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Abstract

Armed conflict theory has in recent years seen an increase in the use of forecasting models.

These have brought with them a shift from the use of explanatory power to predictive power

when evaluating model performance (Gurr et al., 1999; Goldstone et al., 2010; Hegre et al.,

2013). As methods of evaluation change, so must our diagnostic tools. Tests for statistical

outliers are common, but so far little has been done to adapt such tests to the use of

predictive power. In order to improve our understanding of theory, and ultimately to be

able to give better advice to policy makers, it is important to investigate the effects of

single countries on our model’s forecasts.

In this thesis I present a method of testing for statistical outliers for forecasting models

using common measures of predictive power. By applying the method to a forecasting

model I attempt to uncover any patterns among the outlying countries that could help

further the theoretical understanding of armed conflict occurrence.

I utilize a dynamic forecasting model developed in Hegre et al. (2013) and a cross-

sectional time-series dataset containing 162 countries observed between 1950 and 2013.

The model is repeated once for every country, each time dropping one of them from the

estimation and evaluation process. The results are compiled into evaluation sets, and these

are then used to estimate each country’s influence on model accuracy. Four measures of

predictive power are used to evaluate this: ROC AUC, PR AUC, F-score and Brier score.

I find that effect on coefficients is only partially related to effect on predictive power.

By examining the outliers in detail I illustrate differences in how the measures weigh

predictions, and how this affects the overall score. I also show how cross-validation using

cross-sectional time-series data is problematic and greatly influenced by choice of evaluation

period.



vi Abstract



Acknowledgements

I must start by thanking my thesis advisor, H̊avard Mokleiv Nyg̊ard, for his immense

support throughout this ordeal. His advice made this thesis possible, and his comments

have been of immeasurable help as I have struggled through. I would also like to thank

my assistant advisor, H̊avard Hegre, for his help and comments. I also wish to express my

gratitude to both H̊avards for giving me the opportunity to write my thesis at PRIO, and

I extend my thanks to all PRIOites for being extremely welcoming and helpful, especially

Jonas Nordkvelle for helping me with PRIOsim/Stata/R/++, and the inhabitants of the

Learner’s Loft for keeping me company over the last months.

I must of course also thank my fellow students on the 9th floor. These last two years

have been a great experience, and I have enjoyed sharing it with you all.

Thanks to Linn Hege, Haakon and Vegar for proof reading. They have also contributed

through discussions, suggestions and cooking, which has been of great help. Despite him

fleeing the country when it was time to write our theses, I want to thank Aasmund for

spiritual guidance these last six years. A thanks also to mom and dad for all the proof

readings and other forms of support these past years, without which I could not have come

this far.

Despite the best efforts of all the above, some of my errors may still remain. These are my

responsibility alone.

Word count: 34,335



viii Acknowledgements



Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Motivation, goals and methods . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and theory 7

2.1 Armed Conflict Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Defining Armed Conflict . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Correlates of war . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Forecasting conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The significance based approach . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Predictive power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4 Unit influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Research Design 33

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Dependent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Independent variables . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Multinomial logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 PR outliers 43

4.1 Coefficient effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



x CONTENTS

4.2 Outlier scores and groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Group attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Predicted and observed values . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Indirect effects through coefficient effects . . . . . . . . . . . . . . . . . . . 65

4.6 Indirect effects through neighborhoods . . . . . . . . . . . . . . . . . . . . 67

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Brier outliers 71

5.1 Outlier scores and groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Group attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Predicted versus observed values . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Indirect effects through coefficient effects or neighborhoods . . . . . . . . . 84

5.5 Robustness when correcting conflict lag . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion 87

6.1 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 95

A Tables 103

A.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Country effects on coefficients and predicted probabilities . . . . . . . . . . 104

A.3 Predicted probability differences . . . . . . . . . . . . . . . . . . . . . . . . 111

A.4 PR results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4.1 PR AUC differences . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4.2 Descriptive statistics by group . . . . . . . . . . . . . . . . . . . . . 125

