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Preface

Introduction

The history of cryptography dates back to ancient times. The first known
use of cryptography was found in Egypt where ciphertext had been carved
into stone approximately 2000 years BC. It is also believed that the ancient
Greeks had knowledge of ciphers, and simple transposition ciphers are pre-
sumed to have been used by the Spartan military. In the 16th century, Mary,
Queen of Scots used ciphers to communicate with her allies while being held
captive by her cousin, Queen Elizabeth I.

Mary is an early example of the importance of using secure ciphers. Eliz-
abeth’s codebreakers were able to crack Mary’s cipher, and after deciphering
Mary’s messages to her allies, she was charged with treason and conspiracy
against the crown. Mary was convicted, and was sentenced to be hanged,
drawn and quartered (look it up – it is even worse than it sounds).

A fundamental building block in traditional cryptography was that of
a key, a secret that only the sender and the recipient possessed. The key
would then be used by the sender to encrypt the plaintext to ciphertext, and
the same key would be used by the recipient to decrypt the ciphertext back
to the original plaintext.

During the 1970s, a remarkable idea of public key cryptography emerged.
In public key cryptography, different keys are used for encryption and de-
cryption. If Alice and Bob wants to communicate using public key cryp-
tography, they would each generate a key pair consisting of a public key
accessible to everyone, and a private key which is kept secret. Alice would
then encrypt her message to Bob using Bob’s public key, and Bob would
decrypt the message from Alice using his private key, and vice versa.

Behind the scenes of public key cryptography lies a substantial amount
of mathematics, and new areas of mathematics continue to find its way to
applications in cryptography. An example of this is the use of elliptic curves
in public key cryptography, which is the subject of this thesis. It was first
suggested used in the mid 1980s, and approximately two decades later, it
was in widespread use in modern information systems. Today, elliptic curve
cryptography is used by governments, military and corporations worldwide.

In elliptic curve cryptography, it turns out that the choice of the elliptic
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curve is important for security. This is because there exist elliptic curves
where certain “shortcuts” can be made that breaks the security of elliptic
curve cryptography. For this reason, standards such as [9, 21, 25] have been
proposed to provide government institutions and the public with a set of
secure elliptic curves for use in cryptography.

However, following the Snowden revelations, reports published by the
New York Times [22] claims knowledge of an internal memo in the NSA
(National Security Agency) describing their involvement in one of the NIST
(National Institute of Standards and Technology) standards. In the news
article, they quote the alleged memo on the involvement of the NSA: “Even-
tually, N.S.A. became the sole editor.”. This has severely weakened the cryp-
tographic community’s trust in the NIST curves, and places higher demands
for a provable random generation of proposed elliptic curves in current and
future standards.

It is the purpose of this thesis to consider requirements that elliptic
curves should satisfy in order to be suitable for cryptographic applications.
We shall give a mathematical description of why these requirements affect
the security and/or technical aspects (e.g. properties that allow for faster
implementations in software) of elliptic curve cryptography. Based on these
requirements, we develop a tool for generating secure elliptic curves suitable
for cryptographic applications.

Preliminaries and Notation

Although most definitions and results will be stated, basic familiarity with
algebraic geometry is advisable, if not necessary. Basic commutative algebra
and number theory is also assumed to be familiar to the reader. Readers
unfamiliar with these topics are advised to consult [1, 13, 31, 16].

In Chapter 1, most of the definitions and results are trivially generalized
to algebraic curves and/or algebraic varieties. For the sake of concreteness,
we have nevertheless sticked to the case where our object of study is an
elliptic curve. We fix the following notation which will be used throughout
this thesis:

char(K) the characteristic of a field K
Fp the prime field of p elements
Fq the finite field q elements
K̄ the algebraic closure of a field K
Gal(K̄/K) the Galois group of K̄ over K
P2 the projective 2-space
R∗ the group of units in a ring R
P σ the action of σ ∈ Gal(K̄/K) on a point P
ordP the order valuation at the point P
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In this thesis, all rings are assumed to be with unity. Furthermore, E
will always denote an elliptic curve, and in cases where there are several
elliptic curves in play, they will usually be denoted E1, E2, . . . , and so on.
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Chapter 1

Elliptic Curves

In this chapter we will review the basic theory of elliptic curves that is
relevant for this thesis. We begin by defining an elliptic curve, and basic
properties and quantities associated to an elliptic curve. Then we shall
examine an addition law on the group of points on an elliptic curve, before
we proceed by looking at maps between elliptic curves. In the end of this
chapter, we will consider alternative forms of representing elliptic curves.

1.1 Definition and Basics

Definition 1.1. An elliptic curve E over a field K is the set of points in
P2(K̄) satisfying a homogeneous equation of the form:

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (1.1)

where a1, . . . , a6 ∈ K̄. Furthermore, we require that the discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

satisfies ∆ 6= 0, where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6 and
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4.

Equation 1.1 is known as the Weierstrass form of an elliptic curve. When
the characteristic of the field K is (strictly) greater than 3, E can be written
as the set of points in P2(K̄) satisfying

y2z = x3 + axz2 + bz3 (1.2)

for some constants a, b ∈ K̄. This is known as the simple Weierstrass
form of an elliptic curve. In this case the discriminant ∆ has the form ∆ =
−16(4a3 + 27b2). There are other equivalent definitions and representations
of elliptic curves. For example, when K = C one can show that every elliptic
curve over K can be written uniquely as a quotient

C/Λ, where Λ = {n1w1 + n2w2 |n1, n2 ∈ Z}1
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for some w1, w2 ∈ C. An elliptic curve over the complex numbers is
thus uniquely determined by this Λ. In Section 1.12, we will look at a
representation that can sometimes give us certain arithmetic advantages over
the Weierstass form. If not explicitly stated otherwise, we assume that the
characteristic of a field K is greater than 3, and use the simple Weierstrass
form of an elliptic curve.

Now we will show that an elliptic curve has exactly one point on the line
at infinity. In the next section, we will see that this point plays an important
role when defining a group law on E. In fact, it will be the identity element.

Proposition 1.1. An elliptic curve E has O = (0, 1, 0) as its only point on
the line at infinity.

Proof. We obtain the points at infinity by setting z = 0. Then from Def-
inition 1.1 we get 0 = x3. The only point (up to scaling) satisfying this
equation is the point (0, 1, 0).

In our definition of an elliptic curve, the defining (homogeneous) poly-
nomial has coefficients in the algebraic closure of K. Sometimes, for ex-
ample when representing an elliptic curve on a computer, we are interested
in curves that can be defined by a polynomial over K.2This prompts the
following definition:

Definition 1.2. An elliptic curve E is said to be defined over K, and we
write E/K, if it satisfies a smooth homogeneous equation on Weierstrass
form where the coefficients ai ∈ K. A point P ∈ E is called K-rational if
there exists x0, y0, z0 ∈ K such that P = (x0, y0, z0).

For an elliptic curve E over a field K, we shall now consider functions
E → K. It turns out that we are particularly interested in functions E → K
that arise as quotients of polynomials, i.e “rational functions”. Since a point
P ∈ E is only unique up to scaling with a constant in K, these polynomials
must be homogeneous and of the same degree for the quotients to be well
defined as functions on E.

Definition 1.3. Let E be an elliptic curve, and let I denote the ideal of
polynomials in K̄[x, y, z] that vanish on all of E. We define the function
field of E to be the set of quotients f/g of polynomials in K̄[x, y, z] such that

1. g is not everywhere zero on E, i.e g 6∈ I.

2. f and g are homogeneous and of the same degree.

1 We call Λ a lattice. A lattice in C is a discrete subgroup of dimension 2 as an
Z-module.

2Assuming that we have enough memory, any polynomial in K̄[x, y, z] can represented
on a computer by working over a finite extension of K. However, when the field extension
becomes large, this is certainly inconvenient, and may not be feasible.
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3. f/g and f ′/g′ are identified, and we write f/g ∼ f ′/g′ if fg′−f ′g ∈ I.

We denote the function field of E by K̄(E), and an element in K̄(E) is
called a rational function.

Just as we were interested in representing the defining polynomial of an
elliptic curve using polynomials over K, we are also interested in when a
rational function can be written as a quotient of polynomials over K. This
prompts the next definition.

Definition 1.4. We define K(E) to be the subfield of K̄(E) consisting of
rational functions that can be written as a quotient g/h of homogeneous
polynomials of the same degree in K[x, y, z].

Now we shall define a map ordP : K̄(E) → Z+ ∪ {∞} which will be
central in our study of divisors in Section 1.7. We will do this in two steps;
first we will define the map on a local subring of K̄(E), and then we will
extend it to all of K̄(E).

Definition 1.5. Let f/g ∈ K̄(E). If there exists f ′/g′ ∈ K̄(E) such that
f/g ∼ f ′/g′ and where g′(P ) 6= 0, we say that f/g is defined at P . We
define the local ring at P , denoted K̄(E)P to be subring of K̄(E) consisting
of rational functions f/g that are defined at P .

It is easily checked that K̄(E)P is indeed a local ring with the maximal
ideal being all f ∈ K̄(E)P such that f(P ) = 0. Notice that if f 6∈ K̄(E)P ,
then the “denominator” of f (when considered as a quotient of homogeneous
polynomials) must vanish at P , so it does not make sense to evaluate f at
P . Now we will define a map on K̄(E)P :

Definition 1.6. We define ordP : K̄(E)P → Z+ ∪ {∞} to be the map

f 7→ sup
{
n ∈ Z+ ∪ {∞} : f ∈Mn

P

}
where MP = {f ∈ K̄(E)P : f(P ) = 0}.

Let P ∈ E consider the rational function f/g ∈ K̄(E). Clearly we can
find a homogeneous h ∈ K̄[x, y, z] of the same degree as f and g such that
h(P ) 6= 0. Then f/h and g/h are in K̄(E)P . We shall extend the map ordP
to K̄(E) by setting ordP (f/g) = ordP (f/h)− ordP (g/h).

Proposition 1.2. Let P ∈ E, and let f/g ∈ K̄(E) be a rational function.
Let h ∈ K̄[x, y, z] be a polynomial of the same degree as f and g, and with
h(P ) 6= 0. Then the map ordP : K̄(E)→ Z ∪ {∞} defined by

f/g 7→ ordP (f/h)− ordP (g/h)

is well-defined.
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Proof. Clearly f/h and g/h are in K̄(E)P . We need to show that ordP (f/g)
is independent of the choice of h ∈ K̄[x, y, z]. Since h 6∈ MP , then f/h ∈
Mn
P ⇔ f ∈ Mn

P . This is obviously also true for g/h and g, so the map is
well-defined.

Proposition 1.3. The map ordP : K̄(E) → Z ∪ {∞} defined above is a
discrete valuation on K̄(E).

Proof. See Section II.1 in [31], and/or Proposition 9.2 in [1].

1.2 Group Law and Torsion Points

In this section we define a group law on the points on an elliptic curve. Then
we will review torsion points on an elliptic curve, and state a proposition
about the structure of the m-torsion subgroups of an elliptic curve.

We define the following binary operation on the set of points on an elliptic
curve:

Definition 1.7 (Addition Law on E). Let P,Q ∈ E. Let L be the line in P2

determined by P and Q (and the tangent line to P if P = Q). L intersects
E in a third point R ∈ E. Let L′ be the line determined by R and O. Then
L′ intersects E in a third point which we denote P +Q.

Geometrically, the group law can be illustrated as following:

Figure 1.1: The geometric group law on an elliptic curve, illustrated by [17].

Proposition 1.4. The binary operation + : E × E → E defines an abelian
group law on E with O as identity element.
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Proof. Geometrically, it is easy to convince oneself that all the group axioms
except associativity holds. A solid proof that +: E × E → E does indeed
define an abelian group law can be done by deriving explicit formulas for
the group law, and then algebraically verifying that the group axioms are
satisfied.

By abuse of language, we shall sometimes refer to E as a group. It is
then understood that we then mean the set of points in E equipped with
the group law from Definition 1.7. For the sake of completeness, we give
explicit formulas for the group law on E.

Proposition 1.5. Let E be an elliptic curve over K with char(K) > 3.
Assume E is given on simple Weierstrass form (1.3). Let P = (x1, y1, z1)
and Q = (x2, y2, z2) be points on E, and let P +Q = (x3, y3, z3). Then

(i) If P = Q, then

x1 = 2y1z1(3(3x2
1 + az2

1)2 − 8y2
1x1z1)

y2 = (3x2
1 + az2

1)(12y2
1x1z1 − (3x2

1 + az2
1)2)− 8y4

1z
2
1

z2 = 8y3
1z

3
1

(ii) If P 6= Q, then

x3 = (x1z1 − z1x2)(z1z2(y1z2 − z1y2)2 − (x1z2 + z1x2)(x1z2 − z1x2)2)

y3 = (y1z2 − z1y2)((2x1z2 + z1x1)(x1z2 − z1x2)2 − z1z2(y1z2 − z1y2)2)

− y1z2(x1z2 − z1x2)3

z3 = z1z2(x1z2 − z1x2)3

Proof. See the discussions prior to the Group Law Algorithm in Section II.2
in [31], and repeat the arguments using homogeneous coordinates.

Of particular interest are the points on E of finite order, i.e points P ∈ E
such that P + . . .+P = O. These points are called torsion points, and they
are easily seen to form a subgroup Etors of E. The set of K-rational points
on E is also a subgroup of E, and when K is a finite field, this subgroup is
necessarily finite. We have in this case that E(K) ⊆ Etors. Hence, torsion
points are intrinsic when working with elliptic curves over finite fields.

Definition 1.8. Let P ∈ E. We call P an m-torsion point if P + . . . + P
(m times) equals O. We denote the subgroup of m-torsion points of E by
E[m].

Now we will state a proposition which gives us complete description of
the group structure of the set of E[m].
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Proposition 1.6. Let E be an elliptic curve and let m ∈ Z. Then:

(a) If m 6= 0 in K, E[m] ∼= Z/mZ× Z/mZ

(b) If char(K) = p > 0, we have either

(i) E[pe] ∼= {O} for all e ∈ N or

(ii) E[pe] ∼= Z/peZ for all e ∈ N

Proof. See Corollary III.6.4 in [31]

1.3 Maps Between Elliptic Curves and the Frobe-
nius Morphism

In this section we will review the basic theory of maps between elliptic curves.
We begin by defining rational maps and morphisms of elliptic curves. Then
we consider two different criteria for elliptic curves to be isomorphic. 3 In
the end of this section we will look at the Frobenius morphism.

Definition 1.9. Let E1 and E2 be elliptic curves defined over K. A rational
map is a map φ : E1 → E2 defined by

φ(P ) = (f1(P ), f2(P ), f2(P ))

where f1, f2, f3 ∈ K(E), and φ(P ) ∈ E2 at all P where f1, f2, f3 is
defined (i.e where all fi ∈ K(E)P ).

Suppose φ : E1 → E2 is a rational map defined by φ = (f1, f2, f3), and let
g ∈ K̄(E). Assume that φ is defined at a point P ∈ E1, and suppose we can
find g ∈ K̄(E) such that hi = fig is defined at P for all i. Let φ′ : E1 → E2 be
the rational map defined by φ′ = (h1, h2, h3). Since projective coordinates
are only unique up to scaling, we have that φ(P ) = φ′(P ) for all points
P ∈ E1 where they are both defined. Now suppose instead that φ is not
defined at P , but that φ′ is defined at P . Then it still makes sense to
evaluate φ at P by setting φ(P ) = φ′(P ). This justifies the definition:

Definition 1.10. Let φ : E1 → E2 be a rational map of elliptic curves, and
let φ = (f1, f2, f3) for some rational functions fi ∈ K̄(E1). We say that φ
is defined at P if either:

1. fi ∈ K̄(E1)P for all i, and fi(P ) 6= 0 for some i, or

2. There exists g ∈ K̄(E1) such that fig ∈ K̄(E1)P for all i, and (fig)(P ) 6=
0 for some i. In this case we set φ(P ) = ((f1g)(P ), (f2g)(P ), (f3g)(P )).

3A priori, it is not clear exactly what “isomorphic” means in this context, but we will
define it shortly.
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If φ is defined at all points of E1, we say that φ is a morphism. Further-
more, if there exists a morphism φ−1 : E2 → E1 such that φ ◦ φ−1 = idE2

and φ−1 ◦φ = idE1 then φ is said to be an isomorphism, and we say that E1

and E2 are isomorphic.

Definition 1.11. Let φ : E1 → E2 be a rational map of elliptic curves,
and assume φ = (f1, f2, f3) for some rational functions f1, f2, f3 ∈ K̄(E1).
We say that φ is defined over K if there exists fi ∈ K(E1) such that φ =
(f1, f2, f3). If φ is an isomorphism defined over K, we say that E1 and E2

are isomorphic over K.

Since a rational map φ : E1 → E2 is defined in terms of rational functions,
the composition of a φ and a rational function on E2 gives a rational function
on E1. Thus, a rational map between induces a map of the the corresponding
function fields.

Definition 1.12. Let φ : E1 → E2 be a rational map. We define φ∗ : K̄(E2)→
K̄(E1) to be the map given by f 7→ f ◦ φ.

As the next proposition shows, this map is in fact an injection of function
fields and consequently also gives rise to a field extension.

Proposition 1.7. The map φ∗ : K̄(E2)→ K̄(E1) is an injection of function
fields, and K̄(E2)/φ∗K̄(E1) is a field extension of finite degree.

Proof. Composing a rational function with a rational map clearly gives a
rational function since a rational map is defined in terms of rational func-
tions, and the composition of two rational functions is a rational function.
Hence, the map φ∗ induces a map of function fields, and it is easily seen
to be injective. Since the field extensions K̄(E2)/K̄ and φ∗K̄(E1)/K̄ is of
finite degree, then K̄(E2)/φ∗K̄(E1) must be of finite degree as well.

We will say that a rational map φ is separable if the corresponding field
extension is separable, and we define the degree of a rational map to be the
degree of the induced field extension. We similarly define the separability
degree degs(φ) and the inseparability degree degi(φ) of φ. Note that if φ
is an isomorphism, then φ∗ is an isomorphism of function fields, and so the
degree of φ is 1. The next proposition gives us information about the fibers
of separable rational maps.

Proposition 1.8. Let φ : E1 → E2 be a map. Then #φ−1(P ) = degs(φ)
for all but finitely many P ∈ E2. In particular, if φ is separable, then
#φ−1(P ) = deg (φ) for all but finitely many P ∈ E2.

Proof. See Proposition II.6.9 in [13].

Now we will turn our attention to questions regarding the Weierstrass
form of an elliptic curve. To what extent is the Weierstrass form of an elliptic
curve unique, and when are two elliptic curves isomorphic?
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Proposition 1.9. Let E1/K : y2z = x3 + axz2 + bz3 and E2/K : y′2z′ =
x′3 + a′x′z′2 + b′z′3 be elliptic curves that are isomorphic over K. Then E1

and E2 are related by a linear change of variables of the form x = u2x′ + r
and y = u3y′ + su2x′ + t for some u ∈ K∗, r, s, t ∈ K.

Proof. See Proposition III.3.1 in [31].

Every elliptic curve has an associated quantity called the j-invariant.
The j-invariant will give us a condition for determining when two elliptic
curves are isomorphic over K̄.

Definition 1.13. Let E : y2z = x3 +axz2 + bz3 be an elliptic curve over K.
Then E has an associated quantity called the j-invariant, which is a quotient
of polynomials in Z[a, b]. It is given by

j(E) =
2833a3

4a3 + 27b2

One can show that any admissible change of variables (as given by Propo-
sition 1.9) leaves the j-invariant unchanged. Hence, the j-invariant does in-
deed live up to its name. Note that in general we have j(E) ∈ K̄, but when
E is defined over K, we also have that j(E) ∈ K.

Proposition 1.10. Let E1 and E2 be elliptic curves over K. Then E1 and
E2 are isomorphic over K̄ if and only if j(E1) = j(E2).

Proof. We need only show that j(E1) = j(E2) implies that E1 and E2 are
isomorphic over K̄. We outline a rough sketch of a proof of this: If the
E1 and E2 are isomorphic over K̄, then one can use explicit formulas for
the j-invariant and the admissible change of variables from Proposition 1.9
to show that the j-invariant is invariant under this change of variables. If
j(E1) = j(E2), then we can again use explicit formulas for the j-invariant to
deduce a change of variables of the form given in Proposition 1.9. A detailed
proof can be found in Proposition III.1.4 in [31].

