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Chapter 1

Introduction

Simulation and autonomous planning has become an important part of mili-
tary preparations. Using modern computers we can now produce simulations
with realism that simply was not possible just a few years ago. We can also
create tools that help strategists making plans of unprecedented detail and
quality.

In this thesis we will use a problem from military autonomous planning as
motivation for looking into visibility analysis. We consider the scenario of
a platoon of vehicles attacking some hostile group of vehicles. Simulating
such a scenario poses several challenges. How should the platoon position
themselves in order to have the best chance of defeating their enemy? Where
do the hostiles position themselves in the first place, and how do they react
to the attack? These are just a few issues that must be carefully handled in
order for the simulation to have any value for real world use.

Studying the scenario further we find that visibility analysis, specifically view-
shed calculations, is essential to any reasonable procedure attempting to solve
these challenges. With the military application in mind we consider existing
theory developed by Franklin et al., de Floriani et al., Cole et al., Ben-Moshe
et al. and Izraelewitz et al. Building on ideas originally proposed by Franklin
et al. we establish a robust procedure for comparing viewshed algorithms for
specific applications. Using this scheme we compare the performance of ex-
isting algorithms in conditions typically encountered when used as part of a
military planning system.

Based on these comparisons we find that the R2 algorithm due to Ray et al.
is the best fit for our application, and use it as a starting point for further
improvements. Analyzing some unsatisfactory performance on certain terrain
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types, we discover two simple modifications to the original R2 algorithm. One
of the modifications reduce the error by 50%, whithout siginificantly affecting
the running time. The other modification reduces the error by 75%, while
only increasing the running time with 30%.

In the quest for even more accurate approximations in a more flexible algo-
rithm that can deliver high precision on demand in exchange for increased
running times, we further analyze the error committed by our improved R2
algorithm. Based on the results of this analysis we develop a multi-pass hy-
brid algorithm that exploits patterns in the error for predicting where the
extra evaluation cycles are best spent. We show that the resulting algorithm
is capable of calculating viewsheds with more than three orders of magnitude
the accuracy of the original R2 algorithm, using barely ten times the running
time. Combined with the tunability, this level of performance makes the
algorithm fill the gap between approximate and accurate algorithms.

Contributions

In chapter 3 we formalize the framework used Franklin et al. in [FRM94]. We
prove the correctness of the R3 algorithm in theorem 3.1 and corollary 3.4.
Additionally we formalize the steps in the development of the R2 algorithm
in corollary 3.6 and corollary 3.7, clearly separating the accurate and approx-
imate parts of the algorithm.

We greatly extend some ideas proposed in [FRM94], making a robust test-
ing framework for viewshed algorithms in chapter 4. This includes an auto-
mated procedure for selecting test observation positions, in addition to robust
statistic procedures for quantifying the relative performance of algorithms.
Although other authors have put some thought into this, proper testing pro-
cedures are absent in most of the existing literature on the subject.

In chapter 5 we propose two improvements to the R2 algorithm from [FRM94].
First we develop a variant of R2, which greatly reduces the error with only
minor increases in running time. Secondly we propose an efficient tunable
algorithm based on the improved version of R2, capable of reducing the error
on demand in exchange for prolonged running times.
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Chapter 2

Finding good strategic
positions

Our primary motivation for looking into visibility calculations in this thesis
can be found in the general scenario where a platoon is attacking an enemy
group of vehicles. The overall goal is to develop some automatic procedure
for planning the whole maneuver, so it can be used for simulations and in
real world scenarios. This problem is, however, rather complex. For each
enemy unit the procedure should carefully select attacking positions for each
friendly unit, maximizing the likelihood of incapacitating the enemy without
casualties. These positions depend on many factors, such as distance, relative
elevation, terrain type and accessibility, just to name a few. With multiple
enemies, the procedure must also find the optimal order in which to attack
each unit. This order in turn affects which attack positions are optimal.
The enemy is assumed to react to attack, which means that the plan must
dynamically be updated as the scenario unfolds. Additionally the procedure
must take the starting position of the friendly units, and how fast they move
into account.

Instead of tackling this problem head-on, we will turn our focus to the sub-
problem of finding good attack positions against a single target. At this
point it is natural to also consider the problem of finding good positions for
observing some target, as these problems are very similar. As we shall see,
visibility calculations are essential to solving these problems. But first, we
need some military background on the matter.
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2.1 The anatomy of an attack

The basic principles of an attack in land-based warfare are the same for most
types of units on the battlefield, be it infantry or vehicles.

Suppose a blue unit is mounting an attack on a red unit. An attack is typ-
ically considered to consist of three separate positions. Initially blue should
be completely covered, i.e. invisible and not in danger of being attacked by
red. Before being able to attack, blue must move to a position where he has
visual contact in order to lock his target systems onto red. Finally, when
the target systems are set, blue must move to a position from which he can
fire upon red. Typically these three positions are referred to as the cover-,
observation- and attack position, respectively.

The distinction between the two latter positions becomes apparent in the case
of main battle tanks. For this type of vehicle, we model projectile trajectories
as straight lines, although this is not entirely accurate. Assume that red is
initially hidden behind a hill, and that blue is driving up this hill. This is
indicated by point 1 in fig. 2.1a. At some point as blue moves up the hill,
his sights, which sit high on the vehicle, will have an uninterrupted line of
sight (LOS) to red. From this position blue engages the targeting systems,
and prepares to fire upon red. This is point 2 in the figure. Finally, as
soon as the targeting systems are ready, blue moves forward until there is
an uninterrupted LOS from the barrel to a critical point on red. This is
the position blue should fire from, illustrated by point 3 in the figure. On
most terrains there are significantly fewer attacking positions than there are
observation positions. A typical real world example can be seen in fig. 2.1b,
which clearly shows that the set of attack positions is smaller than that of
observation positions.

Essential to the effectiveness of the attack is how quickly blue can move
from cover to observation and attack. Blue is vulnerable to attack as soon
as he leaves cover, so it is important the attack position is easily accessi-
ble, while maintaining all escape options available. Naturally a swift attack
means that blue can catch red by surprise, increasing the overall likelihood
of success.

In the observation- and attacking positions, blue must of course accept to be
vulnerable to attack from red. A good attacking position should, however,
limit blue’s exposure to the remainder of the terrain, where other enemies
potentially might be hiding. Therefore these positions should ideally be se-
lected in such a way that they primarily have a view in the direction of red,

8



or areas controlled by blue units.

2.2 Observation tactics

The tactics involved in observing a point of interest are by and large the
same as for attack, except that we never move into attack position. If blue is
to observe some point, he wants to be able to move quickly from a position
of complete cover to the observation position where he has an uninterrupted
LOS to the target. As for attacks it is beneficial if blue is visible only from
a small region, as this reduces the risk of being spotted.

2.3 Relevant visibility calculations

By now it should be clear that performing some type of visibility calculations
will be essential in identifying good candidates for attack- and observation
positions. Specifically we need to find the regions of the terrain from which
there is an uninterrupted LOS to some known target point. The reverse of
this problem is to find the viewshed of the target, i.e. finding the points that
can be seen from the target. In practice it is not necessarily the case that
red can see blue even though blue can see red. For instance, red might not
be able to spot blue if he is hiding in a tree line. In this thesis however, we
will assume that a LOS always can be used in both directions. This means
that finding the viewshed of a target point, is the same as finding the set of
points from which the target point is visible.

Say that blue’s sights are situated at a height above the ground, and that
the highest visible point of red is at b height above the ground. This means
that we are really interested in points x, such that there is an uninterrupted
LOS from the point that is a above x to the point that is b above red’s
position. Similarly for attack, we follow the same procedure, but use the
height of blue’s cannon and some critical point of red for a and b. This is a
generalization of the viewshed, where the observer height, in this case b, and
the target height, in this case a, are extra parameters.

The higher the target and/or observer height, the larger the viewshed. As
a result, there typically are fewer potential attack points than observation
points. This can be seen in fig. 2.1b which shows both the attack- and
observation viewsheds in a typical situation. As can be seen in the figure the
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1.

2.
3.

(a) A blue vehicle attacking red. Positions 1-3 indicate the cover-, observation-
and attacking positions, respectively.

(b) A terrain with imposed viewsheds. Red is positioned in the small white square.
Points from which blue can observe and attack red are colored yellow and red,
respectively. The blue circle highlights a promising region.

Figure 2.1
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attack viewshed is contained inside the observation viewshed due to lower
observer- and target heights.

2.4 Viewshed boundary points

When it comes to finding good attack and observation positions, we are par-
ticularly interested in the boundaries of the relevant viewsheds. Typically
the best observation positions lie only barely inside the observation view-
shed. Outside this viewshed blue cannot be seen by red, and therefore has
cover. Blue can observe red regardless of how deep he is inside the view-
shed, so staying close to the boundary means that he has a short route to
cover.

The principle is the same in an attack scenario, but here blue also needs to
have a short route to cover when in the attack position. This implies that
the observation- and attack positions should be chosen in a region where the
boundaries of the observation- and attack viewshed are close. Such a position
is highlighted by the blue circle in fig. 2.1b. Here blue can stay in cover before
moving just inside the observation viewshed to prepare his targeting systems.
When the systems are set he can move quickly inside the attack viewshed
and fire. If something unexpected is to occur blue can at any time abort and
retreat quickly back into cover.

2.5 Summary

There are many important factors that affect the quality of observation-
and attack positions that we have not discussed. We know, however, that
accessibility, vegetation, distance and relative elevation to the target are just
a few other important factors that can render even the best candidate points
useless. This is, however, beyond the scope of this thesis. Regardless, it is
clear that visibility calculations, especially viewshed calculations, are at the
core of any system capable of finding realistic strategic positions. This is our
motivation to investigate viewshed algorithms further, and how they should
be used for our application.

The goal is to use this in an even bigger system, capable of planning how
an entire how an entire platoon should attack a group of targets. This is
a typical two-player scenario, which might have to be explored using some
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variant of the minimax algorithm. If the targets are mobile, which they
typically are, they will respond to the actions undertaken by the platoon.
This means that each new state in the state tree requires updated knowledge
about new viewsheds. It is therefore likely that such an approach will require
the calculation of a large number of viewsheds.

It turns out that a brute-force approach to this is not feasible, as it is simply
too slow. On terrain data sets of realistic size the running time of a brute force
solution is on the order of minutes, which is not practical if it is to be used in
a procedure which requires the calculation of thousands of viewsheds.

There are a few practical considerations that might cause approximate view-
sheds to be acceptable. First of all, the terrain data are not an accurate
depiction of the real world. This means that even using completely accu-
rate viewshed algorithms, we might come up with an attack position from
which the enemy in reality is not even visible, making it impossible to attack.
This can potentially be dangerous for the unit performing the attack, since
it might end up in a compromising position without any opportunity to fight
back. As long as the terrain data are approximate, there is no way to fully
prevent such errors. Secondly, it is generally not essential that the viewshed
boundary is 100% accurate, as long as it is within a few meters. If this is
the case we might still come up with impossible attack positions, but there
is like to be a viable position within few meters. In the case of fig. 2.1a this
corresponds to simply moving a few more meters up the hill. This means
that good approximations can be used, without any larger risk than accurate
algorithms. It is, however, clear that the quality of the resulting positions
will be benefit from being based on viewsheds with low error. Therefore,
there is reason to have as accurate approximations as possible within the
available time frame.
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Chapter 3

Overview of visibility
calculations

For solving our military scenario we have seen that we will need to perform
some visibility calculations, specifically viewshed calculations. Before we can
do that, we need a theoretical framework which allows us to represent a
terrain and precisely define what we mean by visibility.

We will build a general framework, which gives us the tools we need for prov-
ing properties of the algorithms we will consider. Our definition of visibility
has the intuitive property that it is symmetric. That is, if a point a is visible
from a point b, then b must also be visible from a. Building on this we will
also define the viewshed, which is the set of points, called targets, that are
visible from a given point, called the observer.

In order to use these definitions in practice, we need an efficient way to
represent terrain. We will therefore consider several terrain models, and
discuss how they fit our application. We will primarily focus on regular
square grids (RSGs) and triangulated irregular networks (TINs), which are
two commonly used terrain models.

Finally we will consider several algorithms for calculating viewsheds on these
terrain models. We start by studying the brute force algorithm described
in [FRM94]. Then we consider several approximate algorithms for both for
RSGs and TINs, among others the R2 algorithm due to Franklin et al., which
will be the focus of chapter 5. Empirical tests of these algorithms follow in
chapter 4.
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3.1 Definition of visibility

We assume that the terrain at hand can be represented as a subset of R3.
This is a definition that is general enough to contain all the various terrain
representations we will consider, yet specific enough to be meaningful in our
context.

We will now define the notion of visibility and what we mean by the term
viewshed.

Definition 3.1.

Let U ⊂ R3 be some terrain, and u ∈ R3 be a point.

We say that two points u and v are intervisible wrt. U iff. the interior of
the line segment between them does not contain any points from U :

{λu + (1− λ)v|λ ∈ (0, 1)} ∩ U = ∅

The viewshed of U wrt. u, V (u), is given by the set of points in U that are
intervisible to u.

The only candidates for visible points in a terrain are the ones on the terrain
surface. We show that this is also the case for our formal definition.

Corollary 3.1.

Let U ⊂ R3 be some terrain, and u ∈ R3 be a point.

All viewshed points of U are boundary points of U .

Proof.

Let v ∈ V (u), and let ∂U denote the boundary points of U .

Since v ∈ U then obviously B(v, ε) ∩ U 6= ∅ for any ε > 0.

Furthermore we have that:

λu + (1− λ)v ∈ UC ∀λ ∈ (0, 1)

⇓
B(v, ε) ∩ UC 6= ∅ ∀ ε > 0

Thus v ∈ ∂U . �
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Next, we define the elevated viewshed which is the viewshed we will be using
in practice.

Definition 3.2.

Let U ⊂ R3 be some terrain, and denote the terrain surface by ∂U . Let
u ∈ R3 be a point, and k denote the unit vector in the vertical direction.

Given an observer height ψ and a target height ω. The elevated viewshed
of U wrt. u, Vψ,ω(u), is given by the points in v ∈ ∂U such that u +ψk and
v + ωk are intervisible.

For almost all practical applications we will be interested in the visibility of
points that have some height above the ground. For this reason we always
use the elevated viewshed, and not the basic viewshed. In the remainder
of this thesis we will therefore refer to the elevated viewshed simply as the
viewshed.

Next, we show that viewsheds are symmetric. That is, if a point u is in the
viewshed of a point v, then v must also be in the viewshed of u.

Corollary 3.2 (Elevated viewshed symmetry).

v ∈ Vψ,ω(u) iff. u ∈ Vω,ψ(v).

Proof. Let v ∈ V ψ,ω(u). Then by definition, the line between u and v does
not intersect U :

{λ(u + ψk) + (1− λ)(v + ωk) |λ ∈ (0, 1)} ∩ U = ∅

Let γ = 1− λ. Then we have,

{(1− γ)(u + ψk) + γ(v + ωk) | γ ∈ (0, 1)} ∩ U = ∅
m

{λ(v + ωk) + (1− λ)(u + ψk) |λ ∈ (0, 1)} ∩ U = ∅

By definition we now have that u ∈ V ω,ψ(v). �

This definition is flexible in that it allows us to represent a terrain as an
infinite set of points. This would allow us to represent the world in infinite
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resolution as it actually is. However, this is of course not possible on a
computer. This is where a terrain model comes into play, in that it provides
us with an approximation of the world, based on a workable set of data
points.

3.2 Terrain modeling

In order to work with terrain in a meaningful way on a computer, we need
a model for representing it. Digital elevation models (DEM) are typically
divided into two main categories; raster models and vector models. Raster
models are the most intuitive and rely on elevation measurements at regular
intervals that form a grid in the surface plane. Vector models operate on a
higher level with mathematical objects such as lines, triangles or volumes.
This can lead to a more efficient representation which better represents the
features of a terrain than a simple raster model.

Typically, the source data for a terrain model is a set of elevation measure-
ments with corresponding lateral coordinates. The purpose of the model is
to provide an approximation of the entire terrain, based on these data.

In this thesis we will be using RSGs for our terrain model. The reasons for
this are discussed throughout this chapter. But first we will take a closer look
at how some of the models work, and discuss the benefits and draw-backs of
the various models.

3.2.1 Triangulation

Triangulations are perhaps the most used model for representing objects in
three dimensions. They consist of a set of vertices and a set of triplets,
connecting the vertices in triangles. The resulting surface of triangles then
represents the surface of the object. This extends trivially to terrains, where
the set of data points can be used as vertices, and then the vertices can be
grouped together e.g. using Delaunay triangulation. Typically, triangula-
tions are referred to as triangulated irregular networks (TINs).

The resulting terrain surface matches the real world at the vertices, while
it is only approximate elsewhere. That being said, triangulations make for
an efficient way to represent good terrain approximations. In flat regions a
triangle will approximate the surface very well. Thus by using a few large
triangles in flat regions, and many small triangles in complex regions, we get
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more accuracy where it is actually needed. Triangulations also make for a
flexible terrain model, in that they can represent complex structures that
fold over, such as tunnels.

It is the case, however, that many of the viewshed algorithms we could con-
sider using on TINs, such as the ones described in [CS89] and [FM94], actu-
ally work on monotonic polyhedral surfaces. Polyhedral surfaces are surfaces
consisting of conjoined flat polygons. Thus TINs are polyhedral surfaces.
Monotonic polyhedral surfaces, on the other hand, have the property that
any vertical line must intersect the terrain in at most a single point. In
other words, these algorithms do not allow the terrain tunnels or complex
structures even though TINs technically can represent them.

3.2.2 Regular square grid

Assume that the terrain can be expressed as a function f : [a, b]× [c, d]→ R,
where a ≤ b, c ≤ d ∈ R. An intuitive way to model an approximation to this
terrain is to sample the elevation at regular intervals that form squares in
the [a, b]× [c, d]-plane, and store the result in a two-dimensional array. This
is the basis for the family of raster models known as RSGs. We shall refer
to the points where the terrain is sampled as grid points. Four neighboring
points and the space between make up what we shall call grid cells. The line
between two adjacent grid points will be referred to as a grid line.

In their most basic form, RSGs do not provide any information about what
the terrain looks like on the interior of the grid cells. Therefore they are
typically accompanied by some interpolation scheme, in order to provide a
well defined terrain surface. There are several interpolation methods that
can be used for this, from crude piecewise constant interpolation to higher
order interpolation with polynomial or spline basis. We will compare a few
schemes and make the case why we will prefer a simple interpolation scheme
to a more complex one.

In this section we will denote the elevation of the grid point (s1, s2) by es1,s2 .
The set of grid points will be denoted by S. To avoid confusion, we will
denote the model approximated elevation in a point (x1, x2) by e(x1, x2). In
other words the function e : [a, b]× [c, d]→ R is our model approximation of
the real world terrain given by f .
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Figure 3.1

Piecewise constant interpolation

The simplest interpolation schemes are the ones based on piecewise constant
interpolation. There are several ways to define them, but they all have in
common that they assign the same elevation for neighborhoods in the terrain,
and that the resulting model is discontinuous.

The simplest example of piecewise constant is nearest-neighbor interpolation.
As the name suggests, each point in the model is assigned the same elevation
as the nearest data point, that is,

e(x1, x2) = eargmin(s1,s2)∈S ||(x1,x2)−(s1,s2)||

Other similar piecewise constant schemes assign each point the maximum,
minimum or average elevation of the four nearest data points.

The nearest-neighbor interpolation schemes provide for a simple implemen-
tation, but give a result that does not resemble the real world. Compare for
instance nearest-neighbor interpolation to a triangulation of a simple terrain
in fig. 3.1. Although they share the same data points, the triangulation does
a much better job of representing something that we recognize as terrain. A
key issue is that the piecewise constant model is discontinuous, while real
world terrain is continuous, at least approximately.
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Bilinear interpolation

In order to get a continuous model, we have to use a slightly more sophisti-
cated interpolation scheme. Bilinear interpolation works by linearly interpo-
lating a point from the four closest data in both dimensions; first along one
axis on the two pairs of data points, and then between the two results along
the other axis. Bilinear interpolation can be defined as follows:

Definition 3.3 (Bilinear interpolation).

Given a point (x1, x2) which is contained in the grid cell spanned by (a1, a2)
and (b1, b2) (i.e. a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2). Then the elevation at
(x1, x2) is given by:

e(x1, x2) =
b1 − x1
b1 − a1

(
b2 − x2
b2 − a2

ea1,a2 +
x2 − a2
b2 − a2

ea1,b2

)
+
x1 − a1
b1 − a1

(
b2 − x2
b2 − a2

eb1,a2 +
x2 − a2
b2 − a2

eb1,b2

)
This ensures a nice continuous surface which has a reasonable shape for a
terrain. Due to their non-linear nature, bilinearly interpolated terrains make
line of sight (LOS) calculations less efficient. Figure 3.2 shows a single grid
cell with a bilinearly interpolated surface and a LOS that is to be tested.
Given just the four grid points it is not obvious that the line should not
intersect the surface. In order to check whether the line intersects the terrain,
we must take the interior of the cell into account. The mathematics behind
this is manageable, but it is a lot more comprehensive than for a piecewise
linear model.

Although bilinear- and higher order interpolation schemes produce nice mod-
els, it is not given that they contribute to the accuracy of the model. Without
more knowledge about the terrain, or more data points, there is no reason
to prefer these to lower order interpolation schemes for accuracy. However,
as discussed above, we typically consider real world terrain to be continu-
ous, which suggests that a piecewise linear model is preferable to a piecewise
constant one.

The FRM terrain model

Franklin, Ray and Mehta describe in [FRM94] a model which combines the
computational simplicity of piecewise linear models with simple the repre-
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sentation of RSGs. For lack of a better name we will simply refer to it as the
FRM model.

Generally, it is not possible to represent squares linearly (as illustrated in
fig. 3.2). In fact, the only primitive, other than points and lines, that is
planar for arbitrary vertices, is the triangle. Planar primitives, such as tri-
angles, have nice properties when it comes to LOS calculations. Deciding
whether a LOS is obstructed by a triangle can always be done by compar-
ing the LOS to two evaluating points on the boundary of the triangle. This
is contrasted by, for instance, bilinear interpolation, where also the interior
must be considered. The same issue occurs using higher order interpola-
tions; the computations become more complicated, without obvious gains in
accuracy.

Ideally we want to be able to check for LOS intersections by evaluating the
LOS at each point it crosses above a grid line, and see if it intersects the
terrain. To understand the implications of using this method, we will now
define the FRM terrain model, which ensures its correctness. The result-
ing model thus allows us to work with LOSs in a highly efficient manner.
Naturally, this guarantee of correctness only holds within the context of the
model, as we do not know how well it matches the real world terrain. Later,
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Figure 3.3: Two possible triangulations of a grid cell. The union of these
triangulations is the surface of the tetrahedron spanned by the four grid
points.

we will use the FRM model due to its practical properties. There is no reason
to believe that it models the real world more accurately than other models,
however.

We will base our model on the idea of triangulating the grid, and use this
triangulation as the terrain surface. In principle, each grid cell can be trian-
gulated in two ways. For grid cells where the corners lie in a single plane, the
terrain surface for the two triangulations are exactly the same. When this is
not the case, however, the two triangulations represent two different terrain
surfaces. This is illustrated in fig. 3.3, which shows the two triangulations of
a grid cell where the grid points lie in separate planes.

In the particular case of fig. 3.3b it is clear that the simplified LOS tests
will fail, as a LOS can easily intersect the terrain on the interior without
intersecting it on the boundary of the cell. Looking at fig. 3.3a, on the
other hand, this method will work, as the cell boundary contains the most
protruding features of the terrain. By using this “lower” triangulation in
each grid cell as a representation of the terrain surface, we ensure that the
simplified LOS tests are accurate.

We now give this terrain model a formal definition in terms of the tetrahedron
spanned by the grid points of each grid cell. We will see why this is useful in
the proof of theorem 3.1.

Definition 3.4 (The FRM terrain model).

The surface of the terrain above a grid cell G is given by the bottom of the
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tetrahedron spanned by the grid points of G.

In particular, the elevation at a point x = (x1, x2) on the boundary of G
between grid points s and s′ is given by:

e(x1, x2) = es
||x− s′||
||s− s′||

+ es′
||s− x||
||s− s′||

This is an alternative, but equivalent, formulation of the terrain model used
by Franklin et al. in [FRM94]. As suggested, this model has the property that
LOSs can be tested for terrain intersections by evaluating the grid boundaries
only. For completeness we will now provide a proof of this property.

Theorem 3.1 (The FRM theorem).

Given a line ` ⊂ R3 and a grid cell G representing a terrain using def-
inition 3.4. Then ` intersects the terrain above G iff. there is a point
(x1, x2, x3) ∈ ` such that (x1, x2, 0) ∈ ∂G and x3 ≤ e(x1, x2).

Proof. ` clearly intersects the terrain above G if the conditions above are
satisfied. It remains to show the converse.

Assume that ` has no points meeting the requirement from the theorem. Let
us now consider points where (`)xy intersects ∂G. If there are zero, one or
infinitely many such points, ` does not pass over the interior of the grid cell,
and the result is evident.

