We just insert v into (4.4) and get

d
div (e T grad e ®) = — (i e *meiaskizs
a 7
€T .
Jj=1 J

d =i o e
— E a‘]i (ije T‘;ﬁj el(aj_l)k]'r]')
: ox

Choose j € [1,d]. If a; = 0 the term has a zero factor, and if a;; = 1 then

Gi(aj_l)kaj _ 60 -1

and the expression is constant with respect to z;, so the derivative will be
Z€T0. 0

In addition to linear combinations, we have another useful way to create
more solutions from existing solutions of 4.4

Lemma 4.4. Let u,v € PW, (R?) where u depend only on [z]jcy and v
depend only on [z;]jey. IfUNV =10, then uwv € PW;5(R?).
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Proof. We insert uv into (4.4) and get
div (e7"** grad(uv)) = div (e *® (ugrad v + v grad u))

If we look at the term (u grad v) we observe that grad v will be zero in all the
components representing variables where u is non-constant. Hence, u can be
regarded as a constant with respect to the divergence

div (e_ik'mu grad v) = udiv (e_“”” grad v) =0
since v is a solution. The same argument can be done for u and the result

follows. O]

We have also lost solutions since we assumed u = e**® while u = e~ %

is also a solution of (4.1). Inserting v = e~**® into (4.4) gives
div (6_““'ac grad e_ik'm) = div (ik:e_ik'me_ik'm)
= div (ike‘zik'a’)
#0
hence v € PWy(R?) \ PW,5(R?).

Linear functions Linear functions are generally not a part of PW," (R?)
since

div (e ** grad(a - x)) = div (ae"**)) £ 0

There are, however, special cases where linear functions do become a part of
the space. If we assume k; = 0 for some i € [1,d] we have that

. —ik-x a —ik-x
div (e ** grad z;)) = . (=)

7

and since k; = 0, we have that k- is constant with respect to z;, this means
the derivate is zero. Hence, if there is an axis along which the plane wave
would always be constant, we instead get a linear function in this direction.

4.1.2 Finite plane wave space

We will now construct the finite subspace PW Z(T) C PWH(T) which we
will use in the finite element method. To define the space, we will assume

T is a d-parallelotope, and we want any function in PW Z(T ) to be uniquely
defined by the values in the vertices of T

We start by introducing the desired basis, and then we will show that
the function space spanned by this basis has the desired properties. Since we
know a d-parallelotope has 2¢ vertices, we know we need 2¢ basis functions.

47



4.1. THE PWSCG FINITE ELEMENT SPACE

Basis for W/Z(T)

To simplify notation, we will in this section assume the parallelotope is rect-
angular and aligned with the axes of R%. To extend this to any d-parallelotope
one just have to do a coordinate transformation using the vectors spanning
the parallelotope, taking care not to change the global direction of k.

From lemma 4.3 we have 2¢ functions which are in PW,"(R?). The prob-
lem with these are that if k; = 0 for some ¢ € [1,d], then all these functions
will not be linearly independent. We do, however, have a solution to this.
If £, = 0 then, we know that a linear function in x; will be included in
PWF(R?). By combining these two properties we can define

{ eikrm” kr 7& 0

by = Vr e [1,d] (4.5)

T, k,=0

where k = [k,]rcpq and & = [2,]rcp.q-
Now, using lemma 4.4 we know that products of ¢, are in PW,! (R?) and
we can define the basis functions

Y€ {H(@)% : a, € {0, 1}} (4.6)

and since there are 2¢ unique ways to choose the values of {ow}rep,a, we have
2¢ basis functions, which is what we need.

Definition 4.5. Let T be a rectangular d-parallelotope aligned with the axes
of R%. Then PW, (T) is

—
PWk: (T) = Span {ws}se[l,Qd}
where ¢, are defined in (4.5),

s € {H(@)“T Loy € {0,1}}

and all 4, are distinct. We call a function in PW Z(T ) a finite plane wave.

An example is the basis for PW Z(T) when T is a cube in 3D and all
components of k are non-zero. It will consist of the following functions

7701 -1 ¢2 — eik1x1

¢3 — 6ik2x2 ¢4 — eikgxg

?/J5 — ei(k1x1+k212) % — ei(k1m1+k3x3)

2/}7 — ei(k2$2+k313) ¢8 — ei(klx1+k2$2+k3$3)
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Properties of f/’ﬁ/Z(T)

— +
A property we want from PW (T) is that the restriction of a function on T’
to one of the faces F' of T should be in the finite plane wave space on F.

Lemma 4.6. Let T be a rectangular d-parallelotope aligned with the axes of
Re. Let F be a face of T, and assume u € PWZ(T). Then

{va ve W/Z(T)} — PW, (F)

Proof. Let F be a face on T with codimension 1. Since T is aligned to R¢,
there exists a s € [1,d] such that 3 = ¢; on F for some constant ¢;. From
(4.5) it follows that ¢ = ¢ for some ¢ € R.

Let {9, },cq1,2¢) be the basis functions of PW Z(T ) as defined in definition

4.5, and similarly let {4}, ¢ 0417 be the basis functions of W/Z(F) It
follows that

wf € H (¢r)*" o € {0,1} Uplp € ™ H (¢r)*" o € {0,1}
rel,d] re(l,d]
r#s r#s
hence, {1;|F},ep 2¢) contains only differently scaled versions of the same func-
tions as in {4;|r },eq20. This implies that

Span {w?"'F}rE[l,Qd] = span {wf}re[l,zd—l]

and the result follows for faces of codimension 1. Since every face with
codimension > 1 will be a face of a face with codimension 1, the argument
can be applied recursively, and the result follows. O

— +

The last property of PW,, (T') we need is that for any set of values in the

— +

vertices of T, there is a single w € PW (T such that the function values in
the vertices are exactly these values. For this to be true we cannot allow the
length of the parallelotope in direction r to be i—’: when k. # 0. The reason
for this requirement is that ¢, (z + i—’:) = ¢,(x), forcing the two endpoints of
this line to have the same value.