Consider now the field Fq where q = pn, and the map F̄q → F̄q defined
by x 7→ xq. This map is called the q-power Frobenius map. It is a well
known result from algebra that xq = x if and only if x ∈ Fq, so this map
is in Gal(F̄q/Fq). The q-power Frobenius map acts on a point P ∈ E(Fq)
by raising the coefficients of P to the q-th power. This action induces the
following map of curves:

Definition 1.14. Let E be an elliptic curve over a field K of characteristic
p > 0, and let q = pr for some r ≥ 1. We define the q-power Frobenius
morphism to be the map

φ : E → E(q), φ((x0, y0, z0)) 7→ (xq0, y
q
0, z

q
0)

where E(q) is the curve obtained by raising the coefficients of the defining
polynomial of E to the q-th power.
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If an elliptic curve E is defined over Fq, then the defining polynomial
for E can be written using coefficients in Fq. Since the q-power Frobenius
map leaves elements in Fq fixed, this implies that E = E(q). Hence, when
E/Fq, the Frobenius map induces an endomorphism φq ∈ End(E) of E.
Furthermore, we see that φq(P ) = P if and only if P ∈ E(Fq). This turns
out to be a crucial observation in the proof of Hasse’s theorem (see Theorem
1.2). We conclude this section with a proposition stating a few properties
of the Frobenius morphism.

Proposition 1.11. Let E be an elliptic curve over a field K of characteristic
p > 0, and let q = pr. The q-th power Frobenius morphism E → E(q) has
the following properties:

1. φ is purely inseparable.

2. deg(φ) = q.

Proof. See Proposition II.2.11 in [31].

1.4 The Reduction Map

In this section we will consider an elliptic curve E defined over a field K. We
will suppose that K has a discrete valuation ν : K → Z∪{∞}, and let R ⊆ K
be the associated discrete valuation ring. Then R = {x ∈ K : ν(x) ≥ 0},
and R has a maximal ideal m given by m = {x ∈ K : ν(x) > 0}. We let
k = R/m denote the corresponding residue field.

Now consider the curve obtained by reducing the coefficients of E modulo
the maximal ideal m. This only makes sense when the defining homogeneous
polynomial can written using coefficients such that ν(ai) ≥ 0, i.e if all the
coefficients are in R. It is easily seen using the transformation formulas from
Proposition 1.9 that such a representation always exists.

Definition 1.15. Let E/K be an elliptic curve over K. We define a mini-
mal Weierstrass equation for E to be a Weierstrass equation for E such that
ν(∆) is minimal over all Weierstrass equations for E.

Since the discrete valuation ν on K is a function K → Z ∪ {∞}, the
existence of such a minimal discriminant is clear. This is due to the trivial
observation that all non-empty subsets of Z∪{∞} have a minimum. Choos-
ing a minimal Weierstrass equation for E/K allows us to reduce E modulo
m ⊆ R to a curve Ẽ/k simply by reducing the coefficients modulo m. The
reduced curve Ẽ/k may not be an elliptic curve, since we require the reduced
discriminant ∆̃ to be non-zero. In the case where ∆̃ 6= 0, we say that E has
good reduction at ν, and we define the following reduction map:
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Definition 1.16. Let K be a field with a discrete valuation ν. Let E/K
be an elliptic curve, and suppose E has good reduction at ν. We define the
reduction map πν to be the map

πν : E → Ẽ, P 7→ P̃

where P̃ is the point on Ẽ obtained by reducing the coefficients of E
modulo m. We denote the kernel of πν by E1.

Proposition 1.12. Let E/K be an elliptic curve over K, and assume E
has good reduction at ν. Then the reduction map πν : E → Ẽ defines a group
homomorphism.

Proof. The reduction map sends a line in P2 to another line in P2. Since
the group law is defined in terms of intersections between rational lines, it
follows that the group law is a homomorphism.

1.5 The Endomorphism Ring

On an elliptic curve E over a field K there is a natural ring associated to E,
namely the endomorphism ring of E. It is the ring of all morphisms E → E,
and is denoted End(E). The arch example of an endomorphism of E is the
multiplication-by-m map. It is the map E → E defined by P 7→ P + . . .+P
(m times). We review a few properties of the multiplication-by-m map:

Proposition 1.13. Let E be an elliptic curve and let m ∈ Z with m 6= 0
in K. Then the multiplication-by-m map [m] : E → E has the following
properties:

1. [m] is a morphism.

2. [m] is separable map.

3. deg [m] = m2.

Proof. We will only give a very rough sketch of the proof of 1. The addition
map +: E × E → E is defined in terms of rational functions, so it is easily
seen to be a rational map. Since we can add any two points on an elliptic
curve, it is defined for all pairs of points, so it is a morphism. Then it
is immediate that the multiplication-by-m map is a morphism too, as the
composition of two morphisms maps is a morphism. A detailed proof can
be found in the proof of Theorem III.3.6 in [31]. For 2 and 3, see the proofs
of Corollary III.5.6 and Theorem III.6.2 in [31].

Notice that since ker[m] = E[m], Proposition 1.6 gives us a description
of the kernel of the multiplication-by-m map. We shall now state a theorem
that will give us information on the structure of End(E). Before stating the
theorem, we need the following two definitions from [31].
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Definition 1.17. Let K be a Q-algebra that is finitely generated over Q.
We define an order R of K to be a subring of K that is finitely generated as
a Z-module a, and with R⊗Q = K.

Definition 1.18. A quaternion algebra is an algebra of the form

K = Q + Qα+ Qβ + Qαβ

whose multiplication satisfies

α2, β2 ∈ Q α2 < 0, β2 < 0 βα = −αβ.

Theorem 1.1. The endomorphism ring of an elliptic curve E/K is either
Z, an order in an imaginary quadratic field, or an order in a quaternion
algebra. If char(K) = 0, then only the first two are possible.

Proof. See Corollary III.9.4 in [31].

Corollary 1.1. As a Z-module, End(E) can only have rank 1, 2 or 4.

Proof. This is immediate from Theorem 1.1, and the fact that an order R
of K is finitely generated as a Z-module, and satisfies R⊗Q = K.

In the beginning of this chapter, we noted that elliptic curves over the
complex numbers can be written as a quotient C/Λ where Λ is a discrete
subgroup of C of dimension 2 as a Z-module. Now if E1 = C/Λ1 and
E2 = C/Λ2 are two elliptic curves over C, then one can show that every
morphism between E1 and E2 can be realized as multiplication by a complex
number z ∈ C such that zΛ1 ⊆ Λ2.

When E1 = E2, then usually the only z ∈ C that satisfies this require-
ment are precisely those z that are in Z, in which case End(E) ∼= Z. In the
occasion that End(E) has an endomorphism that is not a multiplication-by-
m map for m ∈ Z, we make the following definition:

Definition 1.19. If End(E) has Z-rank 2 or 4, then E is said to have
complex multiplication.

In some sense, the endomorphism ring of E gives a rough measure on
the amount of structure that the curve possesses. In cryptography, we are
interested in curves with as little structure as possible. This intuition comes
from the suspicion that more structure could perhaps provide an attacker
with dirty tricks for solving the ECDLP. For example, elliptic curves with
endomorphism rings with Z-rank 4 are called supersingular elliptic curves,
and as it turns out, they are indeed vulnerable to known attacks on elliptic
curves (see Section 3.1.2 for a description of such an attack).
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1.6 Isogenies

We now turn our attention to a special type of morphism between elliptic
curves. These are the morphisms that respect the identity elements of the
groups of points on an elliptic curve.

Definition 1.20. We define an isogeny to be a non-zero morphism φ : E1 →
E2 such that φ(OE1) = OE2, where OE1 and OE2 are the identity elements
of the group of points on E1 and E2 respectively.

We have already seen two examples of isogenies, namely the multiplication-
by-m map, and the q-power Frobenius morphism. Both are easily verified
to be isogenies. The next proposition is somewhat peculiar. It states that a
morphism that decides to respect the identity element of elliptic curves will
automatically also respect their group structure.

Proposition 1.14. Let φ : E1 → E2 be an isogeny. Then φ is a homomor-
phism of the additive groups of points on the elliptic curves.

Proof. This can be proved with straightforward but tedious calculations
using explicit formulas for the group law on elliptic curves. Alternatively,
using the theory of divisors which we introduce in the next section, one can
consider the diagram

E1 Pic0(E1)

E2 Pic0(E2)

τ

φ φ∗

τ

with τ = σ−1 where σ is the isomorphism defined in Corollary 1.2. One
can check that the diagram commutes. Since σ−1 is an isomorphism and φ∗

is a homomorphism, φ must be a homomorphism.

Proposition 1.15. Let φ : E1 → E2 be an isogeny, and let m = deg (φ).
Then there exists a unique dual isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m].
Assume φ, ψ : E1 → E2 are isogenies, then the following properties hold:

1.
ˆ̂
φ = φ

2. deg (φ) = deg (φ̂)

3. φ̂+ ψ = φ̂+ ψ̂

Proof. See Theorem III.6.1 and Theorem III.6.2 in [31].
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1.7 Divisors

In this section we will introduce divisors, and prove basic results about them.
Divisors are a powerful tool when studying curves in general, but we will
restrict our attention to only cover what we need to define the Weil pairing
in Section 1.8. Our goal in this section will be to give necessary and sufficient
conditions for a divisor to be principal.

Definition 1.21. We define the divisor group of E, denoted Div(E) to be
the group of formal sums

∑
P∈E nPP with nP ∈ Z, where only finitely many

nP are non-zero, i.e. it is the free abelian group generated by the points on
E. An element of Div(E) is called a divisor of E.

Next we will define an important quantity associated to every divisor.

Definition 1.22. Let D ∈ Div(E). We define the degree of D to be∑
P∈E nP . We denote the degree of D by deg(D).

There are certain divisors that are of particular interest to us, and they
will play a central role when we define the aforementioned Weil em-pairing
in Section 1.8. These are the divisors that arise from rational functions on
E:

Definition 1.23. For a rational function f ∈ K̄(E), we define the divisor
div(f) of f to be

∑
P∈E ordP (f)P . A divisor D ∈ Div(E) such that D =

div(f) for some f ∈ K̄(E) is called a principal divisor.

Now we define an equivalence relation on Div(E) by identifying two
divisors if their difference is a principal divisor.

Definition 1.24. Two divisors D1, D2 ∈ Div(E) are said to be linearly
equivalent and we write D1 ∼ D2 if D1 −D2 is a principal divisor. That is,
D1 −D2 = div(f) for some f ∈ K̄(E).

It is readily checked that ∼ does indeed define an equivalence relation
on Div(E).

Definition 1.25 (Picard Group). We define the Picard group, denoted
Pic(E) to be Div(E) under the equivalence relation ∼.

The group Pic(E) is called the Picard group of E. We will now state
and prove a lemma which we will use to define a map between divisors of
degree zero and points on the elliptic curve. We shall denote the subgroup
of Div(E) consisting of divisors of degree zero by Div0(E).

Lemma 1.1. Let D ∈ Div0(E). Then there exists a unique P ∈ E satisfying
D ∼ P −O. Consequently, the map σ : Div0(E)→ E defined by D 7→ P is
well-defined, and ker(σ) = {div(f) | f ∈ K̄(E)}.
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Proof. In this proof we will use the Riemann-Roch theorem. For a divisor
D ∈ Div(E) and the vector space L(D) = {f ∈ K̄(E) : div(f) ≥ −D}, the
Riemann-Roch theorem says that dimK̄L(D) = deg (D).

We begin by proving uniqueness by showing that for P,Q ∈ E we have
P ∼ Q ⇔ P = Q. If P ∼ Q, then div(g) = P − Q for some g ∈ K̄(E),
so div(g) − P = −Q. Then we have g ∈ L(Q). Now K̄ ⊆ L(Q) since
div(k) = 0 ≥ −Q for any k ∈ K̄. However, by the Riemann-Roch theorem
dimK̄L(Q) = 1, so g ∈ K̄ and consequently P = Q.

To prove existence, consider the K̄-vector space L(D+O). By Riemann-
Roch, dimK̄L(D + O) = 1, so there exists a non-zero f ∈ K̄(E) such that
div(f) ≥ −D −O. Then f is a basis for L(D). Taking degrees we see that
deg(div(f)) = 0 and deg(−D−O) = −1. It follows that div(f) = −D−O+P
for some unique P ∈ E, as the only divisors of E that are positive and of
degree 1 are precisely the points of E. This proves that P ∼ D +O.

To conclude the proof of this lemma, we observe that for a divisor D ∈
Div0(E), we have D ∼ O if and only if D = div(f) for some f ∈ K̄(E).
Then it follows immediately that ker(σ) = {div(f) | f ∈ K̄(E)}.

The previous lemma showed that there exists a well-defined map σ send-
ing a divisor of degree zero to a point on an elliptic curve.

Proposition 1.16. The map σ : Div0(E) → E defined in Lemma 1.1 is a
group homomorphism.

Proof. See [31], Proposition III.3.4.

Corollary 1.2. Let D ∈ Pic0(E) and let P ∈ E be the unique point satis-
fying D ∼ P −O. Then the map σ : Pic0(E)→ E defined by D 7→ P is an
isomorphism of groups.

Proof. Let σ : Div0(E)→ E be the map from Proposition 1.16. It is easily
verified that σ is a surjective group homomorphism, and that ker(σ) = {D ∈
Div0(E) : D ∼ 0⇔ D = div(f) for some f ∈ K̄(E)}, so Div0(E)/ker(σ) ∼=
E and σ induces an isomorphism σ : Pic0(E)→ E.

Now we have the tools we need to determine necessary and sufficient
conditions for a divisor to be principal.

Proposition 1.17. A divisor D =
∑

P∈E nP (P ) ∈ Div(E) is principal if
and only if ∑

P∈E
nP = 0 and

∑
P∈E

[nP ]P = O

Proof. Assume D ∈ Div0(E). D ∼ 0 if and only if σ(D) = O where
σ : Div0(E) → E is the isomorphism from Corollary 1.2. Clearly we have
σ((P ) − (O)) = P , so σ(D) = σ(

∑
P∈E nP (P )) =

∑
P∈E [nP ]σ((P ) − (O))
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1.8 The Weil Pairing

In this section we will define the Weil em-pairing on the group of m-torsion
points on an elliptic curve E over K. Unlike the determinant pairing (which
we can define on any free module), the Weil em-pairing is Galois invariant.
It will be a key tool when we study the MOV attack in Section 3.1.2.

Lemma 1.2. Let T ∈ E[m], and assume T = [m]T ′ for some T ′ ∈ E. For
any Q ∈ E[m], we set

[m]∗(Q) =
∑

P ∈ [m]−1(Q)

(P )

Then the divisor D = [m]∗(T )− [m]∗(O) is principal.

Proof. Consider the set E[m] + T ′ = {R + T ′ : R ∈ E[m]}. Clearly
E[m] + T ′ ⊆ [m]−1(T ′). By Proposition 1.13, we have that #[m]−1(T ′) =
#[m]−1(O), so E[m] + T ′ = [m]−1(T ). Hence

D = [m]∗(T )− [m]∗(O) =
∑

P∈[m]−1(T )

(P )−
∑

P∈E[m]

(P )

=
∑

R∈E[m]

(R+ T ′)− (R)

It is obvious that deg(D) = 0. Now #E[m] = m2, so we see that the
divisor sums to O since [m]([m]T ′) = [m]T = O. By Proposition 1.17, D is
then principal.

Assume T ∈ E[m]. By Proposition 1.17, we can find f ∈ K̄(E) such
that div(f) = m(P )−m(O), and by Lemma 1.2 we can find g ∈ K̄(E) such
that div(g) = [m]∗(T )− [m]∗(O). We will use this to construct two rational
functions having the same divisor.

Lemma 1.3. Let T ∈ E[m] with T = [m]T ′ for some T ′ ∈ E. Let f, g ∈
K̄(E) be rational functions satisfying div(f) = m(T )−m(O) and div(g) =
[m]∗(T )− [m]∗(O). Then div(f ◦ [m]) = div(gm).

Proof. This follows from the straightforward calculations:

div(gm) = mdiv(g) =
∑

P∈[m]−1(T )

m(P )−
∑

P∈E[m]

m(P )

=
∑

P∈[m]−1(T )

(T )−
∑

P∈E[m]

O

= m2(T )−m2(O)

= m([m]T )−m([m]O)

= div(f ◦ [m])
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where the fourth equality holds because [m] is a separable map by Propo-
sition 1.13, so #[m]−1(T ) = deg([m]) = m2.

Now we have what we need to define the Weil em-pairing on E[m]:

Proposition 1.18. The map em : E[m]× E[m]→ µm defined by

em(S, T ) =
g(X + S)

g(S)

where g is determined by T and X ∈ E is arbitrary, is a well defined
map.

Proof. Let S ∈ E[m] and X ∈ E. Then g(X + S)m = f([m]X + [m]S) =
f([m]X) = g(X)m. Hence g(X + S)/g(S) is an m-th root of unity. To
show that it is independent of the choice of X, we observe that the map
E → P1 given by X 7→ g(X + S)/g(X) takes on finitely many values (since
g(X + S)/g(X) is an m-th root of unity), so the map must be constant by
Proposition II.2.3 in [31].

Now we will look at some important properties about the Weil em-
pairing, which will be central in the MOV-attack on an elliptic curve (see
Section 3.1.2).

Proposition 1.19. The Weil em-pairing has the following properties:

1. It is bilinear

2. em(T, T ) = 1 (alternating)

3. If em(S, T ) = 1 for all S ∈ E[m], then T = O (non-degenerate)

4. em(S, T )σ = em(Sσ, T σ) for all σ ∈ Gal(F̄q/Fq) (Galois invariant)

5. emm′(S, T ) = em([m′]S, T ) for all S ∈ E[mm′] and T ∈ E[m] (com-
patible)

Proof. See Proposition III.8.1 in [31].

Remark 1.1. If two m-torsion points Q,R ∈ E is in the same cyclic sub-
group generated by a point P ∈ E of order m, then em(Q,R) = em([k1]P, [k2]P )
for some k1, k2 ∈ Z, so em(Q,R) = em(P, P )k1k2 = 1 since em is bilinear
and alternating.

Remark 1.2. If E[m] ⊆ E(Fq), then the Galois invariance of the Weil em-
pairing gives that em(P,Q) = em(P σ, Qσ) = em(P,Q)σ for all P,Q ∈ E[N ]
and all σ ∈ Gal(K̄/K), so em(P,Q) ∈ K∗.
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1.9 Elliptic Curves over Finite Fields

So far we have looked at elliptic curves over an arbitrary field K. Elliptic
curves over finite fields are of particular interest in cryptography since they
can be represented on a computer. In this section, we will restrict our
attention to elliptic curves over finite fields. Our primary interest will be
the number of rational points on the curve. This quantity is interesting in
its own right, but it turns out to be of particular importance for elliptic
curves in cryptography. In the end of this section, we will briefly discuss the
endomorphism ring of elliptic curves over finite fields.

We begin with stating and proving a famous theorem by Hasse. The
theorem gives a bound on the number of rational points on an elliptic curve.

Theorem 1.2 (Hasse). Let E/Fq be an elliptic curve defined over a finite
field. Then

|#E(Fq)− q − 1| ≤ 2
√
q

Proof. Let φ be the q-th power Frobenius morphism. Then P ∈ E(Fq) if
and only if φ(P ) = P . This implies E(Fq) = ker(1−φ). 1−φ is a separable
map by Corollary 5.5 in [31], so #E(Fq) = deg(1 − φ). The degree map is
a quadratic form on End(E), so by the Cauchy-Schwartz inequality we get
|deg(1−φ)−deg(φ)−deg(1)| ≤ 2

√
deg(φ)deg(1) since deg(φ) = q (being the

q-th power Frobenius map), and deg(1) = 1 we get |#E(Fq)− q− 1| ≤ 2
√
q,

which completes the proof.

The theorem of Hasse essentially says that the number of Fq-rational
points on an elliptic curve E/Fq is close to q+1. The difference between this
and the actual number of Fq-rational points is called the trace of Frobenius.

Definition 1.26. Let E/Fq be an elliptic curve defined over Fq. We define
the trace of Frobenius of E/Fq be the quantity aq = #E(Fq)− (q + 1).

The next lemma gives an alternative description of the number of rational
points on an elliptic curve. Unlike Hasse’s theorem, it does not immediately
give us any estimate of this quantity. However, we will use it in Section 1.11
to determine the number of rational points on the so called quadratic twist
of an elliptic curve.

Lemma 1.4. Let E/Fq : y2z = f(x, z) be an elliptic curve over Fq, and let
χ : Fq → {1,−1} be the map

χ(x) =

{
1 if x is a square in Fq
−1 otherwise

Then

#E(Fq) =
∑
x∈Fq

(1 + χ(x)) = q +
∑
x∈Fq

χ(x)
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Proof. Assume P = (x0, y0, z0) ∈ E and z0 6= 0. Since we are allowed to
scale, we can take P to be the point P = (x0, y0, 1). Then it is clear that
(x0,±

√
f(x0, 1)), 1) ∈ E(Fq) if and only if f(x0, 1) is a square in Fq.

