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Abstract

In this thesis we make use of a complex of exponentially upwinded differen-
tial forms to study a mixed discretization of convection diffusion equations.
Interpolation operators and smoothed projections with various properties
are constructed, using ideas from finite element exterior calculus and finite
element systems. Several continuity and infsup conditions for the mixed for-
mulations are proven. We identify possible candidates for natural norms of
the problem and give a full analysis of a 1-dimensional discretization in the
regime of vanishing viscosity using these norms, with stability proven up to
logarithmic terms in the viscosity.
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Chapter 1

Introduction

In this thesis we shall study exponentially upwinded and downwinded mixed
discretizations of the convection diffusion equations

∇ · (α∇p− βp) = f

p|∂Ω = 0
(1.1)

and

−α∆p+ β · ∇p = f

p|∂Ω = 0
(1.2)

where the convection β ∈ Rd, the viscosity α ∈ R, f ∈ L2 and p is the
unknown function. We will study these discretizations for Ω a convex do-
main, but some of our proofs will make use of interpolators and smoothed
projections that can be constructed when Ω is any polygonal Lipschitz do-
main. Note that (1.1) and (1.2) are essentially the same equation since
∇ · (βp) = β · ∇p for β constant. We will start by investigating the case
where α ∼ |β| before moving on to the more difficult case α << |β|. This
last case turns the above equations into singularly perturbed problems and
we get the creation of boundary layers in the solutions, which causes many
discretization schemes to become unstable. A lot of work has been done
on finding stabilised methods for these kinds of problems, and probably the
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2 CHAPTER 1. INTRODUCTION

most famous is the Streamline Upwind Petrov-Galerkin method (SUPG). See
[15] for a detailed overview of these methods. A description of mixed formu-
lations in general can be found in [3]. We will follow the ideas of [6], [7] and
[9] in using an upwind discretization with test functions that are piecewise
exponential. Christiansen et al. proves stability for the Petrov-Galerkin for-
mulation of a convection diffusion equation with test functions of this type
in [6], however stability of mixed formulations still remains open. This idea
is related to methods of exponential fitting [5],[21] and is contained in the
frameworks of finite element exterior calculus (FEEC) [1] and finite element
systems (FES) [7].

In the next section we define the notation used throughout this thesis, and
give a very general overview of differential forms which we shall need later. In
the last section of this chapter we present our reading of the beginning of [2]
to discuss the wellposedness of so-called generalized saddle-point problems,
of which the mixed formulations of (1.1) and (1.2) are examples of. Here,
we find that finite dimensional approximations to generalized saddle-point
problems are stable if and only if several infsup-conditions are satisfied. In
Chapter 2 we look at interpolators onto two different upwind complexes, one
of which is defined in [7], and investigate when they are bounded uniformly
in the small parameter α. These interpolators are then used in Chapter 3 to
show the existence of smoothed projections onto our upwind spaces, using
constructions based on those found in [1], [8] and [7]. Lastly we use these
interpolators and projections in Chapter 4 to show infsup-conditions for our
upwind mixed discretizations.

1.1 Notation and Preliminaries

Notation and Preliminaries

Throughout this thesis Ω will denote an open, bounded, connected subset of
Rd with polygonal Lipschitz boundary. In Chapter 4 we will further assume
it is a convex domain, or equivalently, a rectangular domain. T will be
a partition of Ω into a finite set of d-cubes, called a cubic or rectangular
mesh. For any n-dimensional cube T ∈ Th, ∆j(T ) will denote the set of j-
dimensional subcubes of T , where j ≤ n. We consider a family of partitions
{Th} indexed by a discretization parameter
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h = max
T∈Th
{hT}, hT = diamT.

We will assume for this family of partitions, that there exist a constant
Cmesh > 0 independent of Th, called the mesh regularity constant, such that

hdT ≤ Cmesh|T |, T ∈ Th, (1.3)

where |T | denotes the volume of T . This is called shape-regularity. If we re-
place hT with h in (1.3) we get the additional assumption of quasi-uniformity,
i.e. a uniform bound on h/hT . For T ∈ Th let

Th(T ) = {T ′ ∈ Th : T ′ ∩ T 6= ∅}

denote its macroelement and T ∗ the corresponding domain. The notation
f � g means that f ≤ Cg, for a constant C > 0. This notation will only be
used when the constant is independent of the parameters of interest (typically
α and h).

The space of smooth differential k-forms on Ω will be denoted as Λk(Ω),
when it is obvious from context we drop Ω and just write Λk. A continuous
differential form will be denoted as CΛk(Ω). For a complete introduction to
differential forms we refer to [20], however we shall note the most important
properties here. In all dimensions d, the space Λ0 is just the space of smooth
functions Rd → R, and the space Λ1 can be described using the dual basis of
vectors as follows. If v : Rd → Rd is a smooth vector field, it is of the form

v(x) = g1(x)e1 + ...+ gd(x)ed,

where {e1, ..., ed} is the standard basis for Rd and gi is a smooth function
for all i. Letting { dx1, ..., dxd} be the dual basis to {e1, ..., ed}, given by
dxi(ej) = δij, then ω ∈ Λ1 can be written as

ωx = f1(x) dx1 + ...+ fd(x) dxd,
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for smooth functions fi. For ω ∈ Λk and η ∈ Λj, the wedge product ω ∧ ν ∈
Λk+j is defined by

(ω ∧ η)x(v1, ..., vk+j) =
∑
σ

(signσ)ωx(vσ(1), ..., vσ(k))ηx(vσ(k+1), ..., vσ(k+j))

where the sum is over all permutations σ of {1, ..., k + j} such that σ(1) <
... < σ(k) and σ(k+1) < ... < σ(k+j). Observe that dxi∧ dxj = − dxj∧ dxi
and dxi∧ dxi = 0. Any ω ∈ Λk then has a unique representation of the form

ωx =
∑

σ∈Σ(k,d)

fσ(x) dxσ(1) ∧ · · · ∧ dxσ(k), (1.4)

where fi is a smooth function, and Σ(k, d) is the set of increasing maps
{1, ..., k} → {1, ..., d}. For ω ∈ Λk a k-form given by (1.4), the exterior
derivative d : Λk → Λk+1 is defined as

dω =
∑
σ

d∑
i=1

∂fσ
∂xi

dxi ∧ dxσ(1) ∧ · · · ∧ dxσ(k).

It has the property that d ◦ d = 0, and satisfies the Leibniz rule

d(ω ∧ η) = dω ∧ ν + (−1)kω ∧ dη, ω ∈ Λk, η ∈ Λj.

In 3 dimensions d : Λ0 → Λ1 corresponds to the gradient operator ∇ for
vector fields, d : Λ1 → Λ2 corresponds to the curl operator ∇×, and d :
Λ2 → Λ3 corresponds to the divergence operator ∇·. Since the space Λk of
differential k-forms has

(
d
k

)
=
(

d
d−k

)
basis elements, we can define the Hodge

star operator ? : Λk → Λd−k by

< ?(ω), η > dx1 ∧ ... ∧ dxd = ω ∧ η,
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where < ·, · > is the usual L2 inner product. Note that ?( dxi) and dx1 ∧
... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd are equal up to a sign. For φ a smooth map
from Ω ⊂ Rd to Ω′ ⊂ Rn, the pullback φ∗ : Λk(Ω′)→ Λk(Ω) is given by

(φ∗ω)x(v1, ..., vk) = ωφ(x)(Dφx(v1), ..., Dφx(vk)),

where the linear mapDφx : Rd → Rn is the derivative of φ at x. The pullback
commutes with the exterior derivative,

φ∗ ◦ d = d ◦ φ∗,

and it distributes over the wedge product,

φ∗(ω ∧ η) = φ∗ω ∧ φ∗η.

Let LpΛk(Ω) denote the space of differential forms such that the functions
fi in (1.4) are in Lp(Ω) and let H1Λk(Ω) denote the space of differential
forms such that the functions fi in (1.4) are in H1(Ω). The Sobolev space of
differential k-forms W p

d Λk(Ω) is then defined by

W p
d Λk(Ω) = {ω ∈ LpΛk(Ω) : dω ∈ LpΛk+1(Ω)},

where dω is defined in a suitable weak sense, e.g. such that the integration
by parts identity

∫
Ω

dω ∧ η = (−1)k−1

∫
Ω

ω ∧ dη

holds for all compactly supported η ∈ Λd−k−1. For p = 2, W p
d Λk(Ω) is

denoted as HΛk(Ω). Again, we will drop Ω when it is obvious from context.
Note that W p

d Λd−1 corresponds to the space of vector fields Lpdiv given by
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Lpdiv(Ω) = {u ∈ Lp : ∇ · u ∈ Lp}

where ∇ · u denotes the weak divergence of u. For p = 2 we will denote Lpdiv

as Hdiv. In 3 dimensions the differential 2-form corresponding to the vector
field u = (u1, u2, u3) can be written as [1]

u1 ? ( dx) + u2 ? ( dy) + u3 ? ( dz) = u3 dx ∧ dy − u2 dx ∧ dz + u1 dy ∧ dz.

In Chapter 2 and 3 we discuss interpolators and smoothed projections for
differential forms, while in Chapter 4 we use them on vector fields in Lpdiv.
This is a slight abuse of notation, since we do not make it explicit that a
transformation similar to the above has been used.