A.5 Brier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.5.1 Brier score differences . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.5.2 Descriptive statistics by group . . . . . . . . . . . . . . . . . . . . . 138

B Figures 141

B.1 Coefficient effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of Tables

2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Transition probability Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Coefficient outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Coefficient outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 ROC and PR AUC differences from control. . . . . . . . . . . . . . . . . . 48

4.4 PR outlier groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 F score and Brier score differences from control. . . . . . . . . . . . . . . . 73

5.2 Brier outlier groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.1 List of variables included in the model. . . . . . . . . . . . . . . . . . . . . 104

A.2 Multinomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Differences in coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.4 Differences in predicted probabilities . . . . . . . . . . . . . . . . . . . . . 111

A.5 PR AUC - All countries 2001-2013 . . . . . . . . . . . . . . . . . . . . . . 116

A.6 PR AUC - All countries 2006-2013 . . . . . . . . . . . . . . . . . . . . . . 121

A.7 PR outlier group sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.8 PR outlier group conflict proportions . . . . . . . . . . . . . . . . . . . . . 126

A.9 PR group descriptive statistics for ltimeindep and ltsc0 . . . . . . . . . . . 126

A.10 PR group descriptive statistics for ncts0, ltsnc, lpop,lGDPcap, nb lGDPcap,

polity2, polity2sq and nb TSRC 5 . . . . . . . . . . . . . . . . . . . . . . . 127

A.11 Brier score - All countries 2001-2013 . . . . . . . . . . . . . . . . . . . . . 128

A.12 Brier score - All countries 2006-2013 . . . . . . . . . . . . . . . . . . . . . 133

A.13 Brier outlier group sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.14 Brier outlier group conflict proportions . . . . . . . . . . . . . . . . . . . . 138

A.15 Brier group descriptive statistics for ltimeindep and ltsc0. . . . . . . . . . . 138

A.16 Brier group descriptive statistics for ncts0, ltsnc, lpop,lGDPcap, nb lGDPcap,

polity2, polity2sq and nb TSRC 5 . . . . . . . . . . . . . . . . . . . . . . . 139



xii LIST OF TABLES



List of Figures

2.1 Armed conflicts by type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Normal distribution with one tail . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 ROC curve example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 PR curve example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Comparison of PR and ROC curves . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Training error versus test error with respect to model complexity . . . . . . 29

3.1 Simulator flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 ROC curves for all drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 PR curves for all drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 AUC differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 PR destructive conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 PR reinforcing conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Predicted conflict probabilities versus observed conflict over evaluation period. 63

4.7 Predicted conflict probabilities versus observed conflict over evaluation period. 64

4.8 Predicted conflict probabilities versus observed conflict over evaluation period. 65

5.1 Brier and F-score differences . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Brier destructive conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Brier reinforcing conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Predicted conflict probabilities versus observed conflict over evaluation period. 82

5.5 Predicted conflict probabilities versus observed conflict over evaluation period. 83

B.1 Differences in coefficients resulting from country drops - 1 . . . . . . . . . . 142

B.2 Differences in coefficients resulting from country drops - 2 . . . . . . . . . . 143

B.3 Differences in coefficients resulting from country drops - 3 . . . . . . . . . . 144

B.4 Differences in coefficients resulting from country drops - 4 . . . . . . . . . . 145

B.5 Histograms of polity distributions . . . . . . . . . . . . . . . . . . . . . . . 146



xiv LIST OF FIGURES



Chapter 1

Introduction

The study of armed conflict has in later years shifted its focus from international wars

between nations to internal conflicts between governments and rebel groups. Such conflicts

have long since become the most numerous, and are arguably a much larger problem in

today’s world. They have wide ranging impacts for the further development of the countries

where they occur (Collier et al., 2003), as well the stability of their neighbors (Salehyan and

Gleditsch, 2006; Gleditsch, 2007; Buhaug and Gleditsch, 2008). Internal armed conflicts

are also more likely to occur in poorer countries that already suffer from poor standards

of living, exacerbating conditions for the population further. Ongoing conflict makes it

difficult for local governments and international aid organizations to build the institutions

and infrastructure necessary to maintain law and order, and to create higher standards of

living. Recognizing this, aid organizations have in recent years shifted from being purely

reconstruction-based to taking a preventive stance (Collier and Sambanis, 2005).