We will now turn our attention to the endomorphism ring of elliptic
curves over finite fields. From Corollary 1.1, the endomorphism ring of E
is of Z-rank 1, 2 or 4. In our search for elliptic curves that are suitable for
setting up a DLP, we would look for elliptic curves over finite fields with
an endomorphism ring of Z-rank 1, but the following result says that such
curves do not exist:

Proposition 1.20. Let E/K be an elliptic curve defined over a finite field
K. Then End(E) has Z-rank 2 or 4.

Proof. See the proof of Theorem V.3.1 in [31]. The theorem states that
when K is a field of positive characteristic, then End(E) is either an order
in a quaternion algebra or an order in a quadratic imaginary field. In these
cases, the Z-rank of End(E) must be 2 or 4, respectively.

The next best would then be to find elliptic curves E over a finite field
K with rankZEnd(E) = 2. Such elliptic curves do exist, and in fact, most
elliptic curves over a finite field K will have Z-rank 2.

1.10 The Formal Group of an Elliptic Curve

The motivation for introducing formal groups is the attack on anomalous
elliptic curves (see Section 3.1.1). The attack uses the formal logarithm
to reduce the elliptic curve discrete logarithm problem to almost a trivial
computation of an additive logarithm.

Definition 1.27. A formal group F over a ring R is a power series F (x, y) ∈
R [[x, y]] satisfying

1. F (x, y) = x+ y + higher degree terms

2. F (x, F (y, z)) = F (F (x, y), z)

We call F (x, y) the formal group law on F .

Next we define a notion of homomorphisms and isomorphisms between
formal groups:

Definition 1.28. Let F/R and G/R be formal groups over R with for-
mal group laws F (x, y) and G(x, y) in R[[x, y]] respectively. A homomor-
phism f : F/R → G/R is a power series f ∈ R[[t]] satisfying f(F (x, y)) =
G(f(x), f(y)). If there also exists a homomorphism g : G/R → F/R such
that f(g(t)) = g(f(t)) = t, then f and g are said to be isomorphisms.
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Example 1: Let R be a ring and let F (x, y) ∈ R[[x, y]] be the power
series F (x, y) = x+y. This is called the additive formal group and is denoted
Ga. It is arguably the simplest formal group, and the group operation on
Ga coincides with addition in R.

For arbitrary x, y ∈ R, it is in general no reason to believe that the power
series F (x, y) will converge. However, if R is a complete local ring with
maximal ideal M and x, y ∈ M, then the series will converge. It is then
readily checked that F (x, y) induces a group operation on the set M.

Definition 1.29. Let F/R be a formal group where R is a complete local
ring with maximal ideal M. We denote by F(M) the group (M,+) where
x+ y = F (x, y) for x, y ∈M.

1.10.1 Formal Groups and Differential Forms

We defined the formal group law F (x, y) of F/R in terms of the group law
on E. In this section we shall introduce formal differential forms which we
will eventually use to linearize the formal group law, and is analogous to how
differentiation is used as a linearization tool in elementary calculus. Formal
differential forms will play a key role in defining the formal logarithm.

Definition 1.30. The space of formal differential forms over a ring R,
denoted ΩR is the R-module generated by symbols dP (T ) with P (T ) ∈ R[[T ]]
subject to the conditions:

1. d(P (T ) +Q(T )) = dP (T ) + dQ(T )

2. d(P (T )Q(T )) = Q(T )dP (T ) + P (T )dQ(T )

3. da = 0 for all a ∈ R.

Proposition 1.21. ΩR is generated by dT as an R[[T ]]-module.

Proof. Let P (T ) = c0 + c1T + c2T
2 + c3T

3 + . . . ∈ R[[T ]]. Then d(P (T )) =
c1dT + 2c2TdT + 3c3T

2dT + . . . so d(P (T )) = (c1 + 2c2T + 3c3T
2 + . . .)dT ∈

R[[T ]]dT .

The proposition asserts that a formal differential form is just an expres-
sion P (T )dT for some P (T ) ∈ R[[T ]].

Definition 1.31. An invariant differential on a formal group F/R is a
differential form w(T ) = P (T )dT ∈ R[[T ]]dT such that w(F (T, S)) = w(T ),
or equivalently, P (F (T, S))dF (T, S) = P (T )dT .

An invariant differential is therefore a differential form that honors the
group structure of F/R. This is in some sense similar to the result from
elementary differential calculus where we have d

dx(x+ y) = dx.
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Definition 1.32. We say that an invariant differential ω(T ) = P (T )dT ∈
ΩF/R is normalized if it satisfies P (0) = 1.

Proposition 1.22. Let F/R be a formal group. There exists a unique
normalized invariant differential on F/R given by

ω(T ) =
d

dx
F (0, T )−1dT

where F is the power series in R[[x, y]] giving the formal group law on F/R.

Proof. See [31], Proposition IV.4.2.

1.10.2 The Formal Logarithm

An invariant differential is a differential form that respects the group struc-
ture of F/R, i.e a ”derivative” that honors the group law. We then naturally
wonder if integrating an invariant differential might yield a homomorphism
from F/R to the additive group Ga. It turns out that it does yield a homo-
morphism, but in general, it is not a homomorphism over the ring R.

Definition 1.33. Let R be a torsion-free ring, F/R be a formal group, and

ω(T ) = (1 + c1T + c2T
2 + · · · )dT

be the normalized invariant differential on F . We define the formal
logarithm of F/R to be the power series

logF (T ) =

∫
ω(T ) = T +

c1

2
T 2 +

c2

3
T 3 + · · · ∈ K[[T ]]

where K = R⊗Q.

Proposition 1.23. Let R be a torsion-free ring and let F/R be a formal
group. Then

logF : F → Ĝa

is an isomorphism of formal groups over K = R⊗Q.

Proof. Take ω(T ) to be a normalized invariant differential on F/R. Then
ω(F (T, S)) = ω(T ), and integrating this with respect to T gives (from the
definition of the formal logarithm) logF F (T, S) = logF (T ) + C(S). Now
setting T = 0, we see that ω(F (0, S)) = ω(S) = C(S). Then logF is
a homomorphism, and since integration introduces denominators, it is a
homomorphism over R⊗Q. By Lemma III.2.4 in [31], there exists a unique
power series expF (t) ∈ R[[t]] satisfying logF ◦ expF = expF ◦ logF = t, so
logF is an isomorphism of formal groups.
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1.10.3 The Formal Group Associated to an Elliptic Curve

We will now define the formal group of an elliptic curve E over a field K.
This will be a key tool when we describe the attack on anomalous elliptic
curves in Section 3.1.1. We shall assume in this section that K is a local
field complete with respect to a discrete valuation ν, and we let R denote
the associated discrete valuation ring of K. For simplicity, we also assume
char(K) > 3, so E is given by an equation

E : y2z = x3 + axz2 + bz3 (1.3)

for some constants a, b ∈ R. Note that the assumption that a, b ∈ R can
be made without loss of generality (see the discussion in 1.4 before Definition
1.15). We will study an elliptic curve E in a neighborhood of O. When doing
so, we will make the following change of variables

(x, y, z) 7→ (−x,−z, y) = (s, t, u)

“Near” the origin we can assume u = y is different from 0, so we can
divide by u. In (s, t, u)- coordinates, we get (s, t, u) = ( su ,

t
u , 1). Near (but

not at!) the origin, we can also assume that z = −t 6= 0, so since we are
allowed to scale, we can assume z = 1. Then the change of variables gives
a transformation (x, y, 1) → (−x

y ,−
1
y , 1). Now let z, w be variables, and

let z = s
u = −x

y and w = − 1
u = − 1

y . Then we get x = z
w and y = − 1

w .
Substituting the expressions for x and y back into (1.3) gives:

1

w2
=
z3

w3
+ a

z

w
+ b ⇒ w = z3 + azw2 + bw3

Now the idea is to repeatedly substitute this equation into itself and
hopefully get a power series in one variable. Let f(u, v) = z3 + azw2 + bw3.
We construct a sequence of polynomials {fi} by letting f1(z, w) = f(z, w)
and fi+1(z, w) = fi(z, f(z, w)).

Proposition 1.24. Taking the limit w(z) = limi→∞ fi(z, f(z, w)) produces
a unique power series in Z[a, b] [[z]] satisfying w(z) = f(z, w(z)).

Proof. We apply Hensel’s lemma, which we state and prove in Lemma 3.2
in Chapter 3. Set R = Z[a, b] [[z]]. Then I = (z) is an ideal, complete with
respect to R. Now let f(z, w) = z3+azw2+bw3, and set F (w) = f(z, w)−w.
Choosing a = 0, we have have that F (a) ∈ I3, and F ′(a) = −1 ∈ R∗. Then
Hensel’s lemma asserts the existence and uniqueness (since R is an integral
domain) of a power series w(z) ∈ R such that f(z, w(z))− w(z) = 0, which
is what we want to prove.

Using the relation x = z
w and y = − 1

w , we can express x and y as the
power series x(z) = z

w(z) and y(z) = − 1
w(z) . Then (x(z), y(z)) is a formal

solution to the (affine) equation y2 = x3 +ax+ b. Next we define the formal
group associated to E.
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Proposition 1.25. Let z1 and z2 be independent indeterminates. Then
there exists a formal group Ê/R with formal group law F (z1, z2) ∈ Z[a, b][[z1, z2]]
formally giving the group law on E. We call this group the formal group as-
sociated to E.

Proof. See [31], Chapter IV.1.

Since K is complete with respect to the discrete valuation ν, the subring
R of K is complete with respect to the maximal idealM = {x ∈ R : ν(x) >
0}. Thus, if the coefficients a and b from equation (1.3) are in M, then
the power series F (z1, z2) will converge for z1, z2 ∈ M and induce a group
Ê(M).

Remark 1.3. Note also that when a, b ∈ M, the power series x(z) and
y(z) will converge for z ∈ M, so we get a map Ê(M) → E(K) defined by
z 7→ (x(z), y(z), 1).

1.11 The Quadratic Twist of an Elliptic Curve

In software implementations of elliptic curve cryptosystems, a common fam-
ily of side-channel attack (see Section 3.1.4) are invalid-curve attacks. A
popular counter-measure is using so called x-coordinate ladders. An x-
coordinate ladder is a point multiplication algorithm that only depends on
the x-coordinate of a point. In this case, the only possibility for an invalid-
curve attack is on the quadratic twist.

Invalid-curve attacks are very easy to protect against in implementations,
as it it simply a matter of verifying that a point satisfies the given curve
equation. However, a paranoid curve designer devoid of any trust in the
security engineers responsible for implementing the elliptic curves may take
further precaution by enforcing twist security. A twist secure elliptic curve
is an elliptic curve where the quadratic twist satisfies the same security
requirements as the curve itself.

Definition 1.34. Let E/Fq : y2z = x3 + axz2 + bz3 be an elliptic curve.
Then the quadratic twist of E, denoted Ed is the curve Ed/Fq : dy2z =
x3 + axz2 + bz3 where d ∈ F∗p is a non-square.

As implied in the definition (by the use of the singular form“the quadratic
twist”), the quadratic twist of an elliptic curve is in fact unique. When prov-
ing this, we will make use of the following lemma.

Lemma 1.5. Let Fq be a field of odd characteristic, and let d1, d2 ∈ F∗q be
quadratic non-residues. Then there exists u ∈ F∗q such that d1 = u2d2.

Proof. This follows from the fact that the (normal) subgroup (F∗q)2 ⊆ F∗q has
index two in F∗q when Fq is a field of odd characteristic. For convenience,
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we set G = F∗q and H = (F∗q)2. Now let φ : G → G/H be the canonical
homomorphism. Then φ(x) 6= 1 if and only if x 6∈ H. Since H has index
two in G, it is clear that G/H ∼= µ2. Then for x, y ∈ G \ H we have
φ(xy) = φ(x)φ(y) = 1, so xy ∈ H. It follows immediately that for quadratic
non-residues d1, d2 ∈ F∗q , we have that d1/d2 = u2 for some u ∈ F∗q , so
d1 = u2d2.

Proposition 1.26. Let E/Fq be an elliptic curve and assume Fq has odd
characteristic. Let d be a non-square in Fq. Then the quadratic twist Ed/Fq
is unique up to isomorphism.

Proof. Let E : y2z = x3 +axz2 + bz3 be an elliptic curve, and let d1, d2 ∈ F∗q
be quadratic non-residues. We assume z 6= 0, so we can scale and assume
z = 1, so we have the elliptic curve E : y2 = x3 + ax + b. Consider the
quadratic twist Ed1 : d1y

2 = x3 + ax + b. Dividing by d3
1 and making the

change of variables x/d1 7→ x and y/d1 7→ y gives

y2 = x3 +
a

d2
1

x+
b

d3
1

⇔ d3
1y

2 = d3
1x

3 + ad1x+ b

Since d1 and d2 are both quadratic non-residues, we can find u ∈ F∗q such
that d1 = d2u

2 by Lemma 1.5. Substituting this into the above equation
gives:

d3
2u

6y2 = d3
2u

6x3 + ad2u
2x+ b

By Proposition 1.9, this elliptic curve is the same as the elliptic curve
we get when making the substitution u3y 7→ y and u2x 7→ x, so we get

d3
2y

2 = d3
2x

3 + ad2x+ b

Now we make a final change of variables d2x 7→ x and d2y 7→ y, and we
get

d2y
2 = x3 + ax+ b

which is the desired result.

Let E/Fq be an elliptic curve, and suppose there does not exist a point
P on E such that x(P ) = x0 for some x0 ∈ Fq. Then the next lemma
guarantees that such a point will exist on the quadratic twist of E.

Lemma 1.6. Let E/Fq : y2z = f(x, z) be an elliptic curve and let Ed/Fq : dy2z =
f(x, z) be it’s quadratic twist. Assume Fq has odd characteristic. If f(x0, 1)
is a non-square in Fq, so there does not exist a point P ∈ E where the
x-coordinate is equal to x0, then such a point will exist on Ed(Fp).
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Proof. We assume z 6= 0 since the only point on an elliptic curve with z = 0
is the origin, which is readily checked to be on both E and on it’s quadratic
twist. Hence we can scale, and assume z = 1. If f(x0, 1) is a non-square in
Fq, then by Lemma 1.5 we can write f(x0, 1) = y2

0d for some y0, d ∈ F∗q where
d is a quadratic non-residue. But then (x0, y0, 1) satisfies dy2z = f(x, z),
and since d is a quadratic non-residue, this equation describes the quadratic
twist of E (which is unique, by Proposition 1.26).

The next proposition and the subsequent corollary shows that there is
a strong correspondence between the number of points on an elliptic curve
and its quadratic twist.

Proposition 1.27. Let E/Fq : y2z = f(x, z) be an elliptic curve and Ed/Fq
it’s quadratic twist. Then #E(Fq) + #Ed(Fq) = 2q + 2.

Proof. By Lemma 1.4, we have:

#E(Fq) + #Ed(Fq) = q + 1 +
∑
x∈Fq

χ(f(x, 1)) + q + 1 +
∑
x∈Fq

χ(df(x, 1))

= 2q + 2 +
∑
x∈Fq

χ(f(x, 1)) + χ(df(x, 1))

= 2q + 2

where the map χ is defined as in 1.4, and the last equality holds since
χ(f(x, 1)) = −χ(df(x, 1)) when d ∈ F∗p is a non-square.

Corollary 1.3. Let E/Fq and Ed/Fq be an elliptic curve and its quadratic
twist. Assume #E(Fq) = q + 1 + t, then #Ed(Fq) = q + 1− t.

Proof. This follows immediately from the previous proposition.

1.12 The Twisted Edwards Form of an Elliptic
Curves

We previously defined an elliptic curve as a smooth curve on Weierstrass
form. In cryptographic applications, the existence of efficient point addition
and multiplication algorithms are essential. As it turns out, a carefully cho-
sen representation of a curve can reduce the number of operations required
to perform point addition, and thus speed up implementations.

Another reason for looking into elliptic curves on forms different from
the usual Weierstrass form, is that the group law in the Weierstrass form is
rather complex. Consequently, the addition formula can be difficult to get
right when implementing it in cryptosystems. This can render the system
vulnerable to side-channel attacks (see Section 3.1.4).
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In this section we will look at the Twisted Edwards curves. In 2007,
[11] introduced a family of curves known as Edwards curves, and also de-
fined an addition law for these curves. An Edwards curve is a curve of the
form (x2 + y2)z2 = c2(z4 + x2y2), and was shown to be birationally equiva-
lent to a certain type of elliptic curves known as Montgomery curves. The
Twisted Edwards curve is a generalization by [3] of the Edwards curve and
the Edwards addition law, and it was shown that every Montgomery curve
is birationally equivalent to a Twisted Edwards curve.

Definition 1.35. A Twisted Edwards curve over a field K is a curve in
P2(K̄) given by an equation of the form

Ea,d : ax2z2 + y2z2 = z4 + dx2y2

with a, d ∈ K∗ and a 6= d.

Proposition 1.28 (Addition Law on Edwards Curves). The map +: Ea,d×
Ea,d → Ea,d given by (x1, y1, z1) + (x2, y2, z2)→ (x3, y3, z3), where

x3 = λ(x1y2 + x2y1)(λ2 − µ)

y3 = λ(y1y2 − ax1x2)(λ2 + µ)

z3 = (λ2 − µ)(λ2 + µ)

where λ = z1z2 and µ = dx1x2y1y2 defines a group law on Ea,d. If d is
a non-square, then the addition law is compelte in the sense that there are
no exceptional input where the group law fails to give a correct result.

Proof. As for the Weierstrass addition law, the Twisted Edwards addition
law can be verified using cumbersome but relatively straightforward algebra.
Details can be found in [11] and [4].

The only way for the addition law to be undefined at some points P =
(x1, y1, z1) and Q = (x2, y2, z2), is if the corresponding x3, y3 and z3 (as
given by the addition law) vanish simultaneously. This happens if and only
if λ ∈ {−1, 1}. We will closely follow the proof of Theorem 3.3 in [7] which
states that the addition law on Edwards curves is complete when d is a
non-square. We will do a completely analogous proof for Twisted Edwards
curve.

To ease notation, we will assume z1, z2 6= 0 and scale P and Q so that
we get z1 = z2 = 1. Then x1, y1 and x2, y2 satisfy the equations ax2

1 + y2
1 =

1 + dx2
1y

2
1 and ax2

2 + y2
2 = 1 + dx2

2y
2
2 respectively. Now we assume for

contradiction that λ ∈ {−1, 1}. Then

dx2
1y

2
1(ax2

2 + y2
2) = dx2

1y
2
1(1 + dx2

2y
2
2) (1.4)

= dx2
1y

2
1 + d2x2

1y
2
1x

2
2y

2
2

= dx2
1y

2
1 + λ2 = 1 + dx2

1 + y2
1

= ax2
1 + y2

1
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To derive our desired contradiction, we proceed with looking at the
squares (ax1 + λy1)2 and (ax1 − λy1)2 in turn.

(ax1 + λy1)2 = a2x2
1 + 2aλx1y1 + λ2y2

1 = a2x2
1 + 2aλx1y1 + y2

1

= dx2
1y

2
1(a2x2

2 + y2
2) + 2aλx1y1 = dx2

1y
2
1(a2x2

2 + y2
2 + 2ax2y2)

= dx2
1y

2
1(ax2 + y2)2

where the second equality follows from (1.4). If ax2 + y2 6= 0, then
d = (ax1 + λy1)2/(x1y1(ax2 + y2))2, which contradicts the assumption that
d is a non-square. Similarly we get

(ax1 − λy1)2 = a2x2
1 − 2aλx1y1 + λ2y2

1 = a2x2
1 − 2aλx1y1 + y2

1

= dx2
1y

2
1(a2x2

2 + y2
2)− 2aλx1y1 = dx2

1y
2
1(a2x2

2 + y2
2 − 2ax2y2)

= dx2
1y

2
1(ax2 − y2)2

If ax2 − y2 6= 0, then d = (ax1 − λy1)2/(x1y1(ax2 − y2))2, which again
contradicts our assumption that d is a non-square. If ax2+y2 = 0 = ax2−y2,
then x2 = y2 = 0, which implies that λ = 0. This is also a contradiction.

Proposition 1.29. Let Ea,d be the Edwards curve defined by ax2z2 +y2z2 =
z4 + dx2y2. Then the map

φ :

{ x 7→ (a− d)(z + y)x
y 7→ 2(a− d)(z2 + yz)
z 7→ zx(z − y)

is a birational map Ea,d → E, and where E is the elliptic curve defined
by y2 = x3 + 2(a + d)x2z + (a − d)2x. It has an inverse φ−1 : E → Ea,d
defined by

φ−1 :

{ x 7→ 2x(x+ (a− d)z)
y 7→ (x− (a− d)z)y
z 7→ y(x+ (a− d)z)

Proof. This is can be proved using straightforward but tedious algebra by
making the substitution defined by φ and plugging it in the equation defining
the Edwards curve. In [3], this is verified using the Sage computer algebra
system.