1.2 Generalized Saddle-Point Problems

The mixed formulations of the convection diffusion equations are examples
of what’s usually referred to as generalized saddle-point problems (see e.g.
[14] and [10]). We need to prove several continuity and infsup conditions
to ensure such problems are wellposed. We therefore start with an abstract
presentation of such variational problems following [2]. For Xi, Yi (i = 1, 2)
real reflexive Banach spaces and a : X2 × X1 → R, bi : Xi × Yi → R (i =
1, 2) continuous bilinear forms, we consider the following abstract variational
problem. Find (u, p) ∈ X2 × Y1 such that

a(u, v) + b1(p, v) =< g, v > ∀v ∈ X1,

b2(q, u) =< f, q > ∀q ∈ Y2.
(1.5)

It is wellposed when the following conditions hold [2]. First there must exist
constants C0, Ci > 0 such that we have continuity conditions

|a(u, v)| ≤ C0 ||u||X2||v||X1

|bi(p, v)| ≤ Ci ||p||Yi ||v||Xi
(1.6)

for i = 1, 2. Secondly, the bi’s must satisfy the infsup conditions
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sup
v∈Xi

bi(p, v)

||v||Xi
≥ Bi||p||Yi , ∀p ∈ Yi, (1.7)

for some constants Bi > 0. Lastly, letting Ki = {u ∈ Xi : bi(q, u) = 0 ∀q ∈
Yi}, we need a to either satisfy the infsup conditions

sup
v∈K1

a(u, v)

||v||X1

≥ A1||u||X2 , ∀u ∈ K2,

sup
u∈K2

a(u, v) > 0, ∀v ∈ K1 r {0},
(1.8)

or

sup
u∈K2

a(u, v)

||u||X2

≥ A2||v||X1 , ∀v ∈ K1,

sup
v∈K1

a(u, v) > 0, ∀u ∈ K2 r {0},
(1.9)

where A1.A2 > 0 are constants. According to Remark 2.1 in [2] the above
two conditions (1.8) and (1.9) are equivalent. The following proposition is
important.

Proposition 1. Conditions (1.6), (1.7) and (1.8) (or (1.6), (1.7) and (1.9))
are equivalent to existence and uniqueness of a solution to (1.5).

This is Theorem 2.1 of of [2] and the proof is found there.

The finite-dimensional approximation. Let Y h
i ⊂ Yi and Xh

i ⊂ Xi be
finite dimensional subspaces. To ensure stability and convergence of a finite-
dimensional approximation to (1.5), defined as find u ∈ Xh

2 and p ∈ Y h
1 such

that

a(u, v) + b1(p, v) =< g, v > ∀v ∈ Xh
1

b2(q, u) =< f, q > ∀q ∈ Y h
2 ,

(1.10)

we need the analogous discrete infsup conditions to (1.7), (1.8) and (1.9)
to be satisfied as well. In other words there must exist a constant B̂i > 0
independent of h such that
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sup
v∈Xh

i

bi(p, v)

||v||Xi
≥ B̂i||p||Yi , ∀p ∈ Y h

i , (1.11)

for i = 1, 2. Furthermore, letting Kh
i = {u ∈ Xh

i : bi(q, u) = 0 ∀q ∈ Y h
i },

we need the bilinear form a to either satisfy the infsup conditions

sup
v∈Kh

1

a(u, v)

||v||X1

≥ Â1||u||X2 , ∀u ∈ Kh
2 ,

sup
u∈Kh

2

a(u, v) > 0, ∀v ∈ K1 r {0},
(1.12)

or

sup
u∈Kh

2

a(u, v)

||u||X2

≥ Â2||v||X1 , ∀v ∈ Kh
1 ,

sup
v∈Kh

1

a(u, v) > 0, ∀u ∈ K2 r {0},
(1.13)

for constants Â1, Â2 > 0 independent of h. The error estimates can be found
in [2]. Note that they depend on the above continuity and infsup-constants.



Chapter 2

Interpolators

We are primarily interested in finding L2 stable projections onto exponen-
tially upwinded Hdiv-elements, but we will look at projections onto slightly
more general spaces. First we must study interpolators onto these spaces.
Let Ω ⊂ Rd be a bounded polygonal Lipschitz domain and Th a rectangular
grid on Ω. Furthermore, let β ∈ Rd be a constant vector field and α << |β| a
small parameter. An important assumption in [6] was the flow being aligned
with the mesh, i.e. β = (β1, 0, ..., 0), and upwinding was only done in that
direction. The test functions used were, in 2 dimensions, piecewise of the
form

a1 + a2e
−β1x
α + a3y + a4e

−β1x
α y, (2.1)

and similarly for higher dimensions. The corresponding upwinding in all
directions to (2.1) would in 2 dimensions belong to the differential complex

Λ0
h[α] = {ω : ω|T = aT1 + aT2 e

−β1x
α + aT3 e

−β2y
α + aT4 e

−β1x
α e

−β2y
α },

Λ1
h[α] = {ω : ω|T = e

−β1x
α (aT2 + bT2 e

−β2y
α ) dx+ e

−β2y
α (aT1 + bT1 e

−β1x
α ) dy},

Λ2
h[α] = {ω : ω|T = aT e

−β1x
α e

−β2y
α dx ∧ dy},

(2.2)

which has the property that

9
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Λ0
h[α]

d−−→ Λ1
h[α]

d−−→ Λ2
h[α].

In example 5.31 of [7] we can find the defining relations for this complex (and
the corresponding higher dimensional ones) as

d∗α dω = 0,

d∗αω = 0,

where dα is defined by

dαω = α dω + β ∧ ω, (2.3)

with the 1-form β = β1 dx1 + ...+ βd dxd and d∗ denoting the formal adjoint
of d. We shall not use test functions from this complex in our upwinding
scheme, however, since there are two problems with these function spaces for
small α. First, we would like interpolators onto our upwind spaces to be have
bounded L2 norm uniformly in α when α→ 0. This is not the case however,
as we shall see from the following argument. The usual degrees of freedom
for an interpolator I onto a finite element space is given by

∫
e

Iω =

∫
e

Treω e ∈ ∆k(Th)

in the cases k ∈ {d−1, d}. Looking at the last space Λ2
h[α] in (2.2) we observe

that interpolating ω ∈ Lp onto this space on a rectangle T is given by the
integral

∫
T

ω =

∫
T

I(ω) =

∫
T

ae−
β1x+β2y

α dx dy.

Assuming
∫
T
ω = 1 and T = [0, 1]2 to simplify, we observe that the constant

is determined by
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a = 1/(α2β1β2[1− e−
β1
α ][1− e−

β2
α ]).

Calculating the Lp norm of I(w) on T we get

||I(ω)||Lp =
( ∫ 1

0

∫ 1

0

ape−p
β1x+β2y

α dx dy
)(1/p)

,

= aα2/p
(β1β2

p2
[1− e−

pβ1
α ][1− e−

pβ2
α ]
)(1/p) ∼ α2(1/p−1).

Hence, ||I(ω)||Lp → ∞ when α → 0 for any 1 < p < ∞ and we can not
get a bound ||I(ω)||Lp ≤ C||ω|| for any norm || · || on ω where the constant
C > 0 is independent of α. Specifically, L2 boundedness uniformly in α is
not possible. Since interpolating ω (with well-defined traces) onto the space
Λ1
h[α] also involves an integration of e

−βx
α we will get the same problem for

this space.

The second problem with interpolation onto the complex (2.2) is that we
would prefer the existence of convergence estimates that are independent of
α when h→ 0. This is only possible for the 0-forms in (2.2) since the others
will, for fixed constants, converge to 0 dx + 0 dy or 0 dx dy when α → 0.
The same will happen in all dimensions d for k-forms with k > 0. Since the
choice of constants depend on α we can not expect convergence estimates
independent of α. We will therefore in the case of (L2, Hdiv) elements study
a new complex defined by the relations

d∗ dαω = 0,

d∗ω = 0,
(2.4)

which in two dimensions is the complex

Λ0
h[α] = {ω : ω|T = aT1 + aT2 e

−β1x
α + aT3 e

−β2y
α + aT4 e

−β1x
α e

−β2y
α },

Λ1
h[α] = {ω : ω|T = (aT2 + bT2 e

−β2y
α ) dx+ (aT1 + bT1 e

−β1x
α ) dy},

Λ2
h[α] = {ω : ω|T = aT dx ∧ dy}.

It has the property that
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Λ0
h[α]

dα−−→ Λ1
h[α]

dα−−→ Λ2
h[α],

and we observe that the exterior derivative d has been replaced by the op-
erator dα.

Proposition 2. For dα defined as in (2.3) we have d2
α = dα ◦ dα = 0.

Proof. Let a differential k-form ω be given. We then have

dα( dαω) = dα(α dω + β ∧ ω) = α d(α dω + β ∧ ω) + β ∧ (α dω + β ∧ ω)

= α d(β ∧ ω) + β ∧ (α dω) = −αβ ∧ ( dω) + β ∧ (α dω) = 0

where we have used that d2 = d◦ d = 0, β∧β = 0 and d(β∧ω) = −β∧( dω)
for β a constant 1-form.

Observe how the complexes defined by (2.4) must always contain the con-
stants, so it’s possible to have convergence estimates independent of α, as we
prove in the next chapter. Also note the similarity of the above 1-forms to
the usual lowest order Raviart-Thomas elements, being piecewise

(a1 + b1x) dy + (a2 + b2y) dx. (2.5)

We will look at the complex (2.4) first with the usual degrees of freedom, and
then modified with degrees of freedom such that the interpolators commutes
with dα.

2.1 Standard degrees of freedom

For a k-form ω the standard degrees of freedom for the interpolators Iαh onto
the complex (2.4) is given by

∫
e

Iαhω =

∫
e

Treω e ∈ ∆k(Th)
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in the cases k ∈ {d − 1, d}. An important property for the d − 1-forms in
dimension d in this complex is that they are of the form

∑
i fi(xi, α) ? ( dxi),

where fi(xi, α) = ai+bie
−βixi
α . We therefore look at the slightly more general

space Λh[α] = Λd−1
h [α] of d− 1-forms defined by

Λh[α] = {ω ∈ W p
d Λd−1(Ω) : ω|T =

∑
i

fi(xi, α) ? ( dxi), T ∈ Th}, (2.6)

Recall that ?( dxi) and dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd are equal up to
a sign. So, for upwinding in all directions we have

fi(xi, α) = ai + bie
−βixi
α ai, bi ∈ R, (2.7)

and for upwinding in the direction of the flow, β = (β1, 0, .., 0), we have

f1(x1, α) = a1 + b1e
−β1x1
α a1, b1 ∈ R,

fi(xi, α) = ai + bixi ai, bi ∈ R i = 2, ..., d.
(2.8)

The space Hs has a well-defined trace operator for s > 1/2 and for ω ∈
HsΛk(Ω) we have Treω ∈ Hs−1/2(∂Ω) [19]. This gives us the following im-
portant proposition.

