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Abstract

In this thesis we make use of a complex of exponentially upwinded differen-
tial forms to study a mixed discretization of convection diffusion equations.
Interpolation operators and smoothed projections with various properties
are constructed, using ideas from finite element exterior calculus and finite
element systems. Several continuity and infsup conditions for the mixed for-
mulations are proven. We identify possible candidates for natural norms of
the problem and give a full analysis of a 1-dimensional discretization in the
regime of vanishing viscosity using these norms, with stability proven up to
logarithmic terms in the viscosity.
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Chapter 1

Introduction

In this thesis we shall study exponentially upwinded and downwinded mixed
discretizations of the convection diffusion equations

V- (aVp—p8p)=f
ploa =0

(1.1)

and

—aAp+p3-Vp=f

1.2
ploa =0 (1.2)

where the convection 8 € R? the viscosity o« € R, f € L? and p is the
unknown function. We will study these discretizations for €2 a convex do-
main, but some of our proofs will make use of interpolators and smoothed
projections that can be constructed when €2 is any polygonal Lipschitz do-
main. Note that (1.1) and (1.2) are essentially the same equation since
V- (Bp) = B - Vp for B constant. We will start by investigating the case
where o ~ || before moving on to the more difficult case o << |f5|. This
last case turns the above equations into singularly perturbed problems and
we get the creation of boundary layers in the solutions, which causes many
discretization schemes to become unstable. A lot of work has been done
on finding stabilised methods for these kinds of problems, and probably the
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2 CHAPTER 1. INTRODUCTION

most famous is the Streamline Upwind Petrov-Galerkin method (SUPG). See
[15] for a detailed overview of these methods. A description of mixed formu-
lations in general can be found in [3]. We will follow the ideas of 6], |7] and
[9] in using an upwind discretization with test functions that are piecewise
exponential. Christiansen et al. proves stability for the Petrov-Galerkin for-
mulation of a convection diffusion equation with test functions of this type
in [6], however stability of mixed formulations still remains open. This idea
is related to methods of exponential fitting [5],[21] and is contained in the
frameworks of finite element exterior calculus (FEEC) [1] and finite element
systems (FES) [7].

In the next section we define the notation used throughout this thesis, and
give a very general overview of differential forms which we shall need later. In
the last section of this chapter we present our reading of the beginning of [2]
to discuss the wellposedness of so-called generalized saddle-point problems,
of which the mixed formulations of (1.1) and (1.2) are examples of. Here,
we find that finite dimensional approximations to generalized saddle-point
problems are stable if and only if several infsup-conditions are satisfied. In
Chapter 2 we look at interpolators onto two different upwind complexes, one
of which is defined in [7], and investigate when they are bounded uniformly
in the small parameter .. These interpolators are then used in Chapter 3 to
show the existence of smoothed projections onto our upwind spaces, using
constructions based on those found in [1], [8] and [7]. Lastly we use these
interpolators and projections in Chapter 4 to show infsup-conditions for our
upwind mixed discretizations.

1.1 Notation and Preliminaries

Notation and Preliminaries

Throughout this thesis 2 will denote an open, bounded, connected subset of
R? with polygonal Lipschitz boundary. In Chapter 4 we will further assume
it is a convex domain, or equivalently, a rectangular domain. 7 will be
a partition of €2 into a finite set of d-cubes, called a cubic or rectangular
mesh. For any n-dimensional cube T' € Tj,, A;(T) will denote the set of j-
dimensional subcubes of T, where j < n. We consider a family of partitions
{T.} indexed by a discretization parameter
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h = max {hr}, hy = diam T.

We will assume for this family of partitions, that there exist a constant
Cmesh > 0 independent of 7, called the mesh regularity constant, such that

h$ < Crnesn|T], T €T, (1.3)

where |T'| denotes the volume of T'. This is called shape-regularity. If we re-
place hy with hin (1.3) we get the additional assumption of quasi-uniformity,
i.e. a uniform bound on h/hy. For T € T}, let

TT) ={T €T : T'NT + 0}

denote its macroelement and 7™ the corresponding domain. The notation
f = g means that f < Cyg, for a constant C' > 0. This notation will only be
used when the constant is independent of the parameters of interest (typically

a and h).

The space of smooth differential k-forms on 2 will be denoted as A*(2),
when it is obvious from context we drop € and just write A*. A continuous
differential form will be denoted as CA*(€2). For a complete introduction to
differential forms we refer to [20], however we shall note the most important
properties here. In all dimensions d, the space A is just the space of smooth
functions R? — R, and the space A' can be described using the dual basis of
vectors as follows. If v : R* — R? is a smooth vector field, it is of the form

o(@) = gi(@)er + .. + gal@)ea,

where {ey,...,eq} is the standard basis for R? and g; is a smooth function
for all 4. Letting {dxy,..., dzs} be the dual basis to {ey,...,eq}, given by
dz;(e;) = 0,5, then w € A' can be written as

wy = fi(z)dzy + ...+ fa(x) dag,
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for smooth functions f;. For w € AF and n € AJ, the wedge product w A v €
A*+7 is defined by

(w N 77)11(”17 e U/H—j) = Z(Signa)ww(vﬂ(l)’ ey UU(k))nz’(Ua(k-i-l)a ooy Ua(k+j))

g

where the sum is over all permutations o of {1,...,k 4 j} such that o(1) <
..<o(k)and o(k+1) < ... < o(k+j). Observe that da; A dz; = —dz; A da;
and dx; A do; = 0. Any w € A* then has a unique representation of the form

Wy = Z fU(CL’) dl’g(l) A A dZL‘U(k), (14)
oeX(k,d)

where f; is a smooth function, and »(k,d) is the set of increasing maps
{1,...k} — {1,...,d}. For w € A* a k-form given by (1.4), the exterior
derivative d : A¥ — AF!is defined as

d
Afs
dw = ZZ a—xdxz VAN dIU(l) VAR dl‘g(k).
1 7

o 1=

It has the property that d o d = 0, and satisfies the Leibniz rule

d(wAn) = dwAv+ (=1)Fw A dn, we AN ne .

In 3 dimensions d : A° — A! corresponds to the gradient operator V for
vector fields, d : A’ — A? corresponds to the curl operator Vx, and d :
A% — A3 corresponds to the divergence operator V-. Since the space A* of
differential k-forms has (Z) = ( dfk) basis elements, we can define the Hodge
star operator x : A¥ — A%k by

<x(w)ym>dry A Adeg=wAn,
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where < -, > is the usual L? inner product. Note that x(dz?) and da' A

A drTEA datE A LA dad are equal up to a sign. For ¢ a smooth map
from Q C R? to ' C R”, the pullback ¢* : A¥(Q) — A*(Q) is given by

(¢*w)w<vlv X} Uk) = w¢($)(D¢fE(U1)7 ey D(br(vk‘))v

where the linear map D¢, : RY — R" is the derivative of ¢ at z. The pullback
commutes with the exterior derivative,

¢'od=dog",

and it distributes over the wedge product,

P (WAN) =¢'wA ™.

Let LPA¥(Q) denote the space of differential forms such that the functions
fi in (1.4) are in LP(Q2) and let H'A*(Q) denote the space of differential
forms such that the functions f; in (1.4) are in H'(2). The Sobolev space of
differential k-forms WYA¥(Q) is then defined by

WEAR(Q) = {w € LPAR(Q) : dw € LPAFTH(Q)},

where dw is defined in a suitable weak sense, e.g. such that the integration
by parts identity

/dw/\n:(—l)kl/w/\ dn
Q Q

holds for all compactly supported n € AY*1. For p = 2, WIA*(Q) is
denoted as HA*(Q2). Again, we will drop € when it is obvious from context.
Note that WJA4"! corresponds to the space of vector fields LE; given by
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IR (Q)={uel?:V-ue L}

where V - u denotes the weak divergence of u. For p = 2 we will denote L,
as Hg,. In 3 dimensions the differential 2-form corresponding to the vector
field w = (uy, ug,u3) can be written as [1]

uy * (da) +ug * (dy) + ug x (dz) =usdz A dy — ugda A dz 4+ uy dy A dz.

In Chapter 2 and 3 we discuss interpolators and smoothed projections for
differential forms, while in Chapter 4 we use them on vector fields in L%, .
This is a slight abuse of notation, since we do not make it explicit that a
transformation similar to the above has been used.

