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Abstract

Cox’s regression model is one of the most applied methods in medical research.
This method finds also applications in other fields such as econometrics, demo-
graphy, insurance etc. This method is based on two crucial assumptions that
(i) the method assumes log-linearity in covariates, and (ii) that the hazard ratio
of two individuals are proportional. In survival analysis data, both numeric
and binary covariates are typically encountered. There is no issue with the
log-linearity assumption when working with binary covariates, however, the
issue may arise when numeric covariates are involved. This thesis, thus, stud-
ies methods that are used to check assumption (i). For this purpose, there have
been proposed a number of graphical procedures and formal test procedures
in the literatures. This thesis in particularly aims to give a systematic review
of the various test procedures and formal tests, and also to assess how the test
procedures perform.

All the proposed test procedures will be illustrated using publicly available
data. To study the performance of these procedures, both real and simulated
data (using the Monte Carlo method) will be used. In the simulation studies,
first we must find a general formula for how to generate survival data on the
computer. That is done through the fundamental relation between hazard rate
and survival function. It is shown how the Weibull distribution function can
be used to generate appropriate survival data on the computer.

KEY WORDS: Cox’s regression model; Survival analysis; Hazard rate; Censor-
ing; Local test statistics; Fractional polynomials; P-spline; Martingale residuals;
Monte-Carlo.






iii

Preface

This thesis was written as part of my master’s degree, in the master program
"Modeling and Data analysis" offered by the University of Oslo. I have really
learned a lot working on this thesis - learned much more than I would ever
imagine when I started working on this. In particular, throughout this thesis I
learned much about a proper academic writing (e.g. proper use of sources etc.)
both in terms of content and grammar.

First and foremost, I want to thank my amazing supervisor, Jrnulf Borgan,
for giving me a very interesting and challenging thesis. He was always very
helpful giving me useful advice and feedback, and I always felt I was welcome
to drop by his office and also to send him e-mails. Without his guidance, this
thesis would be an impossible task. I really appreciated the amount of feed-
back I received from him.

Moreover, I also want to thank Kjersti Nygaard, Maja Alvilde Bratlien Larsen
and my good friend Even Langfeldt Friberg who have given me useful com-
ments on some parts of the thesis. I am really grateful for this. I also appreciate
other fellow students, and in particular students at room B800, to have contrib-
uted to a great study environment (again especially thanks to Kjersti Nygaard
for taking the initiative to social events). A special thanks to my family who
always encouraged me to complete my degree.

Zaki Amini
May 2015






Contents

1 Introduction

2 Background

2.1
2.2
23

24
25

2.6

2.7

2.8

Introduction . . . .. ... ... . L L o o
Survival function and cumulative hazardrate . . . . . . . .. ..
Dataand Censoring . . . . ... .. .................
231 Melanomadata . . ... ... ... .. ... .. L.
Counting processes . . . . . ... ... ... ...
The Nelson-Aalen estimator . . . . . ... ... ... .......
251 [Illustration of the Nelson-Aalen estimator . . . . . . . ..
The Kaplan-Meier estimator . . . . . ... .............
2.6.1 Illustration of the Kaplan-Meier estimator. . . . . . . ..
Coxregression . . . .. ... ...... .. ... ... ....
271 Coxmodel . . ... ... .. ... ... .
2.72 Partial likelihood and estimationof § . . ... ... ...
Hypothesis testing . . . .. .....................
2.81 The simple hypothesis testing . . . . . .. ... ......
2.8.2 Illustration of the simple null hypothesis . . . . . .. ..
2.8.3 Testing a composite null hypothesis . . . ... ... ...
2.8.4 [Illustration of the composite null hypothesis . . . . . ..
285 PBCdata............. ... .. .. .......
286 Summary . ... ...

3 Checking log-linearty

3.1
3.2

3.3

34

3.5

Introduction . . . ... ... ... ...
Simplemethods . . . . ... ... ... .. .. .. .. .. ...
3.2.1 Model extension with a function . .. ... ........
3.22 Model extension with quartiles . . . . . ... ... ....
Fractional polynomials . . . .. ... ... ... .. .......
331 Introduction ... ... .. ... ... .. ... .......
3.3.2 Model formulation . . ... ... .. ... .. .......
3.3.3 Model selection algorithm . . . . .. .......... ...
Penalized splines . . . ... ... ... ... ... .. .. .. ...
341 Introduction ... ... .. ... .. ... ... ... ....
3.42 The Cox model with penalized splines . . . . . ... ...
Martingaleresiduals . . . ... ........ ... ... ... ..
351 Introduction ... ... .. ... ... ... . ........
3.5.2 Martingale residuals and model check . . . . . ... ...

\'



Vi

CONTENTS

36 Summary . . ... ... 44
Simulation studies 49
41 Introduction ... ..... ... ... .. .. .. .. 49
4.2 Simulating survivaltimes . . ... ... ... ... ... ..., 49
421 Generating survival data with Weibull baseline hazard . 50

4.3 Simulation studies in practice . . . . ... ... ... oL 50
44 Summary . . ... 62
Summary and Conclusion 63
69

A.l1 Covariance and informationmatrix . . . .. ... .... ... .. 69
A2 Calculating (I"")~linpractise . . . . ... ............. 70
71

B.1 R-code for analysing the melanomadata. . . . . ... ... ... 71
75

C.1 Simulationstudies . .. .. ... ... ... .. .. .. .. ..., 75



Chapter 1

Introduction

The main aim of regression models is to asses the effect of covariates on an
outcome. All types of regression models have their own application areas. For
example, in linear regression model, one assumes that the relation between the
response variable and the predictor variables (covariates) is linear. Therefore
linear regression is used to analyse data that has such properties.

In survival and event-history analysis, the response variable is called a sur-
vival time. By a survival time, we mean the time from an initiating event to
the event of interest. Examples of survival times would be time from birth to
death, time from marriage to divorce, or time from a patient gets cancer treat-
ment until relapse or death. Here, the event of interest are birth, death and
divorce. The event of interest typically occurs for some individuals under ob-
servation, but not for some other individuals. For example, in a lung cancer
study, patients are asked to participate in a study to examine the effect of a
drug on their survival from lung cancer. Some of the patients take part in the
study until their death before the study terminates, then their survival times
is considered as uncensored. Some others take part in the study, but before the
study ends, they are lost to follow-up, then their survival time is considered as
censored. The third category take part in the study, but after a while before the
study terminates, they die of other causes than death (event of interest) due to
lung cancer, then their survival times are also considered as censored. Thus,
the data that arises at the end of the study is a mixture of complete and in-
complete observations. Thus, to analyse such censored survival data requires
different statistical tools than, for example, ordinary statistical methods such
as linear regression. With censored survival data we are even not capable to
calculate the sample mean of the data.

There has been developed several advanced methods to handle censored
survival data, and Cox’s regression model which is the focus of this thesis
is one of the most used method in medical research. The method also finds
applications in other fields such as demography, econometric, insurance, and
reliability engineering. According to Van Noorden et al. [2014], Cox’s original
paper (Cox, 1972) is the second most cited paper in the history of statistics.
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Cox regression assumes that the hazard rate for individual i takes the form
p

h(txi) = ho(t) exp{}_ Bjxij} (1.1)
j=1

where hg(t) is called the baseline hazard, and B; is the coefficient associated
with the j-th covariate x;;.

The Cox’s regression model is based on two key assumptions: (i) that haz-
ard rate assumes log-linearity in covariates, and (ii) that the hazard rates of two
individuals are proportional.

Our task here is to check the first of these assumptions. This is the main
objective of this master’s thesis. In the statistical literatures, there have been
suggested a number of graphical and formal tests for checking log-linearity
assumption. In particular, we will try to provide a systematic review of the
various graphical procedures and formal tests that have been proposed.

Chapter 2 reviews the background materials on survival analysis such as
survival function, hazard rate, counting processes, Nelson-Aalen estimates,
Kaplan-Meier estimates and Cox’s regression. In addition, we will utilize the
formal test statistics such as the Likelihood ratio test (LRT), the Wald test and
the Score test to examine both simple null hypothesis and composite null hy-
pothesis. To illustrate these procedures, we will be using publicly available
data.

In Chapter 3, we will study all the proposed methods for checking log-
linearity of the Cox regression. In particular,

* Methods that impose an additional term on (1.1), such as 7;g(x;), where
e.g. ¢(x) = x2. And then testing the null hypothesis that v; = 0.

¢ Methods that impose one or more terms on (1.1) based on making cathegor-
ical variables according to their quartiles. And then testing the null hypo-
thesis that all the coefficients associated with the cathegorical covariates
are zero.

¢ A more advanced method that extends (1.1) is based on fractional poly-
nomials (FP) which allows to integrate logarithm, non-integer powers
and possibly repeated powers of the covariates. And then testing the
null hypothesis similarly as under the two simple methods.

* A more flexible approach than the FP method is to replace B;x;; in (1.1) by
s(x;;) which is a linear combination of the B-spline basis functions, f;(x;).
That s, s(x;;) = Y¢_1 7k fx(xij)- This method includes both plots and test
procedures.

¢ The last method we will consider is the Martingale-based residuals method.
This method is based on counting process and cumulative intensity pro-
cesses. This method also includes both plots and tests procedures.



For illustrative purposes we will be using two publicly available datasets;
the melanoma and the pbc datasets. The first one is described in section 2.3.1
whereas the last one is described in section 2.8.5. The melanoma dataset is used
both in Chapter 2 and 3 for illustrative purposes, while the pbc dataset is used
only in Chapter 3.

Chapter 4 presents checking the log-linearity assumption through simula-
tion studies. In particular, we generate survival data through the Cox model
(1.1) which is based on baseline hazard and hazard ratio. We will use paramet-
ric distributions such as Weibull distribution to formulate the survival times
modeling, which is derived through baseline hazard h(t). Next we will utilize
the software R to generate experimental survival data in the computer. When
we have the survival data at our disposal, the next step is to utilize the various
tests procedures which we have developed in Chapter 3 for analyzing the gen-
erated data and draw conclusion based on how they perform.

In Chapter 5, we will summarize our findings and draw conclusion. Ap-
pendix part is reserved for part of the analysis that are not of very significant
importance to understand. Thus, in this part we attach derivation of equations,
extra figures and codes that are not considered being the main results. How-
ever, it can be of importance for justification purposes how the main results are
obtained.

The statistical software R (R Development Core Team) will be used in all
the analysis, both when using real datasets such as the melanoma and the pbc
datasets, and also when generating survival data by means of the Monte-Carlo
techniques.






Chapter 2

Background

2.1 Introduction

In this chapter we will review results that are of importance in our study. In
particular, we will summarize survival function, hazard rate, counting pro-
cesses, Nelson-Aalen estimator, Kaplan-Meier estimator, Cox regression and
some formal tests as Wald test, Likelihood-ratio test and the Score test. The
book by Aalen et al. [2008] will be used as a reference throughout this review.
Further, the melanoma data will be used to illustrate our results. The dataset is
described in section 2.3.1.

2.2 Survival function and cumulative hazard rate

Before we define the survival function, we need to clarify the term survival time
T. One denotes the time from an initiating event to the event of interest as sur-
vival time T. The event of interest could be death, relapse, divorce, or failure
as in reliability engineering. For instance, the survival time T may be the time
from birth to death, time from the first birth to the second birth of a woman,
time from entry to a study to relapse, or the time to failure of a component or a
system.

The survival function denoted formally as S(t) = Pr(T > t) is the probabil-
ity that the survival time T is larger than time ¢. Or phrased slightly differently,
the survival function specifies the probability that the event of interest has not
occurred yet by time t. The survival curve is a probability curve which starts
at 1 and decreases as time goes by. Later we will show that the survival func-
tion S(t) can be estimated and plotted by means of the Kaplan-Meier estimator.

As we saw just above, the survival function S(t) is an unconditional prob-
ability function, while the hazard rate function h(t) is a conditional probability
function. We assume that T is an absolutely continuous random variable, and
we need to look at those individuals who experience the event of interest in
a small time interval [t, ¢ + dt] given that the individuals haven’t experienced
the event of interest yet. Or h(t)dt is the probability that the event of interest

5
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occurs in a small time interval [t, t + dt] given that it has not occurred earlier.

Mathematically, the hazard rate function can be expressed by

1
h(t) = Iim —Pr(t < T < t+AtT >t 2.1
(t) Aig‘omr(— <t+HALHT > t) (2.1)

where At is a small time step and we let it approach 0. We note that we also
divide the expression on its interval length At.

The cumulative hazard rate is defined as

H(t) = /Oth(s)ds (2.2)

There are two important mathematical relations between the cumulative
hazard rate and the survival function. The relations are derived as follows:

1
H() =h(t) = lim—Pr(<T<t+A|T>t
()=h(t) = lim=Pr(t<T<t+AMT 1)

1 Pr(t<T<t+Ab
m —
At—0 At P(T >t)
lim 1 .S(t) = S(t+At)
At—0 At 5(¢)

= - 2.3)

Thus — % = h(t), assuming that S(0) = 1, then by integrating both sides, we

arrive at —log(S(t)) = fot h(s)ds + C. Finally this implies that

S(t) = exp{— /Oth(s)ds} =exp{—H(t)}, since C = 0. (2.4)

The survival function S(t) may be estimated by Kaplan-Meier estimator.
We will illustrate this in section 2.6. The estimation of H(t) is done by the
Nelson-Aalen estimator. In section 2.5 this will be discussed.

2.3 Data and Censoring

What makes survival analysis so special is that we can not use ordinary stat-
istical methods due to censoring. In the study of survival data, one has to wait
for the event to occur. When the study ends and the analysis begins, we com-
monly note that the event of interest has occurred for some individuals and for
some others not. We then have two types of data; complete and incomplete
data. The latter is called censoring in survival and event history analysis.

In the study of survival data, it is common to encounter the concepts right-
censoring and left-truncation. In particular, right-censoring is almost inevitable.
Right-censoring occurs when the event of interest has not occurred at the end
of the study. However, in real-life studies, right-censoring can also occur when
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an individual withdraws from the study or is lost to follow-up. Formally, we
denote T; be the observed survival time for individual i , which is either the true
survival time T; or the the censored survival time C;. Then the right-censored
survival time occurs when C; < T;, in which the true survival time is "to the
right" of observed time. Thus, the observation from an individual is the pair
(T;, 6;), where the censoring indicator J; is defined by

s [ i T=T
"o, if T; = C; in which case T; < T;

In some studies patients may come under observation after the initiating
event. For example, in a study of myocardial infarction only those who survive
and reach the hospital can be included in the study. Those who do not survive
are therefore not included in the study. The data arising here is left-truncated.
There are subtypes of right-censoring and truncation which we do not consider
here.

2.3.1 Melanoma data

In this thesis, the melanoma dataset will be used for illustrative purposes. In
the period 1962-77 a total of 205 patients with malignant melanoma (cancer
of the skin) were operated at Odense University hospital in Denmark. The
tumor was completely removed, including the skin within 2.5 cm around it.
This was historically a clinical study with the objective of assessing the effect
of risk factors (covariates) on survival. A number of covariates were recorded
at the operation. Among the covariates considered to be of significance were
sex and age at operation of the patients. Other clinical characteristics covariates
such as tumor width and location on the body were considered as well as some
histological classification including tumor thickness, growth patterns, types of
malignant cells and ulceration. The latter covariate is scored as "present" if the
surface of melanoma viewed in a microscope shows signs of ulcers and as "ab-
sent" otherwise.