Proposition 3. The interpolators Iαh : H1Λd−1 → Λh[α] for functions fi of
the form (2.7) have the property that

||Iαh(ω)||L2 ≤ C||ω||H1

for a constant C > 0 independent of h and α.

Proof. Let ω ∈ H1Λd−1 be given and let fi be an exponential of the form
(2.7). Since the trace operator is well-defined and we are using a rectangular
mesh, the degrees of freedom for the interpolator Iαh on the rectangle T are
given by integrals of the form
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∫
e

Treω =

∫
e

fi(xi, α) ? ( dxi) = fi(xi, α)

∫
e

?( dxi)

for i = 1, ..., d and e ∈ ∆d−1(T ). We observe that this is equivalent to keeping
the value of fi(xi, α) fixed on both "ends" of the rectangle T in the direction
i. The function fi of the form (2.7) can therefore not blow up when α → 0.
Hence, ||Iαhω||L2 is bounded for any given ω, and so ||Iαhω||L2 ≤ C||ω||H1 ,
where C > 0 is a constant independent of α.

Proposition 4. The interpolators Iαh : H1Λd−1 → Λh[α] for functions fi of
the form (2.7) have the convergence estimates

||ω − Iαh(ω)||L2 ≤ C
h

α
||ω||H1

for a constant C > 0 independent of h and α.

Proof. Let ω ∈ H1Λd−1 be given, and let P0Λd−1(Th) denote the usual space
of piecewise constant forms. We then have on the rectangle T

||ω − Iαhω||L2Λd−1(T ) = inf
η∈P0Λd−1(Th)

||ω − η − Iαh(ω − η)||L2Λd−1(T )

= inf
η∈P0Λd−1(Th)

||(I − Iαh)(ω − η)||L2Λd−1(T ),

≤ C inf
η∈P0Λd−1(Th)

||ω − η||H1Λd−1(T )

≤ C(T )|ω|H1 ,

where the last inequality follows from the Bramble-Hilbert lemma or Clément
interpolation (see e.g [4]). It then follows from a standard scaling argument
that C(T ) = C ′ h

α
for a constant C ′ > 0 independent of h and α.

Corollary 5. The interpolators Iαh : H1Λd−1 → Λh[α] for functions fi of the
form (2.7) have the bound
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(||Iαhω||d) ≤ C||ω||H1

for a constant C > 0 indepedent of h, where || · || d = || · ||L2 + || d · ||L2.

Proof. Given ω ∈ H1Λd−1, let ωh ∈ Λh[α] solve

< dωh, dw > + < ωh, w >=< l, w > w ∈ Λh[α],

where l is defined by

< l, w >:=< dω, dw > + < ω,w > .

Clearly ||ωh||d ≤ ||ω||H1 . Then it follows from an inverse inequality [4] that

|Iαhω|d ≤ |Iαhω − ωh|d + |ωh| d � h−1||Iαh(ω − ωh)||L2 + ||ω||H1 ,

� |ω|H1 + ||ω||H1 � ||ω||H1 .

Next we look at d ◦ Iαh . Observe that we have the property

∫
T

d(IαTω) =

∫
∂T

IαTω =

∫
∂T

Tr∂Tω =

∫
T

dω, (2.9)

for Iαh on all spaces Λh[α]. Letting Λh[α] be of the form (2.7) we note that
the image dIαh(Λh[α]) is a subset of

dIαh(Λh[α]) ⊂ {ω ∈ L2 : ωT =
∑
i

bie
−βixi
α : bi ∈ R, T ∈ Th},

which locally has dimension d, instead of dimension 1 as we would expect
from differential complexes in finite element. This is a reason why the com-
plex (2.4) must use the operator dα instead of d.
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2.2 Modified degrees of freedom

The problem with the above interpolators is that they do not commute with
the exterior derivative d nor any other such operator. This is a useful prop-
erty to have, and we shall therefore modify the degrees of freedom for our
interpolators such that the new interpolators Jαh commutes with dα. First
we define the space of k-forms W p

dα
Λk, in dimension d, by

W p
dα

Λk = {ω ∈ LpΛk : dαω ∈ LpΛk+1},

with the norm

||ω||p, dα = ||ω||Lp + || dαω||Lp .

Then for the complex (2.4), we choose degrees of freedom on the modified
interpolators Jαh such that

∫
e

e
β·x
α Jαh(ω) =

∫
e

e
β·x
α ω e ∈ ∆k(Th) (2.10)

for any k ∈ {d− 1, d} and ω ∈ W p
dα

Λk with well-defined traces.

Proposition 6. The interpolators Jαh defined above commutes with dα.

Proof. To prove dα ◦Jαh = Jαh ◦ dα, it is enough to show that Jαhω = 0 implies
Jαh( dαω) = 0 since Jαh is a projection. So, assuming Jαhω = 0, we have on the
rectangle T

0 =

∫
∂T

e
β·x
α ω =

∫
T

d(e
β·x
α ω) =

∫
T

(e
β·x
α dω + d(e

β·x
α ) ∧ ω),

= α−1

∫
T

e
β·x
α (α dω + β ∧ ω) = α−1

∫
T

e
β·x
α Jαh( dαω),

which is what we want.
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Unfortunately these modified interpolators do not necessarily give a bound
on ||Jαhω||Lp uniformly in α. We only have the next proposition.

Proposition 7. Let k ∈ {d − 1, d}. Then the interpolators Jαh onto the
spaces Λd

h[α] in (2.4), defined by the degrees of freedom (2.10), are Lp stable
uniformly in α in the case p =∞.

Proof. First note that traces are always defined for ω ∈ L∞. Looking at the
d-forms we recall that they are piecewise constant, and so for ω ∈ W p

dα
Λd we

have Jαhω|T = aT on a rectangle T . Hence

∫
T

ae
β·x
α =

∫
e
β·x
α ω,

aT =

∫
e
β·x
α ω∫
e
β·x
α

.

The constant aT will not blow up when α → 0, since by Hölder’s inequality
we have

|
∫
e
β·x
α ω|∫
e
β·x
α

≤ ||ω||L∞ .

For ω ∈ W p
dα

Λd−1 recall that we can write Jαhω|T =
∑

i fi(xi, α) ? ( dxi) for
fi of the form (2.7). It follows that for an edge e ∈ ∆d−1(T ) we have

∫
e

e
β·x
α Treω =

∫
e

e
β·x
α fi(xi, α) ? ( dxi) = fi(xi, α)

∫
e

e
β·x
α ? ( dxi),

fi(xi, α) =

∫
e
e
β·x
α Treω∫

e
e
β·x
α ? ( dxi)

,

and the result follows from Hölder’s inequality and an argument similar to
Proposition 3.
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Chapter 3

Smoothed Projections

We continue from the previous chapter and prove that our interpolators can
be used to construct smoothed projections onto our exponentially upwinded
space from the complex defined by (2.4). This construction will be used on
both the interpolators Iαh with standard degrees of freedom in the case k =
d− 1 and the interpolators Jαh with modified degrees of freedom in the cases
k ∈ {d − 1, d}. The benefits of using Iαh is that the resulting projections Pα

h

will be L2 stable uniformly in α, the mesh does not need to be quasi-uniform
and it can be used with an extension operator, the drawback is that we get
no bound on dPα

h or dαPα
h . The benefit of using Jαh is that they commute

with dα and so we can get a bound on dαΠα
h for the resulting smoothed

projections Πα
h . Unfortunately, this bound will in general be dependent on

α. The arguments in this section closely follows those found in [1], [7] and
[8] for (non-upwinded) piecewise polynomial elements.

The smoothing operator. In both cases we will make use of a smoothing
operator constructed as follows. First we need for x ∈ Rd, y ∈ Bd = {y ∈
Rd : |y| ≤ 1} and 0 < ε ≤ ε0, a function Φy : Rd → Rd defined by

Φy(x) = x+ εgh(x)y,

where gh both satisfies gh(x) ' hT for x ∈ T and is of sufficient regularity
for our needs (it will be further explained in each case). Let Φ∗y denote the
pullback of Φy, then the smoothing operator Rε

h on a differential form ω is
defined as

19
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(Rε
hω)x =

∫
B
ρ(y)(Φ∗yEω)x dy,

where ρ ∈ C∞0 (Bd) is some mollifier function satisfying 0 ≤ ρ(y) ≤ 1 and∫
Bd ρ(y) dy = 1. In the first construction E will be an extension operator
explained below while in the second it will just be the identity. E will have
the property of commuting with the exterior derivative d, and since the same
holds true for pullbacks, it will hold for Rε

h as well. In other words we have
d ◦Rε

h = Rε
h ◦ d.

3.1 Standard Degrees of Freedom

Let gh : Ω → R+ be the piecewise affine function determined by setting, on
vertices

gh(x) =
1

|Th(x)|
∑

T∈Th(x)

hT , x ∈ ∆0(Th)

where hT = diam(T ) for T ∈ Th, Th(x) = {T |T ∈ Th, x ∈ T} and |Th(x)| is
the cardinality of Th(x). The functions gh are uniformly Lipschitz continuous,
with Lipschitz constants Lmesh depending on the shape-regularity constant
Cmesh.

The extension operator. Using the smoothing operator on/near the
boundary is troublesome. We therefore need an extension operator E :
HΛk(Ω) → HΛk(Ω̃) where Ω̃ ⊃ Ω̄. The construction of such an extension
operator can be found in part 4.1 of [8], but intuitively it can be thought of
as a reflection with respect to the boundary. It is defined as a pullback and
it has the properties that d◦E = E ◦ d, E ∈ L(HΛk(Ω), HΛk(Ω̃)) and there
exist an ε0 > 0 such that Bε(x) ⊂ Ω̃ for any x ∈ Ω and 0 < ε ≤ ε0.