1.2 Generalized Saddle-Point Problems

The mixed formulations of the convection diffusion equations are examples
of what’s usually referred to as generalized saddle-point problems (see e.g.
[14] and [10]). We need to prove several continuity and infsup conditions
to ensure such problems are wellposed. We therefore start with an abstract
presentation of such variational problems following [2]. For X;, Y; (i = 1,2)
real reflexive Banach spaces and a : Xo x X1 = R, b; : X; xY; - R (i =
1,2) continuous bilinear forms, we consider the following abstract variational
problem. Find (u,p) € X3 X Y] such that

a(u,v) + by (p,v) =< g,v > Yo € X,

1.5
ba(q,u) =< f,q > Vg € Ys. (1.5)

It is wellposed when the following conditions hold [2]. First there must exist
constants Cy, C; > 0 such that we have continuity conditions

|a(u, v)| < Collullx, [v]|x,

16:(p, v)| < Ci||p (1.6)

vil|v]|x;

for i = 1,2. Secondly, the b;’s must satisfy the infsup conditions
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bi )
sup bi(p, v) > B,||p

veEX; |U‘ X;

for some constants B; > 0. Lastly, letting K; = {u € X : b;(¢,u) =0 Vq €
Y:}, we need a to either satisfy the infsup conditions

sup 2% 5 Al Vu € K,

veK) ||U||X1 (1.8)
sup a(u,v) > 0, Yo € K; \ {0},

ue Ko

or
a(u,v)

sup > Asl|v]|xys Vv € Kj,

uek, |[ul]x, (1.9)
sup a(u,v) >0, Yu € Ky~ {0},

veK

where A;.As > 0 are constants. According to Remark 2.1 in [2| the above
two conditions (1.8) and (1.9) are equivalent. The following proposition is
important.

Proposition 1. Conditions (1.6), (1.7) and (1.8) (or (1.6), (1.7) and (1.9))
are equivalent to existence and uniqueness of a solution to (1.5).

This is Theorem 2.1 of of [2] and the proof is found there.

The finite-dimensional approximation. Let Y* C Y; and X! C X, be
finite dimensional subspaces. To ensure stability and convergence of a finite-
dimensional approximation to (1.5), defined as find u € X% and p € Y}* such
that

a(u,v) + by (p,v) =< g,v > Yo e X! (1.10)
ba(g,u) =< f,q > Vg e vy, '

we need the analogous discrete infsup conditions to (1.7), (1.8) and (1.9)
to be satisfied as well. In other words there must exist a constant B; > 0
independent of h such that
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bi(p> 'U)

Xi

> Bi|plly;, Vp € Y, (1.11)

e

Furthermore, letting K" = {u € X[ : bj(q,u) =0 Vq € Y/},

we need the bilinear form a to either satisfy the infsup conditions

or

a(u,v)

sup > 1211||uHX2, Yu € Kg,
sup a(u,v) >0, Yo € Ky ~\ {0},
uEKg

Wob) s Ay, Voe K
sup a(u,v) > 0, Yu € Ky~ {0},
UEK{L

for constants 1211, Ag > (0 independent of h. The error estimates can be found
in [2]. Note that they depend on the above continuity and infsup-constants.



Chapter 2

Interpolators

We are primarily interested in finding L? stable projections onto exponen-
tially upwinded Hg;,-elements, but we will look at projections onto slightly
more general spaces. First we must study interpolators onto these spaces.
Let Q C R? be a bounded polygonal Lipschitz domain and 7}, a rectangular
grid on Q. Furthermore, let 3 € R¢ be a constant vector field and o << |3] a
small parameter. An important assumption in [6] was the flow being aligned
with the mesh, i.e. = (61,0, ...,0), and upwinding was only done in that
direction. The test functions used were, in 2 dimensions, piecewise of the
form

1z

—Bra
a1+a26 o 4 azy+ase o vy, (2.1)

and similarly for higher dimensions. The corresponding upwinding in all
directions to (2.1) would in 2 dimensions belong to the differential complex

—Biz T —Biz  —Bay
wiw|lp=al +ale7a +a3e &t ale e o ),

{
Alla] = {w:wlp = 7o (al + 0T ) d + e o (aF + bTe~a") dy},
{

—Bir =B
w:w|p=a'e ae e dz A dy},

(2.2)

which has the property that
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Ala] =% Alla] =% A2[al].

In example 5.31 of [7] we can find the defining relations for this complex (and
the corresponding higher dimensional ones) as

d, dw =0,
diw =0,
where d,, is defined by
dow = adw + S Aw, (2.3)

with the 1-form 8 = g dxy + ... + B4dxy and d* denoting the formal adjoint
of d. We shall not use test functions from this complex in our upwinding
scheme, however, since there are two problems with these function spaces for
small «. First, we would like interpolators onto our upwind spaces to be have
bounded L? norm uniformly in o when o — 0. This is not the case however,
as we shall see from the following argument. The usual degrees of freedom
for an interpolator I onto a finite element space is given by

/Iw = /Trew e € Ap(Th)

in the cases k € {d—1,d}. Looking at the last space A%[a] in (2.2) we observe
that interpolating w € LP onto this space on a rectangle T" is given by the
integral

/w:/I(u}) :/aeﬁlzzﬂw dz dy.
T T T

Assuming [,w =1and T = [0,1]* to simplify, we observe that the constant
is determined by
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a=1/(a2Bifl — e ][l — e %)),

Calculating the L” norm of I(w) on T we get

1 1
[ I(w)||r = (/ / ape_pw dz dy)(l/p)’
o Jo

_ aa2/p(51§2 - e_%][l _ e—%])(l/p) ~ 02/P-1)
p

Hence, ||I(w)||r — 0o when @ — 0 for any 1 < p < oo and we can not
get a bound ||[I[(w)||» < C||w|| for any norm || - || on w where the constant
C > 0 is independent of a. Specifically, L? boundedness uniformly in « is
not possible. Since interpolating w (with well-defined traces) onto the space
A} [a] also involves an integration of e=a" we will get the same problem for
this space.

The second problem with interpolation onto the complex (2.2) is that we
would prefer the existence of convergence estimates that are independent of
a when h — 0. This is only possible for the 0-forms in (2.2) since the others
will, for fixed constants, converge to 0dx + 0dy or O0dxdy when a — 0.
The same will happen in all dimensions d for k-forms with & > 0. Since the
choice of constants depend on o we can not expect convergence estimates
independent of a. We will therefore in the case of (L?, Hg;,) elements study
a new complex defined by the relations

d*dyw =0,

2.4
dw=0, (2.4)

which in two dimensions is the complex

Ajla] = {w: wlr = o +afe™" + afe™™ +afe " ),
—B Bz
Alla] = {w: w|p = (al +bTe < ) dz + (aF +bTe = ) dy},

Ala] = {w : w|p = o’ dz A dy}.

It has the property that
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da da
Apla] == Ajla] == Aj[a],

and we observe that the exterior derivative d has been replaced by the op-
erator d,.

Proposition 2. For d, defined as in (2.3) we have d2 = d, o d, = 0.
Proof. Let a differential k-form w be given. We then have
do(dow) = dp(@dw + S AW) = ad(adw+ SAwW)+ B A (adw+ 8 Aw)
=ad(fAw)+ A (adw) =—af A (dw)+ B A (adw) =0

where we have used that d*> = dod =0, A8 =0and d(fAw) = —BA(dw)
for § a constant 1-form. O

Observe how the complexes defined by (2.4) must always contain the con-
stants, so it’s possible to have convergence estimates independent of o, as we
prove in the next chapter. Also note the similarity of the above 1-forms to
the usual lowest order Raviart-Thomas elements, being piecewise

(a1 + biz) dy + (az + byy) da. (2.5)

We will look at the complex (2.4) first with the usual degrees of freedom, and
then modified with degrees of freedom such that the interpolators commutes
with d,.

2.1 Standard degrees of freedom

For a k-form w the standard degrees of freedom for the interpolators If onto
the complex (2.4) is given by

/Izw = /Trew e € Ax(Th)
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in the cases k € {d — 1,d}. An important property for the d — 1-forms in
dimension d in this complex is that they are of the form ), fi(x;, o) * (dz;),

Bizg

where f;(z;,a) = a;+bje”« . We therefore look at the slightly more general
space Apa] = AY~![a] of d — 1-forms defined by

Apla] = {w € WPACHQ) : w|p = Zfi(:ci,oo *(dw), T €Tht, (2.6

Recall that *(dx;) and dzq A ... A dz;_q A dxjeq A ... A dxg are equal up to
a sign. So, for upwinding in all directions we have

—Biz;

fi(l‘i; Oé) =a; + bie o a;, bz S R, (27)

and for upwinding in the direction of the flow, 5 = (5,0, ..,0), we have

—Bi1z1

fl(:vl,a) =a; + ble a al,bl - R, (2 8)
fi(xi,oz) :az—l—bzxz ai,bi eR 222,,d

The space H® has a well-defined trace operator for s > 1/2 and for w €
H*A*(Q) we have Trow € H*~Y2(0) [19]. This gives us the following im-
portant proposition.

Proposition 3. The interpolators 1¢ : H'A™ — Ayla] for functions f; of
the form (2.7) have the property that

|5 (W) L2 < Cllwl]m
for a constant C' > 0 independent of h and c.

