
VoVis: A Vocabulary-based Web
Visualization Framework
Swati Sharma

Master Thesis

May 2015

VOV I S : A VO C A B U L A RY- BA S E D
W E B V I S UA L I Z AT I O N

F R A M E WO R K
swati sharma

M A S T E R T H E S I S

Institutt for informatikk
Universitetet i Oslo

May 

VoVis: A Vocabulary-based Web Visualization Framework ,
© Swati Sharma, May .

To my parents and my adorable son Shriyan,
for their Support and Inspiration.

A B S T R AC T

The amount of data in today’s digital world is growing day by day. Visual-
ization is considered as the best form of communication because the human
brain perceives it much faster than the text data that comprises with thou-
sand of words.

Because of the enormous and continuously increasing data, the demand
to visualize it is also increasing. Information visualization is a wide research
area that covers a broad range of data fields. There are various visualization
frameworks, tools and technologies are available in the market to present
different data. A visualization framework is a complete package that con-
tains several visualization processing stages i.e. data collection in different
formats, data filtration, data mapping, data processing and data visualiza-
tion. The important goal in visualization is to convey the information of data
correctly. This can be achieved by improving the user-friendly data mapping
mechanism. The state-of-art solutions lacks several features which are im-
portant in visualizing the data. This thesis has four important contributions.
First, it enumerates these features by referring available standards and tech-
nologies. Second, the feature requirements for a general web Visualization
framework are identified. Third, several existing frameworks are analyzed
and evaluated based on these requirement set. Fourth, an optimal solution
is stated, designed and developed as a vocabulary based web visualization
(VoVis) framework.

In this framework, to improve mapping mechanism and to support a broad
range of visualization types, the concept of vocabulary for visualization is
introduced and designed. The developed VoVis framework has a vocabulary
component (vocabulary and visualization libraries) which uses the standard
JavaScript libraries for visualization.

The VoVis framework is built as a web-based application which is a modern
and emerging technology and well known for low maintainability cost.

vii

AC K N OW L E D G M E N T S

First and foremost, I would like to express my sincere thanks and apprecia-
tion to my supervisor, Dr. Arne-Jørgen Berre, and Dr. Dumitru Roman, who
have provided invaluable guidance, expertise and support throughout the
development of this thesis. Their mentoring has helped me to think from a
technical perspective and enhanced the depth of my thesis.

I would like to extend my sincere thanks to my brother, Shashank for all
the technical guidance and support.

Last but not the least my husband, Sudhir for continuous support and in-
spiration.

Swati Sharma

Oslo, May .

ix

C O N T E N T S

 introduction 
. Problem Definition and Research Gaps 
. Pilot Cases . 

.. Citi-Sense-MOB . 
.. DaPaaS . 
.. Evaluation and Project Tasks 

. The Purpose of This Thesis . 
. Research Method . 
. Research Tasks . 
. Thesis Structure . 

.. Part I: Background Study 
.. Part II: The VoVis Framework 
.. Part III: Evaluation and Conclusion 
.. Part IV: Appendix . 

I background study 
 data visualization 
. What is Data Visualization ? 
. Scientific visualization . 
. Information visualization . 
. Visual Analytics . 
. Data Visualization in Daily Life 
. Types of Data . 
. Data Visualization Process . 

.. Importing Data . 
.. Filtering Data . 
.. Mapping Data . 
.. Rendering Data . 

 data visualization techniques and frameworks 
. Designing Effective Data Visualizations 
. Data Visualization Frameworks 
. Components of Data Visualization Techniques 

.. User Component . 
.. Data Component . 
.. Visualization Component 

 requirements for a data visualization framework 
. Requirements Analysis and Use Cases 

.. PLUQI : DaPaaS Use Case 
.. Citi-Sense-MOB Use Case 

. Visualization Requirements 
. Data Service Requirements 
. Web Framework Requirements 

xi

xii contents

. Usability Requirements . 
 evaluation of visualization frameworks and tools 
. Visualization Frameworks (Web-Based) 

.. Many Eyes . 
.. Visualize Free . 
.. Data Wrangler . 
.. Tableau Public . 
.. Weave . 
.. Evaluation of the Web-Based Visualization Frame-

works . 
. Visualization Libraries (JavaScript-Based) 

.. Data Driven Document (D) 
.. Google Charts . 
.. jqPlot . 
.. Flot . 
.. Evaluation of JavaScript Visualization Libraries . . . 

II the vovis framework 
 vovis : concept and design 
. Conceptual Architecture of a Web-based Framework 
. The VoVis: Design Overview 
. The VoVis Vocabulary Component 

.. Visualization Library 
.. RDF Visualization Vocabulary (VisVo) 
.. Types of Visualization 
.. Vocabulary Storage Format 

 prototype implementation of the vovis framework 
. The Controller: Grapher . 
. The Vocabulary Configuration File: gData 
. The User Interface: Home Page 
. The Data Analyzer: CSVParser 
. The Visual Mapper: dataDecorator 
. The Visual Displayer: plotChart 
. The VoVis: Database . 
. The VoVis: Server . 
. The VoVis: Source Code . 

III evaluation and conclusion 
 evaluation of the vovis framework 
. The VoVis Framework Experimental Setup 
. Results of the Experiment . 

.. Result of Test Scenario  
.. Result of Test Scenario  
.. Result of Test Scenario  
.. Result of Test Scenario  

. VoVis Framework Evaluation 
 contributions and future work 

contents xiii

. Meeting the Research Tasks . 
. Validation of the Hypothesis 
. Thesis Contributions . 
. Future Work . 

.. Extension of Data and Visualization Types 
.. RDF Vocabulary . 
.. Extension of VoVis . 

IV appendices 
a the vovis vocabulary 
b review of data visualization tools 
c the vovis prototype web application 
c. Steps to Start and Launch the VoVis Application 
c. Steps to Visualize the Data by the VoVis Application 

bibliography 

L I S T O F F I G U R E S

Figure  Queries in the Field of Data Visualization 
Figure  Visualization Categories 
Figure  Steps in a Visualization Process 
Figure  DaPaaS Use Case . 
Figure  PLUQI Home Page . 
Figure  Citi-Sense-MOB Map Visualization 
Figure  Citi-Sense-MOB Map Visualization on Web 
Figure  CitiSense MOB Line Graph Visualization 
Figure  Many Eyes . 
Figure  Visualize Free . 
Figure  Tableau Public . 
Figure  Weave . 
Figure  D Charts . 
Figure  Google Charts . 
Figure  Visualization using jqPlot Library 
Figure  Line Series using Flot Library 
Figure  MVC Process Diagram from Wikipedia 
Figure  Concept and Design of a Visualization Framework . . 
Figure  VoVis: Design . 
Figure  VisVo vocabulary . 
Figure  Area Graph . 
Figure  Bar Chart . 
Figure  Box Plot . 
Figure  Bubble Chart . 
Figure  Histogram . 
Figure  Multi-set Bar Chart . 
Figure  Population Pyramid . 
Figure  Radial Bar Chart . 
Figure  Scatter Plot . 
Figure  Span Chart . 
Figure  Arc Diagram . 
Figure  Venn Diagram . 
Figure  Pie Chart . 
Figure  Geo Chart . 
Figure  Flow Chart of the VoVis Framework 
Figure  CSV Parser (Data Analyzer) 
Figure  Data Decorator (Visual Mapper) 
Figure  plotChart (Visual Displayer) 
Figure  Data collected by Bike Sensor 
Figure  Filtered Data with AQI Measured by Bike Sensor . . . 
Figure  Filtered data with some air pollutant gases 

xiv

Figure  Filtered Data with Air Pollutant Gases and Time In-
terval . 

Figure  The VoVis framework shows the information of Multi-
set-bar . 

Figure  VoVis framework Visualizing Map 
Figure  VoVis framework Visualizing Box Chart 
Figure  VoVis framework Visualizing Multi-set Bar Chart . . . 
Figure  VoVis Framework as Mobile App 
Figure  VoVis Home Page . 
Figure  VoVis Input Data . 
Figure  VoVis Visualization . 
Figure  VoVis Processed Data 

L I S T O F TA B L E S

Table  Project Specific Tasks 
Table  Evaluation of Visualization Reqirements 
Table  Evaluation of Data Service Requirements 
Table  Evaluation of the Web Framework Requirements . . . 
Table  Evaluation of Usability Requirements 
Table  Overall Evaluation . 
Table  Evaluation of JavaScript Visualization Libraries 
Table  Evaluation of the VoVis framework for Visualization

Requirements . 
Table  Evaluation of the VoVis for Data Service Requirements 
Table  Evaluation of the VoVis for Web Framework Require-

ments . 
Table  Evaluation of the VoVis for Usability Reqirements . . 
Table  Overall Evaluation of the VoVis framework 

L I S T I N G S

Listing  JavaScript function to draw a chart using Google Charts 
Listing  JSON Structure for a single Area/Line/bar Chart . . . 

xv

xvi acronyms

AC R O N Y M S

VoVis Vocabulary-based Visualization

RDF Resource Description Framework

DaPaaS Data-and-Platform-as-a-Service

PLUQI Personalized and Localized Urban Quality Index

OWL Web Ontology Language

XML Extensible Markup Language

JSON JavaScript Object Notation

HTML HyperText Markup Language 

CSS Cascading Style Sheets

VA Visual Analytics

CSV Comma-Separated Values

InfoVis Information Visualization

AQI Air Quality Index

D Data Driven Documents

DOM Document Object Model

SVG Scalable Vector Graphics

API Application Programming Interface

WC World Wide Web Consortium

1
I N T R O D U C T I O N

A Good Sketch is Better than a Long Speech.

– Napoleon Bonaparte

This chapter lays the foundation for this thesis. First, the problem this the-
sis seeks to address is presented, and the current research gaps in the field of
data visualization are outlined. Second, the aims and tasks of this thesis are
discussed. Finally, the research method used, as well as the structure of this
thesis document, is described.

. problem definition and research gaps

Data visualization has become a vital part of our daily life, as it is a better
way of representing the information. The data visualization is the fastest way
to communicate the information to others. The visualization makes it easier
for the people to understand the complicated data, so they can interpret the
data in a better way. It is easy to spot the patterns even for the huge volume of
data []. Data visualization is a tool that helps to easily understand the data
patterns and the relationship between data through the visual presentations.
People can quickly express their thoughts and ideas through the visualization
and can share and communicate it with the others.

The most important aspect in a visualization framework is; how the vi-
sualization reflects the information one wants to convey through the visual
presentation. The data collection and data analysis are the necessary steps in
the process of communication of the data information.

The first step is to collect data from different sources in the different for-
mat. Visualization is an essential component of research presentation and
communication as it can work with large amounts of data and visualize the
data into an effective graphics []. Today the world is beyond the text data,
the volume of data is enormous, so are the data formats to present it. The CSV
format (tabular data) is the most commonly used format, that almost every
visualization framework supports. RDF is a model to represent enormous
and continuous data, RDF is gaining popularity, a few frameworks support
RDF format to visualize RDF data.

The second step is to understand data and to select the best way to repre-
sent it. The information that needs to communicate through the visual image

 RDF: http://en.wikipedia.org/wiki/Resource_Description_Framework



 introduction

should be clear. The output in any form of visualization should clearly de-
scribe the input data from the user and the developer perspective. To get the
best results from the visualization in terms of information, it is imperative to
select a correct visualization type. Many of the existing frameworks provide
semi or fully auto selection of charts according to the data, but the infor-
mation about each type of visualization is not considered. Figure  points
a few unanswered questions in the field of data visualization, that are also
mentioned in the following list.

. How to collect data from different sources?

. Who will consume the data?

. What type of data format to select?

. Which visualization type to choose for a particular data?

. Which visualization tool to select for visualizing the data?

. How to map the data with the selected visual type?

. How to access the processed data and the visual image?

Figure : Queries in the Field of Data Visualization

There are many visualization frameworks, applications and tools available
in the market to visualize the various types of data. However, only a few
frameworks support a broad range of types of visualization and data formats
and are very efficient in their work. These few frameworks can address most
of the questions defined above, but not all the questions. Even if the existing
visualization applications offer semi or fully auto selection of the visualiza-
tion types according to the data, the information is not clear for each type
of visualization. The choice of the visualization tools and frameworks mostly

. problem definition and research gaps 

depends on the user requirements. If the user requirements are not fulfilled,
developers in the project end up developing a new framework for the data
visualization instead of using the available frameworks, which is not desir-
able. There are some research gaps in the field of data visualization and web
framework that are discussed below.

. There is a broad range of data formats from CSV to RDF. Due to open
data, big data, the RDF format is gaining popularity but at the same
time the CSV format is used in almost every framework. The problem
is that most of the existing frameworks support a few data formats.
The RDF data is complex and requires a different mechanism for the
filtering and processing than the text data, so there are few frameworks
developed which focus only on the RDF data. It means there is a lack
of a generic framework that can support many data formats.

. A review of JavaScript based visualization libraries suggests that there
are various libraries that can visualize any data to any visual form.
Some of the libraries are best in their work which means using these
libraries one can present the data in a desired form in less time. They
are just tools, not a framework that the user can execute to generate vi-
sualization. The web framework that provides complete package right
from uploading of the data to final visual output can use the standard
visualization tools. Most of the frameworks develop their visual tools.

. The most important part of a data visualization is the mapping of data
to plot a visualization. If the data mapping is not done correctly, it can
ruin the information one wants to convey through the visualization.
Most of the frameworks do not provide a flexible and friendly data
mapping process, which makes the mapping process time-consuming
as the user first needs to understand the mapping process of a particu-
lar framework and then initiate the mapping. The information regard-
ing the data mapping is also not clear in most of the frameworks. The
data mapping process in the existing frameworks can be improved for
better visualization results.

. The number of visualization types a framework supports varies and
there are very few frameworks that support a broad range of visualiza-
tion types.

. Not all existing web visualization frameworks support features like cus-
tom labels. Custom labels provide more meaningful information to the
visual image. Only a few tools that support additional features over the
visual image.

 introduction

. pilot cases

In the following sections two projects are introduced as pilot cases, Citi-
Sense-MOB and DaPaaS, for defining a set of requirements. These projects
serve as examples to derive the use cases and subsequent requirements.

.. Citi-Sense-MOB

Air pollution and climate change are critical issues at present and are affect-
ing the whole environment. The two EU projects: Citi-Sense and Citi-Sense-
MOB will contribute in raising the public awareness on the link between cli-
mate change and air pollution, and on the impact of air pollution on health.

The primary objective of the Citi-Sense-MOB project is to develop a new
approach and services, mainly the mobile services to make the environment
cleaner. The focus will be on Oslo region for a start. The task can be achieved
by providing the citizens, and other stakeholders with the information re-
lated to the different air pollutant gases and the overall index as a air quality
index. In order to provide this information, Citi-Sense-MOB will create and
use an innovative technology, which will measure the levels of different air
pollutant gases and other parameters. This technology will help to calculate
air pollution at a particular location. Then the processed information will
be presented through the visualization to the users, developers, and stake-
holders, both on the web and mobile phone apps. The application must be
designed to support cross-device and platform compatibility. The architec-
ture of Citi-Sense-MOB[] describes the overall process flow. The use case of
Citi-Sense-MOB is further discussed in Section . to define a set of require-
ments.

.. DaPaaS

The goal of DaPaaS (data-and-platform-as-a-service) project is to deliver an
environment, where the developers can both publish and host data-sets, data-
intensive applications. These data can be accessed by the end-users and de-
velopers, through applications implemented in a cross-platform manner.

In the current scenario, the volume of data in every field is enormous, so
large number of datasets have been publishing in the form of open data, read-
ily available. At the same time, very few applications are there to utilize it, so
this project focuses on open data publication and consumption. This project
divides the work into layers to accomplish the goal.

The data layer (DaaS) will offer a publishing infrastructure by providing
components for the data analysis and API’s to access the data, and it will
work mostly with the RDF data.

 Citi-Sense-MOB: http://citi-sense-mob.eu/
 Data-and-Platform-as-a-Service: http://project.dapaas.eu/
 Citi-Sense: http://www.citi-sense.eu

. the purpose of this thesis 

The DaPaaS UX layer will interact with the users and developers through
user-friendly interfaces. These interfaces will provide the means for the users,
to access, navigate and explore the data both through the open data portals
and mobile services. A cross platform prototype will be designed, which will
create a user-friendly interface. The use case of DaPaaS is further discussed
in Section . to define a set of requirements.

.. Evaluation and Project Tasks

The projects mentioned above focus on different applications and research
areas. The collected data and its types also vary, but both the projects need
a visualization component to complete their task. In order to identify the re-
quirements for a framework, which should meet some of the needs of the
projects introduced, some example tasks are defined; tasks are labeled as
CSM for Citi-Sense-MOB and DP for DaPaaS. Table  explains the tasks for
each of the projects.

Name Task

CSM The system/project displays air pollution parameters
and climate change through the different types of visual-
ization

CSM A user interface is through the mobile app and supports
cross-platform

DP The system works mostly on the RDF data analysis and
visualization

DP The system works on a broad range of data, so the visu-
alization varies

DP The system develops a cross-platform prototype for the
user interaction

Table : Project Specific Tasks

From the above table, it is clear that the projects need a visualization frame-
work, which will support a broad range of types of visualization. The frame-
work should also support different data formats (RDF, CSV, JSON). These
points will help to define the actual problem analysis of this thesis.

. the purpose of this thesis

This thesis seeks to address the problems identified in the previous section.
The hypothesis of this thesis is:

"It is possible to have a generic visualization framework, that meets the need
to support a broad range of charts with improved data mapping technique for
cross-platform according to the identified requirements for data visualization, data
service, web framework and usability."

 introduction

The purpose of the thesis is to validate the hypothesis stated above, which
will address the problem defined. The thesis work is further subdivided into
six research tasks, which follows the standard technical methods. When the
thesis will finish all the identified tasks, it is evaluated to check whether the
hypothesis is valid or not.

. research method

The method of work used for this thesis and the related development is based
on the method for technology research []. Based on this method, the thesis
will undergo all the following steps:

problem analysis This step describes that there is a potential need for
a new or improved artefact. The problem defined in this thesis is that
the current field of data visualization is lack of a genric web-based vi-
sualization framework that supports all popular types of visualization
and data formats with a friendly mapping process. There is a need to de-
velop a new design i.e. vocabulary design, to have a better mapping pro-
cess, then using this vocabulary and other standard libraries to create a
new framework (VoVis). A list of requirements for the VoVis framework
will be identified based on the web framework, data, and visualization
components and also from pilot projects of SINTEF.

innovation The artefact that will be designed and implemented, is a vo-
cabulary based visualization framework also known as VoVis. It will
possess a vocabulary component, standard JavaScript libraries, a user
interface written in HTML and JavaScript and a controller to execute
the process flow. This artefact seeks to address the gaps in the data vi-
sualization research as discussed in Section . hence to validate the
hypothesis stated in Section .. VoVis will be developed and imple-
mented based on the set of requirements identified in the background
research study phase.

evaluation After the development and implementation of the VoVis frame-
work, an experiment will be performed to evaluate whether the VoVis
framework meets the set of requirements. If the results of the experi-
ment will satisfy these requirements fully or partially, it will then be
concluded that the VoVis framework has fulfilled its tasks, validated
the hypothesis of this thesis, and closed few research gaps in the field
of data visualization as identified in Section ..

. research tasks

The three major steps defined in the above section are further divided into
six research tasks. In this section, the research tasks have been identified and
discussed as a part of the process that this thesis will follow.

. research tasks 

"Visualization today has ever-expanding applications in science, educa-
tion, engineering, interactive multimedia, medicine, etc."

The first research task is to have a conceptual knowledge of the data visu-
alization and data analysis concepts in order to identify the types of visual-
ization and data formats that the thesis will support. The primary task of the
thesis is to find a better visualization technique, which requires a deep knowl-
edge and research in the field of data visualization. The first task focuses on
the identification of data sources with the different formats that need visual-
ization.

The second research task aims to focus on the data visualization through the
web application. The primary goal is to identify the components for the data
visualization in a web/based framework.

The third research task is the identification of requirements based on the
requirements of the use cases that discussed in Section . and the problem
defined in Section .. These requirements need to be fulfilled by the existing
frameworks.

The fourth research task is to focus on the review and the evaluation of
the existing frameworks and visualization tools, on the basis of the set of
requirements defined. This review will help to know which framework is
better by fulfilling all the requirements or part of it.

The fifth research task is concerned with the design and implementation of
a better and improved visualization framework if existing frameworks do not
fulfill all requirements. The visualization tools that are better can be used in
the new framework.

The sixth and last research task is the evaluation of new framework through
an experiment that is designed to evaluate whether the given framework ful-
fills the requirements set earlier in Chapter .

Summarizing the previous points, the research tasks for this thesis consist
of the following steps:

a. Understanding the data visualization concepts.

b. Analyzing the notion of data visualization through the web application.

c. Listing a set of requirements for each component of a web visualization
framework by referring the pilot projects.

d. Evaluating the few existing frameworks, techniques, and tools for vi-
sualization. If none of the existing frameworks can fulfill the require-
ments, then a new framework needs to be designed.

e. Designing and implementing a new visualization framework to satisfy
the needs.

f. Evaluating the new framework with an experiment in order to verify
that the new visualization framework can close the research gaps, and
to validate the hypothesis stated in Section ..

 Visualization by Wikipedia: http://en.wikipedia.org/wiki/Visualization_(computer_graphics)

 introduction

. thesis structure

The structure of this thesis document is comprised of four parts that are bro-
ken down into nine chapters.

.. Part I: Background Study

Part I (chapters two to five) is concerned with the background research for
the conceptual framework of this thesis. Chapter  addresses the concept of
the data visualization and how it is classified. Chapter  discusses the compo-
nents in a visualization framework. Chapter  is concerned with the identifi-
cation of the requirements for the development of a visualization framework.
Chapter  this chapter presents an assessment of the existing web-based vi-
sualization frameworks on the basis of the requirements from the previous
chapter.

.. Part II: The VoVis Framework

The second part (Chapter six and seven) describes the development of a vo-
cabulary based visualization(VoVis) framework and its implementation. Chap-
ter  outlines the architecture of the VoVis framework and describes each of
the component in detail. An essential component: vocabulary library is de-
fined in this chapter. Chapter  discusses the implementation of the proto-
type of the VoVis framework both as a web and mobile app.

.. Part III: Evaluation and Conclusion

The third part (Chapters eight and nine) presents the results of the experi-
ment carried out to evaluate the VoVis framework and discusses the contri-
butions made by VoVis. Chapter  describes the experiment based on a case
study from Citi-Sense-MOB project. Chapter  concludes the thesis by pro-
viding a summary of the thesis and discusses its contributions in the field
of the data Visualization. A section on future work, explains the potential
avenues for further research.

.. Part IV: Appendix

The last part of this thesis document contains - Appendix A: The VoVis vocab-
ulary for types of visualization. Appendix B: A review of different JavaScript
Libraries [] and Appendix C: The VoVis Prototype Web Application man-
ual.

Part I

BAC KG R O U N D S T U DY

2
DATA V I S UA L I Z AT I O N

This chapter addresses the concept of data visualization, data visualization
types, and the process of visualization. The different types of data are dis-
cussed for the data visualization, various software techniques in the field
of data visualization are explained. The visualization serves two major pur-
poses, the first is data analysis [] and the other is data presentation. The
focus is on the data visualization that will present the data in different graph-
ical forms.

. what is data visualization ?

"Data visualization refers to any graphic representation that can examine or
communicate the data in any discipline" []. There are many ways to define
the data visualization according to the different fields that use data visualiza-
tion. Data visualization is the presentation of data in a pictorial or graphical
format []. It is also viewed as a modern equivalent of the visual communi-
cation. Data visualization is both an art and science, it is the best form of com-
munication as the human brain processes visual form much faster than the
other forms. People can grasp the meaning of the data easier when they are
displayed in some form of visualization instead of the data in text form. The
main reason, why data visualization is booming in the market is the presence
of enormous data volume that is increasing each day. The below statement
taken from [] provides some information about the amount of the data in
the social network sites.

"Google receives more than two million search queries in a minute. In that
same minute, more than , new photos are shared by users on Instagram
and , content items are posted to Facebook", so it is important how
these data can be presented.

Scientists and technical researchers work on the raw data as part of their
research, but the rest of the world needs the data in some processed form
in order to understand the massive data and its relationships. The one way
to present the data is through the spreadsheets as rows and columns. The
amount of data being produced is enormous in volume so it is not appropri-
ate to present these data through the spreadsheets. It is hard to trace and un-
derstand the data in such a format, difficult to read as it consists of thousands
of rows and columns. The best way is to visualize the data in an absolute form.
The companies are using the data visualization to learn the business trends.



 data visualization

The students, developers, and researchers are also working with the data vi-
sualization. It is the age of visualization where each kind of data (from D to
Big-data) is visualized in a broad range of possible visualizations.