Using this extension operator we find that the smoothing operator Rε
h is a

map from L2Λk(Ω) to CΛk(Ω) for all 0 ≤ k ≤ d.

Scaling. For T ∈ Th recall from the introduction that Th(T ) denotes its
macroelement and T ∗ the corresponding domain. If T ∩ ∂Ω 6= ∅ we extend
T ∗ to also include
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{x ∈ Ω̃ r Ω : dist(x, T ) ≤ hT}.

Let F be a map from T ∈ Th onto a reference simplex T̂ given by F (x) =
(x − x0)/hT , where x0 is the first vertex of T . Define T̂ ∗ = F (T ∗). The
operator

R̂ε
h = F ∗−1Rε

hF
∗ : L2Λk(T̂ ∗)→ L2Λk(T̂ )

is then the smoothing operator in the space of scaled variables, satisfying

(R̂ε
hω)x =

∫
B1

ρ(y)(Φ̂∗yÊω)x dy.

Here, Ê = F ∗−1EF ∗ is the scaled extension operator, Φ̂y : T̂ → T̂ ∗ satisfies

Φ̂y(x) = x+ εĝh(x)y

and ĝh(x) = h−1
T gh(F

−1x) is the scaled mesh function. Clearly the matrices
DΦ̂y have the property that

|DΦ̂y − I| ≤ εLh (3.1)

on T̂ , where Lh is the Lipschitz constant of ĝh.

Lemma 8. For each ε ∈ (0, ε0] there is a constant c(ε), independent of T ∈ Th
and h, such that

||R̂ε
h||L(L2Λk(T̂ ∗),CΛk(T̂ )) ≤ c(ε)

This is Lemma 4.2 in [8] and the proof is found there.

For IαT the interpolator onto Λh[α] of the form (2.7) described in Chapter 2,
we have the following important lemma.
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Lemma 9. Let ω ∈ Λd−1(T̂ ∗) with w|T̂ of the form (2.6) for T̂ ′ ∈ T (T̂ ).
Then there is a constant C > 0, independent of T ∈ Th, h, ε and α, such
that

||Iα
T̂

(I − R̂ε
h)ω||L2Λd−1(T̂ ) ≤ Cε

∑
T̂ ′∈T (T̂ )

||ω||L∞(T̂ ′)

for ε small enough.

Proof. First note that Iα
T̂
ω is determined by integrals of the form

∫
e
Treω on

subrectangles e ∈ ∆d−1(T̂ ). We decompose the edges e into eε and e r eε,
where

eε = {x ∈ e : dist(x, ∂e) ≥ Cε}.

For v1, .., vd−1 unit tangent vectors to e we have

|(ω)x(v1, ..., vd−1)− (ω)z(DΦyv1, ..., DΦyvd−1)|
≤ |(ω)x(v, ..., vd−1)− (ω)z(v, ..., vd−1)|+ |(ω)z(v, ..., vd−1)− (ω)z(DΦyv1, ..., DΦyvd−1)|

≤ |DΦy − I|
∑

T̂ ′∈T (T̂ )

||ω||L∞(T̂ ′)

≤ Cε
∑

T̂ ′∈T (T̂ )

||ω||L∞(T̂ ′),

since (Treω)x = (Treω)z for all edges e when ω is of the form (2.6).

Hence,

|
∫
eε

(I − R̂ε
h)ω| = |

∫
B
ρ(y)

∫
eε

(ω − (Φy)
∗ω) dy|

≤ Cε
∑

T̂ ′∈T (T̂ )

||ω||L∞(T̂ ′).

Lastly, we observe that

|
∫
ereε

(I − R̂ε
h)ω| ≤ |

∫
ereε

ω|+ |
∫
ereε

R̂ε
hω| ≤ cε||ω||L∞Λd−1(T̂ ∗),

and the result follows.
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The smoothed projection. The interpolation operators Iαh and the smooth-
ing operators Rε

h will be used to define the projection operators Pα
h onto the

upwinded finite element spaces Λh[α].

Proposition 10. For each ε ∈ (0, ε0] there exist a constant c(ε) such that

||IαhRε
h||L(L2Λd−1(Ω),L2Λd−1(Ω)) ≤ c(ε)

for all h.

Proof. Shape regularity of Th implies bounded overlap, so

∑
T∈Th

||ω||L2Λd−1(T ∗) ≤ c||ω||L2Λd−1(Ω).

Hence it suffices to show that

||IαhRε
h||L(L2Λd−1(T ∗),L2Λd−1(T )) ≤ c(ε).

Using the scaling map F defined above we observe that

||IαhRε
h||L(L2Λd−1(T ∗),L2Λd−1(T )) = ||F ∗−1IαTR

ε
hF
∗||L(L2Λd−1(T̂ ∗),L2Λd−1(T̂ ))

= ||Iα
T̂
R̂ε
h||L(L2Λd−1(T̂ ∗),L2Λd−1(T̂ )),

so since Iαh is uniformly bounded in L(CΛd−1(T̂ ), L2Λd−1(T̂ )), the result fol-
lows from Lemma 8.

For a fixed ε the operators IαhR
ε
h are uniformly bounded maps, with respect

to h and α, from L2Λd−1(Ω) onto Λh[α] in the L2 norm. However, they are
not projections since they are not invariant on Λh[α]. The next proposition
fixes this.

Proposition 11. There exist a constant C > 0, independent of ε, h and α,
such that
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||I − IαhR
ε
h|Λd−1||L(L2Λh[α],L2Λh[α]) ≤ Cε

for ε ∈ (0, ε0].

Proof. Because of Proposition 10 and scaling it is enough to show that

||I − IαT ∗R̂
ε
h|||L(L2Λh[α](T̂∗),L2Λh[α](T̂ )) ≤ Cε.

For ω ∈ Λh[α](T̂ ∗) we have Iα
T̂

= w|T̂ , so from the compactness of the
macroelements we know that

∑
T̂ ′∈T (T̂ )

||ω||L∞Λd−1(T ′) ≤ c||ω||L2Λh[α](T̂ ∗).

Hence the bound follows from Lemma 9.

By choosing ε ∈ (0, ε1], where ε1 < ε0 it follows from Proposition 11 that
IαhR

ε
h|Λd−1 is invertible, with the inverse Qε

h satisfying

||Qε
h||L(L2Λh[α],L2Λh[α]) ≤ 2.

We now fix ε ∈ (0, ε1]. The smoothed interpolation operator Pα
h is then

defined by

Pα
h = Qε

hI
α
hR

ε
h.

Putting it all together we get the following result.

Corollary 12. The projections Pα
h defined above satisfies

||Pα
hω||L2Λd−1 � ||ω||L2Λd−1 ,

for a constant independent of h and α. Furthermore, for all ω ∈ L2Λd−1(Ω),
Pα
hω → ω in L2 as h→ 0.
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Proposition 13. For Λh[α] of the form (2.7) we have the convergence esti-
mate

||ω − Iαhω||L2 ≤ chs||ω||Hs ω ∈ Hs,

for 0 < s ≤ 1.

This estimate follows from the corresponding estimate for projections onto
piecewise constants. More formally we have the following slight variation of
the proof of Theorem 5.6 in [1].

Proof. Letting P0Λd−1(Th) be the usual space of piecewise constant forms,
we have

||ω − Pα
hω|| = inf

µ∈Λh[α]
||(I − Pα

h)(ω − µ)|| � inf
µ∈Λh[α]

||ω − µ||

� inf
µ∈P0Λd−1(Th)

||ω − µ|| � hs||ω||Hs ,

where the last inequality is a well-known result and follows from the Bramble-
Hilbert lemma or Clément interpolation (see e.g [4]).

Remark: This estimate is optimal in the sense that any "improved" version
would necessarily depend on α, since all ω ∈ Λh[α] of the form (2.7) converges
to piecewise constant forms when α→ 0.

3.2 Modified Degrees of Freedom

In this section we assume the mesh Th is quasi-uniform in addition to being
shape-regular. We can therefore choose gh(x) = h as was done in [1]. Observe
that for dα defined in (2.3) we have
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(Rε
h dαω)x =

∫
B
ρ(y)(Φ∗y dαω)x dy =

∫
B
ρ(y)(Φ∗y(α dω + β ∧ ω))x dy,

=

∫
B
ρ(y)(α d(Φ∗yω) + Φ∗y(β) ∧ Φ∗y(ω))x dy,

=

∫
B
ρ(y)(α d(Φ∗yω) + β ∧ Φ∗y(ω))x dy,

= α d(

∫
B
ρ(y)(Φ∗yω)x dy + β ∧ (

∫
B
ρ(y)Φ∗yω)x dy = ( dαR

ε
hω)x,

where we have used that Φ∗y(β) = β when gh is a constant function and β is
a constant form. If we wanted to use the above construction again for these
interpolators Jαh , the main difference would be in Lemma 9. However, we
shall use a different construction here. Let the mollifier function ρ have the
property that

∫
Bd
ρ(y)f(y) dy = f(0) ∀f ∈ E ⊗ Pd,

where E = {f(y) = a+be−
β
α
εhy : a, b ∈ R} and Pd is the set of polynomials of

degree at most d. Then we can use most of the theory of [7] section 5.3 with
only minor modifications. Letting ∇ denote the usual gradient of a tensor
field, we have the following important results.

Lemma 14. Let k ∈ {d− 1, d} and ω ∈ Λk
h[α] from the complex (2.4), then

Rε
hω = ω and ∇Rε

hω = ∇ω.