Lemma 4.7. Let T be a rectangular d-parallelotope aligned with the axes
of R and where the length along the r-th axis is not 2]:_:1 for n € N when
k. # 0. Then, for any set of values in the vertices of T' there exists an unique

=+
u € PW(T) which has these values as function values in the respective
vertices.
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Proof. We will prove this by induction. Let 7" be a 1-parallelotope along the
r-axis. The vertices of this line are the endpoints, x, and x,. Then we have
only one function ¢, on the form of 4.5, making two basis functions, ¥, = 1
and o = ¢,. Since we have assumed that the length of the line cannot be
2mn/k, for n € N, we know that ¢,(x,) # ¢,(xp). This means there is exactly

one u € FIX/Z(T) such that u(z,) = a and u(zp) = b for any given values
a,b e C.

Assume the statement holds for d < k and let T" be a k-parallelotope.
From this assumption we know that on every face of T there is a finite
plane wave uniquely determined by the values in the vertices of 7. We

—
know from lemma 4.6 that for any face F' of T, any function in PW (F)
— +
is the restriction of some function in PW (T"). This means that any set of
— 4
values in the vertices corresponds to a function in PW, (7). Since there are

— +
2% vertices and dim PW,, (T) = 2% we know, that the function is uniquely
determined. N

One easy way to ensure that the size of the parallelotope does not interfere
with the choice of basis functions is to require that diam7T < h < %, which
is not a very strict requirement. This is not an optimal bound, but it shows
how making the grid fine enough removes this concern. If the method is to be
applied on very coarse grids, then other strategies to avoid the problem may

be developed, as it is only the very specific values that have to be avoided.

4.1.3 The PWCSG element

We will now define an element (7', X7, ¥r) for the plane wave method. First

we set Xp = PW Z (T"). Since we already have shown that any function in
X is uniquely defined by the values in the vertices of a d-parallelotope, it is
natural to use these values as degrees of freedom, which is what we do.

This provides us with the structure of 7', the function space Xt and the
set of dofs Xr. What remains is to find a basis ¢; such that

mrp
u= Z piot(u) Yu € Xp
i=1

which would be a nodal basis in the vertices of the parallelotope. Since we
already have a basis {1);};eq1,m,] for X, we can write

mT

i(z) =Y dl(w)

j=1
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and if we let 1. ... 277 be the vertices, we can then solve

mT

> dlyi(ak) =0 ik € [1,mq] (4.7)

Jj=1

for @/. This will generate the desired basis. While (4.7) can be solved as my
linear my X myp systems of equations, solving it symbolically for a general
parallelotope results in very long expressions. Even tough, we now have a
simple implicit definition and also, if needed, an explicit definition of the
basis functions.

We can now define the Plane Wave Semi-Continuous Galerkin element

Definition 4.8 (The PWSCG element). The Plane Wave Semi-Continuous
Galerkin element in R? is defined by the triple (7', X7, ¥7) where

(i) T is a d-parallelotope
(i) X7 = W:(Rd) for some k

(iii) X7 = {o;(v) : X — C : 0;(v) = v(z;)} where {z;} is the vertices of T'

4.1.4 Discontinuity

We will now look at whether the method conforming. Since we have a nodal
basis and we know that the value on the edges are uniquely identified by the
nodes on that edge, we only have to satisfy condition (3.7) stating that the
function space on the edge have to be unique, and (3.8) which states that any
node has a equivalent node on every neighbour element. Since the dofs are
located in the corners, (3.8) will be satisfied as long as we have no hanging
nodes. The second requirement will be satisfied if and only if k is the same
on all elements. Since we want to support different k on different elements,
this is not in general satisfied, leading to discontinuities in the method.

To justify why the method still works, we look at it in the framework
of discontinuous Galerkin. Since every node has a corresponding node on
every neighbour element, we may maintain the requirement that the values
in these points are the same. This effectively reduces the number of dofs
to the number used by the continuous Galerkin method, eliminating one of
the disadvantages of using discontinuous Galerkin. Using this assumption we
now know that the function is continuous in each node. Since we require the
functions to be continuous in each node, we call this method semi-continuous.

In section (3.2.4) we derived the primal formulation for the Helmholtz
equation, splitting it into two parts, a.(u,v) which has the same form as the
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continuous problem, and a4(u,v) containing the extra boundary integrals.
We defined a4 as follows

catu0) = [ (=l {gradv} = (i [7]) s
+ /FO ({ﬁ — u}[gradv] — [[ﬂ]]{@}) ds

When introducing the flux functions we replaced u by w, and g which is
an approximation of grad u, with @. If we choose the fluxes to just be this
substitution in reverse, we get

ag(u,v) = /FO (lu —u] - {grad v} — {gradu} - [v]) ds
o [ (= ] — L ) s
_ /F ({eradu} - [o] + [erad ul{7}) ds

Let T,,T, € T such that e = T, N T, e # 0, and assume u",v" € Uy, and
u®,v® € Uy, then we rewrite the part of the integral on e as

1
— / (§(grad u” + grad u®) - (V'ng. + vnr,)
1 . . -
- §(gradu -ng, + gradu’ - ng,) (V" + US)> ds

If we compute this integral, we will get that for any e € I'° and for Uy, =
Igﬁ/;(Tr) and Up, = ﬁﬁ/; (Ts) where k; and ko are any vectors, this in-
tegral will be zero. This is also true when one of the functions is an affine
function on the edge which happens when one of the ks has value zero in the
component tangential to e. Also, if both function spaces contain functions
which are linear on e then the function will be continuous and all the jumps
will be zero, thus making the integral zero. Since this holds for all e we
conclude that
ag(u,v) =0 Yu,v € U,

and this semi-continuous Galerkin method will be exactly the same as the
corresponding continuous method assuming the integrals are computed per-
element and not globally.