Proof. Let w € H'A?! be given and let f; be an exponential of the form
(2.7). Since the trace operator is well-defined and we are using a rectangular
mesh, the degrees of freedom for the interpolator I on the rectangle 1" are
given by integrals of the form
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/eTrew:/efi(xi,a) « (da) :fi(xi,oz)/*(dxi)

e

fori=1,...,dand e € Ay 1(T). We observe that this is equivalent to keeping
the value of f;(z;, a) fixed on both "ends" of the rectangle 7" in the direction
i. The function f; of the form (2.7) can therefore not blow up when a — 0.
Hence, ||I¢w||r2 is bounded for any given w, and so ||Ifw||zz < C||w||#,
where C' > 0 is a constant independent of a. O

Proposition 4. The interpolators 1 : H'A™! — Ay[a] for functions f; of
the form (2.7) have the convergence estimates

N h
[lw =L w)llz2 < C—llw]]m

for a constant C' > 0 independent of h and o.

Proof. Let w € H'A?! be given, and let PyA?1(7},) denote the usual space
of piecewise constant forms. We then have on the rectangle T

|lw = Tiwl[p2pa-1(r) = nepo}\gfl(m lw —n = I (w = )| L2a0-1(7)

= inf I—19)(w— 17,
nepﬂAdﬂ(mH( n)( M| L2aa-1(7)

<C inf w— -
T nEPoAT(Ty) o= llras

< O(T)|wlar,

where the last inequality follows from the Bramble-Hilbert lemma or Clément
interpolation (see e.g [4]). It then follows from a standard scaling argument
that C(T) = C"% for a constant C’ > 0 independent of h and .

]

Corollary 5. The interpolators 1& : HYAY™Y — Ay [a] for functions f; of the
form (2.7) have the bound
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(IMFwlla) < Cflwl[
for a constant C > 0 indepedent of h, where || - ||a = || - |22 + || d - || 2.

Proof. Given w € H*A%1 let wy, € Ay[a] solve

< dwp, dw > + < wp,w >=<l,w > w € Aylal,

where [ is defined by

<l w>=< dw,dw >+ <w,w >.

Clearly ||wp||a < ||w||g:. Then it follows from an inverse inequality [4] that

wla < Tw — wala + fwala =2 27T (@ — wn)llze + [[wllm,

Sl + llwllan = f[wlla

Next we look at doIj. Observe that we have the property

/d(I%w):/ I%w:/ TraTw:/ dw, (2.9)
T or or T

for I on all spaces Apfa]. Letting Aj[a] be of the form (2.7) we note that
the image dIf'(Ax[a]) is a subset of

—Biz;

diy(Ala)) C{lw e L twp= ) bie o b eRTET),

which locally has dimension d, instead of dimension 1 as we would expect
from differential complexes in finite element. This is a reason why the com-
plex (2.4) must use the operator d, instead of d.
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2.2 Modified degrees of freedom

The problem with the above interpolators is that they do not commute with
the exterior derivative d nor any other such operator. This is a useful prop-
erty to have, and we shall therefore modify the degrees of freedom for our
interpolators such that the new interpolators J commutes with d,. First
we define the space of k-forms Wga A* in dimension d, by

WE A" ={w e LPA" : daw € LPA*T'Y,

with the norm

wllp, a0 = [lwllze + || daw]|r-

Then for the complex (2.4), we choose degrees of freedom on the modified
interpolators J§ such that

/e%g(w) = /eﬁézw e € Aw(Th) (2.10)
for any k € {d —1,d} and w € W% AF with well-defined traces.
Proposition 6. The interpolators J§ defined above commutes with d,.

Proof. To prove d, o0Jj = Ji o d,, it is enough to show that Jjw = 0 implies
J¥(daw) = 0 since J¢ is a projection. So, assuming J#w = 0, we have on the
rectangle T’

O:/ eﬁémw:/ d(eﬁémw):/(eﬁémdw—k d(e%)/\w),
or T T
:al/e%(adw%—ﬁ/\w):al/eTJz(daw),
T T

which is what we want. O
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Unfortunately these modified interpolators do not necessarily give a bound
on ||J%w||zr uniformly in a. We only have the next proposition.

Proposition 7. Let k € {d — 1,d}. Then the interpolators J§ onto the
spaces Ai[a] in (2.4), defined by the degrees of freedom (2.10), are LP stable
uniformly in o in the case p = oco.

Proof. First note that traces are always defined for w € L. Looking at the
d-forms we recall that they are piecewise constant, and so for w € W} A? we
have J{w|r = ar on a rectangle 7. Hence

Bz B
ae e = | eaw,
T

Bz
«@

w

Je=

The constant ar will not blow up when o« — 0, since by Hoélder’s inequality
we have

For w € W4 A%"! recall that we can write Jpw|p = >, fi(i, @) x (da;) for
fi of the form (2.7). It follows that for an edge e € A;_1(T") we have

/eﬁolerew = /eﬁéwfi(:vi,a) * (dz;) = fi(xi,a)/e[? * (dxy),

po
ea Trow
fi(xha) - feM )
[ea x(dw;)

and the result follows from Hélder’s inequality and an argument similar to
Proposition 3. O
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Chapter 3

Smoothed Projections

We continue from the previous chapter and prove that our interpolators can
be used to construct smoothed projections onto our exponentially upwinded
space from the complex defined by (2.4). This construction will be used on
both the interpolators I with standard degrees of freedom in the case k =
d — 1 and the interpolators Ji with modified degrees of freedom in the cases
k € {d —1,d}. The benefits of using I is that the resulting projections P
will be L? stable uniformly in ¢, the mesh does not need to be quasi-uniform
and it can be used with an extension operator, the drawback is that we get
no bound on dP¢ or d,P#. The benefit of using J§ is that they commute
with d, and so we can get a bound on d,II} for the resulting smoothed
projections II. Unfortunately, this bound will in general be dependent on
a. The arguments in this section closely follows those found in [1], [7] and
[8] for (non-upwinded) piecewise polynomial elements.

The smoothing operator. In both cases we will make use of a smoothing
operator constructed as follows. First we need for z € R4, y € B? = {y €
R?: |y| <1} and 0 < € < €, a function @, : R? — R? defined by

Oy (2) = + egn(@)y,

where g;, both satisfies g5 (z) ~ hy for x € T and is of sufficient regularity
for our needs (it will be further explained in each case). Let ®; denote the
pullback of ®,, then the smoothing operator Rj on a differential form w is
defined as

19



20 CHAPTER 3. SMOOTHED PROJECTIONS

(Riw), = / p(y) (@) Ew), dy,

where p € C3°(B?) is some mollifier function satisfying 0 < p(y) < 1 and
Jga p(y)dy = 1. In the first construction E will be an extension operator
explained below while in the second it will just be the identity. E will have
the property of commuting with the exterior derivative d, and since the same
holds true for pullbacks, it will hold for Rj, as well. In other words we have
do Rj, = Rj, o d.

3.1 Standard Degrees of Freedom

Let g, : Q — RT be the piecewise affine function determined by setting, on
vertices

1
) = T

> hr, w € A(Th)

TeTh ()

where hy = diam(T) for T € Ty, Tp(x) = {T|T € T,z € T} and |Tp(x)| is
the cardinality of 7y, (z). The functions g, are uniformly Lipschitz continuous,
with Lipschitz constants L. depending on the shape-regularity constant
C’rnesh-

The extension operator. Using the smoothing operator on/near the
boundary is troublesome. We therefore need an extension operator E :
HA*(Q) — HA¥(Q) where Q D Q. The construction of such an extension
operator can be found in part 4.1 of [8], but intuitively it can be thought of
as a reflection with respect to the boundary. It is defined as a pullback and
it has the properties that do E = Eo d, E € L(HA*(Q), HA*(Q)) and there
exist an €y > 0 such that B.(z) C Qforany x € Q and 0 < € < €.

Using this extension operator we find that the smoothing operator Rj is a

map from L*A*(Q) to CAF(Q) for all 0 < k < d.

Scaling. For T' € T, recall from the introduction that 7,(7") denotes its
macroelement and 7% the corresponding domain. If 77N 9N # () we extend
T™ to also include
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{x € QN Q:dist(z,T) < hp}.

Let F' be a map from T € 7T;, onto a reference simplex TA given by F(z) =
(x — o) /hp, where xg is the first vertex of 7. Define 7% = F(T*). The
operator

RS = F*'Rs F* : L*AF(T™) — L*AK(T)

is then the smoothing operator in the space of scaled variables, satisfying

(Riw), = /B o) (87 Bw), dy.

A

Here, E = F*"1EF* is the scaled extension operator, ®, : T — T* satisfies

A

O, (z) =z + €egn(z)y

and g, (z) = h3'gn(F~'z) is the scaled mesh function. Clearly the matrices
D®, have the property that

|D®, — I| < €Ly, (3.1)

on T, where Ly, is the Lipschitz constant of gj.

Lemma 8. For each e € (0, o] there is a constant c(€), independent of T € Ty,
and h, such that

||}, ‘E(LQAk(’f‘*)7CAk(T)) < ¢(€)

This is Lemma 4.2 in [8] and the proof is found there.

For I$ the interpolator onto Ap[a] of the form (2.7) described in Chapter 2,
we have the following important lemma.
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Lemma 9. Let w € A“Y(T*) with w|; of the form (2.6) for T' € T(T).
Then there is a constant C > 0, independent of T € Ty, h, € and «, such
that

1151 = R5)wll p2paaiay < Ce D> 1]l poon
T eT(T)

for € small enough.
Proof. First note that [ wis determined by integrals of the form fe Tr.w on

subrectangles e € Ad_l(T). We decompose the edges e into e, and e \ e,
where

e. = {z € e : dist(z, de) > Ce}.