Proof. The case k = d follows from [7] since Λk
h[α] is then the space of

piecewise constant d-forms. Assume k = d−1. First observe that gh constant
implies

DxΦy(x)v = v,

and so

(Φ∗yω)x(v1, ..., vk) = ωΦy(x)(DxΦy(x)v1, ..., DxΦy(x)vk),

=
∑
i

(aTi + bTi e
− β
α

(x+εhy)) ? ( dxi)(v1, ..., vk)
(3.2)
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is in the space E⊗Pd−1 as a function of y. Its value at y = 0 is ωx(v1, ..., vk),
hence

(Rε
hω)x(v1, ..., vk) =

∫
B
ρ(y)(Φ∗yω)x(v1, ..., vk) dy = ωx(v1, ..., vk),

and we have Rε
hω = ω. For ∇Rε

hω = ∇ω we can use the same argument on
expression (5.18) in [7] for (DxΦ

∗
yω)x(v1, ..., vd).

For T ∈ Th recall that T ∗ denotes its macroelement. Let T ∗ε = {B(x, εh) :
x ∈ T}.

Lemma 15. For a fixed ε > 0 and any T ∈ Th of maximal dimension we
have the estimates

||∇Rε
hω||L2(T ) � ||∇ω||L2(T ∗ε ).

and

||ω −Rε
hω||L2(T ) � h||∇ω||L2(T ∗ε ) (3.3)

This is proposition 5.58 in [7] and the proof is essentially the same since
our Rε

h also preserves constants. Note that we can use h in (3.3) because
of quasi-uniformity. The above lemma together with the properties of Jαh
gives us the proposition below by a standard scaling argument, as long as ε
is chosen small enough such that T ∗ε ⊂ T ∗ for all T ∈ Th.

Proposition 16. For k ∈ {d − 1, d} and ω ∈ L2Λk defined on T ∗ε we have
the estimates

||JαhRε
hω||L2(T ) ≤ C||ω||L2(T ∗ε ),

||ω − JαhR
ε
hω||L2(T ) ≤ C ′h||∇ω||L2(T ∗ε ),
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for constants C,C ′ > 0 independent of h. Lastly, choosing ε so small that
||(I − JαhR

ε
h)|Λkh[α]|| ≤ 1

2
, then JαhR

ε
h|Λkh[α] is invertible with norm less than 2.

Defining Πα
h by

Πα
h = (IαhR

ε
h|Λkh[α])

−1IαhR
ε
h,

we get the next proposition.

Corollary 17. For k ∈ {d− 1, d}, the projections Πα
h defined above satisfies

||Πα
hω||L2Λk ≤ C1||ω||L2Λk ,

|| dα Πα
hω||L2Λk ≤ C2|| dα ω||L2Λk

for constants C1, C2 > 0 independent of h. Furthermore, for all ω ∈ L2Λk(Ω),
Πα
hω → ω in L2 as h→ 0.

We have the convergence estimate

||ω − Πα
hω||L2 ≤ Chs||ω||Hs ω ∈ Hs, (3.4)

for 0 ≤ s ≤ 1. This estimate follows from the essentially the same proof as in
Proposition 13. The main difference is that the constant C > 0 can depend
on α.

Remark: Note the missing extension operator in this construction, and with-
out it these projections can only be used in the case of periodic boundary
conditions. The reason we lack an extension operator E in this case is that
we would need it to both preserve the space Λk

h[α] in some sense, e.g. for
ω ∈ Λk

h[α](Ω) we would need Eω ∈ Λk
h[α](Ω̃) where Ω̃ ⊃ Ω̄ and have the prop-

erty that E(β) = β for β a constant 1-form. Constructing such an operator
is difficult.

Original Complex

We can construct smoothed projections for the interpolators of our origi-
nal complex (2.2) as well. Since we do not use this complex, we will not
go through this construction. The smoothed projections onto this complex
would have the property of commuting with d.



Chapter 4

Convection Diffusion

4.1 Upwind (L2, Hdiv)-Formulation for α ∼ |β|

We start by assuming α ∼ |β| and show the continuous and discrete infsup-
conditions in this case. Our main assumption in this chapter is that Ω is
a convex domain. We will further assume Ω ⊂ R2, but our proofs will also
work for Ω ⊂ R3 with only minor modifications. Let u = −α∇p+ βp then a
(L2, Hdiv) mixed formulation of (1.1) is find p ∈ L2 and u ∈ Hdiv such that

∫
Ω

u · v dx dy +

∫
Ω

(α∇ · v + β · v)p dx dy = 0 ∀v ∈ Hdiv∫
Ω

(∇ · u)q dx dy =

∫
Ω

fq dx dy ∀q ∈ L2.

(4.1)

Define

a(u, v) =

∫
Ω

u · v dx dy,

b1(p, v) =

∫
Ω

(α∇ · v + β · v)p dx dy,

b2(q, u) =

∫
Ω

(∇ · u)q dx dy,

(4.2)

29



30 CHAPTER 4. CONVECTION DIFFUSION

then the mixed formulation can be written as

a(u, v) + b1(p, v) = 0 ∀v ∈ Hdiv

b2(q, u) =< f, q > ∀q ∈ L2.
(4.3)

We observe that the continuity conditions on the bilinear forms a, b1 and b2

with u, v ∈ Hdiv and p, q ∈ L2 follows from Hölder’s inequality

|a(u, v)| ≤
∫

Ω

|u · v| dx dy ≤ ||u||L2||v||L2 ≤ ||u||Hdiv
||v||Hdiv

,

|b1(p, v)| ≤
∫

Ω

|αp∇ · v| dx dy +

∫
Ω

|pβ · v| dx ≤ C1||p||L2(||∇ · v||L2 + ||v||L2)

≤ C1||p||L2||v||Hdiv

|b2(q, u)| ≤
∫

Ω

|(∇ · u)q| dx dy ≤ ||∇ · u||L2||q||L2 ≤ ||u||Hdiv
||q||L2 ,

(4.4)

where the constant C1 > 0 depends on both α and β.

Proposition 18. Problem (4.1) is wellposed with the norms Hdiv and L2.

Proof. This follows from Proposition 1 and Lemma 19, Lemma 21 and Lemma
23 below.

The infsup constants will in general depend on α and β when using the
standard norms on Hdiv and L2, but that is not a problem in this case since
we have assumed α, |β| ∼ 1. Let Th be a rectangular mesh of Ω and define
Xh

1 , X
h
2 ⊂ Hdiv and Y h ⊂ L2 by

Xh
1 = {v ∈ Hdiv : v|T = (aT + bT e

−β1x
α , cT + dT e

−β2y
α ), T ∈ ∆d(Th)}

Xh
2 = {u ∈ Hdiv : u|T = (aT + bTx, cT + dTy)T ∈ ∆d(Th)}

Y h = {q ∈ L2 : q|T = aT , T ∈ ∆d(Th)}
(4.5)

Note that ∇ ·Xh
2 = Y h and (Xh

2 , Y
h) is the standard lowest order Raviart-

Thomas elements, while Xh
1 is an exponentially upwinded test space corre-

sponding to Xh
2 . The upwinded mixed discretization of (1.1) is then find

u ∈ Xh
2 and p ∈ Y h such that
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a(u, v) + b1(p, v) = 0 ∀v ∈ Xh
1

b2(q, u) =< f, q > ∀q ∈ Y h.

We begin with the infsup conditions on b1.

Lemma 19. There exists a constant B1 > 0 depending on α and β such that
the continuous infsup condition

sup
v∈H1

b1(p, v)

||v||H1

≥ B1||p||L2 , ∀p ∈ L2.

is satisfied.

Proof. Given p ∈ L2, let φ ∈ H1 be defined by ∇φ = v and choose the
optimal test function v such that φ is the weak solution to α∆φ+β ·∇φ = p
with φ|∂Ω = 0. Formally we have

−
∫

Ω

α∇φ · ∇ψ dx dy +

∫
Ω

β · ∇φψ dx dy =

∫
Ω

pψ dx dy, (4.6)

for all ψ ∈ H1
0 . Standard Sobolev theory [11] gives us the estimates

||v||L2 = ||∇f ||L2 ≤ C||p||L2 ,

for a constant C > 0 that can in general depend on α. Elliptic regularity
and p ∈ L2 implies φ ∈ H2, and so

−
∫

Ω

∇φ · ∇ψ dx dy =

∫
Ω

∆φψ dx dy

for all ψ ∈ H1
0 . Choose ψn ∈ H1

0 such that ψn → p in L2, then we have
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b1(p, v) =

∫
Ω

αp∆φ dx dy +

∫
Ω

pβ · ∇φ dx dy

= lim
n

∫
Ω

αψn∆φ dx dy +

∫
Ω

ψnβ · ∇φ dx dy

= lim
n

∫
Ω

pψn dx dy =

∫
Ω

|p|2 dx dy = ||p||2L2 ,

and the result follows, since equation (4.6) then gives us an α-dependent
bound on ||v||H1 .

Remark: In the case a << |β|, we could try choosing Dirichlet conditions
φ = 0 on the inflow boundary and the Neumann conditions φ · n = 0 on the
outflow boundary in the above argument to avoid boundary layers in optimal
test function v.

Note that φ ∈ H2 implies the optimal test function v ∈ (H1)d which is an
important ingredient in the next proof.

Proposition 20. There exists a constant B̂1 > 0 independent of h such that
the discrete infsup condition (1.11) (i = 1), with the spaces Xh

1 and Y h
1 = Y h

defined as in (4.5), is satisfied with the L2 and Hdiv norms.

Proof. Let Iαh : Hdiv → Xh
1 be the interpolators onto the complex (2.4) de-

scribed in Chapter 2. Recall that they satisfy a convergence estimate and we
have ||Iαhv||Hdiv

≤ C||v||H1 , for some constant C > 0 independent of h. We
begin by noting that for p ∈ L2 and v ∈ H1 its optimal test function found
in Lemma 19, we have

|b1(p, v − Iαhv)| = |
∑
T

∫
T

αpT∇ · (v − Iαhv) dx dy +

∫
Ω

pβ · (v − Iαhv)| dx dy

≤ |
∑
T

αpT

∫
∂T

(v − Iαhv) · n dS|+
∫

Ω

|pβ · (v − Iαhv)| dx dy

≤ |β| ||p||L2||v − Iαhv||L2

� h||p||L2||v||H1/2−ε −−→
h→0

0.