It is important to note that this does not automatically ensure conver-
gence. Convergence analysis for discontinuous Galerkin is a complex subject,
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CHAPTER 4. PLANE WAVE SEMI-CONTINUOUS GALERKIN METHOD

and while there exists some results that cover a wide range of methods [2], I
have not found any results covering the case where we assume continuity in
the nodes. How to derive such a result is not obvious and outside the scope
of this thesis.

While applying discontinuous Galerkin methods to this problem is not in
any way a proof of convergence, it does give us a mathematical backing of
the method which the continuous analysis does not cover. It may also be a
starting point to actually proving that the method will converge despite the
discontinuities. It also gives us some direct insight trough what flux functions
we used.

With the fluxes & = u and g = grad u we obviously have that the fluxes
are local and consistent. They are not, however, conservative, which indicates
that when using the method to simulate physical phenomenas, we cannot
expect the it to preserve the total amount of energy in the system.

4.1.5 Real-valued solutions

One shortcoming of this method worth noting is it does not handle real-
valued solutions of Helmholtz equation as well as the complex solutions. If
we look at the function
u=sin (k- x)
then, obviously
Asin (k- x) + k*sin (k- ) = —k’sin (k- ) + k*sin (k- ) = 0

hence u € PWy(R?), but it is not in u € PW,/(R?). This is because we can

write , ,
e'Lk:-:z: - efzk:-:z:

21
and, as we noted in section 4.1.1, e=**® is not included in PW,"(R?).

u=sin(k x) =

4.2 Implementation

To test the method an implementation had to be made. Since this method
has many aspects that differ from the most common methods there was no
high-level, straight forward way of implementing it. I decided the best way
to approach the problem was to find a FEM-framework which was modu-
larized in a way that allows the user to utilize the modules that are com-
patible with the problem and reimplement the unique parts needed for this
implementation. I found most FEM-frameworks are implemented in a com-
piled language and providing language bindings in higher level languages
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like Python or Matlab. Because of the way this method differs from normal
methods, it needs access to the internals of the framework, and hence the
language in which to make the implementation would need to be the main
implementation language of the framework.

4.2.1 Framework

There are many FEM-frameworks to choose from, but for this project the
C++-based framework GetFEM++ [10] seemed most suitable, mainly be-
cause of the way it handles the finite element spaces. While other frameworks
like FeniCS|3| handle basis functions by an offline compilation process [13| or
other sophisticated processes making it hard to specify general parameters
of the bases on each individual element, GetFEM-++ has a much simpler
implementation allowing the user of the library to implement functions re-
turning function values of the basis functions at given points. This makes it
much easier to implement basis functions where coefficients of the functions
vary from element to element depending on the problem to be solved.

4.2.2 Complex basis functions

GetFEM-++ does have some limitations that had to be circumvented. Firstly,
it does not support complex basis functions. Since the method requires them,
I started investigating what it would take to change GetFEM-++ to allow
them, but since the basis values are used throughout the code and their type
always hardcoded to be real numbers, this was not an option. The other
option was to make the assembly expressions manually handle the complex
inner products.
Let V be a complex finite element space with

Spa‘n(C {¢17 ¢27 cee 7¢TL} = V
Then introduce

Vie={Rev : v eV}
Vim = {Imv : v € V}

then, obviously

‘/re = Spalg {Re le, Re ¢2a s 7Re ¢n}
%m = Spallg {Im ¢17 Im ¢27 B 7Im ¢n}
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CHAPTER 4. PLANE WAVE SEMI-CONTINUOUS GALERKIN METHOD

are also finite element spaces. Now we can decompose every v € V into
v = v 4 ™ for some v € V,, and v"™ € Vi,. We also see by looking at
the definition of a that

a(iu,v) = ia(u,v) a(u,v) = —ia(u,v)

when u, v are real valued, similar to the behaviour of an inner product. Using
this we can expand the complex assembly expressions into two real ones

a(di, 6;) = aldf" + i, ¢ +ig;")
a(¢£e7 ¢;e) + a(qbim? Q%m) +i (CL( ;ma ¢;e) - (Z( ;‘e, ¢;m))

and when this is assembled into a matrix, two matrices are used, one for the
real part and one for the complex part

Mzr,i = Re (a((bi? ¢J>> (l( ;re, (b;'e) + a( §m7 ¢;m)
M =Tm (a(di, ) = a(d™, ¢5°) — (%, &)

This can then be solved either by using a solver that handles the complex
matrix M = M* + iM™ directly, or by observing that a system

(Mre + ’iMim> (Cre + iCim) — (bre + Z-bim)
can be expanded to two systems
Mrecre _ Mimcim _ bre
Mimcre 4 Mrecim —_ bim
which can be reconnected
Mre _Mim cre B pre
Mim Mre Cim - bim
and solved with a normal real solver.

4.2.3 Implementing function spaces

Implementing the PW Z (R%) function space posed several problems. First,
most finite element frameworks use the notion of a reference element 7' such
that diam7 = 1. Then they define the basis {Q/gj}je[l,mf} on the reference
element and then assume that for an element 7" € 7 with basis {®;};jcq mq
we have

6;(x) = 6;(Ga)
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where G : T — T is an affine transform. The framework can then compute
the integrals only on the reference element, doing the appropriate scaling
according to the affine transformation to derive the values of the integrals on
each element.