If there are exactly two such points, a and b, then there are points a′ =
(a1, a2, e(a1, a2)) and b′ = (b1, b2, e(b1, b2)) that lie on the terrain surface.
Due to our assumption ` lies strictly above the line through a′ and b′. As we
know the terrain surface is upward bounded by the bottom of the tetrahedron
spanned by the four grid points of G. Tetrahedra are convex, so the line
segment between a′ and b′ is therefore on or above the terrain surface. Thus
` must lie strictly above the surface. �

This theorem proves the correctness of the simplified LOS test on the model.
Note that we do not use the notion of triangulations when implementing the
model. In practice the FRM model behaves like a normal RSG, where we just
consider the grid lines when testing for LOS intersections. The triangulations
are merely a tool for understanding the implications of assuming this type of
LOS testing is correct.

With the FRM model we get a terrain mode with the benefits of both nearest
neighbor- and bilinear interpolation. First of all we get a continuous surface
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that matches what we expect a terrain should look like for a given set of grid
points. Secondly we get the fast LOS calculations needed for making efficient
viewshed algorithms.

3.2.3 Contour line representation

Another vector-based terrain model uses contour lines to represent the ter-
rain. The contour lines are typically represented as closed curves. Often
these are represented as piecewise linear curves or splines. The contour lines
themselves do not provide any information about the terrain between the
contour lines, so some interpolation is needed in order to make a complete
terrain model.

The accuracy of such a model primarily depends on the resolution along
the vertical axis, but also on the density of the data samples the curves are
based on. Similarly to TINs this representation gives us flexibility for higher
accuracy in areas of the terrain where this is needed.

Kartverket uses this type of format for much of their openly available data,
as it is convenient for the purpose of rendering maps. The data sets seem
to require little storage space compared to TINs and RSGs of comparable
quality.

Although contour lines have some nice properties with regards to storage ef-
ficiency they are not particularly suited for visibility calculations, and hardly
any of the well-known viewshed algorithms operate on contour line-based
models. We will therefore not consider them further for this purpose.

3.2.4 Summary

In practice RSGs and TINs are the only viable families of terrain models for
visibility applications. Contour line representation and vector models using
higher order geometric objects fall short due to more complicated visibility
calculations resulting in algorithms that cannot compete with their RSG and
TIN counterparts.

TINs have two advantages over RSGs. The first is the ability to use varying
densities of data points, which means that the model can provide higher
precision where it is actually needed. In practice this typically results in
a smaller memory footprint of the model, compared to a similar RSG. The
second advantage is greater flexibility in what it can represent, such as tunnels

23



or overhanging structures. As discussed, however, the algorithms we consider
cannot handle such structures, which means that this is not an advantage in
practice.

When implementing viewshed algorithms the inherent structure of RSGs is a
huge asset in that it allows many key operations to be executed in constant
time. This involves operations such as finding where a LOS intersects a
grid line, or finding neighboring nodes of a LOS. On a TIN these operations
typically either require logarithmic time lookups, or some preprocessing step.
This means that the resulting viewshed algorithms typically run slower or use
as much memory on TINs as on RSGs.

The advantages of using TINs over RSGs are therefore invalidated in view-
sheds applications, which is also why RSGs are so popular in viewshed lit-
erature. For this reason we focus on RSGs throughout this thesis. More
specifically we will use RSGs with the FRM model as discussed above.

3.3 Viewshed algorithms

In this section we consider several algorithms for finding elevated viewsheds
on a modeled terrain. For reasons discussed in the previous section we focus
on algorithms that work on the FRM model, but we will also take a quick
look at a few TIN-algorithms as well for completeness. We consider both
algorithms that are accurate and approximate. By approximate we mean that
the algorithm might mislabel two points u and v as intervisible, even though
the LOS between them intersects the terrain, or vice versa. Later in the thesis
we also empirically compare the performance of some of these algorithms, and
discuss which of them that are suitable for our application.

Common for all of the algorithms presented here is that they take as input
the terrain either as an RSG or a TIN, the lateral position of the observer
and the observer- and target height. Most of the algorithms classify each grid
point visible or not visible, while some of them also are capable of classifying
arbitrary points on the terrain. A few of the algorithms classify regions of
the terrain instead of single points.

We will look at three types of algorithms for RSGs, starting with a brute
force algorithm which calculates the accurate viewshed. We consider two ap-
proximate algorithms that estimate visibility by evaluating the terrain along
rays spread out across the terrain. These are the R2 and radar-like algo-
rithms. We also consider XDraw and the expanding circular horizon (ECH)
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algorithm, that estimate the visibility by propagating an approximation of
the horizon across the terrain. The radar-like- and the ECH algorithms
also work for triangulations. Additionally we will briefly consider the two
accurate linearithmic-time TIN-based algorithms described in [CS89] and
[FM94].

Before we start, however, we need some notation. For RSG-based algorithms
we will denote the set of data points by S ⊂ R3, and refer to them as grid
points. The line between two adjacent grid points we call a grid line, and
the area spanned by four neighboring grid points we call a grid cell. The set
of all grid cells we shall denote by G, and the set of all grid lines, i.e. the
boundaries of all grid cells, will be denoted ∂G. When discussing LOSs, we
will often consider the points on grid lines which the LOS passes over. These
we will refer to as grid line crossings. We will be looking at points projected
onto the vertical axis and the grid plane. For a point p we will denote this
by pz and pxy, respectively. We will also use notation like ||p||xy to denote
the norm of some projection of a point, in this particular case the projection
of p onto the grid plane.

3.3.1 A brute force algorithm

The obvious brute force viewshed algorithm for any RSG-based terrain model
is to iterate through each grid point in the grid, and test whether the LOS
back to the observer intersects the terrain. Franklin et al. [FRM94] refers to
this type of algorithm as the R3 algorithm. A similar variant is also proposed
by [BMCK08]. On the FRM model this algorithm has a relatively efficient
implementation, while remaining accurate. For this reason we will use it as a
baseline for evaluating the accuracy and speed of the other algorithms.

Theorem 3.1 provides us with the tools we need to make an efficient imple-
mentation of this algorithm on the FRM model. To test if a LOS intersects
the terrain, we only need to compare it to the terrain whenever it crosses a
grid line. The idea is illustrated in fig. 3.4, where a LOS is drawn between
the observer o and a target point t. The grid cells in play are shaded, and
the grid line crossings are marked with crosses. These crosses are the only
six points we have to compare the LOS to the terrain at in order to establish
whether or not they intersect.

First, we give an efficient algorithm for finding all grid line crossings of an
LOS. For the purpose of simplicity, we confine ourselves here to LOSs that
have endpoints in the grid points, but this could be generalized to arbitrary
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points.

Algorithm 3.1 (Finding grid line crossings).
Given an LOS ` between points o, t ∈ R3, where oxy, txy ∈ U . The following
algorithm returns the set of grid cell boundary crossings, i.e. ` ∩ ∂G \ o, as
a list sorted from o to t.

d = t− o
θ = atan2(dy, dx)

xdir =


1 if |θ| > π

2

−1 if |θ| < π
2

0, otherwise

ydir =


1 if θ > 0

−1 if θ < 0

0, otherwise

xmax = |dx| − |xdir|
ymax = |dy| − |ydir|
x, y = 0

while x < xmax ∧ y < ymax

if x+1
| cos θ| <

y+1
| sin θ|

x+ = 1
p = (xdir · x, ydir · x| tan θ|)

else
y+ = 1
p = (xdir · y| cot θ|, ydir · y)

yield p + o

A sample implementation of this algorithm can be seen in listing A.4. This
implementation is a somewhat modified version of the algorithm above, in
order to interface efficiently with the various viewshed algorithms.

Corollary 3.3.

Algorithm 3.1 runs in O(
√
n) time on a square grid with O(n) points.

Proof.

Given any two points a,b ∈ R3 on a square grid with O(n) points, then
clearly ||b − a||x, ||b − a||y = O(

√
n). Each iteration in the while-loop

executes in O(1) time, and moves from a to b one grid unit along one of the
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Figure 3.4: LOS with grid cell boundary crossings

axes, so there are at most b||b−a||xc+ b||b−a||yc = O(
√
n) such steps. �

Next, we state the complete brute force algorithm.

Algorithm 3.2 (R3).
Let o ∈ R3 be the observer on the terrain surface, and let ψ and ω be the
observer and target height respectively. Let S denote the set of grid points.

for all s ∈ S
let ` be the LOS from o + ψk to s + ωk
label s as visible

for all grid line crossings (x1, x2) of `
if e(x1, x2) ≥ `(x1, x2)

label s as not visible
break

We will now proof the correctness of this algorithm on the FRM model, using
some of the previous results.

Corollary 3.4.

The R3 algorithm calculates the accurate viewshed.
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Proof. First assume that the point t is intervisible with the observer o. Then
the LOS from o to t does not intersect the terrain in any of the grid cells
between o and t. Then by theorem 3.1 there exists no points (x1, x2, x3) ∈ `,
where (x1, x2) is on a grid line, such that e(x1, x2) ≥ `(x1, x2). Thus the
algorithm will correctly classify t visible.

Next assume that t is not intervisible with o. Then there exists a point
p = (p1, p2, p3)` where ` intersects terrain. Let G be a grid cell that contains
p. By theorem 3.1 there must then exist a point (x1, x2, x3) ∈ `, such that
(x1, x2) ∈ ∂G and e(x1, x2) ≥ x3. Hence, t will be classified not visible. �

We also show the asymptotic running time of the algorithm.

Corollary 3.5. The R3 algorithm executes in O(n
3
2 ) time.

Proof.

We can find all of the grid line crossings of any LOS in O(
√
n) time using

algorithm 3.1. In a square grid with O(n) points there are at most O(
√
n)

such crossings underneath any LOS. The remaining operations in the inner
loop clearly execute in O(1) time, so the LOS can be accepted or rejected in
O(
√
n) time.

We evaluate one LOS for each of the O(n) points in the grid, so the overall

time complexity for this algorithm is O(n
3
2 ). �

3.3.2 R2

In order to improve the efficiency of the brute force algorithm, we simply
have to evaluate fewer LOSs. When evaluating LOSs to targets that are far
away from the observer, most of these LOSs pass through or nearby closer
targets. This is illustrated in fig. 3.5. If we accept approximate results, we can
use intermediate results, obtained when calculating LOSs to the far targets,
to estimate the visibility of targets closer to the observer. The resulting
algorithm proposed by Franklin et al. in [FRM94] is typically referred to as
the R2 algorithm.

When deciding the visibility of a point v in R3, we simply compare the el-
evation of the corresponding LOS to the terrain at each grid line crossing.
A side-view illustration of this is given in fig. 3.6, where the LOS does not
intersect the terrain anywhere. These calculations cannot be reused for de-
ciding the visibility of other points, unless they happen to lie on the exact
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Figure 3.5: Overview of a terrain with LOSs to some of the perimeter points,
which are drawn as solid circles. The idea behind R2 is to estimate the
visibility of the grid points drawn with crosses from the intermediate results
of these LOSs.
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Figure 3.6: Cross section of a terrain with the observer, o, and some grid
points. Visible points are drawn with solid discs, while invisible points are
drawn with crosses.

same LOS as v. If we instead look at the slope of the LOS going to each of
the grid line crossings, we can reuse the calculations. In fig. 3.6 for instance,
the slope of the LOS going through t is higher than for u. Since u is further
away from the observer, we know that u is not visible. It turns out that by
accumulating the maximum slope as we move away from the observer, we
can easily decide the visibility of the grid line crossings as we go.

We will now formalize these ideas, and use them to make a proper algorithm.
First we define exactly what we mean by slope, and show that we can use it
as a replacement for elevation in our visibility calculations.

Definition 3.5.

The angle between between the horizontal plane and the LOS from the ob-
server to a point p we call the slope of p, so(p).

so(p) = arctan

(
||p− o||z
||p− o||xy

)
Corollary 3.6 (The FRM theorem for slope).

Given a LOS ` from o to t, and a grid cell g. Then ` intersects the terrain
above g iff. there is a point p = (p1, p2, p3) ∈ ` such that (p1, p2, 0) ∈ ∂g with
a corresponding point p′ = (p1, p2, e(p1, p2)) such that so(t) ≤ so(p′).

Proof.

Given an LOS ` from o to t, and a grid cell G. Let p ∈ `. First observe that
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so(p) = so(t), since both t,p ∈ `. Next we have the following:

so(t) ≤ so(p′)

s m
io(p) ≤ so(p′)

m

arctan

(
||p||z

||p− o||xy

)
≤ arctan

(
||p′||z

||p′ − o||xy

)
m

arctan

(
p3

||p− o||xy

)
≤ arctan

(
e(p1, p2)

||p− o||xy

)
m

p3 ≤ e(p1, p2)

Where we use that arctan is strictly increasing in the last step. The result
now follows from theorem 3.1. �

Next we define the notion of the horizon at a point, which is the property
we will ultimately use to classify each grid point.

Definition 3.6.

The horizon at a point p wrt. some observer o, ŝo(p), is the maximum
slope a point p′ with the same lateral coordinates as p can have, such that
the LOS from o to p′ intersects the terrain in at least one point.

p is thus visible iff. so(p) > ŝo(p).

The next results shows that in order to decide the visibility of a point, we
can simply compare its slope point to the maximum slope of the grid line
crossings between it and the observer.

Corollary 3.7.

Let o be the observer and p a point. Also let X be the set of grid line
crossings of the LOS from o to p. When using the FRM terrain model, the
following two inequalities are equivalent.

so(p) > ŝo(p)

so(p) > max
x∈X

so(x)
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Proof.

From the definition of the horizon it is obvious that so(p) > maxx∈X so(x) if
so(p) > ŝo(p).

Let ` be the LOS from o to p. Assume that so(p) ≤ ŝo(p). Then there exists
a point x ∈ ` on the terrain that intersects `. Then by corollary 3.6 there is
also a grid line point, x′, that lies on or above ` such that so(p) ≤ so(x′).
Thus so(p) ≤ maxx∈X so(x). �

We already know that we can decide the visibility of any point by comparing
its slope to the horizon. Corollary 3.7 shows that when making such com-
parison, we can use the maximum slope of LOS grid line crossings instead of
the horizon, without risk of making any misclassifications. As suggested this
maximum can be accumulated as we move away from the observer, giving us
an efficient method for classifying the grid line crossings. From now on we
will refer to this maximum simply as the horizon, since they are equivalent
for our purposes.

In order to classify grid points, which after all is what we are interested in,
we can use the horizon of the nearest grid line crossing as an estimate of
the horizon at the grid point. This forms the basis for the R2 algorithm
as formulated by Franklin et al. in [FRM94]. The R2 algorithm works in
two passes. First the algorithm calculates horizons by evaluating LOSs to
points along the perimeter of the grid. The results are stored as estimates
of the horizon for the corresponding grid points. In the second pass the
algorithm classifies each point by comparing the estimated horizon to the
actual slope.
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Algorithm 3.3 (R2).
Let o′ ∈ R3 be the observer on the terrain surface, and let ψ and ω be the
observer and target height respectively. Let S denote the set of grid points.
If x is a point on a grid line, then neig(x) denotes the two grid points at the
ends of said grid line.

for all s ∈ S
set s.dist =∞

let o = o′ + ψk

for all p ∈ S, st. p is on the perimeter of S
let ` be the LOS from o to p
h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

for all s ∈ neig(x)
if ||x− s||xy < s.dist

s.dist = ||x− s||xy
s.h = h

h = max {h, so(x)}

for all s ∈ S
if so(s + ωk) > s.h

label s as visible
else

label s as not visible

As a final result we also show the asymptotic running time of the R2 algo-
rithm.

Corollary 3.8.

The R2 algorithm runs in O(n) time on a square grid with O(n) points.

Proof.

The perimeter of a square grid with O(n) points consists of O(4
√
n − 4) =

O(
√
n) points. neig(x) contains at most two grid points for any x, so the

procedure of evaluating an LOS and updating each neighborhood point still
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only takes O(
√
n) time. Thus the first step of the algorithm runs in O(n)

time.

The second step of the algorithm consists of simply iterating through each
grid point and performing a simple comparison of two numbers, which obvi-
ously can be done in O(n) time. �

As we see the R2 algorithm should be considerably faster than R3. As dis-
cussed this algorithm will give us an approximation of the viewshed. Thanks
to corollary 3.7 we know that any grid points intersecting a LOS always
will be classified correctly. In particular this means that the grid points on
the axes and diagonals relative to the observer are correctly classified. For
the remaining grid points we can offer no such guarantee, but as we shall
see in chapter 4 the estimates work well in practice. In chapter 5 we will
also consider some modifications of this algorithm for further improving the
accuracy.

3.3.3 The radar-like algorithm

One of the algorithms proposed by Ben-Moshe et al. in [BMCK08] is referred
to as the radar-like algorithm, and it shares several similarities with the R2
algorithm. This algorithm is originally proposed used on TINs, but has a
trivial extension to RSGs. Like R2, this algorithm works by evaluating the
terrain along a set of LOSs. Instead of sending a LOS to each grid point on
the perimeter of the terrain, the radar-like algorithm first sends a set of LOSs
in evenly distributed directions, dividing the terrain into sectors. The cross
sections of the terrain is compared in each pair of adjacent LOSs, and the
sector is subdivided until all adjacent cross sections are sufficiently similar.
Once the sectors have been settled, the algorithm estimates the visibility of
their interior using a special interpolation technique. We will not go into
the specifics of this interpolation technique here, other than referring to the
original article and our implementation listing A.21. The primary difference
is, however, that the radar-like algorithm first classifies the points along each
LOS, and then interpolates using the classification result itself. Whereas R2
calculates the horizon for points along each LOS, interpolates these values,
and then classifies the grid points.

Ben-Moshe et al. also suggests a variant of this algorithm, referred to as the
fixed radar-like algorithm. In this case the sector subdivision is omitted, and
only the predefined uniformly distributed LOSs are considered. The only dif-
ference between this algorithm and R2, apart from the interpolation schemes,
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is that the R2 directs LOSs points, while the fixed radar-like algorithm sends
them in uniformly distributed directions, not necessarily hitting any points.
A nice feature of this algorithm is that its accuracy can easily be adjusted
by changing the number of evaluated LOSs. For time-critical applications we
can reduce the running time by evaluating fewer LOSs, and we can also boost
the accuracy in exchange for running time, should that be desirable.

In principle this algorithm has a similar complexity as R2, so there is reason to
believe that it is possible to create comparably efficient implementations the
two algorithms. Our implementation of R2 has received a lot more attention
in terms of optimization for speed, so we have not been able to make a fair
comparison in terms of running time. Our primary interest in this algorithm
is, however, its ability to boost the accuracy on demand.

A secondary interest is to compare the two interpolation schemes. As we shall
see in chapter 4, R2 is more accurate than the radar-like algorithm when eval-
uating the same number of LOSs. However, this is not a fair comparison of
the interpolation schemes. The radar-like algorithm typically evaluates fewer
grid line crossings than R2 for the same number of LOSs. This is because
a smaller portion of the area covered by the LOSs used by radar-like lie in-
side the terrain. Instead we should compare the two interpolation schemes
on the exact same LOSs, in which case it turns out that we are not able to
show any statistically significant difference in performance between the two
schemes. We shall see in chapter 5, however, that with minor modifications to
the R2 scheme, we get an interpolation scheme that outperforms the scheme
proposed by Ben-Moshe et al.

3.3.4 XDraw

As we have seen with the R2 algorithm, there is a close relationship between
the horizon of points far away from and close to the observer. In R2 we exploit
this relationship out-to-in, by evaluating LOSs from the distant points, and
then leveraging the intermediate results to estimate the horizon for points on
the interior of the grid.

Another natural approach to this is to evaluate the horizons in-to-out. We
do this by establishing the horizon of the grid points closest to the observer,
and then propagating outwards, estimating the horizon of each new grid
point from the horizon of the neighboring grid points between itself and
the observer. Algorithms based on this notion belong to a family typically
referred to as XDraw in the literature, e.g. by [Ray94], [Izr03], [XY09] and
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[KZ02] to name a few.

We shall now turn to fig. 3.7 for an illustration of how the XDraw algorithm
works. As we saw with R2, we can calculate the accurate horizon of all points
along any of the four diagonals and axes by evaluating a total of eight LOSs;
one to each corner and midpoint of the grid perimeter. In the figure all of
these points are marked with crosses and have a white background. For the
majority of points, however, the horizon must be estimated. Therefore we
will in this algorithm work with an horizon estimate, denoted s̃o.

We begin estimating the horizon of the points that are closest to the observer,
i.e. the points on light gray background in the figure. For the point t we
see that the horizon depends on the horizon of x. Since x is on the grid line
between n1 and n2, we will estimate its horizon, s̃o(x), from the horizons of
n1 and n2. As we shall see, this estimation can be done in several ways.

Once we have estimated the horizon of all points in the light gray area, we
repeat this process on each “shell” of grid points, moving further away from
the observer. Each of these shells will have their horizon estimated from
the previous shell. So in order to estimate the horizon of the points in the
dark gray area, we use the estimated horizons of the points in the light gray
area.

We now give a formal description of the XDraw algorithm.

Algorithm 3.4 (XDraw).
Let o ∈ R3 be the observer on the terrain surface, and let ψ and ω
be the observer and target height respectively. Let S denote the set of
grid points, and let s̃o be some function that estimates the horizon of a point.

let o = o′ + ψk

for all p ∈ S
let ` be the LOS from o to p
let n1,n2 ∈ S be the endpoints of the grid line that intersects ` closest

to p at some point x

p.h = max{so(p), s̃o(x,n1,n2)}

if so(p + ωk) > p.h
label p as visible

else
label p as not visible
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Figure 3.7: XDraw estimates the horizon of t using only the estimated horizon
at n1 and n2.
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Next, we also show that the running time of XDraw is, as expected, O(n).

Corollary 3.9.

Provided that s̃o runs in O(1) time, algorithm 3.4 runs in O(n) time on a
square grid with n points.

Proof.

E.g. using ideas from algorithm 3.1 we can find n1 and n2 in O(1) time. The
rest of the operations in the loop are clearly O(1) time operations. �

When it comes to the choice of estimator, s̃o, there are several possibilities.
Some exotic variants exist, such as the one proposed in [Izr03], but the four
standard estimators used in the literature are:

s̃max
o (x,n1,n2) = max{n1.h,n2.h} (3.1)

s̃min
o (x,n1,n2) = min{n1.h,n2.h} (3.2)

s̃mean
o (x,n1,n2) =

n1.h+ n2.h

2
(3.3)

s̃into (x,n1,n2) = ||x− n2||xyn1.h+ ||x− n1||xyn2.h (3.4)

As our analysis will show, the linearly interpolated estimator described in
eq. (3.4) has superior classification accuracy compared to the other three.
Although the max and min estimators may seem crude, we shall see in chap-
ter 5 that these have the special property that they hardly commit any type
1 and type 2 errors, respectively. That is, XDraw with the max estimator
almost never classifies a point as visible if it is not. Vice versa for the min
variant. [Ray94] suggest the max, min and mean estimators have an advan-
tage in terms of efficiency over the interpolated estimator. In our analysis,
however, we shall see that this advantage is negligible.

We shall also see that XDraw is significantly less accurate than the R2 al-
gorithm. It does have the same time complexity as R2, but it is a simpler
algorithm which has a significantly more streamlined implementation. The
actual running time is typically around a third of that of R2. This, combined
with the nice properties of the max and min estimators, means that XDraw
might have an advantage over R2 in some applications.
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3.3.5 The ECH algorithm

Ben-Moshe et al. proposes another algorithm in [BMCK08] that in some
sense is similar to the XDraw algorithm. This is referred to as the ECH
algorithm, or ECH for short. Similarly to XDraw, it works by propagating
an estimate of the horizon outward, classifying the terrain as it moves by.
Instead of doing this at each grid point, ECH does maintains an approxima-
tion to the horizon of the terrain inside a circle that is expanded in a series
of steps.

More specifically this is done by considering the horizon along rays in a pre-
defined set of headings {αi}ki=0. In each step, the algorithm tries to increase
the radius of the current horizon from rold to rnew. The slope of the terrain
at rnew is compared to the horizon in order to determine the visibility in rnew
for each azimuth direction αi. The visibility of the remaining points on the
circle, i.e. the ones with a heading different from all αi, is then interpolated
using nearest-neighbor interpolation. The visibility of the terrain along rnew
is then compared to the visibility along rold. If there is sufficient correspon-
dence in visibility along these to circles, the visibility of the points on the
interior of the annulus between the circles is interpolated using a similar cor-
relation scheme as in the radar-like algorithm. If the visibility along the two
circle is too inconsistent the algorithm retries with an rnew that is closer to
rold.

This algorithm is designed to be used on TINs, but there is nothing that
prevents it from working on RSGs as well. The article provides no theoretical
time- nor accuracy analysis of this algorithm. The authors do provide some
empirical tests, however, indicating that ECH is outmatched by the radar-
like algorithm both in terms of running time and accuracy. For this reason,
and since ECH is rather similar to XDraw, which is significantly faster than
the radar-like algorithm, we will not study this algorithm further.