Data visualization makes it easier for people to understand the complicated
data. People can quickly express their thoughts and ideas through the visual-
ization and can communicate with others. "Research from Massachusetts In-
stitute of Technology and Harvard University suggests that people find faces
and human-centric scenes to be easier to remember than landscapes" [].
The color visualizations are better than the other visualizations, as they are
more interactive and easy to remember []. It is also found that the visual-
ization type like arc and tree diagrams are more memorable than the com-
mon graphs. The most important aspect of the data visualization is that the
visualization should be accurate and easy to understand. The topic of data
visualization has been explored and explained through a range of books, a
few of them are "Handbook of data visualization" [], "Interactive Data visu-
alization" [], "Designing tables and graphs to enlighten" []

Interactive visualization [] are the visualization types that provide fine
details of the data and are interactive in presenting the information, not like
the static graphs and spreadsheets. A few examples of the interactive visu-
alization are charts, tree map, geo maps and many more. Data visualization
makes the interpretation easier and saves the time and the energy. A defini-
tion of the visualization from [] states that every visualization should at
least follow these three minimal criteria.

. Based on (non-visual) data - The purpose of a visualization is to com-
municate the data, the data needs to be in a abstract form. The visual-
ization can transform a organized or unorganized non-visible data to a
meaningful and visible structure. The visualization conveys the useful
information to the user in a desired form.

. Produce an image - The most obvious outcome of the visualization is
an image, but it is not always clear. The visual image should be the
primary means of communication. If the image is only a small part of
the process, it is not a visualization.

. The result must be readable and recognizable - The visualization must
provide the correct information that the user wants to communicate
through the data. Sometimes the visualization leaves out the important
information and deviates the result which makes it difficult for the user
to understand the underlying data. the result. so there should be some
relevant aspects of the data which can be read. The visualization must
be clear, readable and usable.

Data visualization can further be divided into three categories according to
the data each can process []. These categories are described in the following
sections.

. scientific visualization 

. scientific visualization

Scientific visualization presents the scientific data that are well integrated
with the real-world objects having spatial properties. The data is available
from many sources such as engineering, mathematics, medical and many
more. This visualization focuses mainy on the realistic renderings of volumes
and surfaces of the D data []. Scientific visualization mainly presents D
volume data; an example is D volumes generated from the MRI and CT Scan.
Multidimensional Multivariate visualization is an important sub-field of the
scientific visualization []. Scientific visualization works with the real life
data, and there are many challenges in this field, as it involves the complex
graphical structures []. The various scientific fields often have very specific
conventions for generating the types of visualizations [].

. information visualization

The field that studies the visual representation of various forms of raw and
processed data (ranges from generic graph, tree structure, tabular data, text
format and computer software) is known as information visualization. In a
broad term, infovis covers mostly the statistical types of visualization. In re-
cent years, there is a tremendous growth in the information visualization
technology, both for the commercial and personal use. The users need tools
to design and create their visualizations from the datasets []. Since the last
decade the digital artifacts are growing in number, size and types also termed
as "Big data" which acts as main catalyst for the growth of interest in field of
the information visualization [].

. visual analytics

In the field of data mining, there is a need for new discipline to focus on the
processes and datasets that are either too large, or too complex. Visual analyt-
ics has emerged from the information visualization, scientific visualization,
and data-mining communities []. The main work or goal of the visual an-
alytics is to provide tools for the data mining and data analysis by means of
the interactive visual interfaces.

Visual analytics is a multidisciplinary field that includes analytical rea-
soning techniques, visual representations and interaction techniques. These
techniques help the users to understand deep insights, as the human mind
can easily understand the complex information if received through the visual
channels. Visual analytics is designed to facilitate the analytical reasoning
process [].

Figure  shows all the three categories of the visualization [].

 data visualization

Figure : Visualization Categories based on the data. a)and b) An example of the
scientific visualization. c)An example of the information visualization. d)
An example of the visual analytics visualization.

. data visualization in daily life

Data visualization is rapidly increasing as the amount of information is vast
and overwhelming. It is in every field of education [], medical science [],
entertainment, and business []. Each type of data can be presented in a
particular visual form. A few examples are outlined below []

• Some articles in a newspaper are discussed as a table.

• Weather chart shows the heavy rainfall information over an area.

• Train or Subway lines map helps people to track the way.

• In business the stock market is presented over different charts and
graphs.

• In medical science, MRI and CT Scan are helpful for diagnosis of sev-
eral diseases.

• In education system as mechanical design of some process or simula-
tion of the complex process.

. types of data

This section describes the various types of the data, for every data set, the
data record carries its piece of information. These data records can be further
classified in two different subgroups [].

. data visualization process 

• Ordinal - This group covers the numeric set of data. These set of data
are quantitative in nature. Any set of data which can be measured or
counted are the ordinal data

a. Binary - Binary data [] is defined as the data with only two possi-
ble states. The binary numeral system and boolean algebra termed
this states as  and +.

b. Discrete - This is a form of numeric data that can have only pre-
cise values (no fractional value). A simple example of this data is:
Number of kids in a family  (we can not say . kid or . kid
either we can say  or ).

c. Continuous - This is a form of numeric data where the values can
change continuously, it is not possible to count the number of dif-
ferent values. It can be shown as fractions, decimals, and it can
have many values between the two continuous numeric values. Ex-
ample: the measure of height in a classroom - feet, inch, meters,
centimeter, and millimeter

• Nominal - This group covers the non-numeric set of the data. Labels
are used as a variable for scaling of the nominal data. The nominal
data are mutually exclusive.

a. Categorical - This form of data consist of at least  or more groups
of data which can be easily divided using some labels. For example
sex of student in a classroom: male -, female -.

b. Ranked - This is another form of a categorical data, where the log-
ical groups are used for arranging the data. For example size of
shirts extra small, small, medium, large.

c. Arbitrary - This form of data can have infinite range of values, it
can not be logically arranged or grouped for instance.

. data visualization process

The data visualization process [] is a complex interaction process that in-
volves the user to provide the input data, and the visualization application
to produce the visual images. The task of this process is to visualize the raw
data through the following steps. Figure  outlines the process flow of a visu-
alization.

Figure : Steps Involved in the Process of Data Visualization

 data visualization

.. Importing Data

First, the input data needs to be imported into the visualization process. In-
put data has a specific format, so the types of format that the process supports
must be defined. There is a wide range of data formats that can be supported
by the application. The data varies as there are many types of data discussed
in Section .. If the application does not support particular data type or
format, then before importing the data needs to be transformed to the sup-
ported type and format. Data import is a one-to-one mapping, for example
uploading the input data from the external storage such as a file or a database.
Sometimes the data needs to be translated or converted from a continuous to
a discrete form.

.. Filtering Data

Once the data is imported the next step is to look into the important features
in datasets that are interesting for the user. The raw data is filtered into a
more appropriate form (filtered data). These filter data can be analyzed and
visualized. This process of transforming the data to a filtered form is called
filtering that helps to extract the relevant data from imported data. The two
main reasons for performing filtration on the data are as follows.

. What is relevant- It is important to know what data is appropriate as
sometimes only a subset of the given data is relevant. In that case the
whole data set is not required, so the data is filtered and only relevant
information is considered for visualization.

. Large Data - Sometimes the imported data is huge in volume so it is
not possible to visualize the whole data. The visualization process can
become complex if the data exceeds the size limit.

.. Mapping Data

Once the data is filtered the next step is mapping of the data with the vi-
sual domain to form a processed data that comprises of the visual informa-
tion. These visual features can be axes, color, size, etc. The mapping is an
important step in the process of visualization as it provides better informa-
tion about visual features and is user-friendly. Following are the two reasons
for supporting the mapping process.

. Purpose: Mapping provides a clear picture about the visualization of the
data. It helps the users and the developers to understand the concept
of visualization and types of it. Mapping in a broader way converts the
raw data into a informative data with visualization features.

. Modularity: Mapping provides modularity in the process of visualiza-
tion by separating the modules. The software can be reused by map-
ping steps.

. data visualization process 

.. Rendering Data

The last step of the visualization process is rendering of the data into a visual
form. This step provides the final visualization. The result of the mapping
step i.e. mapped data is presented using the visualization tools. Rendering
means plotting of the data into a graphical form. The process can render from
a simple bar chart to the complex maps. The final rendered image should be
clear and simple for all users and developers.

Thus, this chapter discussed the data visualizations, types of data, followed
by the discussion on the visualization process and its steps. Next Chapter 
focuses on the different components of the visualization.

3
DATA V I S UA L I Z AT I O N T E C H N I Q U E S A N D
F R A M E WO R K S

This chapter focuses on the different visualization techniques and compo-
nents, and guidelines for an effective visualization design. The Visualiza-
tion components are discussed in detail, in order to define requirements
for the evaluation of existing frameworks. This chapter is referred from the
book [].

. designing effective data visualizations

An effective visualization can improve the communication within and across
disciplines and conveys the information effectively []. The primary goal
of any visualization technique or tool is to design a successful visualization.
There are many parameters for a "successful visualization". The visualization
should accurately conveys the information to the end users. There is a healthy
competition among the different techniques and tools. The users selects those
tools and technologies that provide valuable visualizations. A few important
aspect in visualization are: how to map the data to the graphical form, which
type of data and how much data to visualize, with some additional features
and labels. There are many factors that need to be considered while design-
ing a visualization technique. Some ways to develop an effective visualiza-
tion [] are as follows.

• Intuitive Mappings from the data to a visualization means the visual-
ization should fulfill user expectations. In order to achieve that, it is
important to consider the semantics of the data and context of the user.
Intuitive mappings can reduce the translation time and, thus provide
rapid interpretation.

• To provide the users with a broad range of visualizations for the given
data.

• Views should be clear, attractive, functional and at the same time infor-
mative.

• The information density should always be balanced. Too much informa-
tion should not be displayed.

• Additional features like labels, keys, and color controls can be included
in the views, which helps the user to interact easily.



 data visualization techniques and frameworks

• The view should be focused and balanced. The display screen should
be used effectively.

. data visualization frameworks

The different fields of visualization and types of data are discussed in the
Chapter . The visualization systems can be domain specific or data specific.
For each of these categories there are various tools based on types of data. It
is not possible to cover all the types of tools and is out of scope of this thesis.
This thesis focuses on the information visualization.

A visualization software can also be classified as libraries, frameworks, and
turnkey systems. The visualization libraries provide a set of functions for the
data types and rules for mapping and visualizing that needs to be used with
the third party tools to produce the visualization. Turnkey systems are sys-
tems designed for a particular task only, it can not be considered as frame-
work for general visualization and have their user interface and specific rules.
An application framework is a complete package. The framework has it own
user interface, libraries, controllers, and other components. Framework can
be extended by adding new components. The task of the framework is to
generate visualization from the data uploaded by a user through the user
interface.

There are many frameworks available in the field of information visual-
ization. Each of the framework uses different technology, services, and tools.
Most of the frameworks require a software to be installed on the client. The
web-based frameworks are selected after reviewing many frameworks. The
main reasons to choose web-based frameworks are as follows.

. Web-based applications and tools are very popular in today’s world. Ev-
ery research field is using it, in some form.

. Different web-based framework can choose the various tools and pro-
gramming for the back end, but they all have common user interface
through a web browser. The comparisons between such frameworks
can be easily done.

. The most important advantage of using web-based framework is, no soft-
ware installation required, so the framework can be used from any-
where. The users can just access it through the browsers regardless
of the operating system (Windows, Mac) and device (laptop, desktop,
tablet), so the web-based framework saves time, effort and space.

. components of data visualization techniques

When the user wants to visualize the data, the first step is to select a visu-
alization technique. The technique that provides the best result is selected,
so the evaluation of techniques is necessary. A particular technique can be
opted according to the task the user wants to accomplish, or the type of data.
To compare the visualization techniques or to evaluate it, a few components

. components of data visualization techniques 

are defined in visualization techniques. These components are discussed in
the following sections.

.. User Component

The user plays a crucial role in the visualization process. The success of a
visualization process is highly associated with the user. The user is the one
that provides data to be visualized through the user interface and collect the
final visualization in a graphical form. The user are classified based on the
knowledge they possess.

They are discussed below:

• Familiarity with Data - The knowledge of the user in the field of data is
tested here, how familiar is a user with particular kind of data.

• Familiarity with Domain - How much knowledge the user has for the
domain of data to be visualized. Is the user a domain expert or just new
in the particular field.

• Familiarity with Task - This is about the task experience, how much ex-
perience a user has to perform a task.

• Familiarity with the Visualization Technique - How familiar is the user
with the particular visualization technique. Is the user using this method
for a long time or not.

• Familiarity with the Visualization Environment - There are various ways
in which visualization technique can be employed, so the knowledge of
visualization environment is considered.

.. Data Component

Data component plays a significant role in the evaluation of the visualization
process. Data is the input that is visualized in a graphical form, and there are
various features of data that need to be considered. They are discussed below.

• Type - Data can be of same kind, different kind or combination of both.
The data is a mixture of various kind like numbers (ordinal type), names
(nominal type). Data are also classified as continuous and discrete.

• Size - The data vary in a broad range of size from few records of dataset
to thousand of records. In order to visualize the massive data more
filtering and sampling is required, also the visualization requires some
additional features like zoom in.

• Dimensionality - Data can be one dimensional, two or multidimensional.
Different visualization patterns are selected based on the dimensions of
data.

 data visualization techniques and frameworks

• Number of parameters - The number of parameters also varies in datasets
from univariate to multivariate; all the parameter need to be consid-
ered for visualization.

• Structure - Structure of the data varies from the simple structure (tab-
ular form) to complex (hierarchy, network form). The format of data
depends on the structure of it. The simple tabular data can be repre-
sented as text (CSV) format, whereas the complex structure like tree
hierarchy is represented as XML or JSON format. The RDF data is also
gaining popularity due to open and big data.

• Range - Data can have a broad range of values.

• Distribution - Data can be distributed, either in uniform or nonuniform
way.

.. Visualization Component

This is the an essential component of a visualization technique. All the logic,
operations, and mappings required to generate a visualization along with the
tools are part of this component. It takes all the decisions related to visualiza-
tion. This component executes the visualization process once the task, user,
and the data components are defined. The evaluation of user interfaces is ac-
complished by this component [] to detect the design problems in layout.
Following are the few important aspects of visualization components.

• Computational performance - The time a visualization process takes to
generate the visual image affects the performance, so for the better per-
formance visualization of the data should not take long time.

• Data Limitations - Sometimes the data is huge that need to be visualized,
but there is a size limit for data in terms of presenting it on the web. The
limits should be clearly defined and if the data exceeds this limit some
alternative steps need to be taken.

• Degree of complexity - The user and the developer can interact easily and
perform the task in efficient manner if the visualization process and
tools are not complex. A user-friendly framework with less learning
time makes the visualization efficient.

• Degree of accuracy and usability - Performance is an important factor
but at the same time the visualization should give an accurate result,
it should not deviate from the requirements. The user can perform the
task successfully with this technique or not, will decide the degree of
accuracy.

Thus, this chapter discussed the ways to design an effective visualization,
components of visualization technique and different software tools and appli-
cations for visualizations are outlined. The web-based framework is selected
for this thesis.

4
R E Q U I R E M E N T S F O R A DATA V I S UA L I Z AT I O N
F R A M E WO R K

The requirements for a web visualization framework need to be identified, in
order to evaluate the existing solutions or to design a new framework. These
requirements are derived from use cases of the pilot cases. The set of require-
ments are defined for each component of the visualization technique.

. requirements analysis and use cases

The two pilot projects defined in the Section . are discussed in detail for
defining the use cases. DaPaaS and Citi-Sense-MOB have use cases that help
to define the set of requirements for the framework.

.. PLUQI : DaPaaS Use Case

The DaPaaS report "Use case definition and requirements analysis" [] de-
scribes the requirements for the DaPaaS project and defines the use case
(PLUQI). The use case should demonstrate the concept of integrated DaaS
and PaaS and the strength of the DaPaaS architecture.

Personalized and Localized Urban Quality Index (PLUQI) provides a cus-
tomizable index model over the mobile/Web application. It can represent
and visualize "the level of well-being and sustainability" for given cities based
on individual preferences. PLQUI [] is also an application deployed and
hosted in the DaPaaS platform, and the end users can access it on the web and
via smartphones. Figure  shows the concept of PLUQI use case. It has a vi-
sualization component that presents the indexed data from different sources.
The requirements related to the visualization of PLUQI provides a base for
requirement analysis of the framework.

The functional visualization requirements that are needed to visualize the
PLUQI data are as follows.

• The visualization system should provide functionalities for viewing
full datasets or previewing parts of datasets with the adapted visual-
izations.

• Visualization should provide support for the tabular forms, charts (line,
plot, histograms etc. for displaying D data), time series, and plotting
the data on a map for geo-spatial data.



 requirements for a data visualization framework

Figure : Conceptual Diagram of the DaPaaS Use Case (PLUQI)

The non Functional requirements for the PLUQI are as follows

• The visualization components should be characterized by a good re-
sponse time.

• Web client shall be supported by major browsers.

• Mobile client shall be supported by major device OS.

In order to fulfill the above requirements a web application is implemented
that visualizes the data of PLUQI. The PLUQI indices are presented in dif-
ferent types of visualization from a simple bar, table to a map. According to
various indices different visualizations are plotted. Figure  shows the home
page of PLUQI prototype taken from [] that visualizes the data on a map
with markers.

.. Citi-Sense-MOB Use Case

The Citi-Sense-MOB use case provide a mobile app for presenting the AQI
index. It is an index for reporting air quality which determines the level of air
pollution, how much the air is polluted in a locality and how it can affect the
people surrounding it. This index helps to monitor air pollution in a locality.
The aim of this use case is to visualize the AQI index and other air pollutants
on the mobile and web. Some reference code like color code is used for visu-
alizing different levels of air pollution. Citi-Sense-MOB has defined a color
code according to which the air pollution levels is displayed (green=clean;

. visualization requirements 

Figure : PLUQI Home Page Visualizing the Data in Different Types of Visualization

yellow=moderate; orange=unhealthy for sensitive groups; red=unhealthy for
all).

Data can be gathered by two the approaches, first by sensors mounted on
the bicycle which provides the location, time and levels of pollutants. This
data helps to understand the levels of pollutants on a particular route at the
particular time. The second way is to gather data from mobile phones and
from fixed sensors mounted at different locations.

One way to present the data is to plot it on the map showing either the
sensors at different locations or air pollutants level at each location. Figure 
and Figure  are suggested types of visualization to present the data from
the Citi-sense-MOB project on mobile phone and web []. Another way is
to focus on individual air pollutant gases and other factors like temperature
and noise level. Functions like comparisons of different gases or range of it
over time. Figure  shows the comparison of NO gas from different sensor
sources taken from source [].

. visualization requirements

Visualization is the backbone for the design of visualization framework. In
a framework, it is imperative that the user selects the correct type of chart
for visualization and can also access the processed data. Following are the
requirements in this domain.

• R - Possibility to Support All Popular Types of Visualization: There is a
huge range of visualization types, it can be simple D charts like the bar
chart, line, pie or can be complex like treemap, arc diagram, and paral-

 requirements for a data visualization framework

Figure : Citi-Sense-MOB App Visualizing the Air Quality Data through Map

lel sets. Geo charts and maps are also types of visualization. These are
categorized according to the function they perform or by the type of
data they present. The use cases discussed earlier need a broad range
of visualization from D charts to Geo Charts, so the framework should
support all popular types of visualization, or there should be a possi-
bility to add new ones.

• R - Standard Third Party JavaScript Libraries: Every visualization frame-
work needs visualization tool to generate visualizations. Designing and
developing such tool requires an enormous effort. Instead of creating
such tool, existing tools can be implemented in the framework. There
is a broad range of JavaScript visualization libraries available, some of
it have excellent performance, reuse of such library reduces the effort
and time. More than  JavaScript libraries are reviewed as a part of
the evaluation and few of them are discussed in detail in Section ..
JavaScript libraries are flexible and independent, so it provide an oppor-
tunity to work on different platform and devices. They also offer a lot of
custom features which can make the visualization very presentable and
creative. The Citi-Sense-MOB project has requirements to plot their air
quality data on the maps with few creative features, that can be fulfilled
by using one of the JavaScript libraries.

• R - Local Access To Charts: The framework should provide services to
the end user and the developer. The user always wants access to the
final visual image to reuse it. The developer may want to access visual
results as data to work and process further, or just to forward to some
other framework. Mobile device applications also need the final visual

. data service requirements 

Figure : Map Visualization on Web Visualizing CO Values at Different Locations
Tracked by a Bicycle

image as picture form(.png), so it is important to have local access to
charts and graphs. Both the pilot cases require a mobile app version of
their framework.

• R - Data Mapping using Generic Visual Vocabulary: Data Mapping pro-
cess can be executed automatically or semi-automatically by the frame-
work or can be manual. The users and the developers prefer manual
as it gives more customized output. The mapping process should be
user-friendly, so that mapping can be done in less time. If the frame-
work uses some general vocabulary for mapping, it is convenient for
the users to understand and follow it. Every chart type should have
its vocabulary, which makes it self-explanatory. DaPaaS and Citi-Sense-
MOB need to present their data in different visualization types that
require a lot of mapping process.

. data service requirements

This defines the requirements related to the different data services such as
types of a data format the framework should support. Data security in terms
of data sharing and restrictions should be considered. Massive data should
be uploaded quickly. The most important is to have processed data as output.

 requirements for a data visualization framework

Figure : Comparison of NO Gas from two Sources through Line Graph Visualiza-
tion

The transformed data should have the information about selected visualiza-
tion type. The requirements are discussed below

• R - RDF and CSV Data Format as Input: For any generic framework,
it is important to support many formats for input data. According to
a specific project needs, one or more format can be opted. But it is
not feasible to support all. What is more essential, is to have correct
types of formats. The most common format is CSV and considering
Open data(Linked data), it is very beneficial to have RDF format. Da-
PaaS project mainly focus on RDF data so to support RDF format is a
basic requirement in this project.

• R - Data Privacy: Some times the user wants the data to be restricted
not publically accessible. As the framework provides services to a wide
range of customers from a lay user, developer to business clients. Every
user may have different requirements in terms of data privacy, so the
framework should offer data privacy.

• R - Easy to Upload Data: It is easy to upload small data but most of the
real and sensor data are enormous in volume. So the framework should
also support uploading os large size files.

• R - Access to Processed Data in Standard Format: The end user and the
developer should be able to access the processed data in a standard

. web framework requirements 

format such as JSON objects. Presenting the data as visualization is
not only the target for all applications, some framework may need pro-
cessed data for further processing so as input to another process. One
of the requirements of PLUQI to have processed data as output.

• R - Processed Data Comprise of Visualization Information: The develop-
ers work with the data and process it, so it is vital to have information
of visualization type along with data.

. web framework requirements

This section will cover all the basic requirements necessary for a web or desk-
top based framework. The language selected for framework always affects its
performance. The web framework requirements are discussed below.

• R - Programming in JavaScript: JavaScript is the most common lan-
guage and has a smooth learning curve. The best part is there is a wide
range of standard libraries in JavaScript which can be reused easily.

• R - Offline Mode: To have internet access all the time, is not feasible.
The work should not be hindered when the user wants to work offline.

• R - Cross Device Compatibility: The framework should support cross
platform devices. Most of the visualization libraries works well on the
web browser, but the user wants a consistent experience across mobile
devices as well. This is because of changing user habits in recent times.
the Citi-Sense-MOB use case is primarily developed for mobile devices,
so cross-device compatibility is one of the main requirement that needs
to be fulfilled.

• R - Open Source: Open source tools have numerous advantages over
the closed tools. A few benefits are security, quality, Customizability,
freedom, flexibility and many more. Open source provides better qual-
ity as thousands of developers work on it and provide new innovative
ideas. There is a huge support group where actively problems are dis-
cussed and solved by the experienced developers. Bugs in the open
source software also tend to get fixed immediately. The users and the
developers have complete access to the tool(open code), so it is easy to
modify or add new features. If the framework is open source, it can be
referred by other open source frameworks.

• R - Cross Browser Compatibility (with no Flash Plugin): A strong web-
based framework is one that supports all popular types of browsers
and does not depend on an external tool like a flash player. During
the creation of a web framework, the framework should support cross-
browser compatibility. The framework should behave in the same man-
ner for all popular browsers. The design should work properly without
errors for every browser that user choose to work with. It is a very com-
plicated aspect that needs to be considered while designing the web

 requirements for a data visualization framework

framework. Now everyone is using a different browser, also depends
on which operating system is used. A few popular types are like Fire-
fox, Safari, Chrome and Internet Explorer.