Here, we have used that
∫
∂T

(v− Iαhv) ·n dS = 0 for v ∈ H1/2+ε by the degrees
of freedom for Iαh . Hence, we can find a constant C > 0 such that
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|b1(p, v − Iαhv)| ≤ C|b1(p, Iαhv)| (4.7)

for all h smaller than some h0. Let h be smaller than h0 and let p ∈ Y h ⊂ L2.
From the previous lemma we know that

B1||p||L2 ≤ sup
v∈H1

b1(p, v)

||v||H1

= sup
v∈H1

b1(p, v − Iαhv) + b1(p, Iαhv)

||v||H1

Using property (4.7) we have

B1||p||L2 � sup
v∈H1

b1(p, Iαhv)

||v||H1

� sup
v∈H1

b1(p, Iαhv)

||Iαhv||Hdiv

� sup
v∈Xh

1

b1(p, v)

||v||Hdiv

.

The discrete infsup condition on b2(q, u) =
∫

Ω
(∇ · u)q dx dy for Raviart-

Thomas elements is a well-known result. We give it here for completeness
sake.

Lemma 21. There exists a constant B2 > 0 depending on α and β such that
the continuous infsup condition

sup
u∈Hdiv

b2(q, u)

||u||Hdiv

≥ B2||q||L2 , ∀q ∈ L2.

is satisfied.

Proof. Let q ∈ L2 be given. Let the optimal trial function u ∈ Hdiv be of the
form u = ∇f for some f ∈ H1

0 , such that f is the weak solution to

∆f = ∇ · u = q.
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It follows from standard Sobolev theory that ||u||L2 = ||∇f ||L2 ≤ C||q||L2 for
some constant C > 0. We then have

sup
u∈Hdiv

b2(q, u)

||u||Hdiv

= sup
u∈Hdiv

∫
Ω
∇ · uq dx dy

||u||L2 + ||∇ · u||L2

,

= sup
u∈Hdiv

||q||2L2

||u||L2 + ||q||L2

≥ B2||q||L2 .

Proposition 22. There exists a constant B̂2 > 0 independent of h such that
the discrete infsup condition (1.11) (where i = 2), with the spaces Xh

2 and
Y h

2 = Yh are defined as in (4.5), is satisfied.

Proof. Let p ∈ Yh ⊂ L2 be given. Let Πh : Hdiv → X2
h be the smoothed

projection found in [8] or [7], it has the properties that ||Πhu||Hdiv
� ||u||Hdiv

and

∫
T

∇ · Πhu dx dy =

∫
T

∇ · u dx dy (4.8)

on each rectangle T . Then from the previous lemma we have

B2||q||L2 ≤ sup
u∈Hdiv

b2(q, u)

||u||Hdiv

= sup
u∈Hdiv

b2(q, u− Πu) + b2(q,Πu)

||u||Hdiv

,

= sup
u∈Hdiv

b2(q,Πu)

||u||Hdiv

� sup
u∈Hdiv

b2(q,Πu)

||Πu||Hdiv

,

� sup
u∈Xh

2

b2(q, u)

||u||Hdiv

,

where we have used property (4.8) to find that

b2(q, u− Πhu) =
∑
T

qT

∫
T

(∇ · u−∇ · Πhu) dx dy = 0.
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Next we look at the continuous infsup condition (1.8) for a.

Lemma 23. There exist a constant A > 0 such that the continuous infsup
condition

sup
v∈K1

a(u, v)

||v||Hdiv

≥ A||u||Hdiv
, ∀u ∈ K2,

is true for the spaces

K1 = {v ∈ Hdiv : α∇ · v + β · v = 0},
K2 = {u ∈ Hdiv : ∇ · u = 0}.

Proof. Let u ∈ K2 be given, since it is divergence free there must exist a
φ ∈ H1 such that u = ∇× φ, where ∇× : R→ R2 is the usual curl-operator
from one to two dimensions. For any test function v ∈ K1 we know from
standard Helmholtz decomposition or Hodge decomposition that there exist
functions f, F ∈ H1 such that

v = ∇f +∇× F.

The optimal test function v is then chosen such that ∇×F = u and f |∂Ω = 0.
From the definition of K1 we have that f must satisfy the equation

α∆f + β · ∇f = −β · ∇ × F = −β · u (4.9)

and so v is uniquely determined for every u. It also follows from standard
Sobolev theory that ||∇f || ≤ C||u||L2 . Elliptic regularity gives f ∈ H2 and
from (4.9) we have

||∇ · v||L2 = ||∆f ||L2 ≤ C ′||u||L2 ,

and so

||v||Hdiv
= ||∇f +∇× F ||L2 + ||∆f ||L2 ≤ C ′′||u||L2 .
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The constants C,C ′, C ′′ > 0 above will in general depend on α and β. Using
integration by parts on a we observe that

a(u, v) =

∫
Ω

u · (∇f +∇× F ) dx dy = −
∫

Ω

∇ · uf dx dy +

∫
Ω

|u|2 dx dy = ||u||2L2 ,

and so the result follows.

Remark: The other infsup condition in (1.8)

sup
u∈K2

a(u, v) > 0, ∀v ∈ K1 r {0},

is trivial, since for a given v, just use the Helmholtz decomposition on v and
choose u = ∇× F .

Lastly we need to show the discrete infsup condition

sup
v∈Kh

1

a(u, v)

||v||Hdiv

≥ a||u||Hdiv
, ∀u ∈ Kh

2 ,

for the spaces

Kh
1 = {v ∈ Xh

1 :

∫
T

(α∇ · v|T + β · vT ) dx dy = 0 ∀T ∈ ∆d(Th)},

= {v ∈ Xh
1 : α∇ · v + β · v = 0},

Kh
2 = {u ∈ Xh

2 : ∇ · u = 0}.

(4.10)

Remark: We have used that (α∇+ β) · (Xh
1 ) and ∇ · (Xh

2 ) are both subsets
of the piecewise constants in the above description of the spaces Kh

i .

Unfortunately we have been unable to prove this. However, we do have a
weaker result after we have modified the norms in the next section.
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4.2 Natural norms

Later we will assume that α is a very small parameter. Since the convergence
estimates for the above discretization are bounded by the inverse of the above
infsup-constants, i.e. "constants" of order 1/α, we will need new convergence
estimates that are independent of α. This leads to what’s referred to as a
natural norm [16], which in our case is an α and β dependent norm such that
the continuity and infsup-constants are independent of these parameters.
We only need our constants to be independent of α, however, so any β
dependencies can in principle be ignored. We can also ignore logarithmic
terms in α, since | log(α)| will be small enough for almost all applications.
Note the following result

Proposition 24. An almost natural norm of the bilinear form

c(φ, ψ) =

∫
Ω

α∇φ · ∇ψ + β · ∇φψ

is, up to logarithmic terms in α, given by

|||φ|||2 = α|φ|2H1 + ||β · ∇φ||2(C0,C1)1/2,2
,

where || · ||(C0,C1)1/2,2 is an interpolation norm [19] between C0 = H−1 and
C1 = β · ∇(H1

0 ).

See [16], [17] and [18] for details. Observe that the second term is essentially
a non-standard H1/2 norm. We will not use this result, but looking at this
norm and the properties of our complex (2.4), we suspect the natural norms
for our problem could be of the form

||u||w = ||u||
H

1/2
w

+ || du||L2 ,

||v||w,dα = ||v||
H
−1/2
w

+ || dαv||L2 ,
(4.11)

where || · ||
H

1/2
w

is one of the many possible H1/2-norms. Analogous to the

H
1/2
w -norm used in [6], it has to be weak enough to allow discontinuities, since

tangential components of u are not necessarily continuous. H−1/2
w is then the
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dual space of this unknown space H1/2
w . Note that we have slightly abused

notation in (4.11) by using the exterior derivative on a vector field. This is
done to indicate the symmetric nature of these norms. We observe that the
continuity conditions on the bilinear forms a and b1 with these new norms
follows from Hölder’s inequality,

|a(u, v)| = | < u, v > | ≤ ||u||
H

1
2
w

||v||
H
− 1

2
w

≤ ||u||w||v||w,dα ,

|b1(p, v)| ≤
∫

Ω

|(α∇ · v + β · v)p| dx ≤ || dαv||L2 ||p||L2 ≤ ||v||w,dα||p||L2 ,

|b2(q, u)| ≤
∫

Ω

|(∇ · u)q| dx ≤ ||u||w||q||L2 .

where < ·, · > denotes the dual pairing between H1/2
w and H−1/2

w . Assuming
these norms actually are natural for our problem, i.e. that the continuous
infsup condition (1.9) for a is true with them, we can finally prove a weaker
version of our discrete infsup condition (1.13). Under the additional assump-
tion that we have some extra regularity on the optimal trial function u. This
may be a too strong assumption, but it is natural to expect that once we
have some regularity on an optimal trial function, we can get a little more
by for example elliptic regularity.

Proposition 25. Assuming the continuous infsup condition (1.9) on a is
true with the norms (4.11), and furthermore that the optimal trial function
u is actually in H1, then the discrete infsup condition (1.13)

sup
u∈Kh

2

a(u, v)

||u||w
≥ Â||v||w,dα , ∀v ∈ Kh

1 , (4.12)

is true for the spaces (4.10).

Proof. Let v ∈ Kh
1 ⊂ K1 be given and let u ∈ K2 be its corresponding optimal

trial function. Again, let Πh : Hdiv → Xh
2 be the smoothed projections found

in [8] or [7] for piecewise linear elements. We then have

a(u− Πhu, v) =

∫
Ω

(u− Πh) · v dx dy ≤ ||u− Πhu||H1/2
w
||v||

H
−1/2
w

� h1/2|u|H1||v||
H
−1/2
w
−−→
h→0

0,
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and so the result would follow from a similar argument as in Proposition
20.