We note that the survival time is only known for those patients who died
before the end of 1977. The rest of the patients were considered as censored. The
covariates we will use in our illustrations are coded as follows:

e status: 1=death from disease, 2=censored, 4=death from other cause

¢ lifetime: life time from operation in years

¢ ulcer: ulceration (1=present, 2=absent)

e tumor thickness in mm

e sex: 1=female, 2=male

* age at operation in years

The data are further described in Andersen et al. [1993, page 11].
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2.4 Counting processes

In this section we describe how counting processes with their intensity processes
are derived from the survival times. Further, we only consider the censored sur-
vival times.

Informally, a counting process is a process that counts the number of occur-
rences of an event over time. Examples of counting processes can be counting
the number of time a person wakes up during night, getting the number of
children in a family or counting deaths in patient groups.

We denote T; to be the right censored survival time of an individual i and
6; denotes the indicator function that T; corresponds to the occurrence of the
event. More precisely,

i =

) 1if T; = T; (observed actual survival time)
0 if T; < T; (observed right-censored survival time)

Before we go further, we need to define a concept that is called independent
right-censoring. Formally, the independent right-censoring is defined as

P(t<T;<t+dt s =1T; >t past) = P(t < T; < t+dt|T; > t). (2.5

Expression (2.5) means that an individual who is still at risk at time t has
the same risk of experiencing the event of interest in the small time interval
[t,t + dt] as it would be the case in the situation without censoring.

A more feasible way of expressing the independent right censoring is through
the counting process N;(t) and the intensity process A;(t). The counting process
may be expressed by N;(t) = I(T; <t,6; =1),i = 1,...,n, while the intensity
process is expressed by

Ai(t)dt = P(dN;(t) = 1|past) (2.6)

where dN;(t) is the number of jumps of the process in the small time interval
[t, t + dt] for individual i. The intensity process A;(t) is interpreted as the con-
ditional probability that an event occurs in [t,t + dt) for individual i, given all
the events has been observed prior to this time interval, divided by the length
of the interval dt. We note that each individual i has its own intensity process.

Thus, by (2.5) and (2.6), the intensity process A;(t) of N;(t) takes the form
Ai(t)dt = P(dN;(t) = 1|past) = P(t < T; < t +dt,6; = 1|past), (2.7)

where A;(t) = 0 whenever T; < t. Finally, we have independent right-censoring
when combining h;(t) for each individual 7, and (2.5) so that the intensity pro-
cess of Nj(t) takes the form

Ai(t) = hi(H)Yi(t), (2.8)

where Y;(t) = I{T; > t} is the risk indicator for individual i.
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If we assume that h;(t) = h(t) for all i, the aggregated counting process
given by N(t) = Y1 | N;(t) = YL, I{T; < t,6; = 1} has the intensity process
A(t) = X Ai(t) = Y(t)h(t), where Y(t) = Yi' ; Yi(t) is the number at risk
just before time ¢.

2.5 The Nelson-Aalen estimator

The cumulative hazard rate H(t) = fot h(s)ds may be estimated by the Nelson-
Aalen-estimator. The Nelson-Aalen-estimator is a non-parametric estimator
that is used to estimate the cumulative hazard from censored survival data.
The estimator does not require any distributional assumptions. One important
use of this estimator is to check graphically the fit of parametric models.

To estimate the cumulative hazard rate H(t) = fot h(s)ds, we introduce the
decomposition

dN(t) = A(t)dt+dM(t)
= Y(t)dH(t) +dM(t), (2.9)

where the terms on the right hand side are the signal and noise part, respect-
ively. While the term dN(t) on the left hand side is the observation part.

From the estimating equation dN(t) = Y(t)dH(t) and assuming Y (t) > 0,
we find that dH (t) = dYNTS) Thus by integration, the Nelson-Aalen estimator
takes the form AN (s)

N(s 1
At = =y —, (2.10)
A O PRTCy

where the sum is over the jump times T; < T, < ... of N(#).

One may show that the Nelson-Aalen estimator, H(t), is unbiased with
variance that may be estimated by

. ~ [tdN(s) 1
U-Z(t) - Jo Y(S)z - Z Y(T]‘)z.

i<

(2.11)

Equation (2.11) may be used to construct a 95% confidence interval. After a
little calculation, we may get the confidence interval: H(t) £ 1.965(t). The log-

transformed confidence interval is given by H (t)e*1-967(*)/ A,

2.5.1 Illustration of the Nelson-Aalen estimator

We use the melanoma data from subsection 2.3.1 to illustrate the Nelson-Aalen-
estimator. When we interpret the Nelson-Aalen estimator, we mainly focus on
the slope of the curve. The upper left curve is the plot of the the Nelson-Aalen
estimate for females with 95% confidence interval, and the upper right curve is
the Nelson-Aalen estimate for males with 95% confidence interval. We notice
that the cumulative hazard rate of both genders look fairly linear. This implies
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Figure 2.1: Nelson-Aalen estimate for patients with melanoma: the two upper
curves are the cumulative hazard curves of females and males, respectively,
while the two lower curves are patients with and without ulceration (left) and
the thickness groups (right).
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that the hazard rate of both genders are approximately constant. However, the
male hazard rate curve seems to be steeper than the females cumulative hazard
rate curve. This may be interpreted as males mortality in comparison to female
mortality are higher after operation.

The lower left curve of figure 2.1 is a plot of Nelson-Aalen estimate for
patients with ulceration present and ulceration absent. The curve clearly indic-
ates that patients with ulceration present have much higher hazard rate com-
pared to those without ulceration. Notice that the curves are displayed without
confidence interval due to neatness, otherwise it would be looking messy.

Finally, the lower right curve of figure 2.1 displays plot of the Nelson-Aalen
estimate based on the tumor thickness group. The estimates for the two groups
with thickest tumor (2-5 mm and 5 +mm) are fairly linear and parallel until
about four years after operation, then the cumulative hazard rate of thickness
group 2-5 mm are continuing to be linear. This may imply that the cumulat-
ive hazard rate of this particular group is constant. However, the cumulative
hazard curve of 5 +mm thickness group are constant after four years. This can
be due to few people remaining at this stage. So according to this figure, the
larger the size of the tumor thickness are the higher hazard rate becomes. We
may conclude that the size of the tumor thickness has substantially effect on
the hazard rate, and this in turn means that the risk of dying after operation
depends on the size of the tumor thickness group.

2.6 The Kaplan-Meier estimator

As we mentioned earlier, the Kaplan-Meier estimator may be used to estimate
the survival function S(t). Before we go further to describe the Kaplan-Meier
estimator, we assume that our results are only valid for the right censored data.
How to handle data with tied events, we refer to section 3.2.2 in Aalen et al.
[2008].

To estimate the survival function we have a sample of n individuals from
the population. As in the case of the Nelson-Aalen estimator, from section 2.5,
we let N(#) counts the occurrences of an event in the time interval [0, {] and we
also let Y (t) be the number of risk, as in the case of Nelson-Aalen estimator.
Further, when the occurrences of an event is observed, we write the ordered
timesas T; < Tp < ...

Thus, the Kaplan-Meier estimator for the survival function is given by

S(t) = H{l_Y(lTj)}' (2.12)

T,

The Greenwood'’s formula is used to estimate the variance of the Kaplan-
Meier estimator. That is given by

(1) =S(t)? ), OIESY, (2.13)
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Similar to the Nelson-Aalen-estimator, the Kaplan-Meier estimator is ap-
proximately normally distributed. A 95% confidence interval for S(t) is con-
structed by S(t) £ 1.96%(t).

Using the log-minus-log transformation to construct the confidence inter-
val, the normal approximation is improved. Therefore a 95% confidence inter-
val for S(t) with log-minus-log transformation is given by
g(t)eil.%f(t)/(é(t)logé(t))_

2.6.1 Illustration of the Kaplan-Meier estimator

The melanoma data is used further to illustrate the Kaplan-Meier estimator.
Figure 2.2 displays estimate of Kaplan-Meier estimate for different risk factors.
The two upper curves estimate the survival functions for females and males as
indicated on the plots.

We see that as years pass, the survival probabilities decay exponentially for
both gender. However, the male survival probabilities curve seems to be more
linear than the female survival probabilities curve in the first 8 years after op-
eration. We may interpret that females seems to have higher survival probab-
ilities than males after operation. For instance, five years after operation the
survival probability for males is roughly 0.70, while it is 0.80 for females. After
7 and 9 years the survival probabilities for both genders seems to be constant.
However, we should not put much emphasis on this part of the curves since
few people remain on this stage.

The lower-left corner of figure 2.2 displays the survival probability curves
for patients with ulceration present and ulceration absent. The curves clearly
indicate that patients with ulceration have much lower survival probabilities
than those who have no ulceration.

Finally, the lower-right corner of figure 2.2 indicates plot of the Kaplan-
Meier estimates according to the tumor thickness groups. As indicated in the
plot, the curves for the patients with the tumor thickness groups 2-5 mm and
5 +mm are fairly parallel until about 5 years, but then the patients group with
thickest tumor (5+mm) have constant survival probability. Again as indicated
above, few people remain in the study 8 years after operation.

Patients with tumor thickness group 0-1 mm, not surprisingly, have much
higher survival probabilities. According to figure 2.2 (lower-right corner), the
chance of survival is 100% in the first four years for this particular group. So the
straightforward interpretation is that patients with small size of tumor thick-
ness have much higher survival probabilities compared to those with larger
size.

2.7 Cox regression

The main purpose of Cox’s regression model or regressions in general is to as-
sess the effect of covariates. It is therefore important to make some comments



2.7. COX REGRESSION 13

Females Males
= =
= I:ﬂ = I:ﬂ
= = = =
2 w R
2 ° 2 °
@ = [
2 S g S
B o™ B o™
L) L)
= =
= T T T = T T T T T T
0 5 10 15 0 2 4 & 8 10 12
Years after operation Years after operation
Ulceration vs no ulceration Tumor thickness groups
= =
=2 = =2 =
5w g « | e
E = E = -
[ [ i R
£ S £ S
&Aoo A oo — 0-1 mm
= — ulkeration = === 2-5 mm
= _| === noulcerafion = e 5 +mm
= T T T = T T T
0 5 10 15 0 5 10 15
Years after operation Years after operation

Figure 2.2: Kaplan-Meier estimate: the two upper curves illustrate the survival
probabilities for females and males, respectively. The two lower curves: the
lower-left corner plot displays survival probabilities for patients with ulcer-
ation present and ulceration absent, while the lower-right plot illustrates the
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on the covariates before we study further.

Throughout our study we assume that the covariates are predictable and
fixed. This means that the covariates should be measured in advanced and re-
main fixed throughout the study.

We now consider one counting process for each individual under study.
Then we have Nj (t), Na(t), ..., Ny (t) with N;(t) counting the number of times
the event of interest occurs for individual 7 in the interval [0, ¢].

For survival data, we write

Ni(t) = 1 if by time t the event of interest has occurred for individual i
771 0 otherwise

The vector of covariates for individual i is given by
x; = (i1, ..., Xip)T. The intensity process of the counting process N;(t) may be
expressed as
Ai(t) = Yi(H)h(txi), (2.14)

where

Yi(t) = 1 if the individual i is at risk for the event of interest just before time ¢
") 0 otherwise

and h(t|x;) is defined as the conditional hazard rate of individual i given the
values of the covariates.

In equation (2.14), we assume that censoring and truncation are independ-
ent as we discussed earlier under the study of Nelson-Aalen and Kaplan-Meier
estimators. This assumption implies that censoring may depend on the inform-
ation in the past, but not in the future events.

In order to obtain a Cox’s regression model, we need to specify how h(t|x;)
depends on x;. In the next subsection, we explore this.

2.71 Cox model

For Cox regression, the hazard rate for individual 7 is given by

h(t|x;) = ho(t) exp{B"x;} (2.15)

where hy (t) is the baseline hazard rate that is left unspecified and B = (B, ..., Bp)T
is a vector of regression coefficients which describe the effect of covariates.
Thus we have a model based on both a parametric and a non-parametric part
(baseline). Therefore (2.15) is called semi-parametric.

An example of relative risk is in order. We consider two individuals in-
dexed 1 and 2, and we assume that all the components of the vector covariates
x1 and x; are the same except for the jth component where x; = x3; + 1. Then
the hazard ratio takes the form
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h(txa) _ ho(t) exp{B"x2}
h(t|x1) ho(¥) exp{ﬁTxl}
= exp{B’(x2 —x1)}
= exp{Bj}. (2.16)

Thus P/ is the hazard ratio for one unit increase in the jth covaraite when
all other covariates remains fixed. This implies that the hazard rate of two
individuals are proportional (i.e. does not depend on time).

2.7.2 Partial likelihood and estimation of

Due to the baseline hazard & (t), the ordinary maximum-likelihood estimation
does not work for the Cox regression model, therefore the Cox’s partial likeli-
hood may be utilized instead.

The Cox’s partial likelihood is, according to Aalen et al. [2008], expressed

in the form .
exp{B x; }
L(B) = I (2.17)
R T

where %; = {I|Y;(T;) = 1} is the risk set at T; and the index i; means the indi-
vidual who experiences an event at time Tj.

PN

Furthermore, one may show that in large samples, f is approximately mul-
tivariate normally distributed around the true value B, and the covariance mat-

rix for f may be estimated by ()1, where I(B) = {—#zﬂ_ log L(B)} is the
j

observed information matrix.

One may obtain a 95% confidence interval for the relative risk exp{8;} by
transforming the limits of standard confidence interval for §;:

exp{Bj £ 1.96 se(p;)}. (2.18)

2.8 Hypothesis testing

In this subsection we discuss the hypothesis testing in two cases:

(i) when assuming that Hy : B = B,, and

(ii) when assuming Hy : 1 = B, where g = ( gi > .
Usually, we specify B, and B, as zero. In section 2.8.1, we will discuss
the case (i), and in section 2.8.3 we elaborate the case (ii). Further, these
two null hypothesis are called simple and composite, respectively.
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2.8.1 The simple hypothesis testing

The simple null hypothesis specifies Hy : B = B, vs. the alternative hypothesis
that at B # B,,.

To this end, we may apply the usual likelihood based test statistics:

¢ The likelihood ratio test statistic is given by
Xir = 2{log L(B) —log L(Bo)} (2.19)
* The score test statistic is expressed in the form

Xac = U(By)TI(By) TU(By) (2.20)

where U(B,) = % log L(B) is the vector of score functions and I(B,) is
the information matrix.

e Finally, the Wald test statistic takes the form

X = (B—Bo)"1(B)(B—By) (2.21)

where I( ,B) is the estimate of the information matrix for .

All the test statistics described above are chi-squared distributed with p
degree of freedom (df). We will illustrate the test statistics on melanoma
data in the next subsection.

2.8.2 Illustration of the simple null hypothesis

We illustrate the Cox-regression model by analyzing the melanoma data fur-
ther. The covariates we will consider may be explicitly specified as follows:

= 0 if individual 7 is a female
1711 ifif individual i is a male

N {0 if individual i is ulceration present
2 =

1 if individual i is ulceration absent

For the third covariate, we let x;3 = tumor thickness as a numeric covariate.

Table 2.1 summarize the Cox’s regression analysis. The estimated regres-
sion coefficients /% j correspond to the covariates x;1, x;» and x;3. We note that in
practice, using for example, the statistical software R, we do not need to expli-
citly define the covariates the way we have done here. For example, since the
covariates sex and ulceration are binary variables, we declare them as "factor"
in R, then the software defines them internally.