Remark 1.4. A Twisted Edwards curve is pretty close to being an elliptic
curve (being birationally equivalent to one). However, it fails to be isomor-
phic to an elliptic curve because it is singular at the points (1, 0, 0) and
(0, 1, 0). Blowing up the curve at these points will give an elliptic curve.
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We conclude this section by looking at an example.

Example 2: Let us look at the Edwards curve defined over the field F13

defined by:

Ea,d : ax2z2 + y2z2 = z4 + 2x2y2

This curve is birationally equivalent (over some finite extension of F13)
to the elliptic curve defined by:

E : y2z = x3 + 6x2z + xz2

Now we pick a point Q = (12, 2, 1) ∈ E, and we let f : E → Ea,d be a
birational map with inverse f−1 : Ea,d → E such that f is defined at Q and
f−1 is defined at f(Q). The elliptic curve E and the maps f and f−1 can
easily be computed using the TwistedEdwardsCurve-class that we have
implemented in Section B.1.1.

We shall now compare point multiplication of Q on E with the point
multiplication of f(Q) on Ea,d. Benchmarking the point multiplications
(see Section B.1.2) shows that the point addition on the Edwards curve is
roughly 30% faster than the point addition on the elliptic curve.
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Chapter 2

The Discrete Logarithm
Problem

In 1976 Whitfield Diffie and Martin Hellman proposed a key exchange scheme
based on the assumed hardness of the discrete logarithm problem. It allows
two parties to exchange keys over an insecure communication channel, and
today it is known today as the Diffie-Hellman key exchange scheme. Almost
a decade later, Taher Elgamal described a public-key cipher called ElGa-
mal which is also based on the assumed hardness of the discrete logarithm
problem.

In this chapter we shall review the discrete logarithm problem (DLP) and
the Diffie-Hellman key exchange scheme. We then consider three algorithms
for solving the discrete logarithm problem. Readers already familiar with
the basics of the discrete logarithm problem may want to skip to Chapter
3. We define the discrete logarithm problem:

Definition 2.1 (Discrete Logarithm Problem (DLP)). Let G be a cyclic
group generated by g. For y ∈ G, find n ∈ Z such that gn = y.

It is an unsolved problem whether the discrete logarithm problem can
be solved in polynomial time, but it is assumed to be difficult in general.
There are examples of groups where the DLP is easy. In the additive group
Z/nZ of integers modulo n, the DLP is trivial. Note that any finite abelian
group is isomorphic to a direct product of groups Z/nZ, in which the DLP
is trivial. Finding this isomorphism is on the other hand non-trivial, and is
equivalent to solving the DLP.

2.1 Diffie-Hellman Key Exchange Scheme

The Diffie-Hellman key exchange scheme uses the discrete logarithm problem
to allow two entities to securely exchange keys over an insecure communi-
cation channel. We assume Alice and Bob wants to establish a shared key
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over an insecure channel where the malicious Eve is eavesdropping. The key
exchange scheme works as following:

1. Alice and Bob fix the following system parameters; a finite cyclic group
G of large order, and a generator g for G.

2. Alice generates a secret number x ∈ N, and sends gx to Bob.

3. Bob generates a secret number y ∈ N, and sends gy to Alice.

4. Alice computes (gy)x = gxy.

5. Bob computes (gx)y = gxy.

Now Alice and Bob have established a shared secret key gxy = gyx.
Although Eve is eavesdropping the messages between Alice and Bob, Eve
does not know neither Alice’s private key, x, or Bob’s private key, y. Despite
Eve having knowledge of both gx and gy, she must know either x or y to
compute the shared secret gxy. Finding x or y is the discrete logarithm
problem, and is assumed to be difficult to solve.

A weakness of the Diffie-Hellman key exchange scheme is the lack of au-
thentication. If Eve is able to intercept and forge messages between Alice
and Bob, she can perform two separate key exchanges with Alice and Bob
without them knowing. Alice and Bob may then believe they have success-
fully made a key exchange with each other, when in reality they have both
exchanged keys with Eve.

2.2 General Attacks on the DLP

Next follows a description of two general attacks on the DLP, namely the
Pollard-ρ algorithm and the Pholig-Hellman algorithm. They are general in
the sense that they will solve the DLP in any cyclic group. In particular,
these attacks apply to the ECDLP.

2.2.1 The Pollard-ρ Algorithm

Now we will describe an algorithm due to Pollard [24]. The algorithm takes
advantage of a phenomenon known as the birthday paradox in probability
theory. The birthday paradox is not really a paradox, it is merely an obser-
vation that in a group of only 23 people, the probability that two or more
people in the group share birthday is over 50%. 1

Translated to our discrete logarithm problem, this means that the like-
lihood of having a collision in a small, randomly chosen subset of G, is
relatively (or for some, “paradoxically”) high, considering the difficulty of
finding the discrete logarithm of a random element in G when ord(G) is

1 This was apparently counter to some people’s intuition, so they called it a paradox.
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large. By collision, we mean in this case that two or more elements have the
same discrete logarithm. The next lemma shows that we can exploit such
collisions to compute the discrete logarithm.

Lemma 2.1. Let G be a cyclic group of order n generated by g. Let y = gm

for some m ∈ Z/nZ which we want to find. Assume we can find s, t, u, v ∈
Z/nZ such gsyt = guyv, and assume gcd(v − t, n) = 1. Then m = s−u

v−t .

Proof. Let gsyt = guyv. Then 1 = gs−uyt−v = gs−ugm(t−v) = gs−u−m(v−t)

and it follows that s− u = m(v − t) (mod n), so m = s−u
v−t .

We formalize our initial discussion about the birthday paradox by stating
a theorem which gives us the expected number of times we must shuffle an
element around before getting a collision. Before stating the theorem, we
state the following definition.

Definition 2.2. Let f : G → G be a surjective function, and let G = A1 ∪
B · · · ∪ AnC where A1, · · · , Ai are disjoint, non-empty sets. We say that
f is a shuffling function (with respect to {A1, . . . , An}) if f(x) has equal
probability of being in each of the n sets for every x ∈ G.

Theorem 2.1. Let G be a finite set, and let f : G→ G be a function. Define
a sequence of points xi = f(xi−1). Let T denote the largest integer such that
xT−1 occurs only once in the sequence {xi}, and let L denote the smallest
integer such that xT+L = xT . Then

(a) There exists an integer i ∈ [1, T + L] with xi = x2i.

(b) If f : G→ G is a shuffling function, then the expected value of T +L is√
π#G/2, where #G denotes the order of G.

Proof. See Theorem XI.5.3 in [31].

Pollard’s ρ-algorithm for computing the discrete logarithm is based on
finding collisions, and then computing the discrete logarithm using Lemma
2.1. The previous theorem is thus at the very heart of Pollard’s algorithm
since it gives us the expected number of steps required to find the discrete
logarithm.

Algorithm 2.1 (Pollard-ρ Algorithm). Let G be a cyclic group of order n
generated by g, and assume we want to solve the DLP gm = y for some
y ∈ G. Then the following algorithm solves the DLP in G:

1. Partition the set G into distjoint sets: G = A ∪B ∪ C.

2. Define the function

f(z) =

{ gz if z ∈ A
z2 if z ∈ B
yz if z ∈ C
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3. Compute the sequences zi = f(zi−1), wi = f(f(wi−1)) and the two
sequences corresponding to zi:

αi =

{ αi−1 + 1 if zi ∈ A
2αi−1 if zi ∈ B
αi−1 if zi ∈ C

, and βi =

{ βi−1 if zi ∈ A
2βi−1 if zi ∈ B
βi−1 + 1 if zi ∈ C

until we get zi = wi.

Proof. By construction of the sequences {zi} and {wi}, we see that wi = z2i.
We assume that f is a shuffling function. Strictly speaking, it is not a
shuffling function, but it is “close to being so” and it turns out it works
pretty good in practice. By construction of f , we see that zi = gαiyβi , and
by Theorem 2.1 we expect a collision after

√
π#G/2 iterations.

Pollard’s ρ-algorithm one of the fastest publicly known algorithms for
computing the discrete logarithm in arbitrary groups.

2.2.2 Pholig-Hellman Algorithm

We will now look at an algorithm commonly referred to as the Pholig-
Hellman algorithm. The Pholig-Hellman algorithm is particularly efficient
if the group order is smooth (that is, it factors complete into small prime
numbers). The basic idea is to solve the DLP in the subgroups Hi of the
group G, and use these solutions to formulate a congruence equation which
can be solved using the Chinese Remainder Theorem (CRT).

Theorem 2.2. Let G be a cyclic group of order n generated by g. Let H ⊆ G
be the largest subgroup of order m. Then the following procedure solves the
discrete logarithm problem can be solved in approximately O(

√
m) steps:

1. Let #G = n = p1 · · · pr be a factorization of the order of G.

2. Let gi = gn/pi, and find the discrete logarithms gxii = y for each i.

3. Use the CRT to solve the congruence equations xi = x (mod pi) mod-
ulo p1 · · · pr = n.

Proof. Let G be a cyclic group generated by g, and let |G| = n = p1p2 · · · pr.
For a given y ∈ G, we want to find x ∈ Z/nZ such that gx = y. For
every prime pi, let gi = gn/pi (note that gi has order pi). If we can find
x ∈ Z/nZ such that gx = y, then clearly we have that gxii = y where xi = x
(mod pi) for all i. Thus we can formulate a system of congruences given
by xi = x (mod pi). By the CRT, there is a unique n ∈ Z/nZ such that
x = x1x2 · · ·xr ∈ Z/nZ. This solves the DLP in G.
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2.2.3 Small Subgroup Confinement Attack

Let G be a large group of non-prime order n. A small subgroup confinement
attack is when an attacker is able to confine a DLP to a small subgroup in
which the problem can be solved, either by the use of an efficient algorithm
or by an exhaustive search. There are various ways, depending on the cir-
cumstances, in which an attacker can confine a DLP to a small subgroup.
We consider the attack on the Diffie-Hellman key exchange scheme proposed
by [18].

Assume Alice and Eve is doing a Diffie-Hellman key exchange and that
they use the encryption function EK(m) to encrypt a message m with a key
K. If Alice does not do proper checking, [18] demonstrated that Eve can do
the following procedure to reveal information about Alice’s private key:

1. Alice generates a public key yA = gxA and sends it to Eve.

2. Eve generates a public key yE = βgxE and where β is an element of G
of small order

3. Alice computes the session key K = yxAE = βxAgxExA and sends a
message c = EK(m) to Eve encrypted with the key K.

4. Eve exhaustively search for xβi such that ESi(m) = c which can be
done in ord(β) steps.

When Eve finds xβi such that ESi(m) = c, she has revealed xA modulo
ord(β). Eve can then repeat this process several times with a different β
each time, and formulate a system of congrurence equations which can be
solved using the Chinese Remainder Theorem.

2.3 The Index Calculus Algorithm

Now we will briefely describe the main steps involed in the Index Calculus
algorithm. A thorough description and analysis of the Index Calculus algo-
rithm is beyond the scope of this thesis, so our description will be brief, and
is only meant to give the reader an idea of how the algorithm works. An
in-depth description can be found in [14].

Assume we have a DLP in the group G = F∗p with g a generator. Then
gx = y for some g, y ∈ Fp and x ∈ N. In the index calculus algorithm,
one starts with selecting a factor base. The factor base is a relatively small
subset of F∗p for which we will find relations that we will hopefully be able
to use to solve our DLP.

Algorithm 2.2. The following probabilistic algorithm solves the DLP in

approximately O(ec
3
√

(log q)(log log q)2) steps, where c is a small constant [14]:

1. Choose an index base B = p1, · · · , pn consisting of primes smaller than
some given bound b.
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2. Pick a random α ∈ Z/(p − 1)Z and compute gα. If gα factors com-
pletely in B we find the factorization gα = pm1

1 · · · pmn
n .

3. We get the relation α = m1 logg(p1) + · · ·+mn logg(pn) (mod p− 1).

4. Continue until we get m linearly independent relations. Then we can
find logg(pi) for each i using basic linear algebra.

5. Find ξ ∈ Z/(p− 1)Z such that gξy factors completely in B.

6. Then we factor gξy = pr11 · · · prnn , and taking logarithms yields ξ +
logg(y) = r1 logg(p1) + . . . + rn logg(pn). Then we solve the DLP by
computing logg(y) = r1 logg(p1) + . . .+ rn logg(pn)− ξ.

When implementing the Index Calculus algorithm, a trade-off must be
made between the size of the factor base and the probability that you can
find ξ such that gξy factors completely in β. Intensive research has been
conducted on this trade-off, but it is beyond the scope of this thesis.
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Chapter 3

Elliptic Curves in
Cryptography

The security of the cryptosystems which we briefly mentioned in the previous
chapter is completely determined by the hardness of the DLP. The group F∗p
of units modulo p, has been a popular choice of group for setting up a DLP
due to its ease of implementation. However, because of the Index Calculus
algorithm, relatively large keys are required to achieve an acceptable level
of security. In many cases, for example on modern personal computers, this
need not be problematic since memory and computational power is vast. On
embedded devices, where bandwidth and/or computational power may be
limited, it can be a major problem.

This has led researchers to consider alternative groups for setting up the
DLP in the hope of finding groups where Index Calculus-like algorithms do
not exist. This would allow for smaller keys for the same level of security.
The group of points on an elliptic curve is believed to be precisely this,
and was independently suggested for use in cryptography by Neal Koblitz
and Victor S. Miller in 1985. Since 2005, it has seen widespread use in
cryptographic software. Now we define the elliptic curve discrete logarithm
problem.

Definition 3.1 (The Ellipic Curve Discrete Logarithm Problem). Let E/K
be an elliptic curve defined over K. Let P ∈ E(K), and let Q ∈ 〈P 〉 (i.e Q
is in the subgroup generated by all multiples of P ). The discrete logarithm
problem is to find m such that Q = [m]P .

As with the discrete logarithm problem, the elliptic curve discrete loga-
rithm problem (ECDLP) has been the subject of extensive research over the
past decades. In 2009, a decentralized digital currency named Bitcoin was
released as open-source software. At the time of writing, the total market
value of all bitcoins is an estimated 3.5 billion USD. The security of Bitcoin
relies on the assumed hardness of the ECDLP, so anyone capable of solving
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the ECDLP would essentially also be capable of stealing 3.5 billion USD
worth of bitcoins. Solving the ECDLP would in other words allow for one
of the greatest heist in history to take place. Hence, there is certainly not a
lack of incentives for solving the ECDLP.

In this chapter we will begin with describing attacks on the elliptic curve
discrete logarithm problem (ECDLP). Then we propose a set of security re-
quirements that elliptic curves should satisfy in order to be secure against
these attacks. In the end of this section, we will consider technical require-
ments that the elliptic curves should satisfy in order to facilitate efficient
implementations on a computer.

3.1 Attacking the Elliptic Curve Discrete Loga-
rithm Problem

Although there are no publicly known sub-exponential algorithms for solving
the ECDLP for arbitrary elliptic curves, there are some classes of elliptic
curves in which the ECDLP can be solved efficiently. For an elliptic curve
E to be suitable for use in cryptography, we require E to satisfy certain
conditions to ensure that these attacks either do not apply, or are inefficient.

In the next sections, we will give a mathematical description of known
attacks on the ECDLP with the intention of deducing security requirements
that E must satisfy in order to be suitable for use in cryptography. Our
main focus will be on the attacks that affect the ECDLP directly. Attacks
that exploit weak implementations (commonly referred to as side-channel
attacks), will be covered in less detail. In the end of this section, we will
consider a recently proposed attack on the ECDLP and a corresponding
security requirement made by [33].

3.1.1 The Anomalous Attack

Consider an elliptic curve E/Fp satisfying #E(Fp) = p. In other words,
these are elliptic curves over Fp where the trace of Frobenius is equal to
1. Such elliptic curves are called anomalous, and an attack on anomalous
elliptic curves was proposed independently by Smart [32], Semaev [28] and
Satoh-Araki [26]. For this reason, the attack is sometimes called the Smart-
ASS attack. The attack on anomalous elliptic curves is based on moving the
ECDLP to a formal group. Once we are in a formal group, we can use the
formal logarithm to almost trivially compute the discrete logarithm.

Lemma 3.1. Let K be a field complete with respect to a discrete valuation
ν. Suppose E/K is an elliptic curve over a field K, and assume E has
good reduction at ν. Let E1 denote the kernel of the reduction map πν ,
and let Ê(M) denote the formal group associated to E/K. Then the map
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E1(K) → Ê(M) given by O 7→ 0, (x, y, 1) 7→ −x
y is an injective group

homomorphism.

Proof. Assume E/K is given by a minimal Weierstrass equation. Now as-
sume a point P = (x, y, 1) ∈ E1(K). Since P is reduced to (0, 1, 0), we
must have that ν(x) < 0 or ν(y) < 0. From the curve equation and since
ν is a discrete valuation, we have that 2ν(y) = 3ν(x), so ν(x) < 0 if and
only if ν(y) < 0. Moreover, since 2ν(y) = 3ν(x) and 2 and 3 are co-prime,
we must have that 2ν(y) = 3ν(x) = −6r for some r ∈ N. This gives
ν(x) = −2r and ν(y) = −3r, and it follows that x

y ∈ M. Consequently, the

map E1(K)→ Ê(M) as given above is well defined. It is a homomorphism
since the group law on Ê(M) is defined from the group law on E, and it is
clearly injective (it admits an inverse −x/y 7→ (x, y, 1)).

Remark 3.1. One can show that the map given in the preceding lemma is
actually an isomorphism of groups.

Let K be a field complete with respect to a discrete valuation ν, and
let R be the discrete valuation ring associated to ν. Suppose m ⊆ R is
the maximal ideal in R, and that R/m ∼= Fp. If E/K and Ẽ/Fp are elliptic
curves such that πν(E) = Ẽ, we say that E is a lift of Ẽ modulo m. Similary,
if P ∈ E(K) is a point such that πν(P ) = P̃ , we say that P is a lift of P̃
(modulo m).

Now for points P̃ , Q̃ ∈ Ẽ(Fp) satisfying Q̃ = [m]P̃ , the idea of the
anomalous attack is to lift P̃ , Q̃ to points P,Q on a lifted curve E/K while
maintaining the relation Q = [m]P . If this can be accomplished, then we
can usually “move” the points into the formal group where we can recover
m by applying the formal logarithm.

Lifting Ẽ and the points P̃ , Q̃ ∈ E(Fp) is easy, and can be done using
Hensel’s lemma, which we will state shortly. Maintaining the relation that
Q = [m]P is however non-trivial. In fact, a key factor in the attack on
anomalous elliptic curves is that this relation is automatically preserved
when lifting P̃ and Q̃.

Lemma 3.2 (Hensel’s Lemma). Let R be a ring that is complete with respect
to some ideal I ⊆ R, and let F (w) ∈ R[w] be a polynomial. Suppose that
there is an integer n ≥ 1 and an element a ∈ R satisfying

F (a) ∈ In and F ′(a) ∈ R∗

Then for any α ∈ R satisfying a ≡ F ′(a) (mod I), the sequence

w0 = a, wm+1 = wm −
F (wm)

α

converges to an element b ∈ R satisfying

F (b) = 0 and b = a (mod In)

If R is an integral domain, then these conditions determine b uniquely.
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Proof. In this proof, we follow the exposition given in [31]. We will consider
the sequence {xn} = {wn− a} by replacing F (wn) with F (xn + a)/α. Then
we get the recurrence

xm+1 = xm − F (xm)

with x0 = 0, F (0) ∈ In and F ′(0) = 1 (mod I). Now we want to show
that xm+1 = xm (mod Im+n) for all m ≥ 0. First, we observe that xm ∈ In
implies that xm − F (xm) ∈ In. This is true because if F (x0) = F (0) ∈ In,
then the constant term of the polynomial F must be in In, which implies
that F (xm) ∈ In when xm ∈ In (since all the terms of F (xm) is in In).

Now we show by induction that xm = xm+1 (mod Im+n) for all m ≥ 0.
Assume xm = xm+1 (mod Im+n) holds for all m < n. For variables x and
y, the expression F (x) − F (y) will not have any constant terms, so we can
factor

F (x)− F (y) = (x− y)(F ′(0) + xG(x, y) + yH(x, y)) (3.1)

where G,H ∈ R[x, y]. Now we use the factorization

xm+1 − xm = (xm − F (xm))− (xm−1 − F (xm−1))

= (xm − xm−1)− (F (xm)− F (xm−1))

= (xm − xm−1)− ((xm − xm−1)(F ′(0)

+ xmG(xm, xm−1) + xm−1H(xm, xm−1))

= (xm − xm−1)(1− F ′(0)− xmG(xm, xm−1)

− xm−1H(xm, xm−1))

By the induction hypothesis xm − xm−1 ∈ In+m−1. Since F ′(0) = 1
(mod I), we have 1 − F ′(0) ∈ I, and since xm, xm−1 ∈ In ⊆ I, we have
that xmG(xm, xm−1) ∈ I and xm−1H(xm, xm−1) ∈ I. It follows that the
product (xm − xm−1)(1 − F ′(0) − xmG(xm, xm−1) − xm−1H(xm, xm−1)) =
xm+1 − xm ∈ Im+n which is what we wanted to show.