This method assumes the function spaces are invariant to affine trans-
forms. This is true for polynomials since if p € P, and Gx = Gx + x

then
k

k
p(Gz) = ch Gzx) Z c;(Gix + zo) € Py
5=0 §=0
hence, it still element a polynomial in @ of degree < k.
This is, however, not the case for PWZ(R‘Z). Let etk ¢ PWZ(Rd) and
Gx = Gix + xq as before. Then

ezk Gz _ ezk (Grz+zo) _ ezk Grx+ik-xzo) _ ezk moezle = PWGZk;GRd)

which is not the same space. This can be solved either by making special
assembly routines taking this effect into account, or we can avoid using ref-

erence element altogether. Since deriving an integral between two PW Z (RY)
functions with different k from the integral on a reference element is not
straight forward, the implementation uses the second method, not using a
reference element at all.

To evaluate the basis functions the coefficients &/ from (4.7) need to be
determined. Since these depend on k and the location of the corners of the
given element, they have to be computed for every element. In the current
implementation this is done by solving the linear system directly for each
basis function.

4.2.4 Dirichlet condition

The Dirichlet condition is handled in the continuous case by limiting the test
and trial spaces to functions with zero trace, then using a boundary function
to handle non-homogeneous boundary conditions. This may be done in the
discrete case by making sure no basis function has a non-zero value on the
boundary, but GetFEM+-+, nor any other finite element framework I have
worked with, facilitate this approach.

Instead there are two main strategies for implementing Dirichlet boundary
conditions. One is direct manipulation of the linear system, the other is to
transform a weak formulation of the condition into an underdetermined linear
system and solving the internal nodes in the kernel of the boundary condition
system.
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CHAPTER 4. PLANE WAVE SEMI-CONTINUOUS GALERKIN METHOD

Since finding a boundary function b with trace g is not trivial, we will
here assume the inhomogeneous problem

u=g on Jf)

or, the weak form

/u@dSZ/ guds Yve H'(Q)
o0 B

and solve this directly, not trough the use of a boundary function.

Direct manipulation

Let us first examine the direct manipulation approach. We assume the finite
element space X, has a nodal basis {¢;}. Also let

u(z) = Z cipi(x)

=1

and since {¢;} is nodal, we have points {x;} such that u(x;) = ¢;. Let k be
the index of a dof on the boundary x;, € 02, and let g, = g(xx). This means
the k-th linear equation in the system is the following

m

Z a(9i, dr)ci = Uor)

i=1

but since ¢y(xy) = 1 it should not be included in our test space to begin
with, we can repurpose this equation for our boundary condition. From the
boundary condition we have

u(xy) = g(Tk)
Cr = Gk

Z OikCi = Gk

Now let Ac = b be the linear system resulting from the Galerkin method
without taking boundary condition into account. Replacing the k-th equation
translates to replacing the k-th row of A with

ki = Ok Vi € [l,m]

and doing this for every k for which x; € 9 will remove all the test func-
tions which should not be included, combined with enforcing the boundary
condition for every point on the boundary.
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There is one common extension to the above method to allow the resulting
system to remain Hermitian. This consists of using row reduction techniques
to eliminate the non-zero elements of column £ such that

Qi = 5ik Vi € [1,771]

Now that both row k£ and column k are replaced with the k-th unit vector,
the matrix remains Hermitian if the original matrix was Hermitian, which
allows the use of faster linear solvers.

A weakness of this method is that the boundary values g will be inter-
polated, rather than approximated by Galerkin orthogonality. When dealing
with low-order polynomial elements this is usually not be a problem, but it
may introduce an error when dealing with more complex elements.

Weak Dirichlet condition

Plane Wave Continuous Galerkin methods may handle functions where the
value oscillate multiple times between each node. Combining this with the
fact that the values of k are approximations may lead to more inaccurate
results when using interpolation, as in the example given in figure 4.1.

To approximate the Dirichlet condition by Galerkin method instead of
interpolation, we need to use the weak formulation of the Dirichlet condition
and substitute the continuous space H'(2) by our finite space X}, resulting
in the linear system

He=R

where H = {h;;}, R = {r;}

By — b.d .
/a iy ds (4.8)

and

'r’j:/ gaj ds
o0

Now let Ac = b be the linear system generated by the Galerkin method
when not taking Dirichlet conditions into account. To prevent conflicts we
have to assume that a well posed problem has the property

imA = (imH)™" (4.9)

which implies
rank A +rank H = m (4.10)
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(a) The target function on the unit square.

—— Target
—— Interpolation

—— Galerkin

Ly P RN E )
0.2 0.4 0.6 0.8 1.0

(b) Intersection at y = % of the target, the interpolated approximation and the
Galerkin approximation. The Galerkin approximation is clearly closer to the tar-
get. Let u; be the target, u; be interpolated approximation and u, be Galerkin
approximation. Then [ju; — ut||z2(p) = 0.731882 and ||ug — utl|z2(r) = 0.411986.

Figure 4.1: This figure shows an example of how interpolation compares to
Galerkin approximation when using plane waves. Both approximations use a
k which is rotated about 2.7° compared to the k of the target. Interpolation
points are taken in the four corners of the square.

29



4.2. IMPLEMENTATION

To ensure uniqueness we will also assume
ker A = (ker H)" (4.11)

These requirements are natural since the Dirichlet condition is meant to
determine the dofs on the boundary that the equation would leave undeter-
mined.