When we interpret the results of the Cox’s regression analysis, we usually
focus on the hazard ratios ef/. For instance, the estimate of the hazard ratio for
sex is ePi = 1.583 which may be interpreted as mortality rate of a male is 58.3%
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Table 2.1: Estimated Cox’s regression coefficients with their standard errors, stand-
ardized Z values and p-values for the Melanoma data

j Covariate x; Bj ePi se() Z p-value
1 sex 0.4595 1.5833 0.2668 1.723  0.0850
2 Ulceration  -1.1668 0.3114 0.3115 -3.746 0.0002

3 Thickness 0.1135 1.1201 0.0379 2.990 0.000278

Table 2.2: Estimated hazard ratios with 95% confidence intervals (CI) based on
a Cox’s regression analysis of the patients with malignant melanoma.

Covariate  Hazard ratio 95% CI

Sex 1.583 [0.940, 2.671]
Ulceration 0.311 [0.170,0.573]
Thickness  1.120 [1.030, 1.207]

larger than mortality rate of a female. On the other hand, the p-value associ-
ated with sex is 0.085 which means no significance. This may be interpreted
as male and female mortality are not significantly different after the operation
even though the cumulative hazard ratio indicates that they are different.

For the covariate ulceration, the estimated relative risk (or hazard ratio)

ePi = 0.312. This may be interpreted as a patient without ulceration, the mor-
tality that is only 31% of the mortality rate for a patient with ulceration. The
p-value is 0.0002 which is statistically significant. By this we may conclude
that ulceration has an effect for the mortality rate, which in turns means that
this covariate is of importance for our analysis.

Last but not least, the numeric covariate tumor thickness has the estimated
relative risk e’/ = 1.120 which means for one millimeter increase in tumor
thickness, the hazard ratio increases by 12.0%. The p-value is about 0.0003
which is clearly significant.

The 95% confidence intervals associated with the three estimated regression

coefficients ePi are given in table 2.2. Table 2.3 gives the summary of the test
statistics of section 2.8.1 with their degree of freedom(df) and p-values. All the
p-values indicate significance so we may reject the null hypothesis that all the
covariates have no effect on the mortality (i.e. B = 0).

2.8.3 Testing a composite null hypothesis

In section 2.8.1 under the null hypothesis, we assumed that all the g = B,
which may not be very realistic. In this section, we will test if a subset of the
,8}5 takes specific values. That is, in a composite null hypothesis often one is



18 CHAPTER 2. BACKGROUND

Table 2.3: The estimated of likelihood based test statistic with their degree of
freedom(df) and p-values.

Test Value df p-value

Likelihood ratio 39.39 3  1.44E-08
Wald 3775 3  3.19E-08
Score 4496 3  9.45E-10

interested to test the null hypothesis that g of the regression coefficients are
zero. In particular, Hy : B1 = By, versus the alternative hypothesis that 8, #
By, where the vector B is given by

B=(Bl,By)", and By = (B1,...,Bq)" isag-vector, while B, = (Bgs1,...,Bp)"

is the (p — g)-vector of the remaining ,B;s In some literatures this is refered to
as local-tests.

We may apply the likelihood based test statistics for this purpose. When
formulating this one needs to work with a partitioned information matrix I.
That is, we consider a p X p information matrix I, partitioned as

I Ly _ 1 1 2
I= Iy I and the inverse I~ = P22 (2.22)

where I; and I'! are g x g matrices, while I, and I?? are (p — q) x (p — q)
correspond to the second partial derivatives of the minus log-likelihood with
respect to 1 and B, respectively. The matrices I;; and I 12 i addition to Ip; and
I?'are g x (p—q) and p x (p — q) mixed matrices of second partial derivatives.

Thus the likelihood based test statistics may be adjusted for this purpose.
We may formulate them in the following manner:

The Wald-test statistic takes the form
Xiw = (By = Bo) T (I 1By — Byo) (2.23)

where (I'1)~1 is the g x g inverse matrix of I'!. In Appendix A, we show that
(I 11)’1 = L1 — 1121231 I1. The test statistic measures how far the estimated

coefficients (§,) are from B,,. For large samples, (2.23) is x*-distributed with g
degree of freedom under the null hypothesis.

If B* is the maximum partial likelihood estimator under the null hypothesis,
the likelihood ratio test statistic takes the form

xir = 2{log L(B) —log L(8*)} (2.24)

And this is approximately chi-squared distributed with g df under Hj.
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Table 2.4: Estimated Cox’s regression coefficients with standardized Z-values,
p-values and confidence interval(CI) for the melanoma data.

Covaraite f i ePi se(B ) Z p-value CI
Ulcer -1.218 0.296 0.309 -394 8.12E-5 [0.16,0.54]
Thickn 0.112 1.121 0.036 3.16 0.0016 [1.04,1.20]

The score test-statistic is given by
Xic = Wi ()T (") (BY) (2.25)

where U(B) = %log L(B) and U(B) = < giggg ) . Finally, we note that

M=y - 112[2_21 I>; which is shown in appendix A, equation (A.11). The test
statistic (2.25) in turn is approximately x>-distributed with g df under Hj.

2.8.4 Illustration of the composite null hypothesis

We illustrate the Cox-regression model for the composite hypothesis testing on
the melanoma data. We specify the hypothesis as follows:

Hy : B1 = 0 versus the alternative hypothesis that f; # 0. We let B cor-
respond to the effect of the covariate sex. So under the null hypothesis, sex
has no effect on mortality. In addition, we have 8, and B3 which correspond
to the effect of the covariates ulceration and thickness respectively. More con-
crete, the B-vector looks as B = (B1, B1)7, where B, = (B2, B3)T. In particular,
we want to examine if sex has any effect on mortality /survival of the patients.
Next we will perform the three test statistics that we discussed in the previous
subsection.

The likelihood ratio(LR)-test:

To perform the likelihood ratio test, we fit two models: a restricted model
where we add only covariates that we think are of importance and a ful/l model
where we add all the covaraites. For this purpose, we fit a model based on
ulceration and tumor thickness as numeric covariates. The summary of the es-
timated Cox’s regression model under the restricted model is given in table 2.4.

Imposing sex to the restricted model, we obtain a full model which gives
the same output as table 2.1 under the simple hypothesis testing. But we note
that the results of the test statistics are different which we explain below.

To perform the LR-test, we need to find the log-likelihood value under both
models (i.e. restricted and full model). In the statistical software R, there exists
routine for doing this. First one fits a model based on the covariates ulceration
and thickness, and then specify the estimator of B-vector under the null hypo-
thesis. Next we fit a full model based on all the covariates where we adjust the
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Table 2.5: The estimated of likelihood based test statistic with their degree of
freedom(df) and p-values under the composite hypothesis.

Test Value df p-value
Likelihood ratio 2.95 1 0.086
Wald 2.97 1 0.085
Score 3.02 1 0.082

full model by the B-vector. By doing this, the log-likehood values are produced
to be —264.98 and —263.51 under the two models, respectively. Now we find
the LR-test statistic by (2.19). That is,

xir = 2{logL(B)—1logL(Bo)}
2{-263.51 — (—264.98)} = 2.95, with df =3 — 2 = 1.

The p-value is 0.086 which is clearly not significant. The R-code for how to
obtain all the three test statistics is given in appendix B.1.

The Wald-test statistic:

To perform the Wald test statistic, we need the information matrix and the co-
variance matrix based on B. These are calculated in appendix A, section A.2.

The Wald chi-squared test statistic which is given by (2.23), can be calcu-
lated. For convenience we recall it here and it gives:

Xy = (B —Bio)I™) NS, — Bry) " =046 x 14.05 x 0.46 = 2.97.

The p-value is 0.085 wich is clearly insignificant. This indicates that the
Wald test is similar to the likelihood ratio test.

The Score-test statistic:

The Score test statistic is calculated similarly to the two other tests. That is,
under the null hypothesis f; which corresponds to the effect of x; = sex is
B1o = 0. The initial B-vector is thus given as B;,; = (0.000,—1.218,0.114)".
We impose this vector to the full model. The procedure is done in R and is
described in B.1. We get x2. = 3.02. The p-value corresponding to this is 0.082
which is accordance to other tests ( i.e. the likelihood ratio test and the Wald
test). Table 2.5 summarize the three tests we have been through in this section
under the composite hypothesis.

So far we have utilized only the melanoma data set to illustrate our meth-
odology. In chapter 3 (next chapter), we will utilize it for further analysis, but
to make our work more interesting we will also utilize a dataset on patients
with primary biliary cirrhosis which is described next.
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2.8.5 PBC data

Primary biliary cirrhosis (pbc) is rare but a severe liver disease of unknown
origin, with widespread presence of about 50-cases per million population. In
1974-1984, the Mayo Clinic in the USA conducted a double-blinded random-
ized trial in pbc comparing the drug D-penicillamine (DPCA) with placebo.
There were 424 patients who were qualified for the clinical trial, but only 312
of them agreed to participate.

A number of covariates were recorded for each of the 312 patients. More
specifically, the two demographic covariates age and sex, and the two biochem-
ical covariates albumin and bilirubin. Also some covariates were recorded, but
we will not consider them here. Bilirubin is a red bile pigment derived from
the degradation of hemoglobin during the destruction of red blood cells. A
large concentration of bilirubin may be a sign of bad liver function. Albumin
is a protein produced in the liver. The protein has some essential functionalit-
ies. Redcued albumin, for instance, may cause the liver be damaged. Since the
covariate treatments is shown to not having any significant effect on mortality,
we will therefore disregard it from the analysis.

By the date of 1986, 125 of the 312 patients had died; only 11 deaths that
had not occurred due to pbc, 8 patients lost to follow up (censoring), and 19
patients had gone through liver transplantation.

The data set is taken from Fleming and David [1991, Appendix D, detail
description given in section 0.2]

2.8.6 Summary

When we analyzed the melonama data graphically in section 2.5.1 and 2.6
(by means of Nelson-Aalen estimator or Kaplan-Meier estimator), we found
small differences between the cumulative hazard rates of males and females.
We found the estimated cumulative hazard rate for patients with ulceration
present much higher than patients with ulceration absent. Finally, the estim-
ated cumulative hazard rates for tumor thickness groups indicated clearly dif-
ferences among three different tumor thickness groups based on the size of the
tumor thickness. The thickest group had the highest estimate of the cumulat-
ive hazard rate.

Under the Cox’s regression model, we tried to do the analysis more form-
ally. In subsection 2.8.2, under the simple hypothesis, we rejected the null hy-
pothesis that all the covriates have no effecs (i.e. B = 0) on the mortality of the
patients. In subsection 2.8.4 we tested the null hypothesis that the covariate
sex had no impact on mortality of the patients assuming the other covariates
(ulceration and thickness) had an effect on the hazard rate (or mortality rate).
It turned out that sex does not have any statistically significant impact on the
mortality of the patients in contradiction to the graphical analysis. However,
ulceration and thickness viewed to be significantly important for the hazard
rate, both in term of the graphical analysis and formal tests.






Chapter 3

Checking log-linearty

3.1 Introduction

In this chapter, we will describe methods for checking log-linearity of numeric
covariates when assuming that log-linearity is fine for other covariates. We will
use both simple and advanced methods to examine this. Since the covariates
tumor thickness from the melanoma data, and bilirubin, age and albumin from
the pbc-data are numeric, they will be used to illustrate the methods.

We consider a Cox’s regression model with fixed covariates of the form
h(t|x) = ho(t) exp{B'x} (€AY
There are two key assumptions for model (3.1):
(i) The model assumes log-linearity in covariates. That is,
log i (t|x) = logho(t) + B x (3.2)
where x = (x,...,xp) " and B = (B1,...,Bp) "

(ii) And model (3.1) assumes proportional hazards. It means that the hazard
ratio of two individuals with the covariates x; and x; is expressed as

h(t[x2)
h(tx)

which is independent of time.

= exp{ﬁT(xz —x1)}, (3.3)

We will only consider the assumption (i), i.e. the log-linearity assump-
tion (3.2).

3.2 Simple methods

3.2.1 Model extension with a function

To check log-linearity for a numeric covariate, say x;, we assume that log-
linearity is in order for other covariates. For this purpose, we will specifically
look at two models:

23



24 CHAPTER 3. CHECKING LOG-LINEARTY

(i) Generally, for a numeric covariate x1, we have a model of the form

h(t|x) = ho(t) exp{B1x1 + B3 2} (34)

where x = (x1,x27)T and xo = (x2,...,xp)T. The B-vector corresponding
to the x-vector is given by B = (B1,83)7, where B, in turn is given by
By = (B2, -, Bp)"-

If we increase xq by one unit value (x; + 1), we obtain a Cox’s regression
model hg(t) exp{B1(x1 + 1) + BFx2}. The hazard ratio corresponding to
x1 + 1 and x; yields eP1, which corresponds to a log-linear effect of xy.
This means that one unit increase in a numeric covariate x; should have
the same effect whatever the value of x; is and whatever the values of the
other covariates are if no interaction effects are included.

(i) Now we want to look at another model of the form
h(t]x) = ho(t) exp{B1x1 +v18(x1) + B, X2} (3.5)

where B; corresponds to x; as before, and B, = (‘32,...,’BP>T corres-

ponds to x = (xz,...,xp) . Moreover, we impose 7, that corresponds
to the effect of the function g(x7). Increasing x; by one unit, the Cox’s
regression model yields

h(t|x) = ho(t) exp{B1(x1 +1) + 118(x1 + 1) + B, x2} (3.6)

The hazard ratio for this takes the form

exp{B1 +r{g(x1 +1) —g(x1)}} (3.7)

This implies that the hazard ratio for the difference between g(x1) and
g(x1 4+ 1) does not give log-linear effect; the effect of x is not log-linear.

Imposing y1¢(x1) in model (3.4), we arrive at (3.5) which is more complex
model. The task now is to examine if the complex model (3.5) gives a better fit
or not. For this purpose, we test a null hypothesis of the form:

Hy : 71 = 0 vs. the alternative hypothesis Hx : ¢ # 0. (3.8)

If we fail to reject the null hypothesis, we return back to our original model (3.4),
i.e. model with the log-linear effect of x;.

Example 1: [llustration using melanoma data

We will utilize the local test statistics (the composite tests) similarly to the
tests we performed in section 2.8.3. As we asserted under the null hypothesis
that y; = 0, this may imply that we first fit a model based on the covariates
thickness, sex and ulceration. The summary and the interpretation of the Cox’s
regression model is in accordance with table 2.1.

Next we fit another model, where we add all the covariates. Note that
we may specify the function g(x;) as, for example, g(x;) = x7. The trick
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Table 3.1: Estimated Cox’s regression coefficients with standard errors, stand-
ardized z value, p-values and test statistic for the melanoma data. Testing if
there is a log-linear effect for the tumor thickness covariate.

Covariate Bi exp(B;) se(B) z p-value
Thickness? -0.004 0.9963  0.0080 -0.4570 0.6479
Thickness 01675 11182  0.1231 13610 0.1736
Sex 0.4175 15181 02816  1.4820 0.1382
Ulceration -1.1192  0.3265  0.3275  -3.4180 0.0006
Test statistic Value  df p-value

Likelihood ratio  0.22 1 0.639

Wald 0.21 1 0.646

Score 0.21 1 0.646

now is to make a new variable (covariate) in the melanoma dataset. That is
done by squaring the covariate thickness. Now the full model is based on
the covariates thickness?, thickness,sex and ulceration. We specify a B-vector
prior to fitting the full model, then we use the vector as the initial B-vector
when fitting the full model. In particular, the B initial vector becomes B =
(0.000,0.113, 0.460, —1.167)T. Next we impose the B-vector as initial vector on
the full model. The details on how it is done, we refer to the R-code given in
appendix B.1. Summary of the results for this model is given in table 3.1. Thus
we may interpret that we failed to reject the null hypothesis, and therefore we
sustain our log-linear model, (3.4).