For vy, ..,v4_1 unit tangent vectors to e we have

(W)z (V1 2oy V4-1) — (W) (DO, ..., DPyU4_1)|
< W)z (v, ooy v4-1) — (W) 2 (v, ooy va—1) | + [(W)2(V, -y Vg—1) — (W) (DPyv1, ..., DPyv4_1))|

< |D®, — I Z ||w||L°°(T’)

TeT(T)

Ce Z ||WHL°°(T’)7

TeT(T)

IN

since (Trew), = (Trew), for all edges e when w is of the form (2.6).

[ 0Bt =1 [ o) [ - @yea

< Ce Z o] oo (7 -

T eT(T)

Hence,

Lastly, we observe that

| (I — R)w| < | w| + | | < celwl| poo g1 (7

exee exee exee

and the result follows. O]
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The smoothed projection. The interpolation operators I and the smooth-
ing operators Rj; will be used to define the projection operators P§ onto the
upwinded finite element spaces Ap|a].

Proposition 10. For each € € (0, €] there exist a constant c(€) such that

15 BR[| (r2ad-1(0),220d-1(0)) < c(€)

for all h.

Proof. Shape regularity of 7, implies bounded overlap, so

Z lwllz2aa-1(rey < cl|w||p2pa-1()-
=

Hence it suffices to show that

|5 Bl e(rana-r(rey,r2aa-1(7)) < c(e).

Using the scaling map F' defined above we observe that

I|IgR;| |L‘,(L2Ad*1(T*),L2Ad71(T)) - ||F*_1I%R2F*||£(L2Ad—1(jﬂ*)7L2Adfl('f“))

= HI% A;LHL(L2Ad—1(T*) L2Ad=1(T))>

so since I¢ is uniformly bounded in £(C'A%(T), L*A%(T)), the result fol-
lows from Lemma 8.

]

For a fixed € the operators I} I?; are uniformly bounded maps, with respect
to h and a, from L2A4"1(Q) onto Aj[a] in the L? norm. However, they are
not projections since they are not invariant on Ap[a]. The next proposition
fixes this.

Proposition 11. There exist a constant C' > 0, independent of €, h and «,
such that
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H[ — I}O:R;L‘Ad—lHE(LQAh[a],LQAh[a]) S 06

for e € (0, ).

Proof. Because of Proposition 10 and scaling it is enough to show that

= 17 Billl (22, ja) ) 28 0)dy) < C€

For w € Au[a](T*) we have I3 = wls, so from the compactness of the
macroelements we know that

Z ||wl] oo pa—1(7ry < CHWHLQA;L[a}(T*)'
T eT(T)
Hence the bound follows from Lemma 9. n
By choosing € € (0, €], where €; < ¢ it follows from Proposition 11 that
% R, |na—1 is invertible, with the inverse Q, satisfying
QR 2(z2 o), 22810 < 2-

We now fix € € (0,€¢]. The smoothed interpolation operator P is then
defined by

Py = QuIi R,

Putting it all together we get the following result.
Corollary 12. The projections P§ defined above satisfies

[PRwl||2pa-1 =X ||w]|p2p4-1,

for a constant independent of h and «.. Furthermore, for all w € L2A471(Q),
PYw — w in L? as h — 0.
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Proposition 13. For Ay[a] of the form (2.7) we have the convergence esti-
mate

lw = Twllz < eh’l|wllms we H,

for0<s<1.

This estimate follows from the corresponding estimate for projections onto
piecewise constants. More formally we have the following slight variation of
the proof of Theorem 5.6 in [1].

Proof. Letting PyA?~1(T,) be the usual space of piecewise constant forms,
we have

lw = Prwl| = inf |[(I =Py)(w—p) = inf [jw—pull
e[ pEARL[]

= _inf o= pl] 2 R0l

 pEPYALL(Ty)

where the last inequality is a well-known result and follows from the Bramble-
Hilbert lemma or Clément interpolation (see e.g [4]). O

Remark: This estimate is optimal in the sense that any "improved" version
would necessarily depend on «, since all w € Ay[a] of the form (2.7) converges
to piecewise constant forms when o — 0.

3.2 Modified Degrees of Freedom

In this section we assume the mesh 7, is quasi-uniform in addition to being
shape-regular. We can therefore choose g, (x) = h as was done in [1]. Observe
that for d, defined in (2.3) we have
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(R daw), = / p(y) (@ doww), dy = / p(y) (@2 (vdw + B A w))a dy,

_ /B p(y) (@ d(®2w) + (B) A B2 (). dy,
_ /B p(y) (@ d(D5w) + B A B (w)). dy,

= ad( [ sl @ dy + 54 ([ pP)sdy = (dui)s,

where we have used that ®;(53) = 8 when g, is a constant function and 3 is
a constant form. If we wanted to use the above construction again for these
interpolators J§, the main difference would be in Lemma 9. However, we
shall use a different construction here. Let the mollifier function p have the
property that

Lty =0 vreEsR.

where F' = {f(y) = a+be 5 ;g b€ R} and Py is the set of polynomials of
degree at most d. Then we can use most of the theory of [7] section 5.3 with
only minor modifications. Letting V denote the usual gradient of a tensor
field, we have the following important results.

Lemma 14. Let k € {d — 1,d} and w € Af[a] from the complex (2.4), then
pw=w and VRjw = Vw.

Proof. The case k = d follows from |[7] since Af[a] is then the space of
piecewise constant d-forms. Assume k = d—1. First observe that g, constant
implies

D,®,(x)v =,

and so

(Pyw)a(v1, -0y Vk) = Wa, () (D2 @y () V1, .., De®y(7)0y),

Y

= Z(aiT + b;fre*g(zqtehy)) x (day) (o1, ..., vr) (3.2)

i
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is in the space E® P;_; as a function of y. Its value at y = 0 is w,(v1, ..., vg),
hence

(Rjw)z(v1, .oy vg) = /Bp(y)(CI)Zw)m(vl, ey U) dy = wy (v, .0y vg),

and we have Rjw = w. For VRjw = Vw we can use the same argument on
expression (5.18) in [7] for (D, ®;w).(v1, ..., va)-

[
For T' € T, recall that T* denotes its macroelement. Let T = {B(z,eh) :
reT}.

Lemma 15. For a fired € > 0 and any T € T, of maximal dimension we
have the estimates

IV R w20y = [Vl z2re)-

and

Hw — RZWHLQ(T) = hHVw||L2(T€*) (33)

This is proposition 5.58 in [7] and the proof is essentially the same since
our R also preserves constants. Note that we can use h in (3.3) because
of quasi-uniformity. The above lemma together with the properties of J§
gives us the proposition below by a standard scaling argument, as long as €
is chosen small enough such that T C T for all T" € Tj,.

Proposition 16. For k € {d — 1,d} and w € L*A* defined on T we have
the estimates

|5 Bywll 2y < Cllwl|z2zy,
l|w — Jp Ryw||2¢r) < C'h||Vwl| 21y,



28 CHAPTER 3. SMOOTHED PROJECTIONS

for constants C',C” > 0 independent of h. Lastly, choosing ¢ so small that
(1L = IR R sk ]| < %, then Ji R} ak[) Is invertible with norm less than 2.
Defining II" by

15 = (T Ry ko)~ TH R

we get the next proposition.

Corollary 17. For k € {d —1,d}, the projections 11§ defined above satisfies
[ wl|r2ar < Cif|wl|z2ak,
|| do TTzw][L2ar < Col[ do wl| 122k

for constants Cy, Cy > 0 independent of h. Furthermore, for allw € L*A*(Q),
H%w — w in L? as h — 0.

We have the convergence estimate

lw = IFw|| 2 < Ch?[|w]

Hs w e HS, (34)

for 0 < s < 1. This estimate follows from the essentially the same proof as in
Proposition 13. The main difference is that the constant C' > 0 can depend
on «.

Remark: Note the missing extension operator in this construction, and with-
out it these projections can only be used in the case of periodic boundary
conditions. The reason we lack an extension operator E in this case is that
we would need it to both preserve the space AF[a] in some sense, e.g. for
w € AF[a](Q) we would need Fw € AF[a](Q) where Q D Q and have the prop-
erty that E(8) = § for § a constant 1-form. Constructing such an operator
is difficult.

Original Complex

We can construct smoothed projections for the interpolators of our origi-
nal complex (2.2) as well. Since we do not use this complex, we will not
go through this construction. The smoothed projections onto this complex
would have the property of commuting with d.