Now choose any ¢ = [¢#];e1,m) such that He? = R, then

uslx) = 3 cloi(x) (412

satisfies

/udﬁds:/ guds Yv e X,
0 Q0

Then let the columns of N be an orthonormal basis for the kernel of H and
let r = dimker H. We may then use the u, from (4.12) to split u

U = Ug + Uqg
and since u should satisfy the Dirichlet condition we deduce
R=Hu=Hu,+Hu;=Hu,+ R = u, € ker H
and there exists an unique wu,, such that
Nu, = u,

Since we assume u, is known, we now only have to find u,, to determine wu.
Since u,, € R" and we know from (4.10) that rank A = r, we want to reduce
the original system Ac = b to a r x r full rank system of equations in u,,, and
then we will have the solution given by v = Nu, +uy. We start by rewriting
the original system

Au=1b
ANu,, + Aug =b
ANu, =b— Auy (4.13)

Finding rank(AN) is easy since
imN = ker H = (ker A)™

so rank(AN) = r. We can use assumption (4.9) to eliminate the redundant
equations and reduce the system to a square system with wu, as unknown.
From (4.8) it is trivial to see that H = H*. From theory of linear functionals
[15, Lemma 6.11] we have the lemma
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Lemma 4.9. Let H and K be Hilbert spaces and let T': H — K be a linear
functional. Then

(i) ker T = (imT*)*
(ii) ker T* = (imT')"

Using this we have

imA = (imH)" from assumption (4.9)
= (imH *)L since H is Hermitian
=ker H from lemma 4.9
=imN from the definition of N
= (ker N*)L from lemma 4.9

which implies that N* : imA — R" is injective which again implies
rank N*AN =r
and hence we have arrived at the r x r linear system with full rank
N*ANu, = N* (b — Auy)

Given the assumptions, we will always have a unique solution u = Nu,, + ug.
This method is more versatile than direct manipulation as it works for any
elements, not just for nodal elements. Also, since

(N*AN)* = N*A*N
we have that N*AN is Hermitian if A is.

Simplification for nodal elements

Finding the kernel of H can be computationally expensive, usually in the or-
der of O(m?) operations. This is considerably worse than direct manipulation
which requires only O(m) operations. However, this is not fair comparison
since direct manipulation only works with nodal elements. In the case of
these simple elements we can assume that the kernel of H is spanned by a
subset of the canonical basis of R corresponding to the dof numbers on the
boundary, and it can be computed in O(m) operations as well.
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Chapter 5

Numerical Results

Because of the discontinuities in the discrete space, we cannot use continuous
Galerkin theory to ensure convergence of the PWSCG method, and because
of the way we assure continuity in all the nodes, we cannot use normal
discontinuous Galerkin error bounds either. Hence, we have no analytical
proof of how the method will behave, only assumptions based on similarities
with the two mentioned methods.

In this chapter we will look at a posteriori error estimates based on nu-
merical results which will give an indication of how well we can expect the
method to perform. There are many ways to perform a posteriori error es-
timates, but since we will only look at cases where the analytical solution is
known, the L2norm of the difference between the exact and the numerical
solution will be used.

The equation we solve will always be Helmholtz equation (2.1) on the
unit cube with the values of k£ and f given for each test case. The values
used for k in the PWSCG elements will also be given. We will also compare
the PWSCG-method to standard (); elements since these methods have the
same number of dofs and can be applied to the same mesh as the PWSCG-
method, thus giving the most fair comparison. ) elements are also what we
get when choosing k = 0 in the PWSCG-method since (4.4) then reduces to
Au = 0.

Since we will compare the numerical approximations to a known solution,
we will set the Dirichlet boundary condition to enforce the correct values on
the boundary.
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Mesh Size PWSCG elements () elements

L?-error L?-error
2X2x%x2 0.00000000 0.00000000
4x4x4 0.00000005 0.00000005
8 X 8 X8 0.00000004 0.00000040
16 x 16 x 16  0.00000056 0.00000058
32 x 32 x 32 0.00000067 0.00000067

Table 5.1: Error of PWSCG and (); methods when approximating u = 1
which is included in the discrete space for both methods.

5.1 Exact approximation

From Céa’s lemma 3.3, we have that the error of a continuous method is
bounded by the best approximation error, and similar results also exist for
many discontinuous Galerkin methods |2, p. 1767]. One consequence of this
is that when the exact solution is included in our discrete space, then the
method will return that solution. Since the PWSCG-method is not covered
by any of these results, we will numerically verify that this is the case for
some test cases to conclude that it is plausible that it will be true for any
solution included in the discrete space.

First, we look at a simple case. Let k =3, f = 9. Then obviously u =1
will be a solution. Since constants have no wave-like behaviour the value of
k should not matter, and we choose k = [1,1, 1] for simplicity. Also, since
constants are included in the discrete space for both PWCSG and @), we may
expect similar results.

For ()1 we know the solution must be the exact solution up to some round-
off error arising from the finite precision of floating point numbers. Looking
at the results in table 5.1 we see that the PWCSG-method handles this case
just as well as ()1 elements does. This is no surprise since when k is constant
throughout the domain, then the PWSCG-method is also continuous and
covered by Céas lemma and its generalizations.

Constants are a particularly simple solution, even when only looking at
problems where the exact solution is in the discrete space. In the next case
we let the solution be a linear combination of functions we know are in PW,’.
We will use k = [5,3,1], which means k¥ = /35 and f = 0. When setting
the value of k used in the PWSCG-method equal to the value in the exact
solution, then the exact solution is in the discrete space of PWSCG, but not
for Q).

For completeness we will also look at a case where k is the same, but
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Mesh Size PWSCG elements ()1 elements
L?-error L?-error Order
2X2x2 0.00000001 1.07994324
4x4x4 0.00000137 0.26100418  2.05
8 X 8x8 0.00000071 0.05684609  2.20
16 x 16 x 16 0.00000341 0.01409821  2.01
32 x 32 x 32 0.00000848 0.00354906  1.99

Table 5.2: Error of PWSCG and (); methods when approximating w
which is a plane wave in the discrete space for PWSCG-method, but

53,1

has no special relation to the (); function spaces.