• R - Framework Should be User-Friendly: The learning curve should
not be deep, it should be user-friendly otherwise there will be a drop
in the use of the framework. If the framework is not friendly, users
and developer will spend more time and effort that otherwise could
be utilized to perform some better task. Usability directly affects the
efficiency of the framework.

. usability requirements

This section outlines Usability requirements for web or desktop based frame-
work. These requirements focus on overall performance and design of the
framework and how it can be customize according to the need of the hour.

• R - Customizability: The charting framework should be flexible enough
to change or modify. There are many of things that user want to try,
like adding custom shapes, attaching events (click, hover, key press),
and applying themes, etc. To create an elegant design, it is good to have
a library that is easily customizable and can be molded according the
design or requirements of the user.

• R - Performance: Performance is dependent on many factors like time
to upload data, time to plot chart, the size of the library, memory usage
while rendering, garbage collection and number of browser repaint cy-
cles. The value of the performance for any framework is always high.
Some place where memory size is not as important as proper render-
ing of the chart like a dashboard used on the desktop, but for mobile
devices size is a major factor.

• R - Design and Interactivity: The design is more than just look and feel
of a chart. The visualization should not only look presentable (themes,
color scheme), but it should have a meaningful interaction. For exam-
ple, while building a pie-chart, clicking a pie should pull out some
information by default. Clicking a icon in the multi-series area chart
should toggle the details of related data.

Thus, a total of  requirements are defined and discussed based on the
use cases and components of visualization, in order to evaluate the existing
web visualization frameworks.

5
E VA LUAT I O N O F V I S UA L I Z AT I O N F R A M E WO R K S A N D
T O O L S

This chapter focuses on the different visualization frameworks available and
their comparisons and evaluations, followed by the evaluation of the different
standard JavaScript visualization libraries.

. visualization frameworks (web-based)

This section contains descriptions of four different web-based visualization
frameworks: Many Eyes, Visualize Free, Data Wrangler, Tableau Public and
Weave. All four frameworks are possible solutions for the current problem -
either as they are or with a further development of the frameworks. To eval-
uate the strength and weakness of each system, all the four systems are de-
scribed, compared and analyzed in this section. The evaluation is done con-
sidering the requirements identified in the Chapter .

.. Many Eyes

Many Eyes is a web visualization framework, by IBM, which offers easy vi-
sualizations. The user can either upload data or use the existing pubic data.
Many Eyes offers many visualization types, such as Scatter plot, Matrix Chart,
Network Diagram, Bar Chart, Block Histogram, Bubble Chart, Line Graph,
Stack Graph and many more. Each data set uploaded in the database of Many
Eyes framework is available to the public, so the data is not private. The up-
loading of large data takes longer time and also prone to error. The duplicate
datasets are uploaded and stored in their database, the data is not secured.

The website of Many Eyes explains the framework as: "No programming
or technical expertise is needed, so almost everyone has the power to create
visualizations. Need to simply follow the three steps."

• Upload the public data set. Visualizations can be created only from the
text file data.

• Select from a wide variety of visualizations or one recommended by
Many Eyes.

• Unleash insight by sharing the visualization over the web. The user can
share the result by embedding a visualization in the blog or by sharing
it on a social network.



 evaluation of visualization frameworks and tools

Figure  shows bubble chart visualization of the example data taken from the
public database of the Many Eyes framework.

Figure : Bubble Chart Visualization of the Data through the Many Eyes Framework

.. Visualize Free

Visualize Free is a free visualization tool that is based on visualization soft-
ware developed by InetSoft. It is the tool that provides access to the public
data and also to upload the datasets. The data formats allowed for uploading
the data are spreadsheet (Excel) and text (CSV) format. The uploaded data
can be private or public by sharing the URL of the data on the server. It sup-
ports few types of visualization. Visualize Free is a friendly tool, so the user
easily creates great visualizations. Visualize Free has a drag and drop feature
to choose chart types and controls like filter lists,calendars. The data can be
explored in a better way by use of such filters and brushing tools. Brush-
ing highlights the related data across the multiple visualizations elements. It
simply follows the three steps to complete the process of the visualization.

. Upload - User registration is required to upload the data to the server
which will create a user account. The data is private and can be made
public by sharing.

 Visualize Free Web Framework: https://visualizefree.com
 InetSoft: https://www.inetsoft.com/

. visualization frameworks (web-based) 

. Analyze - Visualize Free can filter the data, analyze it and can share
both the data and visualization.

. Create - Visualize Free can create different visualizations with the help
of the drag and drop service.

Figure  shows a dashboard with different types of visualization from the
data available at the public database in the Visualize Free web framework.

Figure : A Dashboard with Different Types of Visualization created through the
Visualize Free framework

.. Data Wrangler

Data Wrangler is a web-based service from the Stanford Universityś Visu-
alization Group. This tool do not visualize the data, it provides service to
visualization tools by cleaning and filtering the data. The main purpose of
this tool is that the user should spent less time in formatting the data, to
focus more on the visualization. This tool provides operations like split, ex-
tract, translate, drop, merge and transpose on the various data points. Data
Wrangler is a free tool, but available in beta version with a deep learning
curve.

.. Tableau Public

Tableau Public is a web and desktop based framework for visualization that
offers multiple visualizations based on the particular data. It provides sheet
links through which views of framework can communicate with each other.
It also provides a good filtering service so that complex visualization can
be created. The few types of visualization are bar charts, line charts, scatter
plots, bullet graphs, maps and many more. Tableau Public has robust tools

 Data Wrangler: http://vis.stanford.edu/wrangler/
 Tableau Public: https://public.tableau.com/s/

 evaluation of visualization frameworks and tools

for filtering and selecting the data. Tableau Public makes the visualization
easier for the users (non-technical) as programming is not needed to visualize
the data. There is no access to real time data and not much support in terms
of the custom views. The data mapping process is hard to understand as there
is lack of a standard vocabulary for the visualization. The tool just uses some
conventions like dimensions which are confusing at times. There is no local
access to the data, only online access. Every data uploaded is public, so the
data security is an issue.

Figure  shows distribution and ratio of girls education through the dash-
board with a map and other types of visualization. This demo is created by
Viz Candy using Tableau Public.

Figure : A Dashboard Demo with a Map Visualization through the Tableau Public
Framework

.. Weave

Weave is defined as "a new web-based visualization platform designed to
enable visualization of any available data by anyone for any purpose. Weave
is an application development platform supporting multiple levels of users -
novice to advanced, as well as the ability to integrate, analyze and visualize
data at nested levels of geography, and to disseminate the results in a web
page". Weave is a web and desktop based software tool for the visualization
of data. This tool provides flexibility to visualize any kind of data anywhere.
This tools supports a broad range of visualization types, which gives user
more options to view the data. Weave was specially developed to accommo-
date huge data from the different sources and to geographically map that data
using any shape files. The weave is a web-based tool. Weave provides services

 Viz Candy: http://vizcandy.blogspot.ca///educating-girls.html
 Weave : https://www.oicweave.org/

. visualization frameworks (web-based) 

to a wide range of users from beginner to expert. The weave is an open source
system, having a high security, user-friendly and an efficient visualization.

Figure  is a demo taken from Weave demo examples visualizes the data
(obesity in US) through a map and a bar chart.

Figure : A Demo generates a Map and Bar Chart as visualization through the
Weave Framework

.. Evaluation of the Web-Based Visualization Frameworks

All the introduced visualization frameworks - Many Eyes, Tableau Public,
Weave and Visual Free need to be evaluated to identify if one of them meets
the requirements identified in the Chapter . The evaluation is structured
according to the identified requirements. To take their different importance
into account, They are evaluated as ∅, + or ++.

• ∅ - the requirement is not fulfilled.

• + - modifications are necessary

• ++ - the requirement is fulfilled

In order to calculate the system’s value, the above classification relates to a
numerical system: ∅ stands for , + for  and ++ for . Once the frameworks
are evaluated for each component requirements, then an overall framework

 Weave Demo Visualization: http://demo.iweave.com/weave.html?file=demo_obesity.weave

 evaluation of visualization frameworks and tools

evaluation is performed as shown in Table . This evaluation helps to deter-
mine which system is the closest to satisfy the requirements.

Table  shows the evaluation of the visualization requirements.

Visualization Requirements Tableau Public Weave Visualize Free Many Eyes

R - Possibility to Support All Popular Types
of Visualization

+ + + +

R - Standard Third Party JavaScript Li-
braries

n.a ∅ ∅ n.a

R - Local Access To Charts ∅ ++ + +

R - Data Mapping using Generic Visual Vo-
cabulary

∅ + ∅ ∅

Sum    

Table : Evaluation of Visualization Reqirements

All the frameworks are evaluated as + for the requirement "Possibility to
Support All Popular Types of Visualization" that means these frameworks do
not support a broad range of types of visualization and hence are not generic
in terms of visualization types. It is difficult for a framework to support all
types of visualization but at the same time there should be a generic frame-
work that covers the most popular types with a simple graphical interface, so
the users can access it. There is a wide range of standard JavaScript libraries
for the data visualization that offer creative modules and features for visu-
alizing the data in an interactive way. The JavaScript libraries are platform
independent. All the framework introduced, either use their library or are
not open source. None of the frameworks except Weave, has a user friendly
data mapping process, so the data information and labels are confusing and
take time. Only the Weave framework provides local access to the charts, easy
to save and edit it. All other frameworks do not allow access to the visual im-
age locally, only allows to share the visualization on the web as a frame or a
link. Table  shows the evaluation of the Data Service Requirements.

Data Service Requirements Tableau Public Weave Visualize Free Many Eyes

R - RDF and CSV Data Format as In-
put

+ ++ + +

R - Data Privacy ++ ++ ++ ∅

R - Easy to Upload Data ++ ++ ++ ++

R - Access to Processed Data in Stan-
dard Format

+ + + +

R - Processed Data Comprise of Visu-
alization Information

+ ∅ ∅ ∅

Sum    

Table : Evaluation of Data Service Requirements

The Weave framework supports a broad range of data formats so it is eval-
uated as ++ and rest of the frameworks support only CSV (tabular) format.

. visualization frameworks (web-based) 

Many Eyes works on the principle of public and open data, so all the data
uploaded are public and anyone can access the data. All the frameworks pro-
vide the processed data in tabular or other form but not in a standard JSON
Object form. The processed data generated by these frameworks has no infor-
mation regarding the type of visualization selected, so Weave, Visualize Free,
and Many eyes are all evaluated as ∅ for the requirement (R). Table  shows
the evaluation of the Web Framework Requirements.

Web Framework Requirements Tableau Public Weave Visualize Free Many Eyes

R - Programming in JavaScript n.a ∅ n.a n.a

R - Offline Mode ++ ++ ∅ ∅

R - Cross Device Compatibility ∅ ∅ ++ ∅

R - Open Source ∅ ++ ∅ ∅

R - Cross Browser Compatibility
(with no Flash Plugin)

++ + ∅ +

R - Framework should be User
Friendly

+ + ++ +

Sum    

Table : Evaluation of the Web Framework Requirements

Only Weave is an open source framework. The rest all frameworks are not
open source so it is difficult to know their programming language. Weave is
not a JavaScript based framework. The Visualize Free framework is a user-
friendly tool while the other frameworks have a deep learning curve, so the
user takes more time to understand and use these tools. All the frameworks
need a flash enabled browser except Tableau Public, in order to visualize the
data. "Cross Device Compatibility" requirement is important in today’s world
as the use of mobile devices with different platforms is increasing, smart-
phones are the most popular and highly used devices. Only the Visualize
Free framework supports and fulfills this requirement. Table  shows the
evaluation of the Usability Requirements.

Usability Requirements Tableau Public Weave Visualize Free Many Eyes

R - Customizability + + + +

R - Performance ++ ++ + +

R - Design and Interactivity + ++ + +

Sum    

Table : Evaluation of Usability Requirements

All the frameworks provide some level of customizability but there is a
scope of improvement, so these frameworks are evaluated as +. The Users
and the developers should have more options to customize the visualization.
The Tableau Public and Weave framework have a better performance than
others in terms of time taken to upload the data and display the visual image

 evaluation of visualization frameworks and tools

and also rendering of the charts. For the design and interactivity requirement
all the frameworks need improvement except Weave.

Evaluation Tableau Public Weave Visualize Free Many Eyes

Data Service Requirements    
Visualization Requirements    
Web Framework Requirements    
Usability Requirements    
Sum    

Table : Overall Evaluation

To figure out which of the introduced systems is the closest in fulfilling all
the requirements, Table  gives an overview of the previous evaluations. Sum-
marizing the strength of each system compared to the others, Weave leads
in the visualization components and web-based capabilities as it is the only
open source framework. The main strength of Tableau Public are ease of up-
loading the data and data privacy. The main advantage of the Visualize Free
framework is the cross platform support as it provides the mobile app for
both an Android and iOS platform. The weave framework is evaluated and
granted  points as the total out of  points, this means the Weave frame-
work fulfills .% of the total requirements. The Tableau Public framework
is evaluated and granted  points as the total out of  points, this means
the Tableau Public framework fulfills .% of the total requirements. Vi-
sualize Free is evaluated and granted  points as the total out of  points,
this means the Visualize Free framework fulfills .% of the total require-
ments. Many Eyes is evaluated and granted  points as the total out of 
points, this means the Visualize Free framework fulfills .% of the total
requirements.

By the overall evaluation it is clear that no framework supports all the
requirements that are defined, a few are good at some features but not for all
the features. The weave framework is the closest to fulfill the requirements.
Still there are some important requirements that need to be satisfied that
Weave is not able to fulfill. The requirements for which Weave is evaluated
as ∅ are as follows.

• R - Standard Third Party JavaScript Libraries

• R - Data Mapping using Generic Visual Vocabulary

• R - Processed Data Comprise of Visualization Information

• R - Programming in JavaScript

• R - Cross Device Compatibility

This clearly outlines that there is a need to develop a new framework that
should focus on these requirements, so the concept of the vocabulary library
and the VoVis framework evolves. The problems in the current frameworks

. visualization libraries (javascript-based) 

are: information regarding the visualization types are opaque and so is the
mapping information. Also, the user has confusion regarding the labels and
dimensions mentioned in the frameworks. To solve this problem a visual-
ization vocabulary needs to be designed as a new component in the web
framework and the JavaScript based visualization framework should be im-
plemented using the JavaScript visualization libraries.

. visualization libraries (javascript-based)

More than thirty types of visualization libraries are reviewed that are listed
in the Appendix B. The following sections contain descriptions of four differ-
ent third party JavaScript visualization tools: D, Google Charts, jqPlot and
Flot. All of them are evaluated for their visualization capabilities and the
ability to integrate with the VoVis framework. The selection process includes
libraries that are open source, free, support desktop and mobile devices, with
reasonable documentation, examples and support community, and are regu-
larly maintained.

.. Data Driven Document (D)

D is a free and open source JavaScript library for creating data visualiza-
tions, developed in  by Mike Bostock (in collaboration with Heer and
Ogievetsky). The book "Interactive data visualization for the Web"[] ex-
plains D:

" Data-Driven Documents (D) where the data is provided by a user, and
the documents are web-based documents, meaning anything that can be ren-
dered by a web browser, such as HTML and SVG. D does the driving, in the
sense that it connects the data to the documents".

This clearly explains that it is a library for manipulating documents based
on the data. It is not a chart drawing library, as its primary focus is not draw-
ing charts, so there is no built-in charts available. But the library has more
than two hundred examples of existing, new and innovative charts that are
created from scratch. The input data is converted in the graphic components
by using the SVG as graphic technology and then grouped together in a gen-
eral graphical representation. Thus to draw a simple bar chart, every com-
ponent (bars, title, axes, labels, etc.) has to be implemented separately and
then are assembled in a single chart. D has some unique features which en-
courage to use it to generate the SVG and HTML Markup. A few features are
mentioned below.

• D can add, remove and modify multiple elements from an existing
DOM.

• D can dynamically add attributes and styles according to a function.

• D can animate the attributes and styles.

 Data Driven Documents: http://djs.org/

 evaluation of visualization frameworks and tools

• It can bind the data to the automatically added elements when needed.

• It provides benefits from a lot of helper functions like select, append,
and bind event.

While this tool is extremely flexible, it has a deep learning curve, so it re-
quires deep coding knowledge for the implementation of the visualizations.
It is best used for the complex and non-standard data visualizations. Fig-
ure  shows D Gallery with the different types of Visualization.

Figure : D Gallery showing Different types of Visualization

.. Google Charts

Google Charts is a Google product for data visualization that owns vari-
ous charts ranging from the simplest line graph to a complex hierarchical
treemap. It is a "ready to go" and "easy to implement" kind of a tool with ex-
amples for all the charts available in Google Chart Gallery. The charts are
rendered in the HTML charts using the SVG and VML as a graphic technol-
ogy. It provides the cross-browser compatibility (including VML for older IE
versions) and the cross-platform portability to iPhones, iPads and Android
devices. To draw a simple chart in Google Chart, all one needs is some sim-
ple JavaScript code in a web page. The steps to create a simple chart using
Google Charts are as follows.

 D Gallery: https://github.com/mbostock/d/wiki/Gallery
 Google Charts: https://developers.google.com/chart/
 Chart Gallery: https://developers.google.com/chart/interactive/docs/gallery

. visualization libraries (javascript-based) 

. First step is to load the Google Chart libraries.

. List the data to be visualized.

. Customize the chart with the options.

. Create a chart object with an id.

. Display the chart in the web page through a <div>.

Listing  shows a piece of programming code in JavaScript to visualize the
data through the Google Charts library.

Listing : JavaScript function to draw a chart using Google Charts

function drawChart() {

// Create the data table.
var data = new google.visualization.DataTable();
data.addColumn(’ string ’, ’Topping ’);
data.addColumn(’number’, ’ Slices ’);
data.addRows([
[’Mushrooms’, 3],
[’Onions ’, 1],
[’Olives ’, 1],
[’Zucchini ’, 1],
[’Pepperoni ’, 2]

]);

// Set chart options
var options = { ’ t i t l e ’: ’How Much Pizza I Ate Last Night ’,

’width ’:400,
’height ’:300};

// Instantiate and draw our chart, passing in some options.
var chart = new google.visualization.PieChart(document.

getElementById(’ chart_div ’));
chart.draw(data, options);

} �
All the chart types are produced with the data using the DataTable class,

makes it easy to switch between the chart types. The DataTable provides op-
tions for sorting, modifying, and filtering data, and can be populated directly
from the web page. Figure  shows the gallery of Google Charts with the
different types of visualization supported.

.. jqPlot

"A Versatile and Expandable jQuery Plotting Plugin".

 Google Charts Gallery: Google Charts

 evaluation of visualization frameworks and tools

Figure : Gallery of Google Charts with different types of Visualization supported

jqPlot is a free and open source JavaScript library for the generation of
the charts. jqPlot has a profound standardized structure and, it is developed
using a large number of plug-ins. The jqPlot library is an extension of jQuery,
so jqPlot requires the jQuery plug-in to perform the operation of the visual-
ization. Every object that the user draws can be a line, an axis, or the grid
itself is managed by a plug-in. jqplot provides the customizable setting op-
tions, and every added plug-in can be extended. jqPlot is a modular and
flexible library. The users with less programming expertise can create pro-
fessional charts in easy steps without adding too many lines of code. It is
possible to download this library from the official site, and registration is not
required. The steps to visualize the data using jqPlot are as follows.

. Add jQuery plug-in, the jqPlot plug-in, and a jqPlot CSS file.

. Add a plot container.

<BODY>
...
<div id="myChart" style="height:px; width:px; "></div>
...
</BODY> �

. Create the plot inside the jQuery function. jqPlot is an extension of
jQuery, so its methods need to be called inside the $(document).ready()
inorder to execute the code.

$(document).ready(function(){
// Insert all jqPlot code here.
}); �

 jqPlot Library: http://www.jqplot.com/

. visualization libraries (javascript-based) 

. Then, to create the actual plot, needs to call the $.jqplot plug-in with
the id of the target in which chart will be drawn. This call is executed
by the following jQuery function:

$.jqplot(target, data, options);

$.jqplot (’myChart ’, [[100, 110, 140, 130, 80, 75, 120, 130, 100]])
; �

The jqplot() function has three arguments; target, which is the ID of the
target element in which the plot is to be rendered. The data, consisting
of an array for data series; and options, the main feature of jqPlot, with
the options, the chart can be customized.

Figure  is a home page of jqPlot library, shows the different types of Visu-
alization generated using jqPlot.

Figure : Different types of Visualization generated using jqPlot Library

.. Flot

"Attractive JavaScript plotting for jQuery"

 evaluation of visualization frameworks and tools

Flot  is a pure JavaScript plotting library for jQuery, with a focus on sim-
ple usage, proper aesthetic and interactive features. Flot is easy to use, just a
few lines of code, can create a simple line chart, it also gives a comprehensive
API documentation which have examples, usage, and methods. The most im-
portant, Flot continues to release new versions, and each new version comes
with new features.

The three things that are important to create an attractive plot are as fol-
lows. The first is to create a placeholder, make sure it has dimensions (so Flot
knows what size to draw the plot). The second is to call the plot function with
the JSON data. The axes are automatically scaled. The graphs are interactive
and can be altered within the web-browser without the server communica-
tion. The third thing is to retrieve additional data from the server. It provides
features like moving, shifts, zoom, retrieval of the values at precise points on
the graph and select an area data. Figure  shows a Line Series Visualization
example generated using the Flot Library.

Figure : Line Series Visualization generated using Flot Library

.. Evaluation of JavaScript Visualization Libraries

The result of evaluation of the web-based visualization frameworks in the
Section .. shows that there is a need of a visualization component that can
be integrated with the VoVis framework. The previously introduced JavaScript
tools - D, Google Charts, jqPlot and Flot need to be evaluated to identify
if one of them meets the requirements related to JavaScript visualization li-
braries and to find the best solution out of these four visualization tools. Ta-
ble  shows the evaluation of the JavaScript Visualization Requirements.

 Flot Library: http://www.flotcharts.org/

. visualization libraries (javascript-based) 

JavaScript Visualization Libraries Re-
quirements

D Flot Google Charts jqPlot

R/ - Open Source ++ ++ ∅ ++

R/ - Offline Mode ++ ++ ∅ ++

R/ - Range of Charts Supported ++ + + ++

R/ - Supports Maps and Geo Charts ++ ∅ ++ ∅

R/ - Cross Browser Compatibility + ++ ++ ++

R/ - No Dependency on Other Tools ++ ∅ ++ ∅

R/ - Steep Learning Curve ∅ + ++ ++

R/ - SVG as Graphic Technology ++ ∅ + ∅

R/ - Support for Additional Features
like ToolTips, Number Formatting

++ ∅ ++ ∅

Sum    

Table : Evaluation of JavaScript Visualization Libraries

All the requirements mentioned above are part of a requirement "R -
Third Party JavaScript Visualization library". Each of the sub-requirement is
discussed below, and each JavaScript tool is evaluated for that requirement.

• R/ - Open Source: Open source tools holds numerous advantages over
the closed tools. A few important advantages are security, quality, Cus-
tomizability, freedom, flexibility and many more. It provides better
quality as thousands of developers work on it with many new innova-
tive ideas. There is a huge support group where actively the problems
are discussed and solved by the experienced developers. The bugs in
the open source software also tend to get fixed immediately. The users
and developers both have complete access to the tool(open code), so it
is easy to modify or add new features. The users can use the software as
they want. It is the decision of the developer when to update the tool or
even can work with an older version of the software. It gives freedom
from the proprietary package that costs both time and money which
the customer can utilize in the actual product. The three of the above
tools are open source except Google Charts(evaluated as ∅).

• R/ - Offline Mode: In Google Charts the JavaScript files are loaded
directly from the Google’s servers. The application always need to be
online to view the charts in Google Charts. D, jqPlot and Flot can even
work offline. So the application using these tools can plot the charts
without the Internet as it is not feasible to be always online.

• R/ - Range of Charts Supported: Google charts draws more than 
types of D charts with the several custom options, still many types of
visualization are not supported by it so evaluated as +. Similarly jqPlot
offers more than  D charts and are easy to plot so evaluated as ++
for this requirement. D does not come with the pre-built charts, but

 evaluation of visualization frameworks and tools

a library with + examples is available. Whereas Flot offers very few
charts so evaluated as +.

• R/ - Supports Maps and Geo Charts: Google Charts supports maps and
Geo charts(with markers), so evaluated as ++. Through D any custom
Geo chart or map can be created, but no inbuilt maps in D. Both Flot
and jqPlot do not support the maps and geocharts which is an essential
visualization type for both the projects DaPaaS and Citi-Sense-MOB.