Chapter 4

Convection Diffusion

4.1 Upwind (L?, Hy;,)-Formulation for o ~ |3

We start by assuming « ~ |§| and show the continuous and discrete infsup-
conditions in this case. Our main assumption in this chapter is that € is
a convex domain. We will further assume € C R2, but our proofs will also
work for ) C R3 with only minor modifications. Let u = —aVp + p then a
(L?, Hy;,) mixed formulation of (1.1) is find p € L? and u € Hg;, such that

/u-vdxdy—l—/(aV-v—l—ﬁ-v)pdxdy:O Vv € Hgiy
@ @ (4.1)

/(V-u)qudy:/fqudy Vq € L*.
Q Q

Define

a(u,v) = / u - vdzdy,
Q

(o) = [ (Vo 5 opdedy (12)
Q

ba(g,) = [ (V- w)qdedy,

29
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then the mixed formulation can be written as

a(“?”) + bl(pa 7}) =0 Vv € Haiy (4 3)
ba(q,u) =< f,q > Vg e L*. '

We observe that the continuity conditions on the bilinear forms a, b; and by
with u,v € Hy;, and p, ¢ € L? follows from Holder’s inequality

|a(u, v)| < / ju - o] dzdy < [full2|[v][ 2 < [[ull g, |[0][
Q

bulp o)l < [ oV -eldady+ [ [p8-v]de < Colllla19 - ol + [oll2)
Q Q
< Cillpllelfol

by(q,u)| < / (V- w)gl dedy < ||V - ullzzllgllze < |l
Q

lql|r2,
(4.4)

where the constant C'; > 0 depends on both « and S.
Proposition 18. Problem (4.1) is wellposed with the norms Hg;, and L?.

Proof. This follows from Proposition 1 and Lemma 19, Lemma 21 and Lemma
23 below. ]

The infsup constants will in general depend on a and § when using the
standard norms on Hg;, and L2, but that is not a problem in this case since
we have assumed «, || ~ 1. Let T, be a rectangular mesh of Q2 and define
XM X! C Hgy and Y™ C L? by

—B2y

X{Z = {?} € Hgy : U|T = ((IT + bre ilz,CT + dre ), T e Ad(ﬁ)}
X} ={u € Hay : ulr = (ar + bra, er + dry) T € Aa(Th)} (4.5)
Yh = {q € L2 : q|T = ar, T c Ad(ﬁ)}

Note that V - X2 = Y" and (X}, Y") is the standard lowest order Raviart-
Thomas elements, while X} is an exponentially upwinded test space corre-
sponding to X%. The upwinded mixed discretization of (1.1) is then find
u € X2 and p € Y" such that
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a(u,v) + by (p,v) =0 Vv e X}
ba(q,u) =< f.q > Vg e Y™

We begin with the infsup conditions on b;.

Lemma 19. There exists a constant B; > 0 depending on o and  such that
the continuous infsup condition

b1<pav)

veH! ||U||H1

2B1||p||L27 VpGLz.
is satisfied.

Proof. Given p € L?, let ¢ € H' be defined by V¢ = v and choose the
optimal test function v such that ¢ is the weak solution to aA¢+3-V¢o =p
with ¢|sn = 0. Formally we have

—/aV¢~V¢dxdy—|—/5~V¢wdxdy:/pwdxdy, (4.6)
Q Q Q

for all ¢ € HJ. Standard Sobolev theory [11] gives us the estimates

olle2 = [V fllz2 < Clipl]r2,

for a constant C' > 0 that can in general depend on «. Elliptic regularity
and p € L? implies ¢ € H?, and so

—/Qng-dexdy:/QAgzwdxdy

for all ¢» € H}. Choose 1, € H} such that 1, — p in L? then we have
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(o) = [ apdodedy+ [ p3-Vodedy
0 Q
~ lim / o, Adda dy + / uff - Yz dy
n Q Q
:hm/p?ﬁndxdy:/‘pﬁdxdy: HPH%%
n Q Q

and the result follows, since equation (4.6) then gives us an a-dependent
bound on ||v||g1. O

Remark: In the case a << ||, we could try choosing Dirichlet conditions
¢ = 0 on the inflow boundary and the Neumann conditions ¢ - n = 0 on the
outflow boundary in the above argument to avoid boundary layers in optimal
test function v.

Note that ¢ € H? implies the optimal test function v € (H')? which is an
important ingredient in the next proof.

Proposition 20. There exists a constant By >0 independent of h such that
the discrete infsup condition (1.11) (i = 1), with the spaces X! and Y} = Y
defined as in (4.5), is satisfied with the L* and Hg;, mnorms.

Proof. Let 1¢ : Hg;, — X7 be the interpolators onto the complex (2.4) de-
scribed in Chapter 2. Recall that they satisfy a convergence estimate and we
have ||18||u,., < C||v||g, for some constant C' > 0 independent of h. We
begin by noting that for p € L? and v € H' its optimal test function found
in Lemma 19, we have

|b1(p, v — T7w)| = |Z/apTV-(v—Iﬁv)dxdy+/pﬁ-(U—Iﬁv)|dxdy
= Jr Q

< ’ZT:OCPT/

oT

< Bl pllz2llv — Tyo|| 2
= D Ipl| z2[|v]| gr/2-e — 0.
h—0

(v—=T8v)-ndS] +/ IpB - (v —Ijv)|dx dy
0

Here, we have used that [,.(v—I3v)-ndS =0 for v € H/?™ by the degrees
of freedom for I. Hence, we can find a constant C' > 0 such that
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|b1(p, v — L) < Clba(p, o)) (4.7)

for all h smaller than some hg. Let h be smaller than hg and let p € Y C L2
From the previous lemma we know that

b b — ¢ b Ie
Bil|p||2 < sup 1(pv) _ 1(p;v = Ijv) + bi(p, L)
ver [[Vllm vern o]l

Using property (4.7) we have

b Ia b Ia
Billp[lze = SupM< S M
et Mol = vemn [l
b
=< sup 1, U).
veEX] ||UHHdiV

]

The discrete infsup condition on by(q,u) = [,(V - u)gdzdy for Raviart-
Thomas elements is a well-known result. We give it here for completeness
sake.

Lemma 21. There exists a constant By > 0 depending on o and 3 such that
the continuous infsup condition

b2(Q7 u)

’ HHdiv

sup > Bsllql| Lz, Vg € L2

u€ Hgiy

is satisfied.

Proof. Let g € L? be given. Let the optimal trial function v € Hy;, be of the
form u = V f for some f € H{, such that f is the weak solution to

Af=V - -u=q.
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It follows from standard Sobolev theory that ||u||2 = ||V f]|L2 < C|lq]| L2 for
some constant C' > 0. We then have

sup ba(q, u) _ fﬂ V -ugdzdy
weHa Wy, veg, [JUllre + 1V - ulr2’
= sup ||Q||i2 > B2HQ||L2'
u€Haiy |u||L2 + ||‘]||L2

O

Proposition 22. There exists a constant By >0 independent of h such that
the discrete infsup condition (1.11) (where i = 2), with the spaces X and
Y3 =Y, are defined as in (4.5), is satisfied.

Proof. Let p € Y}, C L? be given. Let I, : Hg, — X7 be the smoothed
projection found in [8] or [7], it has the properties that ||, ul|p,, = ||u||my.
and

/V-Hhudxdy:/v-udmdy (4.8)
T T

on each rectangle T'. Then from the previous lemma we have

b b —1II b 11
u€ Hyiy ’u‘ |Hdiv u€Hyiy ‘ |u’ |Hdiv
b I1 b II
— sup 2(q7 U) j Su Q(Q7 U) ’
u€Hyiy | |U’| |Hdiv u€ Hyiy ’Hu| ’Hdiv
b
< sup 2((]7u)

b
ueX) ||u||Hdiv

where we have used property (4.8) to find that

ba(q, v — Iju) :ZqT/(V-u—V-Hhu)dasdy:O.
pe T
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Next we look at the continuous infsup condition (1.8) for a.

Lemma 23. There exist a constant A > 0 such that the continuous infsup
condition

a(u,v)

sup > Allul|gy, Yu € Ko,

veEK1 ||U| |Hdiv

15 true for the spaces

Ky ={ve€ Hy :aV-v+-v=0}
KQI{’LLEHCHVIV‘U:O}.

Proof. Let u € Ky be given, since it is divergence free there must exist a
¢ € H' such that u = V x ¢, where Vx : R — R? is the usual curl-operator
from one to two dimensions. For any test function v € K; we know from
standard Helmholtz decomposition or Hodge decomposition that there exist
functions f, F € H' such that

v=V[f+VxF.

The optimal test function v is then chosen such that V x F' = v and f|gq = 0.
From the definition of K; we have that f must satisfy the equation

aAf+5-Vf=—-F-VXxF=-0-u (4.9)

and so v is uniquely determined for every w. It also follows from standard
Sobolev theory that ||V f|| < C||u||z2. Elliptic regularity gives f € H? and
from (4.9) we have

IV - ollze = [[Af]lr2 < Cull 2,

and so

ol = 1IVf +V X Fllz +[[A ]2 < C"]Jul| 2.
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The constants C, C’,C" > 0 above will in general depend on « and 3. Using
integration by parts on a we observe that

a(u,v):/u-(Vf—l—VxF)dxdy:—/v-ufdxdy—i—/|u|2dxdy:||u||iz,
0 Q 0

and so the result follows. O]

Remark: The other infsup condition in (1.8)

sup a(u,v) > 0, Vv € Ky ~\ {0},

ueKo

is trivial, since for a given v, just use the Helmholtz decomposition on v and
choose u =V x F.