3.3.6 The Cole-Sharir algorithm

Cole and Sharir present in [CS89] a data structure that can be used to calcu-
late accurate viewsheds in O(nα(n) log n) time on TINs with n faces. α(n)
here is the inverse of the Ackerman function, which in practice is no larger
than 4, so this algorithm runs in O(n log n) time for any case that is feasi-
ble to solve on a computer. The proposed data structure, referred to as an
horizon tree in the literature, can be built in O(nα(n) log n), and allows us
to query the first intersection between a ray from the given observer and the
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terrain in O(log n) time. By comparing the distance to the first intersection
to the distance to some target point along the given ray, we can easily es-
tablish the visibility of the target point. By repeating this process for each
of the O(n) target points in the terrain, we can obtain the full viewshed in a
total of O(nα(n) log n) time.

This type of algorithm works on what the authors refer to as polyhedral
terrains or monotonic polyhedral surfaces. A polyhedral surface is a surface
consisting of flat polygons. By monotonic they mean surfaces where any
vertical line intersects the surface in at most one point. TINs are polyhedral
surfaces, so the algorithm will work on those as long as the monotonicity
criterion is met. RSGs in general are not polyhedrons, since the face of each
primitive is not necessarily flat. However, RSGs based on FRM model will
work with this algorithm. The key to this algorithm is that we can find
partial horizons simply by considering the edges in the terrain. For the FRM
model we have established that this is the case.

As [FM94] points out, due to a complicated implementation this algorithm
is mostly of theoretical interest. Attempts at efficient implementations have
failed to execute faster than the brute force algorithm for typical test cases.
Thus we will not consider this algorithm further, other than giving a quick
overview of how it works. The algorithm is thoroughly described in [CS89],
so we will only go through the essentials here with an emphasis on special
considerations that must be made in order to use it with RSGs.

If we consider the edges in a terrain with distance less than r, and project
them onto the unit sphere centered at the observer, the partial horizon at
r is given by the upper envelope of these projected edges. The resulting
envelope consist of at most O(n) non-overlapping smooth segments. Thus
we can check if a ray lies above or below a given envelope in O(log n) time
by binary searching for the relevant segment, and then comparing it to the
ray. The primary idea behind this algorithm is to store a carefully selected
set of such horizons in a binary tree, aptly named horizon tree, such that
we can search the binary tree to decide which edge in the terrain that block
the ray in question. Doing so allows us to find this edge in O(log2 n) time.
A technique reducing the running time of this search is described in [CS89],
but we will not describe it here.

Before building the horizon tree, we need a particular ordering of the edges
in the terrain. The ordering can be defined partially as follows, where o
denotes the observer. If an edge A comes before an edge B, then there exists
no point where (B)xy is closer to (o)xy than (A)xy. It requires some work to
obtain such an ordering for TINs, but it can be done in O(n log n) time. For
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Figure 3.8: The structure of an horizon tree for n = 16.

RSGs, however, this corresponds to, loosely speaking, ordering the edges by
distance from the observer. This ordering can be obtained in O(n) time by
iterating the edges breadth-first, starting at the observer.

Once an ordering of the edges {ei}ni=1 has been obtained, we can build the
horizon tree. We start by assigning a subset of the edges to each node. The
root gets the full set of nodes, the left node gets the first half of this set, and
the right gets the second half. This process is repeated until we reach nodes
that are assigned only two edges. For each node we calculate the horizon of
the first half of the corresponding set of edges. An illustration of this can
be seen in fig. 3.8. These partial horizons happen to be the intermediary
steps of the algorithm due to Atallah for finding the upper envelope of n
smooth curves. This algorithm was first described in [Ata85], and runs in
O(nα(n) log n) time.

Assume that we want to find the first edge intersecting a specific LOS. On
the unit sphere around the observer this LOS corresponds to a single point.
We can now search the horizon tree for the edge in the following manner.
Starting at the root, we move right if the LOS lies above the horizon of the
current node, left otherwise. We continue in this manner until a leaf node is
reached. The leaf node contains a single edge, ei. If the LOS lies below ei,
then ei is the first intersecting edge. Otherwise it is ei+1.

Using this technique for finding the viewshed is straight-forward. For each
grid point we find the LOS to the observer. We then find the first edge
intersecting the LOS. The grid point is visible iff. this edge lies further away
from the observer than the point itself.
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3.3.7 Summary

We have presented a wide range of algorithms, most of which are approxi-
mate, while some are accurate. We have seen how the accurate Cole-Sharir
algorithm can be used on RSGs, capable of calculating the viewshed in es-
sentially O(n log n) time on a grid with n points. This algorithm has a rather
complicated implementation, however, so in practice we will use the standard
brute force algorithm for obtaining accurate viewsheds. The brute force al-
gorithm runs in O(n

3
2 ) time, and will be useful for validating the results

produced by the approximate algorithms.

As discussed, these algorithms are likely to be used as part of a more complex
algorithm which might require evaluating a large number of viewsheds. This
warrants the use of fast approximate algorithms, as the brute force algorithm
will be too slow. We will compare the performance of three such algorithms;
R2, XDraw and the radar-like algorithm. Based on existing literature we
expect R2 and the radar-like algorithm to be the most accurate of the three,
while XDraw is expected to be significantly faster.
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Chapter 4

Benchmarking viewshed
algorithms

In this chapter we first aim to establish a method for empirical comparison
of viewshed algorithms. Once we have such a robust method in place we will
use it for comparing the various viewshed algorithms, both in general and
for our specific application. Later, in chapter 5, we shall also apply these
techniques in order to improve the original R2-algorithm.

4.1 A motivating example

An intuitive and straight-forward approach to evaluating the performance of
some viewshed algorithm can be summed up as follows:

1. Select some relevant terrain data

2. Select some observation point randomly

3. Run both the algorithm in question and R3 from the observation point

4. Quantify the error made by the algorithm

The steps 2-4 can be repeated in order to increase the accuracy of the per-
formance estimate.

To see why this might be a bad idea, we will try this testing procedure on a
sample regular square grid (RSG) terrain consisting of 1024 × 1024 points.
The goal of the test is to compare the performance of two algorithms A and
B, to decide which is better.
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First we run the algorithms on 36 randomly chosen observation points. The
relative error obtained in each run is shown as a boxplot in fig. 4.1a. Al-
gorithm B seems to perform slightly better better than A, but the figure
does a really poor job illustrating the difference. This can to some extent
be mended by using a paired t-test. In this particular test, however, the
apparent difference is insignificant, as it fails the t-test with a p-value of
0.81.

Next we run the algorithms on a test set consisting of 36 hand-picked points.
The points are selected as local peaks in the terrain. In this case the figure
shows clearly that algorithm A is more accurate than B. The t-test also
successfully asserts A as more accurate than B with a p-value of 10−11.

This example illustrates two problems using randomly selected observation
points. Firstly the results obtained from such tests tend to differentiate
algorithms poorly, which means we do not get statistically significant results.
Secondly, we could have arrived at opposite conclusions about whether A
or B is better, depending on which of the two tests we chose to emphasize.
What makes the algorithms perform so differently in the two tests? How
should we test to ensure we get robust results?

4.2 Error metrics

The most straight-forward metric for viewshed accuracy is the misclassifica-
tion metric. Using e.g. the R3 algorithm we can find the accurate viewshed
for a particular test case. The absolute classification error of some approxi-
mate viewshed can then be obtained by counting the number of misclassified
points. By dividing by the total number of points in the grid, we obtain
the relative error. This metric is widely used in the literature, e.g. [Ray94],
[BMCK08] and [Izr03].

Another metric proposed by Franklin et al. in [FRM94] is to measure the
error of the estimated horizon at each point. By horizon we here mean the
figure defined in definition 3.6. We can obtain this error by comparing the es-
timate to the horizon calculated by the R3 algorithm. This metric clearly only
applies to algorithms that operate with some notion of horizon. This includes
the algorithms proposed by Franklin et al., but also some horizon-based al-
gorithms, such as the randomized algorithm due to de Floriani described in
[FM94]. Other algorithms, such as the expanding circular horizon (ECH)
and the radar-like algorithm from [BMCK08] do not provide any estimate of
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Figure 4.1: The relative classification error of two viewshed algorithms (lower
is better).
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the horizon, and thus cannot be used with this metric.

All we ultimately care about is whether we can trust that the classification
produced is sufficiently correct. An algorithm can produce quite good hori-
zon estimates, and still misclassify a large number of points. This suggests
that the misclassification metric better quantifies what we are interested in.
The horizon metric, however, can provide some valuable insights to the in-
ner workings of an algorithm. It can also help us understand why a given
algorithm performs well or poorly on particular test cases.

Since we are primarily interested in the resulting viewshed, and because we
want to compare several types of algorithms, we will use the misclassification
metric as our primary metric of viewshed accuracy.

4.3 Statistically robust performance measures

We are primarily interested in comparing algorithms in terms of how accurate
they are, and how fast they execute. These data will be obtained by running
the algorithms on a series of test cases, resulting in a set of error- and running
time measurements for each algorithm. This section addresses how we should
compare these results in a robust manner.

4.3.1 Comparison of accuracy

When comparing the accuracy of two algorithms on a test set, it might seem
natural to just use the mean or median error to establish which algorithm
is better. In the case of fig. 4.1a, however, the weaknesses of this method
become apparent. Here algorithm A has a lower mean error than B, while
the opposite is true for the median. We need a more robust way to compare
algorithm performance.

The error produced by an algorithm can be viewed as a random variable, and
we can therefore use standard statistic methods to test for the significance
of a given test result. We will not assume that the error results have the
normal distribution, but instead rely on theory that does not require this
property.

Given test results for two algorithms from the same test set, the error mea-
surements have a natural pairing on each test case. This enables us to use
paired t-tests for deciding which algorithm is better. The t-test assumes
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that sample means have the normal distribution. Due to the central limit
theorem, this is the case if we use sufficiently large samples.

The paired t-test provides us with a much more robust tool for asserting one
of two algorithms as better. In the case of fig. 4.1a, using the one-sided paired
t-test to see if A is better than B, the test fails with a p-value of 0.41. This
means that assuming A is not in fact better than B, there would still be a
41% chance of observing the results we just did. In other words, the given
results were not significant in showing that A is better than B. Similarly,
asserting B as better fails with a p-value of 0.59.

Most of the algorithms we will compare, however, will not have similar per-
formance. There will be no question which algorithm is better, but rather
how much better it is. Once again it might be tempting to use the ratio of
the mean or median errors to make claims like ”algorithm A makes only x%
of the error B does”. Unfortunately, this is just as weak a result as using
the mean or median to decide which algorithm is better. Instead we should
one-sided confidence intervals to make sure we underestimate how good the
better of the two actually is. This way, we avoid overoptimistic claims about
the performance of the algorithms.

Specifically, the conservative estimate of the improved error can obtained as
follows.

Let Aerr and Berr be the error of algorithms A and B represented as random
variables. Next, define

R =
Aerr

Berr

µR = E

(
Aerr

Berr

)

Let {ai}ni=1 and {bi}ni=1 be two samples from Aerr and Berr respectively, such
that ai and bi come from the same test case. Next consider the mean of the
paired ratio:

R =
1

n

n∑
i=1

ai
bi

Assume n sufficiently large. Then by the central limit theoremR ∼ N(µR,
σ√
n
).

Thus

Z =
R− µR

σ√
n

∼ N(0, 1)
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This allows us to find an upper limit of µR with p confidence.

P (Z ≥ z) = p

m
R− µR

σ√
n

≥ Φ−1(1− p)

m

µR ≤ R− s√
n

Φ−1(1− p)

Thus the upper limit for µR with p confidence is:

µ̂R = R− s√
n

Φ−1(1− p)

We will use µ̂R as a measure of the ratio of the error made by two algorithms,
A and B. If we see that A is more accurate than B, then we will say that
the expected error ratio (EER) of A and B is µ̂R with p confidence. Of
course, what we really should say is that the expected error ratio of A and
B is no larger than µ̂R with p confidence, but this seems somewhat tedious.
It is common to use confidence levels of 95% or 99%. Since we easily can
generate as much test data as we need, we will use the 99% confidence level
throughout this thesis. The EER claim will therefore almost certainly be
an understatement, so in practice the observed error ratio will typically be
lower. This conservative behavior is, however, exactly what we want.

A good example of this conservative behavior can be found in the data behind
fig. 4.1b. In this case the mean relative error of algorithm A and B is 16.3%
and 21.6%, respectively. From this one might jump to the conclusion that A
makes only about 75% of the error of B. However, using the method above,
we see that the EER of A and B is around 82%. Applying the method to the
dataset behind fig. 4.1a this falls apart with an EER of A and B of more than
400%, giving us a clear indication that the test results are insignificant.

4.3.2 Comparison of running time

In contrast to the error measurements, running time measurements are not
deterministic. Although paired on each test case, running time measurements
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are affected by the state of the computer at the time they were executed,
which adds some noise to the results. This is, however, exactly what we aim
to handle with the methods established for the accuracy measurements. The
only effect of the noise added to the timing results is that the significance of
the t-test and the EER become smaller and larger, respectively. This means
that the results might be less impressive, but they are indeed valid.

4.4 Choosing observation points

As fig. 4.1 illustrates, the choice of test observation positions clearly affects
the performance of the algorithms. To get an understanding of why this hap-
pens, consider fig. 4.2 which shows a 3D-rendering of the viewsheds of two
observer points, fig. 4.2a uses one of the observer points from the random-
ized test, while fig. 4.2b uses one of the observer points from the scenario.
Figure 4.2a illustrates an issue that arises surprisingly often when using ran-
domly selected points; the viewshed becomes very small.

Some points in any given viewshed are trivial to classify correctly for most
algorithms, because they are so obviously visible or invisible. If a viewshed
consists mostly of such points, then it will fail to properly differentiate al-
gorithms, which is exactly what happens in fig. 4.1a. It turns out that the
majority of small viewsheds have this property, making them less suited for
testing purposes.

4.4.1 Properties of trivial viewsheds

For performance comparison it seems to be good idea to avoid observers
with small viewsheds. We will now try to understand exactly what it is
about small viewsheds that make them unsuitable for benchmarking viewshed
algorithms.

The number of points in the viewshed is the same as the number of points
from which the observer in question is visible, and is a measure of how vis-
ible the observer is in general. The size of the viewshed of a point, and
sometimes also the relative size, is referred to as the visibility index in the
literature.

Consider first an observer situated in a deep pit, like the one in fig. 4.3.
The points around the perimeter of the pit, b1 and b2 in the figure, force
the horizon up very close to the observer, which means that most of the
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(a) Randomly chosen observer

(b) Observer from scenario

Figure 4.2: R2-estimated viewsheds of two selected observer points from the
tests. Points that are visible to the observer are colored red, and the invisible
points are colored green.
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Figure 4.3: Observer in a pit. The solid lines depict the actual horizon, while
the dashed lines show the horizon as estimated by R2 and XDraw.

remaining points in the terrain will be classified as invisible and do not affect
the horizon any further. As soon as the difference between the horizon and
the slope of the remaining points on the terrain becomes large, the error in
the estimate of the horizon produced by algorithms such as R2 and XDraw is
negligible. In fact, the only points in this figure that risk being misclassified
are the points on the perimeter of the pit, b1 and b2. In general this means
that except for a very small number of points, the viewshed is trivial for most
algorithms to calculate, which allows minor details in the terrain to tip the
conclusion of benchmark tests in either direction.

Next consider an observer situated on top of a hump above an otherwise flat
terrain, as illustrated in fig. 4.4. In this case the horizon is strictly increasing
with distance from the observer. Here the visibility index is 100%, but the
viewshed can still be trivially determined by most algorithms. It is important
to point out that real-world terrains seldomly contain points with a ground-
level visibility index of 100%. Even a visibility index of 50% is rare. However,
many applications use the elevated viewshed, where the observer is situated
at some height above the ground. For instance when working with aircraft,
this height can be substantial. In these cases highly visible observers with
trivial viewsheds are much more common.

4.4.2 A method for finding hard viewsheds

To avoid observers yielding this type of trivial viewsheds, Ray suggests in
[Ray94] as a rule of thumb that observers should be placed at points with
high visibility index. This, in combination with some sampling pattern that
ensures observation points that are spread out across the terrain, should form
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Figure 4.4: Observer on a hump. The dashed lines show the horizon at b1

and b2 as estimated by R2 and XDraw.

a good basis for evaluating algorithm performance. Ray suggests to do this
by dividing the terrain into a coarse grid of cells, and then select the point
with the highest visibility index within each such cell. As fig. 4.4 illustrates
however, this is not always enough, because in some applications many of
the highly visible observers have trivial viewsheds nevertheless.

Looking at fig. 4.3 and fig. 4.4, we see that it is typically in the transition
from visible to invisible or vice versa that the estimation accuracy of these
algorithms is put to the test. The points that are situated well inside or out-
side the viewshed and thus far away from a visibility transition are typically
much easier to classify. Additionally, the interpolation techniques used in
the various algorithms typically struggle in areas where the viewshed is inho-
mogeneous. This suggests that we should look for observers with viewsheds
that have complex shapes, and that ideally have several visibility transitions
along any ray.

To meet these criteria we shall use a similar approach to that of Ray. But
instead of using the area of the viewshed, we will use the circumference, i.e.
the area of the boundary. This preserves the first criterion of having a large
viewshed, since small viewsheds also have short boundaries. It also preserves
the criterion of a complex viewshed, as viewsheds with large homogeneous
areas have relatively short boundaries. Once we have a relatively complex
viewshed we also have several visibility transitions along most rays.

In general our procedure for selecting n test observation points is then as
follows:

1. Divide the terrain into n cells

2. Select the point in each cell which has the largest viewshed circumfer-
ence
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Following this procedure using the R3 algorithm for finding the circumference
of the viewshed for each point in a terrain is typically not feasable. A much
more practical approach is to randomly select k points in each cell, and choose
the best fit from that selection. Since we are interested in finding points that
make for reasonable test candidates, it is also perfectly acceptable to use a
fast algorithm like XDraw for finding the viewshed circumferences.

We will sketch this as an algorithm.

Algorithm 4.1 (Finding observation points with hard viewsheds).

Let n be the number of observation points
Let k the number of viewshed evaluations per observation point

Divide the terrain into n cells

for all such cells c
Select k points randomly within c
Use the point with the largest estimated circumference as an observa-

tion point

Figure 4.5 illustrates the effect of using this method compared to that pro-
posed by Ray. Each plot shows the error made by R2 on 16 observation
points chosen using the two methods at various observer and target heights.
For both methods the terrain is divided into 16 cells, then 16 points are
randomly selected in each cell, and the one with the largest viewshed area
and circumference is selected for the two methods respectively. Note that the
selection of the 16 points within each cell is the same for both methods.

As we see in fig. 4.5a, the difference between the two methods is insignificant
for the low observer/target height at 3m. At an observer- and target height
of 20m, as shown in fig. 4.5b, we see indications that the error at the ob-
servers chosen using the circumference method is higher. At 50m, as shown
in fig. 4.5c, the difference is clearly significant with the viewsheds of the ob-
servation points selected using the circumference method being considerably
harder to classify.

These test results are consistent with the observation that the situation illus-
trated in fig. 4.4 seldomly occurs in real world terrains unless a high observer
height is used. In the case of low observer heights the circumference method
seems to perform at least as good as the visibility index method. In terms
of computational complexity calculating the circumference of the viewshed
is analogous to calculating the area of the viewshed.
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Figure 4.5: The relative error of R2 on 16 observers chosen with maximum
viewshed area and circumference, at three different observer- and target
heights. Higher means means more difficult test cases, which is what we
try to achieve.
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4.4.3 A method for finding average viewsheds

It is not always meaningful to only use the points with the hardest viewsheds.
Therefore we would like to have a method for finding observation points with
viewsheds of arbitrary difficulty. Generalizing the method for finding hard
viewsheds, we can instead of choosing the point with the largest viewshed
circumference in each cell, pick the one closest to some percentile.

Algorithm 4.2 (Finding observation points with average viewsheds).

Let n be the number of observation points
Let k the number of viewshed evaluations per observation point
Let i be some percentile

Divide the terrain into n cells

for all such cells c
Select k points randomly within c
Use the point nearest the ith percentile wrt. estimated circumference

as an observation point

4.4.4 Assembling a complete testset of observation points

If the goal of the benchmark is to establish the average performance of the
algorithm in some sense, then the selection of observation points should re-
flect the population of observation points in the intended application. This
is rarely the case for some selection consisting only of observation points
with hard viewsheds. A reasonable testing population of observation points
for a general average performance benchmarking should therefore contain
meaningful portions of each of the following categories of points:

• Points with medium viewsheds

• Points with hard viewsheds

• Points that are typical for the application

Here, the medium and hard points can be found using algorithm 4.2 around
the 50th and 100th percentile respectively. The application-specific points
must be found by hand.

Remember that points with trivial viewsheds in general should be avoided.
As discussed they are rarely able to differentiate most of the algorithms
in any meaningful manner, and thus do not contribute to the accuracy of
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the benchmarking. Even in applications that involve finding points with
low visibility index, points with trivial viewsheds should not be leveraged in
algorithm benchmarking.

Emphasis should be put on the points that are typical for the application.
But points with medium and hard viewsheds are important for establishing
a baseline of viewshed algorithm performance, as well as for uncovering flaws
in algorithm implementation that might be present.

4.4.5 The role of the observer- and target height

The difficulty of a viewshed also seems to be affected by the observer- and
target height. From fig. 4.5 it appears as if the difficulty decreases when the
observer- and target height is increased. This is consistent with our discussion
of fig. 4.4, since a large observer height mimics a situation where the observer
is on the top of a narrow peak. Similarly, a very low observer height to some
extent mimics the situation in fig. 4.3, where the observer is down in a pit.
This might suggest that extreme observer- and target heights make it more
difficult to find good observation points.

Although the results clearly are affected by the choice of observer- and target
height, the effect is much smaller than what we saw when choosing observers
randomly. As long as these heights are kept within a reasonable range, this
does not seem to compromise the benchmarking result. There is, however,
no reason to use extreme observer/target heights unless it is required by the
application.

4.5 Choosing test terrain

As discussed, both the choice of test terrain and observation points can af-
fect the benchmark results in ways that can be hard to predict. In general
this means that it is always recommendable to choose terrains that mimic
those encountered in the actual application. However, some types of artifi-
cial terrains are interesting from a theoretical point of view, and can provide
valuable insights when analyzing viewshed algorithm behavior.
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4.5.1 Synthesizing a hard terrain

In an attempt to get an impression of how much the terrain affects the
performance of viewshed algorithms, we will try to create a terrain that is
especially difficult to classify using approximate methods. To do this we will
analyze the R2 algorithm, and look at some situations where it performs
particularly bad. Hopefully the resulting terrain will also be somewhat hard
to classify for the other algorithms as well.

As we know, R2 works by sending a line of sight (LOS) to each point on the
perimeter of the terrain. Along each LOS we obtain the accurate horizon,
and therefore also an accurate classification for all grid points that intersect
any of these LOSs. Erroneous classifications can only occur at grid points
that do not fall on any LOSs, since the horizon at these is estimated using
the nearest LOS.

Figure 4.6 illustrates this situation, where a point p falls between two ad-
jacent LOSs, as shown in fig. 4.6a. When using the FRM terrain model we
know that the horizon at p depends only on the grid lines within the gray
sector of fig. 4.6a. We can now plot the slope of each point on these lines as
a function of azimuth. This is done in fig. 4.6c and fig. 4.6b for two different
terrains. The image of a line under this projection is a smooth curve that
typically is almost linear. The upper envelope of these piecewise smooth
functions is drawn in bold red on the plots. From corollary 3.7 we know that
this is the horizon of the points along the red arc in fig. 4.6a.

The dashed lines in fig. 4.6 indicate the nearest neighbor estimate R2 obtains
for each point. As the plots show, this can cause R2 to both over- and un-
derestimate the horizon, which can potentially lead to classification errors.
These estimates seems to be worse when the horizon is complex and irregu-
lar. Intuitively this occurs more frequently in terrains with large numbers of
narrow spikes. Large changes in elevation tend to reduce this effect, however.
This is illustrated in fig. 4.6d, which shows an horizon plot of the same ter-
rain as fig. 4.6c, but extending all the way to p′ and the blue line in fig. 4.6a.
Here, one of the grid lines between p and p′ completely dominates the hori-
zon, in effect ”resetting” the complexity of the horizon. Without these large
elevation changes, the complexity of the horizon accumulates with distance
from the observer.

In order to maximize the chance of misclassifications, the terrain should
therefore contain a large number of spikes, but overall no large elevation
changes, such as a hill. Gaussian white noise has both of these properties,
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and as we shall see, it is a good basis for generating difficult terrains. It should
be duly noted that since the white noise terrain is specifically designed to
be difficult for R2, it is useless for making unbiased comparisons. We will,
however, use it for illustrating the difference in performance between easy
and difficult terrains.

4.5.2 The effect of different terrain types

In order to illustrate the effect different terrain types has on the performance
of some of the algorithms, consider fig. 4.8. The figure shows the error of
R2, radar and XDraw run on the terrain near Larvik, Alta and on the white
noise terrain.

Figure 4.7 shows a 3D rendering of the Larvik and Alta terrains. As the
figure illustrates, these terrains are quite different. The Larvik dataset has a
total elevation range of 107m, and is overall relatively flat. The Alta dataset
has an elevation range of 875m, due to several high mountains. The white
noise terrain is as we know extremely rough with lots of sharp peaks. In this
test we have used Gaussian noise with µ = 0 and σ = 0.5. This means that
approximately 95% of all points lie in the range -1m to 1m.