Example 2: Illustration using pbc-data

Similar to Example 1, the function g(x;) = x3 may take the covariates x; =
bilirubin, x; = albumin and x; = age where we model each of these once at
a time. Table 3.2 summarize the results of the models where we assert under
the null hypothesis that v; = 0. To this end, the local-test statistic is utilized
similarly to earlier, and it reveals that we reject the null hypothesis for the case
bilirubin, but we fail to reject the null hypothesis when testing the covariates
albumin and age. Thus, under the first case (i.e. when testing bilirubin) we found
71 # 0. This means that the complex model 3.5, i.e. h(t|x) = ho(t) exp{B1x1 +
718(x1) + B, X2} fits better than the simple model, so the effect of bilirubin is
not log-linear. Since we did not reject the null hypothesis for the cases albumin
and age, hence we may conclude that there are log-linear effect of x; for albumin
and age, but not for the covariate bilirubin.
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Table 3.2: Estimated Cox’s regression coefficients with standard errors, stand-
ardized z-value, p-values and the local-test statistic for the pbc data. Testing if
the covariates bilirubin,albumin,age have log-linear effects, respectively. Notice
that the test statistic values and p-values associated with three likelihood based
test are give in parenthesis.

Covariate  j3 i ePi se(B i)z p-value
Bilirubin® -0.010 0.990 0.002 -4164 3E-5
Bilirubin  0.362 1436 0.051 7.024 2.2E-12
Age 0.033 1.033 0.009 3.685 0.000
Albumin  -1.260 0.284 0226 -5.568 2.6E-8
Sex -0.362 .696 0257 -1.411 0.158
Age? -0.000 0.999 0.001 -0.340 0.734
Bilirubin ~ 0.138  1.148 0.014 9912 =0
Age 0.057 1.058 0.072 0784 0.433
Albumin -1.481 0.227 0221 -6.690 ~0
Sex -0.576 0562 0.252 -2.281 0.0226
Albumin? 0294 1342 0279 1.055 0.291
Bilirubin  0.140 1.151 0.014 9920 =0
Age 0.032 1.033 0.009 3.508 0.000452
Albumin -3.366 0.035 1.793 -1.877 0.060
Sex -0.542 0.582 0.248 -2.182 0.029
Test statistic Value df p-value

Likelihood ratio

Wald
Score

(21.52,0.12, 1.04) 1
(19.07,0.12,1.11) 1
(19.85,0.12,1.12) 1

(5.6E-6, 0.729, 0.308)
(2.5E-5,0.729, 0.292)
(1.6E-5, 0.729, 0.290)
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3.2.2 Model extension with quartiles

An alternative approach to the method from the previous subsection, is to work
with quartiles of the the numeric covariate x;. We may define indicator func-
tions for the covariate x; according to its quartiles:

0 otherwise

() = {1 if Q1 <3 <Q

bx,) {1 if Q <x1 < Qs

0 otherwise

= {1 £020

0 otherwise

where the Q; for i = 1,2, 3 indicates the quartiles of x;.

Thus, the Cox’s regression model when imposing the indicator functions
takes the form

h(t|x) = ho(t)eﬁller’hxlh(Xl)+72X112(x1)+“r3X113(X1)+ﬁ2TX2 (3.9)
where B, = (B2,...,Bp) " is associated with x, = (x,...,xp) " as before.

We want to test Hy : 1 = Y2 = 73 = 0 vs. the alternative hypothesis that
at least one of the s are non zero. If we fail to reject the null hypothesis, then
we return back to the original model (3.4), otherwise model (3.9) will indicate
non-log-linear effect of x;. We will illustrate this by Example 3 and Example 4
for the melanoma and pbc data sets.

Example 3: Illustration using melanoma data

Table 3.3 summarize the results of estimated the Cox’s regression model (3.9)
for the melanoma data. All the p-values of the likelihood-based test statistics
fail to reject the null hypothesis. By this we may conclude that imposing the
quartiles of the covariate x; (thickness) on the original model, (3.4), we achieve
model (3.9). However, since 1 = 72 = 3 = 0 which in turn means that we
return back to model (3.4). For more details on how the procedures are done
by means of the software, we refer to the R-code given in appendix B.1.

Example 4: Illustration using pbc-data

Similarly as Example 3, but now we work with the pbc-data. We summarize
our analysis for all the three numeric covariates (i.e. bilirubin, age, albumin)
in table 3.4. For the bilirubin covariate, we clearly reject the null hypothesis
Y1 = Y2 = 73 = 0. For this we conclude that imposing quartiles of bilirubin
covariate on model (3.4), results model (3.9) which does not give log-linear
effect of x;. In contrast, when we analyzed the covariates age and albumin in
similar manner as for the covariate bilirubin, we ended up to not rejecting the
null hypothesis. We thus interpret that imposing quartiles of covariates age
and albumin to model 3.4, the log-linearity effect of x; still remains.



28 CHAPTER 3. CHECKING LOG-LINEARTY

Table 3.3: Estimated Cox’s regression coefficients with standard errors, stand-
ardized z value, p-values and the test statistics for the melanoma data. Note
that the first interval (i.e. x; < Q1) in tumor thickness is the reference covari-
ate, while thickness, corresponds to the interval between lower-quartile and
median of thickness, thickness3 corresponds to the interval between median
and upper-quartile of thickness, and finally thickness, corresponds to the in-
terval between upper-quartile and upward of thickness.

Covariate Bi exp(B;) se(B;) z p-value
Thickness 0.284 1.329 0.361 0.788  0.431
Thickness; 0.048 1.049 0.257 0.187 0.851
Thicknesss 0.054 1.055 0.289 0.185 0.853
Thickness, -0.139  0.870 0.325 -0.428 0.669
Sex 0.391 1.479 0.286 1370 0.171
Ulceration -0.932  0.394 0.332 -2.804 0.005
Test statistic Value df p-value

Likelihood ratio 4.76 3 0.190

Wald 4.93 3 0.177

Score 5.06 3 0.167

3.3 Fractional polynomials

3.3.1 Introduction

Polynomials are often popular in statistical analysis, but unfortunately they are
either limited in their range of curve shapes such as linear and quadratic poly-
nomials, or they produce undesirable artifacts such as edge effects and waves.
Fractional polynomials (FP) differ from these, and they offer flexibility in their
parameterization. In particular, FPs allow to integrate logarithm, allow non-
integer powers and allow possibly repeated powers. With the FP regression
one obtains much wider range of curve shapes than can be obtained with reg-
ular polynomials. In the next subsection, we start gently describing the basic
FP mathematically and then we go beyond formulating its full definition. FPs
are introduced by Royston and Altman [1994] and modified by Sauerbrei and
Royston [1999].

3.3.2 Model formulation

A regular polynomial of degree m may be expressed as

NPT ST (3.10)

where we have dropped the intercept o due to the Cox’s baseline, hy(t). The
the basic FPs, without repeated powers, for x > 0 are based on the follow-
ing functions: {x’z, x~ 1 x"1/2 log(x), x1/2 x, %2, x3}, where the powers —2 <
—1 < -+ < 3 are pre-selected, according to Royston and Altman [1994], from
the set # = {-2,—-1,-05,0,0.5,1,2,3}. In general, the FPs with no repeated
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Table 3.4: Estimated Cox’s regression coefficients with standard errors, stand-
ardized z-value, p-values and the local test statistics for the pbc data. Test-
ing if the quartiles of the covariates bilirubin, age and albumin have log-linear
effect. Note that the reference covariate is in the first interval such that
x; < Q1,i =1,2,3, where Qg is the first quartile. For instance, bilirubin< Q;
is the reference covariate, while bilirubin, corresponds to the interval between
lower-quartile and median of bilirubin, bilirubins corresponds to the interval
between median and upper-quartile of bilirubin, and finally bilirubing corres-
ponds to the interval between upper-quartile and upward of bilirubin. Note
that the likelihood-based test statistics with their p-values for all the three cases
are given in parenthesis, on the bottom of the table.

Covariate  B; exp(B;) se(B;) z p-value
Bilirubin  -0.207 0.811 0.376  -0.550 0.582
Bilirubin, 0.583  1.791 0.283 2.057 0.040
Bilirubing 0.483 1.621 0.331 1460 0.144
Bilirubing 0.347 1.415 0.363 0.957 0.3339

Age 0.037  1.038 0.009 3.989 8.6E-5
Albumin  -1.351 0.259 0.227 -5960 2.6E-9
Sex -0.339 0.712 0255 -1.329 0.186
Age -0.009  0.990 0.031 -0.306 0.760
Age, 0.005  1.005 0.008 0.627 0.530
Ages 0.009  1.009 0.010 0.864 0.388
Agey 0.019 1.019 0.013 1421 0.155

Bilirubin  0.142  1.153 0015 9584 ~0
Albumin  -1.572 0.208 0233 -6.735 =0
Sex -0.592  0.553 0.257 -2.307 0.021

Albumin  -1.698 0.183 0512 -3.319 0.001
Albumin, 0.006 1.006 0.117 0.047 0.963
Albuming 0.018 1.018 0.140 0.130 0.896
Albuming 0.087  1.090 0.165 0.529 0.597
Bilirubin  0.140 1.151 0.014 9842 =

Age 0.033 1.033 0.009 3.482  0.000

Sex -0.506  0.603 0256  -1.977 0.048
Test statistic Value df p-value
Likelihood ratio  (19.92,3.61,0.92) 3  (0.000, 0.307, 0.820)
Wald (20.22,3.75,0.94) 3  (0.000, 0.290, 0.820)

Score (21.24,3.77,094) 3  (9.4E-5,0.287,0.820)
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powers for powers p; < p2 < --- < py of degree m, may be expressed in the
form
Fn(x 7, p) = 11xPD) 4 9x(P2) g x () (3.11)

Usually the degree m = 1 or m = 2 is sufficient for a good fit. In FPs x(0) =
log(x) rather than x(O) = 1. In addition, x(") = x? when p # 0.

As an example for degree m = 3 and powers p = {—2,0,1/2}, the FP takes
the form f3(x; v, p) = 1120~ 2 + 72 log(x) + y3x/2.

The full definition of FP, when we take the possibly repeated powers into
account, is given in the form

fu(x1,p) =) 7iGj(x) (3.12)
j=1

where G (x) = x(P) and Gj(x) forj=2,...,mof x > 0 is given by

(pj) if v .
Y if pj # pj—
Gi(x) = P (3.13)
! {Gj_l(x)log(x) if pj=pj

An example to make the idea clear is as follows. A fractional polynomial
of degree m = 3 with powers p = {—2,—2,1} has the functions G;(x) =
x72,Gy(x) = x2log(x), and G3(x) = x/2. Thus it takes the form

(%7, p) = 11x 2+ y2x 2log(x) + y3xl/? (3.14)

where log(x), in the second term, is achieved due to repeated powers.

Finally, how to link the FPs within the Cox model? The point now is to link
equation (3.14) with Cox model (3.4). By doing this we eventually achieve a
model of the form

h(tlx) = ho(t)exp{Bix1 + f3(x1;7,p) + P3x2} (3.15)
= ho(i‘) exp{,lel + ’)/1sz + ’szfz log(xl) + ’)’3\/ﬂ + ﬁ%XZ}

where B1x1 and ﬁzT x; are as before, while v = (71, 72, 73)-

3.3.3 Model selection algorithm

A regression model with one FP with degree m is considered to have 2m de-
grees of freedom (df) where one degree for each coefficient (y) and one for each
power (p). Deviance or maximum log-likelihood is used as model selection cri-
terion. Deviance is defined as minus twice maximum log-likelihood.

The best first-degree fractional polynomial model (FP1) for G(x) is the model
with the highest log-likelihood or equivalently with the lowest deviance among
eight possible single powers models with one regressor (x2,...,x% from the
set ). The best second-degree fractional polynomial (FP2) model is the model
with highest log-likelihood (or equivalently the lowest deviance) among 36 (28
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with py # p1 and 8 with py = p;) possible models from the set &, i.e. from the
power combinations: (x~2,x2log(x)), (x72,x71),..., (x3,x3log(x)).

The FP2 with smallest deviance at a« (a number between 0 and 1) level
is favored compared to the best FP1 if the deviance difference exceeds the
100(1 — a)-percentile of x> with 2 df. Otherwise, the FP1 is chosen compared to
a linear term if the corresponding deviance difference exceeds the 100(1 — «)-
percentile of x? with 1 df. For details, we refer to Sauerbrei and Royston [1999].

The algorithm implemented in R-software ( the mfp package) for fractional
polynomials is denoted RA2, and it uses the so called closed test procedure. The
procedure allows complexity of candidate models to increase progressively
from a prespecified minimum model (a null model) to a prespecified fractional
model (maximum model). The algorithm works as follows:

(i). First perform a 4 df-test or equivalently a second-degree test (m = 2) at
« level of the best-fitting FP2 model against the null model. If the test
is not significant, drop the covariate and the procedure is terminated,
otherwise, continue to the next step.

(ii). Then perform a 3 df-test at « level of the best fitting FP2 model against
the log-linear model (i.e. straight line), the final model is the log-linear
model if the test is not significant, otherwise continue to the third step.

(iii). Finally, perform a 2 df test at « level of the best FP2 model against the
best FP1. If the test is significant the final model is the FP model with
second-degree, m = 2, otherwise the FP-model with first degree, m = 1.

For details and for an alternative approach (Sequential procedure), we refer
to Sauerbrei et al. [2005].

In this thesis, we are concerned with checking log-linearity of a numeric co-
variate, and hence step 2 of this algorithm is particularly of interest. In practice
with the use of softwares (e.g. R), one only needs to specify which covariate(s)
to model within FP, then the software is doing all the steps and model selec-
tion procedures internally, then the final model is produced. Finally, one may
look at p-values to determine whether the test is significant or not. As usual, a
rejection level of 5% is used for significance criterion.

Example 5: Illustration of FP using melanoma data

Table 3.5 summarize the results of the Cox’s regression model within the FP
framework. The p-value for testing log-linearity tumor thickness is 0.192 which
is not significant. Thus, one may interpret that the model is log-linear due to
log-linear effect of the covariate thickness. The p-value under the null model,
on the other hand, is significant. The R software internally tries different expo-
nents from the set &7, and finds the one that is most appropriate. For example,
we use the function fp to fit the covariate thickness FP model within the Cox’s
regression framework, the software fits an appropriate model internally. The
results of the final model is therefore the same as table 2.1 from section 2.8.2.
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Table 3.5: The p-values are given according to the RA; algorithm for the cov-
ariate tumor thickness.

Covariate Null (p-value) Linear (p-value) FP (p-value) Power 2
Thickness 0.018 0.192 0.550 -0.5

Example 6: Illustration of FP using pbc-data

We will fit FP-Cox’s regression models for the covariates bilirubin, age and albu-
min from the pbc-data. We will model one covariate at a time. The summary of
the final three models for the transformed covariates are given in table 3.6. The
result of each model is separated with others by a horizontal line. On the bot-
tom of the table, the results of p-values the under null-, linear- and FP models
are displayed.

We notice that since the exponent of FP for bilirubin is 0, this results log-
arithmic transformation of bilirubin, log(bil /10), where the number 10 in the
denominator, inside the logarithm, appears due to rescaling. The p-value as-
sociated with the bilirubin covariate is 6.6E-9, which shows non-log-linearity
effect of the covariate. The p-value under the FP model suggests that the FP
regression model may fit better. Repeating the same procedure for the numeric
covariates age and albumin, in similar fashion, it turns out that age and albumin
have log-linear effect since the p-values associated with these two covariates,
under the model selection, do not reject the null hypothesis. Notice that age is
also divided on 100 due to rescaling.