Remark: If we modify our discretization by taking p from the space

Y h
1 = {p ∈ L2 : p|T = pT e

β1x+β2y
α , T ∈ ∆d(Th)},

and using the norm (4.11) on v, we can use our smoothed projections Πα
h to

find a simpler proof of the discrete infsup condition on b1, assuming we find
an extension operator for it.

Proof. Let p ∈ Y h
1 ⊂ L2 and v ∈ Hdiv its optimal test function be given.

Then we have

b1(p, v − Πα
hv) =

∫
Ω

p dα(v − Πα
hv) =

∫
Ω

p( dαv − Πα
h dαv),

=
∑
T

∫
T

pT e
β1x+β2y

α ( dαvT − Πα
h dαvT ) = 0,

by the degrees of freedom for our projections Πα
h . It then follows from Lemma

19 that

||p||L2 � sup
v∈Hdiv

b1(p, v)

||v||L2 + || dαv||L2

= sup
v∈Hdiv

b1(p, v)

||v||L2 + || dαv||L2

� sup
v∈Hdiv

b1(p,Πα
hv)

||Πα
hv||L2 + || dαΠα

hv||L2

� sup
v∈Xh

1

b1(p, v)

||v||L2 + || dαv||L2

.

4.3 Upwind (L2, Hdiv)-Formulation for α << |β|

Stability in 1D
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We investigate the case α << |β| in dimension 1, and show the infsup con-
ditions with constants independent of α using the norms (4.11). In one
dimension our equation (1.1) becomes

(αpx − βp)x = f p|∂Ω = 0,

and to simplify we set Ω = (0, 1). A simple rescaling can turn it into

(αpx − p)x = f p|∂Ω = 0

so we can without loss of generality assume β = 1. Setting u = αpx − p, the
mixed formulation is then find p ∈ L2(Ω) and u ∈ H1(Ω) such that

∫
Ω

uv dx+

∫
Ω

p(αvx + v) dx = 0 ∀v ∈ H1(Ω)∫
Ω

uxq dx =

∫
Ω

fq dx ∀q ∈ L2(Ω).

Since Hdiv = H1 in dimension 1 the natural norms of this problem becomes
much easier to handle. We can use the H1 norm on u, and for v use the norm
|| · ||α defined by

||v||α = ||v||H−1/2 + ||αvx + v||L2 . (4.13)

We observe that the continuity conditions on the bilinear forms a, b1 and b2

with these new norms also follows from Hölder’s inequality.

|a(u, v)| = |
∫

Ω

uv dx| ≤ ||u||H1/2||v||H−1/2 ≤ ||u||H1||v||α,

|b1(p, v)| ≤
∫

Ω

|(αvx + v)p| dx ≤ ||αvx + v||L2||p||L2 ≤ ||v||α||p||L2 ,

|b2(q, u)| ≤
∫

Ω

|uxq| dx ≤ ||u||H1||q||L2 .
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Since this is in one dimension the mesh is just a partition of the unit in-
terval, and so Th = {T1, ..., Tn} where n = [1/h]. The spaces for the finite
dimensional approximation becomes

Xh
1 = {v ∈ H1 : v|T = aT + bT e

− x
α , T ∈ Th},

Xh
2 = {u ∈ H1 : u|T = aT + bTx, T ∈ Th},

Y h = {q ∈ L2 : q|T = aT , T ∈ Th}.
(4.14)

Lemma 26. The continuous infsup condition on b1(p, v) =
∫

Ω
(αvx + v)p dx

with the norm || · ||α on v and the L2 norm on u is satisfied.

Proof. Let v be the solution to

αvx + v = p, v(0) = 0,

then

v(x) =

∫ x

0

1

α
e

(s−x)
α p(s) ds. (4.15)

Using the function Gα from [6] defined by

Gα(x) =

{
1
α
e−

x
α for x ≥ 0,

0 for x < 0,
(4.16)

we observe that (4.15) can be written as

v = Gα ∗ p. (4.17)

Since ||Gα||L1 ≤ 1 and p ∈ L2 we have by Young’s inequality [19] that
||v||L2 ≤ ||p||L2 . Hence, ||v||α � ||v||L2 + ||αvx + v||L2 � ||p||L2 and

b1(p, v)

||v||α
�
||p||2L2

||p||L2

� ||p||L2 ,
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where the constant is independent of α.

Proposition 27. The discrete infsup condition on b1(p, v) =
∫

Ω
(αvx+v)p dx

with the norm || · ||α on v and the L2 norm on p is satisfied.

Proof. Let p ∈ Y h
1 ⊂ L2 be given. Define v as the solution to

αvx + v = p v(0) = 0,

then it is a piecewise exponential function in the space Xh
1 , since dα(Xh

1 ) =
Y h. As in the above lemma v can be written as v = Gα ∗ p, for Gα defined in
(4.16), and so by the same argument ||v||α � ||p||L2 . The result follows.

Lemma 28. The continuous infsup condition on b2(q, u) =
∫

Ω
qux dx is sat-

isfied with the H1 norm on u and the L2 norm on q.

Proof. Let q ∈ L2 be given and let u solve

vx = q u(0) = 0.

Then by Poincaré’s inequality we have ||u||L2 � ||ux||L2 � ||q||L2 , and so

b2(q, u)

||u||H1

=
||q||2L2

||u||H1

≥ B1

||q||2L2

||q||L2

= B1||q||L2 .

Proposition 29. The discrete infsup condition on b2(q, u) =
∫

Ω
qux dx is

satisfied with the H1 norm on u and the L2 norm on q.

Proof. Let q ∈ Y h ⊂ L2 be given and let u solve

ux = q u(0) = 0.

Then u is a piecewise linear function in Xh
1 , and the result follows from the

same argument as in the above lemma.
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Lemma 30. The continuous infsup condition (1.9) on a(u, v) =
∫

Ω
uv dx is

satisfied, up to logarithmic terms in α, for u ∈ K2 with the H1-norm and
v ∈ K1 with the norm || · ||α.

Proof. Observe that u ∈ K2 means ux = 0 which implies u is of the form

u = c

for c constant. On the other hand v ∈ K1 means αvx + v = 0 which implies

v = ke−
x
α ,

for k constant. We can choose k = 1 and by a simple calculation we have

a(u, v) =

∫
Ω

uv dx =

∫ 1

0

ce−
x
α dx = cα(1− e−

1
α ).

To estimate ||v||α = ||v||H−1/2 we use the fact that an equivalent norm for
H−1/2 is in dimension 1 given by the square-root (of the absolute value) of
the integral

∫ 1

0

∫ 1

0

log |x− y|v(x)v(y) dx dy =

∫ 1

0

∫ 1

0

log |x− y|e−
x+y
α dx dy. (4.18)

Using substitutions x
α
→ x and y

α
→ y the integral (4.18) turns into

α2

∫ 1/α

0

∫ 1/α

0

log |α(x− y)|e−x−y dx dy = α2

∫ 1/α

0

∫ 1/α

0

log |α|e−x−y dx dy,

+ α2

∫ 1/α

0

∫ 1/α

0

log |x− y|e−x−y dx dy,

(4.19)

and we immediately see that
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α2

∫ 1/α

0

∫ 1/α

0

log |α|e−x−y dx dy = α2 log(α)[1− e−
1
α ]2.

As for the remaining term in (4.19) we use the substitutions u = x + y,
v = x− y and observe

α2

∫ 1/α

0

∫ 1/α

0

log |(x− y)|e−x−y dx dy = α2

∫ 1/α

0

∫ u

−u
log |v|e−u2 dv du,

+ α2

∫ 2/α

1/α

∫ 2/α−u

u−2/α

log |v|e−u2 dv du,

(4.20)

where we have used that the determinant of the Jacobian is 2. continuing
with the first integral in (4.20) we get

α2

∫ 1/α

0

∫ u

−u
log |v|e−u2 dv du = 2α2

∫ 1/α

0

2u(log(u)− 1)e−u du = α2O(1),

since

∫ 1/α

0

u(log(u)− 1)e−u du −−→
α→0

−γ,

where γ is the Euler–Mascheroni constant. Next we look at the second inte-
gral in (4.20)

α2

∫ 2/α

1/α

∫ 2/α−u

u−2/α

log |v|e−u2 dv du = 2α2

∫ 2/α

1/α

2(
2

α
− u)(log(

2

α
− u)− 1)e−u du,

= 4α2e−
2
α

∫ 1/α

0

w(log(w)− 1)ew dw,

(4.21)
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where we have used the substitution w = 2
α
− u. This last integral (4.21) is

O(α2) since it follows, by for example Hölder’s inequality, that

e−
2
α

∫ 1/α

0

w(log(w)− 1)ew dw −−→
α→0

0.

All in all we have

||v||2H−1/2 ≤ C(α2 log(α) + α2),

for a constant C > 0 independent of α. We conclude that

||v||α � α
√

log(α),

and
a(u, v)

||v||α
� cα

α
√

log(α)
� log(α)−1/2||u||H1 ,

which is what we want.

Proposition 31. The discrete infsup condition (1.13) on a(u, v) =
∫

Ω
uv dx

is satisfied, up to logarithmic terms in α, for u ∈ Kh
2 with the H1-norm and

v ∈ Kh
1 with the norm || · ||α.

Proof. Observe that u ∈ Kh
2 means (ui)x = 0 on each subinterval Ti, and

so ui is of the form ui = ci for ci constant. Continuity between intervals,
however, requires these constants are all equal, i.e. that ci = c for all i.
Similarly for v ∈ Kh

1 we have α(vi)x + (vi) = 0 which implies

vi = kie
− x
α ,

for ki constant. Again continuity between intervals requires ki = k for all i.
Hence, this infsup condition is the same as in Lemma 30.
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Putting it all together we get the following result.

Corollary 32. The exponentially upwinded discretization for the one dimen-
sional problem described above is stable up to logarithmic terms in α.