Considering the overall performance of the three algorithms, Larvik and Alta
seem to be of comparable difficulty. Looking at the white noise terrain, on
the other hand, all three algorithms seem to perform significantly worse.
Perhaps even more interesting is that the algorithms are affected differently
by the different terrains. On Larvik, the radar-like algorithm performs clearly
better than XDraw, while on the white noise terrain, XDraw is clearly better.
Similarly R2 is better than radar by a margin on Larvik, but on Alta the
difference is much less obvious.

From this we can only conclude that some algorithms perform better on
certain types of terrain, and that the effect is not always easy to predict.
Therefore it is important to test algorithms on terrain that is similar to that
they will face when in use.

4.6 Benchmarking running times

Benchmarking the running time of viewshed algorithms require much of the
same consideration for picking test data as the accuracy testing. Some algo-
rithms, like R3 and the non-fixed version of the radar-like algorithm, have
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Figure 4.6: Overview of a situation that typically leads to errors in R2-type
algorithms is illustrated in fig. 4.6a, where the point p lies far away from
the nearest ray. Figure 4.6b and fig. 4.6c plots some of the grid lines in the
grey sector of fig. 4.6a, for two different terrains. Figure 4.6d is a plot of
the same terrain as in fig. 4.6c, but also includes some of the grid lines from
the sector between p and p′. The slope of the points on the lines, as defined
in definition 3.5, is plotted as a function of azimuth. The upper envelope of
the projections, plotted in bold color, is thus the horizon of the points along
the red and blue arcs in fig. 4.6a respectively. The dashed lines show the
estimated horizon as obtained by R2 using nearest neighbor interpolation.
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(a) Larvik

(b) Alta

Figure 4.7: 3D renderings of the Larvik and Alta data sets.
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Figure 4.8: Comparison of terrains. The plots show the relative error ob-
tained by the R2, radar-like and XDraw algorithms on the Larvik, Alta and
white noise terrains (lower is better). 16 observers are chosen using algo-
rithm 4.2 with n = k = 16, and i = 100. The tests are run with an observer-
and target height of 1m.
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an obvious running time dependency on the complexity of the terrain and/or
resulting viewshed. Other algorithms like R2 and XDraw do not. Therefore
it is key to test using terrains and observation points that yield realistic view-
sheds. This is achieved by following the procedure discussed in the previous
sections.

4.7 Evaluation of existing algorithms

We will now put the above theory into practice by benchmarking a set of
algorithms for use in the military scenario discussed in chapter 2. For this we
need to create a suitable test setup by selecting terrain data and observation
points.

The goal of these tests are two-fold: We want to determine which algorithm
works best for this type of application. Also, we want to compare the results
of using observation points that are hand-picked by experts to those selected
automatically.

4.7.1 Terrain data

We want to find an algorithm that performs well on a variety terrain types
that can be found in Norway, ranging from the flat-land to mountainous
regions. Therefore we will perform the tests on both the Larvik and Alta
datasets.

Both terrains are represented as RSGs of size 1024×1024 and a vertical reso-
lution of 1m. The Larvik dataset has a horizontal resolution of approximately
4.9m, while the Alta dataset has a resolution of 15m.

4.7.2 Observation points

Looking back to the military background from chapter 2, we are particularly
interested in two types of viewsheds: We want to know where we can observe
an enemy from, and where we can attack it from.

Assume that both the sights and the highest visible point on the enemy are
situated 3m above ground. Then the points we can observe from are given by
the viewshed with the enemy as observer, and both an observer- and target
height of 3m. Similarly, assume that both the barrel and the highest critical
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point on the enemy are situated 1m above the ground. Then we can attack
from any point in the viewshed with the enemy as observer, and an observer-
and target height of 1m. These heights are chosen somewhat arbitrary as
they depend on vehicle type, but the principle remain clear.

Since all relevant observers in this scenario are enemy positions, we should
leverage points where an enemy unit typically would be positioned, when
benchmarking the algorithms.

The enemy positions are typically situated in such a way that they are only
vulnerable to attack from few directions, while maintaining a good view. The
enemies never position themselves such that they can be seen from far away
in many directions at once. This means that the points with the largest view-
sheds are unlikely choices in this context. The viewsheds as described here
will be medium in size, with a few narrow ”fans” extending in the directions
the unit is set to watch over.

According to the method established above we should therefore test with a
selection of observers where the majority have medium difficult viewsheds.
We should include hand-picked observers that are known to be typical, and
we should also include some difficult viewsheds. Since the hardest viewsheds
don’t occur in the application, we will choose the hardest in the test at the
80th percentile instead of the 100th. Additionally, experts will select some
points that are typical positions that enemies will take. These will make up
the hand-picked portion of the test set.

In summary we will use the following recipe for choosing observers:

• 9 hand-picked observers with height 1m

• 9 hand-picked observers with height 3m

• 9 observers with height 1m, from 50th percentile

• 9 observers with height 3m, from 50th percentile

• 9 observers with height 1m, from 80th percentile

4.7.3 Algorithms

The algorithms we will be testing are some of the ones discussed in chap-
ter 3:

• R2
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• XDraw interpolated

• XDraw maximized

• XDraw minimized

• XDraw averaged

• Fixed radar-like

The XDraw variants are obtained using the corresponding estimators de-
scribed in eq. (3.4).

Throughout the tests we will be using the fixed version of the radar-like
algorithm proposed by Ben-Moshe et al., although we will refer to it simply
as the radar algorithm.

The R2 and XDraw implementations are optimized for speed to a comparable
level. The implementation of the radar algorithm, however, is not optimized
to the same level. This algorithm can evaluate an adjustable number of
LOSs. Since R2 and radar have relatively similar modes of operation we will
set the radar algorithm to evaluate the same number of LOSs as R2 does,
and consider them as comparable in terms of speed.

4.7.4 Expectations

The results of Franklin et al. indicate that the interpolated version is the
most accurate of the XDraw variants. [Ray94] and [Izr03] consider R2 to be
significantly more accurate than XDraw. Therefore it is natural to expect
that we will see the same trends.

No known prior comparisons of R2 and the radar algorithm have been made.
Except for the interpolation techniques used, these algorithms have a rela-
tively similar mode of operation, so it seems reasonable to assume that they
should have similar performance.

As for the case of running times the results of Franklin et al. indicate that
XDraw is significantly faster than R2, sometimes as much as an order of
magnitude. As discussed, the radar implementation has not been optimized
as much for speed, so it should be expected to run considerably slower than
the other algorithms.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 8.0× 10−4 5.4× 10−4 1.1× 10−3 107.6 ms
Radar 1.6× 10−3 1.0× 10−3 2.5× 10−3 327.2 ms
XDraw interp. 6.1× 10−3 3.2× 10−3 1.0× 10−2 32.8 ms
XDraw max 4.8× 10−2 3.4× 10−2 8.0× 10−2 31.1 ms
XDraw mean 4.4× 10−2 2.5× 10−2 6.7× 10−2 31.4 ms
XDraw min 1.6× 10−1 1.0× 10−1 2.5× 10−1 31.2 ms

Table 4.1: Larvik, full set of observers

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 1.3× 10−3 8.3× 10−4 1.9× 10−3 117.3 ms
Radar 1.6× 10−3 1.0× 10−3 2.6× 10−3 342.7 ms
XDraw interp. 4.1× 10−3 2.7× 10−3 5.8× 10−2 35.6 ms
XDraw max 6.8× 10−2 3.4× 10−2 7.4× 10−2 32.7 ms
XDraw mean 3.8× 10−2 2.9× 10−2 4.8× 10−2 33.9 ms
XDraw min 1.1× 10−1 8.5× 10−2 1.5× 10−1 33.3 ms

Table 4.2: Alta, full set of observers

4.7.5 Results

We first ran the tests using the full set of observation points as described
above. The results are shown in table 4.1 and table 4.2. Figure 4.9a and
fig. 4.9b show the relative error of the full test as a boxplot.

We also ran a test using only the hand-picked observation points for each
terrain. The results can be seen in tabular form in table 4.3 and table 4.4.
Boxplots are shown in fig. 4.10a and fig. 4.10b.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 7.1× 10−4 1.5× 10−4 1.1× 10−3 117.0 ms
Radar 1.5× 10−3 3.2× 10−4 2.1× 10−3 370.9 ms
XDraw interp. 6.1× 10−3 2.3× 10−3 1.2× 10−2 35.1 ms
XDraw max 4.0× 10−2 1.4× 10−2 7.5× 10−2 32.6 ms
XDraw mean 3.8× 10−2 1.4× 10−2 6.4× 10−2 34.7 ms
XDraw min 2.0× 10−1 8.2× 10−2 2.5× 10−1 33.2 ms

Table 4.3: Larvik, hand-picked observers
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Figure 4.9: Comparison of the relative error of some existing algorithms
(lower is better). Results are obtained using the full set of observers described
in section 4.7.2.

66



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

R2 Radar XDraw_int XDraw_max XDraw_mean XDraw_min

(a) Larvik

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

R2 Radar XDraw_int XDraw_max XDraw_mean XDraw_min

(b) Alta

Figure 4.10: Comparison of the relative error of some existing algorithms
(lower is better). Results are obtained using only the hand-picked set of
observers described in section 4.7.2.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 1.6× 10−3 1.3× 10−3 2.3× 10−3 116.5 ms
Radar 2.2× 10−3 1.4× 10−3 3.2× 10−3 339.7 ms
XDraw interp. 4.1× 10−3 3.3× 10−3 5.8× 10−3 35.4 ms
XDraw max 7.4× 10−2 6.8× 10−2 8.2× 10−2 32.7 ms
XDraw mean 4.2× 10−2 3.7× 10−2 5.0× 10−2 32.3 ms
XDraw min 1.4× 10−1 9.6× 10−2 1.6× 10−1 33.4 ms

Table 4.4: Alta, hand-picked observers

4.7.6 Verifying the implementations

Since several similar experiments have been made by others, it is natural to
compare our results to the available data. In order to verify the correctness
of our implementations we should expect that our results are not drastically
worse than others, unless differences in the testing procedures should warrant
weaker results.

XDraw

The authors do not provide measurements of the accuracy of XDraw in the
original article [FRM94]. Fortunately, Izraelevitz proposes a variant of in-
terpolated XDraw in [Izr03], in which he includes empirical tests comparing
it to the original algorithm. The tests consist of 16 samples, obtained using
uniformly spaced observers on a terrain data set that seems comparable to
our Alta set in terms of resolution and terrain type.

The results obtained by Izraelevitz match ours very well. In his tests the
relative error lies in the range of about 1× 10−3 - 1× 10−2. Our results for
interpolated XDraw lie in the range of about 5× 10−4 - 1× 10−2. Thus there
is no reason to suspect our implementation is any less correct than that of
Izraelevitz.

The difference in code between the other variants of XDraw is trivial, as can
be seen in e.g. listing A.18. It is therefore unlikely that these have errors the
interpolated version does not have.
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R2

Franklin et al. only briefly describes the relative error of R2 in [FRM94],
as their primary concern is running time. The full details of their testing
procedure used are somewhat difficult to make out, but [Ray94] contains a
slightly more thorough description.

The terrain used in the tests is referred to as the south-west quadrant of
DTED level 1 cell N37E127. This is a terrain data set centered at 37◦N and
127◦E, which is in the mainland of South Korea. DTED level 1 terrain is
sampled at a resolution of 3 arc secs, which corresponds to about 83m in this
area. The test is executed by choosing a single observer close to the center
of the south-west quadrant. The observer is chosen to have high visibility,
which means that it should have a difficult viewshed as we have previously
discussed. There is no description of the observer or target height used.

In the test R2 has a relative error of 1.2%, which is significantly worse than
any of our real-world terrain tests. Therefore there is no reason to believe that
our implementation is any less correct than that of Franklin et al. However,
as we have seen, the test terrain can significantly impact the performance of
the algorithms. We should therefore investigate this closer.

Unfortunately, DTED cell N37127 does not seem to be openly available any-
more. However, the USGS GTOPO30 model covers the desired area with
30m resolution, and can be obtained freely through the USGS earth ex-
plorer. We can then produce a data set of a region to the south west of
37◦N and 127◦E with 83m resolution using interpolation and decimation on
the GTOPO30 data set. The resulting region has a size of 600× 600 points,
matching fairly well the region described in [Ray94]. A 3D rendering of parts
of this terrain can be seen in fig. 4.11. This illustration provides an imme-
diate explanation for the poor results of Franklin et al. The terrain has a
large amount of spikes, possibly an artifact due to the low resolution, making
it resemble the white noise terrain. From what we have discussed earlier, it
should therefore come as no surprise that the algorithms perform worse on
this terrain.

A full test of R2, among other algorithms, on this terrain can be found in
chapter 5. The worst samples have a relative error of about 0.8%, which is
not too dissimilar to that seen by Franklin et al. We therefore consider our
implementation of R2 to be validated.
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Figure 4.11: Parts of the terrain from DTED cell N37E127

The radar-like algorithm

The only source of empirical data for the radar-like algorithm is the original
article by Ben-Moshe et al. [BMCK08]. These results are based on a trian-
gulated irregular network (TIN) terrain model, making it close to impossible
to reproduce the results with similar LOS density and terrain characteristics.
Additionally, since the radar-like algorithm is able to classify regions and
not only points, the provided results give relative error of the viewshed area,
which is not easily translated to our error measures.

For the radar-like algorithm we must therefore rely on hand-crafted test cases
for validating the implementation.

4.7.7 Evaluating the results

The trend in all four tests is that R2 is more accurate than radar, which
in turn is more accurate that XDraw. The interpolated version is by far
the most accurate of the XDraw variants, and is the only of the XDraw
algorithms that is comparable to R2 and radar in terms of accuracy. This is
consistent with our predictions based on earlier work.

We must keep in mind, however, that we here use the fixed version of the
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XDraw mean XDraw int Radar
XDraw int 1.4× 10−1

Radar 5.0× 10−2 4.3× 10−1

R2 3.3× 10−2 3.0× 10−1 7.8× 10−1

Table 4.5: EER analysis of four existing algorithms. The cell in column i and
row j contains the EER of algorithms i and j with 99% confidence. Blank
cells indicate that the test to show that algorithm i is significantly better
than algorithm j failed.

radar-like algorithm. As we know, the non-fixed version of radar typically
obtains a lower error rate for a given number of LOS evaluations. Therefore
it seems fair to conclude that R2 and non-fixed radar are roughly comparable
in terms of accuracy for this use, albeit with a slight edge to R2.

Turning to running time the radar algorithm is by far the slowest, as expected.
As discussed this is an implementation that is not optimized for speed, so this
result should not be emphasized. An interesting point is that the running
time of the interpolated version of XDraw is negligibly slower than the other
versions. This in contrast to the results of Franklin et al. in [FRM94], which
suggest that the interpolated version should be considerably slower. Based
on these results there is no reason to choose the averaged version over the
interpolated version of XDraw.

Comparing the R2 algorithm to interpolated XDraw it is clear that R2 is
significantly more accurate, while XDraw is significantly faster. In time-
critical applications requiring real-time performance, XDraw might therefore
be only option. If this is not the case, R2 should generally be preferred.

Combining the full Larvik and Alta data sets, we can use EER from sec-
tion 4.3 to further analyze the data. Since the max- and min-variants of
XDraw are not of particular interest in this context, we focus on the aver-
aged and interpolated variants, in addition to radar and R2. The result can
be seen in table 4.5.

The EER analysis shows that interpolated XDraw makes less than 14% of
the error averaged XDraw does. R2 and radar are more than 3.3 and 2.3
times as accurate as interpolated XDraw, respectively. Finally, we also see
that R2 makes less than 78% of the error radar does. Although we expect
the non-fixed version of radar to perform better, it seems reasonable to prefer
R2 for our application.
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Chapter 5

Improving the R2 algorithm

Based on the results obtained in chapter 4 the R2 algorithm stands out as a
good choice in terms of accuracy for our application. In this chapter we aim to
improve the R2 algorithm, making it even more suitable for our application.
First we conduct a more thorough analysis of some of the weaknesses of R2,
and propose how to mend them through simple modifications of the original
algorithm.

Next, we propose a more flexible variant of R2, inspired by the radar-like
algorithm. We want to be able to increase the accuracy of R2 on demand, in
exchange for increased running time, as we can with radar. A natural way
to achieve higher accuracy in R2, while accepting longer running times is to
evaluate more lines of sight (LOSs). By letting the number of evaluated LOSs
be a parameter of the algorithm, we get the adjustable behavior we want.
In this chapter we analyze the properties of this algorithm, and investigate
further where the extra LOSs should be sent in order to increase the potential
of correcting errors.

5.1 R2 side slope performance

By carefully comparing some of the test results from chapter 4, it seems that
R2 performs worse compared to the other algorithms on the Alta terrain than
Larvik. This is especially clear in the Larvik and Alta plots from fig. 4.8.

Focusing on one of the Alta test cases where R2 performs especially bad
compared to the other algorithms, we can investigate further what is going
on. Figure 5.1 shows both the correct viewshed and the viewshed computed
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by R2 for such a test case. Inside the red circle the R2 viewshed has some
obvious artifacts. Looking at the region between the observer and the red
circle there are no obstructions that would suggest the lines of invisible terrain
in the red circle. As we see from the correct viewshed, most of these points are
well inside the boundary of the viewshed, and should therefore be relatively
easy to classify. It seems as if the side slope itself is enough to R2 make errors
on these trivial points.

To test this hypothesis we can synthesize a terrain with a deep and smooth
valley, and run the algorithm on an observer situated on the bottom of the
valley. We will generate the terrain as follows.

Let k denote the center coordinate of the terrain on the x-axis. Then the
elevation of each grid point s1, s2 is given by:

es1,s2 = (s1 − k)2 (5.1)

A 3D rendering of this terrain with the result from R2 can be seen in fig. 5.2,
where the observer is situated at the bottom of the valley. Since the valley is
convex, all points are visible to the observer. However, as the figure shows,
R2 misclassifies many of the points on the side slope. This viewshed should
be trivial to classify, as demonstrated by XDraw in fig. 5.2b, which classifies
all points without error.

A more detailed view of this situation can be seen in fig. 5.3. Since the surface
of the terrain is convex, the horizon is strictly increasing as R2 propagates
each ray outward. The horizon between two such rays, therefore always
takes the shape of a smooth curve with at most one kink. Figure 5.3b shows
a typical such horizon as it occurs along the gray arc in fig. 5.3a. As the figure
shows, the nearest neighbor interpolation used by R2 does a particularly bad
job at estimating the horizon at the point p, as the error ε gets really large.
The lines with artifacts we see in fig. 5.2a and in the red circle in fig. 5.1b
are results of round-off errors in R2’s nearest neighbor interpolation.

Comparing Alta to the Larvik terrain, we know that Larvik has no high
mountains or severe slopes. This explains why R2 performs so much better
on Larvik, since these side slope estimation errors seldom occur.

5.2 The generalized R2 algorithm

A natural way to mend the issues with side slopes is to replace the nearest
neighbor interpolation with some higher order estimation leveraging several
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(a) Correct viewshed

(b) Viewshed computed by R2

Figure 5.1: The viewshed of some observer on a side slope. Yellow represents
points that are visible. The observer is indicated by the white square in the
lower left corner of the figures. Inside the red circle the viewshed computed
by R2 has some obvious artifacts.

74



(a) R2

(b) XDraw

Figure 5.2: The viewsheds at a smooth valley as calculated by R2 and XDraw.
Green and red points indicate invisible and visible points respectively. The
observer is represented by the white spot situated at the bottom of the valley
in the bottom of the figure.
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Figure 5.3: Overview of the side slope situation from fig. 5.2. Since the
terrain is convex the horizon is at all times given as a single smooth curve, or
as a curve that has exactly one kink. A typical horizon between two rays of
R2 is depicted in fig. 5.3b, where ε denotes the error in the horizon estimate
made by R2.

of the rays passing through the neighborhood of a point. In order to test the
effect of this we will make a generalized version of the R2-algorithm allowing
us to replace the nearest neighbor interpolation with some other estimation
scheme.
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Algorithm 5.1 (R2 generalized).

Let est be some estimator, o be some observer point, and let ψ and ω
denote the observer- and target height, respectively.

for all p ∈ S, p perimeter point of S
let ` be the LOS from o + ψk to p + ωk
h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

est.train(x, h)
h = max {h, so(x)}

for all s ∈ S
if so(s + ωk) > est.estimate(s)

label s as visible
else

label s as not visible

The only difference from algorithm 3.3 here being that we use a general object
est referred to as an estimator, that in some way estimates the horizon at
each grid point. For nearest neighbor estimation est must keep track of the
nearest grid line crossing of each grid point. We refer to the first double
for -loop as the training step of the algorithm, while the second for -loop we
call the classification step.

Corollary 5.1.

If est.train and est.estimate runs in O(1) time algorithm 5.1 runs in O(n)
time on a square grid with n points.

Proof. This follows directly from corollary 3.8. �

5.3 Estimators for generalized R2

We will now consider a few possible implementations of the horizon estimator
est discussed in the previous section. In the original paper [FRM94], the
authors simply use the horizon of the nearest grid line crossing as the estimate
for each grid point. Our primary goal is to replace this with some higher order
estimator that handles side slopes better than the original algorithm. For this
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Figure 5.4: Estimation of the horizon of some point s. The circles indicate
all grid line crossings in the neighborhood of s. The solid lines are the two
rays used by the linear estimator, est(linear). The crosses represent the grid
line crossings it uses in the interpolation.

purpose we shall consider two first order estimators; what we shall call the
weighted and the linear estimator. We shall also consider the maximum and
minimum estimators, to see if we can achieve similar behavior as the max-
and min-variants of XDraw.

Figure 5.4 shows an overview of the situation where the estimator comes into
play. By evaluating numerous LOSs radiating from the observer, we have
obtained the horizon at several grid line crossings in the neighborhood of a
grid point s. These are highlighted by circles in the figure. The purpose of
the estimator is to make an estimate of ŝo(p) using this data.

5.3.1 Candidate estimators

The max- and min- and nearest neighbor estimators simply choose a single
grid line crossing within the neighborhood of s, and use its horizon as an
estimate for that of s. Unsurprisingly the max- and min estimators here
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choose the grid line crossing with the highest or lowest horizons, respectively.
The nearest neighborhood estimator chooses the grid line crossing closest to
s.

One way to obtain a first order estimate of ŝo(s) is to weigh each grid line
crossing by some function of its distance to s. The estimate can then be
calculated as a weighted average of the horizons of grid line crossings in the
neighborhood. This type of estimator we call weighted estimators. Since the
neighboring grid line crossings have a distance to s of at most 1, a natural
weighting function is (1 − d), where d is the distance to s. As we shall see
the weighted estimator has an efficient implementation which is almost as
fast as the nearest neighbor estimator, while performing much better on side
slopes.

Another way to obtain first order estimates is to linearly interpolate the
horizons of the nearest ray on both sides of s. These are the solid rays in
fig. 5.4. Ideally we should use the horizon of the points along the rays that
have the same distance to o as s has. However, as we know the horizon is
constant between grid lines. Therefore, we will use the horizon of the nearest
grid line crossing on both sides of s. These two points are marked with crosses
in the figure.

We will now give a precise definition of the estimate-method of these estima-
tors.

Definition 5.1 (R2 visibility threshold estimators). Let o be some observer,
Xs be the set of grid line crossings in the neighborhood of s. Also let xs and
xs be the two closest grid line crossings to s on either side of the ray running
through s and the observer.

est(near).estimate(s) = ŝo(argminx∈Xs
||x− s||) (5.2)

est(max).estimate(s) = max
x∈Xs

ŝo(x) (5.3)

est(min).estimate(s) = min
x∈Xs

ŝo(x) (5.4)

est(weight).estimate(s) =

∑
x∈Xs

(1− ||x− s||xy) ŝo(x)∑
x∈Xs

(1− ||x− s||xy)
(5.5)

est(linear).estimate(s) =
||xs − s||ŝo(xs) + ||xyxs − s||xyŝo(xs)

||xs − s||xy + ||xs − s||xy
(5.6)

Note that using the generalized R2 algorithm with the nearest neighbor es-
timator is equivalent to using the original R2 algorithm. To avoid confusion
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we will from now on call this R2 near.

5.3.2 Implementation notes

As suggested the estimators should accumulate information obtained through
the train method, and use this information for estimating the horizon. An
efficient way to implement this is using one or more two-dimensional arrays
of the same size as the terrain.

Using this technique the max- and min estimators can be implemented using
one such array, where the value at index (i, j) represents the maximum or
minimum horizon seen so far in the neighborhood of the grid point si,j. See
listing A.14 for a sample implementation of this.

The nearest neighbor estimator needs two such arrays, one for storing the
distance to the so far nearest grid line crossing, and the other for storing
its horizon. The weighted estimator also needs two arrays, one each for
accumulating the numerator and the denominator from eq. (5.5).

The most complicated estimator is the linear one, which needs four two-
dimensional arrays. As for the nearest neighbor estimator two arrays is
needed to keep track of the nearest grid line crossing, but in this case we
need to do it for crossings on both sides.