At the end, we illustrate how the FP transformation of the covariate biliru-
bin, when linked to the Cox’s regression, may look like. The final result takes
the form

h(t|x) = ho(t) exp{0.994log(bil /10) — 1.197alb + 0.034age — 0.242sex} (3.16)

where bil (bilirubin), alb (albumin), age and sex are the covariates.

3.4 Penalized splines

3.4.1 Introduction

A more flexible approach than the fractional polynomials method, for checking
log-linearity of numeric covariates, is penalized-smoothing spline. In this section,
we first start to give a very quick background of B-splines, then we will de-
scribe the penalized smoothing splines. Eventually, we will demonstrate this
method using the melanoma and pbc datasets. We use Eilers and Marx [1996]
as a reference.
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Table 3.6: Estimated Cox’s regression coefficients with standard errors, stand-
ard z-test statistic with their p-values, and also p-values of the test statistics
under the null, linear and FP models for the pbc-data. Notice that bil and alb
stand for the covariates bilirubin and albumin, respectively.

Covariate Bi exp(B;) se(B;) =z p-value
log(bil /10) 0994 2.701 0.097 10206 =0
Albumin -1.197  0.302 0227 -5278 1.3E-7
Age 0.034 1.035 0.009 3.827  0.000
Sex -0.242  0.785 0.253  -0.955 0.339
Bilirubin 0.138  1.148 0014 9921 =0
Albumin -1.483 0.227 0222 -6.677 24E-11
Age/100 3232 25334 0921 3509  0.000
Sex -0.559 0.572 0249 -2.247 0.025
Bilirubin 0.014 0.115 0014 9921 =0
Albumin/10 -0.148 3.63E-7 0.222 -6.677 244E-11
Age 0.032  0.103 0.009 3.509  0.000
Sex -0.558 0.572 0249 -2247 0.025

Covariate Null (p-value) Linear (p-value) FP (p-value) Power 2
Bilirubin  2.9E-22 6.6E-9 0.113 0

Age 0.010 0.760 0.560 0.5
Albumin  1.34E-8 0.625 0.596 0
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3.4.2 The Cox model with penalized splines

Basis-splines or B-splines consist of piecewise polynomials connected at a num-
ber of knots. Cubic B-splines are the most frequently used basis functions. A
linear combination of B-splines basis functions give a smooth curve. That is,

S(o) = Y mifi () (3.17)
=1

where 7 is the number of basis functions f;(x;), while v; is the associated coef-
ficients.

This method is incorporated within the Cox regression model. In particular,
to apply this method for checking log-linearity for a numeric covariate, say x1,
we may now fit a penalized smoothing spline s(x; ) for this covariate assuming
that the log-linearity assumption holds for the remaining covariates. We thus
modify the Cox model (3.1) slightly. That is,

h(t|x) = ho(t) exp{s(x1) + BT x2} (3.18)

Next we may see if the spline estimate becomes fairly linear. When the effect
of a numeric covariate is not log-linear, we may transform the covariate.

If we let the number of knots to be large, then the fitted curves will give
more variation than is justified by the data. To prevent overfitting, a penalty
term as the second derivative s(x1), is imposed. This is obtained by maximiz-
ing the penalized log partial likelihood

1B, 7) — 6 [ {s" ()} dx (3.19)

where S is the coefficient vector associated with the S-vector, whereas «y is the
coefficients corresponding to the spline functions in (3.17). The penalty term
includes a smoothing parameter 6 which controls the penalty applied to the
curvature in s(x) via its second derivative which in turn determines the beha-
vior of the fitted estimate §(x).

This method is implemented in existing software packages such as in R.
In particular, pspline function is implemented in the survival package. When a
numeric covariate is specified within this function, then the software does all
the analysis internally, and then the final results are produced. This function
selects, by default, the optimal smoothing through the degree of freedom (df).
That is, the standard implementation of spline function uses df = 4. An al-
ternative implementation for model selection (Govindarajulu et al. [2009]) is
based on minimizing Akaike’s information criterion (AIC) to select df, if df is
not specified. The AIC starts with a default of 15 spline terms in B-spline basis
expansion. AIC then selects the optimal smoothing parameter which is used in
penalized partial likelihood fit, which is equivalent to selecting the optimal df.
The choosing knots are evenly spaced across the range of f;(x;). For each spe-
cified penalized numeric covariate, the software produces both test for linear
and non-linear part of s(x;). For our purpose, we need to look at the non-linear
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Figure 3.1: The penalized spline plots of tumor thickness and log tumor thick-
ness by base 2 in a Cox model with sex and ulceration as the other covariates.

part to determine whether the test is significant or not. Additionally, the func-
tion termplot is utilized to plot the spline estimate.

Now let us illustrate the method by looking at two examples where the nu-
meric covariate tumor thickness is used from the melanoma data, and bilirubin,
albumin and age also as numeric covariates are used from the pbc dataset.

Example 7: checking log-linearity of tumor thickness

Figure 3.1 displays two plots; the left panel is the plot of penalized-splines
versus tumor thickness with their confidence interval (the dashed line), and the
right panel is the plot of transformed tumor thickness versus the log-transformed
tumor thickness covariate with their confidence interval. The left panel looks
clearly non-log-linear. The p-value (0.04) is given in table 3.7 along with the
plot suggests the log-transformed of the tumor thickness covariate. The log by
base 2 is a good choice for this purpose. The plot on the right panel is the log-
transformed. It looks fairly log-linear. Now, the p-value is 0.41 which does not
reject the null hypothesis that the log-transformed of the covariate is log-linear.
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Table 3.7: Estimated Cox’s regression coefficients with their standard error, x?-
test, degree of freedom (df) and the p-values. Notice that the table displays the
results of two models: a Cox model with untransformed tumor thickness and
sex and ulceration as the other covariates (upper part), and the log-transformed
tumor thickness with sex and ulceration as the two other covariates. The res-
ults of the two models is separated by the horizontal line (lower part).

Covariate Bi se(B;) se2 x> df  p-value
pspline(thickn), linear 0.115 0.038 0.038 8.94 1.00 0.003
pspline(thickn), nonlinear 829 293 0.038
Sex 049 0286 0.283 3.02 1.00 0.082
Ulceration -0.927 0.331 0.328 7.85 1.00 0.005
pspline(log2thick), linear 0.400 0.130 0.130 9.47 1.00 0.002
pspline(log2thick), nonlinear 2.88 299 0410
Ulceration -0.878 0.329 0.328 7.14 1.00 0.008
Sex 0462 0.284 0.280 2.65 1.00 0.100

Example 8: checking log-linearity of bilirubin, albumin and age

In figure 3.3, we have plotted the penalized splines estimate versus the cov-
ariates bilirubin, albumin and age in a Cox model with sex the as other cov-
ariate. Bilirubin does not seem to have log-linear effect, whereas albumin and
age seem to have log-linear effect. However, the log-linearity assumption for
age seems to be violated from around year 67 upwards. We may look at the
p-values to determine formally whether the covariates are log-linear or not.
Table 3.8 summarize the log-linear tests for these covariates. The p-values as-
sociated with the covariates bilirubin, albumin and age are 3.8E-7, 0.69 and
0.055, respectively. We may conclude that bilirubin is clearly not log-linear,
and the log-linearity assumption holds for the covariate albumin. The covari-
ate age is on the borderline for being significantly non-linear.

The lower part of the table summarize the results of the Cox model where
the covariate bilirubin is log-transformed by base 2, and the other covariates
are untransformed. Now the p-values corresponding to these covariates are
0.51, 0.69 and 0.089, respectively, which do not reject the null hypothesis that
there is a log-linear effect of the covariates.

3.5 Martingale residuals

3.5.1 Introduction

An alternative approach to the methods we have been through so far, is the so-
called martingale-based residuals method. This method may be constructed
via the counting process N;(t) for i = 1,...,n, the estimated cumulative in-
tensity process A;(t), and the cumulative of the baseline hazard Hy(t) from the
Cox model (3.1). After we have described the method, then we demonstrate
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Figure 3.2: The penalized spline plots of the numeric covariates bilirubin, al-
bumin and age in a Cox model with sex as the binary covariate.
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Figure 3.3: The penalized spline plot of log bilirubin, albumin and age in a Cox
model with sex as the binary covariate.
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Table 3.8: Estimated Cox regression coefficients with their standard error, x>-
test, degree of freedom (df) and the p-values. Notice that the table displays
the results of two models: the untransformed bilirubin, albumin and age as
numeric covariate in a Cox model with sex as other covariate (the upper part
of the table). The Cox model of the log-transformed bilirubin, albumin, age

and sex as the covariates is placed in the lower part of the table.

Covariate Bi se(B;) Se2 X’ df p-value
Bilirubin (linear) 0.145 0.017 0.0168 7254 1.00 0
Bilirubin (nonlin) 3275 3.02 3.8E-7
Albumin (linear) -1.317  0.223 0.219 3492 1.00 3.4E-9
Albumin (nonlin) 147 3.03 0.69
Age (linear) 0.035 0.0094 0.00927 1399 1.00 1.8E-4
Age (nonlin) 7.66 3.04 0.055
Sex -0.473 0.265 0.261 3.20 1.00 0.74
Covariate Bi se(B;) Se2 P df  p-value
Log2bilirubin (linear)  0.701 0.069 0.069 101.90 1.00 0
Log2bilirubin (nonlin) 2.36 3.06 051
Albumin (linear) -1.2637  0.22260 0.21887 3223 1.00 14E-8
Albumin (nonlin) 1.49 3.03 0.69
Age (linear) 0.036 0.0093  0.009 1525 1.00 9.4E-5
Age (nonlin) 6.59 3.05 0.089
Sex -0.4190 0.267 0.262 2.46 1.00 0.12
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it by utilizing the melanoma and pbc data. This method is introduced by Lin
et al. [1993].

3.5.2 Martingale residuals and model check

The cumulative baseline hazard, Hy(t) = fot ho(u)du of the Cox model (3.1),
may be estimated by the Breslow estimator
N 1
Hy(t) = i (3.20)
Ti<t Zlet%’j exp{B x}

If the Cox model (3.1) is correctly specified, the processes
Mi(t) = Ni(t) — Ai(t) (3.21)
are martingales, where A;(t) is the cumulative of the intensity processes which

is given by

t t
Ait) = [ Aty = [ Vi) exp{BTxi} o) (622)
0 0
and N;(t) is the counting process for individuali = 1,...,n.

_ We may estimate A;(f) by inserting B for B and dHy(u) for ho(u)du where
Hy(t) is the Breslow estimator given by (3.20). The estimated cumulative in-
tensity process takes the form

M = [ vt explBx ()

Y;(T;) exp{Bx] }
— _ (3.23)
2 T ol

Then the martingale residuals processes are the difference between the count-
ing processes and the estimated cumulative intensity processes, that is,

M;(t) = Ni(t) — Ai(t) (3.24)

Finally, the martingale residuals are (when evaluating the martingale residuals
processes at T) given by

M; = M;(t) = Ni(1) = Ai(7) (3.25)
where T is the upper limit of study time.

The martingale residuals are interpreted as the difference between the ob-
served and expected number of events for the ith individual. The martingale
residuals have some properties that reminds us of the ordinary residuals from
linear models. In particular, for any ¢,

fMl-(t) = 0, (3.26)
i=1
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E{Mi(t)} =~ coo{M;(t), Mt} ~0, fori # | (3.27)
in large samples.

To check log-linearity of a numeric covariate, or phrased differently, to
check the functional form of a numeric covariate, Lin et al. suggests to work
with the partial cumulative sums of the martingale-based residuals with re-
spect to covariate values < x, rather than working directly with the raw mar-
tingale residuals. That is,

Wix) = Yl < 0NL(T) (6.29)
i=1
" AT
= I(xj < x)Ni(7) - I(xj < x) opif xj}
i; ¢ ;jie%j ‘ Yiew, exp{B'x}

Here Wi (x) may be interpreted as the observed number of events minus the
expected number of events for individuals with a value of the k-th covariate
less than or equal to x (i.e. x;x < x) when the model is correctly specified.

According to Lin et al. [1993], if the model is correctly specified, Wi (x) is
asymptotically distributed as a mean-zero Gaussian process. The limiting dis-
tribution is analytically intractable, but Lin et al. suggest to approximate it
using Monte Carlo simulations. One may detect an unusual observed process
wi(.) under model (3.1) by plotting it along with a few realizations from the
simulated process W (.).

Furthermore, since Wj(.) fluctuates randomly around zero under the null
hypothesis, one may plot the process (3.28) as a function of numeric covariate
versus x to measure the extremity of wy(.). A natural numerical measure would
be s; = sup, |wi(x)|. A large value of s; would indicate that the covariate has
the wrong functional form. One may also obtain a formal test; the so called
supremum test. The p-value pr(S; > s;) may be approximated by pr($; >
sx), where S5; = sup, [Wi(x)|. Lin et al. suggests to consider an asymptotic
approximation of Wy (x) and to replace the stochastic process dM;(t) in this
approximation by G;dN;(t) where {G;;] =1, ...,n} are sampled from standard
normal distribution (keeping the data fixed) and N;(t) is the observed counting
process. In practice, the computation is performed using the timereg package
inR.

Example 9: Checking log-linearity of tumor thickness

Figure 3.4 displays the cumulative sum of the martingale residuals plotted
versus tumor thickness in the Cox model with ulceration and sex as the other
covariates. The grey curves in the background are 50 simulated processes. We
notice that the solid curve starts at 0 from the left side and then jumps up and
down and then finally stabilizes throughout until it reaches 0. So the curves
start at zero and end at zero; that is what we theoretically expect. The p-value
is 0.161 which is produced by the software (R). This is compared with 1000 sim-
ulated processes. The null hypothesis that the cumulative martingale residuals
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Figure 3.4: Plot of the cumulative martingale residuals versus tumor thickness,
in a Cox model.

of the tumor thickness covariate (Wg(.), from equation (3.28)) fluctuates ran-
domly around zero, is not rejected. We may conclude that the functional form
of the untransformed tumor thickness covariate seems fine, i.e. there is a log-
linear effect of tumor thickness. Yet we note that the curve is far from being
perfect. The logarithmic transformation of the covariate will improve the plot.
However, since the p-value does not reject the null hypothesis, thus we do not
consider the logarithmic transformation.

Example 10: Checking log-linearity of bilirubin, albumin and
age
Figure 3.5 displays two plots of cumulative sums of the Martingale residuals

against the numeric covariates bilirubin and logy bilirubin in the Cox models,
with albumin, age and sex as the other covariates. The upper plot is the delib-
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Figure 3.5: Plot of the covariates bilirubin and log bilirubin with their cumulat-
ive martinagle residuals.
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Table 3.9: Supremum-test for the numeric covariates bilirubin, albumin and
age from the pbc data.

Covariate s; value p-value
Bilirubin  24.492 0.000
Albumin  6.706 0.403
Age 6.616 0.368

Table 3.10: Supremume-test for the numeric covariates log bilirubin, albumin
and age from the pbc data.

Covariate sp value p-value
Log bilirubin ~ 6.135 0.511
Albumin 6.867 0.389
Age 8.268 0.130

erated untransformed bilirubin covariate which gives a very large peak. This
may indicate that the functional form of the covariate is clearly inappropriate.
The large sy = sup, |wi(x)| = 24.5 value (with 0 p-value) corresponding to
bilirubin, given in table 3.9, supports our conclusion, namely that the func-
tional form of the covariate bilirubian inappropriate or the assumption of the
log-linear effect does not seem fine. The pattern suggests a logarithmic trans-
formation. The lower plot is the logarithmic transformation of the covariate
which shows much improvement in the functional form of the covariate. The
value sy = sup, |wi(x)| = 6.135 with p-value 0.511, which clearly does not
reject the null hypothesis. Table 3.10 summarizes the results of the logarithmic
transformation of the covariate bilirubin in the Cox model with the covariates
log bilirubin, albumin, age and sex.