By assumption, R is complete with respect to I, so the sequence {xm}
converges to an element b ∈ In since wm ∈ In for all m ≥ 0. Taking the
limit as m→∞ on both sides of xm+1 = xm − F (xm) gives us the relation
b = b− F (b), so F (b) = 0.

Now we prove uniqueness of b under the assumption that R is an integral
domain. Assume there exists c ∈ In with F (c) = 0. Using the factorization
(3.1), we get F (b) − F (c) = 0 = (b − c)(F ′(0) + bG(b, c) + cH(b, c)). If
b 6= c, then (now we use the assumption that R is an integral domain)
F ′(0) = −bG(b, c) − cH(b, c) ∈ I which contradicts F ′(0) = 1 (mod I).
Hence we must have that b = c.

Hensel’s lemma is sometimes also called Hensel’s lifting lemma, and not
surprisingly, liftings are precisely what we shall use Hensel’s lemma for. Let
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Ẽ/Fp : y2z = x3+axz2+bz3 and assume P̃ ∈ Ẽ(Fp). Then P̃ is merely a root
of the polynomial f(x, y, z) = y2z − x3 − axz2 + bz3 modulo p, i.e f(P̃ ) = 0
(mod p), so f(P̃ ) ∈ (p). Now we can canonically lift the elliptic curve Ẽ
to an elliptic curve E′/Zp : y2z = x3 + axz2 + bz3 simply by considering
the coefficients of Ẽ as elements in Zp. The local ring Zp is complete with
respect to the p-adic valuation, and has the maximal ideal p = (p). It is
then easy to see that E′/Zp reduces to Ẽ/Fp modulo p.

Since the ring Zp is a complete local ring with maximal ideal p = (p),
we can use Hensel’s lemma to find a point P ′ ∈ E′/Zp with f(P ) = 0 which
also satisfies P ′ (mod p) = P̃ . Hence, we can use Hensel’s lemma to “lift”
the point P̃ ∈ Ẽ/Fp to a point P ′ ∈ E′/Zp which reduces to P̃ modulo p.
Just as we canonically lifted the elliptic curve Ẽ and the point P̃ to Zp,
E′/Zp and P ′ ∈ E′(Zp) can both be canonically lifted to an elliptic curve
E/Qp and a point P ∈ E(Qp). This is exactly what we are going to do in
the following attack on the ECDLP for anomalous elliptic curves.

Theorem 3.1 (Anomalous Attack). Let Ẽ be an elliptic curve defined over
Fp with #E(Fp) = p. Let P̃ , Q̃ ∈ Ẽ and Q̃ = [m]P̃ for some m ∈ N. Then
there exists a linear time algorithm for solving the ECDLP.

Proof. Use Hensel’s lemma to lift the points P̃ , Q̃ ∈ Ẽ(Fp) to points P,Q ∈
E(Qp). There is no reason to believe that the lifted points P and Q will
satisfy the relation Q = [m]P (in fact, one can show that only one of the
lifts will satisfy this relation). Let

R = Q− [m]P (3.2)

Clearly R ∈ E1(Qp) so by Lemma 3.1, it is in a formal group associated
to E. The points Q and P are not in the formal group, but [p]Q and [p]P
are, since #E(Fp) = p and the reduction map is a group homomorphism.
Taking the multiplication-by-p map on both sides of (3.2) gives

[p]R = [p](Q− [m]P ) = [p]Q− [m][p]P

Now all the terms in this equation is in the formal group. In this formal
group, we have the formal logarithm map which induces a map on the formal
group associated to E:

logE : E(pZp)→ pZp

Since R ∈ E1(Qp) we have logE(R) ∈ pZp. But then logE([p]R) =
plogE(R) ∈ p2Zp. Consequently, logE([p]Q) −m logE([p]P ) = 0 (mod p2),

so m = logE([p]Q)
logE([p]P ) (mod p).

Assuming that we have an efficient way of lifting points and computing
the formal logarithm, we can solve the ECDLP for anomalous elliptic curves
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over Fp. In the proof of the theorem, we saw that we only need to lift modulo
p2, and since we only need to know m modulo p, it is also easy to compute
the formal logarithm (we compute it modulo p2, and reduce).

Remark 3.2. It is tempting to try to generalize this attack to any curve
satisfying ord(P ) = q. By the theorem of Lagrange, #E(Fq) must be divisible
by p, but by Hasse’s theorem, #E(Fq) ∈ [q + 1− 2

√
q, q + 1 + 2

√
q], so this

is impossible. Thus ord(P ) = q ⇒ #E(Fq) = q.

3.1.2 The MOV Attack

For an elliptic curve E defined over a finite field Fp and points P ∈ E and
Q ∈ 〈P 〉, solving the discrete logarithm problem on E is to find m ∈ Z such
that [m]P = Q. Recall that the Weil eN -pairing is a bilinear, alternating,
non-degenerate and Galois invariant pairing E[N ]× E[N ]→ µN .

Assume P ∈ E(Fp)[N ] with P 6= O. Then by Proposition 1.6, the Z-
rank of E[N ] is either 1 or 2. If rankZ(E[N ]) = 1, then the next proposition
shows that the elliptic curve is anomalous, and we can use the technique
described in Section 3.1.1 to solve the ECDLP in linear time.

Proposition 3.1. Assume rankZ(E[N ]) = 1 and let P ∈ E(Fp)[N ] and
P 6= O. Then N = #E(Fp) = p.

Proof. By Proposition 1.6, P must generate a Fp-rational subgroup of order
N where p divides N . Then since p+ 1− 2

√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p by

the theorem of Hasse we must have that N = p since the order of P must
divide the order of #E(Fp). By a similar argument (or by Remark 3.2), we
get #E(Fp) = N = p.

If rankZ(E[N ]) = 2, then we can find linearly independent points on E.
This is necessary if we want to make use of the Weil eN -pairing, since the
pairing is trivial on elements in the same cyclic subgroup (see Remark 1.1).

Theorem 3.2 (The MOV Attack). Let P ∈ E(Fq)[N ] and T ∈ E[N ] be
linearly independent points on E. Then the ECDLP Q = [m]P can be
reduced to the DLP

eN (Q,T ) = eN ([m]P, T ) = eN (P, T )m ⊆ Fqd

in some finite extension Fqd of Fq of degree d.

Proof. In general, we have that eN (Q,T ) ∈ F̄ ∗q since the rational function we
used when defining the Weil em-pairing is in K̄(E). However, since #E[N ]
is finite, the image of eN is contained in a finite field extension of Fq. In
particular, the image of eN under the set where T is fixed and Q ranges over
E[N ] is contained in some finite field extension Fpd of Fp of degree d.
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Now we will show that eN (P, T ) is a primitive N -th root of unity. As-
sume the contrary. Then eN (P, T ) generates a subgroup of some order r.
By the bilinearity of the Weil eN -pairing, this implies that eN (P, T )r =
eN (P, [r]T ) = 1 for all T ∈ E[N ]. By the non-degeneracy of the Weil eN -
pairing, this implies that [r]T = O. Since T is chosen arbitrarily in E[N ],
we must have r = N . Hence eN (P, T ) is an N -th root of unity, and we have
reduced the ECDLP on E to the DLP eN (P, T ) = eN (P, T )m in the field
Fqd .

For the MOV-attack we are particularly interested in cases where the
degree d of the field extension of Fq is low. For example, if E[N ] ⊆ E(Fq),
then by Remark 1.2 it follows immediately that d = 1. As we will see in the
Section 3.1.5, d will usually be large, and so the reduced DLP will typically
be much harder than the original ECDLP. Now we shall give an explicit
expression for d, but first it is convenient to state the following definition.

Definition 3.2. Let G be a finite cyclic group. We define the embedding
degree of G in Fq to be the smallest integer d such that F∗

qd
contains a

subgroup isomorphic to G.

Proposition 3.2. Let G be a cyclic group of order N , and let d be the
embedding degree of G in the finite field Fq. Then d = ord(q) (mod N).

Proof. The group F∗
qd

has order qd − 1. Since it is a finite abelian group,

then if N | qd − 1 implies that F∗
qd

has a subgroup of order N . Hence, the
embedding degree of G in Fq is the smallest integer d such that N divides
qd − 1. Then qd − 1 = 0 (mod N) ⇔ qd = 1 (mod N), so d = ord(q). Since
all finite cyclic groups of equal order are isomorphic, the subgroup of order
N is isomorphic to G. Furthermore, d divides qd − 1 by the little theorem
of Fermat.

The MOV attack as we described it requires the computation of a linearly
independent point T ∈ E[N ]. This point may very well not be Fq-rational
(for example, if #E(Fq) is prime, it most certainly is not), and it may not
even be Fqd-rational. Hence, we risk having to work over a field extension
of Fq of high degree. The next result shows that adding the requirement
that gcd(q − 1, N) = 1 ensures that all torsion points are in a manageable
extension field of Fq.

Proposition 3.3. Let E/Fq be an elliptic curve defined over Fq. Assume
gcd(q − 1, N) = 1, and that N 6= 0 in Fq. Let d be the embedding degree of
µN in Fq. Then E[N ] ⊆ E(Fqd)

Proof. Let P ∈ E(Fq) be of exact order N , and choose T ∈ E[N ] such
that P and T are linearly independent, so {P, T} is a basis for E[N ]. Let
φ ∈ Gal(F̄q/Fq) be the q-power Frobenius map (which we defined in Section
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1.3). We recall that Gal(F̄q/Fq) acts on a point in E(Fq) by acting on its
coordinates, and that P ∈ E(Fq) if and only if P φ = P . Since P and T
generate E[N ], we have T φ = [a]P + [b]T for some a, b ∈ Z/NZ. From the
properties of the Weil eN -pairing, we get that

eN (P, T )q = eN (P, T )φ = eN (P φ, T φ)

= eN (P, [a]P + [b]T )

= eN (P, [a]P )eN (P, [b]T )

= eN (P, T )b

Since P and T are linearly independent, eN (P, T ) is a primitive N -th
root of unity. Then eN (P, T )q = eN (P, T )b implies that q = b (mod N).
Now we repeatedly apply φ to the point T , and we keep in mind that b = q
(mod N). This gives

T φ = [a]P + [q]T

T φ
2

= [a]P + [q]([a]P + [q]T ) = [a+ aq]P + [q2]T

T φ
3

= [a]P + [q]([a]P + [q]([a]P + [q]T ) = [a+ aq + aq2]P + [q3]T

...

T φ
d

= [a(1 + q + q2 + . . .+ qd−1)]P + [qd]T

Since qd = 1 (mod N) by assumption, and gcd(q − 1, N) = 1, we have
qd−1
q−1 = 0 (mod N). It is easily proved using induction on d that qd−1

q−1 =

1+q+q2 + . . .+qd−1. Then we must have 1+q+q2 + . . .+qd = 0 (mod N).
Since E[N ] ∼= Z/NZ× Z/NZ, every element in E[N ] has order at most N .

It follows that T φ
d

= [0]P + [1]T = T , so T is left fixed by the qd-power
Frobenius endomorphism. This happens if and only if T ∈ E(Fqd), and since
T was chosen arbitrarily, it is immediate that E[N ] ⊆ E(Fqd).

In cases where gcd(q− 1, N) 6= 1, an alternative to searching for a point
T linearly independent of P , is using a pairing that returns a primitive N -th
root of unity even for points where there is a linear dependence. The Tate-
Lichtenbaum pairing is an example of such a pairing, and it was suggested
used by Frey and Rück in [12]. Another advantage of the Tate-Lichtenbaum
pairing is that it only requires the evaluation of one rational function (the
Weil-pairing requires the evaluation of two rational functions), so it is twice
as fast as the Weil-pairing. For this reason, the Tate-Lichtenbaum pairing
is usually preferred in software implementations.

For a curve to be resistant against the MOV-attack, we need the reduced
DLP in Fpd to be at least as hard as solving the ECDLP. The best known
algorithms for solving the DLP in an arbitrary group G of order n can
compute the discrete logarithm in approximately O(2nb/2) steps, where nb
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is the number of bits needed to represent n. The Index Calculus algorithm

solves the DLP in Fpd in approximately O(ec
3
√

(log pd)(log log pd)2) steps. A
rough estimate then tells us that the embedding degree d of µN in Fp should
at least be greater than xx to prevent the reduced DLP from being easier
than the ECDLP.

3.1.3 Lifting Attacks and the Class Number Condition

The Index Calculus algorithm is in essence based on lifting a finite number
field to the ring of integers, Z, establishing a set of relations there, and
then using these relations to deduce the discrete logarithm. It is natural to
attempt a similar strategy when attacking the ECDLP, and this approach
turns out to be somewhat fruitful; if we can lift the points P̃ , Q̃ ∈ Ẽ(Fq)
where Q̃ = [m]P̃ to points P,Q ∈ E(K) where K is an algebraic number
field and the relation Q = [m]P is preserved, then it is relatively easy to
find m.

Example 3: Let E/Q : y2 = x3−3x−1 be an elliptic curve over Q. Let
P,Q ∈ E(Q) be non-torsion points with Q = [m]P for some m. Let Pp and
Qp denote the reduction of P and Q respectively at a prime p. We can solve
the ECDLP by solving the reduced ECDLP Qpi = miPpi for many i. Then
we will have mi = m (mod ord(Ppi)), and we apply the Chinese Remainder
Theorem to find m modulo

∏
i ord(Ppi). We consider the discrete logarithm

problem above with the given P and Q:

P = (2, 1, 1),

Q = (96730 · · · 13056,−93868 · · · 51296, 1)1

Reducing the points Q and P modulo 5 gives two points P5 = (2, 1, 1)
and Q5 = (4, 4, 1). The order of P5 is 7 and an exhaustive search reveals
that 4P5 = Q5. We continue this procedure with primes 7, 11, 13 and orga-
nize the results in the following table, where Pp and Qp again denotes the
reduction of P and Q respectively modulo p.

Prime Pp Qp ord(Pp) m (mod ord(Pp))

5 (2, 1, 1) (4, 4, 1) 7 4

7 (2, 1, 1) (4, 4, 1) 11 2

11 (2, 1, 1) (10, 10, 1) 7 4

13 (2, 1, 1) (12, 12, 1) 19 10

Using the Chinese Remainder Theorem we combine the residues 4, 2, 4, 10
and the moduli 7, 11, 7, 19 and obtain m = 200 which is easily verified to be
the correct answer.

1 36728 and 55093 digits are needed for a base-10 representation of the x- and y-
coordinate of Q respectively, so for the convenience of everyone, all but the 5 leading and
trailing digits of the x- and y-coordinate of Q have been omitted.
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When lifting the points P̃ , Q̃ ∈ Ẽ(Fq), we have the choice between lifting
to torsion points or non-torsion points. The next theorem, which is due to
Serre, shows that lifting the points P̃ and Q̃ to torsion points P,Q ∈ E(K)
appears unfeasible since it requires the degree of the algebraic number fieldK
over the rationals to be large, thus making it difficult to efficiently represent
field elements on a computer.

Theorem 3.3 (Serre). Let E/Q be an elliptic curve, and let K be an alge-
braic number field. Assume E(K) has a torsion point of exact order n. Then
there exists a constant c > 0 such that [K : Q] ≥ c#GL2(Z/nZ) = cn4.

Proof. See Chapter IV in [29] for a proof.

Example 4: Assume we want to set up a ECDLP, and that we require
128-bits security. In other words, we want the ECDLP to require approxi-
mately 2128 steps to solve when using the best algorithms known. Assuming
that the elliptic curve is not vulnerable to known attacks on the ECDLP,
the fastest algorithm for solving the ECDLP have a complexity of of O(

√
n)

where n is the group order. To protect against small subgroup attacks (see
Section 2.2.3), we choose an elliptic curve E such that there exists a point
P̃ ∈ Ẽ(Fq) of prime order and ord(P̃ ) ≈ 2256. Then by Theorem 3.3, lifting
P̃ and Q̃ = [m]P̃ to torsion points P,Q ∈ E(K) over an algebraic num-
ber field K, would require the degree of K over the rationals to satisfy
[K : Q] ≥ c · 21024 for some constant c > 0. This makes it unlikely that
lifting the points P̃ and Q̃ to torsion points over an algebraic number field
will lead to a practical attack on the ECDLP.

One might then hope to lift P̃ , Q̃ ∈ Ẽ(Fq) to non-torsion points on a
curve E/K, where the degree of K over the rationals is relatively small. We
shall see that in this case, we run into two separate problems. First, it is
difficult to lift to non-torsion points while preserving the relation Q = [m]P .
Second, the class number of K (which we shall define shortly) imposes a
lower bound on the degree of K over the rational which again makes it
difficult to even represent field elements on a computer unless the class
number is reasonably small. We will proceed with defining the class number
of K, but prior to this we need a couple of definitions:

Definition 3.3. Let K be an algebraic number field, and let R ⊆ K be its
ring of integers. We define a fractional ideal m of K to be a finitely generated
R-submodule of K. We define m−1 to be the fractional ideal {x ∈ K : xm ⊆
R}.

The claim that m−1 is a fractional ideal is somewhat bold, as it is not
immediately clear that it satisfies the requirement of being finitely generated
as an R-submodule of K. To see that it is, let x ∈ m. Then m−1x ⊆ R,
so m−1 ⊆ Rx−1. Since R is Noetherian, Rx−1 is finitely generated as a
R-submodule of K, so m−1 must be too.
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Definition 3.4. For two fractional ideals m, n of K, we define the product
mn to be the R-submodule of K generated by the set {mn : m ∈ m, n ∈ n}.

One can check that this operation, together with the notion of inverses
which we defined, give rise to a group operation on the set of all fractional
ideals of K. This prompts the following definition:

Definition 3.5. We define the ideal class group of an algebraic number field
K to be the group of fractional ideal of K. We define the class number of
K to be the order of the ideal class group of K.

In general, the class number of a field K need not be finite, but when K
is an algebraic number field, it can be proved to be finite. The interested
reader is referred to Theorem I.13.8 in [16] for a proof.

Let Ẽ/Fq be an elliptic curve, and suppose we want to lift Ẽ to an elliptic
curve over the rationals. When doing so, we want to preserve as much of
the structure of of Ẽ as possible, so we require that End(Ẽ) ∼= End(E).
However, such a lift may very well not exist. In these cases, the next best
thing would be to lift Ẽ to an elliptic curve over an algebraic number field
K. In the event that such a lift really does exist, the following theorem gives
a result that we will use to establish a lower bound on the degree of this
number field K over the rationals.

Theorem 3.4. Let E be an elliptic curve representing an isomorphism class
over C with End(E) ⊆ K, where K is an imaginary quadratic field. Then
[Q(j(E)) : Q] = [K(j(E)) : K] = hK where hK denotes the class number of
K.

Proof. See Theorem II.4.2 in [30].

Corollary 3.1. Let Ẽ/Fq be an elliptic curve, and let E/K be a lift of Ẽ to
a number field K. Assume End(Ẽ) is an order in an imaginary quadratic
field K̃, and suppose End(Ẽ) ∼= End(E). Then [K : Q] ≥ hK̃ where hK̃
denotes the class number of K̃.

Proof. Let Λ denote a representative for an isomorphism class of elliptic
curves over C with j(Λ) = j(E) and End(Λ) ∼= End(E). By Theorem 1.1,
End(E) is an order in some imaginary quadratic field K. By Theorem 3.4,
we have that [Q(j(Λ)) : Q] = hK, where hK denotes the class number of K.
Since j(Λ) = j(E) ∈ K, we must have that [K : Q] ≥ [Q(j(Λ)) : Q] = hK.

Furthermore, End(Ẽ) is also an order in some imaginary quadratic field
K̃. Since End(E) ∼= End(Ẽ), we have that End(E)⊗Q ∼= End(Ẽ)⊗Q, so
K ∼= K̃. But then hK = hK̃, so [K : Q] ≥ hK̃ which is the desired result.

There are no publicly known attacks on the ECDLP that exploits a
small class number. Regardless, the German Information Security Agency
(GISA) require the class number of the field in which End(E) is an order to
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be greater than 200 [2]. In Brainpool Standard Curves and Curve Genera-
tion [9], they require the class number to be greater than 10000000. They
claim that the paper [15] can be seen as an argument for the class number
condition. In this paper, an Index Calculus based attack on the ECDLP is
described for elliptic curves over an algebraic number field.