Based on this it seems fair to assume that the max- and min estimators will
be the fastest. Also we should expect the nearest neighbor- and weighted
estimators to be comparable in terms of speed, while the linear estimator
should be the slowest estimator.

5.3.3 Max- and min estimator performance

We will now assess the performance of the max- and min estimators for the
generalized R2 algorithm. The purpose of these estimators is not to improve
overall classification accuracy, so we do not expect them to perform better
than the nearest neighbor estimator. Instead the goal of the max- and min
estimators is to obtain an inner and outer boundary, respectively, for the
actual viewshed.

Since the max estimator has a bias towards overestimating the horizon, it
is less likely to commit false positives. That is, wrongfully label a point as
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Algorithm
Median rel.
err.

Median rel.
type 1 err.

Max rel.
type 1 err.

Mean run.
time

R2 near 8.0× 10−4 4.1× 10−4 1.5× 10−3 116.0 ms

R2 max 4.9× 10−3 5.7× 10−6 3.1× 10−5 94.5 ms

XDraw max 4.8× 10−2 0 9.5× 10−7 32.6 ms

Table 5.1: R2 max and XDraw max performance on the Larvik full test set
from chapter 4. For each test run the number of points erroneously classified
as visible is counted and divided by the total number of points, giving the
relative type 1 error. The test set consists of 45 runs, and the result of worst
of these runs is used for the max type 1 statistic.

Algorithm
Median rel.
err.

Median rel.
type 2 err.

Max rel.
type 2 err.

Mean run.
time

R2 near 8.0× 10−4 3.9× 10−4 1.5× 10−3 116.0 ms

R2 min 4.0× 10−3 1.0× 10−5 5.7× 10−5 95.8 ms

XDraw min 1.7× 10−1 9.5× 10−7 1.3× 10−5 35.2 ms

Table 5.2: R2 min and XDraw min performance on the Larvik full test set
from chapter 4. For each test run the number of points erroneously classified
as not visible is counted and divided by the total number of points, giving
the relative type 2 error. The test set consists of 45 runs, and the result of
worst of these runs is used for the max type 2 statistic.

visible. Similarly we expect the min estimator to commit fewer false nega-
tives.

It cannot be shown that the max- and min estimators commit no false posi-
tives and negatives, respectively. Figure 4.6b and fig. 4.6c illustrate why this
is not case. Regardless of how we estimate the horizon, we do not know what
it is like between the two nearest LOSs we have evaluated. Even though we
take the maximum of the horizon at the two LOSs in the max estimator, we
cannot guarantee that the horizon is no higher between the LOSs. Similarly,
we cannot give any guarantees for the min estimator either.

The results of a performance test of these estimators on the Larvik test set
from chapter 4 can be seen in table 5.1 and table 5.2. In the tests both the
R2 max- and min estimators perform reasonably well, although the XDraw
variants perform significantly better in terms of one-sided accuracy. One
might ask why we should even consider to use the R2 variants, when the
corresponding XDraw variants have higher one-sided accuracy, and are close
to three times faster. The reason for this is that the XDraw variants are much
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more conservative in their estimates. Looking at the median overall error
committed by these, we see that they are more than an order of magnitude
less precise than the R2 variants. If the XDraw bounds are nowhere near
tight, it greatly affects their usefulness.

The effect of this is illustrated in fig. 5.5, where the max- and min viewsheds
are compared to the correct one. As the figure clearly shows, the viewsheds
produced by the R2 variants coincide very closely with the correct viewshed.
The viewsheds produced by XDraw are on the other hand either much smaller
or much larger than the corresponding correct viewshed.

From these results it is clear that the R2 variants are much more useful for
identifying a small region where the boundary of the actual viewshed is likely
to be.

5.3.4 First order estimator performance

We have reason to believe that the weighted and linear estimators should
improve the performance of the R2 algorithm, due to the shortcomings of the
nearest neighbor estimator we have pointed out. It is now time to put these
estimators to the test, by running through the test procedure we established
in chapter 4.

In order to verify that these estimators actually solve the side slope issues,
we first re-run the test from fig. 5.2. The result of this can be seen in fig. 5.6.
As the figure shows, these estimators perform much better than the nearest
neighbor estimator. The linear estimator calculates this viewshed without
error. The weighted estimator misclassifies a total of eight points, although
not visible in the figure. This in stark contrast to the nearest neighbor
estimator which misclassifies a total of 284 345 points in this test. From this
it seems fair to conclude that both the weighted and the linear estimators
solve the side slope issues.

Next we repeat the full testing procedure used in chapter 4 in order to see
how the weighted and the linear estimators perform on more realistic terrains.
The results can be seen in fig. 5.7, table 5.3 and table 5.4.

As the plots show, both the weighted and linear estimators perform signifi-
cantly better than the original nearest neighbor estimator in terms of accu-
racy. R2 linear performs by far the best of the three, with a median relative
error close to a quarter of R2 near, and roughly half of R2 weight.
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(a) R2 max (b) XDraw max

(c) R2 min (d) XDraw min

Figure 5.5: Max- and min viewsheds of some observer on the Larvik terrain.
The correct viewsheds are colored yellow, while the estimated viewsheds are
colored red. In the max figures the estimated viewshed is smaller than the
correct viewshed, so the estimated viewshed is rendered on top of the correct
one. Opposite on the min figures.
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(a) R2 weighted

(b) R2 linear

Figure 5.6: The viewsheds at a smooth valley as calculated by R2 using the
weighted and linear estimators, respectively. Green and red points indicate
invisible and visible points respectively. The observer is represented by the
white spot situated at the bottom of the valley in the bottom of the figure.
The viewshed calculated by the linear estimator is perfect, i.e. all points
colored red. The viewshed from the weighted estimator has eight misclassified
points, although not visible in this figure.
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 8.0× 10−4 5.5× 10−4 1.1× 10−3 126.2 ms
R2 weighted 4.3× 10−4 3.1× 10−4 5.7× 10−4 128.7 ms
R2 linear 2.3× 10−4 1.3× 10−4 2.9× 10−4 150.0 ms

Table 5.3: Larvik first order estimator performance test

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 1.3× 10−3 8.3× 10−4 1.9× 10−3 127.7 ms
R2 weighted 5.3× 10−4 3.8× 10−4 7.5× 10−4 129.8 ms
R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 146.7 ms

Table 5.4: Alta first order estimator performance test

Observe that R2 weight is only barely slower than R2 near. In both the
Larvik- and Alta tests the difference fails to be significant with a one-sided
paired t-test p-value of 8.9% and 12.2%, respectively. Keeping in mind that
the only real difference between these estimators are minor details in how
the estimate is calculated, it is perhaps not surprising that the difference is
this small. R2 linear seems to run 10 − 20% slower than the other two, as
expected due to the increased memory usage.

Also, note that the linear estimator has very similar performance on the
Larvik and Alta terrains. This is contrasted by the nearest neighbor estima-
tor, whose median relative error is about 50% larger on Alta than on Larvik.
The median relative error of the weighted estimator is slightly less than 25%
larger on Alta than on Larvik, which might indicate that it is also somewhat
affected by side slopes on the Alta terrain.

Using the techniques discussed in chapter 4 we obtain from these results that
the expected error ratio (EER) of the linear estimator and the nearest neigh-
bor estimator is 0.24 with 99% confidence. For the weighted- and nearest
neighbor estimator the EER is 0.53. Based on these results it is fair to claim
that the weighted- and linear estimators are respectively twice and four times
as accurate as the nearest neighbor estimator on these types of terrains and
observer points. Since these boosts in accuracy come with modest increases
in running time, there is no reason to test further with the nearest neighbor
estimator.
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Figure 5.7: The relative error of the viewsheds as calculated using R2 with
nearest neighbor-, weighted- and linear estimators. The observers used in
this test are the same as the ones used in the full set tests in chapter 4.
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5.4 The uniform R2 algorithm

As discussed in the beginning of this chapter, the next step is now to modify
the R2 algorithm to evaluate an adjustable number of LOSs. The emphasis in
this section is more on accuracy than efficiency, so we will consider algorithms
that run several times slower than the original R2 algorithm. However, we
do have a brute force algorithm from which we can obtain an upper bound
on the running times of useful algorithms.

We will first consider the most obvious way to modify R2 for evaluating more
LOSs. For this algorithm our primary interest is to investigate how the error
changes as a function of running time.

The easiest way to handle any number of LOSs, is to evaluate LOSs at fixed
angle intervals, instead of send a LOS to each point on the boundary of
the terrain. The result is an algorithm that in some sense is similar to the
fixed radar algorithm, in that it evaluates LOSs in uniformly distributed
directions. Unlike the radar algorithm we still use the horizon of nearby
LOSs for estimating the horizon of each grid point. As before we can use any
type of estimator that fits into the generalized R2 scheme, but we will focus
on the weighted- and the linear estimator as these seem to have superior
performance.
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Algorithm 5.2 (R2 uniform).

Let est be some estimator, o be some observer point, C the number of
LOSs the algorithm is allowed to evaluate, and let ψ and ω denote the
observer- and target height, respectively.

Set δ = 2π
C

for all i = 1...C − 1
let ` be some LOS from o + ψk with horizontal direction iδ
h = −∞

for all grid line crossings (x1, x2) of `
x = (x1, x2, e(x1, x2))

est.train(x, h)
h = max {h, so(x)}

for all s ∈ S
if so(s + ωk) > est.estimate(s)

label s as visible
else

label s as not visible

First we compare this algorithm to the generalized R2, with both the weighted-
and the linear estimator. As before we do this by running the Alta test from
chapter 4. The results of this test can be seen in fig. 5.8 and in table 5.5.
From the results we see that the two algorithms are comparably fast, which
is expected since they evaluate the same number of LOSs. What is more
interesting in these results is that the uniform variants of the R2 algorithm
perform noticeably worse than the original variants in terms of accuracy.
As we know the R2 algorithm with both the weighted and linear estimators
make no error at points that lie exactly on an LOS. Some explanation to
these results might be offered by the fact that the uniform version of the
algorithm matches fewer point exactly with an LOS, resulting in more points
with uncertain estimates.

Next we re-run the tests against a range of configurations of the uniform
algorithm, to see how it performs using a larger number of LOSs. Since
our radar implementation is not properly optimized for speed, we will use
the number of evaluated LOSs as a measure of running time, in order to
make a fair comparison. We test the algorithms using 2, 3, 4, 6, 8, 10 and 16
times as many LOSs as the original R2 algorithm. When evaluating arbitrary
precision algorithms like these, the mean relative error is actually a better
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Figure 5.8: Comparison of the generalized and the uniform R2 algorithm with
the same number of rays used on both algorithms. The tests are performed
on the full Alta test set as described in chapter 4.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 146.6 ms
Uniform R2 linear 3.1× 10−4 2.2× 10−4 8.3× 10−4 133.9 ms
R2 weighted 5.3× 10−4 3.8× 10−4 7.5× 10−4 131.8 ms
Uniform R2 weighted 1.0× 10−3 5.3× 10−4 2.8× 10−3 124.1 ms

Table 5.5: Generalized and uniform R2 performance test
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Figure 5.9: The performance of uniform R2 with the weighted estimator as
a function of the number of LOSs evaluated. The x-axis shows the number
of LOSs in multiples of evaluations used by the original R2 algorithm. The
dashed line indicates the mean performance of the generalized R2 algorithm
using the weighted estimator.

measure of the performance than the median relative error. The reason
for this is that when the precision is increased, typically only the hardest
test cases see any error improvement as the easy ones already are close to
perfectly classified. At some point this means that the median error stops
improving, making it seem like the error reduction has converged. In reality
the algorithm might still be improving the error, but only on the hardest test
cases. The mean relative error, on the other hand, captures this very well.
Therefore we will for each test find the mean relative error, and plot it as a
function of the number of evaluated LOSs.

As fig. 5.9 illustrates, the uniform R2 with the weighted estimator does not
perform as expected in these tests. Instead of a steady improvement of the
accuracy we see that the error rate quickly stabilizes at about the same level
as the standard version of weighted R2, regardless of how many LOSs are
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Figure 5.10: The effect of denser LOS sampling in the uniform R2 algorithm.
Figure 5.10a shows the two LOSs passing through the neighborhood of a
grid point p when the uniform R2 algorithm is used with a low LOS density.
Figure 5.10b shows the same situation with higher LOS density, such that
four LOSs pass through the neighborhood of p. When using the weighted
estimator, the solid lines, which are closer to p, improve the accuracy of
the estimate. The dashed lines, however, tend to affect the accuracy of the
estimate negatively.

evaluated. Based on this it seems that the weighted estimator fails completely
to exploit denser LOSs to increase the accuracy.

Upon closer inspection, the horizon estimates seem to fluctuate as the LOS
density is increased. Some estimates become better, but others become worse.
For a possible explanation for this behavior consider fig. 5.10, where we look
at the LOSs in the neighborhood of some grid point p. When the LOS den-
sity is increased, the distance from p to the closest LOS decreases, which is
good for the accuracy of the horizon estimate. These LOSs are indicated by
the solid lines in the figure. Additionally, more LOSs intersect the neighbor-
hood of p, so the average distance from the LOSs to p remains relatively
unchanged. It is possible that the negative effect of adding the distant LOSs
zeroes out the positive effect of the closer LOSs.

In an attempt to mend this, we define the p-weighted estimator, which allows
us to adjust the estimators bias towards the nearest LOSs.

Definition 5.2 (The p-weighted estimator for R2).

Let o be some observer and Xs be the set of boundary crossings in the
neighborhood of s.
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Figure 5.11: Algorithm performance as a function of the number of LOSs
evaluated. The x-axis shows the number of LOSs in multiples of LOSs used
by the original R2 algorithm. The dashed- and dotted line indicate the mean
performance of the generalized R2 algorithm using the weighted- and linear
estimators respectively.

est(p-weight).estimate(s) =

∑
x∈Xs

(1− ||x− s||xy)p ŝo(x)∑
x∈Xs

(1− ||x− s||xy)p
(5.7)

Experiments indicate that using a value for p that is too high hurts accuracy
as much as using p = 1. The best results seem to be achieved by letting p
increase with LOS density. Therefore we re-run the test from fig. 5.9 with
p = 2k, where k is LOS-count relative to that of the original R2 algorithm.
I.e. when the algorithm is run with four times as many LOSs as the original
R2, p = 2 · 4 = 8.

The results of the full test can be seen in fig. 5.11. As the plot shows, all three
algorithm variants now behave as expected, in that the error is significantly
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reduced as the number of LOSs evaluated is increased. It is clear, however,
that the linear variant is superior to the other two. Although the p-weighted
estimator performs clearly better than the radar algorithm, the choice of
p = 2k is here somewhat arbitrary, and it is unlikely that this is the optimal
setting for p. However, it does not seem fruitful to optimize the weighted
estimator further when the linear estimator performs so much better.

With the uniform R2 algorithm and the linear estimator we have successfully
made an algorithm that is significantly more accurate than the generalized
R2 algorithm. Using a LOS density that is 16 times higher than that of
the original algorithm, we have reduced the median error to only a handful
points. Therefore we will consider this level of accuracy to be satisfactory for
terrains of this size and difficulty.

5.5 A tunable hybrid algorithm

With the uniform R2 algorithm we have established a baseline for highly
accurate, albeit slow, algorithms. Next we consider a different approach for
achieving the same level of accuracy while evaluating fewer LOSs. We do
this by putting more knowledge about the nature of terrains and viewsheds
into the algorithm. In order to make sure we do not overfit the algorithm
to some specific terrain, we will develop our algorithm using the Larvik ter-
rain only, and then validate its performance on the seemingly tougher Alta
terrain.

5.5.1 Targeting high uncertainty points

Looking at fig. 5.11 we see that the uniform R2 performs worse than the
generalized R2 when evaluating the same number of LOSs. Comparing the
LOS-patterns of the two variants, illustrated in fig. 5.12, we will try to un-
derstand why this is the case. First of all, we see that uniform R2 sends more
of its LOSs “outside” of the grid than generalized R2. In practice this means
that generalized R2 evaluates more grid line intersections. Secondly, every
LOS of generalized R2 runs exactly through at least one grid point. This is
good, because R2 makes no estimation errors along the LOS, so these points
are always classified correctly. Uniform R2 hits a few grid points by chance,
but not nearly as many as generalized R2.

Based on this, it seems like a good starting point to use the same scheme
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Figure 5.12: Overview of the distribution of LOSs for generalized- and uni-
form R2 on a 6 × 6 regular square grid (RSG). Notice how generalized R2
better covers the grid, and hits through more grid points than the uniform
variant.

as generalized R2, and then add more LOSs that run through points when
higher accuracy is needed. Since any error at points that intersect a LOS is
guaranteed to be corrected, we want to send the supplementary LOSs through
points that are likely to be misclassified in the first place. As discussed in
chapter 4 the points with the highest probability of being misclassified are
typically the ones that are close to the boundary of the viewshed. A simple
count of the errors made by R2 linear on the Larvik test set shows that
typically 99 − 100% of the errors lie just inside or just outside the correct
viewshed. Naturally, we do not know the exact boundary of the viewshed,
but we can obtain decent estimates using variants of the generalized R2
algorithm.

The most obvious estimate of the exact viewshed boundary can be obtained
simply by using the boundary of the viewshed as estimated by generalized R2
with linear estimator. On the test cases from the Larvik test set 91 − 96%
of the errors made lie on the boundary of the estimated viewshed. The
boundary on these test cases contain 1.5 − 2.5% of the points of the entire
terrain, which corresponds to about 4−6 times as many LOSs as generalized
R2.

As suggested earlier we can also use max- and min variants of generalized
R2 for obtaining a limited region which contains most of the boundary of
the exact viewshed. In the Larvik tests this region contains 90− 93% of the
error and spans 0.5− 1% of the terrain.
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According to these numbers we have isolated most of the error to a very
limited region of the terrain. Thus on Larvik it seems we typically should be
able to improve the error one order of magnitude by evaluating less than ten
times as many LOSs. We will have to test to see how this holds up on other
terrains, however.

We now define more precise algorithms based on these ideas.

Algorithm 5.3 (Hybrid bound).
Let o be the observer and ψ be the observer height. Let est be the linear
estimator. If V is a viewshed, then V denotes the boundary of V , which is
defined as follows: Let s be a grid point, then s ∈ V iff. s has at least one
grid point 8-neighbor with a different classification than s itself.

Execute the training step of algorithm 5.1 on est
Find Vlinear using the classification step of algorithm 5.1 on est

for all s ∈ V linear

Train est on the LOS running from o + ψk through s

Execute the classification step of algorithm 5.1 using est

Algorithm 5.4 (Hybrid min/max).
Let o be the observer and ψ be the observer height. Let est, est(max) and
est(min) be the linear-, max- and min estimators, respectively.

Execute the training step of algorithm 5.1 on est, est(max) and est(min)

Find Vmax and Vmin using the classification step of algorithm 5.1 on est(max)

and est(min)

for all s ∈ Vmin \ Vmax

Train est on the LOS running from o + ψk through s

Execute the classification step of algorithm 5.1 using est

Figure 5.13 and table 5.6 shows the performance of these two algorithms
compared to the generalized R2 algorithm with linear estimator. In terms of
accuracy the improvement is tremendous for both techniques. The accuracy
of the min/max hybrid variant seems to be close to two orders of magnitude
better than R2, while the boundary variant makes almost no error at all.
As expected the running times have increased, but by less than one order of
magnitude.
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Figure 5.13: The relative error of R2 and the boundary- and min/max hybrid
variants on the Larvik test set.

The EER of the min/max hybrid and linear R2 is less than 2.3% with a
confidence of 99%. Similarly the EER of bounded hybrid and linear R2 is
less than 0.5%. So these algorithms do indeed increase the accuracy by two
orders of magnitude on this test set. The error ratio measure is not well-
defined for comparing the two hybrid variants, as they both make 0 error on
several test cases. Using a one-sided paired t-test we can, however, assert that
the boundary variant is the most accurate with a p-value of 2× 10−8.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.2× 10−4 1.3× 10−4 2.9× 10−3 134.2 ms
Boundary 0 0 9.5× 10−7 958.4 ms
Min/max 2.8× 10−6 9.5× 10−7 6.0× 10−6 678.2 ms

Table 5.6: Larvik fixed hybrid performance test.
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5.5.2 Limiting the running time

Having achieved performance that is at least on par with the uniform R2 algo-
rithm in terms of accuracy, and significantly faster in terms of speed, we will
now attempt to make tunable versions of the fixed hybrid algorithms.

At this point we know that the misclassified points are relatively dense on
the estimated boundary and in the difference between the R2 min- and max
viewsheds. For brevity we will refer to these as highlighted points. The only
way to reduce the running time of the proposed algorithms is to reduce the
number of evaluated LOSs. This means that we have to select a portion of
the highlighted points. Ideally we would have some way to prioritize these
points, which reflects their respective likelihood of being misclassified. We
could try to find a set of easily obtained features that highlight points that
typically are misclassified. For a point p this might be features such as
so(p)− est.estimate(p), or the distance to the nearest LOS from p. Finding
such a set of features should be done using some machine learning algorithm,
and is beyond the scope of this thesis.

A trivial procedure to reduce the number of LOSs is simply to select a subset
of the highlighted points at random. Inspecting how the points from the
boundary of the viewshed are oriented wrt. the observer, it seems this is far
from uniformly distributed. A typical plot of the density of orientations can
be seen in fig. 5.14, which has several narrow peaks. This is a good thing,
since we then by sending a single LOS in the direction where the boundary
points are dense potentially can correct multiple errors. By randomly sam-
pling the set of highlighted points, we effectively sample the distribution of
orientations. This means that we are likely to send LOSs in the directions
where this distribution has peaks, which is exactly what we want.

The highlighted points are typically found in no particular order. Thus we
can sample approximately uniformly simply by picking each kth point. By
sorting the points by orientation before doing this we get a truly uniform
sampling. In practice the latter method actually seems to be faster, despite
the extra effort needed to sort the highlighted points.

These steps can be summed up as the following algorithm:
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Figure 5.14: The density of viewshed boundary points by orientation wrt.
the observer for a typical Larvik test case.
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Algorithm 5.5 (Constrained Hybrid). Let o be the observer and C the
number of LOSs the algorithm is allowed to evaluate in addition to the ones
evaluated by a single R2 pass.

Execute the first training steps of one of the Hybrid algorithms
Let M be the resulting set of highlighted points

Sort M by orientation relative to o
Set c = |M |

C

for all i = 1...C
Train est on the LOS running from o + ψk through Mci

Execute the classification step of R2

We will now evaluate the performance of this algorithm, both using the
boundary and min/max variants. We test it with a range of LOS-counts,
and see how the accuracy changes as a function of running time. For each
LOS-count we will run the algorithm against the full Larvik test set, and use
the mean error of all those tests as a performance measure for the respective
configuration. For these algorithms the mean error is a better measure than
the median error. This is because when the LOS-count reaches above some
level, only the hardest viewsheds are improved by increasing the LOS density
further, and the median might fail to pick up on this change.

The results of the test can be seen in fig. 5.15. The figure shows that uniform
R2 outperforms the hybrid variants for low LOS-counts. It is, however, clear
that both of the hybrid variants converge much faster to higher accuracy than
uniform R2. Observe also that for any given amount of running time, hybrid
bound outperforms hybrid min/max in terms of accuracy. For this reason we
abandon the min/max scheme, and will refer to the boundary variant as the
hybrid algorithm from now on.

5.5.3 Verifying the results

With the techniques we have developed in this section we have been able
to drastically reduce the error of the estimated viewshed, with moderate
increases in running time. In the process we have used some properties of the
viewshed that might depend on the terrain, such as the spacial distribution
of misclassified points. As discussed in the beginning of the section it is
therefore important that we verify the results on some different terrain, in
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Figure 5.15: The mean relative error of the two hybrid variants and uniform
R2 as a function of running time. The dashed lines indicate the accuracy
and running time of the generalized R2 using the linear estimator.
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Figure 5.16: Alta hybrid performance test. The lo variant of hybrid is con-
strained to evaluating three times as many LOSs as R2. The hi is uncon-
strained. The median of hybrid hi is 0, which is why its box appears cut on
the log scale.

order to make sure we have created an algorithm that not only performs well
on the Larvik test case.

We therefore repeat the tests once more, using the full Alta test set. In the
test we include R2 linear to see the improvement from our baseline. We
test a configuration of hybrid running without running time limitations, as
well as a configuration running approximately three times slower than R2
linear.

The results of this test can be seen in fig. 5.16 and table 5.7. It is clear that
these results comply with what we have already seen from the Larvik tests.
Since these terrains represent two extremes in the range of terrain types used
in our application, it seems fair to assume that the hybrid algorithm should
perform well on any terrain type that is realistic for us to use.

As discussed in chapter 4 we shall also evaluate these algorithms on the South
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 linear 2.5× 10−4 1.7× 10−4 3.5× 10−4 137.7 ms
Hybrid low 1.3× 10−5 5.7× 10−6 2.1× 10−5 411.4 ms
Hybrid high 0 0 9.5× 10−7 1057.9 ms

Table 5.7: Alta hybrid performance test. The low variant of hybrid is con-
strained to evaluating three times as many LOSs as R2. The high is uncon-
strained.