In order for prevention to be possible it is necessary to know how and why the conflicts

arise. A wide reaching literature has been created that seeks to explain this. By study-

ing historical records of armed conflicts, researchers have over the last decades identified

variables that correlate with conflict occurrence (Collier and Hoeffler, 2004; Fearon and

Laitin, 2003; Hegre et al., 2001). Others have in turn taken the step from pure empirical

analysis to attempting conflict forecasting. Goldstone et al. (2010) build a model that

they use to infer which countries are likely to experience political instability. Their aim is

to predict incidents of several types of instability two years before they occur, and claim

they “have substantially achieved that objective” (Goldstone et al., 2010, p. 204). Hegre

et al. (2013) take the predictions further, producing forecasts as far as forty years ahead of

their data. Their model predicts the likelihood of conflict, and can also cover transitions

between conflict intensity (Hegre et al., 2013, p. 252).



2 Introduction

1.1 Motivation, goals and methods

Both Goldstone et al. (2010) and Hegre et al. (2013) build their models on global data,

meaning that every nation is taken into account. This means that every country affects

their estimates, and therefore their forecasts. Single countries could potentially have great

effects on these forecasts, skewing the results and directing our attention in the wrong

direction. Testing for the effects of influential outlying units on coefficients and measure-

ments of model explanatory power is common practice. Few attempts have been made so

far to adapt such tests to predictive power, and applying them to forecasting models. As

Ward et al. (2010) have shown, statistically significant variables do not necessarily add any

predictive power, which makes it highly likely that tests of influence on predictive power

will return different countries compared to those of explanatory power. Little is known

about the degree to which a single outlying instance of conflict can disturb the estimation

and forecast processes. As scientists are resorting to comparing their models using mea-

sures of predictive power, it important to know what fluctuations can be expected to arise

from dropping units.

The aim of this thesis is threefold: first to examine to what degree single countries

affect our predictions. In doing this I will identify those countries that affect estimations

the most. If models are evaluated based on their predictive power, it is important to un-

derstand how outliers affect a model’s performance by such measures. The second aim is

to identify common features among these countries in order to uncover important factors

that could affect how the models are specified. This could bring to light new variables,

or new ways of approaching existing variables. If there are systematic errors, these could

be taken into account to improve our models and forecasts. The third aim is to examine

how the results vary depending on what measure of predictive power is used. As many

measurements are currently in use, variations in how these respond to units could have

implications for the conclusions drawn by the researchers using them. In short the aim is to

improve forecasting models, to improve the understanding of their output, and ultimately

to make scientists better equipped to advise and assist policy makers.

My research questions are as follows:

- Which countries are outliers by effect on predictive power, and are these the same as

outliers by conventional standards?

- Do these divergent conflicts have a common denominator?

- How do different measures of predictive power differ in their reactions to the dropping of

countries?

To accomplish these goals I will use as a starting point an unpublished forecasting
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model that is a further development of the forecasting theory and techniques developed in

Hegre et al. (2013). The model uses a combination of existing theories to build a model

that predicts the onset, incidence and termination of armed conflicts. Like Hegre et al.

(2013) the model is also used to simulate a forecast of future conflicts based on projections

of relevant predictors. Using a method similar to jackknife resampling I intend to identify

those conflicts and countries that do not adhere to this model. By examining the effect

of single countries on the precision of conflict probability estimates, I will uncover the

countries that have the greatest effect on the model’s predictive power. These countries

are then subjected to closer scrutiny in order to ascertain whether they are linked by

common traits or not, and to look more closely at how they affect the predictive power.

I do this by running the model estimation once for every country in the dataset, drop-

ping one country with each iteration. In this way I emulate more conventional test of

outliers, such as tests of unit influence on β-coefficients. By comparing the results of a

control model with the country-drop iterations I can calculate the effect each country has

on the predictive power of the model. I then extract those countries that appear as hav-

ing either a very strong negative or positive effect on the model’s predictive power. Two

measurements are used, and the results are compared, both in the values of the outlying

countries on the predictors and their individual predicted probabilities. To see whether

the countries have indirect effects I examine their effect on coefficients and on their neigh-

borhoods.