• R/ - Cross-Browser Compatibility: Everyone uses different browsers,
and operating system. A Few popular types of browsers are Firefox,
Safari, Chrome and Internet Explorer. Google Charts supports all the
modern web and mobile browsers including IE+, jqPlot supports IE
, IE , Firefox, Safari, chrome and Opera, D supports all the modern
web and mobile browsers for IE -  and above, and Flot supports IE +,
Chrome, Firefox +, Safari + and Opera .+.

• R/ - No Dependency on Other Tools: D and Google Charts are the
libraries that implement all the functionalities without using any exter-
nal library so are evaluated as ++. Both jqPlot and Flot are an extension
of the JQuery library, they are plugins that are depended on the JQuery
library. The dependency on the other tools makes the tool decoupled
and less flexible. The maintenance of the tools is also an issue in such
cases.

• R/ - Steep Learning Curve: The learning curve is defined as the time
taken to learn and understand a tool. It is important that the tools
should have a steep learning curve so that the developer can easily
learn it in less time and implement the tool in the framework. But at
the same time the tool should poses features which are essential with
a cost of some learning. D requires a deep coding knowledge for the
implementation of the visualizations so is evaluated as ∅, both Google
Charts and jqPlot have a steep learning curve and evaluated as ++. Flot
is a friendly tool but needs some learning so evaluated as +.

• R/ - SVG as Graphic Technology: There are two graphic technologies
the HTML Canvas and the SVG. These two do not compete against each
other, but there is always a preferred tool for the particular job. Scalable
Vector Graphics (SVG) offer a better alternative when the task is to plot
the charts. SVG has better scaling feature which means the charts will
scale accordingly. The SVG elements are accessible means the text will
be in text form, and it is easy to understand the SVG code. The most
important feature is it supports DOM, so it is easy to attach the event
handlers and manipulate the elements. D draw elements using the
SVG technology and is evaluated as ++, In Google Charts the charts are
rendered in HTML charts using SVG and VML so evaluated as +. Both
jqPlot and Flot use Canvas technology and are evaluated as ∅.

• R/ - Support for Additional Features like ToolTips, Number Format-
ting: To customize the visualization as per the user requirement it is

. visualization libraries (javascript-based) 

essential that the JavaScript tools should support additional features.
There is a wide range of features which a tool can have for better visu-
alization like support for multiple axes, number formatting, and tool
tips. Google charts and D support most of it so are evaluated as ++.
But Flot and jqPlot do not support these features so are evaluated as ∅.

The evaluation shows that D with a total of  points out of the  points
is better than all the other libraries. The only problem D has is a deep learn-
ing curve and no pre-built charts support. Google Charts is ranked second
after D, with a total of  points out of the  points, is a good option when
open source is not a requirement, also this library needs online access. The jq-
Plot library is an excellent option for plotting user-friendly charts and graphs
in less time but maps not supported. The fulfillment rate of all the JavaScript
tools evaluated are D (.%), Google Charts (%), Flot (.%)and jq-
Plot (.%).

Part II

T H E VOV I S F R A M E WO R K

6
VOV I S : C O N C E P T A N D D E S I G N

The evaluation from the previous chapter concludes that none of the intro-
duced web-based visualization frameworks meets all the requirements. Thus,
there is a need for a new visualization framework that will support a wide
range of data formats and types of visualization with a friendly data mapping
technique. To meet these requirements the concept of a vocabulary based vi-
sualization is introduced, and a web-based framework is designed and de-
veloped using this vocabulary component - Vocabulary Based Visualization
(VoVis) Framework.

In this chapter, a conceptual architecture for a web-based visualization
framework is proposed in the Section ., followed by the design of such
a framework - VoVis in the Section .. The concept and design of each com-
ponent is described more precisely in the remaining sections.

. conceptual architecture of a web-based framework

The pattern-based web applications have become more popular as it provide
reusability and consistency. The design and development of a web applica-
tion faces many challenges to fulfill the requirements along with the other
factors like scalability and security. The design Patterns are chosen as build-
ing blocks by the architects and developers which are considered as exten-
sions of object-oriented technologies []. In order to develop a better appli-
cation, the design steps should follow some pattern. This can be achieved by
separating the abstraction component from the implementation in a frame-
work.

Most of the web frameworks are based on the model-view-controller (MVC)
pattern []. The main motivation behind the selection of the MVC pattern
are as follows.

• Parallel development of the different modules like view, controller and
model is possible.

• Business logic can be reused across applications.

• No dependency between the user interface and business logic.

Each web application has three main layers: presentation (UI), application
logic, and data management. MVC pattern breaks the presentation layer into
controller and view. Following are the components of MVC pattern



 vovis : concept and design

• Model: The model provides business logic in an application. The model
evaluates the data given by controller, executes the operation and pro-
duces the result.

• View: Defines how data should be displayed to users and presents the
results generated by the model to the user. A view can be output repre-
sentation of information, such as a bar chart or a map.

• Controller: Acts as glue between model and view. It contains logic that
updates the model and view. The controller has event listeners that get
notifications when events are triggered in the user interface. The con-
troller maps these events into operation.

Figure  shows the collaboration of MVC components []. A general work-
flow of MVC web visualization application are as follows.

. The user interacts through the user interface by uploading a file.

. The controller handles the input event from the user interface.

. The controller then call the model to execute the operation on data.

. The model maps and process the data to generate visualization image
and forward it to the view.

. The view gets the visual image from the model and displays it in user
the interface.

Figure : Model-View-Controller Components

Figure  shows a conceptual architecture of the web visualization appli-
cation framework. A web application runs on a web browser and is created
using the scripting language like JavaScript. This Web application is based
on MVC pattern. The MVC pattern for the web application are implemented
in several ways such as server-side MVC, client side MVC or combination

. conceptual architecture of a web-based framework 

of these two. There are technologies already developed that can coordinate
Client Side Scripting with Server Side technology like PHP. In the client side
JavaScript MVC application, all three modules i.e. the controller, business
logic and views are part of the client. The web application can be purely in
JavaScript, or front-end with JavaScript and back-end with Java or PHP with
web services. Client-side JavaScript application needs a server to host the ap-
plication; the example would be simple interactive visualization application
delivered over the web using a web browser as a user interface.

The user interface is a client web browser that has views, and they are
written in HTML, CSS, and JavaScript. When the model (process) perform
business logic and renders the view; as a result, the view is shown to the
user in a browser. Data is uploaded, options are selected in the user interface,
both data and options are forwarded to the controller. Controller controls
the flow of work. Following are the main layers of the web application for
the visualization, also outlined in Figure .

Figure : Concept and Design of a General Web Visualization Framework

• User Interface: user interface interacts with the end user through a web
browser or app. Input files can be uploaded, or can be fetched from
the server through a web browser. The user has the control to select
actions (like select particular visualization for data). When model and

 vovis : concept and design

controller process the request of the user, the final visualization is dis-
played on the browser or mobile app page.

• Controller: Controller is the primary coordinator between user inter-
face, database, and visual component. It manages the execution of all
tasks. Controller can use a web service to get additional services.

• Visual Component: Provides the visualization logic to generate a par-
ticular type of visualization from data. It executes all the operations,
right from data mapping, data processing to visualization generation.

. the vovis : design overview

In order to fill the research gaps and fulfill requirements, the VoVis frame-
work will try to accomplish the following tasks.

a. Design a visualization library that have information for most popular
(many) types of visualization and are categorized by the functions they
demonstrate.

b. Design a vocabulary for each type of visualization in the library. This
supports the data in all formats. For this, two version of the library is
designed i.e. an RDF and text vocabulary library.

c. Implement a process to map data with vocabulary into a standard for-
mat.

d. Implement a process to visualize the processed data using standard
tool.

e. Make the framework cross-platform both for app and web.

Figure  shows the architecture of the VoVis framework. The VoVis frame-
work has layers of components with vocabulary as the new component. This
framework is designed to explain how data can be easily and efficiently vi-
sualized, if it follows the standard vocabulary and structure. The important
task in field of visualization is to understand the requirements and plot the
correct chart accordingly. If user or developer is willing to plot a chart, but
the data available does not fulfill vocabulary requirements for a particular
chart, then the chart can not to be plotted. Therefor some standard set of
rules are required for visualization of data. This framework provides visual-
ization along with processed data (JSON object), which has complete infor-
mation about particular chart type.

. the vovis vocabulary component

The proposed vocabulary component contains libraries required for the map-
ping and visualization of the data. Each library is discussed in detail in the
following sections.

. the vovis vocabulary component 

Figure : Concept and Design of VoVis Framework with Vocabulary Component

.. Visualization Library

One of the biggest challenge for non-technical and business users in produc-
ing the data visualizations is to select the appropriate type of visualization
to represent the data accurately. Here the focus is more on the conventional
static visualization types, which are more useful for the information visual-
ization []. To make the selection process easier, the data should be grouped
into a category and according to that category the correct visualization type
can be selected. Below are the categories for the data and the visualization
types to visualize it.

. D/Linear - The linear data are textual documents, program source
code, and alphabetical lists of names. It is normally not visualized, can
only be arranged in some order.

. D/planar - The D data consists of planar or map data with geograph-
ical features. These data can be easily located through the maps. Many
features like markers, different colors can represent additional data on
the map. Geospatial are the best examples for this category such as
choropleth, cartogram and also heat maps.

 vovis : concept and design

. D/volumetric - The D data are real-world objects such as molecules,
the human body, and objects with volume. The scientific visualization
uses these data to visualize it in D graphs and charts. These data are
complex and requires a profound knowledge to visualize it.

. Temporal- The data in this category are time stamped. They are useful
when the user wants to arrange the data in chronological order. These
data can be visualized in the form of calendars, timeline, arc diagram
and many more.

. Multidimensional - Data with the multiple attributes are multidimen-
sional data. In order to understand multidimensional data and the re-
lation between the attributes, the visualizations that can display the in-
formation correctly are used. By the number of dimensions a particular
visual presentation can be selected. If data has three or four dimensions,
bubble chart can be used to display all the dimensions. Multibar/line,
box chart, pie chart are few types of presentation.

. Tree/Hierarchical - This is collection of data items that form hierar-
chies/tree structure with each dataset link to the parent object. A tree
has instances as parents, children, and siblings. This tree-like struc-
tures grow in depth with data and has a common root node. This type
of hierarchy helps to understand the structure very well. Types of visu-
alizations for these data are tree diagram, arc diagram, etc.

. Network - These data are connected to other data with links other than
parent-child relation. It can be presented using tree hierarchy. Network
graphs are the structure to present this kind of data according to the
association data have with each other.

The second category is based on the functions [] that the types of visualiza-
tion demonstrate. It helps those users who do not have in-depth knowledge
about visualization types, because it is most important and challenging task
to select correct type of visualization. If the right chart type is not selected,
the information that the user wants to communicate will be misinterpreted.
Following are the few functions that different types demonstrate.

. Comparisons - This function allows all types of charts which can be
plotted to compare the inputs on level of their similarities or differ-
ences. This could further be subdivided into

a) Based on the position of axis - Bar, box, bubble, histogram, stacked
area, and population pyramid.

b) No axis - Donut, choropleth map, and venn diagram.

. Proportions - This method can use size and area to show the similarities
and differences between the data. Bubble chart, proportional area chart,
and word cloud are few types to demonstrate this function.

. the vovis vocabulary component 

. Relationships - This function describes the relationship between the
data, how are they related to each other. Arc diagram, tree diagram,
and radial chart are few types to demonstrate this function.

. Locations - This method shows data over a geographical region. Flow
map and choropleth map are few types to describe this function.

. Hierarchy - This method shows how the data or objects are ranked and
ordered together in an organization or system. Tree diagram, tree map
are few types to demonstrate this function.

. Concepts - This method helps to explain and show ideas or concepts.
Brainstorm, venn diagram are few types to demonstrate this function.

. Part to Whole - This method shows the fraction of data to it’s total, is
often used to show the split,how the data is divided up. Example types
are donut chart, pie chart.

. Distribution - This visualization method displays the frequency of data,
how the data is distributed over an interval or is grouped. Examples are
bubble chart, dot matrix, population pyramid.

. Movements and Flow - This method helps to explain the flow of in-
formation between data. Example types are flow map, sankey diagram,
parallel sets.

. Patterns- This method reveals the forms or patterns in the data to give
it a better meaning. Bar chart, population pyramid, and scatterplot are
few types to demonstrate this function.

. Data over Time - This method shows the data over a period or show
time itself. Example types are calendar, timeline, and timetable.

. Range - This method shows the variations between upper and lower
limits on a scale. Example types histogram, box plot

. Process and Methods - This method helps to explain processes or meth-
ods that the data follows. Example types are sankey diagram, parallel
sets.

By the use of these categories choosing a particular chart type is much easier
and precise. There are few frameworks that work on above principle better
known as chart chooser. They only provide a few categories, a few of them
are as follows.

. Chart chooser [] - It is a small free tool that provides some information
about categories based on the functions. The functions act as filters and
by choosing a particular one helps to find the correct chart type. And
once a chart type is selected it is possible to download a template in
Excel or Power-point.

 vovis : concept and design

. Slide Chooser [] - It is a two slide layout that helps to identify which
chart type to select according to the requirements.

. Graphic cheatsheet [] - It is just a sheet that creatively defines the
different methods and how the different charts are organized in these
methods.

The Data Visualisation Catalogue  is an online reference tool that helps to
choose the right data visualization method. This web application provides
details for each type of visualization and categorized it by the functions and
list. This thesis collects the information about types of visualization from
Data Visualisation Catalogue. The visualization library of the VoVis frame-
work supports a total of o types of visualization. The user or the developer
can choose any of the available types based on the functions a visualization
can demonstrate. By selecting a particular type do not solve the problem, the
selected chart type needs to map with the input data. Every chart has its
unique requirements and features, there should be some standard rules or
information about each type. This is the part missing in almost every exist-
ing framework. This makes the new framework special by introducing the
concept of vocabulary Library.

.. RDF Visualization Vocabulary (VisVo)

Visualization vocabulary describes the visualizations in terms of properties
they hold. Without a generic vocabulary for visualization features, mapping
and plotting of the data becomes challenging. Most of the current visual-
ization frameworks lack comprehensive vocabulary library. In some frame-
works, either it is completely missing or they use only few conventions such
as dimensions and measures. Existence of multiple dimensions in the data
even makes the mapping harder. In this case, users need to understand those
implicit rules and conventions. None of the frameworks has a standard visu-
alization vocabulary for each visualization type that helps users to map the
data with particular visualization. The two data formats (i.e. CSV and RDF)
mostly covers all popular types of data including the research data. These
data are either in the tabular form (CSV/Excel) or in RDF form (also known
as linked data). If the data is in CSV format, the best option is to have text
vocabulary so that it is easier to map this data and process it as a JSON object.
When the data is already in the RDF format, or data needs to be mapped into
RDF form, simple text vocabulary might not work. Therefore description of
visualizations type for these data needs to be done semantically []. With-
out vocabulary visualization of the linked data needs to be done manually.
This requires even high maintenance cost.

The design of the visualization vocabulary should be in the form of an
OWL ontology []. For the semantic description of charts, it is possible to
use the formal language, like XML. This language does not describe relations
between different properties, for example, the chart has x axis, y axis and

 The Data Visualisation Catalogue: http://www.datavizcatalogue.com/

. the vovis vocabulary component 

has data values. With RDF format, it is easier to retrieve data in a standard
way. Semantic description of visualizations using RDF is a novel research ap-
proach, and elementary work has been done in this area. There are few stan-
dard common vocabularies like RDF Data Cube. The problem is, all are very
complex and cannot visualize directly, need a broad knowledge of vocabulary.
The most significant and similar research is the Statistical Graph Ontology
[] that provides a new approach to annotate visualizations semantically.
While the Statistical Graph Ontology provides information which is useful
only to present statistical graphs. The drawback of this kind of vocabulary
is that some of the essential features of visualization are missing like color,
size also data type, etc. Some of the classes in this vocabulary are not human
readable.

Vispedia [] is other web-based visualization system to visualize Wikipedia

datasets. This tool is restricted to be used only for Wikipedia data; further-
more no binding of data is supported. Also, it does not provide automatic
binding of heterogeneous data onto visualizations.

The CODE project developed a Visual Analytics (VA) Vocabulary which
uses some standard vocabulary like RDF Data Cube []. This is a WC Stan-
dard and has been developed to represent statistical data as RDF. Visual An-
alytics vocabulary is in the form of an OWL ontology. This vocabulary is an
interface between the RDF Data Cube and visualization-specific technologies.
Along with the RDF Data Cube Vocabulary, the VA vocabulary forms the ba-
sis for automating the visualization process. In the CODE project, the RDF
Data Cube is used to define the meta-model in order to capture the eval-
uation results from publications. The work describes about VA vocabulary
which is used to represent the information about visualizations. VA vocabu-
lary describes the visualization axes and other visual channels, such as color,
the size of visual symbols, which are used to represent visually the data [].
This vocabulary has mapping component that maps the RDF Data Cube and
the VA Vocabulary. Mapping is between dimensions, measures of the RDF
Data Cube (i.e. cube components) and the corresponding axes and visual
channels of the visualization. This explains that VA vocabulary cannot be
used alone and always needs results from Data Cube. It does not support for
most popular visualization types, and many specific features of visualization
are missing.

Literature survey shows that no visualization vocabulary ontology exist,
hence new Vocabulary design is required. The RDF visualization vocabulary
(VisVo) is the vocabulary that is standard and provides information for most
popular visualization types. The VisVo vocabulary has all the properties that
a visualization type needs to present data in visual form. All the common fea-
tures are clubbed together along with unique features, specific to each type.
For example a chart can be a single or multi-chart, again it can be an the
area, bar or line chart. A chart has standard features with others visual types
like single charts have single x axis, y axis, labels, and values. The values

 Wikipedia: https://en.wikipedia.org/wiki/Main_Page
 CODE Visualization Wizard: http://code.know-center.tugraz.at/vis
 VA Vocabulary: http://code-research.eu/ontology/visual-analytics

 vovis : concept and design

can be further subdivided into x values and y values with certain data types.
All such information can be stored in a vocabulary. The VisVo vocabulary
library will have different classes and properties, the idea is to write vocab-
ulary for most popular types defined in new visualization library. Initially
approximately  types is identified. For the proof of concept, the VisVo li-
brary has information for the single bar, area, line charts and also bubble
and scatter-plot charts. There are total  classes and  properties for de-
scribing five types of visualizations. Figure  shows the VisVo ontology as
graph diagram, with the classes and properties.

Figure : The VisVo vocabulary ontology diagram with  classes and  properties

.. Types of Visualization

This section describes the visualization types. Each visualization type requires
to answer question such as; Which data points are important for plotting?, Is
the given data sufficient enough for visualization?, Is it possible to map these
data into a chart? Designing a standard vocabulary library leads to answer
these queries by providing visualization information like name, labels and
types etc. The VoVis Vocabulary contains  types of visualization which are
listed in Appendix A. Following are the descriptions for some visualization
types along with their vocabulary.

. the vovis vocabulary component 

. Area graph

a) Description - Area Graph is a type of line chart that draws area
with colors. To plot it, first lines are drawn with Cartesian coordi-
nate points and then are filled with some colors. They are used to
show or display quantitative data. There are two variations of this
graph: Grouped and stacked Area graph.

b) Vocabulary - To plot a simple area graph most important is the
coordinate axes. Area graph works with D data, so vocabulary is
simple with x and y axis.

• name: name of chart.

• xaxis_label: xaxis label.

• yaxis_label: yaxis label.

• xaxis_type: data type for x values.

• yaxis_type: data type for y values.

• xvalues: values for xaxis.

• yvalues: values for y axis, one for each x value.

c) Functions - Area graph can be used to demonstrate following func-
tions - Relationships, Patterns and Data over time.

Figure  shows an D example of an area chart.

Figure : D example of Area Chart

. Bar chart

a) Description - A bar chart presents data as rectangular blocks, can
be displayed as horizontal or vertical rectangular bars. They are
used mainly for comparisons of data. Bar cart has two variations,
Grouped and stacked bar charts, both work on multiple data. Bar

 Area Chart: http://bl.ocks.org/mbostock/

 vovis : concept and design

cart is defined as "chart that provides a visual presentation of cate-
gorical data" []. Categorical data is a grouping of data into qual-
itative groups, such as months of the year, age group, shoe sizes,
and animals. These categories are usually qualitative.

b) Vocabulary - To plot a simple bar graph most important is the
coordinate axes. Area graph works with D data, so vocabulary is
simple with x and y axis.

• name: name of chart.

• xaxis_label: xaxis label.

• yaxis_label: yaxis label.

• xaxis_type: data type for x values.

• yaxis_type: data type for y values.

• xvalues: values for xaxis.

• yvalues: values for yaxis, one for each x value.

c) Functions - Bar Charts can be used to demonstrate following func-
tions - Comparisons, Relationships, and patterns.

Figure  shows an example of bar chart taken from Google Charts.

Figure : Bar Chart example from Google Charts shows populations of US cities

. Box and Whisker Plot

a) Description - A box plot is a visualization type that displays nu-
merical data in groups using the concept of quartiles. First quar-
tiles need to be calculated from data and then shown as boxes
and whiskers. Additional features can also be highlighted by us-
ing some parallel lines. Outliers are sometimes plotted as individ-
ual dots that inline with whiskers []. Box plots can be drawn
either vertically or horizontally. Box plot can provide information
about average value, values of outliers in data sets.

 Bar Chart: https://developers.google.com/chart/interactive/docs/gallery/barchart

. the vovis vocabulary component 

b) Vocabulary - To plot a simple boxplot, most important is the x axis
and its values.

• name: name of chart.

• xaxis_label: xaxis label.

• yaxis_label: yaxis label.

• xaxis_type: data type for x values.

• xvalues: values of x.

c) Functions - Box chart can be used to demonstrate the following
functions - distribution, Range. When box chart is grouped, it can
demonstrate, comparisons and patterns.

Figure  shows an example of box plot.

Figure : Box and Whisker Plot

. Bubble chart

a) Description - A Bubble Chart can display up to four dimensions
of data, bubble chart can sometimes resemble a combination of a
Scatter plot and a Proportional Area Chart. Bubble Charts use a
Cartesian coordinate system to plot bubbles together with sepa-
rate x and y axis values. Each bubble represents a third variable,
either by the area of it or by color. Colors can also be used to distin-
guish between categories or used to represent an additional data
variable. Each entity with its triplet or quad-let (v, v, v, v) of
associated data is plotted as a circle that expresses two of the vi
values through the circle’s xy location and the third through its
size and fourth through its color.

b) Vocabulary - To plot a bubble chart, the data should be multidi-
mensional.

• name: name of chart.

• xaxis_label: xaxis label.

 Box Plot: http://www.datavizcatalogue.com/methods/box_plot.html#.VVUCY-mUco

 vovis : concept and design

• yaxis_label: yaxis label.

• xaxis_type: data type for x values.

• xvalues: x values.,

• yaxis_type: data type for y values.

• yvalues: y values for each x value.

• color_label: label which different colors will represent.

• color_type: data type for color values.

• color_values: values each for a color.

• radius_label: label which is shown by different circle radius.

• radius_type: data type for radius value.

• radius_values: values for radius for each circle.

c) Functions - Bubble Charts are typically used to compare and show
the relationships between circles. The bubble chart can be used
to demonstrate the following functions - Comparisons, Data over
time, Distribution, Patterns, Proportions, Relationships.

Figure  shows an example of bubble chart taken from Google Charts
examples.

Figure : Bubble Chart from Google Charts Example

. Histogram

a) Description - A histogram is a visualization type that displays data
over time period or over continuous interval. Data is displayed as
bars where each bar represents some data for each interval. They

 Bubble Charts: https://developers.google.com/chart/interactive/docs/gallery/bubblechart

. the vovis vocabulary component 

are used in the field of probability distribution. Histogram works
with continuous data

b) Vocabulary - To plot a simple histogram chart, multiple data columns
are required.

• name: name of chart.

• xaxis_label: name of xaxis.

• xaxis_type: data type for x values.

• xvalues: x values.

• x_labels: labels for x values.

c) Functions - Histogram can be used to demonstrate the following
functions - Comparisons, Data over Time, Distribution, Patterns,
Probability, and Range.

Figure  shows an example of Histogram taken from Google Charts
examples.

Figure : Histogram

. Multi-set Bar chart

a) Description - Multi-set or Grouped Bar charts are used to display
data which are grouped together under some categories, are plot-
ted on same axis. Each group is presented as bar with a color, to
distinguish it from other groups. Bunch of bars are spaced apart
from each other based on categories. The use of multi-set bar charts
is to compare grouped variables or categories.

 Histogram: https://developers.google.com/chart/interactive/docs/gallery/histogram

 vovis : concept and design

b) Vocabulary - To plot a simple multi-set bar chart, one needs mul-
tiple data columns.

• name: name of chart.

• xaxis_label: xaxis label.

• xaxis_type: data type for x values.

• yaxis_label: yaxis label.

• xvalues: values for xaxis.