Korea test set, similar to the one used by Franklin et al. in [FRM94]. This
terrain has more spikes than Larvik and Alta, as can be seen in fig. 4.11,
thus resembling the white noise terrain somewhat. A detailed description of
this terrain can be found in chapter 4. The test is executed using 32 hard
observers, to best match the one used in the original test. We will evaluate
the performance of R2 using both nearest neighbor- and linear estimator, as
well as the same hi and lo versions of the hybrid algorithm.

The results of this test can be seen in fig. 5.17 and table 5.8. As the results
show, R2 linear is here only barely more accurate than the original version.
The EER of R2 linear and R2 near is less than 89.8% so the improvement is
statistically significant. This is, however, a lot weaker than the 25% EER
we saw in the Larvik and Alta tests. The primary problem we wanted to
solve with the linear estimator, was R2’s weak performance on side slopes.
As we saw, the linear variant handles this much better. Considering the 3D
rendering of the South Korea terrain in fig. 4.11, there are almost no side
slopes, only narrow peaks. Therefore it is not a surprise that being good at
side slopes has a limited effect on this terrain. It is possible that the spikes
in the South Korea terrain are artifacts of the low resolution of this test set.
If this is the case, then this test is not relevant for our application, as we will
use data sets with high resolution.

Turning to the hybrid variants, we see that these also perform worse on this
terrain. Due to the similarities between the South Korea- and white noise
terrains, this is explained in our discussion of the white noise terrain. The
trend we have seen on Larvik and Alta exists here as well; the hybrid variants
greatly outperform the R2 variants in terms of accuracy.
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Figure 5.17: South Korea performance test. The lo variant of hybrid is
constrained to evaluating three times as many LOSs as R2. The hi is uncon-
strained.

Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
R2 near 4.0× 10−3 2.8× 10−3 5.3× 10−3 39.8 ms
R2 linear 3.8× 10−3 1.9× 10−3 4.6× 10−3 47.7 ms
Hybrid low 2.5× 10−4 9.4× 10−5 4.4× 10−4 128.2 ms
Hybrid high 1.1× 10−5 5.6× 10−6 2.1× 10−5 478.6 ms

Table 5.8: South Korea hybrid performance test. The low variant of hybrid
is constrained to evaluating three times as many LOSs as R2. The high is
unconstrained.
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5.5.4 Limitations and asymptotic behavior

With the hybrid algorithm we have introduced three additions to the general
R2 scheme. First we find the set of boundary points of the estimated view-
shed, then we sort it by orientation to the observer, and finally we evaluate
extra LOSs through some or all of these points. The running time of the algo-
rithm is therefore a function of three parameters; the number of grid points,
the number of boundary points and the number of extra LOSs, denoted n, b
and k, respectively.

The cardinality of the boundary points is essential to the asymptotic behavior
of the algorithm. The experiments conducted in section 5.5.1 suggest that
b typically is less than a few percent of n. However, repeating the same
experiments on the white noise terrain we see test cases where b is as large
as 40% of n. Therefore, we clearly cannot generally claim that b� n. Thus
b = O(n).

As before, we can find the first viewshed in O(n) time. Identifying the
boundary points also takes O(n) time, as we have to iterate through each
grid point. The sorting step takes O(b log b) = O(n log n) time, and the
extra LOSs take O(k

√
n) time to evaluate. Finally we re-classify each grid

point in O(n) time. Thus, the worst-case running time of the algorithm is
O(n log n+ k

√
n).

There is, however, a considerable gap between the worst-case performance
and what we will typically see in practice. On typical test cases, it seems we
can assume b � n. Additionally, most decent sorting algorithms are much
more streamlined than R2, so there is a hidden constant term in the O(n) of
R2 that will eclipse the log n-factor for most practical sizes of n. The running
time is thus in practice closer to O(n + k

√
n). As long as k = O(

√
n) we

therefore expect to get the same asymptotic behavior as R2; O(n).

The primary weakness of the algorithm is viewsheds with large boundaries.
As discussed in the beginning of chapter 4, these are also the ones we are
interested in. We have seen, however, that this typically translates to b being
no more than a few percent of n. For certain applications, this is not the
case, but it seems we must have artificially large boundaries for this to be a
real issue.
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5.6 Summary

We started out this chapter investigating the results from chapter 4, which
showed that R2 performs weaker than expected on the Alta terrain. Upon
closer inspection of some of the test cases we discovered some strange artifacts
in the R2 viewsheds. This led us to the hypothesis that R2 struggles with
side slopes. The artificial valley test in fig. 5.2 showed that this is indeed the
case.

In an attempt to mend these issues we proposed the generalized R2 algorithm
which uses some arbitrary horizon estimator, instead of the nearest neighbor
scheme used in the original algorithm. We tested the weighted - and linear
estimators, and saw that both solved the issues with side slopes. As expected
this led to a significant improvement in accuracy on the Alta terrain. More
surprising was that there was also significant improvement on the flat Larvik
terrain, which has few prominent side slopes.

Inspired by the radar-like algorithm with adjustable performance we wanted
an algorithm that could increase the performance on demand. Our tests
indicated that R2 with the new estimators outperforms radar when using
the same LOS-count. This being a feature we wanted to retain, we made
a crossover of the two algorithms, combining the uniformly spaced LOS-
sampling of the radar-like algorithm, with R2’s horizon estimation. The
resulting algorithm was the uniform R2 algorithm, which the tests show
outperforms the radar-like algorithm when using the same LOS-count.

Our motivating scenario from chapter 2 sparked a particular interest for
the boundary of the viewshed. Investigating the error patterns of R2 we
saw that most of the error is made on or very close to the boundary of
the correct viewshed. With this in mind we developed the hybrid algorithm
which estimates this boundary using linear R2, and then trains the estimator
further by evaluating extra LOSs to the boundary points. The result was
an algorithm with exceptional accuracy and reasonable running times. By
letting the number of extra LOSs be a parameter of the algorithm, we could
once again adjust the accuracy as a function of running time. By sending
the extra LOSs where they are actually needed, this algorithm achieves much
higher accuracy than uniform R2 in the same configuration.
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Chapter 6

Conclusions and future work

We will now review all the results we have obtained in this thesis and discuss
whether they solve the problems we sat out to solve. First we review our
proposed improvements, before comparing the corresponding algorithms to
their original counterparts. This is done by using the test methods and
statistic measures we have developed in chapter 4. Finally we discuss aspects
of these methods that are worth studying further.

6.1 Summary of results

In chapter 5 we have gone through a series of steps, each introducing new
improvements to the original R2 algorithm proposed by Franklin et al. We
now review these steps and compare them to the original algorithm as well as
two configurations of the radar algorithm. We evaluate the performance of
the algorithms by using both the Alta and Larvik terrains. On both terrains
we select 45 observation points according to the recipe in chapter 4, resulting
in a total of 90 test cases.

The results of the test are shown in fig. 6.1 and table 6.1. In table 6.2 we have
conducted an expected error ratio (EER) analysis, as described in section 4.3.
Most of the algorithms in the test should be familiar by now, but a few need
some clarification. The lo-variants of hybrid and radar are run using three
times as many lines of sight (LOSs) as R2. The hi -variant of hybrid is
unconstrained, but does not evaluate more than ten times as many LOSs as
R2 on any of the test cases. The hi -variant of radar is run with twelve times
as many LOSs as R2. R2 near is the original R2 algorithm.
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Our improvements started with the generalized R2 algorithm using the weighted-
and linear estimators. The EER analysis in table 6.2 shows that these reduce
the error of R2 with at least 56% and 78%, respectively. Table 6.1 shows that
the weighted variant of R2 is measurably slower than the original. However,
this difference is normally considered significant, as it has a t-test p-value of
0.089. The linear variant of R2 is clearly slower than the original, seemingly
inflicting a 30% increase in running time.

Comparing the generalized R2 variants to radar, we see that both the weighted-
and the linear versions have higher accuracy than radar in the lo configura-
tion. This in spite of the fact that radar in this configuration evaluates three
times as many LOSs. The hi version of radar is better than both R2 variants,
but this is hardly a fair comparison, since radar here evaluates twelve times
as many LOSs.

The next step we made was analyzing the uniform variant of R2, which al-
lowed us to increase the accuracy by increasing the running time. This led to
the hybrid algorithm which works by estimating the boundary of the view-
shed using R2 linear, before training the estimator further on an adjustable
number of extra LOSs through points on the estimated boundary. As we can
see from the plot, these algorithms have accuracy that lie orders of magni-
tude ahead of the others. Looking at the EER analysis we see that hybrid lo
produces less than 0.82% of the error of R2 near. This is an astonishing re-
sult given the comparably small increase in running time. Applying the EER
method to the running time, we find that hybrid lo increases the running
time by less than a factor 4.0. This seems reasonable as it evaluates three
times as many LOSs, in addition to the overhead of estimating the viewshed
boundary. Compared to the weighted- and linear variants of R2, hybrid lo
reduces the error by more than 98% and 95.9%, respectively.

The hi variant of hybrid runs without constraints, but as we can see the
running times are still acceptable. Using the EER technique on the running
time, we see that this variant increases the running time with less than a
factor 11.1. In table 6.1 we see that the hybrid algorithm in this configuration
classifies the majority of viewsheds correctly. The EER analysis is therefore
of limited interest, since no algorithm can do better than 0 error. We do
see, however, that hybrid hi makes less than 0.083%, 0.20% and 0.39% of the
error of R2 near, -weighted and -linear, respectively.

Following up on the discussions and examples from chapter 4 we know that
these results are not necessarily universal for all terrain types. We have also
seen examples that indicate that this might not be the case. At the end
of chapter 5 we saw that R2 linear and hybrid did not perform as well on
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Figure 6.1: The relative error of various algorithms on the combined Alta
and Larvik test set. R2 near is the original R2 algorithm.

the South Korea data set, as they have done in our other tests. It should,
however, be noted that the improvement was still significant by a margin. We
can therefore only claim the above results to hold on real world terrain data
sets with relatively high resolution and that are reasonably smooth. Our
proposed algorithms seem to be significantly better on terrains with lower
resolutions as well, but with a smaller gain in accuracy.

6.2 Conclusions

The motivation for this thesis was to investigate viewshed algorithms that
are suitable for being used as part of a larger algorithm for planning military
operations. We saw in chapter 2 that we need to establish the boundary of
the viewshed with reasonable accuracy, as the boundary is essential in attack
and observation maneuvers. It is also likely that we have to evaluate a large
number of viewsheds, so the algorithms need to be reasonably fast to be
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Algorithm Median rel. err. 1st quartile 3rd quartile Mean run. time
XDraw interpolated 4.5× 10−3 3.1× 10−3 6.9× 10−3 35.4 ms
Radar low 5.0× 10−4 3.4× 10−4 8.1× 10−4 729.1 ms
Radar high 1.5× 10−4 1.1× 10−4 2.5× 10−4 2458.2 ms
R2 near 1.1× 10−3 6.7× 10−4 1.5× 10−3 105.6 ms
R2 weight 4.3× 10−4 2.7× 10−4 5.8× 10−4 107.1 ms
R2 linear 2.2× 10−4 1.5× 10−4 3.2× 10−4 138.5 ms
Hybrid low 6.7× 10−6 1.9× 10−6 1.3× 10−5 408.2 ms
Hybrid high 0 0 9.5× 10−7 1025.4 ms

Table 6.1: Alta and Larvik combined performance test. The low variants of
hybrid and radar are run with three times as many LOSs as R2. The high
variant of hybrid is unconstrained, but typically does not evaluate more than
seven times as many LOSs as R2. The high variant of radar is run with
twelve times as many LOSs as R2.

R2 near Radar lo R2 weight R2 linear Radar hi
R2 weight 4.4× 10−1 9.0× 10−1

R2 linear 2.2× 10−1 4.5× 10−1 5.2× 10−1

Hybrid lo 8.2× 10−3 1.6× 10−3 2.0× 10−2 4.1× 10−2 5.2× 10−2

Hybrid hi 8.3× 10−4 1.5× 10−4 2.0× 10−3 3.9× 10−3 5.4× 10−3

Table 6.2: EER analysis of the proposed algorithms. The cell in column i and
row j contains the EER of algorithms i and j with 99% confidence. Blank
cells indicate that the test to show that algorithm i is significantly better
than algorithm j failed.
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usable.

In chapter 4 we discussed how to evaluate the performance of such algorithms,
specifically the importance of using relevant test cases. Using these tech-
niques we established that the R2 algorithm originally proposed by Franklin
et al. in [FRM94], gives reasonably good performance both in terms of ac-
curacy and speed for our needs. Adding the weighted- or linear estimator
proposed in chapter 5, we get even higher accuracy with no to modest in-
creases in running time.

Should the R2 algorithm be too slow, then the interpolated variant of XDraw
should be chosen, as this is much faster, albeit with a significant drop in accu-
racy. In case we have running time to spare, the hybrid algorithm gives us the
flexibility to boost the accuracy, spending the remaining running time.

We have therefore filled the full specter of algorithms in terms of speed and
accuracy. Ranging from the fast but inaccurate XDraw, via R2 with the
weighted estimator, to the hybrid algorithm, we can obtain good accuracy for
any amount of running time. Regardless of what the needs are in the planning
algorithm, one of these three candidates should therefore be usable.

6.3 Future work

We have seen that leveraging a priori available knowledge about terrains
and viewsheds, specifically that viewshed boundary points seem to be the
hardest to classify correctly, can help us greatly improve the efficiency of
approximate viewshed algorithms. Although it is beyond the scope of this
thesis, it seems natural to investigate whether some terrain features can help
us identify points that are likely misclassified. We discussed potential features
in chapter 5 that can help us quantify the likelihood for misclassifying each
grid point. This can be used in the hybrid algorithm to better prioritize the
highlighted points, thus improving the accuracy for a given LOS-count.

The perhaps most natural way to improve the running time of these algo-
rithms, is parallelization. The original R2 algorithm itself is well suited for
parallelization since each of the LOSs can be evaluated independently of each
other. This can potentially bring down the running time to O(

√
n). Turning

to the generalized version of R2 and the way estimators typically are imple-
mented, some care must be taken when operating on the underlying data
structures. The potential for improvement is significant.
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Acronyms

ECH expanding circular horizon. 24, 25, 39, 44

EER expected error ratio. 48, 71, 85, 96, 106, 107, 109

LOS line of sight. 8, 9, 19–36, 41, 57, 64, 70–72, 77, 78, 81, 87, 88, 90–95,
97, 99, 101–107, 109, 110

RSG regular square grid. 13, 16, 17, 20, 22–25, 34, 39–43, 62, 94

TIN triangulated irregular network. 13, 16, 17, 23–25, 34, 39, 40, 70
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Appendix A

Implementations

Listing A.1: VisibilityFinder.hpp
//
// V i s i b i l i t yF i nd e rBa s e . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 17/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Te r r a i nT e s t V i s i b i l i t yF i n d e r
#define Te r r a i nT e s t V i s i b i l i t yF i n d e r

#include <iostream>
#include ”macros . hpp”
#include ”types . hpp”

class V i s i b i l i t yF i n d e r {
public :

V i s i b i l i t yF i n d e r ( s i z e t m, s i z e t n) : m(m) , n(n) {} ;
void s e t h e i gh t da t a ( const doub l e g r id &he ight data ) ;
virtual boo l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , ←↩

double t a r g e t h e i gh t ) = 0 ;

stat ic boo l g r i d outer boundary ( const boo l g r i d &area ) ;
stat ic boo l g r i d inner boundary ( const boo l g r i d &area ) ;
stat ic boo l g r i d boundary ( const boo l g r i d &area ) ;
stat ic boo l g r i d d i f f ( const boo l g r i d &lhs , const boo l g r i d &rhs ) ;
stat ic boo l g r i d g r id un ion ( const boo l g r i d &lhs , const boo l g r i d &rhs←↩

) ;
protected :

doub l e g r id he ight data ;
const s i z e t m, n ;

inl ine double base he i gh t ( const pos observer , const double ←↩
ob s e rv e r h e i gh t )

{
return he ight data [ obse rve r . i ] [ obse rve r . j ] + ob s e rv e r h e i gh t ;
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} ;

inl ine stat ic double t a r g e t d i s t ( const pos observer , const pos t a r g e t )
{

const int di = ta rg e t . i − obse rve r . i ;
const int dj = ta rg e t . j − obse rve r . j ;

return s q r t ( d i ∗ di + dj ∗dj ) ;
}

inl ine stat ic bool i n t e r s e c t s (double horizon , double s l ope )
{

return hor i zon > s l ope − EPS;
} ;

inl ine double s l ope ( const pos observer , const double base he ight , ←↩
const pos target , const double t a r g e t h e i gh t )

{
const double h = ta r g e t h e i gh t + he ight data [ t a r g e t . i ] [ t a r g e t . j ] ;

return (h − base he i gh t ) / t a r g e t d i s t ( observer , t a r g e t ) ;
} ;

} ;

#endif /∗ de f ined ( T e r r a i nT e s t V i s i b i l i t yF i n d e r ) ∗/

Listing A.2: VisibilityFinder.cpp
//
// V i s i b i l i t yF i nd e rBa s e . cpp
// Terra inTest
//
// Created by Martin Vonheim Larsen on 17/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#include <cmath>

#include ”macros . hpp”
#include ”V i s i b i l i t yF i n d e r . hpp”

void V i s i b i l i t yF i n d e r : : s e t h e i gh t da t a ( const doub l e g r id &he ight data )
{

this−>he ight data = he ight data ;
}

boo l g r i d V i s i b i l i t yF i n d e r : : inner boundary ( const boo l g r i d &area )
{

s i z e t m = area . s i z e ( ) ;
s i z e t n = area [ 0 ] . s i z e ( ) ;
b oo l g r i d boundary = vector< vector<bool> >(m, vector<bool>(n) ) ;

for ( int i = 1 ; i < m−1; ++i ) {
for ( int j = 1 ; j < n−1; ++j ) {

i f ( ! area [ i ] [ j ] ) {
continue ;

}

boundary [ i ] [ j ] =
! area [ i −1] [ j ]
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| | ! area [ i ] [ j −1]
| | ! area [ i ] [ j +1]
| | ! area [ i +1] [ j ]
| | ! area [ i −1] [ j −1]
| | ! area [ i −1] [ j +1]
| | ! area [ i +1] [ j −1]
| | ! area [ i +1] [ j +1] ;

}
}

return boundary ;
} ;

b o o l g r i d V i s i b i l i t yF i n d e r : : outer boundary ( const boo l g r i d &area )
{

s i z e t m = area . s i z e ( ) ;
s i z e t n = area [ 0 ] . s i z e ( ) ;
b oo l g r i d boundary = vector< vector<bool> >(m, vector<bool>(n) ) ;

for ( int i = 1 ; i < m−1; ++i ) {
for ( int j = 1 ; j < n−1; ++j ) {

i f ( area [ i ] [ j ] ) {
continue ;

}

boundary [ i ] [ j ] =
area [ i −1] [ j ]
| | area [ i ] [ j −1]
| | area [ i ] [ j +1]
| | area [ i +1] [ j ]
| | area [ i −1] [ j −1]
| | area [ i −1] [ j +1]
| | area [ i +1] [ j −1]
| | area [ i +1] [ j +1] ;

}
}

return boundary ;
} ;

b o o l g r i d V i s i b i l i t yF i n d e r : : boundary ( const boo l g r i d &area )
{

s i z e t m = area . s i z e ( ) ;
s i z e t n = area [ 0 ] . s i z e ( ) ;
b oo l g r i d boundary = vector< vector<bool> >(m, vector<bool>(n) ) ;

for ( int i = 1 ; i < m−1; ++i ) {
for ( int j = 1 ; j < n−1; ++j ) {

i f ( area [ i ] [ j ] ) {
boundary [ i ] [ j ] =
! area [ i −1] [ j ]
| | ! area [ i ] [ j −1]
| | ! area [ i ] [ j +1]
| | ! area [ i +1] [ j ]
| | ! area [ i −1] [ j −1]
| | ! area [ i −1] [ j +1]
| | ! area [ i +1] [ j −1]
| | ! area [ i +1] [ j +1] ;

} else {
boundary [ i ] [ j ] =
area [ i −1] [ j ]
| | area [ i ] [ j −1]
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| | area [ i ] [ j +1]
| | area [ i +1] [ j ]
| | area [ i −1] [ j −1]
| | area [ i −1] [ j +1]
| | area [ i +1] [ j −1]
| | area [ i +1] [ j +1] ;

}
}

}

return boundary ;
} ;

b o o l g r i d V i s i b i l i t yF i n d e r : : d i f f ( const boo l g r i d &lhs , const boo l g r i d &←↩
rhs )

{
s i z e t m = lh s . s i z e ( ) ;
s i z e t n = lh s [ 0 ] . s i z e ( ) ;

b oo l g r i d d i f f (m, vector<bool>(n) ) ;

for ( int i = 0 ; i < m; ++i ) {
for ( int j = 0 ; j < n ; ++j ) {

d i f f [ i ] [ j ] = lh s [ i ] [ j ] != rhs [ i ] [ j ] ;
}

}

return d i f f ;
}

boo l g r i d V i s i b i l i t yF i n d e r : : g r id un ion ( const boo l g r i d &lhs , const ←↩
boo l g r i d &rhs )

{
s i z e t m = lh s . s i z e ( ) ;
s i z e t n = lh s [ 0 ] . s i z e ( ) ;

b oo l g r i d uni (m, vector<bool>(n) ) ;

for ( int i = 0 ; i < m; ++i ) {
for ( int j = 0 ; j < n ; ++j ) {

uni [ i ] [ j ] = lh s [ i ] [ j ] | | rhs [ i ] [ j ] ;
}

}

return uni ;
}

Listing A.3: LOSVisibilityFinder.hpp
//
// V i s i b i l i t yF i nd e rBa s e . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 17/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Ter r a i nTe s t LOSVi s i b i l i t yF inde r
#define Ter r a i nTe s t LOSVi s i b i l i t yF inde r
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#include <iostream>
#include ”macros . hpp”
#include ”types . hpp”
#include ”V i s i b i l i t yF i n d e r . hpp”

class LOSVis ib i l i tyF inder : public V i s i b i l i t yF i n d e r {
public :

LOSVis ib i l i tyF inder ( s i z e t m, s i z e t n) : V i s i b i l i t yF i n d e r (m, n) {} ;
protected :

void e v a l l o s ( pos observer , double base he ight , double theta , funct ion←↩
<bool ( pos , pos , double , double )> cb ) ;

void e v a l l o s ( pos observer , double base he ight , pos target , funct ion<←↩
bool ( pos , pos , double , double )> cb ) ;

} ;

#endif /∗ de f ined ( T e r r a i nT e s t V i s i b i l i t yF i n d e r ) ∗/

Listing A.4: LOSVisibilityFinder.cpp
//
// V i s i b i l i t yF i nd e rBa s e . cpp
// Terra inTest
//
// Created by Martin Vonheim Larsen on 17/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#include <cmath>

#include ”macros . hpp”
#include ”LOSVis ib i l i tyF inder . hpp”

void LOSVis ib i l i tyF inder : : e v a l l o s ( pos observer , double base he ight , const←↩
pos target , funct ion<bool ( pos , pos , double , double )> cb )

{
const int di = ta rg e t . i − obse rve r . i ;
const int dj = ta rg e t . j − obse rve r . j ;

e v a l l o s ( observer , base he ight , atan2 ( di , d j ) , cb ) ;
}

void LOSVis ib i l i tyF inder : : e v a l l o s ( pos observer , double base he ight , const←↩
double theta , funct ion<bool ( pos , pos , double , double )> cb )

{
const double ct = abs ( cos ( theta ) ) ;
const double s t = abs ( s i n ( theta ) ) ;

const double i s t e p = 1/ s t ;
const double j s t e p = 1/ ct ;

const int i d i r = ( theta == 0 | | theta == M PI) ? 0 : ( theta > 0 ? 1 :←↩
−1) ;

const int j d i r = ( theta == −M PI 2 | | theta == M PI 2 ) ? 0 : ( abs (←↩
theta ) < M PI 2 ? 1 : −1) ;

const bool d i r = i d i r ∗ j d i r >= 0 ;

const s i z e t i max = ( i d i r == 1 ? m − obse rve r . i − 1 : obse rve r . i ) − ←↩
abs ( i d i r ) ;

const s i z e t j max = ( j d i r == 1 ? n − obse rve r . j − 1 : obse rve r . j ) − ←↩
abs ( j d i r ) ;
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for ( int i = 0 , j = 0 ; i <= i max && j <= j max ; ) {
double i d i s t = ( i + 1) ∗ i s t e p ;
double j d i s t = ( j + 1) ∗ j s t e p ;

double l , d i s t ;
pos a , b ;
bool v e r t i c a l ;

i f ( j d i s t < i d i s t ) {
++j ;
d i s t = j d i s t ;
v e r t i c a l = fa l se ;
l = s t ∗ d i s t − i ;

a = { . i = i d i r ∗ i + obse rve r . i , . j = j d i r ∗ j + obse rve r . j } ;
b = { . i = i d i r ∗( i +1) + obse rve r . i , . j = j d i r ∗ j + obse rver . j←↩