Checking log-linearity for the remaining covariates (albumin and age), both
in terms of plotting and formal test (supremum), indicates that the functional
form of the covariates seem fine. The p-values for albumin and age are roughly
0.4, which does not reject the null hypothesis. See figure 3.5 and table 3.9.
However, the p-values for the mentioned covariates are changed when we take
the logarithm of bilirubin in the Cox model with albumin, age and sex as the
remaining covariates, but still the null hypothesis is not rejected. In particular,
the p-values corresponding to albumin and age are 0.39 and 0.13, respectively.
Table 3.10 summarizes our finding that we just discussed.

3.6 Summary

In this chapter, we utilized different methods for checking the log-linearity as-
sumption of the numeric covariates, in Cox model (3.1). In section 3.2.1, two
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Figure 3.6: Plot of the covariates albumin and age versus their cumulative mar-
tingale residuals in the Cox model with covariates bilirubin, albumin and age.
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simple models were introduced: (i) Increasing a numeric covariate by one unit,
and then checking if the hazard ratio corresponding to x; and x; + 1 gives log-
linear effect. We readily saw that this was in fact the case. (ii) Here we intro-
duced a new covariate based on x;. This means we made model (3.5) more
complex by imposing a functional covariate, that is, g(x) = x2, and then we
saw if it gives log-linear effect. After a little calculation, we found out that this
was not the case. We used the melanoma and the pbc datasets to illustrate the
method. It turned out that the log-linearity assumption holds for the numeric
tumor thickness from the melanoma data, and age and albumin from the pbc
dataset. However, the log-linearity assumption is violated for the numeric co-
variates bilirubin from the pbc dataset.

In subsection 3.9, we tried another simple method which is based on work-
ing with quartiles of a numeric covariate, i.e. to make a categorical variable
for the numeric covariates tumor thickness, bilirubin, albumin and age, then
estimate a separate effect for each numeric group and then see if we get a fairly
linear trend for the estimates. We then illustrated the method on the given
datasets which turned to not rejecting the null hypothesis for the case tumor
thickness, albumin and age. However, for the covariate bilirubin, the null hy-
pothesis was clearly rejected.

In section 3.3, we attempted to check log-linearity of a numeric covari-
ate with a more advanced method - Fractional polynomials (FP). To make
model (3.4) more complex, polynomial terms, possibly fractional consisting of
both positive and negative powers, can be imposed, as described earlier. We
have then illustrated this method for checking log-linearity of the covariates
(numeric) tumor thickness and bilirubin, age and albumin. The results of our
finding turned to be as follows: the effects of tumor thickness, albumin and
age are log-linear, however, the effect of bilirubin turned not to be log-linear
(which is in accordance with the other methods).

A more flexible approach than FP for checking log-linearity of a numeric co-
variate is penalized smoothing splines. This method consist of piecewise poly-
nomials connected by the number of knots. In particular, to apply this method
for checking log-linearity of a numeric covariate, say x1, we fitted a penal-
ized smoothing spline s(x7). Similarly as for the other methods, we illustrated
this method on the two datasets for the numeric covariates tumor thickness,
bilirubin, albumin and age. The log-linearity assumption holds for the covari-
ate albumin, but age is on the borderline for being significantly non-log-linear.
However, the log-linearity assumption for the covariates tumor thickness and
bilirubin is clearly violated.

The final method we have utilized for checking log-linearity of a numeric
covariate is the so-called Martingale-based residuals. This is the difference
between counting processes and the estimated intensity processes, when eval-
uating the processes at end time point. Lin et al. suggested to work with the
partial-sum of the martingale residuals, rather working directly with the raw
residuals. If the model is correctly specified, the process Wi/(.) turns to fluctu-
ate randomly around zero. When we illustrated this method similarly as for
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the other methods, it turned out that the functional form of the tumor thick-
ness, albumin and age seems to be fine, i.e. there are log-linear effects of the
covariates. However, the functional form of the billirubin covariate does not
give log-linear effect which is in accordance with the other methods except for
the P-spline method.






Chapter 4

Simulation studies

4.1 Introduction

Monte Carlo methods play an important role in modern statistical analysis.
They can be utilized to examine the performance of the statistical methods
where analytical methods are not very feasible. In survival analysis, to gen-
erate appropriate survival data for the underlying statistical models, we must
generate the data through the Cox model, which is based on the hazard ratio
exp{BTx;} and the baseline hazard i (t). Parametric distributions are utilized
to model survival times. The Exponential, the Weibull, and the Gompertz dis-
tributions are common for this purpose. In this chapter, Bender et al. [2005] is
used as reference.

In this chapter, we first start by formulating survival time modeling, and
then we describe how to generate experimental survival data on the computer,
and further we will perform the various test procedures from Chapter 3 to ana-
lyse the generated data. Eventually, we will provide a few examples where we
look at different scenarios to examine the performance of the test procedures
for checking log-linearity of numeric covariates.

4.2 Simulating survival times

The cumulative hazard function corresponding to model (3.1), for individual 7,
is given by

H(t|x;) = Ho(t) exp{B"x:}, (4.1)
where t is the time, B is the coefficient vector corresponding to x as before, and
Hy(t) is the cumulative of the baseline hazard hg(t).

The survival function corresponding to the Cox model (2.15) is achieved
through (2.4) and (4.1). That is,

S(tlx;)) = exp{—H(t[x;)}
= exp{—Hy(t)exp(B'x;)} 4.2)

49



50 CHAPTER 4. SIMULATION STUDIES

If we denote Y to be a random variable with distribution function F, then U =
F(Y) is uniformly distributed in the interval [0,1]. In short, U is written as
U ~ U[0,1]. Moreover, if U ~ U[0,1], then (1 — U) ~ UJ[0,1]. In the same
manner, if we denote S be the the survival function, then S(U)~ U|[0, 1]. Now,
we denote T to be the survival time corresponding to (4.1), then

U = exp{—Ho(T) exp(B'x;)} ~ U[0,1] (4.3)

Now we may find an expression for the survival time T, that is achieved after
a simple manipulation of (4.2). That is,

log(U)
exp(B'x;)

where U is random with U ~ U[0, 1]. Thus we may conclude that we can gen-
erate T on the computer by using equation (4.4).

T=H;'{- } (4.4)

Below we give an example on how to incorporate the inverse of the Weibull
cumulative hazard within formula (4.4).

4.2.1 Generating survival data with Weibull baseline hazard

Let ho(t) = Apt’~! with shape p > 0 and scale A > 0. Then its cumulative haz-
ard and its inverse functions are given by Hy(t) = At and Hy !(t) = (%)Pq,
respectively. Following the inversion method, T is obtained by computing
logU 1
T={-—8- 1} (4.5)
Aexp(Bx;))

Equation (4.5) can be used to generate survival data without censoring. To
generate survival data with censoring, first we may sample censoring time C
which we let to be exponentially distributed, then the censored survival time
is obtained as T = min(T,C, 1), and the censoring indicatoras D = I(T = T).

4.3 Simulation studies in practice

In this section, we will describe how to generate the survival time T and the
censored survival time T by means of software, and how to utilize the pro-
cedures from Chapter 3 to analyze the simulated data. We will explain this in
details.

We define, for convenience, a Cox regression model similar to the Cox
model (3.1). For simplicity we define only two covariates; x; as numeric co-
variate whereas x, as a binary covariate. Then the Cox’s regression model

yields
h(tlx) = ho(t) exp{f(x)} (4.6)

where f(x) = B1x1 + B2x2 and x = (x1, x2). We let x; be Gamma distributed,
ie. x; ~ Gamma(a,s) with the shape parameter « and the scale parameter s.
In addition, the expected and variance values are, respectively,

E(x1) = as, Var(x;) = as? 4.7)
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Figure 4.1: Density plot of x; which is sampled from the Gamma distribution
with shape parameter a = 4, and scale parameter s = 1//a.

To choose appropriate values for the Gamma parameters, we have that Var(x) =
as? = 1, which implies that s = 1/+/a. Figure 4.1 illustrates the distribution of
x1, which is a Gamma distribution.

Further, we let x, ~ binom(1, p), where p is the probability of success. If we
define 1 to be the success and the 0 to be the failure, then we may use the bi-
nomial distribution function to generate success/failure data on the computer.
The point is to make the simulated data similar to real data such as the melan-
oma data, where for example female was coded as 1 whereas male was coded
as 2.

When we have x; and x;, in order, next we may choose appropriate values
of B1 and B,. The way we have defined our Gamma distribution, its variance
is 1. Hence it may be reasonable to let f; = 0.5 be fixed at the first part of the
analysis (in Example 1 below). In Example 2, we will examine §; for different
values. Since x, has either value 1 or 0, so we may let 8, = 1.

Algorithm 1 summarizes the simulation discussion throughout this chapter.
In particular, the algorithm summarizes how we generate simulated data by
means of the software, and how we perform the various test procedures from
Chapter 3 for checking log-linearity of a numeric covariate, say x;, and then
draw a conclusion by computing the power of test, which is the proportion of
rejection at 5% level.
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Algorithm 1: How to perform the various test procedures from Chapter 3

: Input:A, v, p, B1, B2, T, &

: Sample xq ~ Gamma(a,s)

: Sample x, ~ Binomial(1, p)

: Return f(x) « B1x1 + %3 + Baxz

: Sample U ~ uniform

: Return hazard ratio HR «+ exp{f(x)}

: Return survival time T {_Al:%ﬁ%)}l/ P, i.e. formula (4.5).

: Sample censoring time C ~ exp(#, rate)

. Return censored survival time T < min(T,C, T)

: fork=1,2,...,Bdo

generate simulated data

Perform the simple quadratic test from section 3.2.1
Perform the simple quartile test from section 3.2.2

Perform the Fractional Polynomial (FP) test from section 3.3
Perform the P-spline test from section 3.4

Perform the Martingale-residuals test from section 3.5

: end for

: Calculate the power of test for each test statistic, i.e. }_(p-values < 0.05)/B

—_
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Example 1: Extending the Cox model by a function

We know that the Cox model (3.1) assumes log-linearity in covariates. Simil-
arly, the Cox model (4.6) assumes log-linearity in covariates. This implies that,
h(t|x)
log ——% = B1x1 + Boxo (4.8)
0 P P

is log-linear in covariates x1 and xp with 81 and B, as their associated coeffi-
cients. By this assumption, for instance, if we plot (4.8), we may get a fairly
log-linear trend (straight line). We notice that when one wants to plot (4.8),
only the first term, B1x1, is of interest, since x; is a numeric covariate.

To check log-linearity of the numeric covariate x1, we know that log-linearity
is fine for x, since it is binary. Now we may impose an additional term, a
quadratic function g(x1) = x%, based on x;. That is, B1x1 + 'yx% + Boxy. This
equation is not linear anymore for different choice of y, except for v = 0. The
next task is to choose appropriate <y values. This coefficient plays a vital role,
either we get the plot of B1x; + yx? as linear curve-shape, convex or concave
curve-shape. It may therefore be reasonable to choose symmetrical values for
v such as —0.5,—-0.2,0,0.2,0.5.

Next we can utilize the test procedures from Chapter 3 to see if we can de-
tect the violation of the log-linearity assumption, and also to figure out which
procedures detect the violation best. This is actually the main objective of this
chapter.

Since we have x; at our disposal, we are now able to illustrate the effect of
different choice of 7, by plotting the equation B1x1 + yx7. Notice that when
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Figure 4.2: Plot of B1x + yx? for fixed ; = 0.5, and when vary 7 values sym-
metrical, i.e. when v = 0.5,0.2,0,—0.2,0.5.

plotting this equation, the term Byx; is already disregarded since x; is binary.
Figure 4.2 displays plots of this equation for this purpose. We notice that when
v = 0, the second term of the equation vanishes, so we remain only with the
first term. This is indeed linear, and the curve is thus a straight line. Further,
as -y increases to 0.2 and 0.5, the curves get more like convex shapes. However,
when the equation evaluates for negative 7, the curve has more like concave
shapes, as we see in figure 4.2.

Now we have B;x1 + yx7 at our disposal. We shall use this to generate sur-
vival data by utilizing (4.4), and also to generate censored survival data which
is explained in section 4.2.1 and in Algorithm 1. Now we have the simulated
dataset, the next step is to analyze the survival data by performing the test pro-
cedures from Chapter 3.
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Analysis of the generated data

Next we will generate 1000 datasets for the number of observations N = 200, 400.
For each generated data, all the test procedures from Chapter 3 are performed
simultaneously, and the results of the computed p-values are to be used for
computing the power of test. For N = 400 means we have more observations
and hence more experiences to rely on than, for example, for N = 200. This
means in turn that the results of the analysis may be significantly more accur-
ate.

The hypothesis testing procedure is similar to Chapter 3, where the local-
test statistics are utilized. For example, under the first simple method, the null
hypothesis is: Hy : v = 0 vs. the alternative hypothesis Hy : v # 0. We expect
to reject Hy when 1 is different from zero. The larger v is, the larger power of
test we may achieve, i.e. when <y goes either towards 0.5 or -0.5, we achieve a
larger power of test. One thing we must be aware of, under simulation, is that
we have tried to ensure that we get approximately 50% events. To this end, the
choice of A, from formula (4.5), is crucial. Larger v corresponds to smaller A.

Table 4.1 summarizes the power of test for the various test procedures such
as imposing a quadratic function on f1x; from section 3.2.1 (for simplicity we
call it the quadratic test), imposing an indicator function according to its quart-
iles of x; on the term f1x; from section 3.2.2 (for simplicity we call it the quart-
ile test), the Fractional polynomial (FP) test from section 3.3, the P-splines test
from section 3.4 and the Martingale residuals (MR) test from section 3.5. In this
table, the results yield for 1000 simulations (B = 1000) with N = 200. When
v = 0, we examine the test procedures against a log-linear term, so we expect
that all the test procedures give a power of test about 5%. As we see from the
table, this is the case.

For ¢ = 0.2, the test procedures give significantly larger power of test than
compared to ¢ = 0. That is, the power of tests for the quadratic test is about
70%, for the quartile test is about 30%, for the FP test is about 80%, for the
P-spline test is about 50%, last but not least, for the MR test it is about 40%.
Looking at figure 4.2 on the preceding page, we notice that the "red curve"
which corresponds to y = 0.2, deviates from the "green-line" (straight line),
therefore we get larger power of test compared to when v = 0.2.

When v = 0.5, the same test procedures give even larger power of test, i.e.
we reject the null hypothesis by approximately 95%, 50%, 85%, 85% and 60%,
by the same test procedures. This is in accordance with figure 4.2 on the previ-
ous page, where the the "black-curve" corresponds to v = 0.5 which deviates
much from the green-curve (straight line). However, there are significant dif-
ferences when it comes to the performance of the various tests. Although other
tests perform well, yet the quartile test and MR test perform very poorly (par-
ticularly the quartile test).

We reject the null hypothesis similarly when performing the test procedures
for negative . More concrete, for v = —0.2, —0.5, it turns out that the power of
test for rejecting of the null hypothesis is not as large as it was the case when we
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Table 4.1: The power of test of the various test procedures for checking log-
linearity of the numeric covariate x;. The test procedures are tested on the
function f(x) = B1x1 + 'yx% + Boxy, where xq is a numeric covariate, and xp
is a binary covariate in the Cox model. In the simple methods (quadratic and
quartiles), the p-values for the Likelihood-ratio, the Wald and the Score tests
are given in parenthesis, respectively. The test procedures are simulated 1000
times, and the number of observation is N = 200.