Lastly we need to show the discrete infsup condition

sup a(u,v)

> aHuHHdiv’ Vu € Kélv
verch ||Vl Hay

for the spaces

K'={ve X! /<av.v\T+ﬁ.vT)dxdy:o VT € A(Ti))
T

—{veXl':aV-v+3-v=0}, (4.10)

K'={ueX}):V -u=0}

Remark: We have used that (aV + ) - (X]) and V - (X2) are both subsets
of the piecewise constants in the above description of the spaces K/

Unfortunately we have been unable to prove this. However, we do have a
weaker result after we have modified the norms in the next section.
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4.2 Natural norms

Later we will assume that « is a very small parameter. Since the convergence
estimates for the above discretization are bounded by the inverse of the above
infsup-constants, i.e. "constants" of order 1/«a, we will need new convergence
estimates that are independent of . This leads to what’s referred to as a
natural norm [16], which in our case is an « and 8 dependent norm such that
the continuity and infsup-constants are independent of these parameters.
We only need our constants to be independent of «, however, so any [
dependencies can in principle be ignored. We can also ignore logarithmic
terms in «, since |log(a)| will be small enough for almost all applications.
Note the following result

Proposition 24. An almost natural norm of the bilinear form

c(d),w):/gaw-wwww

18, up to logarithmic terms in o, given by

1M1 = elélin + 118 - Véllfo, e

where || - [|(co.c1)y)0. 85 an interpolation norm [19] between Co = H~" and

Cy=p-V(H}).

See [16], [17] and [18] for details. Observe that the second term is essentially
a non-standard H'/? norm. We will not use this result, but looking at this
norm and the properties of our complex (2.4), we suspect the natural norms
for our problem could be of the form

lullw = [[ul] g1 + || dul| 2
“ H ’ (4.11)
[V]lw,da = [[0]l =172 + || dav]] e,

||,,1/2 is one of the many possible H'/>-norms. Analogous to the

H,/*-norm used in [6], it has to be weak enough to allow discontinuities, since

where || -

tangential components of u are not necessarily continuous. H,, /2 i5 then the
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dual space of this unknown space H&/ ?. Note that we have slightly abused
notation in (4.11) by using the exterior derivative on a vector field. This is
done to indicate the symmetric nature of these norms. We observe that the
continuity conditions on the bilinear forms a and b; with these new norms
follows from Hélder’s inequality,

la(u, v)] = | <w,v> | <[lull 4lloll, -y < lellolollw, a0

1

w2

b1 (p; v)| < / [(@V v+ 3 -v)plde <[ dav]|z2]lpll2 < [[0]lw, a0 [P]] 22,
Q

Iba(q, )] < / (V- u)gl da < [fullullall

where < -,- > denotes the dual pairing between Hy/? and Hy'?. Assuming
these norms actually are natural for our problem, i.e. that the continuous
infsup condition (1.9) for a is true with them, we can finally prove a weaker
version of our discrete infsup condition (1.13). Under the additional assump-
tion that we have some extra regularity on the optimal trial function . This
may be a too strong assumption, but it is natural to expect that once we
have some regularity on an optimal trial function, we can get a little more
by for example elliptic regularity.

Proposition 25. Assuming the continuous infsup condition (1.9) on a is
true with the norms (4.11), and furthermore that the optimal trial function
u is actually in H', then the discrete infsup condition (1.13)

a(u,v)

Sup > Al|v]|w.a,, Yve K (4.12)

ue K} ||

is true for the spaces (4.10).

Proof. Letv € KI' C K be given and let u € K> be its corresponding optimal
trial function. Again, let 1T, : Hg;, — X2 be the smoothed projections found
in [8] or [7] for piecewise linear elements. We then have

a(u — Myu,v) = /(u —10;) - vdedy < ||Ju — HhuHHi/2||U||H;1/2
Q

< hi/? 12 — 0
=B fulm o]l e —— 0,
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and so the result would follow from a similar argument as in Proposition
20. O]

Remark: 1f we modify our discretization by taking p from the space

Birz+Boy

Y ={pe L plr=pre =, TeATH)}

and using the norm (4.11) on v, we can use our smoothed projections II% to
find a simpler proof of the discrete infsup condition on b, assuming we find
an extension operator for it.

Proof. Let p € Ylh C L? and v € Hy;, its optimal test function be given.
Then we have

bl(p,v—l_[ﬁfu)—/pda(v—l_[?;v)—/p(dav—Hﬁdav),
0 Q

Biz+Boy
:Z/TpTe S (davr — Y dgor) = 0,
T

by the degrees of freedom for our projections IIf. It then follows from Lemma
19 that

b1<pav> bl(p7v)
pllrz X sup = sup
Ipllee = s o et~ oo ol + Tdavllze
SO el + [ daligo]l2s
b
__< SU_p 1(p,U)

vext |Vllzz + [ dav|[re

4.3 Upwind (L?, Hy;,)-Formulation for o << ||

Stability in 1D
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We investigate the case o << |f| in dimension 1, and show the infsup con-
ditions with constants independent of « using the norms (4.11). In one
dimension our equation (1.1) becomes

(apz —Bp)e =f  ploa =0,

and to simplify we set 2 = (0,1). A simple rescaling can turn it into

(apm _p)x = f p|8Q =0

so we can without loss of generality assume 3 = 1. Setting u = ap, — p, the
mixed formulation is then find p € L*(Q) and u € H*(2) such that

/uvdx+/p(avx+v)dx—0 Vv e HY()
0 Q

/uzqu:/fqu Vq € L*(Q).
Q Q

Since Hyy = H' in dimension 1 the natural norms of this problem becomes
much easier to handle. We can use the H! norm on u, and for v use the norm

|| - ||o defined by

lUlla = ||Vl g-172 + ||ave + V|| 2. (4.13)

We observe that the continuity conditions on the bilinear forms a, b; and b,
with these new norms also follows from Holder’s inequality.

|a(u, v)| = I/qudxl < [l polloll =272 < [lull[[v]la,
[bi(p,v)| < / |(av, +v)pldz < [lavy +v]|22]lpll2 < [[v]]allpl] L2,
Q

oo )| < [ Juagl e < [fulln gl
Q
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Since this is in one dimension the mesh is just a partition of the unit in-
terval, and so T, = {1}, ..., T,,} where n = [1/h]. The spaces for the finite
dimensional approximation becomes

Xf ={ve H - vl7 :aT—i-bT@_g, T<Th},
Xy ={ue H": ulp =ar +brz, T € Tp}, (4.14)
Yh={qel*: qlr=ar, T €T}

Lemma 26. The continuous infsup condition on by(p,v) = [ (av, +v)pda
with the norm || - || on v and the L* norm on u is satisfied.

Proof. Let v be the solution to

then

1 -o

v(a:):/ow —e o p(s)ds. (4.15)

(07

Using the function G, from [6] defined by

le=a f >
Go(z) = §a¢ = Tore=0, (4.16)
0 for x <0,

we observe that (4.15) can be written as

v==G, *p. (4.17)

Since ||Ga|lzr < 1 and p € L? we have by Young’s inequality [19] that
wllz2 < |lpllz2. Hence, |[v]la X |[v][z2 + [lawvs +vf[2 X [|pl[L> and

bl(pav) . ||p||%2

= = |lpl|r2
lolla 1Pl 22 ’




42 CHAPTER 4. CONVECTION DIFFUSION

where the constant is independent of a. n

Proposition 27. The discrete infsup condition on by(p,v) = [, (o, +v)pdz
with the norm || - || on v and the L* norm on p is satisfied.

Proof. Let p € Y C L? be given. Define v as the solution to

av, +v=p  v(0)=0,

then it is a piecewise exponential function in the space X, since d,(X") =
Y". As in the above lemma v can be written as v = Gy, *p, for G,, defined in
(4.16), and so by the same argument ||v||, < ||p||zz. The result follows. [

Lemma 28. The continuous infsup condition on by(q,u) = fQ qu, dx is sat-
isfied with the H* norm on u and the L? norm on q.

Proof. Let q € L? be given and let u solve

Uy =¢q u(0) = 0.

Then by Poincaré’s inequality we have ||u||zz < ||uz||z2 =< |||z, and so

llallz
gl

bla.w) _ lallt |

[lullar el

= Billql|r>.

]

Proposition 29. The discrete infsup condition on by(q,u) = fQ qug dz s
satisfied with the H' norm on u and the L?> norm on q.

Proof. Let ¢ € Y" C L? be given and let u solve

u =q  u(0)=0.