• y_names: title for y values.

• yaxis_type: data type for y values.

• yvalues: values for y for each x value.

• y_labels: labels for each y_name

c) Functions - Grouped bar chart can be used to demonstrate the fol-
lowing functions - Comparisons, Distribution, Patterns, Relation-
ships

Figure  shows an example of multi-set bar chart from D examples.

Figure : Multi-set Bar Chart from D example

. Population pyramid

a) Description - A population pyramid is a pair of histograms that
display population patterns. The Population pyramid can show
distribution of the population of different groups, groups can be
categorized as sex or age group. The shape of a population pyra-
mid provides information, which helps to interpret a population.
For example, "an pyramid with a very wide base and a narrow top
section suggests a population with high fertility and death rates.

 Multi-set Bar: http://bl.ocks.org/mbostock/

. the vovis vocabulary component 

Whereas, a pyramid with a wider top half and narrower base sug-
gests an aging population with low fertility rates" []. Population
pyramids are useful in field of Ecology and Sociology.

b) Vocabulary - For each x axis value there are two y variables (y,y)
with two values.

• name: name of chart.

• xaxis_label: xaxis label.

• yaxis_label: yaxis label.

• xaxis_type: data type for x values.

• xvalues: values for xaxis.

• yname: label for y values.

• yaxis_type: data type for y values.

• yvalues: values for y one for each x values .

• yname: label for y values.

• yvalues: values for y one for each x values.

c) Functions - Population Pyramid can be used to demonstrate the
following functions - Comparison, Distribution, Patterns. Figure 
shows an example of Population pyramid taken from D exam-
ples.

Figure : Population Pyramid example from D

. Radial Bar chart

a) Description - A Radial/Circular Bar chart is kind of a Bar chart
but plotted on a polar coordinate system. The human can not in-
terpret polar coordinates easily, as compared to straight lines, so

 Population Pyramid: http://bl.ocks.org/mbostock/

 vovis : concept and design

the ordinary user does not prefer this chart. Mainly used for aes-
thetic reasons.

b) Vocabulary - Vocabulary is based on the polar coordinates.

• name: name of chart.

• r_label: label for r axis.

• dimension_label: dimension label.

• r_type: data type for r values.

• r_values: values for r.

• dimension_labels: labels for dimensions.

• dimension_type: data type for dimension values.

• dimension_values: values for dimension.

c) Functions - Radial bar chart can be used to demonstrate the fol-
lowing functions - Comparison, Relationships.

Figure  shows an example of radial bar chart taken from D exam-
ples [].

Figure : Radial Bar Chart example from D

. Scatter Plot

a) Description - This kind of plot is also known as scatter graph,
point graph, X-Y plot, scatter chart or scattergram. Scatter plots
use a collection of points placed in a graph using Cartesian co-
ordinates. Each point represents two variables values w.r.t to the
axis. Correlation between these two variables can be observed if it
exist. Interpretation of the relationship between the points can be

. the vovis vocabulary component 

done by seeing the pattern created by them in the plot. These are
positive: variable values increase together, negative: one variable
value decreases as the other increases, null (no correlation), linear,
exponential and U-shaped.

b) Vocabulary -

• name: name of chart.

• xaxis_label: xaxis label.

• yaxis_label: y axis label.

• xvalues: x valuess.

• yvalues: yvalues for each x values.

• color_label: label which different colors will represent.

• color_values: color values.

c) Functions - Scatter plot can be used to demonstrate the following
functions - Patterns, Relationships.

Figure  shows an example of Scatter plot chart taken from D exam-
ples.

Figure : Scatter Plot example from D

. Span chart

a) Description - Span chart is a chart that displays different dataset
ranges like time range or range between minimum and maximum
value from data, for different categories. Span chart does not give
information for all values in data; the focus is on the range of
dataset. Span chart is also known as Range Bar/Column Graph.

b) Vocabulary - For each x axis value there are two y variables (y,y)
with two values.

 Scatter Plot: http://bl.ocks.org/mbostock/

 vovis : concept and design

• name: name of chart.

• xaxis_label: x axis label.

• yaxis_label: y axis label.

• xvalues: different values for x axis.

• yname: same label for y and y.

• yvalues: values for y one for each x values.

• yvalues: values for y one for each x values.

c) Functions - Span chart can be used to demonstrate the following
functions - comparisons, and Range.

Figure  shows an example of Span chart.

Span chart

Figure : Span Chart example from The Data Catalogue

. Arc diagram

a) Description - Arc Diagram is a style of graph drawing []. Arc
diagram is a graph that represents D data as nodes and arcs be-
tween nodes, to show the flow between nodes. The frequency from
the source node and target node is represented by the thickness of
arc line.

b) Vocabulary - Vocabulary of Arc diagram is based on nodes and
link concept of graph theory. It has two cases, with information
about nodes or without it.

i. Case :

• node (name)

• link (source,target,value)

 Span Chart: http://www.datavizcatalogue.com/methods/span_chart.html#.VVUUXumUco

. the vovis vocabulary component 

ii. Case :

• node (name,info)

• link (source,target,value)

c) Functions - Arc Diagram can be used to demonstrate the following
functions - patterns, relationships.

Figure  shows an example of arc diagram taken from D examples.

Figure : Arc Diagram from D example

. Venn Diagram

a) Description - A Venn Diagram is a diagram that displays logical
relations between a group of sets; each set is displayed as a circle.
Venn diagram is used to show different functions over the sets,
like intersection, union, etc. For intersection, different sets overlap
with each other.

b) Vocabulary - A Circle has name and size value, with overlap func-
tion.

• circle (name,size)

• overlap (circle,circle,size)

c) Functions - Venn Diagram can be used to demonstrate the follow-
ing functions - comparisons, concepts, probability, relationships.

Figure  shows an example of Venn diagram taken from D exam-
ples.

. Pie Chart

a) Description - Pie chart is a circular graphic visualization used in
offices. The pie or circle is divided into slices of arc length for each
slice. Each arc length represents a proportion their category. This
chart is not suitable for larger datasets. Pie charts take more space
to display less information.

 Arc Diagram: http://bl.ocks.org/sjengle/
 Venn Diagram: http://www.benfrederickson.com/venn-diagrams-with-d.js/

 vovis : concept and design

Figure : Venn Diagram

b) Vocabulary - Pie chart has radius and dimension values.

• name: name of chart.

• r_label: name for r axis.

• dimension_label: dimension name.

• r_type: data type for r values.

• r_values: values for r.

• dimension_type: data type for dimension values.

• dimension_values: values for dimension.

c) Functions - Pie Chart can be used to demonstrate the following
functions - comparisons, part-to-a-whole, proportions.

Figure  shows an example of a pie chart taken from Google Charts
gallery.

 Pie Chart: https://developers.google.com/chart/interactive/docs/gallery/piechart

. the vovis vocabulary component 

Figure : Pie Chart Example from Google Charts

. Geo charts

a) Description - Geo charts are map drawn with lines; they are not
terrain map and cannot zoom or scale the maps. They can be sub-
divided as choropleth map and geo chart with markers. Choro-
pleth map displays different regions with colors in relation to data
values. Geo charts with markers need additional information to
display markers. Most important inputs required are either re-
gion’s name or longitude and latitude values.

b) Vocabulary - To plot a geo chart longitude, latitude values are
needed or the name of countries or cities

• Longitude: data type for y values,

• Latitude: yvalues for each x values,

• color_data_label: label which different colors will represent,

• color_data_type: data type for color values,

• color_data_values:values each for a color,

• size_data_label:label which is shown by different circle radius,

• size_data_type: data type forradius values,

• size_data_values:values for radius for each circle

c) Functions - Geo Chart can be used to demonstrate the following
functions - Comparisons, Data over time, Distribution, Patterns,
Proportions, Relationships

Figure  shows an example of Geo chart taken from Google Charts

The next layer is the JSON structure library. The vocabulary library provides
the input to a mapping component whose function is to map input data with
vocabulary. Input data together with mapped vocabulary is then converted
into JSON structure. The overall conversion component is explained in the
Chapter .

 Geo Chart: https://developers.google.com/chart/interactive/docs/gallery/geochart

 vovis : concept and design

Figure : Geo Chart Example from Google Charts

.. Vocabulary Storage Format

Before explaining the details of the library, this section provides motivation
behind creating this library. Most of existing visualization frameworks are
rigid and accepts the input data in a specific format. Following are the moti-
vation behind including this component in the framework.

. The standard structure of the data provides the opportunity to the the
users or the developer to understand it easily.

. The idea of this framework is not only to provide visualization along
with process data in standard format. It is important to have data in
standard format for compatibility reason with other third party tools.

. Once the input data is mapped with vocabulary it needs to be converted
into some structure. Depending on vocabulary the mapped data can be
simple or complex, so some standard format is required.

From above discussion it is clear that we require a standard structure.
There are plenty of existing data formats that can be a potential candidates
for our requirement. This includes CSV, XML, JSON etc. CSV or any simi-
lar tabular form is a not feasible option as they cannot hold all properties
from the vocabulary. For example, some cases requires simple key value pair
whereas a few may require array of it and so on. Structures such as XML for-
mat, JSON format has features to accommodate these requirements. For the
purposed framework, the JSON structure is preferred over XML. The reason
behind choosing the JSON structure is that it is simpler than XML, as JSON
uses less grammar and maps directly to the data structures used in modern
programming languages such as JavaScript. Note that our framework uses

. the vovis vocabulary component 

JavaScript libraries hence JSON becomes more suitable candidate. JSON is
also human readable therefore more suitable for the exchange format. De-
pending on the chart being selected from the visualization library, a vocabu-
lary is selected and mapped with the input data. Further it get converts into
JSON object that follows the JSON structure from the library. Following is
the vocabulary and JSON structure for an Area chart.

Listing : JSON Structure for a single Area/Line/bar Chart

{ "values": [
{"x":,"y":},
{"x":,"y":},
] , "name": , "xaxis_label ": ,

"xaxis_type": , "yaxis_label ": ,
"yaxis_type":

} �
The task of conversion component is to convert the vocabulary data into the
JSON object. The conversion function is written in JavaScript and the result
is available to for the third party visualization tool.

In conclusion, this chapter describes the design and concept of the Vo-
Vis framework followed by the detail description of vocabulary components.
Some of the visualization types along with their vocabulary.

7
P R O T O T Y P E I M P L E M E N TAT I O N O F T H E VOV I S
F R A M E WO R K

The VoVis framework is introduced and designed along with the vocabulary
library in the Chapter . The visualization vocabulary module can be devel-
oped as a separate component within the web-based framework, so this mod-
ule can be easily used by the other visualization frameworks. Appendix A
shows the visualization vocabulary in text form for different types of visual-
ization along with the examples.

For proof of concept, a web-based visualization framework prototype has
been implemented. The VoVis framework is implemented as a client-side
MVC framework using JavaScript language. The main aim of this prototype
is to show that vocabulary based visualization makes a difference in visu-
alizing the data. Due to time constraints, the prototype has only five types
of visualization in the library with vocabulary. For Visualization, D and
Google charts are selected as third party libraries according to the evalua-
tion of visualization libraries in Section ... The main reason to choose two
completely different libraries is to demonstrate, how generic the VoVis frame-
work is. Processed data in the VoVis framework can be visualized easily with
any third party library. The complete framework is written in JavaScript lan-
guage that makes it very flexible and platform independent []. The frame-
work has both a web based version and a mobile app version. All modules
are implemented according to the design of components and follow the ar-
chitecture discussed in Chapter . The Figure  demonstrates the whole
framework structure with all components.

. the controller : grapher

The controller of the framework is Grapher.js, It coordinates with all the com-
ponents and the user interface. Every component interact with other only
through Grapher. The primary task of this controller is to decide when and
which process to execute and with what data. All the components depend
on it for their input to perform a particular task they are assigned to. The
following steps describe how the controller manages the whole workflow.

. Grapher uploads the file that the user selects to upload through the
user interface(Home page) of the framework.

 Data Driven Documents : http://djs.org/
 Google Charts : https://developers.google.com/chart/



 prototype implementation of the vovis framework

Figure : Process flow of the VoVis framework

. Grapher assigns the visualization type that the user has selects, accord-
ing to the "type" the Controller picks the correct vocabulary from the
gData (config file).

. Grapher passes the vocabulary to the user through the dataDrag mod-
ule. Then the user maps the data with the vocabulary.

. When the user is finished with mapping, next step is to process the data.
The Controller transfers the vocabulary mapping information along
with abstract data to the dataDecorator module.

. When the dataDecorator finishes its task, it returns the processed data
to Grapher. The Grapher displays the processed data and forwards to
the plotGraph module.

. When the plotGraph executes, the data is visualized on the user inter-
face(Home Page) of the framework.

This way the controller plays a critical role in every step from beginning (file
uploading) to the end (visualization of data).

. the vocabulary configuration file : gdata

The gData is like a configuration file; that contains vocabularies for types
of visualization. For example, the bubble chart has a vocabulary which in-
cludes name label for chart name, x-axis_label, y-axis_label, color_label, and
radius_label labels. Data type is not mentioned here because it is identified
and assigned at the run time when the user uploads the data. Charts with
multiple, x or y columns(multi-bar chart or box chart) need a field that de-
fines the value of n, is configured in this file. The user will enter the value for
n and according to the value columns will be available to drag and drop in
Home page.

. the user interface : home page 

. the user interface : home page

The essential module in the web-based framework is Home page(index.html).
This is the user interface, where final visualization is displayed. The user up-
loads a data file through it and chooses the type of visualization. This page
provides mapping of data columns with vocabulary through drag-drop ser-
vice. When the framework executes and creates the final visualization, it is
presented in this page along with the processed data.

. the data analyzer : csvparser

The work of CSVParser is to parse the raw data. This JavaScript is taken from
Dr Converter  which is open source. This JavaScript processes the raw data
from a file and converts them into arrays. As the name suggests it works on
the data in CSV format, stores the data from a file into arrays and is together
called the abstract data. This abstract data is saved in the gData file.

• dataArray - will store the data values from all columns in a D array.

• headersName - will store all the header names, i.e., the first row from
CSV file.

• headerTypes - will store the data type of each data column. If the first
column is "names of cities" then header type will be string for the first
column, similarly it will be numbers if some column has "population
of cities" in numbers. Figure  describes the flow of operation, the
CSVParser executes on raw data.

Figure : Data Analyzed by CSVParser

 Dr Converter: http://shancarter.github.io/mr-data-converter/

 prototype implementation of the vovis framework

. the visual mapper : datadecorator

The dataDecorator is visual mapper component of the framework. This com-
ponent maps the vocabulary based data to a standard JSON object, which
makes this framework unique as compared to other visualization frameworks.
The dataDecorator has JSON structure library for all visualization vocabu-
laries. When it receives vocabulary mapped data, it selects particular JSON
structure and then converts the data into a JSON object. Any non-technical
person will easily correlate this processed data to the visualization. Figure 
describes the process of data mapping.

Figure : Data Mapped by DataDecorator

. the visual displayer : plotchart

The plotChart is the visual displayer component. The plotChart creates the
visual chart with the help of third party visualization JavaScript libraries. The
prototype plots few charts and maps using D and Google Charts libraries.
The D library is complicated to use than the Google charts, as D do not
offer predefined visual styles. In Google Charts, the chart components are
already created, the properties can be changed using pre-defined option ob-
jects according to the needs. The D follows the opposite approach, where
everything needs to be built from scratch. Using D, it is possible to make
virtually any type of visualization and can be customized to any extent. To
learn D.js, first step is to understand different D API which are available at
the official API documentation, and the examples are listed on the Dwiki.
The D.js wiki is full of tutorials, blogs, and talks, also there are few good
books that helped a lot in understanding D functions especially Interactive
Data Visualization for the Web [] and Getting Started with D []. The
book D Tips and Trick [] provided more practical tips on D library.

Like jQuery and other JavaScript frameworks D simplifies the selection of
an element in the SVG DOM. The static method "d.select()" takes CSS selec-
tor as an argument. The "d.append()" method is similar but is used to add a

 https://github.com/mbostock/d/wiki/API-Reference
 D wiki : https://github.com/mbostock/d/wiki

. the vovis : database 

new element as a child of the selected element. To append an SVG element,
it can be prefixed by the SVG namespace like this: d.append("circle").

D uses a declarative style of programming, and it needs to declare what
is selected. The modifications are made in the DOM, CSS styles, HTML and
SVG attributes, texts, animations, and events. D will loop through the selec-
tion set and apply the modifications and provides abstraction by hiding the
DOM manipulation process. This leaves the user with the fun part and with
full control on the process.

Binding events is a simple process, selects a DOM element and use the
".on()" method with two attributes. The first attribute is an event(as string),
and a callback function as a second attribute.

Example: ".on" method is shown below with two attributes

.on("mouseover", function()
{

d3.select(this).style(" f i l l ", "white");
}) �

Quite often, this type of anonymous function is seen as an argument in D.
Figure  shows the process of chart generation by plotChart.

Figure : Chart Generated by plotChart

. the vovis : database

To store the data files that are uploaded by the user to visualize and also
the processed data, MongoDB as the database is selected. "MongoDB is one
of many cross-platform document-oriented databases" []. It is a NoSQL
database. MongoDB is a document-oriented database, it does not work like
table-based relational database, instead uses documents with JSON-like struc-
ture and dynamic schemas (also called as BSON structure). Use of such for-
mat can make data integration easier and faster for applications. VoVis to-
gether with MongoDB provides the option to upload the data and download
it. With this service, a user can analyze and process data anywhere, anytime.
The uploaded data is stored in the cloud by MongoDB, so it is a data service
provided by a web service. In order to access the MongoDB server is needed,
which can connect the application to the database.

 MongoDB: https://www.mongodb.org/

 prototype implementation of the vovis framework

. the vovis : server

A server is required to host the VoVis application for visualizing data, and
a web service for accessing MongoDB. Node.js is selected to fulfill above
requirements. Node.js [] provides http server to host the VoVis applica-
tion and web services required to serve the web app and handle the back-
end data storage/retrieval via MongoDB. "Node.js is an open source, a cross-
platform runtime environment for server-side and networking applications.
Node.js provides an event-driven architecture and a non-blocking I/O API
that optimizes an application’s throughput and scalability" []. Node.js ap-
plications are written in JavaScript. These technologies are commonly used
for real-time web applications. In Rapid prototyping world, node.js environ-
ment has been proven one of the best full development stacks. With unified
API approach, it is easy to deploy a complete Web-based solution in multi-
ple platforms. Node.js combined with a browser, a document DB (MongoDB)
and JSON offers a unified JavaScript development stack.

. the vovis : source code

The VoVis framework prototype is implemented as a client-side MVC web
application for visualizing data with vocabulary based mapping. The VoVis
prototype is an open source application, easy to download and run the appli-
cation. The user can edit the source code of the VoVis application to modify
the application according to the requirement. The source code of the VoVis
application is available on GitHub []. The steps to download and run the
VoVis framework are described in Appendix C.

Chapter  describes the test of the prototype to evaluate the VoVis frame-
work.

 Node.js : https://nodejs.org/

Part III

E VA LUAT I O N A N D C O N C LU S I O N

8
E VA LUAT I O N O F T H E VOV I S F R A M E WO R K

The functional prototype of the VoVis framework needs to be tested to deter-
mine whether all requirements listed in Chapter  are fulfilled. This proto-
type addresses the last research task of the thesis and discusses the experi-
ment performed using the VoVis framework.

Finally, the VoVis framework is evaluated with respect to all requirements
defined in Chapter . This evaluation will determine to what extent the VoVis
framework meet the requirements.

. the vovis framework experimental setup

In order to perform the test, certain datasets are taken from the use cases that
are discussed earlier in Section .. Then desired charts and maps are plotted
from these datasets using the VoVis framework. The outcome of the experi-
ment is reported to provide help in the assessment of the VoVis framework.

In order to test the VoVis framework, the first step is to get data which
needs to be visualized. Out of two use cases from pilot projects, data from one
of the project is taken to perform the experiment. Citi-Sense-MOB provides
air quality data to present in the different types of visualization.

Air quality data consists of air pollutants in the air like NO gas, Co gas,
etc., together with other measures like time, temperature, humidity, noise
level, measured by different sensors. Data is measured using different units
like raw, ppm, ppb, etc. The data is measured for Citi-Sense-MOB project by
two ways.

. Fixed sensors mounted at different locations in the Oslo city measures
and records all the air pollutants continuously.

. A mobile sensor collects the data, for example, a sensor is mounted on
a bicycle. When a cyclist takes a ride from one location to the other, the
data is measured by sensors throughout the ride, which provides the
data for a particular track.

Figure  outlines the different air pollutants, measured for a track cov-
ered by the cyclist, where the sensor is mounted on a bike. The data shown
below has many columns, so different types of visualization can be created to
visualize the different column data.



 evaluation of the vovis framework

Figure : Data measured by a bike sensor for Citi-Sense-MOB use case, shown in
tabular form

Based on this sensor data from a bike sensor, four test scenarios are defined.
For each test, data is filtered and processed to generate final visualization
through the VoVis framework.

. First test scenario is to visualize AQI calculated from the data. AQI is
an indicator of air quality based on air pollutants that have adverse
effects on human health. In Citi-Sense-MOB, the AQI is used to display
the data for the users. AQI can be calculated by the guidelines given by
Norwegian luftkvalitet . New dataset comprises of locations, pollutant
gases from which AQI is calculated and AQI values. Figure  shows
some pollutant gases and AQI calculated from the values of given gases.

. Second Test scenario focuses on individual air pollutant components like
NO, CO, etc. How the values of these air pollutants range over time,
which type of visualization should be selected, the test is to answer
the queries and to visualize these data correctly. To understand this
scenario, the data is filtered into a subset of original data. Figure 
shows different gases in raw form.

 luftkvalitet : http://luftkvalitet.info/home.aspx

. the vovis framework experimental setup 

Figure : Filtered data with AQI calculated from pollutant gases shown in a tabular
form

Figure : Filtered data with some air pollutant gases in tabular form

. Third Test scenario focuses on comparisons of the air pollutant compo-
nents over a period. Two features need to be visualized, first what are
the values of pollutant gases at a certain period, and other is to com-
pare few of the pollutant gases. Figure  shows some of the pollutant
gases in raw form and date and time in CSV format.

 evaluation of the vovis framework

Figure : Filtered data comprises of time and air pollutant gases in tabular form

. Fourth Test Scenario is to show the visualization of sensor data through
the mobile app, with cross-platform support.

Above mentioned are the four test scenario that will be tested in the VoVis
framework.

. results of the experiment

The four test scenarios provides the data for visualization. Three types of
visualization are created by the VoVis framework. Following are the steps for
execution of the test by the VoVis framework.

• Upload the input file in CSV format.

• Select a type of visualization from the drop down menu. Once a type is
selected information regarding the visual type is shown in the informa-
tion box. This helps in mapping of data with the VisVo vocabulary.

• Drag and drop feature of the VoVis provides help for mapping of the
data columns to the VisVo vocabulary and manually typing some input
for labels as the name of the chart.

• Once mapping is done, and next is to process it by clicking the process
button. Remapping is also possible by reset method that will reset the
mapping.

• The processed data and the visualization is generated and can be viewed
and accessed on the web page.

Figure  is the screenshot of the VoVis framework showing information
about multi-bar-chart and the data file is uploaded.

. results of the experiment 

Figure : The VoVis framework shows the information of Multi-set-bar

.. Result of Test Scenario 

The best way to visualize AQI calculated in test scenario is through maps, so
it is a map visualization, with different color bubbles displayed over the map
at different locations on a track. The latitude and the longitude are part of
the input data so that it can be visualized through a map. The values of AQI
ranges from  to , so four colors are used, each represents one value of AQI.
This visualization helps to check, how is the air quality on a particular track
for a given period. Figure  shows the result how the VoVis framework has
visualized the sensor data.

.. Result of Test Scenario 

The best way to visualize the second test scenario is through Box Chart. This
chart describes statistically what is the highest, lowest and mean value for a
pollutant gas in a day. By this chart, the range of each gas is easily visible and
can show the fluctuations in any gas with different labels. X axis defines all
the gases, and Y axis has all the values in raw for each gas.Figure  shows
the visualization of sensor data as Box chart by the VoVis framework.

 evaluation of the vovis framework

Figure : The VoVis framework Visualizing Sensor data as Map

Figure : The VoVis framework Visualizing Sensor data as Box Chart

.. Result of Test Scenario 

The best way to visualize the third test Scenario is through Multi-set Bar
chart. As mentioned in the test scenario, the visualization should outline the
value of each gas at the particular time, and also it should compare all gases.

. results of the experiment 

The Visualization library of the VoVis framework suggests both Stacked Area
chart and Multi-set Bar chart. The multi-set Bar chart is better than Stacked
Area chart, as it is more human interactive. Figure  shows a comparison of
four gases (No, Co, NO, SO) in raw form, over fifteen minutes time inter-
val.