A 104 Quadratic g(x1) Quartiles FP  P-splines MR
0.00004 0.5 (0.94,0.94,0.94) (0.49,0.48,0.49) 0.84 0.84 0.57
0.0001 02 (0.71,0.72,0.73) (0.28,0.28,0.30) 0.80 0.51 0.38
0.0003 O (0.05,0.05,0.06) (0.06,0.06,0.06) 0.03 0.05 0.05
0.0007 -0.2 (0.53,0.43,0.41) (0.14,0.15,0.16) 0.28 0.21 0.27
0.003 -0.5 (0.82,0.76,0.73) (0.31,0.31,0.32) 0.33 0.51 0.47
performed the same test procedures for v = 0.2,0.5. For instance, for v = —0.5,

the power of tests give respectively 82%, 76%, 73% for the Likelihood-ratio, the
Wald and the Score tests under the quadratic test, about 30%, 33%, 50% and
47% under the quartile, the FP, the P-spline and MR tests, respectively. As we
discussed above, the corresponding numbers are much larger when perform-
ing the same test procedures for v = 0.5.

To rank the performance of the various test procedures, the results clearly
indicate that the quadratic test performs the best, and the FP test performs the
second best, the P-splines test performs the third best, the MR method per-
forms the fourth best, and finally the quartile test performs the fifth best. The
reason that the quadratic test performs so outstanding is because we have gen-
erated data using a quadratic function which the method itself is based on. In
contrast to the quadratic test, the quartile test seems to perform the poorest of
all the test procedures.

Table 4.2 displays the power of test for the test procedures when simulated
1000 times, and the number of observation is N = 400. The results indicate
that for v = 0, the power of test, for the various test procedures, are in ac-
cordance with table 4.1. However, when vy increases positively or negatively, it
gives much larger power of tests in comparison to table 4.1. For instance, for
v = 0.5 it gives 100% power of test in the quadratic, the FP and the P-splines
tests, while for N = 200 as indicated in table 4.1, it gives 94%, 84% and 84%,
respectively, the power of test under the same test procedures. Ranking the
performance of the various test procedures is in accordance with the ranking
order of the results in table 4.1.

Figure 4.3 displays plots of one simulated p-spline against x; (the upper
plot), and one simulated cumulative sum Martingale residuals against x; (the
lower plot) both for 7 = 0.5, in the Cox’s regression model with the numeric
covariate x1 and binary covariate x;. The upper plot clearly indicates deviation
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Table 4.2: The power of test for the various test procedures for checking log-
linearity of the numeric covariate x;. The test procedures are tested on the
function f(x) = B1x1 + 'yx% + B2x2, where x1 is the numeric covariate, and x;
is the binary covariate. In the simple methods (quadratic and quartiles), the
p-values for the Likelihood-ratio, the Wald and the Score test procedures are
given in parenthesis, respectively. The number of simulation is B = 1000, and
the number of observation is N = 400.

A v Quadratic Quartiles FP P-splines MR
0.00004 05 (1,1,1) (0.81,0.80,0.81) 1.0 1.0 0.93
0.0001 02 (0.96,0.96,0.96) (0.48,0.48,0.48) 0.85 0.89 0.75
0.0003 0 (0.06,0.07,0.07) (0.05,0.05,0.05) 0.04 0.06 0.06
0.0007 -0.2 (0.80,0.75,0.74)  (0.23,0.23,0.24) 058 0.49 0.44
0.003 -0.5 (0.98,0.98,098) (0.57,0.57,058) 0.83 0.92 0.76

from the straight line. Since this is one simulated plot, other simulated plots
may vary from this. However, according to the power of test (100%) which we
discussed above, most of the curves deviate much from the straight line. The
lower plot also indicates that the functional form of the numeric covariate x;
clearly inappropriate (due to the large peak), i.e. for 7 = 0.5, the numeric cov-
ariate x; does not give log-linear effect.

For more illustrations, we have also displayed two more plots for when
v = 0and ¢y = —0.5, as in figure C.1 and figure C.2, respectively, which are
attached and interpreted in appendix C.1.
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Figure 4.3: The upper plot is one simulated Cox regression partial P-splines
against x;. And the lower plot is the one simulated Martingale residuals
against x;. In both plots, N = 400, B = 1000, A = 0.00004 and y = 0.5.
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Figure 4.4: Plot of f1g(x1) when B; varies for g1 = 1.5,1,0.5,—-0.5,—1, —1.5
and g(x1) is an indicator function according to expression (4.9).

Example 2: Extending the Cox model by indicator function

Now we consider another situation where we impose an indicator function
g(x1) on the Cox model (4.6). That is,

h(t|x) = ho(t) exp{f(x)} (4.9)
where f(x) = p1g(x1) + 2x2 and

X1 if x; < x*
g(xl) = { +* . *
X if x| > X

when x* is in turn the median in the distribution of x7.

We follow the same strategy as in section 4.3. The only change we make
in Algorithm 1 is f(x), as is described above. In figure 4.4, we have plotted
the function f(x) in equation (4.9) to illustrate the behavior of this function
for symmetrical choices of $1. The curves are linear (straight line) until it en-
counters the median of the distribution of x, and then suddenly the curves lose
their linearity behavior. From there on the curves are constant throughout.
Next we examine the performance of the various test procedures for checking
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log-linearity of x; (numeric), in such a situation for both N = 200 and N = 400.

Analysis of the generated data for N=200

Table 4.3 displays the power of test for the various test procedures given sym-
metrical B;. For B; = 0.5, the quadratic test performs the best (especially the
Likelihood ratio test (LRT) gives 19% as the power of test), and the MR test per-
forms the second best (14%). The quartile test and P-spline test perform almost
at the same level (11%). However, the FP test performs the poorest (10%). For
B1 = 1, the quadratic test still performs the best (0.43%, 0.36%, 0.36%), and then
the FP, the P-spline and the MR tests perform at the same level (i.e. the power
of test is 31%). Now, the quartile test performs the poorest (26%). Increasing 1
further to 1.5, the quadratic test and P-spline test perform very well with the
power of test about 85%. The FP test and the MR test perform almost at the
same level, but worse than the quadratic test and P-spline test with the power
of test about 81%. The quartile test again perform very poorly with the power
of test around 70%.

Similarly, when decreasing 1, the power of test increases accordingly. For
example, for B; = —0.5, the power of tests give (20%, 26%,25%) for the quad-
ratic test, about (15%, 15%, 15%) for the quartile test, 10% for the FP test, 11%
for the P-spline test, and 16% for the MR test. The FP test performs the worst as
it was also the case for §; = 0.5. While decreasing 1 further to -1 and -1.5, the
power of tests show further increase in all the tests. In particular, the power of
test shows much increase in the quadratic test (58%, 65%, 65%) and the P-spline
test (57%), when 1 = —0.5. Thus, the MR test performs the third best with the
power of test 45%. The FP test and quartile test again perform poorly, but the
FP test shows a little improvement now compared to when ; = —0.5. For
B1 = —1.5, the quadratic test and P-spline test give the largest power of test
(about 92%), while the FP test produces the second largest (84%), the MR test
produces the third largest (79%). Not surprisingly, the quartile test performs
the poorest with the power of test about 67%.

Thus, our findings indicate that the quadratic test and the P-spline test per-
form very well, and are the best methods among all the methods we have con-
sidered, while the FP test performs the poorest for small 81 values. However,
increasing the B; values either positively or negatively, the FP test performs
the third best. The MR test comes at fourth place, last but not least, the quartile
test comes, again, last because of its poor performance.

Analysis of the generated data when N=400

Table 4.4 displays the power of tests for the various test procedures for check-
ing log-linearity of numeric covariate x; when N = 400.

For B = 0.5, the quartile test, the FP test and the P-spline test perform al-
most at the same level (with the power of test around 20%). On the other hand,
the quadratic test and the MR test perform at the same level (in particular the
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Table 4.3: The power of test of the various test procedures for checking log-
linearity of the numeric covariate x;. The procedures are examined on the
extended Cox model by the function f(x) = B1g(x1) + B2xz, where x; is a
numeric covariate, and x; is a binary covariate. In the simple methods (the
quadratic and the quartiles tests), the p-values of the test procedures for the
Likelihood-ratio, the Wald and the Score tests are given in parenthesis, respect-
ively. The number of simulations are B = 1000 and the number of observations
are N = 200.

B1 A Quadratic Quartiles FP P-splines MR
1.5 0.0001 (0.87,0.84,0.83) (0.69,0.69,0.70) 0.82 0.86 0.81
1 0.0001 (0.43,0.36,0.36) (0.25,0.26,0.27) 0.31 0.31 0.31
0.5 0.0003 (0.19,0.15,0.15) (0.11,0.12,0.12) 0.10 0.11 0.14
-0.5 0.0017 (0.20,0.26,0.25) (0.14,0.14,0.15) 0.12 0.19 0.16
-1 0.0033 (0.58,0.65,0.65) (0.37,0.36,0.38) 0.39 0.57 0.45
-1.5 0.008  (0.92,0.95,0.95) (0.67,0.66,0.67) 0.84 0.92 0.79

Likelihood test under the quadratic method performs well), yet the latter men-
tioned tests perform better than the former mentioned tests. Increasing 1 to
1 and 2, we achieve accordingly larger power of test. As we notice from the
table, increasing B; from 0.5 to 1, the power of test increases roughly by about
60%, in almost all the tests. Increasing ; further to 1.5 gives about 98 — 99%
in the power of test under all the tests - except for the quartile test which gives
93% as the power of test.

However, performing the tests for §; = —0.5, we achieve larger power of
test compared to when 1 = 0.5. In particular, we notice substantial increase
in the performance of the quadratic test (especially under the Wald-test and
the Score test) and P-spline test. Decreasing 1 further to -1, and -2, we achieve
accordingly further increase in the power of test, for all the tests. More specific-
ally, for 1 = —1 the quadratic test and P-spline test perform the best among
all the tests. The FP test and the MR test perform the second best. Again the
quartile test performs the poorest of all the tests.

To rank the performance of the test procedures, under the discussed scen-
ario, the ranking results are not in accordance with earlier where the quadratic
test performed the best. Despite that, the quadratic test still performs very well
(surely better than quartile test) or at the same level as the FP, the P-spline and
the MR tests when increasing ; positively. On the other hand, when decreas-
ing B further to -1, the quadratic test and p-spline test perform better than the
MR, the FP and quartile tests. We see that when decreasing 1 to -0.5 and -1,
we achieve similar result under the FP test as the other tests. Decreasing 1
further to -1.5, the quadratic test and P-spline test achieve the largest power of
test, while the FP test and the MR test achieve the second largest, namely with
the power of test almost 100%. The quartile method again performs the poorest
with the power of test 96%.
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Table 4.4: The power of test of the various test procedures for checking log-
linearity of the numeric covariate x;. The test procedures are tested on the
non-linear function f(x) = B1g(x1) + B2x2, where x7 is numeric covariate, and
X is binary covariate. In the simple methods (the quadratic and quartile test),
the p-values for the Likelihood-ratio, the Wald and the Score test procedures
are given in parenthesis, respectively. The number of simulation are B = 1000
and the number of observation are N = 400.

B A Quadratic Quartiles FP  P-splines MR
1.5 0.00008 (0.98,0.97,0.97) (0.93,0.93,0.93) 0.98 0.99 0.98
1 0.0002  (0.85,0.80,0.80) (0.66,0.67,0.67) 0.78 0.82 0.81
0.5 0.00031 (0.30,0.25,0.25) (0.19,0.19,0.19) 0.20 0.22 0.26
-0.5 0.0017 (0.36,0.41,0.41) (0.22,0.22,0.23) 024 0.35 0.27
-1 0.0033  (0.87,0.90,0.90) (0.67,0.67,0.67) 0.81 0.89 0.80
-1.5  0.009 (1.00,1.00,1.00)  (0.96,0.96,0.96) 0.99 1.00 0.99

We summarize our findings as follows. Decreasing $1 we achieve larger
power of test for all the tests compared to when increasing. The quadratic test
and P-spline test perform the best, the MR method and the FP method are the
second best, while the quartile test performs the poorest of all the tests. One
remark regarding the FP test is in order. Large values of 1, cause convergence
problems for this test, and thus the power of test may be very unstable, and
hence not reliable.
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4.4 Summary

We started chapter 4 by formulating simulating survival time modeling, where
we utilized the Weilbull distribution function for the baseline hazard, h(t), in
the Cox model to generate survival data. Next we sampled two covariates;
X1 as numeric covariate and x, as binary covariate such that the covariates
involved resembling real survival data (e.g. the melnoma and the pbc data).
The Cox’s regression model, thus, yields model (4.6). This model assumes log-
linearity in covariates. Since our objective has been to reveal violation of the
log-linearity assumption, thus we imposed additional term, to make f(x) in
(4.6) non-linear. In particular, we looked at two scenarios: (i) We imposed
g(x1) = yx? on f(x) such that f(x) = B1x1 + 7g(x1) + B2x2, (ii) We imposed
¢(x1) on f(x) such that f(x) = B1¢(x1) 4+ B2x2, where g(x1) is the indicator
function defined as in (4.9). In (i) we worked with fixed 1, but varied 7y sym-
metrical, while in (ii) we varied 1 symmetrical.

Next we performed the various test procedures from chapter 3 to reveal
violation of the log-linearity assumption, and also to examine which test pro-
cedures perform the best or better than others. It turned out that in scenario (i)
the quadratic test performs the best, the FP test performs the second best, the
P-splines test performs the third best, the MR test performs the fourth best, and
finally the quartile test performs the fifth best. In contrast to the quadratic test,
the quartile test seems to perform the poorest of all the tests. In scenario (ii), we
decreased 31, then we achieved larger power of test for all the test compared to
when increasing. The quadratic test and P-spline are the best, the MR test and
the FP test are the second best, while the quartile test performs the poorest of
all the tests. So in short, the quadratic test performs the best in both scenarios,
while the P-spline test, in addition to the quadratic test, performs the best in
scenario (ii). The quartile test seems to perform the worst in both scenarios.

One remark regarding the FP test is appropriate here. Large 1 and 1, cause
issues for the performance of the FP test. We found this test procedure quite
unstable for large values of the mentioned parameters.









Chapter 5

Summary and Conclusion

Summary

The main objective of this thesis has been to check the log-linearity assumption
of numeric covariates for the Cox regression, and also to examine how the test
procedures involved for checking this assumption perform.

In chapter 3, we presented the test procedures for checking this assump-
tion. In particular, we applied two simple methods, and several advanced
methods to inspect the assumption. All the methods, except the Martingale-
residuals method, are based on making the Cox’s regression model non-log-
linear by imposing one or more terms such that when applying the methods
on the model, one may easily detect violation of the log-linearity assumption.
The Martingale-residuals method, on the other hand, is based on working with
the partial cumulative sums of the Martingale-based residuals, which is the
difference between the observed and expected number of events for the ith in-
dividual, then checking if the functional form of numeric covariates appropri-
ate; meaning that is an alternative way of checking if numeric covariates give
log-linear effect. We applied the methods on the real datasets; the melanoma
dataset and the pbc dataset. In chapter 4, we performed the test procedures
corresponding to the various methods on generated datasets.

Table 5.1 summarizes the p-values associated with various test procedures
from chapter 3 for checking the log-linearity assumption of the numeric covari-
ates. Note that for simplicity we call the two simple methods (as in chapter 4),
the quadratic method (from section 3.2.1 on page 23) and the quartile method
(from section 3.2.2 on page 27), where both test procedures that corresponds to
these methods are based on the Likelihood ratio test (LRT), the Wald test and
the Score test. Thus the p-values associated with these test statistics are hence
given respectively in parenthesis.