} ;
} else {

++i ;
d i s t = i d i s t ;
v e r t i c a l = true ;
l = ct ∗ d i s t − j ;

a = { . i = i d i r ∗ i + obse rve r . i , . j = j d i r ∗ j + obse rve r . j } ;
b = { . i = i d i r ∗ i + obse rve r . i , . j = j d i r ∗( j +1) + obse rve r . j←↩

} ;
}

const double h = (1 − l ) ∗ he ight data [ a . i ] [ a . j ] + l ∗ he ight data [ b . i←↩
] [ b . j ] ;

const double s l ope = (h − base he i gh t ) / d i s t ;
bool cont ;

i f ( d i r ˆ v e r t i c a l ) {
cont = cb (a , b , l , s l ope ) ;

} else {
cont = cb (b , a , 1 − l , s l ope ) ;

}

i f ( ! cont ) {
return ;

}
}

}

Listing A.5: macros.hpp
//
// macros . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTest macros h
#define Terra inTest macros h

#define EPS 1e−7
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#define INFTY numer i c l im i t s<f loat >() .max( ) /2

#endif

Listing A.6: types.cpp
//
// types . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTes t types h
#define Terra inTes t types h

#include <vector>

using namespace std ;

struct pos {
int i , j ;

bool operator==(const pos &rhs ) const
{

return i == rhs . i && j == rhs . j ;
}

} ;

struct vec2 {
double x , y ;

bool operator==(const vec2 &rhs ) const
{

return x == rhs . x && y == rhs . y ;
}

} ;

typedef vector< vector<bool> > boo l g r i d ;
typedef vector< vector<f loat> > f l o a t g r i d ;
typedef vector< vector<double> > doub l e g r id ;

#endif

Listing A.7: R3VisibilityFinder.hpp
//
// R3V i s i b i l i t yF inde r . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Te r r a i nTe s t R3V i s i b i l i t yF i nd e r
#define Te r r a i nTe s t R3V i s i b i l i t yF i nd e r
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#include <cmath>

#include ”LOSVis ib i l i tyF inder . hpp”
#include ”types . hpp”

class R3Vi s i b i l i t yF inde r : public LOSVis ib i l i tyF inder {
public :

R3V i s i b i l i t yF inde r ( s i z e t m, s i z e t n) : LOSVis ib i l i tyF inder (m, n) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
boo l g r i d v i s i b l e = vector< vector<bool> >(m, vector<bool>(n) ) ;
const double base he i gh t = V i s i b i l i t yF i n d e r : : ba s e he i gh t ( observer ,←↩

ob s e rv e r h e i gh t ) ;

for ( int i = 0 ; i < m; ++i ) {
for ( int j = 0 ; j < n ; ++j ) {

v i s i b l e [ i ] [ j ] = e v a l t a r g e t ( observer , base he ight , { . i = i←↩
, . j = j } , t a r g e t h e i gh t ) ;

}
}

v i s i b l e [ obse rve r . i ] [ obse rve r . j ] = true ;

return v i s i b l e ;
} ;

private :
inl ine bool e v a l t a r g e t ( const pos &observer , const double base he ight ,←↩

const pos &target , const double t a r g e t h e i gh t )
{

const double t a r g e t s l o p e = s l ope ( observer , base he ight , target , ←↩
t a r g e t h e i gh t ) ;

bool v i s i b l e = fa l se ;

e v a l l o s ( observer , base he ight , target , [& ] ( const pos a , const pos←↩
b , const double l , const double s l ope ) mutable −> bool

{
i f ( a == ta rg e t | | b == ta rg e t ) {

v i s i b l e = true ;

return fa lse ;
}

return ! i n t e r s e c t s ( s lope , t a r g e t s l o p e ) ;
}) ;

return v i s i b l e ;
} ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t R3V i s i b i l i t yF i nd e r ) ∗/

Listing A.8: R2VisibilityFinder.hpp
//
// R3V i s i b i l i t yF inde r . h
// Terra inTest
//
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// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Te r r a i nTe s t R2V i s i b i l i t yF i nd e r
#define Te r r a i nTe s t R2V i s i b i l i t yF i nd e r

#include ”LOSVis ib i l i tyF inder . hpp”
#include ”R2Estimator . hpp”
#include ”macros . hpp”
#include ”types . hpp”

template<class Estimator>
class R2Vi s i b i l i t yF inde r : public LOSVis ib i l i tyF inder {
public :

R2V i s i b i l i t yF inde r ( s i z e t m, s i z e t n) : LOSVis ib i l i tyF inder (m, n) , ←↩
e s t imator (m, n) , s l o p e s (m, vector<double>(n) ) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
e s t imator . r e s e t ( ) ;

const double base he i gh t = he ight data [ obse rve r . i ] [ obse rve r . j ] + ←↩
ob s e rv e r h e i gh t ;

p r e c a l c s l o p e s ( observer , base he ight , t a r g e t h e i gh t ) ;
eva l boundary ta rge t s ( observer , ba s e he i gh t ) ;

return v i s i b l e ( ) ;
} ;

protected :
Est imator e s t imator ;
doub l e g r id s l op e s ;

void eva l boundary ta rge t s ( const pos observer , const double ←↩
base he i gh t )

{
for ( int i = 0 ; i < m; ++i ) {

e v a l t a r g e t ( observer , base he ight , ( pos ) { . i = i , . j = 0}) ;
e v a l t a r g e t ( observer , base he ight , ( pos ) { . i = i , . j = ( int )n←↩

−1}) ;
}

for ( int j = 0 ; j < n ; ++j ) {
e v a l t a r g e t ( observer , base he ight , ( pos ) { . i = 0 , . j = j }) ;
e v a l t a r g e t ( observer , base he ight , ( pos ) { . i = ( int )m−1, . j = j←↩

}) ;
}

} ;

inl ine virtual void e v a l t a r g e t ( const pos observer , const double ←↩
base he ight , const pos t a r g e t )

{
double hor i zon = −INFTY;

e v a l l o s ( observer , base he ight , target , [= ] ( const pos lhs , const ←↩
pos rhs , const double l , const double s l ope ) mutable −> bool

{
e s t imator . t r a i n ( lhs , l , true , hor i zon ) ;
e s t imator . t r a i n ( rhs , 1 − l , false , hor i zon ) ;

hor i zon = max( horizon , s l ope ) ;
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return true ;
}) ;

} ;

inl ine virtual void e v a l t a r g e t ( const pos observer , const double ←↩
base he ight , const double theta )

{
double hor i zon = −INFTY;

e v a l l o s ( observer , base he ight , theta , [= ] ( const pos lhs , const ←↩
pos rhs , const double l , const double s l ope ) mutable −> bool

{
e s t imator . t r a i n ( lhs , l , true , hor i zon ) ;
e s t imator . t r a i n ( rhs , 1 − l , false , hor i zon ) ;

hor i zon = max( horizon , s l ope ) ;

return true ;
}) ;

} ;

void p r e c a l c s l o p e s ( const pos observer , const double base he ight , ←↩
const double t a r g e t h e i gh t )

{
for ( int i = 0 ; i < m; ++i ) {

for ( int j = 0 ; j < n ; ++j ) {
s l o p e s [ i ] [ j ] = s l ope ( observer , base he ight , { . i = i , . j = ←↩

j } , t a r g e t h e i gh t ) ;
}

}

s l o p e s [ obse rve r . i ] [ obse rve r . j ] = INFTY;
} ;

b o o l g r i d v i s i b l e ( )
{

boo l g r i d v = vector< vector<bool> >(m, vector<bool>(n) ) ;

for ( int i = 0 ; i < m; ++i ) {
for ( int j = 0 ; j < n ; ++j ) {

v [ i ] [ j ] = v i s i b l e ( { . i = i , . j = j }) ;
}

}

return v ;
} ;

inl ine bool v i s i b l e ( const pos p)
{

return ! i n t e r s e c t s ( e s t imator . e s t imate (p) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t R2V i s i b i l i t yF i nd e r ) ∗/

Listing A.9: R2Estimator.hpp
//
// R2EstimationPol icy . h
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// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Ter ra inTes t R2Est imat i onPo l i cy
#define Ter ra inTes t R2Est imat i onPo l i cy

#include ”types . hpp”

class R2Estimator {
public :

R2Estimator ( s i z e t m, s i z e t n) : m(m) , n(n) {} ;

/∗∗ Trains the e s t imator with the hor i zon o f a g r id l i n e
i n t e r s e c t i o n o f some LOS in the neighborhood o f a g r id
po int ‘p ‘ .

‘ d i s t ‘ i s the d i s t ance from the g r id l i n e i n t e r s e c t i o n to ‘p ‘
‘ i s l e f t ‘ i n d i c a t e s whether the LOS i s l e f t or r i g h t o f ‘p ‘
‘ hor izon ‘ i s the hor i zon at the g r id l i n e i n t e r s e c t i o n

∗/
virtual void t r a i n ( const pos p , const double d i s t , const bool i s l e f t ,←↩

const double hor i zon ) = 0 ;

/∗∗ Estimates the hor i zon at some gr id po int ‘p ‘ ∗/
virtual double es t imate ( const pos p) = 0 ;

protected :
s i z e t m, n ;

} ;

#endif /∗ de f ined ( Ter ra inTes t R2Est imat i onPo l i cy ) ∗/

Listing A.10: R2BasicEstimator.hpp
//
// R2EstimationPol icy . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTes t R2Bas i cEs t imator
#define Terra inTes t R2Bas i cEs t imator

#include ”types . hpp”
#include ”R2Estimator . hpp”

class R2BasicEstimator : public R2Estimator {
public :

R2BasicEstimator ( s i z e t m, s i z e t n)
: R2Estimator (m, n) , i n i t (0 ) , e s t imated hor i zon (m, vector<double>(n) ) ←↩

{} ;

void r e s e t ( )
{

for ( int i = 0 ; i < m; ++i ) {
f i l l ( e s t imated hor i zon [ i ] . begin ( ) , e s t imated hor i zon [ i ] . end ( ) ,←↩
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i n i t ) ;
}

} ;

inl ine double es t imate ( const pos p)
{

return e s t imated hor i zon [ p . i ] [ p . j ] ;
} ;

protected :
R2BasicEstimator ( s i z e t m, s i z e t n , double i n i t )
: R2Estimator (m, n) , i n i t ( i n i t ) , e s t imated hor i zon (m, vector<double>(n←↩

, i n i t ) ) {} ;

doub l e g r id e s t imated hor i zon ;
double i n i t ;

} ;

#endif /∗ de f ined ( Ter ra inTes t R2Est imat i onPo l i cy ) ∗/

Listing A.11: R2NearestNeighborEstimator.hpp
//
// R2NearestNeighborEstimator . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTest R2Neares tNe ighborEst imator
#define Terra inTest R2Neares tNe ighborEst imator

#include ”R2BasicEstimator . hpp”
#include ”macros . hpp”

class R2NearestNeighborEstimator : public R2BasicEstimator {
public :

R2NearestNeighborEstimator ( s i z e t m, s i z e t n)
: R2BasicEstimator (m, n) , min d i s t (m, vector<double>(n , INFTY) ) {} ;

void r e s e t ( )
{

R2BasicEstimator : : r e s e t ( ) ;

for ( int i = 0 ; i < m; ++i ) {
f i l l ( min d i s t [ i ] . begin ( ) , min d i s t [ i ] . end ( ) , INFTY) ;

}
} ;

inl ine void t r a i n ( const pos p , const double d i s t , const bool i s l e f t , ←↩
const double hor i zon )

{
i f ( min d i s t [ p . i ] [ p . j ] <= d i s t ) {

return ;
}

min d i s t [ p . i ] [ p . j ] = d i s t ;
e s t imated hor i zon [ p . i ] [ p . j ] = hor i zon ;

} ;
protected :
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doub l e g r id min d i s t ;
} ;

#endif /∗ de f ined ( Terra inTest R2Neares tNe ighborEst imator ) ∗/

Listing A.12: R2PWeightedEstimator.hpp
//
// R2PWeightedEstimator . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 27/03/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef TerrainTest R2PWeightedEst imator
#define TerrainTest R2PWeightedEst imator

#include ”R2Estimator . hpp”
#include ”macros . hpp”

class R2PWeightedEstimator : public R2Estimator {
public :

R2PWeightedEstimator ( s i z e t m, s i z e t n)
: R2Estimator (m, n) , numerator (m, vector<double>(n) ) , denominator (m, ←↩

vector<double>(n) ) {}

void r e s e t ( )
{

for ( int i = 0 ; i < m; ++i ) {
f i l l ( numerator [ i ] . begin ( ) , numerator [ i ] . end ( ) , 0) ;
f i l l ( denominator [ i ] . begin ( ) , denominator [ i ] . end ( ) , 0) ;

}
} ;

inl ine void t r a i n ( const pos p , const double d i s t , const bool i s l e f t , ←↩
const double hor i zon )

{
const double weight = d i s t < EPS ? 1/EPS : pow(1 − d i s t , P) ;

numerator [ p . i ] [ p . j ] += weight ∗ hor i zon ;
denominator [ p . i ] [ p . j ] += weight ;

} ;

inl ine double es t imate ( const pos p)
{

const double num = numerator [ p . i ] [ p . j ] ;
const double den = denominator [ p . i ] [ p . j ] ;

i f (num == 0 && den == 0) {
return −INFTY;

} else i f ( den == 0) {
return INFTY;

}

return num/den ;
} ;

double P = 2 ;
protected :
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doub l e g r id numerator , denominator ;
} ;

#endif /∗ de f ined ( Terra inTest R2PWeightedEst imator ) ∗/

Listing A.13: R2LinearEstimator.hpp
//
// R2WeightedEstimationPolicy . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTes t R2LinearEst imator
#define Terra inTes t R2LinearEst imator

#include ”R2Estimator . hpp”
#include ”macros . hpp”

class R2LinearEstimator : public R2Estimator {
public :

R2LinearEstimator ( s i z e t m, s i z e t n)
: R2Estimator (m, n) , l d i s t (m, vector<double>(n) ) , l h o r (m, vector<←↩

double>(n) ) , r d i s t (m, vector<double>(n) ) , r ho r (m, vector<double←↩
>(n) ) {} ;

void r e s e t ( )
{

for ( int i = 0 ; i < m; ++i ) {
f i l l ( l d i s t [ i ] . begin ( ) , l d i s t [ i ] . end ( ) , INFTY) ;
f i l l ( r d i s t [ i ] . begin ( ) , r d i s t [ i ] . end ( ) , INFTY) ;

}
} ;

inl ine void t r a i n ( const pos p , const double d i s t , const bool i s l e f t , ←↩
const double hor i zon )

{
i f ( i s l e f t && d i s t < l d i s t [ p . i ] [ p . j ] ) {

l d i s t [ p . i ] [ p . j ] = d i s t ;
l h o r [ p . i ] [ p . j ] = hor izon ;

} else i f ( ! i s l e f t && d i s t < r d i s t [ p . i ] [ p . j ] ) {
r d i s t [ p . i ] [ p . j ] = d i s t ;
r ho r [ p . i ] [ p . j ] = hor i zon ;

}
} ;

inl ine double es t imate ( const pos p)
{

const double l = l d i s t [ p . i ] [ p . j ] / ( l d i s t [ p . i ] [ p . j ] + r d i s t [ p . i ] [←↩
p . j ] ) ;

return (1 − l ) ∗ l h o r [ p . i ] [ p . j ] + l ∗ r hor [ p . i ] [ p . j ] ;
}

protected :
doub l e g r id l d i s t , r d i s t , l hor , r ho r ;

} ;

#endif /∗ de f ined ( Terra inTest R2WeightedEst imat ionPol i cy ) ∗/
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Listing A.14: R2MaxEstimator.hpp
//
// R2MaxEstimationPolicy . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTest R2MaxEst imat ionPol i cy
#define Terra inTest R2MaxEst imat ionPol i cy

#include ”R2BasicEstimator . hpp”
#include ”macros . hpp”

class R2MaxEstimator : public R2BasicEstimator {
public :

R2MaxEstimator ( s i z e t m, s i z e t n) : R2BasicEstimator (m, n , −INFTY) ←↩
{} ;

inl ine void t r a i n ( const pos p , const double d i s t , const bool i s l e f t , ←↩
const double hor i zon )

{
e s t imated hor i zon [ p . i ] [ p . j ] = max( e s t imated hor i zon [ p . i ] [ p . j ] , ←↩

hor i zon ) ;
} ;

} ;

#endif /∗ de f ined ( Terra inTest R2MaxEst imat ionPol i cy ) ∗/

Listing A.15: R2MinEstimator.hpp
//
// R2MinEstimationPolicy . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTest R2MinEst imat ionPo l i cy
#define Terra inTest R2MinEst imat ionPo l i cy

#include ”R2BasicEstimator . hpp”
#include ”macros . hpp”

class R2MinEstimator : public R2BasicEstimator {
public :

R2MinEstimator ( s i z e t m, s i z e t n) : R2BasicEstimator (m, n , INFTY) {} ;

inl ine void t r a i n ( const pos p , const double d i s t , const bool i s l e f t , ←↩
const double hor i zon )

{
e s t imated hor i zon [ p . i ] [ p . j ] = min ( e s t imated hor i zon [ p . i ] [ p . j ] , ←↩

hor i zon ) ;
} ;

} ;

#endif /∗ de f ined ( Terra inTest R2MinEst imat ionPo l i cy ) ∗/
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Listing A.16: XDrawVisibilityFinder.hpp
//
// XDrawVis ibl i tyFinder . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 20/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTes t XDrawVi s ib l i tyF inde r
#define Terra inTes t XDrawVi s ib l i tyF inde r

#include <vector>

#include ”V i s i b i l i t yF i n d e r . hpp”
#include ”macros . hpp”
#include ”types . hpp”

using namespace std ;

template<class Estimator>
class XDrawVis ibl i tyFinder : public V i s i b i l i t yF i n d e r {
public :

XDrawVis ibl i tyFinder ( s i z e t m, s i z e t n) : V i s i b i l i t yF i n d e r (m, n) , ←↩
theta (m, vector<double>(n) ) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
c a l c t h e t a ( observer , ob s e rv e r h e i gh t ) ;

double base he i gh t = ( he ight data [ obse rve r . i ] [ obse rve r . j ] + ←↩
ob s e rv e r h e i gh t ) ;

b o o l g r i d v i s i b l e = vector< vector<bool> >(m, vector<bool>(n) ) ;

for ( int i = 0 ; i < m; ++i ) {
for ( int j = 0 ; j < n ; ++j ) {

i f ( i == obse rve r . i && j == observe r . j ) {
v i s i b l e [ i ] [ j ] = true ;
continue ;

}

int di = obse rve r . i − i ;
int dj = obse rve r . j − j ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] + t a r g e t h e i gh t − ←↩

base he i gh t ;
double t a r g e t t h e t a = dh/ dl ;
double d i f f = t a r g e t t h e t a − theta [ i ] [ j ] ;

v i s i b l e [ i ] [ j ] = d i f f > EPS;
}

}

return v i s i b l e ;
}

protected :
doub l e g r id theta ;
Estimator e s t imator ;
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void c a l c t h e t a ( pos observer , double ob s e rv e r h e i gh t )
{

theta [ obse rver . i ] [ obse rve r . j ] = −INFTY;

c a l c a x i s t h e t a ( observer , ob s e rv e r h e i gh t ) ;
c a l c d i a g t h e t a ( observer , ob s e rv e r h e i gh t ) ;
c a l c i n t e r n a l t h e t a ( observer , ob s e rv e r h e i gh t ) ;

} ;

void c a l c a x i s t h e t a ( pos observer , double ob s e rv e r h e i gh t )
{

double base he i gh t = ( he ight data [ obse rve r . i ] [ obse rve r . j ] + ←↩
ob s e rv e r h e i gh t ) ;

// north
for ( int i = obse rve r . i −1; i >= 0 ; −− i ) {

double dl = obse rve r . i − i ;
double dh = he ight data [ i ] [ obse rve r . j ] − base he i gh t ;

theta [ i ] [ obse rve r . j ] = max(dh/dl , theta [ i +1] [ obse rve r . j ] ) ;
}

// south
for ( int i = obse rve r . i +1; i < he ight data . s i z e ( ) ; ++i ) {

double dl = i − obse rve r . i ;
double dh = he ight data [ i ] [ obse rve r . j ] − base he i gh t ;

theta [ i ] [ obse rve r . j ] = max(dh/dl , theta [ i −1] [ obse rve r . j ] ) ;
}

// west
for ( int j = obse rve r . j −1; j >= 0 ; −−j ) {

double dl = obse rve r . j − j ;
double dh = he ight data [ obse rve r . i ] [ j ] − base he i gh t ;

theta [ obse rve r . i ] [ j ] = max(dh/dl , theta [ obse rve r . i ] [ j +1]) ;
}

// ea s t
for ( int j = obse rve r . j +1; j < he ight data [ 0 ] . s i z e ( ) ; ++j ) {

double dl = j − obse rve r . j ;
double dh = he ight data [ obse rve r . i ] [ j ] − base he i gh t ;

theta [ obse rve r . i ] [ j ] = max(dh/dl , theta [ obse rve r . i ] [ j −1]) ;
}

} ;

void c a l c d i a g t h e t a ( pos observer , double ob s e rv e r h e i gh t )
{

double base he i gh t = ( he ight data [ obse rve r . i ] [ obse rve r . j ] + ←↩
ob s e rv e r h e i gh t ) ;

int north = 0 ;
int west = 0 ;
int south = ( int ) he ight data . s i z e ( ) − 1 ;
int ea s t = ( int ) he ight data [ 0 ] . s i z e ( ) − 1 ;

// north−west
for ( int k = 1 ; ; ++k) {

int i = obse rve r . i − k ;
int j = obse rve r . j − k ;
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i f ( i < north | | j < west ) {
break ;

}

double dl = sq r t (2∗k∗k ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , theta [ i +1] [ j +1]) ;
}

// north−ea s t
for ( int k = 1 ; ; ++k) {

int i = obse rve r . i − k ;
int j = obse rve r . j + k ;

i f ( i < north | | j > ea s t ) {
break ;

}

double dl = sq r t (2∗k∗k ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , theta [ i +1] [ j −1]) ;
}

// south−ea s t
for ( int k = 1 ; ; ++k) {

int i = obse rve r . i + k ;
int j = obse rver . j + k ;

i f ( i > south | | j > ea s t ) {
break ;

}

double dl = sq r t (2∗k∗k ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , theta [ i −1] [ j −1]) ;
}

// south−west
for ( int k = 1 ; ; ++k) {

int i = obse rve r . i + k ;
int j = obse rver . j − k ;

i f ( i > south | | j < west ) {
break ;

}

double dl = sq r t (2∗k∗k ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , theta [ i −1] [ j +1]) ;
}

} ;

void c a l c i n t e r n a l t h e t a ( pos observer , double ob s e rv e r h e i gh t )
{

double base he i gh t = ( he ight data [ obse rve r . i ] [ obse rve r . j ] + ←↩
ob s e rv e r h e i gh t ) ;

int max i = ( int ) he ight data . s i z e ( ) ;
int max j = ( int ) he ight data [ 0 ] . s i z e ( ) ;
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// north−north−west
for ( int di = −2; obse rve r . i + di >= 0 ; −−di ) {

for ( int dj = −1; dj > di && observe r . j + dj >= 0 ; −−dj ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i +1] [ j ] , theta [ i +1] [ j +1] , di , d j ) ) ;

}
}

// north−north−ea s t
for ( int di = −2; obse rve r . i + di >= 0 ; −−di ) {

for ( int dj = 1 ; dj < −di && observe r . j + dj < max j ; ++dj ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i +1] [ j ] , theta [ i +1] [ j −1] , di , d j ) ) ;

}
}

// south−south−west
for ( int di = 2 ; obse rve r . i + di < max i ; ++di ) {

for ( int dj = −1; −dj < di && observe r . j + dj >= 0 ; −−dj ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i −1] [ j ] , theta [ i −1] [ j +1] , di , d j ) ) ;

}
}

// south−south−ea s t
for ( int di = 2 ; obse rve r . i + di < max i ; ++di ) {

for ( int dj = 1 ; dj < di && observe r . j + dj < max j ; ++dj ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i −1] [ j ] , theta [ i −1] [ j −1] , di , d j ) ) ;

}
}

// north−west−west
for ( int dj = −2; obse rve r . j + dj >= 0 ; −−dj ) {

for ( int di = −1; d i > dj && observe r . i + di >= 0 ; −−di ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;
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double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i ] [ j +1] , theta [ i +1] [ j +1] , di , d j ) ) ;

}
}

// north−east−ea s t
for ( int dj = 2 ; obse rve r . j + dj < max j ; ++dj ) {

for ( int di = −1; −di < dj && observe r . i + di >= 0 ; −−di ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i ] [ j −1] , theta [ i +1] [ j −1] , di , d j ) ) ;

}
}

// south−west−west
for ( int dj = −2; obse rve r . j + dj >= 0 ; −−dj ) {

for ( int di = 1 ; d i < −dj && observe r . i + di < max i ; ++di ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i ] [ j +1] , theta [ i −1] [ j +1] , di , d j ) ) ;