3.1.4 Side-Channel Attacks

Although elliptic curve cryptography is based on the hardness of the ECDLP,
caution must be taken to prevent attackers from exploiting weak implemen-
tations. There exists a plethora of various side-channel attacks on elliptic
curve cryptosystems, and we will only give a very brief description of two
classes of attacks.

Branching Attacks

Assume that an implementation is using the standard Weierstrass addition
law where point doubling and addition of distinct points is different. Now
consider the following implementation of the famous Double-And-Add algo-
rithm:

def double_and_add(P, n):

R = P

for b in map(int, bin(n)[2:]):

R = 2*R

if b == 1: R = R + P

return R

If an attacker can observe the power consumption, he can hope to de-
termine the individual bits of n from a power trace of the algorithm since
in each iteration, the power consumption in reality is a function of the bi-
nary value b. Similar but different attacks can be carried out by timing an
algorithm, or observing memory page faults.

Common to many side-channel attacks like this, is that they are often
able to use branching or special cases in the algorithm to deduce information
about some internal state or value. To counter side-channel attacks when
implementing point addition algorithms, a complete addition law, meaning
that it gives the correct result for any pair of points on the curve, is therefore
desirable. In [7], Bernstein and Lange give fast explicit formulas for an
addition law for points on Twisted Edwards curves which we described in
Section 1.12.
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Invalid Curve Attacks

Assume we have a curve given on short Weierstrass form E/Fp : y2 =
x3 + ax + b. Since the standard Weierstrass addition law does not involve
the constant b, the same addition law will work for any elliptic curve E′/Fp :
y2 = x3 + ax+ c with c ∈ Fp. Assume #E(Fp) is of prime order. Then it is
resistant to small subgroup attacks, and should be safe to use for example
in a Diffie-Hellman key exchange scheme (see Section 2.1). However, if the
implementation does not check that a point satisfies the curve equation, i.e
that a point is actually on the curve E, an attacker can provide a point P
on a different curve E′/Fp : y2 = x3 +ax+ c where P is of small order. This
is called an invalid curve attacks.

In some implementations, one uses so called x-coordinate ladders (e.g
the Montgomery ladder or the Brier-Joye ladder) to do point multiplication.
As the name suggests, they only depend on the x-coordinate of a point when
doing a point multiplication. This greatly reduces an attackers possibilities
for carrying out an invalid curve attack. In this case, the only possibility for
an invalid curve attack is on the quadratic twist (this follows from Lemma
1.6).

Assuming now that an implementation fails to check that a given point
satisfies the curve equation, and that a malicious participant in a Diffie-
Hellman key exchange scheme sends a point on the quadratic twist instead of
the intended elliptic curve. If this point is of small order, then the attacker
can solve the ECDLP by using a small subgroup attack as described in
Section 2.2.3. For this reason, SafeCurves [6] requires the quadratic twist of
an elliptic curve E to satisfy the same security requirements of E to protect
against invalid curve attacks by moving to the quadratic twist.

3.1.5 Curve Manipulation Attacks

Assume Alice and Bob wants to use an elliptic curve cryptosystem to com-
municate securely. Then they would typically use an elliptic curve proposed
by a third-party, which we will call Snake. Snake may be a government
agency or institution such as National Institute of Standards and Technol-
ogy (NIST). In the 2014 paper [5], Bernstein and others describe various
ways in which curve standards may be manipulated by Snake so that he can
generate seemingly secure curves that are vulnerable to attacks unknown to
the public.

We will use ideas from [5] to estimate how many Fp-isomorphism classes
that satisfies our security requirements. Except from the class number con-
dition in Section 3.1.3, our requirements on an elliptic curve E/Fp are given
by restrictions on 1) #E(Fp), the number of Fp-rational points on the el-
liptic curve, or equivalently, the trace of Frobenius and 2) the factorization
of #E(Fp). Hence, we need estimates for the probability that a randomly
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chosen elliptic curve satisfies these requirements.
The next theorem, which is due to Birch, gives an asymptotic estimate

of the number of Fp-isomorphism classes of elliptic curves over Fp where the
trace of Frobenius is in a given interval.

Theorem 3.5. Let p be a prime, and let Ep denote the set of Fp-isomorphism
classes of elliptic curves defined over Fp. For E ∈ Ep, let ap(E) = p + 1 −
#E(Fp) and set cos θp(E) =

ap(E)
2
√
p , then for all 0 ≤ α ≤ β ≤ π we have

lim
p→∞

#{E ∈ Ep : α ≤ θp(E) ≤ β}
#Ep

=
2

π

∫ β

α
sin2θdθ

Proof. See [8] for a proof.

In the previous sections we showed that elliptic curves over Fp with trace
of Frobenius ap ∈ {0, 1, 2} are vulnerable to attacks on the ECDLP. We will
estimate how many Fp-isomorphism classes of elliptic curves that are subject
to these attacks. Consider the following example:

Example 5: We will estimate the number of Fp-isomorphism classes of
curves E with ap(E) ∈ {0, 1, 2} for a couple of prime numbers. Hence, we
let α = cos−1( 2

2
√
p) and β = cos−1( 1

2
√
p). We use the previous theorem to

compute the (asymptotic) estimates:

#{E ∈ Ep : α ≤ θp(E) ≤ β}
#Ep

≈
∫ β

α
sin2(θ)dθ

We computed the asymptotic estimates for three consecutive 20-bit primes
and one 100-bit prime. Then we ran numerical experiments by generating
10000 random elliptic curves over Fp for the 20-bit prime numbers, and com-
puted an estimated probability that ap(E) ∈ {0, 1, 2}. The results are listed
in the table:

p Asymptotic Experimental

1048583 3.108484 · 10−4 6.0 · 10−4

1048589 3.108475 · 10−4 4.0 · 10−4

1048601 3.108457 · 10−4 7.0 · 10−4

1267650600228229401496703205653 2.827159 · 10−16 N/A 2

2In light of the asymptotic estimate for our 100-bit prime, we would have to test
approximately 1016 random elliptic curves for a numerical experiment to begin making
any sense. This is beyond what was feasible for us.
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So for elliptic curves defined over Fp with p given as above, very few of
the Fp-isomorphism classes satisfy ap(E) ∈ {0, 1, 2}. It is clear that as p
increases, then the fraction of Fp-isomorphism classes with ap(E) ∈ {0, 1, 2}
will be even lower.

In the previous example, we looked at the frequency of elliptic curves
E/Fp with ap(E) ∈ {0, 1, 2}. These elliptic curves are certainly vulnerable
to embedding attacks, but they are not the only elliptic curves that are
vulnerable to embedding attacks. Hence, a priori there could still be a
substantial fraction of curves that are vulnerable to such attacks. The next
theorem asserts that the (asymptotic) fraction of elliptic curves over Fp with
a low embedding degree is indeed very low:

Theorem 3.6. Let p be a sufficiently large prime number, and let K be a
positive integer with log(K) = O(log2 p). Let E ∈ Ep be randomly chosen,
and let N = #E(Fp). The probability that N | (pk − 1) for some positive
integer k ≤ K is at most p−1/(4κ+6)+o(1) where κ = log(K)/ log2(K).

Proof. See Theorem 3.1 in [19].

In [9] one of the requirements for an elliptic curve E/Fp is that #E(Fp)
is a prime number. We will follow a similar strategy as in [5] to estimate
how likely an elliptic curve is to satisfy this requirement. To do this, we
shall use the very famous Prime Number Theorem which we state here for
the convenience of the reader:

Theorem 3.7 (The Prime Number Theorem). Let π(x) be the number of

primes less than or equal to x. Then limx→∞ = π(x)
x/ln(x) = 1 or, equivalently,

π(x) ∼ x
ln(x) .

Proof. See Chapter VII in [23].

Example 6: We continue from where we left of Example 3.1.5. Let E/Fp
and let p be the prime from this example. In addition to the requirement
that ap(E) 6∈ {0, 1, 2}, we want to estimate the probability that a random
elliptic curve satisfy the Brainpool requirement that #E(Fp) is prime.

From Hasse’s theorem (see Theorem 1.2) we know that p + 1 − 2
√
p ≤

#E(Fp) ≤ p+ 1 + 2
√
p. Following the notation from 3.7, we let π(x) be the

prime counting function, so π(x) is the number of primes less than or equal
to x. Then by the prime number theorem we have

#{E ∈ Ep : #E(Fp)is prime}
#Ep

≈ π(p+ 1 + 2
√
p)− π(p+ 1− 2

√
p)

∼
p+ 1 + 2

√
p

log(p+ 1 + 2
√
p
−

p+ 1− 2
√
p

log(p+ 1− 2
√
p
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For the three 20-bit primes and the 100-bit prime from Example 3.1.5, we
get the following asymptotic and experimental estimates:

p Asymptotic Experimental

1048583 0.0669312988 0.0305

1048589 0.0669312733 0.0360

1048601 0.0669312224 0.0324

1267650600228229401496703205653 0.0146484375 0.005

For the numerical experiments, we generated 10000 random elliptic curves
over Fp for the 20-bit primes, and 1000 random elliptic curves for the 100-bit
prime. We then counted how many of the elliptic curves that satisfied the
requirement that #E(Fp) was prime. These experiments indicate that

πE(p) =
#{E ∈ Ep : #E(Fp) is prime }

#Ep

≈ 1

2
(

p+ 1 + 2
√
p

log(p+ 1 + 2
√
p)
−

p+ 1− 2
√
p

log(p+ 1− 2
√
p)

) (3.3)

is a good estimate for the number of Fp-isomorphism classes E where
#E(Fp) is prime. Assuming that this is indeed a fair estimate, then approx-
imately 0.3% of elliptic curve defined over a 256-bit prime fields satisfy the
Brainpool security requirement that #E(Fp) is prime.

The previous results and examples indicated that the class of weak ellip-
tic curves is relatively small. The requirement that the number of Fp-rational
points should be of prime order was by far the most difficult requirement to
satisfy. It was satisfied by roughly 3% of the elliptic curves over Fp when p
was 20 bits long, and roughly 0.5% of when p was 100 bits long. We used
these experiments to estimate that for elliptic curves defined over a 256-bit
prime field, the requirement that E(Fp) is prime is satisfied by approximately
0.3% of the elliptic curves.

Remark 3.3. Note that the Brainpool requirement that #E(Fp) is prime
is much stronger than our requirement that E(Fp) should have a point P of
large prime order. It is then reasonable to assume that there will be consider-
ably more isomorphism classes of elliptic curves that satisfy our requirement.

Continuing now our discussion in the beginning of this section, Snake has
a lot of curves to choose from when proposing elliptic curves for public use.
Although we estimated that only roughly 0.3% of the Fp-isomorphism classes
of elliptic curves over Fp satisfy the requirement that #E(Fp) is prime, it
is not unreasonable to assume that Snake has access to vast amounts of
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computational power. By Theorem 3.6, only a small fraction of elliptic
curves over Fp have a small embedding degree, so we only need to check this
condition when we have found a curve with #E(Fp) prime.

On a 64-bit Intel Core i5 1.60 GHz processor, we were able to compute
#E(Fp) for 10 different elliptic curves over a 256-bit field in less than 71 sec-
onds. This gives an average of approximately 7 seconds to compute #E(Fp)
for each curve. Curve generation is an embarrassingly parallel problem, so
multiple cores would give a linear speedup of this computation time. For
less than $600 USD, you can get a 16-core CPU from AMD that according
to the manufacturer can be overclocked 3 up to 3.10 GHz. This would give
an average time to compute #E(Fp) of 7

2·16 ≈ 0.22 seconds.
If Snake knows a secret vulnerability that applies to an ε fraction of all Fp-

isomorpism classes of elliptic curves over Fp and he is cheap enough to only
purchase this 16-core CPU from AMD, then Snake can test approximately
40000 curves in 24 hours. Assume that Snake’s curves must satisfy the
Brainpool requirement that #E(Fp) is prime. Within 24 hours, he can
expect to find a vulnerable curve that passes this security requirement if ε is
bigger than approximately 1/(0.003·40000) ≈ 0.0083. In a realistic scenario,
one would suspect Snake to have a much higher budget, and also more time
at hand.

Consequently, if Snake does not have malicious intents, he should provide
evidence that the elliptic curve is chosen randomly amongst the curves that
satisfy the publicly known security requirements. This can for example be
done by giving a detailed description of the curve generation process and
should also include a justification of any seeds used for random number
generation. Additionally, any such seeds used should also be hashed using
a presumed secure hash function like SHA2 or Keccak. This is done to
complicate the task of selecting “special” seeds to manipulate the random
generation of curves.

Several elliptic curve standards today (e.g [9, 21, 25]) claim that their
proposed curves are chosen pseudo-randomly. As an example, we will outline
the main steps involved in Brainpool’s curve generation process for an n-bit
elliptic curve over a prime field Fp [9]:

1. Use the n-first bits of Euler’s number e ≈ 2.71828 . . . as the seed, s.

2. Compute h = SHA1(s), and use this to deterministically choose a (i.e,
a is a function of h). Then check if −3 = au4 has a solution in Fp. If
not, update the seed s, and start over from 1.

3. Deterministically choose b from h, and check if the elliptic curve y2z =
x3 + axz2 + bz3 satisfy the security requirements. If not, update the
seed and start over from 1.

3Overclocking is a way of making a processor run at a higher clock frequency than
intended, usually at the expense of the processor’s life span.
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Even in this case, we see that there are several steps in the curve gen-
eration process that are in no means obvious. For example, how should
one deterministically choose the curve constants a and b from the hashed
seed s? How should the seed be updated when one of the tests involved in
the curve generation process fails? There are also several mathematical con-
stants aside from e (e.g π, cos(1), the golden ratio, Khinchin’s constant, etc)
that a curve generator just as easily could have chosen as “just a random
mathematical constant”. Accordingly, Snake is still left with considerable
choices when generating elliptic curves. This flexibility was demonstrated
in [5] where they, under similar constraints as the Brainpool curve genera-
tion process, generated a seemingly random elliptic curve having prescribed
properties.

3.1.6 A Proposed Binary Division Attack

In a fairly recent article, Verkhovsky and Polyakov [33] recommend avoid-
ing elliptic curves with #E(Fq) = 2 (mod 4). The reason for this being a
proposed binary division algorithm which they devised in the article. The
algorithm is as following:

Algorithm 3.1. Let Q = mP and assume P is not two-divisible, i.e there
does not exist a point R ∈ E(Fq) satisfying 2R = P . Let m = bnbn1 . . . b0 be
a binary expansion of m which we seek.

R := 0

i := 0

while R != 0 and R != P

if R is two-divisible

b_i := 0

else

b_i := 1

R := R - P

R := R / 2

i := i + 1

if R = 0 b_i := 1 else b_i := 0

In essence, this is just a reversed Double-And-Add-algorithm. It depends
on an efficient way to determine two-divisibility and to do point-halving.
Note that since the algorithm requires the point P to not be two-divisible,
the algorithm does not apply to curves where #E(Fp) is odd, since in this
case P = 2A for all P ∈ E(Fp) with A = [ q+1

2 ]P .
We state and prove the following result about the existence of two-

divisible points in E(Fp):
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Proposition 3.4. Let E/Fp be an elliptic curve, and assume P ∈ E(Fp) is
a point of odd order. Let D = {Q ∈ E(Fp) : 2Q = P}. Then #D ∈ {1, 2, 4}.
If #E(Fp) = 2 (mod 4), then #D = 2 and if #E(Fp) = 1 (mod 2) then
#D = 1.

Proof. Consider the map φ : E → E defined by Q 7→ [2]Q − P . Then
φ = τ−P ◦ [2] where τP is the translation-by-P map. Then D = ker(φ) ∩
E(Fp) = ker(τ−P ◦ [2]) ∩ E(Fp). Since τ−P is an isomorphism (with inverse
τP ), we must have that #ker(τ−P ◦ [2]) = #ker([2]) = 4. Consequently
#D ≤ 4.

Let E2 denote the set of 2-torsion points of E, and let E2(Fp) = E2 ∩
E(Fp). Then D = A + E2(Fp) where A = [ord(P )+1

2 ]P . It follows that
#D = #E2(Fp). Since E2 = ker [2] we have #E2 = 4. E2(Fp) is a subgroup
of both E(Fp) and E2, so #E2(Fp) must divide #E(Fp)) and #E2 = 4. The
only possibilities are #E2(Fp) = #D ∈ {1, 2, 4}.

If #E(Fp) = 2 (mod 4), then #E(Fp) does not divide 4, so we must
have #D ∈ {1, 2}. But since #E(Fp) is even, it has a point of order 2, so
#D = 2. By a similar argument, if #E(Fp) = 1 (mod 2), then #D = 1.

Now we will state and prove a lemma which we will use to prove Con-
jecture 1 in [33].

Lemma 3.3. Let P ∈ E(Fp) with ord(P ) odd. Then P is two-divisible by

the point A = [ord(P )+1
2 ]P . If #E(Fp) = 2 (mod 4), then P is two-divisible

if and only if ord(P ) is odd.

Proof. Set A = [ r+1
2 ]P . Then 2A = P , so P is two-divisible.

Suppose #E(Fp) = 2pr11 · · · prnn with pi odd primes. Then any P ∈ E(Fp)
can be written as a sum P = B+P1 +P2 + . . .+Pn, where B ∈ {O, Z} and
Z is the point of order 2, and Pi in a pi-group. Then 2P = 2(P1 +P2 + . . .+
Pn), and ord(2P ) = lcm(ord(2P1), . . . , ord(2Pn)) which is odd since each
ord(2P1) is odd. Consequently, if a point is two-divisible, then the order of
the point must be odd.

Verkhovsky and Polyakov state the following conjecture which is easily
proved:

Conjecture 1. Let an elliptic curve E/Fp be given on simple Weierstrass
form, and assume q = #E(Fp) = 2 (mod 4). Let P ∈ E(Fp) be given.
If (q/2)P = O, then P is divisible by two and the two points A ∈ E(Fp)
satisfying 2A = P can be computed as

A1 = [
q + 2

4
]P and A2 = [

q + 2

4
]P + Z

where Z is the point with y-coordinate 0. If (q/2)P = Z, then P is not
divisible by two.
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Proof. Since #E(Fp) = q with q = 2 (mod 4), we have q = 4n+ 2 for some
n ∈ N. But then q

2 = 2n + 1 which is odd, so ord(P ) must be odd. By
lemma 3.3, P is two-divisible. Assume [ q2 ]P 6= O, then P is of even order
ord(P ) = r so by lemma 3.3, it cannot be two-divisible. In this case we must
have that r

2 |
q
2 , so gcd(q/2, r) = r/2. But then ord([ q2 ]P ) = r

gcd(q/2,r) = 2,

so [ q2 ]P = Z since Z is the only point in E(Fp) of order 2.

From Proposition 3.4, it is clear that there will always be exactly two
possibilities for each point-halving when #E(Fp) = 2 (mod 4). A rough
estimate gives a complexity of at least O(2n) where n is the number of bits
needed to represent p. Verkhovsky and Polyakov claim in [33] that their
proposed binary division algorithm is efficient in some cases. Very little jus-
tification is given to this claim except from a few test runs of the algorithm
on elliptic curves defined over F23. Consequently, we will not take the sug-
gested security requirement that #E(Fp) = 2 (mod 4) into consideration
when generating elliptic curves for cryptographic applications.

3.2 Security Requirements

In light of the attacks presented in the previous section, we shall in this
section list requirements that elliptic curves should satisfy to be secure for
use in cryptographic applications. Throughout this section, E will always
denote an elliptic curve defined over a prime field Fp, and we assume we have
the ECDLP Q = [m]P for P,Q ∈ E(Fq). We make the following security
requirements:

1. E must not be anomalous. Anomalous elliptic curves are subject
to the attack described in Section 3.1.1. An anomalous elliptic curve
satisfies is a curve where #E(Fp) = q, or equivalently, curves where the
trace of Frobenius is 1. Anomalous elliptic curves are easily avoided
by checking that #E(Fp) 6= p. The number #E(Fp) of Fp-rational
points on E can be computed in polynomial time using the algorithm
described in Section A.1.

2. P must be of large prime order. To counter small-subgroups
attacks as described in Section 2.2.3, the order of P should be prime.
This requirements also prevents the Pholig-Hellman algorithm (see
Section 2.2.2) from efficiently computing the discrete logarithm.