Mesh Size PWSCG elements ()1 elements

L error L?-error Order
2X2x2 0.00000000 0.00950955
4x4x4 0.00000081 0.00234677  2.02
8 X 8x8 0.00000534 0.00058417  2.01

16 x 16 x 16  0.00000304
32 x 32 x 32 0.00001198

0.00014590  2.00
0.00003811  1.94

Table 5.3: Error of PWSCG and (); methods when approximating u =
€3 + 7 4 117 which is a linear combination of the basis functions introduced
in PW,!(T) witch are not plane waves along k.

where we set & = 1 and the exact solution to be u = €3 + 7 4 11i. In this
case we know that u € PW," even tough |k| # k.

As we see in tables 5.2 and 5.3, the results are as expected. For the
PWSCG-method, where the exact solution is in the discrete space, we get
errors with the same behaviour as in the constant case, only with somewhat
larger round-off errors. For (); elements there is nothing special about this
solution, hence we get second order convergence which is what we can expect
from normal convergence analysis for continuous Galerkin.

One thing we can derive from these results is what kind of round-off errors
we should expect with this method. The finite element method computes
integrals on each element of the domain. This means that the intermediate
values of the integrals are smaller for smaller elements. Hence, we have to
expect more significant round-off errors on smaller elements. This seems
to be reflected in the results, both for PWSCG-method and the normal ),
method. As we see from the results, we have to expect round-off error in the

64



CHAPTER 5. NUMERICAL RESULTS

Mesh size PWSCG elements () elements

L?-error L?-error
2X2x%x2 0.00000002 0.00000001
4x4x4 0.00000078 0.00000018
8 X 8 X8 0.00000097 0.00000085
16 x 16 x 16  0.00000256 0.00000279
32 x 32 x 32 0.00000368 0.00000381

Table 5.4: Error of PWSCG and (); methods when approximating u = 3 for
non-constant k resulting in a truly discontinuous PWSCG-method.

order of 107 for 32 x 32 x 32 grid. It can be useful to keep that in mind
when looking at more complex results.

Finally, we will test two cases where k varies throughout the domain.
In these cases the method will actually be discontinuous thus invalidating
any analytical results we have used so far. One difficulty with testing such
cases is that the discrete space will mostly contain discontinuous functions
which cannot be analytical solutions since the analytical problem is not well
posed for discontinuous functions. An exception is constant functions which
will be included in all the element spaces even if k is different. Let k =
[y+1,x4+y+1,2z+ 3] and u = 3. This gives

k=W +12+ (@+y+ 12+ (2 +3)
f=3w+1>+@+y+1)>+(2+3)?)

The results of this test can be found in table 5.4.

The other case we can test is when k is constant along one axis, making
continuous plane waves in only that direction part of the discrete space. We
choose k(x1,ro,23) = [2,2003 + 1,290 + 3], k = 2 and f = 0 making the
solution u(zy, s, z3) = € both a solution of the equation and part of the
discrete space. The errors of this approximation is found in table 5.5.

If we look at table 5.4 and 5.5 we see that the behaviour and magnitude
of the errors are still the same as for the simpler cases. This can be regarded
as numerical evidence that the semi-continuous method will find the exact
solution if it exists in the discrete space, and it may also hint that the method
satisfies some error bound which includes the best approximation error and
have similar behaviour to both continuous and most discontinuous Galerkin
methods in this regard.
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Mesh Size PWSCG elements ()1 elements

L?-error L?-error Order
2% 2x2 0.00000000 0.04004808
4x4x4 0.00000003 0.00969514  2.05
8 X 8x%x8 0.00000004 0.00239743  2.02
16 x 16 x 16  0.00000063 0.00059819  2.00
32 x 32 x 32 0.00000056 0.00014957  2.00

Table 5.5: Error of PWSCG and (); methods when approximating u = e%*1
where the PWSCG plane waves vary along the two other axes.

5.2 Manufactured solution

Now we will consider a case where the exact solution is not in the discrete
space and there is no correlation between the plane wave spaces and the
solution. This is to establish a baseline expectation for the convergence of
the PWSCG-method for general problems.

The method used for constructing this test case is the method of manu-
factured solutions. This method consists of choosing any function u € H?(Q)
and setting f equal to the residual of the homogeneous equation, thus elim-
inating the residual and making u an exact solution of the problem.

The function used in this test case is

u(z1, 79, 73) = 2310g (V1 + 71) + 2

k(xy,x9,x3) = x3sin (1 + ZL’% + wg)

and inserting this into Helmholtz equation gives

2

—— +log (1
21+ oy BT

2] 1
22 (xQ X x3log (2 + 1)

f($1,$2,$3) -
) sin (14 27 + 73)

Again, the direction of k should not matter since the solution does not have
any wave-like properties. Hence, we choose k = [x1 + 1,23 + 1, x5 + 1] which
means the PWSCG-method is discontinuous.

Since this method should work for any choice of u, there is no particular
reason for choosing exactly this function. We just want a function which
is not trivial and which has no particular structure favouring any of the
methods we test.
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Mesh size PWSCG elements ()1 elements Factor
L?-error Order L?-error Order
2xX2x2 0.01621736 0.00421469 3.85

4x4x4 0.00392179  2.05 0.00105771 1.99 3.71
88X 8x8 0.00096933  2.02  0.00026467 2.00 3.66
16 x 16 x 16  0.00024155 2.00  0.00006620  2.00  3.65
32 x 32 x 32 0.00006034 2.00 0.00001656  2.00 3.64
64 x 64 x 64 0.00001518 1.99 0.00000437 1.92 3.47

Table 5.6: Error of PWSCG and (); methods when approximating a manu-
factured solution with no apparent structure favoring any of the methods.