Then u is a piecewise linear function in X, and the result follows from the
same argument as in the above lemma. O]
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Lemma 30. The continuous infsup condition (1.9) on a(u,v) = [,uwvdz is

satisfied, up to logarithmic terms in «, for u € Ky with the H'-norm and
v € Ky with the norm || - ||

Proof. Observe that u € Ky means u, = 0 which implies u is of the form

for k constant. We can choose k£ = 1 and by a simple calculation we have

1
a(u,v):/uvdx:/ ceffda::coz(l—efé).
Q 0

To estimate ||v||, = ||v||g-1/2 we use the fact that an equivalent norm for
H~'/2 is in dimension 1 given by the square-root (of the absolute value) of
the integral

1 11
/ / log |z — ylv(x)v(y) de dy = / / log |z — y|6_zaﬁ dedy. (4.18)
0 Jo o Jo

Using substitutions £ — x and £ — y the integral (4.18) turns into

l/a rl/a l/a pl/a
o? / / log |a(z — y)|le ™ Y drdy = o? / / log |ale ™Y dz dy,
0 0 0 0

/o pl/a
+ 042/ / log |z — yle™* ¥ dx dy,
0 0

(4.19)

and we immediately see that
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1/a rl/a
a2/ / log |ale ™™ Y dz dy = a*log(a)[l — 6_5]2.
0 0

As for the remaining term in (4.19) we use the substitutions u = x + v,
v =x — y and observe

Vo 1/a Vo
o? / / log |(z — y)|le * Y drdy = o? / / log |v]e™ 2 dv du,
o Jo 0 —u

2/a  p2/a—u
+ 042/ log |v]e™2 dv du,
1/a Ju—2/a
(4.20)

where we have used that the determinant of the Jacobian is 2. continuing
with the first integral in (4.20) we get

1/a  ru 1/a
a2/ / log |v|e ™ 2dvdu = 2&2/ 2u(log(u) — 1)e " du = a*0(1),
0 —u 0

since

1/a
/ u(log(u) — e ™ du — —,
0 a—0

where 7 is the Euler-Mascheroni constant. Next we look at the second inte-
gral in (4.20)

2/a  p2/a—u 2/ 2 2
052/ / log |v]e”“2dvdu = 2042/ 2(— — u)(log(a —u) —1)e " du,
1/a Ju

-2/ 1/ o

1/
= 4ale / w(log(w) — 1)e* dw,
0
(4.21)
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where we have used the substitution w = 2 — u. This last integral (4.21) is

O(a?) since it follows, by for example Holder’s inequality, that

) 1/a
e @ / w(log(w) — 1)e* dw —— 0.
0

a—0

All in all we have

[0[[7-12 < Cla*log(a) + o),

for a constant C' > 0 independent of a. We conclude that

[v]la = av/log(a),

and
a(u,v) co

vlla — ay/log(a)

which is what we want.

> log(a) ™2 Jul[ g,

]

Proposition 31. The discrete infsup condition (1.13) on a(u,v) = [,uvdzx
is satisfied, up to logarithmic terms in o, for u € K% with the H'-norm and
v € KI' with the norm || - ||o-

Proof. Observe that u € K means (u;), = 0 on each subinterval T}, and
so u; is of the form u; = ¢; for ¢; constant. Continuity between intervals,
however, requires these constants are all equal, i.e. that ¢; = ¢ for all 7.
Similarly for v € K] we have a(v;), + (v;) = 0 which implies

_z
v; = k‘@-e a,

for k; constant. Again continuity between intervals requires k; = k for all 7.
Hence, this infsup condition is the same as in Lemma 30.

]
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Putting it all together we get the following result.

Corollary 32. The exponentially upwinded discretization for the one dimen-
stonal problem described above is stable up to logarithmic terms in c.

4.4 Downwind (L?, Hy,)-Formulations

Let u = Vp then a (L? Hy;,) mixed formulation of (1.2) is find p € L? and
u € Hyg;y such that

/u-vdx+/pv-vdxdy:0 Y € Hygiy
Q Q

/(ﬁ-u—av-u)qudy—/fqdm Vg € L2
Q Q

Define

a(u,v) = / u-vdrdy,
Q

bi(p,v) = /pV -vdx dy, (4.22)
)

ha(a.) = [ (5 u=aV - uwgdsdy

then this mixed formulation can be written in the same form as (4.3). As
above, let T, be our rectangular mesh. This time we define X!, X! C Hy,
and Y C L? as

X{l = {U € Hdiv . U|T = (CLT + bTI,CT —I— dTy)T - Ad(ﬁ)}
XI = {v € Haw : ulr = (ap +bre s op+dpe ), T € Ay(Th)}  (4.23)
yh = {ge L?: qlr =ap, T € AN(Th)}.

Note that the only difference between (4.23) and (4.5) is that X! and X have
been interchanged (up to a sign). The proofs for the continuity and infsup-
conditions are essentially the same as above, since we have just switched the
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roles of w and v (note the similarity of b; in (4.2) and by_; in (4.22)). We
just need to choose the other infsup condition for a(u,v). The sign difference
in X is caused by the sign difference in by. The key difference in this case
is that the new error norm on u will be old norm on v, but this won'’t give
us a better convergence estimate since our exponentially upwind /downwind
spaces have worse convergence properties than the regular piecewise linear
spaces.
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Chapter 5

Concluding Remarks

We have shown that a complex of differential forms which are piecewise
exponential can be used to construct an upwind mixed discretization of con-
vection diffusion equations. Several continuity and infsup-conditions have
been proven for this discretization, but only a weak version of the discrete
infsup-condition on @ in the case o ~ || was found. Possible candidates
for the natural norms of our problem have been identified and we have used
these norms to prove stability of our one dimensional discretization, up to
logarithmic terms in «, in the case @ << |f|. Finding out whether these
norms are natural in higher dimensions as well, and determine exactly which
H'2 norm is correct, still remains.

While we have made use of the interpolators and smoothed projections con-
structed for our complex (2.4) in our proofs, they lack many desired proper-
ties. Since we now have good norms for our problem, it makes it easier to
see which properties are the most essential for our smoothed projections and
which properties we can spare. The projection P§ constructed in Chapter
3 is L? stable uniformly in o while the smoothed projection IT¥ commutes
with d,. To prove a discrete infsup condition using a smoothed projection
we would prefer one that satisfies at least both of these properties. This is
difficult, but since we only need H,, 1/2 stability uniformly in « it is possible
that our projections IIf can be shown to satisfy this. II also lacks an ex-
tension operator, and both smoothed projections should be constructed for
all k-forms in the complex (2.4).

Thoughts on stability in 2D in the case o << ||

1. Using the norms (4.11) the main difficulty (after finding out exactly which

49
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H'2norm is correct) lies in proving the infsup conditions on a(u,v) and
bi(p,v). For the discrete infsup-condition on b; we can, for a given p € Y,
define the optimal test function v € X? by

d,v = p, (5.1)

but then we can’t use our current smoothed projections to get an a-independent
bound on v. We would have to look for some other argument. Recalling def-
inition (4.5) of X]* and Y}, we observe that (5.1) turns into

a1T51 + 0552 =a’

on each rectangle T', where v|p = (al +bTe e ,ad + bge%) and p|7 = a’.
It then looks intuitively true that we can get such a bound v since the only
role of the b;’s will be to enforce continuity between the normal components
of v. We might therefore expect the term blTeﬂ to be bounded either by

al itself or the constant a! in the "next" rectangle 7.

As for the continuous infsup condition on a, if we wished to use a similar
argument as in Lemma 23 we would need a bound of the form ||V f|| o2 X
||ul[ /2 for the function f defined there. Looking at Proposition 24 and
equation (4.9) we can get the bound ||8 - Vf||g-1/2 = ||8 - u||z2, which is
almost, but not quite what we want.

2. Some of our interpolators were stable uniformly in « when using the
L' or L> norms. Using spaces other than the usual L? Hilbert spaces is
not common for finite element methods, but it has been done in e.g. [13].
A problem with using these norms is that neither L' or L* are reflexive
Banach spaces, a requirement in Proposition 1. This could perhaps be fixed
by looking at the space of L! trial functions with continuous test function
C, since L' is dense in the dual space of C. Optimal test function would
then be sign(u) in the case u € L' and the Dirac delta in the case u € C.
Finite element spaces are not suited for using the test function sign(u) since
a linear /exponential /monotone function can switch signs within an element,
something that would require the sign function to be discontinuous inside
a rectangle T. On the other hand, our piecewise exponential spaces could
perhaps be used to approximate the Dirac delta, at least in the limit o« — 0.
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Appendix

A.1 Elliptic Regularity

Proposition 33. Let Q be a convex domain. Then for each f € L*(Q) there
exist a unique p € H*(QY) such that p is the solution of

Lp=f in §2
p=20 on 0N

when L is an elliptic operator.

This is Theorem 3.2.1.2 in [12] and the proof is found there.

A.2 Upwind (H!, L?)-Formulation

Let u = Vp then a (H', L?) mixed formulation of (1.2) is find p € H] and
u € L? such that

/u-vdx—/Vp-vd:L‘dy:() Yo € L?
@ @ (A1)

/(au~Vq+ﬁ-uq)da:dy:/fqda:dy Vq € H,.
Q Q

o1
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Define

a(u,v) = / u-vdxdy,
Q
bi(p,v) = — / Vp - vdzdy, (A.2)
Q

ba(q,u) = /Q(Oéu -Vq+ B -uq)drdy.

then the mixed formulation can be written as
a(u,v) + by (p,v) =0 Vv € L?
bo(q,u) =< f,q > Vq € Hj.