3. E must be resistant to Weil/Tate-embedding attacks. Let N =
ord(P ). Then the ECDLP Q = [m]P can be embedded in a finite field
extension Fpd of Fp of degree d as described in Section 3.1.2. Since the
Index Calculus algorithm (see Section 2.3) can solve the induced DLP
in Fpd in sub-exponential time, we need d to be sufficiently large.
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4. Large class number. As demonstrated in Example 3.1.3, it is rea-
sonably easy to solve the ECDLP for an elliptic curve over Q. The
same attack applies to elliptic curves over any algebraic number field
K. No general algorithm for lifting E and the points P,Q to non-
torsion points on an elliptic curve over K while maintaining the rela-
tion Q = [m]P is publicly known today. From the results in Section
3.1.3, the requirement that the class number of the field in which
End(E) is an order is large makes it unlikely that E will be rendered
vulnerable if a future discovery of such an algorithm is made. It can
be seen as a way of “locking down” the ECDLP to the field Fp.

5. E should be pseudo-randomly selected. In Section 3.1.5 we saw
that it is relatively easy to generate elliptic curves satisfying most of the
security requirements. Consequently, a curve standard should provide
evidence that the proposed curves are randomly selected (amongst the
secure curves) to reduce the probability that the proposed curves are
vulnerable to secret attacks unknown to the public.

6. E should be birationally equivalent to a Twisted Edwards
curve Ea,d where d is a non-square. To counter branching attacks
(see Section 3.1.4), we require the addition law to be complete in the
sense that it should be defined for all pairs of points on the curve. This
limits an attackers possibilities for carrying out branching attacks, e.g
by conducting a power trace of the point multiplication algorithm.

7. E should be twist secure. The quadratic twist of E (see Section
1.11) should satisfy the same security requirements as E to counter
invalid-curve attacks, as described in Section 3.1.4.

Since we have no intentions of proposing a new curve standard, the
formulation in 2, 3 and 4 are intentionally vague when we say that the certain
quantities should be “large”, but without specifying what this really means.
Note that 5 is usually safe to neglect if you are generating elliptic curves
for your own use, for instance by using the software described in Chapter 6.
In this case, you have complete control over the curve generation process so
evidence of random generation is typically not needed.

3.3 Accelerating Elliptic Curve Cryptography

The group of points on an elliptic curve is attractive for setting up a discrete
logarithm problem since the absence of an Index Calculus-like algorithm
allow for smaller keys and less computational power for the same level of
security. Efficient algorithms for doing point multiplication are important
as they facilitate the use of even larger keys in exchange for little or no extra
cost.
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In this section we will look at elliptic curves and algorithms that allow
for particularly efficient implementations of elliptic curve cryptosystems. We
consider different ways of speeding up point multiplication on elliptic curves,
and requirements for enabling efficient point compression. Based on this,
we will recommending a set of technical requirements for elliptic curves in
cryptography.

3.3.1 Fast Point Multiplication

We shall consider two ways in which an elliptic curve can support fast point
multiplication. Both are based on the idea of moving the point multiplication
to curves in which it can be carried out faster than on arbitrary elliptic
curves.

Birationally Equivalent to a Twisted Edwards Curve

Assume E is an elliptic curve that is birationally equivalent to some Twisted
Edwards curve Ea,d. As we saw in Example 1.12, moving the point addition
to Ea,d can significantly speed up point multiplication. In the example, we
used the birational equivalence from Proposition 1.29 to move the point
multiplication from the elliptic curve and to the Twisted Edwards curve
where it can be done faster.

Isogenous to an Elliptic Curve with Fast Point Multiplication

Brier and Joye [10] suggested the use of isogenies to speed up point multipli-
cation on elliptic curves. Assume we have an elliptic curve E where we want
to do point multiplication, and suppose E is isogenous to an elliptic curve
E′ where we can do fast point multiplication. The idea is then to move the
point multiplication to the curve E′ where the point multiplication can be
done faster, do the multiplications there, and then pull it back. We proceed
with formalizing this idea.

Lemma 3.4. Let m ∈ Z, and let φ ∈ End(E) be an isogeny. Then φ◦ [m] =
[m] ◦ φ.

Proof. We have (φ ◦ [m])(P ) = φ(P + P + · · ·P ) = [m]φ(P ) = ([m] ◦ φ)(P ),
since an isogeny automatically honors the group structure on E.

Let φ : E → E′ be an isogeny of degree d = deg(φ). Then there exists
a dual isogeny φ̂ : E′ → E such that φ ◦ φ̂ = [d] ∈ End(E). Assume now
that we want to compute [dm]P for some m ∈ N and P ∈ E. It is clear that
[dm] = [d] ◦ [m] = (φ ◦ φ̂) ◦ [m]. By Lemma 3.4, [m] commutes with φ and
φ̂, so [dm] = φ ◦ [m] ◦ φ̂. Thus we obtain the following factorization of the
multiplication map:
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E E

E′ E′

[dm]

φ φ̂

[m]

The success of this approach is dependent upon a few factors:

1. The existence of curves satisfying our security criteria which are isoge-
nous to curves that allow for fast multiplication.

2. There must be enough of these curves so that there is a reasonable
chance that a curve is isogenous to such a curve.

3. The degree of the isogeny must not be too high (preferably 1).

Now we shall see that curves E : y2z = x3 +axz2 + bz3 satisfying a = −3
(mod 4) are precisely a family of curves which allow for faster implemen-
tations of point multiplication. For P = (x1, y1, z1) ∈ E the duplications
formula gives

2P = (x2, y2, z2), with

{ x2 = (3x2
1 + az4

1)2 − 8x1y
2
1

y2 = (3x2
1 + az4

1)(4x1y
2
1 − x2)− 8y4

1

z2 = 2y1z1

This requires 22 field multiplications. The following observation, due to
Brier and Joye [10], shows that the choice a = −3 reduces the number of
field multiplications required when doubling a point.

Observation 3.1. If a = −3 then x2 = (3x2
1 − 3z4

1) − 8x1y
2
1 = 3(x1 +

z2
1)(x1 − z2

1)− 8x1y
2 which reduces the number of field multiplications for a

point doubling to 17.

Assume φ : E → E′ is an isogeny between E and an elliptic curve E′

where we can do scalar multiplication fast. For this isogeny to be useful in
practice, we need the embedding degree of φ to be low.

Proposition 3.5. Assume p = −3 (mod 4). Then approximately half of
the isomorphism classes of elliptic curves are Fp-isomorphic to an elliptic
curve E/Fp : y2z = x3 +−3xz2 + bz3.

Proof. Let E′/Fp : y2z = x3 + axz2 + cz3 be an elliptic curve. If E and
E′ are isomorphic over Fp, then by Proposition 1.9, E and E′ are related
by a change of variables where x 7→ u2x with u ∈ F∗p. Expanding this and

equating the linear terms gives au−4 = −3, so u−4 = − 3
a . Thus E and E′

are isogenous if and only if − 3
a is a quartic residue in Fp.

We now show that p = −3 (mod 4) implies that x ∈ Fp is a quartic
residue if and only if it is a quadratic residue. This is a well-known result
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in number theory, but give a proof for convenience. It is clear that if x ∈ Fp
is a quartic residue, then it is also a quadratic residue. To show the other
implication, we first make the following observation:(

−1

p

)
= (−1)(p−1)/2 = (−1)(4n+2)/2 = (−1)2n+1 = −1

Hence, −1 is not a quadratic residue in Fp. Since the Legendre symbol

is a multiplicative function, it follows that
(
x
p

)
= −

(
x
p

)
for all x ∈ F∗p, so

either x or −x (but not both) is a quadratic residue in Fp. Assume now that
x ∈ Fq is a quadratic residue. Then x = y2 for some y. Then y or −y is a
quadratic residue, so z2 = y or z2 = −y for some z ∈ Fp. In any case, we
have x = y2 = z4, so x is a quartic residue in Fp. For a randomly chosen
a, the probability that − 3

a is a quadratic residue (and consequently also a
quartic residue) is approximately 1/2.

3.3.2 Efficient point compression

In implementations, for example in an elliptic curve based public-key cryp-
tosystem or a key exchange algorithm, there is often a need for transmitting
points across a network. On systems where bandwidth is limited, point
compression can be important for increasing performance.

Proposition 3.6. Let E/Fp : y2z = f(x, z) be an elliptic curve on Weier-
strass form. Assume p > 3 and p = 3 (mod 4). Let P = (x0, y0, z0) ∈ E
with z0 6= 0 (i.e P is not the point at infinity). Then y0 is uniquely deter-
mined by f(x0, z0)/z0 up to sign.

Proof. P = (x0, y0, z0) satisfies y2
0z0 = f(x0, z0), so y2

0 = f(x0, z0)/z0. Now

(y2
0)(p+1)/4 = y

(p+1)/2
0 since p = 3 (mod 4), and y

(p+1)/2
0 = y

(p−1)/2
0 y0 =

sign(y0)f(x0, z0)/z0 where the second equality follows from the little theorem
of Fermat.

Assume now that Alice wants to send the point P = (x0, y0, z0) to Bob.
By the preceding lemma, it is enough for Alice to send x0, z0 and a single
bit denoting the sign of y0. Bob can then easily compute y0 if he knows the
curve equation (which he typically does). Thus, the requirement that p = 3
(mod 4) allows for efficient point compression.

Note that in practical implementations one commonly uses affine coor-
dinates, and the point at infinity is handled as a special case. In these cases,
Proposition 3.6 reduces the number of bits needed to represent a point by
approximately 1/2.
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3.4 Technical Requirements

In light of the previous discussions and results, we shall recommend technical
requirements for elliptic curves for use in ECDLP-based cryptosystems. We
assume the elliptic curve is written on simple Weierstrass form

E : y2z = x3 + axz2 + bz3 (3.4)

We make the following technical requirements:

1. Fast point multiplication. The elliptic curve E can support fast
point multiplication by being isogenous to an elliptic curve E′ : y2z =
x3 +a′xz2 + b′z3 where a′ = −3, or by being birationally equivalent to
a Twisted Edwards curve. See Section 3.3.1.

2. Efficient point compression. Efficient point compression allow sys-
tems which for example have limited storage capacity or bandwidth
to efficiently store and/or transfer point on the elliptic curve. As we
describe in Section 3.3.2, choosing a base field Fp where p = 3 (mod 4)
allows for efficient point compression.

We have excluded a few technical requirements that some elliptic curve
standards make. The main reason for this is that we want the elliptic curves
to be “as randomly generated as possible”, so technical requirements where
there is little or no documentation of the alleged performance or implemen-
tation benefits have been excluded. 4

An example of this is the Brainpool requirement that require #E(Fq) <
q. In [9], they argue that this requirement is for the convenience of the
curve implementors, as in some cases the bit length of #E(Fq) may exceed
the bit length of p. However, by the theorem of Hasse (see Theorem 1.2),
the bit length of #E(Fq) can never exceed the bit length of q by more than
a single bit, and the actual bit length of #E(Fq) is easily checked by a curve
implementor.

4To be completely honest, there is also an element of distrust in the picture. A paranoid
(?) person may suspect that a poorly justified technical requirement in reality is designed
to trick the public into using an elliptic curve vulnerable to a “secret” attack. That is, the
“secret” attack might apply to elliptic curves satisfying this alleged security requirement.
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Chapter 4

Examples of Weak Elliptic
Curves

In this chapter we will look at concrete examples of weak elliptic curves that
are known to be weak in cryptography. The attacks on elliptic curves are
primarily attacks that are based on liftings to an elliptic curve over a field
where we have a notion of a logarithm, or an embedding attack, where the
group used to set up the ECDLP are embedded in a finite field in which
subexponential attakcs exist.

4.1 Elliptic Curves with #E(Fp) = p− 1

Proposition 4.1. Let E be an elliptic curve with #E(Fp) = p − 1. Then
any cyclic subgroup µN ⊆ E(Fp) has embedding degree 1 in Fp.

Proof. #µN = N divides #E(Fp), so 0 = p− 1 (mod N). Then p = 1 (mod
N), so ord(p) = 1 (mod N). By Proposition 3.2, the embedding degree is
1.

Example 7: Consider the elliptic curve defined by the equation

E/F107 : y2z = x346xz2 + 72z3 (4.1)

It is readily checked that #E(F107) = 106. We choose a point P =
(66, 45, 1) and a point Q = (90, 72, 1) ∈ (P ). Since gcd(#E(F107), p − 1) =
p − 1, we have little control over the torsion points of E, so instead of
potentially having to work over a big field extension of Fp, we will instead
apply the Tate-Lichtenbaum pairing, denoted τN . First, we randomly choose
a point R different from P and Q. We picked the point R = (63, 47, 1).
Then we compute τ106(P,R) = 56 ∈ F107 and τ106(Q,R) = 3 ∈ F107 (this
can be done using computer algebra software like Sage), and we get the DLP
56m = 3 in F107. We find the solution to be m = 43.
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4.2 Supersingular Elliptic Curves

Supersingular elliptic curves are a family of elliptic curves characterized by
having a large endomorphism ring. More precisely, the endomorphism ring
has Z-rank 4. The next result says that supersingular elliptic curves over
prime fields are precisely the curves where the trace of Frobenius is zero.

Proposition 4.2. Let E be an elliptic curve over a prime field Fp. Then E
is supersingular if and only if #E(Fp) = p+ 1.

Proof. Let #E(Fp) = p + 1 − a, so a is the trace of Frobenius. Clearly, we
have that a = p+1−#E(Fp) = p+1−deg(1−φ) since #E(Fp) = deg(1−φ)
by 1.15. But then we have

[a] = [p+ 1− deg(1− φ)] = [p+ 1]− [deg(1− φ)]

= [p+ 1]− ̂(1− φ)(1− φ) = [p+ 1]− (1− φ̂)(1− φ)

= [p+ 1]− ([1]− φ̂− φ+ φ̂φ) = [p+ 1]− [1] + φ̂+ φ− [deg(φ)]

= φ̂+ φ

Then we get φ̂ = [a] − φ which is separable if and only if a does not
divide p by Corollary III.5.5 in [31]. Hence, φ̂ is inseparable if and only if
a = 0 (mod p). Now one can show that φ̂ being inseparable is a neccessary
and also sufficient condition for E to be supersingular. Proving this is more
involved, and requires some theory that we have not covered. Details can
be found in [31], Theorem V.2.2.

Corollary 4.1. Let E be a supersingular elliptic curve defined over Fp.
Then any cyclic subgroup µN ⊆ E(Fp) has embedding degree 2 in Fp.

Proof. #µN = N divides #E(Fp), so 0 = p + 1 (mod N). Then p2 = 1
(mod N), so ord(p) = 2 (mod N) and consequently the embedding degree
is 2 by Proposition 3.2.

The previous proposition showed that supersingular elliptic curves over
prime fields Fp are vulnerable to the MOV-attack described in Section 3.1.2.
The next proposition shows that this is also true for supersingular elliptic
curves over Fq.

Proposition 4.3. Let E/Fq be a supersingular elliptic curve, and let P ∈
E(Fq) be an N -torsion point. Then the embedding degree of N in Fq is
always less than or equal to 6.

Proof. See Section 4 in [20]. They give an exhaustive list of the embedding
degree of supersingular elliptic curves, and it was shown that it must be
either 1, 2, 3, 4 or 6.
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Example 8: Consider the elliptic curve given by the equation

E/F103 : y2z = x3 + 61xz2 + 65z3 (4.2)

One can check that #E(F103) = 104, so E is supersingular by Proposition
4.2. Take P = (48, 39, 1) ∈ E(F103) and Q = (46, 20, 1) ∈ (P ) By Corollary
4.1, e104(E[104] × E[104]) ⊆ F1032 . We canonically lift the curve E and
the points P,Q to E(F1032) where F1032 = F103[x]/(f) for some irreducible
polynomial f ∈ F104[x] of degree 2. We find R = (78x + 37, 76x + 16, 1) to
be a 104-torsion point linearly independent of P . Now we compute the Weil
pairings e104(P,R) = 12x+ 42 and e104(Q,R) = 61x+ 79, and get the DLP
61x+ 79 = (12x+ 42)m in F1032 . Solving the reduced DLP gives m = 23.

4.3 Anomalous Elliptic Curves

Anomalous elliptic curves E/Fp satisfying #E(Fp) = p. In other words,
they are the elliptic curves with trace of Frobenius equal to 1. The attack on
anomalous elliptic curves (described in Section 3.1.1) involved lifting points
to an elliptic curve defined over a complete local field Qp. This may seem
impractical at first, but in the proof of Theorem 3.1, we saw that we only
have to lift modulo p2. We demonstrate the attack in the following example.

Example 9: Consider the elliptic curve

E/F101 : y2z = x3 + 12xz2 + 83z3 (4.3)

One can check that #E(F101) = 101, hence E is anomalous. Let P =
(1, 46, 1), and Q = (10, 71, 1) be points on E. We want to find m such that
Q = [m]P . We take the canonical lifting of E/F101 to E′/Qp. Now we want
to lift the points P,Q to some points P ′, Q′ ∈ E′(Qp) while maintaining the
relation Q′ = [m]P ′. From the proof of theorem 3.1 we saw that it is enough
to lift modulo p2.

We begin by lifting P modulo p2 using Hensel’s lemma. P ′ = (1+pu, 46+
pv, 1), with u, v ∈ F101. Now we want P ′ to be on the curve E′, it must
satisfy (4.3), so we get

(46 + pv)2 = (1 + pu)3 + 12(1 + pu) + 83 (mod 1012)

462 + 2 · 46pv = 1 + 3pu+ 12 + 12pu+ 83 (mod 1012)

92pv = 15pu+ 96− 462 (mod 1012)

92pv = 15pu+ 81p (mod 1012)

92v = 32u+ 81 (mod 101)

v = 32u+ 92 (mod 101)
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Next we lift Q modulo p2 in a similar way, so we let Q′ = (10 + ps, 71 +
pt, 1) with s, t ∈ F101. Obviously we also need Q′ to satisfy (4.3), so we get

(71 + pt)2 = (10 + ps)3 + 12(10 + ps) + 83 (mod 1012)

712 + 2 · 71pt = 103 + 300ps+ 120 + 12ps+ 83 (mod 1012)

142pt = 312ps+ 103 + 120 + 83− 712 (mod 1012)

142pt = 312ps+ 63p (mod 1012)

142t = 312s+ 63 (mod 101)

t = 15s+ 4 (mod 101)

Now by choosing some u and s, for example u = s = 1, we can find
the lifted points P ′ = (1 + 101, 46 + 101 · (32 + 92), 1) = (111, 2369, 1) and
Q′ = (10 + p, 71 + p(15 + 4), 1) = (111, 1990, 1). Now we compute the first
terms of the power series giving the formal logrithm of the group E′0:

logE(T ) = T + 25T 5 + 50T 7 + 96T 9 + 48T 11 + 80T 13 + . . . (4.4)

Since [p]P ′ and [p]Q′ are in the kernel of the reduction-modulo-p map,
we know that vp(−x

y ) > 0 where vp denotes the p-adic valuation. Hence, we
can neglect all but the first term in (4.4), and we get:

logE([p]Q′)

logE([p]P ′)
=
p · 35

p · 87
(mod p2)

=
35

87
= 48 (mod p)

It is readily checked that this is the correct answer.
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Chapter 5

Brainpool Standard Curves
and Curve Generation

In this chapter we take a closer look at the Brainpool curves [9]. We will
consider Brainpool’s security and technical requirements in light of the re-
quirements in Section 3.2 and 3.3. In Brainpool, all proposed elliptic curves
are over a prime field Fp.

Security Requirements Brainpool describes 6 security requirements that
an elliptic curve E over a prime field Fp must satisfy:

1. #E(#E(#E(Fp))) should prime. This is stronger than our Requirement 2
in Section 3.2. We only require E(Fp) to contain a subgroup of large
prime order. The requirement that #E(Fp) is prime implies that there
are no points in E(Fp) of order 4. It was shown in [4] that E cannot
be birationally equivalent to a Twisted Edwards curve in this case.

2. Immunity to Weil-/Tate-pairing. Requirement 3 in Section 3.2.
By Proposition 3.2, the embedding degree l of q = #E(Fp) in Fp equals
the order of q modulo p. Brainpool requires (q − 1)/l < 100, which
is a strong requirement. By the little theorem of Fermat, l must then
divide q−1, and Brainpool verifies the requirement by factoring q−1.
This is a time consuming operation as q− 1 is a big number (between
160 and 512 bits).

3. Trace not equal to one. Requirement 1 in Section 3.2.

4. Large class number. Requirement 4 in Section 3.2. Brainpool re-
quires the class number of the field in which End(E) is an order to be
larger than 10000000. Assume that an efficient algorithm for lifting
E to a number field K while preserving the relations in the ECDLP
was found. If #Fp ≈ 2256, then by Corollary 3.1, representing a single
element in K would require approximately 256 · 1000000 bits.
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5. Verifiably pseudo-random. Requirement 5 in Section 3.2. Brain-
pool gives a detailed and verifiable description of the steps involved in
the curve generation process.

6. Proof of Security. Brainpool requires a curve designer to provide
evidence that their proposed curve is not in the class of elliptic curves
that are vulnerable to known attacks on elliptic curves. One require-
ment is that the factorization of #E(Fp)− 1 is provided.