Figure : The VoVis framework Visualizing Sensor data as Multi-set Bar Chart

.. Result of Test Scenario 

In order to execute the fourth Test Scenario, a mobile app version of the Vo-
Vis framework needs to develop with cross-device compatibility. The VoVis
framework is a JavaScript application, so with the help of PhoneGap frame-
work, the VoVis mobile app is developed. With the help of PhoneGap frame-
work, VoVis builds a mobile app for different platforms like iPhone/iPad, An-
droid , etc. As a part of experiment only Android app is developed for VoVis
framework. The VoVis framework is a JavaScript application, so with the help
of PhoneGap framework, the VoVis mobile app is developed [] for the dif-
ferent platforms like iPhone/iPad, and Android. As a part of experiment
only an Android app is developed for the VoVis framework.

Thus, above are the results of the test scenarios. Based on the results of the
experiment carried out using the VoVis Framework, the evaluation of VoVis
is carried in next section.

 Phonegap: http://phonegap.com/
 Android: https://www.android.com/
 Phonegap: http://phonegap.com/
 Android: https://www.android.com/

 evaluation of the vovis framework

Figure : VoVis Framework as Mobile App shows a Bar Chart

. vovis framework evaluation

An evaluation needs to be done, to determine whether the VoVis framework
fulfills the requirements given in Section . Requirements for a web visu-
alization Framework, or some parts that need to be improved in the VoVis
framework. To be able to compare it with the previously evaluated frame-
works Weave, Tableau Public, Visualize Free and Many Eyes, the evaluation
schema is the same as the one which has been used for their evaluation in
Section .. Evaluation of visualization Frameworks: VoVis is classified as
∅, + or ++, depending on if the requirement is not fulfilled at all, if it needs
some improvements or if it is fulfilled.

Visualization Requirements VoVis

R - Possibility to Support all Popular Types of Visualization +

R - Third Party Javascript Visualization Libraries ++

R - Local Access to Charts ++

R - Data Mapping using Generic Visual Vocabulary ++

Sum 

Table : Evaluation of the VoVis framework for Visualization Requirements

Table  includes the evaluation for the first four requirements, related to
the visualization. The VoVis visualization library supports thirty types of vi-
sualization, but the functional prototype of the VoVis framework currently
visualizes only five types of visualization. Concept and design of VoVis sup-
ports a wide range of visualizations, but prototype only supports a few. The
framework can be extended to support for more visualizations and therefore

. vovis framework evaluation 

evaluated as + for this requirement. The VoVis framework is standard and
flexible, can use any JavaScript third party library for the visualization. Cur-
rently, it is using both D and Google Charts. VoVis is evaluated ++ for the re-
quirement to support third party JavaScript Libraries. The VoVis framework
provides full access to both data and visual image. Visualization can be saved
as a picture for local access. The VoVis framework has a vocabulary compo-
nent that provides the vocabulary for mapping of data. This component helps
to map data easily, friendly to understand and process, so increases the effi-
ciency of the framework. The user can have maximum benefits as there is no
need to have pre-knowledge about the visualization types or process, very
convenient to generate any visualization. Only VoVis has this new compo-
nent; so is evaluated as ++ for this requirement of vocabulary mapping.

Data Service Requirements VoVis

R - RDF and CSV Data Format as Input +

R - Data Privacy ++

R - Easy to Upload Data ++

R - Access to Processed Data in Standard Format ++

R - Processed Data comprise Visualization Information ++

Sum 

Table : Evaluation of the VoVis for Data Service Requirements

Table  includes the evaluation of the Data Service Requirements. When it
comes to data service requirements, the VoVis prototype supports only CSV
format. The reason is that the RDF vocabulary for visualization types is at ex-
periment level. Only for proof of concept, the RDF visualization vocabulary
ontology(VisVo) is designed for few chart types. A lot of things need to be
done in the RDF field for visualization. Also, mapping of this vocabulary to
the RDF data needs to be implemented. Because of time constraint this thesis
could not focus much on this part, but it has a design that is shown in the
design of VoVis framework in Section ... For the data requirements(R)
it is evaluated as +. As the main focus of the VoVis framework is vocabu-
lary mapping and visualizing through JavaScript libraries. Filtering of data
is not implemented, so difficult to manage huge files, but it is very easy com-
ponent to add as many JavaScript libraries provide functions for filtering of
data according to the requirements. Crossfilter.js  is a JavaScript library that
provides "Fast Multidimensional Filtering for Coordinated Views". Crossfil-
ter along with the D can visualize even with datasets containing a million
or more records. VoVis provides full access to processed data, and processed
data comprises of information for the type of visualization. The processed
data can be accessed by developers and with visualization information, de-
velopers can generate the visualizations in the more custom way or can use
these data as an input for further research.

 Crossfilter a JavaScript library : http://square.github.io/crossfilter/

 evaluation of the vovis framework

Web Framework Requirements VoVis

R - Programming in JavaScript ++

R - Offline Mode +

R - Cross Device Compatibility ++

R - Open Source ++

R - Cross Browser Compatibility (with no Flash Plugin) ++

R - Framework should be User Friendly ++

Sum 

Table : Evaluation of the VoVis for Web Framework Requirements

Table  includes the evaluation for the Web Framework Requirements. The
VoVis framework is implemented as a web application, so it must fulfill all
the web requirements. For requirement R- Programming in JavaScript, Vo-
Vis is evaluated to ++, as VoVis is a purely JavaScript application that sup-
ports all platforms and browsers. Using a third party framework like Phone-
Gap, it is easy to develop mobile apps for different platforms only if the
framework is in JavaScript. VoVis is an open source framework means ev-
eryone can access and contribute new and creative ideas. VoVis will have a
big supportive forum where experienced developers can share their views. It
can also easily be integrated to other open source frameworks as a visualiza-
tion component. The VoVis framework can work offline there is no need to
connect to internet always, but as it is using Google Charts as JavaScript vi-
sualization library for plotting Maps, it needs to be online. If only the D is
used as a visualization tool, VoVis can work offline. For the requirement R -
Offline Mode, VoVis is evaluated as +. The VoVis framework does not require
any plugin to be installed in the browser; it supports all modern browsers, so
it is evaluated ++ for this requirement.

Usability Requirements VoVis

R - Customizability ++

R - Performance +

R - Design and Interactivity ++

Sum 

Table : Evaluation of the VoVis for Usability Reqirements

Table  includes the evaluation for the Usability Requirements. The first
two requirements Customizability and Design and Interactivity are fulfilled
by the VoVis framework, only because it is open source and uses third party
JavaScript libraries. It provides better design and a lot of custom options to
add on the visualizations by using standard tools. If developers are not satis-
fied, the visualization tools can be replaced by other standard tools. As the

. vovis framework evaluation 

VoVis framework is implemented as a prototype, there is a lot of scope for
further development, which will enhance VoVis performance. For the perfor-
mance requirement, the VoVis framework is evaluated as +.

Evaluation VoVis Tableau Public Weave Visual Free Many Eyes

Data Service Requirements     
Visualization Requirements     
Web Framework Requirements     
Usability Requirements     
Sum     

Table : Overall Evaluation of the VoVis framework

Table  outlines the overall evaluation of the VoVis framework for all re-
quirements. VoVis is evaluated and granted  points as total out of  points
that means VoVis fulfills % of total requirements. This is the highest among
all other four frameworks, evaluated earlier (look at Table  for an evalu-
ation). The fulfillment rate of all other existing frameworks evaluated are
Many Eyes (.%), Visualize Free (.%), Tableau Public (.%)and
Weave (.%). Thus, VoVis is better framework than existing frameworks
that are assessed.

The VoVis framework meets all the requirements, satisfy the needs and
also fills the research gaps. With above evaluation, it can be concluded that
the prototype looks promising, it can later on be elaborated to a complete
product. A functional prototype of the VoVis framework needs to be tested
to determine whether all requirements listed in Chapter  are fulfilled. This
will also address the last research task of the thesis and discusses the experi-
ment performed using the VoVis framework.

9
C O N T R I B U T I O N S A N D F U T U R E WO R K

This chapter provides a summary of the thesis as a whole and discusses its
contributions to the field of data visualization. A section on future work is
meant to explain potential avenues for further research.

. meeting the research tasks

This section outlines how the VoVis framework meets all the research tasks
that were defined in Section .. All the research tasks are discussed and
fulfilled as part of the thesis. The part one (Background Study) of the thesis
discusses first four research tasks in different chapters. The last two tasks are
fulfilled in the second and the third part respectively.

• The first research task was to provide a conceptual understanding of
the visualization concepts and also to understand the data collection
and analysis concepts. Chapter  outlines the concept of data and vi-
sualization, types of data, and different types of data visualizations. It
describes that both data and visualizations are dynamic with the envi-
ronment. There are various technologies available to process and visual-
ize data. Detail study of data visualizations shows that the data volume
is enormous and appropriate visualization techniques are required to
capture them through visualizations. This chapter provides an overall
picture why data visualization is important.

• The second research task is discussed in Chapter  which explains
how to design a visualization effectively, different types of visualiza-
tion frameworks are discussed, the importance of web visualization
framework. The components of visualization techniques are discussed.
These components helped to define the set of requirements for the Vo-
Vis framework that aims to focus on data visualization through a web
application.

• The third research task was the identification of requirements and is
discussed in Chapter . The pilot projects CITI-SENSE-MOB and Da-
PaaS served as examples to derive the subsequent requirements. Chap-
ter  briefly described the use cases that are defined for the pilot projects.
PLUQI is a use case from the DaPaaS project that provides a customiz-
able index model and a mobile/web application accessed by the end
users on the web and via smartphones. Citi-Sense-MOB also has AQI



 contributions and future work

index based mobile app as the use case. The set of visualization require-
ments from both the use cases formed the base to define requirements
for the VoVis framework. Requirements for the VoVis framework are di-
vided into three major sections according to the components defined
in Chapter . Visualization requirements defined in Section . are
mainly about the types of visualizations a framework should support,
about mapping of data with the particular type of visualization and
so on. A visualization tool is required for visualizing the data,which
should be efficient. Many standard JavaScript visualization libraries
can deliver good visualization as output.The framework can use these
libraries. Data Requirements defined in Section . are concerned with
data, like different types of data formats, access to data, uploading of
data and data privacy. The main focus is on the processed data, the
information it contained and access to the processed data. Web frame-
work requirements defined in Section ., focuses on the web related re-
quirements such as a framework is open source, can work offline, cross
browser and supports devices etc. Usability requirements defined in
Section . discusses on factors like Customizability, Design and Inter-
activity of the framework and performance of the visualization frame-
work. All the set of requirements are defined for a visualization frame-
work.

• The fourth research task was to focus on review and evaluation of the
existing frameworks and the visualization tools.These are discussed
and fulfilled in Chapter , which first reviews the different existing
web-based visualization frameworks. Four frameworks are selected for
the evaluation based on the set of requirements. Many Eyes, Tableau
Public, Visualize Free and Weave, all are different from each other in
terms of tools, technologies and methods they use. All are evaluated for
the requirements defined and by overall evaluation the frameworks are
ranked. Weave framework found better than other frameworks but not
the best to fulfill all the requirements. It is concluded that none of the
frameworks, covers all the aspects of visualization, also no one focuses
on mapping of the data with types of visualization(can be charts and
maps). This limitation motivates for the development of a new frame-
work and a vocabulary component. More than  JavaScript libraries
are reviewed and four of them are discussed as a prominent tool for
the VoVis framework. D, Google Charts, jqPlot and Flot are evaluated
on the basis of requirements for JavaScript libraries. D satisfied most
of the requirements, next is Google charts. Both of them are selected as
tools for the VoVis framework.

• The fifth research task was concerned with the designing of vocabu-
lary library and implementation of the VoVis framework. The task is
fulfilled in Chapter  and Chapter . First the design and concept of
the VoVis framework and vocabulary component is discussed. Vocabu-
lary component is designed by developing vocabulary library and vi-
sualization library. An RDF vocabulary is written as an ontology that

. validation of the hypothesis 

provides a proof of concept in RDF vocabulary research field. Visual-
ization vocabulary defines the properties for each type of visualization.
After the design, a full functional prototype of the VoVis framework is
implemented as a web application that follows Client-side Scripting in
JavaScript. Different components are discussed in detail.

• The sixth and last research task was the evaluation of the VoVis frame-
work, which is performed in Chapter . To validate the hypothesis stated
in Section . and to verify that the VoVis framework fulfilled all the
requirements defined, the VoVis framework is evaluated with an exper-
iment. The Experiment is performed based on four test scenarios. Each
test scenario has an input data and type of visualization to generate,
four tests are performed for each scenario. The results of the tests are
reported and based on it, the VoVis framework is evaluated. The VoVis
framework is evaluated for each set of requirements and found better
than the other existing frameworks.

. validation of the hypothesis

Implementation and evaluation of the artefact(VoVis) are done to validate or
refute the hypothesis and also to close the gaps in the field of data visualiza-
tion through web.

The hypothesis of this thesis is:
"It is possible to have a generic visualization framework, that meets the need to

support a wide range of charts with improved data mapping technique for cross-
platform according to the identified requirements for data visualization, data ser-
vice, web framework and usability.".

The VoVis framework with vocabulary component has been tested. For this,
four test scenarios from one of the pilot cases (Citi-Sense-MOB) have been
used, described in Chapter . The evaluation shows that the VoVis frame-
work fulfills almost all the tasks contained in the web framework (%), data
service (%) and visualization requirements (%). In terms of data format
support and charts support, some extensions need to be added. The over-
all evaluation of the VoVis framework results in a fulfillment rate of % of
the identified requirements. There are few improvements further discussed
in Section ., which can be easily implemented. The VoVis framework pro-
totype represents a good basis for research and development in the field
of data visualization, compared to the four other data visualization frame-
works evaluated in this thesis in Section ... The results of evaluation of
existing frameworks shows the fulfillment rate of requirements by Many
Eyes (.%), Visualize Free (.%), Tableau Public (.%)and Weave
(.%). The Weave framework is better than the others but needs improve-
ments in many aspects in terms of the requirements defined for a web-based
visualization framework.

In terms of the pilot projects introduced in Chapter , the VoVis framework
can be used for Citi-Sense-MOB, as shown with the four test scenarios in
Chapter . VoVis can be used to visualize AQI calculated from the sensor

 contributions and future work

data of the Citi-Sense-MOB project, also individual air pollutant components
like NO, CO can be visualized as different types of visualization. The VoVis
framework supports cross-platform and has a mobile app to visualize the
sensor data over different platform smartphones, that is a core requirement
for the Citi-Sense-MOB project. As an overall conclusion: VoVis meets almost
all the identified requirements and is applicable to Citi-Sense-MOB project.
In order to use the VoVis framework within the DaPaaS project, additional
RDF support is necessary, but this can easily be added.

The problems identified in Chapter  and the research gaps clearly states
that there is a need of improvement in data mapping techniques and a generic
framework that supports a wide range of visualizations with user-friendly
interface. The VoVis framework addressed most of the problems defined and
closed the research gaps defined earlier. The VoVis framework is proved to be
an improved solution for data visualization compared to other frameworks
assessed. Thus, the stated hypothesis of this thesis has been validated.

. thesis contributions

The purpose of this thesis is to address the problems identified in the Sec-
tion . and close the research gaps. To fulfill the purpose of thesis a new
generic visualization vocabulary library is designed and a artefact i.e web
visualization(VoVis) framework using vocabulary is implemented. Based on
the result of the experiment and evaluation of the VoVis framework, it can be
concluded that the VoVis framework with its vocabulary library concept has
mostly fulfilled the set of requirements.

All the six research tasks of this thesis have been discussed and fulfilled
by the VoVis framework along with the vocabulary component and the re-
search gaps are closed. The contributions made by the VoVis framework are
as follows.

• VoVis provides a visualization library that has information about thirty-
one types of visualizations. Each chart or graph type has some unique
features that differentiate it from others. This library not only explains
about type of visualization but also the functions that they can perform
on data like comparisons, relationships etc.

• VoVis provides a vocabulary library which is a new component in field
of web visualization. The Vocabulary is designed and written both in
text form and in RDF ontology. This new component helps in mapping
of the data to get the final visual results. The processed data has both
data and information of visualization type mapped together by the vo-
cabulary mapping process.

• VoVis provides a means to support most popular visualization types
and can support different data types with extension of the artefact. The
artefact is validated and satisfied all the needs, so it can be extended.

• The VoVis framework can be integrated into other development pro-
cesses or bigger framework where a visualization component is required

. future work 

to visualize the results. Both use cases from the pilot projects can use
this framework as a tool or as service.

• VoVis presented a way to use the standard JavaScript visualization li-
braries as tools in a visualization framework. Any standard library can
be implemented as the tool that makes it a reusable library.

VoVis provides a good basis for further work. Some ideas and recommenda-
tions for further improvements are outlined in the following section.

. future work

The VoVis framework is a general vocabulary based visualization web frame-
work. VoVis can upload data in some format, can store it in a database, pro-
cess the data and map it to particular visualization type, and finally visual-
ize the data through the visualization tools. There is scope for few improve-
ments and also extensions are possible. A set of improvements for the VoVis
framework has been identified that can be part of future research. They are
described below:

.. Extension of Data and Visualization Types

At the time of evaluation of the VoVis framework, it has been found that
the VoVis framework prototype currently supports very few visualization
types, but at the same time visualization library from vocabulary component
have nearly thirty types of visualizations, and each has its own vocabulary.
It means it is possible to extend this feature to support most popular types
of visualization. The support for data format is currently CSV, as per design
it should support RDF format. The reason for not supporting RDF currently
is that, the RDF visualization vocabulary(VisVo) is in experiment phase as
mapping process needs to be designed for mapping of RDF data to vocabu-
lary. So this feature is dependent on other feature(RDF vocabulary) but can
be extended to support RDF formats.

.. RDF Vocabulary

Currently the RDF Visualization vocabulary(Visvo) is designed for single Bar,
line, area charts, Bubble charts and scatter-plot charts. This ontology can
be extended to support all visualization types that are covered in the VoVis
framework visualization library. The important feature to extend in future is
RDF mapping process(mapping RDF data to RDF vocabulary(Visvo)). Once
this process will be designed, the VoVis framework can support the RDF for-
mat.

 contributions and future work

.. Extension of VoVis

The VoVis framework can be extended to a software application in different
forms and for both end users and developers. The VoVis framework is cur-
rently a client-side MVC web application and also available as an Android
app (Prototype).

The VoVis framework can provide services in following extended version.

• SaaS: The VoVis can provide software as a service to the end users for
data visualization. A cloud based solution where user can

. Upload and Save data in various formats - RDF, CSV, and JSON.

. Decorate the data as per Vocabulary.

. Extend data vocabulary.

. Select different visualization Engines Google Charts, D, or any other.

. Visualize data in various types of visualization.

. Export the Graph/Maps.

• Mobile App: The VoVis can be installed as an app in Smartphones and
Tablets. It can provide a handy interface to visualize and manage data
in a quick way. If integrated with a cloud-based desktop solution, the
app can be used to visualize the archive data with new parameters and
visualization type.

• Webservice APIs: The VoVis can expose its APIs over HTTP for De-
velopers. Developers can easily integrate the data processing and vi-
sualization features of VoVis into their existing software, website, and
mobile apps. Developer can use this service to decorate data and to get
visualized data in image format.

• Framework Extension: There are plenty of popular application frame-
works in use. Example Wordpress(PHP), AngularJS(HTML/JS), etc.
The VoVis services can be written as these application framework ex-
tensions/modules to support the smooth integration of VoVis services
in existing frameworks. Some popular modules/extensions are as fol-
lows.

. Angular Module

. Wordpress Plugin

. Node.js module

. JavaScript Library

. Java based API’s

. Android API’s

. iOS API’s

. future work 

Thus, the presented framework represents a good basis for further research
and development. A set of improvements for the VoVis framework have been
identified to drive future research. The VoVis framework itself or component
of it like RDF vocabulary can be extended and improved, and better solutions
can be identified by future research.

Part IV

A P P E N D I C E S

A
T H E VOV I S VO C A B U L A RY

This appendix contains the vocabularies for  types of visualization. Each
type of visualization has the vocabulary, JSON structure and the functions it
can demonstrate.



Area Graph

name ,
xaxis_label ,

yaxis_label ,
xaxis_type,
yaxis_type,
xvalues,
,yvalues

name : name of chart ,

xaxis_label :xaxis label,
yaxis_label : yaxis label,
 xvalues :values for xaxis,
yvalues:values for y one for each xvalue
e.g. ['Year', 'Sales',],

 ['2013', 1000],
 ['2014', 1170],
 ['2015', 660] prices over years.
name:area chart
 ,xaxis_label:years ,

yaxis_label:prices over years ,
xvalues :2013,2014...,
yvalues:1000,1170...

{ "values": [
 {"x":,"y":},
 {"x":,"y":},

] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,
"yaxis_label" : ,
 "yaxis_type" :

}

Relationships,
Patterns,
Data over time

Bar Chart

name ,
xaxis_label ,
yaxis_label ,

xaxis_type,
yaxis_type,
xvalues,yvalues

name : name of chart ,

xaxis_label :xaxis label,
 yaxis_label: yaxis label,
 xvalues :values for xaxis,
 ,yvalues:values for y one for each xvalue
 e.g ['Year', 'Sales',],

 ['2013', 1000],
 ['2014', 1170],
 ['2015', 660] prices over years.
name: bar chart ,xaxis_label:years ,yaxis_label:prices over

years ,xvalues :2013,2014...,yvalues:1000,1170...

{ "values": [
 {"x":,"y":},
 {"x":,"y":},
] , "name" : , "xaxis_label" :
,

 "xaxis_type" : ,
"yaxis_label" : ,
 "yaxis_type" :
}

Comparisons,
Relationships,

Patterns

Box and Whisker

Plot

name
,xaxis_label,
yaxis_label,

xaxis_type,
xvalues,
x_names

name:name of chart,
xaxis_label:x axis label,
yaxis_label : yaxis label,
xvalues : values of x

E.g A candlestick/box chart is used to show an opening and
closing values of stock every day in a week
e.g ['Mon', 'Tue','Wed'],
 [20,30,40],

 [23, 25,45],
 [35, 50,55]
name:Box chart showing stock values,
xaxis_label:days of week,
yaxis_label:stock values in number,

x_names:Mon,Tues,
xvalues:20,23,35

{ "values": [
 {"x":[]},
 {"x":[]}
] ,"name" :"box chart"
,"xaxis_label" :

"","yaxis_label" : "",
 "xaxis_type" : " " ,
"x_names" : []
}

Distribution,
Range,

Comparisons,
Patterns

Appendix A -The VoVis Vocabulary

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Histogram

name,

xaxis_label,
xaxis_type,
xvalues,
x_labels

name: name of chart,
xaxis_label: name of xaxis,
xvalues :x values ,
x_labels : labels for xvalues
 e.g. ['Dinosaur', 'Length'],

 ['Acrocanthosaurus (top-spined lizard)', 12.2],
 ['Albertosaurus (Alberta lizard)', 9.1],
 ['Allosaurus (other lizard)', 12.2]
name: Histogram chart,
xaxis_label: Length of dinosaures in meters,

x_labels:['Acrocanthosaurus,'Albertosaurus...] ,
 xvalues: 12.2,9.1,12.2...

{ "values": [
 {"x": },

 {"x": },
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : , "x_labels"
: []

}

Comparisons,

Data over Time,
Distribution,
Patterns,
Probability,
Range

Line Graph

name ,
xaxis_label ,
yaxis_label ,
xaxis_type,
yaxis_type,

xvalues,
,yvalues

name : name of chart ,
xaxis_label :xaxis label,
yaxis_label : yaxis label,
 xvalues :values for xaxis,

yvalues:values for y one for each xvalue
e.g. ['Year', 'Sales',],
 ['2013', 1000],
 ['2014', 1170],
 ['2015', 660] prices over years.

name:line chart
 ,xaxis_label:years ,
yaxis_label:prices over years ,
xvalues :2013,2014...,
yvalues:1000,1170...

{ "values": [

 {"x":,"y":},
 {"x":,"y":},
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,

"yaxis_label" : ,
 "yaxis_type" :
}

Patterns,
Data over time

Bubble Chart

name ,

xaxis_label,
 xaxis_type ,
yaxis_label ,
 yaxis_type ,
 color_label ,

 color_type ,
radius_label ,
 radius_type,
xvalues,
yvalues,

color_values,
radius_values

name: name of chart,
xaxis_label: xaxis label,
yaxis_label:y axis label,

xvalues: x values,
yvalues: yvalues for each x values,
color_label: label which different colors will represent,
colora_values:values,

radius_label:label which is shown by different circle radius,
radius_values:values
e.g. [Life Expectancy Fertility Rate Region, Population],
 [80.66, 1.67, 'North America', 33739900],
 [79.84, 1.36, 'Europe', 81902307],

 [78.6, 1.84, 'Europe', 5523095],
 [72.73, 2.78, 'Middle East', 79716203],
 [80.05, 2, 'Europe', 61801570],
name: bubble chart,
xaxis_label:life expectancy,

yaxis_label:fertility rate,
xvalues: 80.66 79.84..,
yvalues: 1.67 1.36...,
color_label:region,
color_values: north America,

radius_label:population,
radius_values:33739900...