}
}

// south−east−ea s t
for ( int dj = 2 ; obse rve r . j + dj < max j ; ++dj ) {

for ( int di = 1 ; d i < dj && observe r . i + di < max i ; ++di ) {
int i = obse rve r . i + di ;
int j = obse rve r . j + dj ;

double dl = sq r t ( d i ∗ di + dj ∗dj ) ;
double dh = he ight data [ i ] [ j ] − base he i gh t ;

theta [ i ] [ j ] = max(dh/dl , e s t imator . e s t imate ho r i z on ( theta [←↩
i ] [ j −1] , theta [ i −1] [ j −1] , di , d j ) ) ;

}
}

} ;
} ;

#endif /∗ de f ined ( Ter ra inTes t XDrawVi s ib l i tyF inde r ) ∗/

Listing A.17: XDrawInterpolatedEstimator.hpp
//
// XDrawInterpolatedEstimator . h
// Terra inTest
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//
// Created by Martin Vonheim Larsen on 20/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Terra inTest XDrawInterpo latedEst imator
#define Terra inTest XDrawInterpo latedEst imator

#include <cmath>

class XDrawInterpolatedEstimator {
public :

inl ine double e s t imate ho r i z on ( const double near hor i zon , const double←↩
f a r ho r i z on , const int di , const int dj )

{
const double l = abs ( abs ( d i ) < abs ( dj ) ? (double ) d i / dj : (double )←↩

dj / d i ) ;
return (1 − l ) ∗ near hor i zon + l ∗ f a r h o r i z on ;

} ;
} ;

#endif /∗ de f ined ( Terra inTest XDrawInterpo latedEst imator ) ∗/

Listing A.18: XDrawMaxEstimator.hpp
//
// XDrawMaxEstimator . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 20/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef TerrainTest XDrawMaxEstimator
#define TerrainTest XDrawMaxEstimator

#include <algor ithm>

using namespace std ;

class XDrawMaxEstimator {
public :

inl ine double e s t imate ho r i z on ( const double l h s ho r i z on , const double ←↩
rhs hor i zon , const int di , const int dj )

{
return max( lh s ho r i z on , rh s ho r i z on ) ;

} ;
} ;

#endif /∗ de f ined ( TerrainTest XDrawMaxEstimator ) ∗/

Listing A.19: XDrawMinEstimator.hpp
//
// XDrawMinEstimator . h
// Terra inTest
//
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// Created by Martin Vonheim Larsen on 20/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef TerrainTest XDrawMinEstimator
#define TerrainTest XDrawMinEstimator

#include <algor ithm>

using namespace std ;

class XDrawMinEstimator {
public :

inl ine double e s t imate ho r i z on ( const double l h s ho r i z on , const double ←↩
rhs hor i zon , const int di , const int dj )

{
return min( lh s ho r i z on , rh s ho r i z on ) ;

} ;
} ;

#endif /∗ de f ined ( TerrainTest XDrawMinEstimator ) ∗/

Listing A.20: XDrawMeanEstimator.hpp
//
// XDrawMeanEstimator . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 20/02/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef TerrainTest XDrawMeanEstimator
#define TerrainTest XDrawMeanEstimator

#include <algor ithm>

using namespace std ;

class XDrawMeanEstimator {
public :

inl ine double e s t imate ho r i z on ( const double l h s ho r i z on , const double ←↩
rhs hor i zon , const int di , const int dj )

{
return ( l h s ho r i z on + rhs ho r i z on ) /2 ;

} ;
} ;

#endif /∗ de f ined ( TerrainTest XDrawMeanEstimator ) ∗/

Listing A.21: RadarVisibilityFinder.hpp
//
// Rada rV i s i b i l i t yF inde r . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 21/03/15.
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// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Te r r a i nTe s t Rada rV i s i b i l i t yF i nd e r
#define Te r r a i nTe s t Rada rV i s i b i l i t yF i nd e r

#include <cmath>
#include <deque>

#include ”macros . hpp”
#include ”V i s i b i l i t yF i n d e r . hpp”

class RadarVi s ib l i tyF inder : public V i s i b i l i t yF i n d e r {
public :

RadarVi s ib l i tyF inder ( s i z e t m, s i z e t n , double K) : V i s i b i l i t yF i n d e r (←↩
m, n) , num sectors ( ( s i z e t ) f l o o r (K∗(2∗m + 2∗n − 4) ) ) , s e c t o r s i z e←↩
(2∗M PI/( num sectors −1) ) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
vector<vector<pos>> s e c t o r p o i n t s = g e t s e c t o r p o i n t s ( obse rve r ) ;

b oo l g r i d v i s i b l e = vector<vector<bool>>(m, vector<bool>(n) ) ;

vector<double> p r e v r l = eval LOS ( observer , obse rve r he i ght , ←↩
t a r g e t he i gh t , 0) ;

for ( int s e c t o r = 0 ; s e c t o r < num sectors ; ++s e c t o r ) {
vector<double> r l = eval LOS ( observer , obse rve r he i ght , ←↩

t a r g e t he i gh t , ( s e c t o r + 1) ∗ s e c t o r s i z e ) ;
i n t e r p o l a t e ( v i s i b l e , p r ev r l , r l , s e c t o r p o i n t s [ s e c t o r ] , ←↩

obse rve r ) ;

p r e v r l = r l ;
}

return v i s i b l e ;
} ;

protected :
const s i z e t num sectors ;
const double s e c t o r s i z e ;

inl ine vector<double> eval LOS ( pos observer , double obse rve r he i ght , ←↩
double t a r g e t he i gh t , double theta )

{
vector<double> run l ength ;
theta −= M PI ;

double ct = cos ( theta ) ;
double s t = s i n ( theta ) ;
double t t = tan ( theta ) ;
double as t = abs ( s t ) ;
double act = abs ( ct ) ;
double at t = abs ( t t ) ;

int d i r x = ( theta > −M PI 2 && theta < M PI 2 ) ? 1 : −1;
int d i r y = theta < 0 ? −1 : 1 ;

bool v i s i b l e = true ;
double e l = −INFTY;

136



vec2 p = { . x=0, . y=0};
double d i s t = 0 ;
double t e l = −INFTY;

for ( ; ; ) {
double s t ep x = c e i l ( abs (p . x ) + EPS) − abs (p . x ) ;
double s t ep y = c e i l ( abs (p . y ) + EPS) − abs (p . y ) ;
double d i s t x = step x / act ;
double d i s t y = step y / as t ;

i f ( d i s t x <= d i s t y ) {
s t ep y = step x ∗ at t ;

} else {
s t ep x = step y / at t ;

}

vec2 pos = { . x=obse rve r . j + p . x + d i r x ∗ step x , . y=obse rve r . i ←↩
+ p . y + d i r y ∗ s t ep y } ;

i f ( ! ( 0 < pos . x + EPS && 0 < pos . y + EPS && pos . x − EPS < n − ←↩
1 && pos . y − EPS < m − 1) ) {
break ;

}

double new dis t = mag( pos , obse rve r ) ;
double new te l = eta ( observer , obse rve r he i ght , pos , ←↩

t a r g e t h e i gh t ) ;

i f ( ( new te l > e l + EPS) ˆ v i s i b l e ) { // v i s i b i l i t y s t a tu s has←↩
changed

double x = new dist ;

run l ength . push back (x ) ;
v i s i b l e = ! v i s i b l e ;

}

p = { . x=p . x + d i r x ∗ step x , . y=p . y + d i r y ∗ s t ep y } ;
d i s t = new dis t ;
t e l = new te l ;
e l = max( e l , eta ( observer , obse rve r he i ght , pos , 0) ) ;

}

return run l ength ;
} ;

inl ine double mag( const vec2 p , const pos obse rve r )
{

const double dx = p . x − obse rve r . j ;
const double dy = p . y − obse rve r . i ;

return s q r t ( dx∗dx + dy∗dy ) ;
} ;

inl ine double eta ( pos observer , double obse rve r he i ght , vec2 target , ←↩
double t a r g e t h e i gh t )

{
vec2 p = ta rg e t ;
double h = 0 ;

i f ( abs (p . x − round (p . x ) ) < EPS && abs (p . y − round (p . y ) ) < EPS) {
int i = ( int ) round (p . y ) ;
int j = ( int ) round (p . x ) ;
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h = he ight data [ i ] [ j ] ;
} else i f ( abs (p . x − round (p . x ) ) < EPS) {

int i = max(0 , ( int ) f l o o r (p . y ) ) ;
int j = ( int ) round (p . x ) ;

h = (p . y − i ) ∗ he ight data [ i +1] [ j ] + ( i + 1 − p . y ) ∗ he ight data [←↩
i ] [ j ] ;

} else i f ( abs (p . y − round (p . y ) ) < EPS) {
int i = ( int ) round (p . y ) ;
int j = max(0 , ( int ) f l o o r (p . x ) ) ;

h = (p . x − j ) ∗ he ight data [ i ] [ j +1] + ( j + 1 − p . x ) ∗ he ight data [←↩
i ] [ j ] ;

} else {
cout << ”foo ” << endl ;
// p i s not on any gr id l i n e
// e l e v a t i o n i s undef ined
// t h i s i s an e r r o r

}

vec2 v = { . x = obse rve r . j − p . x , . y = obse rve r . i − p . y } ;
double d = sq r t ( v . x∗v . x + v . y∗v . y ) ;
return ( ( t a r g e t h e i gh t + h) − ( ob s e rv e r h e i gh t + he ight data [←↩

obse rve r . i ] [ obse rve r . j ] ) ) / d ;
} ;

inl ine void i n t e r p o l a t e ( boo l g r i d &v i s i b l e , const vector<double> &lhs ,←↩
const vector<double> &rhs , const vector<pos> &points , const pos ←↩

obse rve r )
{

bool l h s v i s i b l e = true ;
bool r h s v i s i b l e = true ;
int l h s i d x = −1;
int rh s i dx = −1;

for ( pos p : po in t s ) {
vec2 p = g e t s e c t o r p o s (p , obse rve r ) ;

// loop forward to r e l e van t s e c t i o n at l h s and rhs
for ( ; l h s i d x + 1 < l h s . s i z e ( ) && lh s [ l h s i d x + 1 ] < p . x ; ++←↩

l h s i dx , l h s v i s i b l e = ! l h s v i s i b l e ) ;
for ( ; r h s i dx + 1 < rhs . s i z e ( ) && rhs [ rh s i dx + 1 ] < p . x ; ++←↩

rhs idx , r h s v i s i b l e = ! r h s v i s i b l e ) ;

double l h s l o = l h s i d x > −1 ? l h s [ l h s i d x ] : 0 ;
double l h s h i = l h s i d x + 1 < l h s . s i z e ( ) ? l h s [ l h s i d x + 1 ] : ←↩

INFINITY ;
double r h s l o = rh s i dx > −1 ? rhs [ r h s i dx ] : 0 ;
double r h s h i = rh s i dx + 1 < rhs . s i z e ( ) ? rhs [ r h s i dx + 1 ] : ←↩

INFINITY ;

v i s i b l e [ p . i ] [ p . j ] = p o i n t v i s i b l e ( l h s l o , l h s h i , l h s v i s i b l e ,←↩
rh s l o , rh s h i , r h s v i s i b l e , p ) ;

}
}

inl ine const bool p o i n t v i s i b l e (double up lo , double up hi , bool ←↩
up v i s i b l e , double down lo , double down hi , bool down vi s ib l e , ←↩
vec2 p)

{
i f ( u p v i s i b l e == down v i s ib l e ) {
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return up v i s i b l e ;
}

i f ( up lo > down lo ) {
// f l i p up/down
return p o i n t v i s i b l e ( down lo , down hi , down vi s ib l e , up lo , ←↩

up hi , up v i s i b l e , { . x=p . x , . y=1 − p . y}) ;
}

double l o = down lo ;
double hi = min ( up hi , down hi ) ;
double m = ( l o + hi ) /2 ;

i f (p . x <= m) {
// l e f t o f center , which i s where up dominates the s i d e ←↩

t r i a n g l e

i f ( ( h i − l o ) ∗p . y < p . x − l o ) {
return up v i s i b l e ;

} else {
return down v i s ib l e ;

}
} else {

// r i gh t o f c en te r
i f ( up hi > down hi ) {

// up dominates the s i d e t r i a n g l e

i f ( ( h i − l o ) ∗(1 − p . y ) < p . x − l o ) {
return up v i s i b l e ;

} else {
return down v i s ib l e ;

}
} else {

// down dominates the s i d e t r i a n g l e

i f ( ( h i − l o ) ∗p . y < p . x − l o ) {
return down v i s ib l e ;

} else {
return up v i s i b l e ;

}
}

}
} ;

vector<vector<pos>> g e t s e c t o r p o i n t s ( const pos obse rve r )
{

vector<vector<pos>> s e c t o r p o i n t s ( num sectors , vector<pos>() ) ;

b o o l g r i d v i s i t e d = vector<vector<bool>>(m, vector<bool>(n , fa l se )←↩
) ;

v i s i t e d [ obse rve r . i ] [ obse rve r . j ] = true ;

deque<pos> q ;
q . push back ( obse rve r ) ;

pos dps [ ] = {{ . i =1, . j =0} , { . i =−1, . j =0} , { . i =0, . j =1} , { . i =0, . j←↩
=−1}};

while ( ! q . empty ( ) ) {
pos p = q . f r on t ( ) ;
q . pop f ront ( ) ;
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s e c t o r p o i n t s [ g e t s e c t o r i d x (p , obse rve r ) ] . push back (p) ;

for ( pos dp : dps ) {
pos np = { . i=p . i + dp . i , . j=p . j + dp . j } ;

i f (np . i < 0 | | np . i >= m | | np . j < 0 | | np . j >= n | | ←↩
v i s i t e d [ np . i ] [ np . j ] ) {
continue ;

}

v i s i t e d [ np . i ] [ np . j ] = true ;
q . push back (np) ;

}
}

return s e c t o r p o i n t s ;
} ;

inl ine double ge t th e t a ( const pos p , const pos obse rve r )
{

return atan2 (p . i − obse rve r . i , p . j − obse rve r . j ) + M PI ;
} ;

inl ine int g e t s e c t o r i d x ( const pos p , const pos obse rve r )
{

return ( ( int ) f l o o r ( g e t th e t a (p , obse rve r ) / s e c t o r s i z e ) ) ;
} ;

inl ine vec2 g e t s e c t o r p o s ( const pos p , const pos obse rve r )
{

int di = p . i − obse rve r . i ;
int dj = p . j − obse rve r . j ;
double h = ge t th e t a (p , obse rve r ) / s e c t o r s i z e ;

return { . x=sq r t ( d i ∗ di + dj ∗dj ) , . y=h − f l o o r (h) } ;
} ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t Rada rV i s i b i l i t yF i nd e r ) ∗/

Listing A.22: R2UniformVisibilityFinder.hpp
//
// R2Uni fo rmVis ib i l i tyF inder . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 16/05/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Ter ra inTe s t R2Un i f o rmVi s i b i l i t yF inde r
#define Ter ra inTe s t R2Un i f o rmVi s i b i l i t yF inde r

#include ”R2V i s i b i l i t yF inde r . hpp”
#include ”macros . hpp”
#include ”types . hpp”

template<class Estimator>
class R2Uni fo rmVis ib i l i tyF inder : public R2Vi s ib i l i t yF inde r<Estimator> {
public :
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R2Uni fo rmVis ib i l i tyF inder ( s i z e t m, s i z e t n , double K) : ←↩
R2Vi s ib i l i t yF inde r<Estimator>(m, n) , num sectors ( ( s i z e t ) f l o o r (K←↩
∗(2∗m + 2∗n − 4) ) ) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
e s t imator . r e s e t ( ) ;

const double base he i gh t = V i s i b i l i t yF i n d e r : : ba s e he i gh t ( observer ,←↩
ob s e rv e r h e i gh t ) ;

p r e c a l c s l o p e s ( observer , base he ight , t a r g e t h e i gh t ) ;

const double s e c t o r s i z e = 2∗M PI/num sectors ;

for ( int s e c t o r = 0 ; s e c t o r < num sectors ; ++s e c t o r ) {
e v a l t a r g e t ( observer , base he ight , s e c t o r ∗ s e c t o r s i z e − M PI) ;

}

return v i s i b l e ( ) ;
} ;

protected :
using R2Vi s ib i l i t yF inde r<Estimator > : : e s t imator ;

const s i z e t num sectors ;

using R2Vi s ib i l i t yF inde r<Estimator > : : e v a l t a r g e t ;
using R2Vi s ib i l i t yF inde r<Estimator > : : p r e c a l c s l o p e s ;
using R2Vi s ib i l i t yF inde r<Estimator > : : v i s i b l e ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t R2Un i f o rmVi s i b i l i t yF inde r ) ∗/

Listing A.23: HybridVisibilityFinder.hpp
//
// Hybr idFas tV i s i b i l i t yF inde r . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 23/03/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Te r r a i nTe s t Hyb r i dV i s i b i l i t yF i nd e r
#define Te r r a i nTe s t Hyb r i dV i s i b i l i t yF i nd e r

#include ”R2V i s i b i l i t yF inde r . hpp”
#include ”R2MaxEstimator . hpp”
#include ”R2MinEstimator . hpp”
#include ”macros . hpp”
#include ”types . hpp”

template<class Estimator>
class Hybr i dV i s i b i l i t yF inde r : public R2Vi s ib i l i t yF inde r<Estimator> {
public :

Hyb r i dV i s i b i l i t yF inde r ( s i z e t m, s i z e t n , double K) : ←↩
R2Vi s ib i l i t yF inde r<Estimator>(m, n) , max estimator (m, n) , ←↩
min est imator (m, n) , K(K) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
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t a r g e t h e i gh t )
{

r e s e t ( ) ;

const double base he i gh t = V i s i b i l i t yF i n d e r : : ba s e he i gh t ( observer ,←↩
ob s e rv e r h e i gh t ) ;

p r e c a l c s l o p e s ( observer , base he ight , t a r g e t h e i gh t ) ;
eva l boundary ta rge t s ( observer , ba s e he i gh t ) ;

vector<double> ang l e s ;
ang l e s . r e s e r v e (100000) ;

for ( int i = 0 ; i < m; ++i ) {
i f ( i == obse rver . i ) {

continue ;
}

for ( int j = 0 ; j < n ; ++j ) {
const pos p = { . i=i , . j=j } ;

i f ( max v i s ib l e (p) != m in v i s i b l e (p) ) {
ang l e s . push back ( atan2 ( i − obse rve r . i , j − obse rve r . j )←↩

) ;
}

}
}

const s i z e t r 2 s i z e = ( s i z e t ) f l o o r (K∗(2∗m + 2∗n − 4) ) ;
const s i z e t n ang l e s = ang l e s . s i z e ( ) ;

i f ( n ang l e s < 1 .5∗ r 2 s i z e ) {
for (double theta : ang l e s ) {

e v a l t a r g e t ( observer , base he ight , theta ) ;
}

} else {
s o r t ( ang l e s . begin ( ) , ang l e s . end ( ) ) ;

for ( int k = 0 ; k < r 2 s i z e ; ++k) {
const s i z e t i = (k∗ n ang l e s ) / r 2 s i z e ;
const double theta = ang l e s [ i ] ;

e v a l t a r g e t ( observer , base he ight , theta ) ;
}

}

return v i s i b l e ( ) ;
} ;

protected :
using R2Vi s ib i l i t yF inde r<Estimator > : : e s t imator ;
using R2Vi s ib i l i t yF inde r<Estimator > : : s l o p e s ;
using V i s i b i l i t yF i n d e r : :m;
using V i s i b i l i t yF i n d e r : : n ;

const double K;
R2MaxEstimator max estimator ;
R2MinEstimator min est imator ;

using R2Vi s ib i l i t yF inde r<Estimator > : : e va l boundary ta rge t s ;
using R2Vi s ib i l i t yF inde r<Estimator > : : e v a l t a r g e t ;
using R2Vi s ib i l i t yF inde r<Estimator > : : p r e c a l c s l o p e s ;
using R2Vi s ib i l i t yF inde r<Estimator > : : v i s i b l e ;
using LOSVis ib i l i tyF inder : : e v a l l o s ;
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using V i s i b i l i t yF i n d e r : : i n t e r s e c t s ;

void r e s e t ( )
{

e s t imator . r e s e t ( ) ;

max estimator . r e s e t ( ) ;
min est imator . r e s e t ( ) ;

} ;

inl ine void e v a l t a r g e t ( const pos observer , const double base he ight , ←↩
const pos t a r g e t )

{
double hor i zon = −INFTY;

e v a l l o s ( observer , base he ight , target , [= ] ( const pos lhs , const ←↩
pos rhs , const double l , const double s l ope ) mutable −> bool

{
e s t imator . t r a i n ( lhs , l , true , hor i zon ) ;
e s t imator . t r a i n ( rhs , 1 − l , false , hor i zon ) ;

max estimator . t r a i n ( lhs , l , true , hor i zon ) ;
max estimator . t r a i n ( rhs , 1 − l , false , hor i zon ) ;
min est imator . t r a i n ( lhs , l , true , hor i zon ) ;
min est imator . t r a i n ( rhs , 1 − l , false , hor i zon ) ;

hor i zon = max( horizon , s l ope ) ;

return true ;
}) ;

} ;

inl ine bool max v i s ib l e ( const pos p)
{

return ! i n t e r s e c t s ( max estimator . e s t imate (p) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

inl ine bool min v i s i b l e ( const pos p)
{

return ! i n t e r s e c t s ( min est imator . e s t imate (p) , s l o p e s [ p . i ] [ p . j ] ) ;
} ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t Hyb r i dFa s tV i s i b i l i t yF i nd e r ) ∗/

Listing A.24: HybridBoundVisibilityFinder.hpp
//
// Hybr idFas tV i s i b i l i t yF inde r . h
// Terra inTest
//
// Created by Martin Vonheim Larsen on 23/03/15.
// Copyright ( c ) 2015 Martin Vonheim Larsen . Al l r i g h t s r e s e rved .
//

#ifndef Ter ra inTes t Hybr idBoundVi s ib i l i t yF inde r
#define Ter ra inTes t Hybr idBoundVi s ib i l i t yF inde r

#include ”R2V i s i b i l i t yF inde r . hpp”
#include ”R2MaxEstimator . hpp”
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#include ”R2MinEstimator . hpp”
#include ”macros . hpp”
#include ”types . hpp”

template<class Estimator>
class Hybr idBoundVis ib i l i tyFinder : public R2Vi s ib i l i t yF inde r<Estimator> {
public :

Hybr idBoundVis ib i l i tyFinder ( s i z e t m, s i z e t n , double K) : ←↩
R2Vi s ib i l i t yF inde r<Estimator>(m, n) , K(K) {} ;

b o o l g r i d v i s i b i l i t y ( pos observer , double obse rve r he i ght , double ←↩
t a r g e t h e i gh t )

{
e s t imator . r e s e t ( ) ;

const double base he i gh t = V i s i b i l i t yF i n d e r : : ba s e he i gh t ( observer ,←↩
ob s e rv e r h e i gh t ) ;

p r e c a l c s l o p e s ( observer , base he ight , t a r g e t h e i gh t ) ;
eva l boundary ta rge t s ( observer , ba s e he i gh t ) ;

i f (K > 0) {
boo l g r i d bound = V i s i b i l i t yF i n d e r : : boundary ( v i s i b l e ( ) ) ;

vector<double> ang l e s ;
ang l e s . r e s e r v e (100000) ;

for ( int i = 0 ; i < m; ++i ) {
i f ( i == obse rve r . i ) {

continue ;
}

for ( int j = 0 ; j < n ; ++j ) {
i f ( bound [ i ] [ j ] ) {

ang l e s . push back ( atan2 ( i − obse rve r . i , j − ←↩
obse rve r . j ) ) ;

}
}

}

const s i z e t r 2 s i z e = ( s i z e t ) f l o o r (K∗(2∗m + 2∗n − 4) ) ;
const s i z e t n ang l e s = ang l e s . s i z e ( ) ;

i f ( n ang l e s < 1 .5∗ r 2 s i z e ) {
for (double theta : ang l e s ) {

e v a l t a r g e t ( observer , base he ight , theta ) ;
}

} else {
s o r t ( ang l e s . begin ( ) , ang l e s . end ( ) ) ;

for ( int k = 0 ; k < r 2 s i z e ; ++k) {
const s i z e t i = (k∗ n ang l e s ) / r 2 s i z e ;
const double theta = ang l e s [ i ] ;

e v a l t a r g e t ( observer , base he ight , theta ) ;
}

}
}

return v i s i b l e ( ) ;
} ;

protected :
using R2Vi s ib i l i t yF inde r<Estimator > : : e s t imator ;
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using V i s i b i l i t yF i n d e r : :m;
using V i s i b i l i t yF i n d e r : : n ;

const double K;

using R2Vi s ib i l i t yF inde r<Estimator > : : e va l boundary ta rge t s ;
using R2Vi s ib i l i t yF inde r<Estimator > : : e v a l t a r g e t ;
using R2Vi s ib i l i t yF inde r<Estimator > : : p r e c a l c s l o p e s ;
using R2Vi s ib i l i t yF inde r<Estimator > : : v i s i b l e ;

} ;

#endif /∗ de f ined ( Te r r a i nTe s t Hyb r i dFa s tV i s i b i l i t yF i nd e r ) ∗/
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