Technical Requirements In addition to the security requirements listed
above, the Brainpool standard also requires their curves to satisfy certain
technical requirements. Some of the requirements concern legal issues such
as Requirement 4 in [9]. This requirement states that primes used for con-
structing the base fields should not be a special form. This is to avoid
violations of patented fast arithmetic on the base field.

Other requirements (7 and 8) concern details on how elliptic curves
should be presented in curve standards to comply with industry standards.
We will not consider these requirements, as we regard them as beyond the
scope of this thesis. We shall however consider the following technical re-
quirements:

1. E should be Fp-isomorphic to a curve E′ : y2z = x3 + axz2 + bz3

with a = −3. This choice is stricter than the first alternative of
Requirement 1 in 3.3, where it is suggested to use an isogeny φ : E →
E′ of low degree. Requiring instead that φ is an isomorphism defined
over Fp, is equivalent to requiring the degree of this isogeny to be 1.

2. The base field Fp should satisfy p = 3 (mod 4). This requirement
is to allow for efficient point compression. We discussed this in 3.3.2,
and also stated this as Requirement 2 in Section 3.3.

3. #E(#E(#E(Fp) < p.) < p.) < p. Brainpool requires this to make it convenient for curve
implementers. In some cases, the bit length of #E(Fp) exceed the
bit-length of p, which can be inconvenient for implementers [9].

4. For each of the bit lengths 160, 192, 224, 256, 320, 384 and
512 one curve shall be proposed. Brainpool requires this since
there is a need for curves providing different levels of security. Our
software implementation (see Chapter 6) enables users to generate a
curve with an arbitrary bit length.
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Chapter 6

Implementing A Curve
Generation Software

In this chapter we present a program we have developed for generating strong
elliptic curves for use in cryptography. The program is written using the free
open source mathematics software system Sage, and generates strong elliptic
curves for use in cryptography. All curves are generated over a prime field Fp,
and all generated curves are birationally equivalent to a Twisted Edwards
curve (see Section 1.12).

Motivation

In practice, asymmetric cryptography is usually used in combination with
symmetric cryptography. Subsequently, it is desirable that the symmetric
and asymmetric cryptosystem offers roughly the same level of security. With
our software implementation, a user can generate an elliptic curve of any bit
length depending on the desired level of security.

Another advantage of generating your own elliptic curves as opposed to
using elliptic curves proposed in curve standards, is arguably that of trust.
As we discussed in Section 3.1.5, a malicious curve generator may propose
curves that are vulnerable to secret attacks that are unknown to the public.
Even in cases where the curve generator provide evidence that the curves
are generated pseudo-randomly, skepticism is not unfounded.

A third advantage of using this software is that you can generate curves
that only satisfy the requirements that you actually need. This is beneficial
since it relaxes unnecessary restrictions on the pseudo-random selection of
curves.

Curve Generation

The curve generation process is very simple. We randomly generate Twisted
Edwards curves, and check to see if the elliptic curve birationally equivalent
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with the generated Twiste Edwards curve satisfies a set of security and
technical requirements. For example, we require that the trace of Frobenius
should be different from 1 to protect against the attack described in Section
3.1.1.

Supported Security Requirements
We support the followings security requirements.

Requirement Description

Prime order. Large subgroup of prime order.
Non-Anomalous. Discard anomalous curves.
Embedding Resistance. Discard curves with low embedding degree.
Large Class Number Require the class number of the field in which

End(E) is an order to be large.

Supported Technical Requirements
The technical requirements are optional, and can be enabled and disabled
using flags when running the curve generation program. Since all the gen-
erated curves are birationally equivalent to a Twisted Edwards curve, they
automatically support fast multiplication as described in Section 3.3.1.

Requirement Description Flag

Point compression Support point compression --point-compression

Require #E(Fp) < p Overrun protection --overrun-protection

d is a non-square Complete addition law N/A

Generated Curves

We will now list a few curves that we generated using the software implemen-
tation. We generated Twisted Edwards curves over 128-bit, 160-bit, 256-bit
and 384-bit prime fields. We shall list them in order. We use a hexadecimal
representation of the curve coefficients and the prime modulus.

Twisted Edwards curve ax2z2 + y2z2 = z4 + dx2y2 over a 128-bit Fp
p 100000000000000000000000000000033
a 82c0cac816af7cb0872110811cbc3365
d -eee20941efa062b82118e632e4543a79

Twisted Edwards curve ax2z2 + y2z2 = z4 + dx2y2 over a 160-bit Fp
p 10000000000000000000000000000000000000007
a fec118ec92e92cd162a45d16b877d68651760df3
d -8bdcf869995980da7b923616cd76b72ba156e434
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Twisted Edwards curve ax2z2 + y2z2 = z4 + dx2y2 over a 256-bit Fp
p 100000000000000000000000000000000000000000000000000000000000001e7
a f100cda978eb6c4d25c841df9dc7405fbfae3369a113c370d206055d208c3c6e
d -48dfd9b2ac6e3be80fe4d8cd3553617bb83765f6ed408ae6e0c2e8aa5b985575

Twisted Edwards curve ax2z2 + y2z2 = z4 + dx2y2 over a 384-bit Fp
p 10000000000000000000000000000000000000000000000000000000000000000

000000000000000000000000000000e7
a -4fee1a963586ef8e10fc046ad6bc10e812542f1efd7adfc1524d577ab9f19450

0c3e8359389fd36a1979e0c213a0aea5
d b62e18f5b2c90050cc1804d71a247ec9bbe368156202a1b1be164a9abb2ccb05c

72f83ac382cec349fa8c526f46b8692

The prime moduli in all these curves look rather similar in that their
hexadecimal representation is made up of many zeros. The reason for this
is that the prime moduli for an n-bit prime was chosen to be the first prime
bigger than 2n.

Source Code

The source code is listed in the appendix. See Section B.2.
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Appendix A

Algorithms

In this section we will give a brief description of a few important algorithms
that we have used in the software implementation. In the implementation
we have used the Sage software system where the algorithms for doing field
arithmetic, these algorithms are already implemented, sometimes with var-
ious tweaks and optimizations.

A.1 Counting Points on an Elliptic Curve

An important characteristic of an elliptic curve over a finite field is the
number of rational points on the curve. Counting the number of Fq-rational
points on an elliptic curve is something that has been studied intensively
the last decades.

Consider the following naive algorithm for counting points on E(Fq) for
an elliptic curve E/Fq defined by y2z = f(x, z):

def count_points(f):

# We start at 1 to account for the point at infinity

count = 1

for x in range(q):

if is_square(f(x, 1)):

count += 2

return count

It requires at least O(q) operations, so it is exponential in the number of
bits in q. We will now look at Schoof’s algorithm [27] which computes the
number of points on an elliptic curve in polynomial time. At the very heart
of Schoof’s algorithm lies a few results and observations which we will now
state.
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Proposition A.1. Let τ : E(F̄q)→ E(F̄q) be the Frobenius map (x, y, z) 7→
(xq, yq, zq). Then τ satisfies the relation τ2− [aq]τ +q = 0 ∈ End(E), where
aq is the trace of Frobenius.

Now if l is a prime number and P ∈ E(Fq)[l] we have

(xq
2
, yq

2
, zq

2
)− [nl](x

q, yq, zq) + [q](x, y, z) = 0 (A.1)

where nl = aq (mod l). The basic idea is then to exhaustively search
for nl ∈ Z/lZ and check whether equation (A.1) is satisfied. Then we can
formulate a system of congruence equations that can be solved using the
Chinese remainder theorem. Since the individual points in E[l] will generally
be defined over rather large extension fields of Fq, we will instead make use
of what is known as the l-th division polynomial :

Definition A.1. We define the l-th division polynomial to be the polynomial
ψl(x) whose roots are the x-coordinates of all non-zero l-torsion points of E.

Instead of working with individual l-torsion points like we did in (A.1),
we will formulate the congruence equations with elements in the quotient
ring Rl = Fq[x, y]/(ψl(x), y2−f(x)). Since all l-torsion points will vanish on
the polynomials ψl(x) and all points on E satisfy y2 − f(x), we can surely
work in this quotient ring.

Although this significantly speeds up computations, Schoof, Elkies and
Atkin further developed this idea by substituting ψl with a polynomial fl ∈
Fq[x] that divides ψl. For a given l, this need not exist but in the cases
where it does exist, it allows us to work with polynomials of lower degree
and speeds up the arithmetic in Rl. This improvement of Schoof’s algorithm
is known as the Schoof-Elkies-Atkin algorithm, or simply the SEA algorithm.

A.2 Point Multiplication

A fundamental operation in elliptic curve cryptography is point multipli-
cation, i.e for P ∈ E, compute [m]P = P + . . . + P (m times). A naive
algorithm would be:

def add(P, n):

R = P

for i in range(n):

R = R + P

return R

Like our naive attempt at calculating the number of Fq-rational points
on an elliptic curve E/Fq, this algorithm is exponential in the number of
bits in n and thus useless in cryptography.
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def double_and_add(P, n):

R = P

for b in map(int, bin(n)[2:]):

R = 2*R

if b == 1: R = R + P

return R

For each iteration, the point R is doubled and if b = 1 we also do a regular
point addition. Thus the algorithm will do exactly dlog2(n)e doublings and
at most log2(n) point additions. This algorithm is then linear in the number
of bits of n.
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Appendix B

Code Listing

B.1 Edwards Curves

B.1.1 Edwards curves and Sage

We have written the following Python/Sage class for handling construction,
point addition and finding maps to/from an edwards curve and an elliptic
curve.

edwards curve.py

import collections

from sage.schemes.generic.scheme import Scheme, is_Scheme

from sage.schemes.plane_curves.projective_curve \

import ProjectiveCurve_generic

from sage.schemes.elliptic_curves.weierstrass_transform \

import WeierstrassTransformation

from sage.schemes.projective.projective_point \

import SchemeMorphism_point_abelian_variety_field

from sage.schemes.projective.projective_homset \

import SchemeHomset_points_abelian_variety_field

from sage.all import ProjectiveSpace, EllipticCurve

class TwistedEdwardsCurvePoint(SchemeMorphism_point_abelian_variety_field):

def __init__(self, curve, v, check = True):

self.curve = curve

if v == 0:

v = (0, 1, 1)

elif not isinstance(v, collections.Iterable):
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raise TypeError("Invalid point type")

if check:

a, d = self.curve.a, self.curve.d

x, y, z = v

if a*x**2*z**2 + y**2*z**2 != z**4 + d*x**2 * y**2:

raise TypeError("Coordinates %s do not define a point on %s" %

(v, curve))

point_homset = curve.point_homset()

SchemeMorphism_point_abelian_variety_field.__init__(

self, point_homset, v, check = False)

def __add__(self, rhs):

x1, y1, z1 = self

x2, y2, z2 = rhs

a, d = self.curve.ainvs()

A = z1*z2

B = A**2

D = d*x1*x2*y1*y2

x3 = A*(x1*y2 + x2*y1)*(B - D)

y3 = A*(y1*y2 - a*x1*x2)*(B + D)

z3 = (B - D)*(B + D)

return self.curve.point((x3, y3, z3), check = True)

def __mul__(self, n):

if n == 0: return self.curve.point(0)

if n == 1: return self

# Dumb point multiplication

if n < 80:

P = 0

for i in xrange(n):

P = P + self

return P

r = floor(log(n, 2))

d = n - 2**r
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P = self.double(r)

return P + self * d

def double(self, n):

x1, y1, z1 = self

x2, y2, z2 = self

a, d = self.curve.ainvs()

for i in range(n):

A = z1*z2

B = A**2

D = d*x1*x2*y1*y2

x3 = A*(x1*y2 + x2*y1)*(B - D)

y3 = A*(y1*y2 - a*x1*x2)*(B + D)

z3 = (B - D)*(B + D)

x1, y1, z1 = x3, y3, z3

x2, y2, z2 = x3, y3, z3

return self.curve.point((x3, y3, z3), check = False)

class TwistedEdwardsCurve(ProjectiveCurve_generic):

_point = TwistedEdwardsCurvePoint

def __init__(self, K, ainvs):

self.__base_ring = K

self.__ainvs = tuple(map(K, ainvs))

self.a, self.d = self.__ainvs

P2 = ProjectiveSpace(2, K, names=’xyz’)

x, y, z = P2.coordinate_ring().gens()

a, d = self.ainvs()

f = a*x**2*z**2 + y**2*z**2 - z**4 - d*x**2*y**2

ProjectiveCurve_generic.__init__(self, P2, f)

def __str__(self):

a, d = self.ainvs()

return "Twisted Edwards Curve defined by %dx^2 + y^2 = 1 - %dx^2y^2 " \

"over %s" % (a, d, self.base_ring())
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def to_weierstrass_map(self):

"""

Returns a morphism from this Edwards curve to the associated

elliptic curve on Weierstrass form.

"""

P2 = ProjectiveSpace(2, self.__base_ring, names=’xyz’)

x, y, z = P2.coordinate_ring().gens()

a, d = self.ainvs()

E = self.associated_ec()

C = P2.subscheme(a*x**2*z**2 + y**2*z**2 - z**4 - d*x**2*y**2)

f = WeierstrassTransformation(C, E, [

(a - d)*(z + y)*x, # <-- x

(a - d)*2*(z**2 + y*z), # <-- y

z*x*(z - y) # <-- z

], 1)

return f

def from_weierstrass_map(self):

"""

Returns a morphism from the associated elliptic curve on

Weierstrass form to this Edwards curve.

"""

P2 = ProjectiveSpace(2, self.__base_ring, names=’xyz’)

x, y, z = P2.coordinate_ring().gens()

a, d = self.ainvs()

E = self.associated_ec()

C = P2.subscheme(a*x**2*z**2 + y**2*z**2 - z**4 - d*x**2*y**2)

f = WeierstrassTransformation(E, C, [

2*x*(x + (a - d)*z), # <-- x

(x - (a - d)*z)*y, # <-- y

y * (x + (a - d)*z) # <-- z

], 1)

return f

def associated_ec(self):
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"""

Returns the elliptic curve that is birationally equivalent to

this Edwards curve. That is, the elliptic curve given by

E: y^2 = x^3 + 2(a + d)x^2 + (a - d)^2x

"""

a, d = self.ainvs()

K = self.__base_ring

return EllipticCurve(K, [0, 2*(a + d), 0, (a - d)**2, 0])

def ainvs(self):

return self.__ainvs

def __call__(self, *args):

if len(args) == 1 and args[0] == 0:

R = self.base_ring()

return self.point([R(0), R(1), R(1)], check=False)

return self.point(*args, check=True)

def _point_homset(self, *args, **kwds):

return SchemeHomset_points_abelian_variety_field(*args, **kwds)

B.1.2 Benchmarking the Point Addition Algorithm

load(’edwards_curve.py’)

from sage.all import *

import random

K = GF(13)

ed = TwistedEdwardsCurve(K, [1, 2])

ec = ed.associated_ec()

Q = ec(12, 2, 1)

f = ed.from_weierstrass_map()

P = TwistedEdwardsCurvePoint(ed, f(Q))

timeit("P + P", number = 10000)

timeit("Q + Q", number = 10000)

$ sage edwards_test.sage

1000000 loops, best of 3: 19 microseconds per loop

1000000 loops, best of 3: 31.6 microseconds per loop
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B.2 The Software Implementation

main.py

#!/usr/bin/env sage

import sys

import time

from argparse import ArgumentParser

from sage.all import GF, is_prime, next_prime

from curve_generator import CurveGenerator

from trait_set import TraitSet

from traits import SecurityTrait, TechnicalTrait

class Main:

def __init__(self):

self.args = self.make_parser().parse_args()

self.curve_traits = self.make_curve_traits()

self.field_traits = self.make_field_traits()

def run(self):

start = time.time()

F = self.make_base_field()

curve = CurveGenerator(F, self.curve_traits).run()

# Save generated curve to file

with open(self.args.outfile, ’w’) as outfile:

outfile.write(str(curve) + ’\n’)

outfile.write(str(curve.associated_ec()) + ’\n’)

outfile.write("Elapsed time: " + str(time.time() - start))

def make_base_field(self):

if self.args.base_field != None:

F = GF(self.args.base_field, ’F’)

self.field_traits.check(F)

return F

p = next_prime(2**self.args.num_bits)

while not self.field_traits.check(GF(p, ’F’), nothrow = True):
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p = next_prime(p)

return GF(p, ’F’)

def make_curve_traits(self):

""" Security and technical requirements for the elliptic curve """

traits = TraitSet()

# Security requirements

traits.add_trait(SecurityTrait.PrimeOrderSubgroup)

traits.add_trait(SecurityTrait.NonTraceOne)

traits.add_trait(SecurityTrait.EmbeddingResistance)

# Technical requirements

if self.args.overrun_protection:

traits.add_trait(TechnicalTrait.OverrunProtection)

return traits

def make_field_traits(self):

""" Security and technical requirements for the base field"""

traits = TraitSet()

# Technical requirements

if self.args.point_compression:

traits.add_trait(TechnicalTrait.PointCompression)

return traits

def make_parser(self):

parser = ArgumentParser()

parser = ArgumentParser(add_help = False)

parser.add_argument(’--num-proc’, type=int)

parser.add_argument(’--point-compression’, action=’store_true’)

parser.add_argument(’--overrun-protection’, action=’store_true’)

parser.add_argument(’outfile’, type=str,

help=’A path to a file where the generated curve will be stored’)

# Add subparser for base field options

field_opts = parser.add_mutually_exclusive_group(required = True)

field_opts.add_argument(

’--base-field’,
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type=str,

help=’Base field for the curve operations (i.e: GF(11)’)

field_opts.add_argument(

’--num-bits’,

type=int,

help=’Select a random field with the given number of bits’)

return parser

if __name__ == "__main__":

main = Main()

main.run()

curve generator.py

from sage.all import EllipticCurve, parallel

from random_curve_iterator import RandomCurveIterator

class CurveGenerator:

"""

Generate a curve over a field F of characteristic different from 2 and

3, that passes a set of tests on the curve and base field.

"""

def __init__(self, F, curve_traits):

self.F = F

self.curve_traits = curve_traits

def run(self):

print("Starting curve generation...")

for tec in RandomCurveIterator(self.F):

ec = tec.associated_ec()

if self.check_curve(ec):

return tec

def check_curve(self, curve):

return self.curve_traits.check(curve, nothrow = True)

random curve iterator.py

from sage.all import EllipticCurve

from edwards_curve import TwistedEdwardsCurve
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class RandomCurveIterator:

def __init__(self, F):

self.F = F

def __iter__(self):

return self

def next(self):

if self.F.characteristic() < 3:

raise ArithmeticError("Only fields of characteristic > 3 is supported")

while True:

try:

a = self.F.random_element()

d = self._random_nonsquare()

tec = TwistedEdwardsCurve(self.F, [a, d])

aec = tec.associated_ec()

return tec

except ArithmeticError:

# The associated elliptic curve is singular. No biggie.

pass

def _random_nonsquare(self):

""" We want the addition law to be complete """

d = 1

while self.F(d).is_square():

d = self.F.random_element()

return d

trait set.py

class TraitError(RuntimeError):

pass

class TraitSet(object):

def __init__(self):

self.traits = []

def add_trait(self, trait):

self.traits += [trait]
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def check(self, ec, nothrow = False):

for pred, msg in self.traits:

if not pred(ec):

if nothrow: return False

else: raise TraitError(msg)

return True

traits.py

from sage.all import *

def embedding_degree(E):

""" Compute the embedding degree of E in F_p """

p = E.base_field().characteristic()

q = E.cardinality()

return Zmod(q)(p).multiplicative_order()

def cm_discriminant(E):

""" Compute the CM-discriminant of the field K in which

End(E) is an order """

p = E.base_field().order()

t = E.trace_of_frobenius()

a = t**2 - 4*p

s = 1

for f, m in factor(a):

if m % 2 == 0:

s *= f**m

D = a / s

if D % 4 == 1: return abs(D)

return 4*abs(D)

def has_prime_order_subgroup(E):

q = E.cardinality()

return q % 4 == 0 and is_prime(Integer(q / 4))

class SecurityTrait(object):

PrimeOrderSubgroup = (

lambda E: has_prime_order_subgroup(E),

"The subgroup of rational points is of non-prime order")
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NonTraceOne = (

lambda E: E.cardinality() != E.base_field().order(),

"The curve is of trace one (anomalous)")

EmbeddingResistance = (

lambda E: embedding_degree(E) > 5,

"The curve is of low embedding degree")

class TechnicalTrait(object):

PointCompression = (

lambda F: F.order() % 4 == 3,

"Base field is not congrurent 3 mod 4")

OverrunProtection = (

lambda E: E.cardinality() < E.base_field().order(),

"Number of rational points exceed field order")
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