As we see from table 5.6, both methods have second order convergence,
the PWSCG-method having larger errors by a factor of between 3 and 4. It is
not surprising that the PWSCG-method is worse than (); at approximating
general solutions as it was designed to approximate solutions with a particular
behaviour. The fact that it has second order convergence can be considered
a good thing, since this means that if we approximate solutions which are
not wave-like in some areas, or if we fail to find a good approximation of k
in some areas, the results will not be catastrophic. However, if we can detect
such areas beforehand, reducing the elements in these areas to a ), elements
by setting k = 0 may be favorable.

5.3 Radial wave

Let us now consider a problem where the solution is a wave-like function.
In section 2.1.2, we saw that radial waves were solutions to the Helmholtz
equation everywhere except in the point of origin of the waves. We also saw
how the radial waves could be written as a plane wave with varying k. Hence,
this is a case where the PWSCG-method should be useful while not being
trivial.

The particular problem we will look at has a solution

eik|w—wo|
u=—-"
|z — x|
where o = [—1,—1,—1] and we will test for k € {2,4,8,16}. Since radial

plane waves solve the homogeneous Helmholtz equation in every point except
xo, which is outside our domain, we set f = 0. Figure 5.1 shows the real
value of the solution in a cut trough the cube.
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Mesh size PWSCG elements ()1 elements Factor
L?-error Order L*-error Order

2xX2x2 0.00652124 0.03936990 6.04
4x4x4 0.00128754  2.34 0.01135903 1.79 8.82

8 X 8x8 0.00029661  2.12  0.00308185 1.88  10.39
16 x 16 x 16  0.00007291  2.02  0.00079951 1.95 10.97
32 x 32 x 32 0.00001827 2.00 0.00020333 1.98 11.13
64 x 64 x 64 0.00000462 1.98 0.00005128 1.99 11.10

Table 5.7: Error of PWSCG and ); methods when approximating a radial

wave originating in in ¢y = [-1,—1, —1] and k = 4.
Mesh size PWSCG elements ()1 elements Factor
L?-error Order L*-error Order

2x2x%2 0.14860910 0.37975217 2.56
4x4x4 0.01803060  3.04  0.38437972 -0.02 21.32
8 X 8x8 0.00660201  1.45 0.28188089 0.45 42.70
16 x 16 x 16  0.00097020 2.77 0.08197577 1.78  84.49
32 x 32 x 32 0.00016290 2.57 0.03122489 1.39 191.68
64 x 64 x 64 0.00007626 1.10 0.01462363 1.09 191.76

Table 5.8: Error of PWSCG and (); methods when approximating a radial

wave originating in @y = [—1,—1,—1] and k = 16.

We start out by looking at the results for & = 4,
shown in table 5.7. Both methods seems to have
asymptotic convergence rate of 2, but the PWSCG-
method is better that the (); method by a factor
that seems to converge towards some number close
to 11, or about one order of magnitude better than
Q1.

As a comparison, we look at the case where
k = 16, shown in table 5.8. Here, the difference be-
tween the methods is larger, PWSCG converging to-
wards being better by a factor of almost 200. Hence,
it seems the difference between the two methods in-
crease when the exact solution oscillates more.

One last thing worth noting about these tables is

A
trough the real part of
the solution of a ra-
dial wave problem. We
see how the top of the
wave curves.

Figure 5.1: cut

that the convergence rate in many of these test cases seems to dip somewhat
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Figure 5.2: Error of PWSCG and (); methods when approximating a radial
wave originating in @y = [—1,—1, —1] for different values of k between 1
and 16. Dotted lines represent methods using ()1 elements and solid lines
represent PWSCG-methods. Lines having the same color represent the two
methods using the same value of k.

for the 64 x 64 x 64 mesh. This can be explained by the fact that the
approximation error at this level approaches the expected round-off error.
When round-off errors start becoming a significant part of the total error,
the convergence will start to flat out and the error may even increase as the
round-off errors outgrow the approximation error.

Figure 5.2 shows the results of all the test cases using radial waves. Since
the y-axis is logarithmic, straight lines represent constant convergence rate,
where the inclination is proportional to the convergence rate. As we can see,
all the lines are more or less parallel with some irregularities for the cases with
highest values of k. The fact that the lines are parallel mean they have about
the same convergence rate, which we know to be around 2. The irregularities
for high £ are also not surprising since highly oscillatory functions are harder
to sample by the finite element method.

The distance between lines representing the ); method and the corre-
sponding PWSCG-method increases for larger k, supporting what we found
comparing k =4 to k = 16.
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5.3. RADIAL WAVE

Mesh size PWSCG elements ()1 elements
L?-error Order L*-error Order
2xX2x2 0.04241647 0.02892805
4x4x4 0.01489936 1.51  0.00737201  1.97
8 X 8x8 0.00437660 1.77 0.00193444 1.93
16 x 16 x 16  0.00115968 1.92  0.00049675 1.96
32 x 32 x 32 0.00029649 1.97 0.00012583  1.98
64 x 64 x 64 0.00007482 1.99 0.00003167 1.99

Table 5.9: Error of PWSCG and (); methods when approximating a radial
sine wave originating in &g = [—1,—1, —1] and k = 4.

We also note that the ()1 method starts
almost flat for high values of k. Figure 5.3
demonstrates the problem with using too
coarse mesh of linear functions to approx-
imate an oscillating function. From the re-
sults we see that the PWSCG-method also
has irregularities when using too coarse grids
for very oscillatory solutions, but it seems to
handle the case better, both by having much
lower initial error, and by having somewhat
more consistent convergence rate on coarse
grids.