4.4 Downwind (L2, Hdiv)-Formulations

Let u = ∇p then a (L2, Hdiv) mixed formulation of (1.2) is find p ∈ L2 and
u ∈ Hdiv such that

∫
Ω

u · v dx+

∫
Ω

p∇ · v dx dy = 0 ∀v ∈ Hdiv∫
Ω

(β · u− α∇ · u)q dx dy =

∫
Ω

fq dx ∀q ∈ L2.

Define

a(u, v) =

∫
Ω

u · v dx dy,

b1(p, v) =

∫
Ω

p∇ · v dx dy,

b2(q, u) =

∫
Ω

(β · u− α∇ · u)q dx dy.

(4.22)

then this mixed formulation can be written in the same form as (4.3). As
above, let Th be our rectangular mesh. This time we define Xh

1 , X
h
2 ⊂ Hdiv

and Y h ⊂ L2 as

Xh
1 = {u ∈ Hdiv : u|T = (aT + bTx, cT + dTy)T ∈ ∆d(Th)}

Xh
2 = {v ∈ Hdiv : u|T = (aT + bT e

β1x
α , cT + dT e

β2y
α ), T ∈ ∆d(Th)}

Y h = {q ∈ L2 : q|T = aT , T ∈ ∆d(Th)}.
(4.23)

Note that the only difference between (4.23) and (4.5) is thatXh
1 andXh

2 have
been interchanged (up to a sign). The proofs for the continuity and infsup-
conditions are essentially the same as above, since we have just switched the
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roles of u and v (note the similarity of bi in (4.2) and b1−i in (4.22)). We
just need to choose the other infsup condition for a(u, v). The sign difference
in Xh

2 is caused by the sign difference in b2. The key difference in this case
is that the new error norm on u will be old norm on v, but this won’t give
us a better convergence estimate since our exponentially upwind/downwind
spaces have worse convergence properties than the regular piecewise linear
spaces.
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Chapter 5

Concluding Remarks

We have shown that a complex of differential forms which are piecewise
exponential can be used to construct an upwind mixed discretization of con-
vection diffusion equations. Several continuity and infsup-conditions have
been proven for this discretization, but only a weak version of the discrete
infsup-condition on a in the case α ∼ |β| was found. Possible candidates
for the natural norms of our problem have been identified and we have used
these norms to prove stability of our one dimensional discretization, up to
logarithmic terms in α, in the case α << |β|. Finding out whether these
norms are natural in higher dimensions as well, and determine exactly which
H1/2 norm is correct, still remains.

While we have made use of the interpolators and smoothed projections con-
structed for our complex (2.4) in our proofs, they lack many desired proper-
ties. Since we now have good norms for our problem, it makes it easier to
see which properties are the most essential for our smoothed projections and
which properties we can spare. The projection Pα

h constructed in Chapter
3 is L2 stable uniformly in α while the smoothed projection Πα

h commutes
with dα. To prove a discrete infsup condition using a smoothed projection
we would prefer one that satisfies at least both of these properties. This is
difficult, but since we only need H−1/2

w stability uniformly in α it is possible
that our projections Πα

h can be shown to satisfy this. Πα
h also lacks an ex-

tension operator, and both smoothed projections should be constructed for
all k-forms in the complex (2.4).

Thoughts on stability in 2D in the case α << |β|

1. Using the norms (4.11) the main difficulty (after finding out exactly which
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H1/2-norm is correct) lies in proving the infsup conditions on a(u, v) and
b1(p, v). For the discrete infsup-condition on b1 we can, for a given p ∈ Y h,
define the optimal test function v ∈ Xh

1 by

dαv = p, (5.1)

but then we can’t use our current smoothed projections to get an α-independent
bound on v. We would have to look for some other argument. Recalling def-
inition (4.5) of Xh

1 and Yh we observe that (5.1) turns into

aT1 β1 + aT2 β2 = aT

on each rectangle T , where v|T = (aT1 + bT1 e
−β1x
α , aT2 + bT2 e

−β2y
α ) and p|T = aT .

It then looks intuitively true that we can get such a bound v since the only
role of the bi’s will be to enforce continuity between the normal components
of v. We might therefore expect the term bT1 e

−β1x
α to be bounded either by

aT1 itself or the constant aT ′1 in the "next" rectangle T ′.

As for the continuous infsup condition on a, if we wished to use a similar
argument as in Lemma 23 we would need a bound of the form ||∇f ||

H
−1/2
w
�

||u||
H

1/2
w

for the function f defined there. Looking at Proposition 24 and
equation (4.9) we can get the bound ||β · ∇f ||H−1/2 � ||β · u||L2 , which is
almost, but not quite what we want.

2. Some of our interpolators were stable uniformly in α when using the
L1 or L∞ norms. Using spaces other than the usual L2 Hilbert spaces is
not common for finite element methods, but it has been done in e.g. [13].
A problem with using these norms is that neither L1 or L∞ are reflexive
Banach spaces, a requirement in Proposition 1. This could perhaps be fixed
by looking at the space of L1 trial functions with continuous test function
C, since L1 is dense in the dual space of C. Optimal test function would
then be sign(u) in the case u ∈ L1 and the Dirac delta in the case u ∈ C.
Finite element spaces are not suited for using the test function sign(u) since
a linear/exponential/monotone function can switch signs within an element,
something that would require the sign function to be discontinuous inside
a rectangle T . On the other hand, our piecewise exponential spaces could
perhaps be used to approximate the Dirac delta, at least in the limit α→ 0.



Appendix A

Appendix

A.1 Elliptic Regularity

Proposition 33. Let Ω be a convex domain. Then for each f ∈ L2(Ω) there
exist a unique p ∈ H2(Ω) such that p is the solution of

Lp = f in Ω

p = 0 on ∂Ω

when L is an elliptic operator.

This is Theorem 3.2.1.2 in [12] and the proof is found there.

A.2 Upwind (H1, L2)-Formulation

Let u = ∇p then a (H1, L2) mixed formulation of (1.2) is find p ∈ H1
0 and

u ∈ L2 such that

∫
Ω

u · v dx−
∫

Ω

∇p · v dx dy = 0 ∀v ∈ L2∫
Ω

(αu · ∇q + β · uq) dx dy =

∫
Ω

fq dx dy ∀q ∈ H1
0 .

(A.1)
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Define

a(u, v) =

∫
Ω

u · v dx dy,

b1(p, v) = −
∫

Ω

∇p · v dx dy,

b2(q, u) =

∫
Ω

(αu · ∇q + β · uq) dx dy.

(A.2)

then the mixed formulation can be written as

a(u, v) + b1(p, v) = 0 ∀v ∈ L2

b2(q, u) =< f, q > ∀q ∈ H1
0 .

(A.3)

First observe that || · ||α defined by

||q||α = || dαq||L2 = ||α∇q + βq||L2

is actually a norm on H1
0 , since α∇q + βq = 0 and q|∂Ω = 0 implies q =

0. Using this norm we observe that the continuity conditions follows from
Hölder’s inequality

|a(u, v)| ≤
∫

Ω

|u · v| dx ≤ ||u||L2||v||L2 ,

|b1(p, v)| ≤
∫

Ω

|∇p · v| dx ≤ ||p||H1||v||L2

|b2(q, u)| ≤
∫

Ω

|(α∇q + βq) · u)| dx dy ≤ ||q||α||u||L2 .

(A.4)

Define spaces

Y h
1 = {p ∈ H1

0 : p|T = aT + bTx+ cTy + dTxy, T ∈ Th}

Y h
2 = {q ∈ H1

0 : q|T = q|T = aT + bT e
−β1x
α + cT e

−β2y
α + dT e

−β2y
α e

−β1x
α , T ∈ Th}

Xh
1 = {v ∈ L2 : v|T = (aT + bTy, cT + dTx)T ∈ Th}

Xh
2 = {u ∈ L2 : u|T = (aT + bT e

−β1y
α , cT + dT e

−β2x
α ), T ∈ Th}

(A.5)
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Note that Y h
1 and Xh

1 are the usual piecewise polynomial spaces for this prob-
lem, satisfying ∇(Y h

1 ) = Xh
1 , while Y h

2 and Xh
2 are the exponentially upwind

spaces corresponding to the complex (2.4) of differential forms, satisfying
α∇ + β)(Y h

2 ) = Xh
2 . The infsup condition on b1 for the spaces Xh

1 and Y h
1

defined above is a well-known result.

Proposition 34. There exists a constant B̂1 > 0 independent of h such
that the discrete infsup condition (1.11) (i = 1), with the spaces Xh

1 and Y h
1

defined as in (A.5), is satisfied with the H1 norm on p and the L2 norm on
v.

Proof. Let p ∈ Y h
1 ⊂ H1

0 be given. Since ∇(Y h
1 ) = Xh

1 we choose the optimal
test function v ∈ Xh

1 such that v = −∇p. Then we have

b1(p, v)

||v||L2

=
−
∫

Ω
v · ∇p dx dy

||∇p||L2

= |p|H1 ,

and the result follows from Poincaré’s inequality.

Next, we look at the discrete infsup condition on b2.

Proposition 35. There exists a constant B̂2 > 0 independent of h such
that the discrete infsup condition (1.11) (i = 2), with the spaces Xh

2 and Y h
2

defined as in (A.5), is satisfied with the norm || · ||α on q and the L2 norm
on u.

Proof. Let q ∈ Y h
2 ⊂ H1

0 be given. Since (α∇+ β)(Y h
2 ) = Xh

2 we choose the
optimal trial function u ∈ Xh

2 such that u = α∇q + βq. Then we have

b2(q, u)

||u||L2

=

∫
Ω
|α∇q + βq|2 dx dy

||u||L2

=
||q||2α
||q||α

= ||q||α.

Remark: The continuous infsup conditions have essentially the same proofs.

While we lack proofs of the infsup conditions on a for this problem, note that
stability in 1D follows from the above arguments since the continuous and
discrete infsup condition on a would then be trivial, as v ∈ Ki, K

h
i would

then imply v = 0.
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