{ "values": [
 {"x":,"y": , "color" : ,

"radius" : },
 {"x":,"y": , "color" : ,

"radius" :},
] , "name" : , "xaxis_label" :

,

 "xaxis_type" : ,
"yaxis_label" : ,

 "yaxis_type" : ,
"color_label" : ,
 "color_type" : ,

"radius_label" : ,
"radius_type":

}

Comparisons,
Data over time

Distribution,

Patterns,
Proportions,
Relationships

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Population Pyramid

name,xaxis_label,yaxis_
label,xvalues,y1name,y1
values,y2name,y2
values

name : name of chart , xaxis_label :xaxis label, yaxis_label:
yaxis label, xvalues :values for xaxis, y1name:label for y1
values,y1values:valuess for y1 one for each xvalues ,
y2name:label for y2 values,y2values:valuess for y2 one for

each xvalues
e.g. population chart for year 2000
[Age Male Female]
[0 147899 128975]
[5 135678 134567]

[10 122234 67899] name:population chart for year
200,xaxis_label:ages,yaxis_label:population
,xvalues:0,5,10..,y1name:male,y1values:147899,135678...,y2na
me:female,y2 values:128975,134567...

{ "values": [
 {"x":,"y1": ,"y2": },

 {"x":,"y1": ,"y2":},
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,
"yaxis_label" : ,

 "yaxis_type" : , "y1_name"
: , "y2_name" :
}

Comparisons,
Distribution,
Patterns

Multi-set Bar or line
Chart

name ,

xaxis_label ,
yaxis_label ,
xaxis_type,
yaxis_type,

xvalues,

yvalues,
y_names,
y_labels

name : name of chart ,

xaxis_label :xaxis label,
 yaxis_label: yaxis label,
xvalues :values for xaxis,

 y_names:title for y values,
yvalues:values for y for each xvalue ,

y_labels : labels for each y_name
 e.g. ['Year', 'Sales', 'Expenses'],
 ['2013', 1000, 400],
 ['2014', 1170,600],

 ['2015', 660,980] performance over years.

name: multi line/bar/area chart ,
xaxis_label:years ,

yaxis_label: performance over years ,
xvalues :2013,2014...,

y_name:[sales, expenses],
yvalues:[1000,400],[1170,600],

y_labels:[y1,y2]

{ "values":
 [

 {"x":,"y":[] },

 {"x":,"y":[]},
] , "name" : , "xaxis_label" :

,
 "xaxis_type" : ,

"yaxis_label" : ,

 "yaxis_type" : , "y_names"
: [] ,"y_labels" : []

}

Comparisons,
Distribution,

Patterns,
Relationships

Radial Bar Chart

polar coordinates
 name,

radient_label,
dimension_label,
radient_values,

d_labels,
d_values

name:name of chart
radient_label:name for r axis
dimension_label:dimension name

radient_values:values for r
d_labels:labels for dimensions
d_values:values for dimensions

 e.g. radial chart showing temperatures for different years

for all months [Months 2000 2001]
 [Jan 5 4]
 [Feb 7 5]
 [Mar 10 6]
 name:radial bar chart ,

radient_label:Months,
dimension_label:temperatures,
radient_values:Jan,Feb,Mar,
d_labels:[2000,2001]

d_values:[5,4],[7,5].,

{ "values": [
 {"r":,"d":[]},
 {"r":,"d":[]},

] , "name" : ,
"radient_label" : ,
 "r_type" : ,
"diemension_name" : ,
"dimension type" : ,

"d_labels":[]
}

Comparisons,
Relationships

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Scatterplot
name,xaxis,yaxis,xvalue
s,yvalues,color-label,

color-values

name: name of chart, xaxis: xaxis label,yaxis:y axis label,
xvalues: x valuess,yvalues: yvalues for each x values, color-
label: label which different colors will represent,color-

values:values e.g. scatterplot showing sepals and petals of
various iris flowers [sepalLength, sepalWidth ,species]
 [5.1 3.5 setosa]
 [4.9 3.0 virginica]

 [4.7 3.2 versicolor]
 [4.6 3.1 setosa]
name: scatterplot showing sepals and petals of various iris
flowers,xaxis:sepal length in cm,yaxis:sepal width in
cm,xvalues:5.1,4.9...,yvalues:3.5,3.0...,color-label:species,color-

values:setosa,virginica...

{ "values": [
 {"x":,"y": , "color" : },

 {"x":,"y": , "color" : },
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,

"yaxis_label" : ,
 "yaxis_type" : ,
"color_label" : ,
 "color_type" :
}

Patterns,
Relationships

Span Chart/diff/high-
low

name ,xaxis ,yaxis
,xvalues,yname,y1value
s,y2values

name:name of chart ,xaxis:x axis label ,yaxis:y axis label
,xvalues:different values(labels) for x axis,yname:same label
for y1 and y2 ,y1values: values for y1 one for each x

values,y2values: values for y2 one for each x values
e.g. Popularity of different people
 ['Name', 'Popularity','Popularity'],
 ['Cesar', 250,350],
 ['Rachel', 4200,8000],

 ['Patrick', 2900,4000],
 ['Eric', 8200,9000]
name:Span/diff chart ,xaxis:Names ,yaxis:Popularity
,xvalues:Cesar,Rachel...label ,yname:popularity ,y1values:

250,4200,2900...,y2values: 350,8000,4000...

{ "values": [

 {"x":,"y1": ,"y2": },
 {"x":,"y1": ,"y2":},
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,

"yaxis_label" : ,
 "yaxis_type" : , "y1_name"
: , "y2_name" :
}

Comparisons,
Range

Stacked Area Graph

name ,
xaxis_label ,
yaxis_label ,
xaxis_type,

yaxis_type,
xvalues,
yvalues,
y_names,
y_labels

name : name of chart ,
xaxis_label :xaxis label,
 yaxis_label: yaxis label,
xvalues :values for xaxis,

 y_names:title for y values,
yvalues:values for y for each xvalue ,
y_labels : labels for each y_name

date IE Chrome Firefox Safari Opera

11-Oct-13 41.62 22.36 25.58 9.13 1.22
11-Oct-14 41.95 22.15 25.78 8.79 1.25
11-Oct-15 37.64 24.77 25.96 10.16 1.39
11-Oct-16 37.27 24.65 25.98 10.59 1.44

name:stacked area chart,x axis:Dates,y axis:Market share of
browsers,xvalues:11-Oct-13,11-Oct-
14...,y1name:IE,y1values:41.62,41.95,...,y2name:Chrome,y2val
ues:22.36,22.15....

{ "values":

 [
 {"x":,"y":[] },
 {"x":,"y":[]},
] , "name" : , "xaxis_label" :
,

 "xaxis_type" : ,
"yaxis_label" : ,
 "yaxis_type" : , "y_names"
: [] ,"y_labels" : []

}

Comparisons,
Data over time,

Patterns,
Relationships

Stacked Bar Graph

name ,
xaxis_label ,

yaxis_label ,
xaxis_type,
yaxis_type,
xvalues,

yvalues,
y_names,
y_labels

name : name of chart ,
xaxis_label :xaxis label,
 yaxis_label: yaxis label,
xvalues :values for xaxis,
 y_names:title for y values,

yvalues:values for y for each xvalue ,
y_labels : labels for each y_name
State,Under 5 Years,5 to 13 Years,14 to 17 Years
AL, 310504, 552339, 259034

AK, 52083, 85640, 42153
AZ, 515910, 828669, 362642
name:stacked bar chart,x axis:states,y axis:population in
different ages,xvalues:AL,AK,AZ...,y1name:under 5
years,y1values:310504,52083,...,y2name:5 to 13

years,y2values:552339,85640,....

{ "values":
 [
 {"x":,"y":[] },

 {"x":,"y":[]},
] , "name" : , "xaxis_label" :
,
 "xaxis_type" : ,
"yaxis_label" : ,

 "yaxis_type" : , "y_names"
: [] ,"y_labels" : []

}

Comparisons,
Relationships,
Patterns,
Proportions

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Brainstorm
node(name,value)
link(node,parentnode)

['Location', 'Parent', 'Market trade volume (size)']

 ['Global', null, 0]
 ['America', 'Global', 0]
 ['Europe', 'Global', 0]
 ['Asia', 'Global', 0]
 ['Australia', 'Global', 0]

 ['Africa', 'Global', 0]
 ['Brazil', 'America', 11]

{ "nodes" : [

 { "node_name" : ,
"parent": , "value" : },
 { "node_name" : ,
"parent": , "value" : },
] , name : , "node_type" : ,

"value_type" :
}

Concepts,
Relationships

Sankey Diagram

Case 1:

node(name)
link(source,target,value)

Case 2:
node(name,info)

link(source,target,value)

same as arc diagram

{ "nodes" : [

 { "source" : , "target": ,
"value" : },
 { "node_name" : ,
"parent": , "value" : },
] , name : , "node_type" : ,

"value_type" :
}

How things work,
Flow, Process,
Proportions

Timeline

name ,xaxis ,yaxis
,yvalues,x1values,

x1name(start
time),x2values,
x2name(end time)

name:name of chart ,xaxis: x axis label ,yaxis:y axis label
,yvalues: values for y axis,x1values(start time):time values for

each y values,x2values(end time):time values for each y values
e .g American presidents served their terms
 President Start Date End Date
 Washington 1789 1797

 Adams 1797 1801
 Jefferson 1801 1809

name:Timline shows American Presidents service period
,xaxis:Time,yaxis :Presidents Name

,yvalues:Washington,Adams...,x1values(start
time):1789,1797...,x2values(end time):1797,1801...

{ "values": [
 {"x1":,"x2": ,"y": },
 {"x1":,"x2": ,"y":},
] , "name" : , "xaxis_label" :
,

 "xaxis_type" : ,
"yaxis_label" : ,
 "yaxis_type" : , "x1_name"
: , "x2_name" :
}

Data over time

Arc Diagram

Case 1:
node(name)
link(source,target,value)

Case 2:
node(name,info)
link(source,target,value)

Vocabulary

name,

node_label,
node_name,
Source,

Target,
 value,
 value_type,
value_label.

Case 1: source(Creditor):Britain...,
target(debtor):France, Greece...,

value(amount):22.4,0.55...

creditor,debtor,amount
Britain,France,22.4
Britain,Greece,0.55

Britain,Italy,26
Britain,Portugal,19.4
Case 2:
"nodes":[

 {"name":"Myriel","group":1},
 {"name":"Napoleon","group":1},
 {"name":"Mlle.Baptistine","group":1}],
 "links":[
 {"source":Napoleon,"target":Myriel,"values":1},

 {"source":2,"Mlle.Baptistine":Myriel,"values":8},
 {"source":3,"Mooray":Myriel,"values":10}]
 name::Napoleon,Myriel...
info(group):1,2...
source(name):Napoleon,Mooray...

target(name):Myrie..
value(values):8,10...

{ "nodes" : [
 { "source" : , "target": ,
"value" : },
 { "node_name" : ,

"parent": , "value" : },
] , name : , "node_type" : ,
"value_type" :
}

Patterns,

Relationships

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Venn Diagram

circle(name,size)

overlap(circle1,circle2,si
ze)

var sets = [

 {"label": "Radiohead", "size": 77348},
 {"label": "Thom Yorke", "size": 5621},
 {"label": "John Lennon", "size": 7773},
 {"label": "Kanye West", "size": 27053},]

 overlaps = [
 {"sets": [0, 1], "size": 4832},
 {"sets": [0, 2], "size": 2602},
 {"sets": [0, 3], "size": 6141},
 {"sets": [0, 4], "size": 2723},

 {"sets": [0, 5], "size": 3177},]

{ "circles" : [

 {"label": "", "size": },
 {"label": "", "size": }] ,
 "overlaps" : [
 {"sets":

["label","label1"], "size": },
 {"sets": [],
"size": }
] ,
 "name" :

}

Comparisons,
Concepts,

Probability,
Relationships

Calendar name,dates,values

name:name of chart,dates:dates in some format,values:value
for each date

e.g. Calendar showing temperature
 [Dates in seconds ,Value]
 [946702811", 15]
 ["946702812", 25]
 ["946702813", 10]

name:Calander ,dates:946702811,946702812...,
values:15,25,10...

{ "values" : [

 { "date" : , "value" : },
 { "date" : , "value" : },
] , name : , "date_type" : ,
"value_type" :
}

Time

Tree Diagram

node(name,value)
link(node,parentnode)
Vocabulary of Tree will

be
 name,
value_label,
node_label,
node_name,

 parent,
 value,
 value_type.

name: name of chart,

value_label: label of value column,
node_label: label of node,
node_name: name of node,
 Parent: name of parent node,
 Value: value of node,

 value_type: data type of node.

Example given
 ['Location', 'Parent', 'Market trade volume (size)']

 ['Global', null, 0]
 ['America', 'Global', 34]
 ['Europe', 'Global', 20]
 ['Asia', 'Global', 10]
 ['Australia', 'Global', 50]

 ['Africa', 'Global', 5]
 ['Brazil', 'America', 11]

 Name: Tree diagram,
value_label: Market trade volume (size),

node_label: Location,
node_name: Global, America,,
 Parent: Global,
 Value: 34, 10, 50....,
 value_type: numbers,

{ "values" : [
 { "node_name" : ,

"parent": , "value" : },
 { "node_name" : ,
"parent": , "value" : },
] , name : , "value_type" : ,
”value_label”:, “node_label”:,

}

Hierarchy,
Relationships

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Donut Chart

name,
radient_label,
dimension_label,

radient_values,
dimension_values

name:name of chart
radient_label:name for r axis
dimension_label:dimension name

radient_values:values for r
dimension_values:values for dimension
e.g. ['Task', 'Hours per Day'],
 ['Work', 11],
 ['Eat', 2],

 ['Commute', 2],
 ['Watch TV', 2]
name:Donut chart showing daily activities,
radient_label:task,
dimension_label:hours per day,

radient_values:work,eat....,
dimension_values:11,2,2.....

{ "values": [
 {"r":,"d": },
 {"r":,"d":},
] , "name" : ,
"radient_label" : ,

 "r_type" : ,
"diemension_name" : ,
"dimension_type" :
}

Comparisons,

Proportions

Dot Matrix Chart

name,x1cellname,x1cell
_ydata,x1cell_yvalues,x

n (if n = 1 is single dot
matrix)

name:name of chart,x1cellname:name of first dot matrix

chart ,x1cell_ydata:data labels for first i.e. x1 dot
matrix,x1cell_yvalues: values for each y data in x1,xn:xn dot
matrix
e.g. single dot matrix
 [ydata ,values]

 [normal ,4]
 [error, 3]
 [unknown,5] data expressed as person icon
name: single dot matrix,x1cellname:data expressed as person

icon,x1cell_ydata:normal,erroe,unknown...,x1cell_yvalues:4,3,
5...

{ "name" : , "cells" :
 [
{"cell_name" : , "data_type"
: "data_name" : ,

"value_type" : , "values" :

[{"data" : , "value" :}]
 }]
}

Comparisons,
Distribution,

Patterns,
Proportions

Parallel Sets

data(dimension1_key,di
mension2_key,dimensio

nN_key)
dimension(name,keys,k
eyvalues)

Class (0 = crew, 1 = first, 2 = second, 3 = third)
 Age (1 = adult, 0 = child)

 Sex (1 = male, 0 = female)
 Survived (1 = yes, 0 = no)
[Class,Age,Sex,suvived]
1 1 0 0

1 1 0 0
1 1 0 0
1 0 1 1
1 0 1 1
1 0 1 1

data(1,1,0,0)
dimension(class,[0,1,2,3],[crew,first,second,third])
dimension(age,[0,1],[child,adult])

{ "data" : [], "dimensions"
: [{ "dimenson_name ": ,

"keys" : [{"key" : , "value" : },
{"key" : , "value": }] }]
}

Comparisons,

Distribution,
Flow, Process,
Proportions

Pictogram Chart
category(category-
name,shape,shape-

value,total-value)

Comparisons,

Distribution

Pie Chart

name,

radient_label,
dimension_label,
radient_values,
dimension_values

name:name of chart
radient_label:name for r axis

dimension_label:dimension name
radient_values:values for r
dimension_values:values for dimension
eg ['Task', 'Hours per Day'],

 ['Work', 11],
 ['Eat', 2],
 ['Commute', 2],
 ['Watch TV', 2]
name:Pie chart showing daily activities,

radient_label:task,
dimension_label:hours per day,
radient_values:work,eat....,
dimension_values:11,2,2.....

{ "values": [
 {"r":,"d": },
 {"r":,"d":},

] , "name" : ,
"radient_label" : ,
 "r_type" : ,
"dimension_label" : ,
"dimension_type" :

}

Comparisons,
Proportions

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

Word Cloud
name,word_name,word
_size

name:name of chart
word_name : name of words
word_size:size of each word which shows frequency of word
 [word-name , word-size]

 [winter, 3]
 [snow, 1]
 [play, 1]
 [cold , 2]
 [day, 2]

name:word cloud,
word_name :{winter,play,snow},
word_size :{3,1,2}

{ "values" : [
 { "word_name" : ,

"word_size" : },
 { "word_name" : ,
"word_size" : },
] , name : , "size_type" :

}

Analyzing Text,

Comparisons,
Distribution/Frequ
ency,
Proportions

Proportional Area
Chart

node(name,value)
link(node,parentnode)
Vocabulary of Tree will

be
 name,
value_label,
node_label,
node_name,

 parent,
 value,
 value_type.

name: name of chart,

value_label: label of value column,
node_label: label of node,
node_name: name of node,
 Parent: name of parent node,

 Value: value of node,
 value_type: data type of node.

Example given
 ['Location', 'Parent', 'Market trade volume (size)']

 ['Global', null, 0]
 ['America', 'Global', 34]
 ['Europe', 'Global', 20]
 ['Asia', 'Global', 10]
 ['Australia', 'Global', 50]

 ['Africa', 'Global', 5]
 ['Brazil', 'America', 11]

 Name: Tree diagram,
value_label: Market trade volume (size),

node_label: Location,
node_name: Global, America,,
 Parent: Global,
 Value: 34, 10, 50....,

 value_type: numbers,

{ "values" : [
 { "node_name" : ,

"parent": , "value" : },
 { "node_name" : ,
"parent": , "value" : },
] , name : , "value_type" : ,

”value_label”:, “node_label”:,
}

Comparisons,
Proportions

FunctionsType Of Chart Vocabulary Vocabulary Description JSON structure

region_code or region_name:name of region
data : data for that region.
data_label : label of data

e.g. map showing courtiers with their popularity

['Country', 'Popularity'],
 ['Germany', 200],

 ['United States', 300],
 ['Brazil', 400],

 ['Canada', 500],

 ['France', 600]
region_name:Germany,Brazil

data_label : popularity,
data : 200,300...

2. case with markers

 ['City', 'Longitude' 'Latitude' 'Population', 'Area'],
 ['Rome', 12.5113300 41.8919300, 2761477, 1285.31],

 ['Milan', 9.1895100 45.4642700, 1324110, 181.76],
 ['Naples', 14.2464100 40.8563100 ,959574, 117.27],

region-name:Rome,Milan...
Longitude:12.5113300,9.1895100...

Latitude:41.8919300,45.4642700...
color_data_label :Population,

color_data ;2761477,1324110,...
size_data_label : Area,

size_data :1285.31,181.76....

1. { "values" : [
 { "region_name" : ,
"longitude": , "latitude" : ,
"data" : },

 { "region_name" : ,
"longitude": , "latitude" : ,
"data" : },
] ,
 "name" : , "data_label" :

}

2. { "values" : [
 { "region_name" : ,

"longitude": , "latitude" : ,
"color_data" : , "size_data":
},
 { "region_name" : ,

"longitude": , "latitude" : ,
"color_data" : , "size_data"::
},
] ,
 "name" : ,

"color_data_label" : ,
"color_data_type" :
,"size_data_label" : ,
"size_data_type" :
}

Comparisons,

Location,
Patterns

Choropleth

Map(Geo Map)

1.region_code or
region_name,

data_label,
data

2. region-name,

longitude,
latitude,

color_data,
color_data_label,
color_data_type,

size_data_label,
size_data_type,

size_data

B
R E V I E W O F DATA V I S UA L I Z AT I O N T O O L S

This appendix contains review of standard visualization libraries based on
the types of charts supported, browsers supported and other additional fea-
tures supported.



Appendix B: Review of Data Visualization Tools

1. Visualization Tools

Open source Latest
version

Trial and Prices

amCharts http://www.amcharts.com/ No 3.X Free with watermark $99 (single website)

arcadiaCharts http://www.arcadiacharts.com/ No 1.0.2 Free for non commercial use
$ 89 (single website) - $ 899 (OEM)

CanvasJS Charts http://canvasjs.com/ CC license 3.0 1 Free for non-commercial use $299+ for commercial license

D3.js http://d3js.org/ BSD License 2.10.2003 Free under BSD
dhtmlxChart http://www.dhtmlx.com/docs/products/dht

mlxChart/index.shtml

GNU GPL 2.6 Build
100928

Free under GNU GPL, $49

Dojo (dojox/charting) http://dojotoolkit.org/ BSD, AFLv2 1.8 Free
Ejschart http://www.ejschart.com/ No 2.3 Free / $100 / $250 / $1000

Elycharts http://elycharts.com/ MIT License 2.1.2004 Free
Flot http://www.flotcharts.org/ MIT License 0.8.1 (may

2013)
Free

flotr2 http://www.humblesoftware.com/flotr2/ MIT License Free
Google Chart Tools https://developers.google.com/chart/ No Free

gRaphaël http://g.raphaeljs.com/ MIT License 0.5.0 Free (you can donate)
Highcharts http://www.highcharts.com/ CC by-nc 3.0 1 Free for non commercial use

$ 80 (single website) - $ 2000 (10 developers license)

jqChart http://www.jqchart.com/ No $299

jqPlot http://www.jqplot.com/ MIT, GPL v2 2013 Free
JSCharts http://www.jscharts.com/ No 3 $ 39 - $ 149

Free with watermark
JSXGraph http://jsxgraph.uni-bayreuth.de/wp/ LGPL 0.94 Free
KendoUI DataViz http://www.telerik.com/kendo-ui-dataviz No Q1 2013 $ 399

Morris.js http://www.oesmith.co.uk/morris.js/ BSD 0.4.1 Free
nvd3 http://nvd3.org/ Apache 2.0 Free depending on Apache 2.0

Protovis http://mbostock.github.io/protovis/ BSD License 3.3.2001 Free
RGraph http://www.rgraph.net/ No 2012 Free for non-commercial (CreativeCommons) License for commercial use.

Rickshaw http://code.shutterstock.com/rickshaw/ Yes 2012 Free of charge with copyright attribution

Sencha Touch Charts http://dev.sencha.com/deploy/touch-
charts-rc/

No Free under GPLv3 license; $999 commercial license

TeeChart http://www.steema.com/teechart/html5 No 2012 Free for non commercial use.
$129 commercial license (1developer + 1 server install + 1 year support
subscription)

zingchart http://www.zingchart.com/ No 2010 Free with watermark Single Domain Package : $249.00 Discounted Multi-
Domain Package : $999.00 SaaS and OEM Pricing Available

Shield UI Charts https://www.shieldui.com/products/chart No 1.4.2002 $299

SVGware http://www.svgware.com/ No 2.6 (July
2013)

Free

Reportivo.com http://reportivo.com/ Free

2. Supported Chart Types

Graphic
technology

Area Bar Bub
ble

Line Pie Scat
ter

Splin
e

Spar
kline

s

Candl
estick

Donut Node
/

Edge
graph

Other charts

amCharts SVG
VML for old
IE

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Gauges, Radar, Polar, Step line,
Step without Risers, OHLC, area
range, Donut, Funnel, Waterfall,
Bullet, XY, Maps are available as
additional package

arcadiaCharts Canvas No Yes No Yes Yes No No Yes

CanvasJS Charts CanvasJS Yes Yes Yes Yes Yes Yes Yes No Yes Bubble Chart

D3.js SVG Yes Yes Yes Yes Yes Yes Yes Yes - Yes Yes D3.js is a drawing library, and not
just a chart library. You can make
virtually any visualization or graph
given time.

dhtmlxChart Canvas Yes Yes No Yes Yes No Yes Yes No Yes

Dojo (dojox/charting) SVG
Canvas
VML
Silverlight

Yes Yes Yes Yes Yes Yes Yes Yes Yes No Bubble, Candlestick (OHLC),
Spider. Other Dojo modules provide
as well TreeMap, Gauges etc...