We will look at one final test case. In
section 4.1.5 we looked at how real-valued
plane waves are not part of PW,", and hence
we assumed the PWSCG-method would not
be as well suited for these waves as it is for
the complex plain-waves. In table 5.9 are
the results of running the same case as in
5.7, only now the exact solution is a sine
wave

N\

Figure 5.3: A linear (blue) and
a piecewise linear (red) func-
tion interpolating an oscillat-
ing sine. The blue line has
no way of capturing the be-
haviour of the sine, however,
the red lines capture most of
the oscillating nature of the
sine function. This is related
to the Nyquist sampling rate
from signal processing [1, p.
26).

sin (k | — o))

|z —

As we see from the results, the PWSCG-method is now worse than Q).
The convergence rate is basically the same, however, and the difference be-
tween the methods are still somewhat smaller than it was in the manufactured

solutions test case in section 5.2.
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PWSCG elements () elements

36.37s 3.41s
36.80s 3.60s
38.19s 3.57s
38.21s 3.52s
37.84s 3.52s
Average 37.48s 3.52s

Table 5.10: Execution times of the PWSCG-method and the )1 method for
a radial plane wave on the same 8 X 8 x 8 grid.

PWSCG elements () elements

8.36s 19.31s
8.00s 19.46s
8.33s 21.92s
8.44s 21.78s
8.42s 20.45s
Average 8.31s 20.58s

Table 5.11: Run times of the PWSCG-method and the )1 method for a
radial plane wave on the coarsest grid which produces errors less than 1073
for each method.

5.4 Execution time

Since the main focus of this project was to determine the characteristics of the
PWSCG-method, the implementation has not been optimized for execution
time. In the present sate, the implementation of the PWSCG-method is a
lot slower than than the (); method on the same grid, as we see in table 5.10.

However, a more interesting comparison is how long it takes to execute
the two methods on grids such that the error will be equivalent. To test this,
we will look at the coarsest grid which produces an error less than 1073 for
both methods. The problem we use for this test case is the radial wave from
section 5.3 with £ = 4 which has a moderately oscillating solution.

The coarsest mesh for which the PWSCG-method gives an error less than
1073 is 4 x 5 x 5, while the coarsest mesh for which the @Q; method provides
a similar error is 14 x 14 x 15. The results of this comparison is presented in
table 5.11. Here the PWSCG-method is clearly more efficient.
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5.4. EXECUTION TIME

As noted, the focus of the implementation was not the speed, but rather
accuracy of the convergence characteristics produced by the program. There
are many things that can be done to drastically reduce the execution time,
including making an assembly routine which can correctly scale the inte-
gration results from a reference element, implementing a special numerical
integration scheme that handles the integrals encountered in a more efficient
manner, or just eliminating redundant calculations in general. The fact that
the PWSCG-method outperforms () in some tests is very promising when
considering how much faster we can expect an optimized version would be.
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Chapter 6

Conclusion

In this thesis, we introduced the Plane Wave Semi-Continuous Galerkin
method. Using a detailed description of the degrees of freedom on elements
and on the intersections between elements, we saw how the method could
be considered semi-continuous as it satisfies one of the two conditions that a
method needs to fit into the continuous Galerkin framework.

We also showed how the remaining discontinuities in the method could be
reasoned about using the theory of discontinuous Galerkin methods, and how
not considering the surface integrals over the interior edges corresponded to
a particular choice of flux functions.

In chapter 5, we saw how the PWSCG-method had second order con-
vergence for all the cases, excluding the exact ones. This is similar to the
(21 method, which has the same number of dofs. For solutions without any
plane wave-like behaviour the PWSCG-method produced, not surprisingly,
higher errors than the corresponding ()1 method on the same mesh. However,
when approximating solutions which did have plane wave-like behaviour lo-
cally, the PWSCG-method produced significantly smaller errors than the
method, the difference increasing for larger values of k.

From this we conclude that the PWSCG-method shows some promise as a
method for approximating solutions with plane wave-like behaviour locally,
even on relatively coarse grids. The methods used to derive the function
spaces and the properties of these, including how the semi-continuous method
related to the continuous and discontinuous Galerkin methods, may also be
used to derive other semi-continuous methods with different properties.
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6.1 Future work

There are multiple aspects of the PWSCG-method that would be interesting
to investigate further. In light of the numerical results of chapter 5, we may
expect there to exist error bounds for the PWSCG-method similar to those
for continuous and discontinuous Galerkin methods. Deriving these error
bounds analytically would not only give proof that the method will behave
in all cases, but also give more insight into which factors are important for
the performance of the method.

Another interesting question is how to best compute approximations of
k. There are many possible ways of doing this, non of which immediately
stand out as the best. One method would be to use P, elements to solve
the equation initially, and then extracting wave-like behaviour from that
solution and solve again using PWSCG-elements, this time expecting much
more accurate results.

When deriving PW,"(T') we noted that we could derive a similar space
PW, (T). The combined space {u+v : u€ PW(T), v e PW, (T)} would
also contain the real-valued waves cos (k - ) and cos (k - ) which would be

useful. The problem is that the combination of the finite spaces PW Z(T ) and

PW ;(T) will have dimension 7, since both includes the constant function.
The linear functions which appear with k has some zero-components, will
also overlap. This means it is not obvious what degrees for freedom should
be used to ensure semi-continuity. It could be interesting to explore this
possibility further.

The last section of chapter 5 presented some result including execution
times of the program using the different elements. It was noted that these
results could be expected to improve a lot by optimizing the implementa-
tion. Doing this and then run further tests on execution time would give
more insight into what practical cases this method could be useful for. Also,
making an implementation of the PWDG-method from [11| and comparing
these two methods could be an interesting case. The PWDG-method is a
truly discontinuous method with both the advantages and disadvantages that
brings, making for an interesting comparison.
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