First observe that || - ||, defined by

lalla = [l dagllz2 = [laVg + Bql|r:

is actually a norm on H}, since aVq + 8¢ = 0 and ¢|gq = 0 implies ¢ =
0. Using this norm we observe that the continuity conditions follows from
Holder’s inequality

w0 < [ fu-olde < [fulzlolle
(e < [ (9 vlde < ool (A1)

ba(q, )] < / (Vg + Bq) - u)| de dy < [[gllallull e
Q

Define spaces

Y= {p € H}: plr =ar+brz+cpy +dray, T € T}
—Bz —B —Boy =Bz
Yy ={q€H): qlr=dlr=ar+bre e +cre o +dre e e o, TET)
Xt ={veLl*: v|lr = (ar +bry,cr +drx) T € Tp}
—B1y —Box

X={ueL?: ulr = (ar +bre o ,cr+dre ), T €Ty}

(A.5)
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Note that Y/* and X are the usual piecewise polynomial spaces for this prob-
lem, satisfying V(Y{") = X}, while Y* and X2 are the exponentially upwind
spaces corresponding to the complex (2.4) of differential forms, satisfying
aV + B)(YS) = X%, The infsup condition on b; for the spaces XJ' and Y}
defined above is a well-known result.

Proposition 34. There exists a constant B >0 independent of h such
that the discrete infsup condition (1.11) (i = 1), with the spaces X" and Y}
defined as in (A.5), is satisfied with the H' norm on p and the L* norm on
v.

Proof. Let p € Y{* C H} be given. Since V(Y}") = X" we choose the optimal
test function v € X} such that v = —Vp. Then we have

b1(p,v) B —fﬂv - Vpdx dy )
= = HY
|[v]] 2 VDL

and the result follows from Poincaré’s inequality. ]

Next, we look at the discrete infsup condition on bs.

Proposition 35. There exists a constant By, > 0 independent of h such
that the discrete infsup condition (1.11) (i = 2), with the spaces X2 and Y
defined as in (A.5), is satisfied with the norm || - || on q and the L* norm
on u.

Proof. Let q € Y C H} be given. Since (aV + £)(Y4) = X% we choose the
optimal trial function u € X% such that u = aVq + Sq. Then we have

ba(g,u) _ JolaVa+Bgl*dzdy  |lqll2
[lul] 22 [lul| 22 llalla

= llallo-

]

Remark: The continuous infsup conditions have essentially the same proofs.

While we lack proofs of the infsup conditions on a for this problem, note that
stability in 1D follows from the above arguments since the continuous and
discrete infsup condition on a would then be trivial, as v € K;, K" would
then imply v = 0.



54

APPENDIX A. APPENDIX



Bibliography

1]

2l

13l

4]

[5]

6]

17l

Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. “Finite el-
ement exterior calculus, homological techniques, and applications”. In:
Acta Numer. 15 (2006), pp. 1-155. 1SSN: 0962-4929. DOI: 10. 1017/
S0962492906210018. URL: http://dx.doi.org/10.1017/S0962492906210018.

Christine Bernardi, Claudio Canuto, and Yvon Maday. “Generalized
inf-sup conditions for Chebyshev spectral approximation of the Stokes
problem”. In: SIAM J. Numer. Anal. 25.6 (1988), pp. 1237-1271. ISSN:
0036-1429. DOT: 10.1137/0725070. URL: http://dx.doi.org/10.
1137/0725070.

Daniele Boffi, Franco Brezzi, and Michel Fortin. Mized Finite Element
Methods and Applications (Springer Series in Computational Mathe-
matics). Springer, 2013. ISBN: 3642365183.

Dietrich Braess. Finite FElements: Theory, Fast Solvers, and Appli-
cations in Solid Mechanics. Cambridge University Press, 2007. ISBN:
0721662439.

Franco Brezzi, Luisa Donatella Marini, and Paola Pietra. “ Two-dimensional
exponential fitting and applications to drift-diffusion models”. In: STAM

J. Numer. Anal. 26.6 (1989), pp. 1342-1355. 1SSN: 0036-1429. DOTI:
10.1137/0726078. URL: http://dx.doi.org/10.1137/0726078.

Snorre H. Christiansen, Tore G. Halvorsen, and Torquil M. Sgrensen.
Stability of an upwind Petrov Galerkin discretization of convection dif-
fuston equations. 2014. eprint: arXiv:1406.0390.

Snorre H. Christiansen, Hans Z. Munthe-Kaas, and Brynjulf Owren.
“Topics in structure-preserving discretization”. In: Acta Numer. 20 (2011),
pp- 1-119. 1SSN: 0962-4929. DOI: 10.1017/5096249291100002X. URL:
http://dx.doi.org/10.1017/5096249291100002X.

95



26 BIBLIOGRAPHY

[8] Snorre H. Christiansen and Ragnar Winther. “Smoothed projections
in finite element exterior calculus”. In: Math. Comp. 77.262 (2008),
pp. 813-829. 18sN: 0025-5718. DOI: 10.1090/50025-5718-07-02081-
9. URL: http://dx.doi.org/10.1090/50025-5718-07-02081-9.

[9] Snorre Harald Christiansen. “Upwinding in finite element systems of
differential forms”. In: Foundations of computational mathematics, Bu-
dapest 2011. Vol. 403. London Math. Soc. Lecture Note Ser. Cambridge
Univ. Press, Cambridge, 2013, pp. 45-71.

[10] P. Ciarlet Jr., Jianguo Huang, and Jun Zou. “Some observations on gen-
eralized saddle-point problems”. In: SIAM J. Matriz Anal. Appl. 25.1
(2003), pp. 224-236. 1SSN: 0895-4798. DOI: 10.1137/S0895479802410827.
URL: http://dx.doi.org/10.1137/50895479802410827.

[11] Lawrence C. Evans. Partial Differential Equations: Second Edition (Grad-
uate Studies in Mathematics). American Mathematical Society, 2010.
ISBN: (0821849743.

[12] Pierre Grisvard. Elliptic Problems in Nonsmooth Domains (Classics in
Applied Mathematics). Society for Industrial and Applied Mathematics,
2011. 1SBN: 1611972027.

[13] J. L. Guermond. “A finite element technique for solving first-order
PDEs in L”. In: SIAM J. Numer. Anal. 42.2 (2004), 714-737 (elec-
tronic). 1SSN: 0036-1429. DOI: 10 . 1137 /S0036142902417054. URL:
http://dx.doi.org/10.1137/S0036142902417054.

[14] R. A. Nicolaides. “Existence, uniqueness and approximation for gener-
alized saddle point problems”. In: SIAM J. Numer. Anal. 19.2 (1982),
pp. 349-357. 1SSN: 0036-1429. poI: 10.1137 /0719021. URL: http:
//dx.doi.org/10.1137/0719021.

[15] Hans-Gorg Roos, Martin Stynes, and Lutz Tobiska. Robust Numerical
Methods for Singularly Perturbed Differential Equations: Convection-
Diffusion-Reaction and Flow Problems (Springer Series in Computa-
tional Mathematics). Springer, 2008. 1SBN: 3540344667.

[16] Giancarlo Sangalli. “A uniform analysis of nonsymmetric and coer-
cive linear operators”. In: SIAM J. Math. Anal. 36.6 (2005), 2033-2048
(electronic). 1SSN: 0036-1410. DOI: 10.1137/S0036141003434996. URL:
http://dx.doi.org/10.1137/S0036141003434996.

[17] Giancarlo Sangalli. “Analysis of the advection-diffusion operator using
fractional order norms”. In: Numer. Math. 97.4 (2004), pp. 779-796.
1SSN: 0029-599X. DOI: 10.1007 /s00211-003-0485-6. URL: http:
//dx.doi.org/10.1007/s00211-003-0485-6.



BIBLIOGRAPHY o7

[18] Giancarlo Sangalli. “Robust a-posteriori estimator for advection-diffusion-
reaction problems”. In: Math. Comp. 77.261 (2008), 41-70 (electronic).
ISSN: 0025-5718. DOI: 10.1090/50025-5718-07-02018-2. URL: http:
//dx.doi.org/10.1090/S0025-5718-07-02018-2.

[19] Luc Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces
(Lecture Notes of the Unione Matematica Italiana). Springer, 2007.
ISBN: 3540714820.

[20] Loring W. Tu. An Introduction to Manifolds (Universitext). Springer,
2007. ISBN: 0387480986.

[21]  Jinchao Xu and Ludmil Zikatanov. “A monotone finite element scheme
for convection-diffusion equations”. In: Math. Comp. 68.228 (1999),
pp. 1429-1446. 1SSN: 0025-5718. DOI: 10 . 1090/ S0025 - 5718 - 99 -
01148-5. URL: http://dx.doi.org/10.1090/50025-5718-99 -
01148-5.