Ejschart Canvas
SVG
VML

Yes Yes No Yes Yes Yes - - Yes Yes f(x), Gauge, Donut, alarm, candle
stick, step series, over under, open
high low, error series, stacked bar,
trend, and floating bar

Elycharts SVG Yes Yes No Yes Yes No Yes Yes No Yes Funnel

Flot Canvas Yes Yes Yes Yes Yes Yes Yes Yes Yes Bubbles, Gantt, Pyramid, Spider

flotr2 Canvas Yes Yes Yes Yes Yes Yes No Yes No Bubble, radar

Google Chart Tools SVG Yes Yes No Yes Yes Yes No No Yes No Geo chart, table, gauge, tree map

gRaphaël SVG Yes Yes No Yes Yes No No No No No

Highcharts SVG Yes Yes Yes Yes Yes Yes Yes Yes Yes

jqChart Canvas Yes Yes Yes Yes Yes Yes Yes Yes No Bubble, radar, polar

jqPlot Canvas Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

JSCharts Canvas No Yes No Yes Yes No No No No

JSXGraph SVG No Yes No Yes Yes No Yes No No Math...

KendoUI DataViz SVG Yes Yes Yes Yes Yes Yes No Yes Yes Yes Linear Gauge, Radial Gauge,
Bubble, Bullet, Donut, Scatter,
Stock

Morris.js SVG Yes Yes No Yes No No Yes No No Yes

nvd3 SVG Yes Yes Yes Yes Yes Yes Yes No Yes Bullet chart

Protovis SVG Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes TreeMap, Node links

RGraph Canvas Yes Yes Yes Yes Yes Yes No No No Yes Gauge, Funnel, Waterfall

Rickshaw SVG Yes Yes No Yes No Yes Yes No No

Sencha Touch Charts Canvas Yes Yes No Yes Yes Yes Yes No No No

TeeChart Canvas Yes Yes Yes Yes Yes Yes Yes Yes Yes Horizbar, SmoothLine, Donut,
HorizArea, Bubble, Candle (OHLC)

zingchart Canvas
SVG
VML
Flash

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Bullet, Chord, Funnel, Gauge, Grid,
Maps, Pareto, Piano, Radar,
Rankflow, Stock, Treemap, Venn,
WordCloud

Shield UI Charts SVG
VML

Yes Yes Yes Yes Yes Yes Yes Yes Yes Range Bar/Area/SplineArea, Polar
Bar/Area/Spline/Scatter, Stepline,
Steparea

SVGware SVG Yes Yes Yes Yes No Yes No No No No heat map; error bars; linear and
logarithmic scales;

Reportivo.com Yes Yes Yes Yes Yes Yes Yes Range Bar/Area/Spline Area, Polar
Bar/Area/Spline/Scatter/Stepline/St
eparea

3. Additional Chart Features

Ability
to

zoom
in and
out of
charts

Annotations
on the chart

Combination
of charts

Data
labels

Date-
time
axis

Dynamic
charts

Export
files

External
Data

Loading

Interactive
(responds
to mouse

hover/click)

Print Text Rotation for
Labels

amCharts Yes Yes Yes Yes Yes Yes Yes
PNG,
JPG,
SVG,
PDF

 Yes Yes Yes

arcadiaCharts Yes Yes Yes

CanvasJS Charts Yes Yes Yes Yes Yes Yes Yes
D3.js Yes Yes Yes Yes Yes No Yes
dhtmlxChart No Yes No Yes No Yes No Yes No No Yes With CSS

Dojo (dojox/charting) Yes No Yes - -
Feasible
with
custom
code

Yes Yes
SVG

Yes No Yes Yes

Ejschart Yes Yes Yes Yes Yes Yes - Yes Yes Yes Yes
Elycharts No No No Yes No Yes No No Yes Yes Yes
Flot Yes Yes Yes Yes Yes No Yes Yes No

flotr2 Yes Yes Yes Yes Yes Yes
PNG,
JPG

No Yes No Yes

Google Chart Tools No No Yes No Yes No No No Yes No No

gRaphaël No No No Yes No No No No Yes No No
Highcharts Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes
jqChart Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
jqPlot Yes Yes Yes Yes Yes Yes Yes Yes Yes - Yes
JSCharts No No Yes Yes No No No No No No No
JSXGraph No Yes Yes Yes Yes Yes Yes No
KendoUI DataViz Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Morris.js No No No No Yes No No Yes No No
nvd3 Yes Yes Yes Yes Yes Yes

Protovis Yes Yes Yes Yes Yes Yes No Yes No Yes
RGraph No No No No No No - Yes Yes

Rickshaw Yes Yes Yes

Sencha Touch Charts Yes

TeeChart Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
zingchart Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Shield UI Charts Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
SVGware Yes Yes Yes Yes Yes Yes Yes - Yes Yes

Reportivo.com Yes Yes Yes Yes Yes Yes Yes Yes Yes

4. Browser Support

Firefox IE Chrome Safari Opera iPhone iPad

amCharts Yes Yes
6.0+

Yes Yes Yes Yes Yes

arcadiaCharts Yes Yes Yes Yes Yes Yes Yes

CanvasJS Charts Yes Yes
9+

Yes Yes Yes Yes Yes

D3.js Yes Yes
9+

Yes Yes Yes Yes Yes

dhtmlxChart Yes
1.0+

Yes
6.0+

Yes Yes
3.0+

Yes
9.0+

Yes Yes

Dojo (dojox/charting) Yes
3.6+

Yes
6+

Yes Yes - Yes Yes

Ejschart Yes
1.5+

Yes
6.0+

Yes Yes
3.1

Yes
9+

Yes
1+

Yes

Elycharts Yes
3.0+

Yes
6.0+

Yes
5.0+

Yes
3.0+

Yes
9.5+

Yes Yes

Flot Yes Yes
6.0+

Yes Yes Yes Yes

flotr2 Yes Yes
6.0+

Yes Yes Yes Yes

Google Chart Tools Yes Yes Yes Yes Yes Yes Yes
gRaphaël Yes

3.0+
Yes
6.0+

Yes
5.0+

Yes
3.0+

Yes
9.5+

Highcharts Yes Yes
6.0+

Yes Yes Yes Yes Yes

jqChart Yes Yes
6.0+

Yes Yes Yes Yes Yes

jqPlot Yes Yes
7.0+

Yes Yes Yes Yes Yes

JSCharts Yes
1.5+

Yes
8.0+

Yes
10+

Yes
3.1+

Yes
9+

Yes
1.0+

JSXGraph Yes
2.0+

Yes
6.0+

Yes Yes
3.0+

Yes Yes Yes

KendoUI DataViz Yes Yes
7+

Yes Yes Yes Yes Yes

Morris.js Yes Yes
6.0+

Yes Yes Yes Yes Yes

nvd3 Yes - IE 9, IE8
requires Aight

Yes

Yes Yes Yes Yes

Protovis Yes No Yes Yes Yes Yes
RGraph Yes Yes

9+
Yes Yes Yes Yes Yes

Rickshaw Yes Yes
9+

Yes Yes Yes Yes Yes

Sencha Touch Charts Yes Yes
TeeChart Yes Yes

9.0+
Yes Yes Yes Yes Yes

zingchart Yes Yes
6.0+

Yes Yes Yes Yes Yes

Shield UI Charts Yes Yes
5.0+

Yes Yes Yes Yes Yes

SVGware Yes Yes Yes Yes Yes Yes
Reportivo.com Yes Yes Yes Yes Yes Yes Yes

C
T H E VOV I S P R O T O T Y P E W E B A P P L I C AT I O N

This appendix contains the user manual to download, install and run the
VoVis application on the web. The VoVis framework is client-side application,
so a server is needed to host the application. MongoDB is used as database
and Node.js as the server and the web service.

c. steps to start and launch the vovis application

To execute the VoVis web application, Node.js and MongoDB softwares need
to be installed on a system which has a web browser, as the VoVis application
is a web-based prototype.

• Installation and execution steps of MongoDB: The following steps will
start the database service for the VoVis application.

. Download and Install the MongoDB from [].

. Create a directory (/data/db).

. To start MongoDB service (daemon), run the command "mongod –
dbpath /data/db" from the installed directory of MongoDB in the
system, through the command line.

• Steps to install node.js and launch VoVis web application on the web.

. Download and Install the node.js from []

. Download the VoVis source code from []

. From the root directory, execute the following commands through
command line - "npm install" and " npm start"

. To launch the VoVis framework on the web, type this url "http://localhost/"
in the browser.

. The VoVis framework is ready for visualization of data.

c. steps to visualize the data by the vovis application

The steps for visualizing the data by the VoVis framework is as follows.

• First step is to upload the input file in CSV format. Figure  is the
Home page of The VoVis framework. The user can either upload the
new data or can download data from the database to visualize it.



 the vovis prototype web application

Figure : VoVis Home Page

• To select a type of visualization from the drop down menu. Once a type
is selected information regarding the visual type is shown in the infor-
mation box. This helps in mapping of data with the VisVo vocabulary.

• The drag and drop feature of VoVis provides help for mapping of the
data columns to the VisVo vocabulary and manually typing some input
for labels as the name of the chart. Figure  shows the mapping of
data through drag and drop feature of the VoVis framework.

Figure : VoVis Input Data

C. steps to visualize the data by the vovis application 

• Once mapping is done, next is to process it by clicking the process but-
ton. Remapping is also possible by reset method that will reset the map-
ping.

• The processed data and the visualization is generated and can be viewed
and accessed on the web page. Figure  shows the multi-set bar visual-
ization and Figure  shows the processed data generated by the VoVis
framework.

Figure : VoVis Visualization

Figure : VoVis Processed Data

B I B L I O G R A P H Y

[] Allen EA, Erhardt EB, Calhoun VD () Data visualization in the neu-
rosciences: overcoming the curse of dimensionality. Neuron ():–
 (Cited on page .)

[] Berlocher I, Kim S, Lee T () Deliverable d.: Use case implementa-
tion. Tech. rep., DaPaaS Consortium -, URL http://project.
dapaas.eu/ (Cited on pages  and .)

[] Castell N, Kobernus M, Liu HY, Schneider P, Lahoz W, Berre AJ, Noll
J () D..: Evaluation of the performance. Tech. rep., Citi-Sense-
MOB, URL http://citi-sense-mob.eu/ (Cited on page .)

[] Castell N, Kobernus M, Liu HY, Schneider P, Lahoz W, Berre AJ, Noll
J () Mobile technologies and services for environmental moni-
toring: The citi-sense-mob approach. Citi-Sense-MOB URL http://
citi-sense-mob.eu/ (Cited on page .)

[] Catalogue DV () The data visualisation catalogue. URL http://www.
datavizcatalogue.com/search.html (Cited on pages  and .)

[] Chan B, Wu L, Talbot J, Cammarano M, Hanrahan P () Vispedia:
Interactive visual exploration of wikipedia data via search-based inte-
gration. Visualization and Computer Graphics, IEEE Transactions on
():– (Cited on page .)

[] Chartchooser () Chartchooser. URL http://labs.juiceanalytics.
com/chartchooser/index.html (Cited on page .)

[] Charts DR () Radial bar chart. URL http://prcweb.co.uk/
radialbarchart/ (Cited on page .)

[] Chen Ch, Härdle WK, Unwin A () Handbook of data visualization.
Springer Science & Business Media (Cited on page .)

[] Chooser S () Slide chooser. URL http://extremepresentation.
typepad.com/blog/2015/01/announcing-the-slide-chooser.html
(Cited on page .)

[] Cooke R () Data visualization. URL http://spinsucks.com/
marketing/importance-data-visualization/ (Cited on pages 
and .)

[] Cukier K () A special report on managing information. The
Economist (): (Cited on page .)



http://project.dapaas.eu/
http://project.dapaas.eu/
http://citi-sense-mob.eu/
http://citi-sense-mob.eu/
http://citi-sense-mob.eu/
http://www.datavizcatalogue.com/search.html
http://www.datavizcatalogue.com/search.html
http://labs.juiceanalytics.com/chartchooser/index.html
http://labs.juiceanalytics.com/chartchooser/index.html
http://prcweb.co.uk/radialbarchart/
http://prcweb.co.uk/radialbarchart/
http://extremepresentation.typepad.com/blog/2015/01/announcing-the-slide-chooser.html
http://extremepresentation.typepad.com/blog/2015/01/announcing-the-slide-chooser.html
http://spinsucks.com/marketing/importance-data-visualization/
http://spinsucks.com/marketing/importance-data-visualization/

 bibliography

[] Cyganiak R, Reynolds D, Tennison J () The rdf data cube vocabu-
lary. WC Recommendation (January ) (Cited on page .)

[] Davies J, Fensel D, Van Harmelen F () Towards the semantic web:
ontology-driven knowledge management. John Wiley & Sons (Cited on
page .)

[] Dewar M () Getting Started with D. O’Reilly Media (Cited on
page .)

[] Dumontier M, Ferres L, Villanueva-Rosales N () Modeling and
querying graphical representations of statistical data. Web Semantics:
Science, Services and Agents on the World Wide Web ():–
(Cited on page .)

[] Fayyad UM, Wierse A, Grinstein GG () Information visualization
in data mining and knowledge discovery. Morgan Kaufmann (Cited on
page .)

[] Few S () Show me the numbers: Designing tables and graphs to
enlighten, vol . Analytics Press Oakland, CA (Cited on page .)

[] Few S () Now you see it: simple visualization techniques for quan-
titative analysis. Analytics Press (Cited on page .)

[] Freitas CM, Luzzardi PR, Cava RA, Winckler M, Pimenta MS, Nedel LP
() On evaluating information visualization techniques. In: Proceed-
ings of the working conference on Advanced Visual Interfaces, ACM, pp
– (Cited on page .)

[] Friendly M, Denis DJ () Milestones in the history of the-
matic cartography, statistical graphics, and data visualization. URL
http://wwwdatavisca/milestones (Cited on page .)

[] Ghatol R, Patel Y () Beginning PhoneGap: Mobile Web Framework
for JavaScript and HTML. Apress (Cited on page .)

[] GraphicsCheatSheet (n.d.) Graphicscheatsheet. URL http:
//www.billiondollargraphics.com/GraphicsCheatSheet_GMG.pdf
(Cited on page .)

[] Johnson C () Top scientific visualization research problems. Com-
puter graphics and applications, IEEE ():– (Cited on page .)

[] Jou SF, Campbell D, Ballantyne I () Interactive business data visu-
alization system (Cited on page .)

[] Kelleher C, Wagener T () Ten guidelines for effective data visual-
ization in scientific publications. Environmental Modelling & Software
():– (Cited on page .)

http://www.billiondollargraphics.com/GraphicsCheatSheet_GMG.pdf
http://www.billiondollargraphics.com/GraphicsCheatSheet_GMG.pdf

bibliography 

[] Kerren A, Stasko J, Fekete JD () Information visualization: human-
centered issues and perspectives. Springer Science & Business Media
(Cited on page .)

[] Kessin Z () Programming HTML applications: building power-
ful cross-platform environments in JavaScript. " O’Reilly Media, Inc."
(Cited on page .)

[] Lee T, Kim S, Berlocher I () Deliverable d.: Use case definition
and requirements analysis. Tech. rep., DaPaaS Consortium -,
URL http://project.dapaas.eu/ (Cited on page .)

[] Leff A, Rayfield J () Web-application development using the mod-
el/view/controller design pattern. In: Enterprise Distributed Object
Computing Conference, . EDOC ’. Proceedings. Fifth IEEE In-
ternational, IEEE, pp – (Cited on page .)

[] Library () Datavis. URL http://guides.library.duke.edu/
datavis (Cited on page .)

[] Maclean M () D Tips and Tricks Interactive Data Visualization in
a Web Browser. Leanpub (Cited on page .)

[] McGuinness DL, Van Harmelen F, et al () Owl web ontology lan-
guage overview. WC recommendation (): (Cited on page .)

[] Murray S () Interactive Data Visualization for the Web. O’Reilly
Media (Cited on pages  and .)

[] Mutlu B, Hoefler P, Sabol V, Tschinkel G, Granitzer M () Automated
visualization support for linked research data. I-SEMANTICS (Posters
& Demos) :– (Cited on page .)

[] Puhan MA, ter Riet G, Eichler K, Steurer J, Bachmann LM ()
More medical journals should inform their contributors about three
key principles of graph construction. Journal of clinical epidemiology
():–e (Cited on page .)

[] Rebolj D, Sturm PJ () A gis based component-oriented integrated
system for estimation, visualization and analysis of road traffic air pol-
lution. Environmental Modelling & Software ():– (Cited on
page .)

[] Silva S, Santos BS, Madeira J () Using color in visualization: A sur-
vey. Computers & Graphics ():– (Cited on page .)

[] Solheim I, Stølen K () Technology Research Explained. Tech. rep.,
SINTEF ICT (Cited on page .)

[] Sridaran R, Padmavathi G, Iyakutti K () A survey of design pattern
based web applications. Journal of object technology ():– (Cited
on page .)

http://project.dapaas.eu/
http://guides.library.duke.edu/datavis
http://guides.library.duke.edu/datavis

 bibliography

[] Telea AC () Data Visualization: Principles and Practice. A K Peter-
s/CRC Press (Cited on pages , , and .)

[] Thomas JJ () Illuminating the path:[the research and development
agenda for visual analytics]. IEEE Computer Society (Cited on page .)

[] Tilkov S, Vinoski S () Node. js: Using javascript to build high-
performance network programs. IEEE Internet Computing ():–
 (Cited on page .)

[] Ward MO, Grinstein G, Keim D () Interactive data visualiza-
tion: foundations, techniques, and applications. CRC Press (Cited on
pages , , and .)

[] Ware C () Information visualization: perception for design. Elsevier
(Cited on page .)

[] Website () Pragmatic visualization. URL http://kosara.net/
papers/2007/Kosara_IV_2007.pdf (Cited on page .)

[] website () Sas. URL http://www.sas.com/en_us/insights/
big-data/data-visualization.html (Cited on pages  and .)

[] Website () Downloads-mongodb. URL https://www.mongodb.org/
downloads (Cited on page .)

[] Website () Node.js. URL https://nodejs.org/download/ (Cited on
page .)

[] Website () Vovis github. URL https://github.com/SwatCodes/
VoVis (Cited on pages  and .)

[] Wikipedia () Arc diagram. URL http://en.wikipedia.org/wiki/
Arc_diagram (Cited on page .)

[] Wikipedia () Bar chart. URL http://en.wikipedia.org/wiki/Bar_

chart (Cited on page .)

[] Wikipedia () Binary data. URL http://en.wikipedia.org/wiki/
Binary_data (Cited on page .)

[] Wikipedia () Box plot. URL http://en.wikipedia.org/wiki/Box_

plot (Cited on page .)

[] Wikipedia () Model view controller. URL http://en.wikipedia.
org/wiki/Model%E2%80%93view%E2%80%93controller (Cited on
page .)

[] Wikipedia () Mongodb. URL http://en.wikipedia.org/wiki/
MongoDB (Cited on page .)

[] Wikipedia () Node.js. URL http://en.wikipedia.org/wiki/Node.
js (Cited on page .)

http://kosara.net/papers/2007/Kosara_IV_2007.pdf
http://kosara.net/papers/2007/Kosara_IV_2007.pdf
http://www.sas.com/en_us/insights/big-data/data-visualization.html
http://www.sas.com/en_us/insights/big-data/data-visualization.html
https://www.mongodb.org/downloads
https://www.mongodb.org/downloads
https://nodejs.org/download/
https://github.com/SwatCodes/VoVis
https://github.com/SwatCodes/VoVis
http://en.wikipedia.org/wiki/Arc_diagram
http://en.wikipedia.org/wiki/Arc_diagram
http://en.wikipedia.org/wiki/Bar_chart
http://en.wikipedia.org/wiki/Bar_chart
http://en.wikipedia.org/wiki/Binary_data
http://en.wikipedia.org/wiki/Binary_data
http://en.wikipedia.org/wiki/Box_plot
http://en.wikipedia.org/wiki/Box_plot
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/MongoDB
http://en.wikipedia.org/wiki/MongoDB
http://en.wikipedia.org/wiki/Node.js
http://en.wikipedia.org/wiki/Node.js

bibliography 

[] Wong PC, Bergeron RD ()  years of multidimensional multi-
variate visualization. In: Scientific Visualization, pp – (Cited on
page .)

[] Zarev M, Roman D, Elvesæter B () Deliverable d.: Analysis,
requirements, design & architecture specification for the data access
framework. Tech. rep., DaPaaS Consortium -, URL http://
project.dapaas.eu/ (Cited on page .)

http://project.dapaas.eu/
http://project.dapaas.eu/

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Problem Definition and Research Gaps
	1.2 Pilot Cases
	1.2.1 Citi-Sense-MOB
	1.2.2 DaPaaS
	1.2.3 Evaluation and Project Tasks

	1.3 The Purpose of This Thesis
	1.4 Research Method
	1.5 Research Tasks
	1.6 Thesis Structure
	1.6.1 Part I: Background Study
	1.6.2 Part II: The VoVis Framework
	1.6.3 Part III: Evaluation and Conclusion
	1.6.4 Part IV: Appendix

	Background Study
	2 Data Visualization
	2.1 What is Data Visualization ?
	2.2 Scientific visualization
	2.3 Information visualization
	2.4 Visual Analytics
	2.5 Data Visualization in Daily Life
	2.6 Types of Data
	2.7 Data Visualization Process
	2.7.1 Importing Data
	2.7.2 Filtering Data
	2.7.3 Mapping Data
	2.7.4 Rendering Data

	3 Data Visualization Techniques and Frameworks
	3.1 Designing Effective Data Visualizations
	3.2 Data Visualization Frameworks
	3.3 Components of Data Visualization Techniques
	3.3.1 User Component
	3.3.2 Data Component
	3.3.3 Visualization Component

	4 Requirements for a Data Visualization Framework
	4.1 Requirements Analysis and Use Cases
	4.1.1 PLUQI : DaPaaS Use Case
	4.1.2 Citi-Sense-MOB Use Case

	4.2 Visualization Requirements
	4.3 Data Service Requirements
	4.4 Web Framework Requirements
	4.5 Usability Requirements

	5 Evaluation of Visualization Frameworks and Tools
	5.1 Visualization Frameworks (Web-Based)
	5.1.1 Many Eyes
	5.1.2 Visualize Free
	5.1.3 Data Wrangler
	5.1.4 Tableau Public
	5.1.5 Weave
	5.1.6 Evaluation of the Web-Based Visualization Frameworks

	5.2 Visualization Libraries (JavaScript-Based)
	5.2.1 Data Driven Document (D3)
	5.2.2 Google Charts
	5.2.3 jqPlot
	5.2.4 Flot
	5.2.5 Evaluation of JavaScript Visualization Libraries

	The VoVis Framework
	6 VoVis: Concept and Design
	6.1 Conceptual Architecture of a Web-based Framework
	6.2 The VoVis: Design Overview
	6.3 The VoVis Vocabulary Component
	6.3.1 Visualization Library
	6.3.2 RDF Visualization Vocabulary (VisVo)
	6.3.3 Types of Visualization
	6.3.4 Vocabulary Storage Format

	7 Prototype Implementation of the VoVis Framework
	7.1 The Controller: Grapher
	7.2 The Vocabulary Configuration File: gData
	7.3 The User Interface: Home Page
	7.4 The Data Analyzer: CSVParser
	7.5 The Visual Mapper: dataDecorator
	7.6 The Visual Displayer: plotChart
	7.7 The VoVis: Database
	7.8 The VoVis: Server
	7.9 The VoVis: Source Code

	Evaluation and Conclusion
	8 Evaluation of the VoVis Framework
	8.1 The VoVis Framework Experimental Setup
	8.2 Results of the Experiment
	8.2.1 Result of Test Scenario 1
	8.2.2 Result of Test Scenario 2
	8.2.3 Result of Test Scenario 3
	8.2.4 Result of Test Scenario 4

	8.3 VoVis Framework Evaluation

	9 Contributions and Future Work
	9.1 Meeting the Research Tasks
	9.2 Validation of the Hypothesis
	9.3 Thesis Contributions
	9.4 Future Work
	9.4.1 Extension of Data and Visualization Types
	9.4.2 RDF Vocabulary
	9.4.3 Extension of VoVis

	Appendices
	A The VoVis Vocabulary
	B Review of Data Visualization Tools
	C The VoVis Prototype Web Application
	C.1 Steps to Start and Launch the VoVis Application
	C.2 Steps to Visualize the Data by the VoVis Application

	Bibliography