To assess the effect of tumor thickness covariate for the melanoma data, all
the p-values of the test statistics, given in the table, reveal that we fail to reject
the null hypothesis, except for the p-values from P-spline test statistic which re-
jects the null hypothesis. However, some test procedures give larger p-values

65



66 CHAPTER 5. SUMMARY AND CONCLUSION

Table 5.1: The p-values associated with the five different test procedures for
checking log-linearity of the numeric covariates. The p-values that correspond
to likelihood ratio test (LRT), the Wald test and the Score test all are, respect-
ively, given in parenthesis. Note that FP, P-S and MR are abbreviations of frac-
tional polynomial, P-spline and martingale residuals, respectively.

Covariate Quadratic Quartile FP P-S MR

Thickness (0.639,0.646,0.646) (0.190.0.177,0.167)  0.192  0.038  0.161

Bilirubin  (
Albumin  (0.729,0.729,0.729) (0.307,0.290,0.287)  0.760  0.690  0.403
Age (

5.6E-6,2.5E-5,1.6E-5) (0.000,0.000,9.4E-5) 6.6E-9 3.8E-7 0.000

0.308,0.292,0.290) (0.820,0.820,0.820) 0.625 0.055  0.368

than others. In particular, the quadratic test gives the largest p-values which is
about 65%. The quartile test, the FP test and the MR test give almost the same
level of p-values (about 18%). The p-values of the test statistics indicate that as-
sessing the log-linearity assumption of tumor thickness, the P-spline test may
be the best test procedure for this purpose, where the other test procedures are
not capable of revealing the non-log-linearity. The size of the p-values indic-
ates that the quadratic test is, on the other hand, the least good test procedure
to reveal such an non-linearity effect. The other three tests are at the same level
and therefore also do not reveal non-log-linear effect of tumor thickness.

The p-values of the test statistics corresponding to the covariates bilirubin
and albumin are not of interest to assess since these p-values either all reject (bi-
lirubin) or all fail to reject (albumin) the null hypothesis. So there is not much
information to gain by looking at the p-values in order to assess how these test
procedures perform. The p-values associated with the age covariate, under the
P-spline test statistic, is 5.5%, which is on the borderline for being significantly
non-log-linear. The p-values and graphical check (i.e. figure 3.2 on page 37)
indicate that the P-spline test procedure is the most sensitive (i.e. the best) test
procedure to reveal non-log-linearity effect of the numeric covariate age (as tu-
mor thickness) where the other test procedures are in lack of such capability.

In chapter 4, we attempted to check the log-linearity assumption of numeric
covariates through simulation studies. We performed the test procedures we
had developed in chapter 3 on two examples where the main objective was to
examine the performance of the test procedures corresponding to the methods.
In Example 1, when testing f(x) = B1x1 + 7g(x1) + B2x2 where we imposed
the term g(x1) based on x1, it turned out that the quadratic test, not surpris-
ingly, performed the best, and the FP test performed the second best, the P-
splines test performed the third best, the MR performed the fourth best, and
finally the quartile test performed the poorest of all the tests. In Example 2,
when testing f(x) = B1g(x1) + B2x2, where g(x1) is an indicator function ac-
cording to (4.9), and especially when decreasing 31, we achieved larger power
of test for all the tests. The quadratic test and P-spline test performed the best,
the MR test and the FP test performed the second best, while the quartile test
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performed the poorest of all the tests. One remark regarding to the FP test is in
order. We found the FP test procedure quite unstable for large 51 and 1.

Conclusion

So what makes this thesis unique from other works? As indicated in the in-
troductory chapter, this thesis has provided a systematic review of the various
graphical procedures and the formal tests that have been proposed in the liter-
atures, for checking log-linearity of numeric covariates. Thus this work sums
up the proposed methods, and also hopefully helps analysts or students to
choose methods that perform better than others for checking the log-linearity
assumption of numeric covariates. (see below).

Based on the analysis of the real datasets (the melanoma and the pbc data-
sets), our findings indicate that the P-spline test ( which includes both graphical
procedure and formal test) is the best test procedure to reveal non-log-linearity
effect of numeric covariates.

However, to assess the performance of the various procedures under the
simulated data, we found the quadratic test to be the best among the existing
tests when extending the Cox model by imposing a quadratic function. On
the other hand, extending the Cox model by imposing an indicator function
such as g(x7) in (4.9), the quadratic test in addition to the P-spline test indicate
to be the best methods among the existing methods. In such a scenario, the
FP test and MR test perform equally well, however, not as good as the first
two mentioned methods. The quartile test is found to be the poorest of all the
tests procedures. Based on our findings, the quadratic method and P-spline
method may be preferred over the other methods. The last mentioned method
is quite complex analytically, however, this method is, luckily, already imple-
mented quite professionally in R, and thus it is quite straight forward to use
it. The first mentioned method is, on the hand, a simple method. It is easy to
implement by oneself in, for example R, and it also performs quite well. The
FP method is adequate when performing a real dataset, however, this method
is not properly implemented in the R software such that when performing the
test procedure on simulated data, it gives unstable results. The quartile method
is not recommended at all.

Further challenges

If time had permitted, we could have inspected the test procedures in some
more examples. One such example would be to extend the Cox model by
imposing even more complex functions than the two examples we presen-
ted in chapter 4. One such a extension would be to incorporate the function
f(x) = B1x1 + 7x% + B2g(x2) within the Cox model, where both x1 and x; are
numeric covariates that can be analyzed simultaneously, and g(x,) is an indic-
ator function defined in similar manner as g(x;) in (4.9). Few days before the
thesis’s deadline, we tried to perform the test procedures on such an example,
however, the simulated program we had developed in chapter 4 introduced
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bugs and unstable results that would require more time to debug.

The cumulative Martingale residuals test suggested by Lin et al., has the
property that if the model is correctly specified, the processes Wi (x) in (3.28)
may be expected to obtain their largest absolute values for intermediate val-
ues of x. For this purpose, we looked at both plots and formal test proced-
ures, which are implemented in R. Another maybe more relevant possibility
for measuring the deviation of the observation processes from zero, is to integ-
rate the area under the simulated curves which starts in zero and ends in zero,
thatis, | |wy(x)|dx, and then draw a conclusion based on how much the total
area deviates from zero. An alternative approach would be to look at weighted
supremum test statistics where one may put more emphasis on the start and
end point of the processes. Another possibility would be to measure the relat-

ive standard deviation of the processes Wy (x). That is, measuring %. All

of these alternative approaches would be appropriate a topic for a master thesis
itself which is not possible for further investigation in such a short thesis.
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Appendix A

Attchament to Chapter 2
The main objective of this appendix is to give readers opportunity to see how

the main results are obtained. These calculations are, however, not required
reading to understand the main content of the thesis.

A.1 Covariance and information matrix

The Wald test statistic is given by (2.23). For convinient, we recall it here:

Xiv = (B = Bio) (") 1 (By = Bro) (A1)
The term (I'1)~1 is calculating by the following calculation:
1 In I e
IXI - ( 121 122 X 121 122

( 111111 + 112121 111112 + 112122 ) (AZ)

Iy I" 4 1?12 + 112
- ( lo Oapg ) (A3)

Op—q.q Iy—p

Further, based on this matrix we set up four equations:

I+ Lt =1, (A.4)
L1+ 112 =04 (A.5)
InI" 4 I =0, g, (A.6)

ImI? + P =1, , (A7)

From (A.5) and (A.6) it follows, respectively, that
I = —(Iy) ' 1% (A.8)
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and
PPl = —(Ipp) Iy I (A.9)

Substituting (A.9) into (A.4), we get
(In — hplyp' L)1 =1, (A.10)
This gives
" = (g — haly' )™ (A11)
Inserting (A.8) into (A.7), it follows that
(Ip — In I 1) 12 = Ip—p, = 12 = (Ipp — In I o) ™ (A.12)
Substituting further (A.11) and (A.12) into (A.8) and (A.9), we arrive at

1" = —(In) 'ha(Ip — InIj ) 7! (A.13)

and
I = —(In) ' (In — by 1) 7! (A.14)

Finally, we achieve the following inverse information matrix:

1 111 112
I = ( 21 22 )
< (hn — Iiolyy' k1) ™Y — () Mo (Ip — I ) 7t >
—(I2) 1 (1 — oLy 1) ™Y (Ip — DIy o) 7t

At the end, we see that (I')~! = I;; — 11212_21121. This was what we aimed to
find. For further information, we refer to Klein and L. [1997].

A.2 Calculating (I'!)~! in practise

To calculate (I'')~!, we need information-, and covariance matrices. The in-
formation matrix obtained in R is given by:

. o 1421 —1.34 436
1(B) = I(B1, B2, B3) = 1(0.46,-1.67,0.113) = | —1.34 1144 —28.13
435 —2813 764.05

The covaraince matrix which is the inverse of the information matrix is given

by

A o 0.0711 0.0080 — 0.0001
I(B) "' =1(B1, B2, p3)" = [ 0.0080 0.0970 0.0035 (A.15)
—0.0001 0.0035 0.0014

Thus formula (A.11) is calcuated as (I'')™! = I;; — Ipl,' by = 14.21 —
(—1.34) x 11441 x (—1.34) = 14.05.
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Appendix B

Attachment to Chapter 3

In this part we attach R-code that is used for analyzing the melanoma data.
One can use similar R-code to analyse the pbc data.

B.1 R-code for analysing the melanoma data

# load the packages

library (survival)

library (mfp)

library (timereg)

#

# read the melanoma data

melanoma <- read.table("melanoma.txt",header=T)

f================ =QUADRATIC METHQOD

# creating new variable x~2 for g(xl)=x1"2:

melanoma$thick2 <- (melanoma$thickn) **2

#

# fit a model with covariates thickness, ulceration and sex:

fit.modeO=coxph(Surv(lifetime,status==1) thickn+factor(sex)+

factor (ulcer), data=melanoma)

summary (fit .mode0)

#

# specify an initial beta-vector with thick2=0:

coef0 <- c(0,fit.modeO$coef)

#

# fit a model with covariates thickness, thickness~2,

# ulceration and sex:

#

fit.model = coxph(Surv(lifetime,status==1)" thick2 + thickn +
factor(sex)+factor (ulcer) ,init=coef0,
data=melanoma)

summary (fit .model)

fit.model$loglik
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fit.modeO0O$loglik

# a model based on thickness, sex and ulceration:

fit.thickn=coxph(Surv(lifetime,status==1) thickn+factor (sex)+

factor (ulcer), data=melanoma)

summary (fit.thickn)

#

# initial beta_vector

coefl <- c(0,0,0,fit.thickn$coef)

#

# make categorical variables for thickness

b.thk=c(0,quantile (melanoma$thickn[melanoma$status==1])[2:4],
max (melanoma$thickn))

melanoma$thick.group=cut (melanoma$thickn ,b.tck,labels=1:4)

#

# create variables for quartiles (0.25%, 0.50%, 0.75%):

melanoma$thick.q2 = melanoma$thickn*(melanoma$thick.group==2)
melanoma$thick.q3 = melanoma$thickn*(melanoma$thick.group==3)
melanoma$thick.q4 = melanoma$thickn*(melanoma$thick.group==4)

#====model based on thickn, quartiles and other covariates===

#
cox.thickq=coxph(Surv(lifetime,status==1) " "thick.q2+thick.q3+
thick.q4+ thickn+factor (sex)+factor (ulcer),

data=melanoma,init=coefl)

summary (cox.thickq)

1-pchisq(4.76,3) # 0.190

1-pchisq(4.93,3) # 0.177

1-pchisq(5.06,3) # 0.167

#

# the formal test indicates non-log-linearity of the model

fp.fit=mfp(Surv(lifetime,status==1)"fp(thickn)+factor (sex)+
factor (ulcer),family=cox,

data=melanoma)

print (fp.fit)

summary (fp.fit)

# p-value

fp.fit$pvalues

P-SPLINE METHOD
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fit.pstu=coxph(Surv(lifetime,status==1)" pspline (thickn)+
factor(sex)+ factor (ulcer),data=melanoma)

#

print (fit.pstu)

par (mfrow=c(1,2))

termplot (fit.pstu,terms=1,se=T)

attributes (summary (fit.pstu))

summary (fit.pstu)

#

# Command to find the p-value corresponding to testing of
# log-linearity:

#

sum.fit=summary (fit.pstu)

sum.fit$coef

sum.fit$coef [2,6]

#

# We check then log-linearity of logthickness in a model
# with logthickness and ulceration and sex as covariates:
#

melanoma$log2thik=1log2 (melanoma$thickn)
fit.pslogtu=coxph(Surv(lifetime ,status==1)"pspline(log2thck)
+ factor(ulcer) + sex,data=melanoma)

#

print (fit.pslogtu)

#

sum.fitl <- summary(fit.pslogtu)

sum.fitl$coef [2,6]

# term plot

par (mfrow=c(1,3))

termplot (fit.pslogtu,terms=1,se=T)
dev.copy(png,"pspline_thick_logthick.png")

dev.off ()

# We first consider a model with ulceration and thickness
# (not log-transformed) and sex:

#

fit.ut=cox.aalen(Surv(lifetime,status==1) " prop(ulcer)+
prop (thickn)+ prop(sex), data=melanoma, weighted.test=0,
residuals=1,rate.sim=0,n.sim=1000)

summary (fit.ut)

#============CHECKING OF LOG-LINEARITY==================
resids.ut=cum.residuals (fit.ut,data=melanoma,cum.resid=1,
n.sim=1000)

#

plot(resids.ut,score=2,xlab="Tumor thickness")
dev.copy(png,"lglin_thick.png")

dev.off ()
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summary (resids.ut)

#

# We then check log-linearity for a model with

# log-transformed thickness:

#

fit.ult=cox.aalen(Surv(lifetime,status==1)"prop(ulcer)+
prop(log2(thickn))+prop(sex),data=melanoma,weighted.test=0,
residuals=1,rate.sim=0,n.sim=1000

#

# checkin the functional form of tumor thickness
resids.ult=cum.residuals (fit.ult,data=melanoma,cum.resid=1,
n.sim=1000)

#

plot (resids.ult,score=2,xlab="1og tumor thickness")
dev.copy(png,"lglin_log2thick.png")

dev.off ()

summary (resids.ult)




Appendix C

Attachment to Chapter 4

In this part of appendix, we attach figures that are redundant being part of
the main results. This part should be reading together with the results from
chapter 4. R-code for this chapter 4 is not included since we have tried to
explaine the simulation procedure with all the details, as also included an al-
gorithm to summarize the steps. Therefore we thought it is not necessary to
provide also the code.

C.1 Simulation studies

Figure C.1 is plotted similarly as figure 4.3, but for A = 0.0003 and v = 0.
The curves seem fine - that’s what we expect namely that the power-test is
around 6%. Figure C.2 is also plotted in similar manner, it seems similarly
to the other plots, p-splines does not detect violation from the log-linearity
assumption good enough in terms of ploting in comparison to the Martingale
residuals method.

Figure C.2 is plotted similarly as the two other plots, but for A = 0.003 and
v = —05.
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Figure C.1: The upper plot is one simulated Cox regression partial P-splines
against x;. And the lower plot is the one simulated Martingale residuals
against x;. In both plots, N = 200, B = 1000, A = 0.0003 and y = 0.
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Figure C.2: The upper plot is one simulated Cox regression partial P-splines
against x;. And the lower plot is the one simulated Martingale residuals
against x;. In both plots, N = 400, B = 1000, A = 0.003 and 7 = —0.5