1.2 Thesis structure

In Chapter 2 I will present the theoretical background of the thesis. The first part of the

chapter is devoted to the armed conflict literature. Here I examine the different aspects of

armed conflict and present how it will be defined in this thesis. I then present the major

findings in the literature over the last decades. Theoretical insights gained and variables

found to be reliably correlated with conflict are presented. I then argue for the further

use of out-of-sample cross-validation, and in its extension the use of forecasting to provide

testable predictions for unseen data. The second part of the chapter provides the statistical

theory to support the use of such forecasts. I provide a summary of criticism of relying

purely on significance based analysis, and present alternative methods of evaluation. In

the final section of the chapter I provide the theoretical basis for my research design by

drawing parallels to existing tests of unit influence.

Chapter 3 presents my dataset and the variables I will be using. By combining a number

of data sources, as well as imputations where necessary, the utilized dataset has complete

information on the relevant variables for 162 countries from 1950 to 2013. I then present
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the simulator design, which is an advanced version of that used in Hegre et al. (2013).

Lastly, I show how the data extracted from the simulator is evaluated using a number of

R-packages to calculate measures of predictive power.

Chapters 4 and 5 show the results and analysis of the simulations. In chapter 4 I first

present the outcome of a more conventional test of unit influence involving unit effects on

β-coefficients. I proceed to present individual unit effects on the model’s predictive power

using Receiver Operator Characteristics (ROC) and Precision-Recall (PR) curves, as well

as their respective Area Under Curve-measures (AUC). I then group the countries with the

most extreme effects on PR AUC, naming these my predictive outliers. These outliers are

split in two groups depending on whether their effect on predictive is positive or negative.

These results are then compared to those of the test of effect on β-coefficients in order to

establish whether the tests return the same outliers.

In order to uncover whether the members of the predictive outlier groups have any

shared attributes that could be the cause of their deviance, the average values on im-

portant predictors are compared between the outliers and the remaning countries. This

could uncover flaws in the model’s specification, which can be taken into account in future

research.

In order to explain how the countries affect the predictive power I examine their pre-

dicted conflict probabilities from a control model containing all countries. These prob-

abilities are compared to their conflict history, and any deviance between predicted and

observed values will determine the direct effect a country has on predictive power. To un-

cover indirect effects I also examine countries’ effects on coefficients as well as their effect

on their neighbors through neighborhood variables.

Chapter 5 is structured almost identically to Chapter 4. It differs in that it does not

contain the test of unit influence on coefficient effects, and it includes a robustness test for

an erroneous lag in the model. While Chapter 4 has its own summary, the added findings

from Chapter 5 are discussed in Chapter 6. In the final chapter I summarize the findings

and discuss their implications. I also discuss weaknesses in the design and recommend

alterations that would address these in future research.

1.3 Thesis findings

In summary I find that there are great variations in the effect that countries have on model

accuracy, showing that some countries do have greater impacts than others. How extreme

the effects are vary depending on the measure and evaluation period used, but there are

clear outliers regardless. An important point is that tests of unit effect on β-coefficients

do not return the same units as tests of effect on model predictive power. As forecasters



1.3 Thesis findings 5

evaluate models using predictive power it is important to also examine how such statistics

can change by the presence, or absence, of single units in the dataset.

The countries with the most detrimental effect on predictive power have conflict histo-

ries that follow two main patterns. The first pattern is a shift from a largely peaceful period

to one consisting mainly of conflict, or a similar shift from conflict to peace, that occurs

near the split in data between estimation and evaluation sets. This shows that choosing

where to split data for cross-validation has implications for how the model performs in

evaluation. The second pattern is a series of transitions in rapid succession between con-

flict and peace. This creates data that it is impossible for a statistical model to predict

with reasonable accuracy. I find that the conflict definition is largely to blame for the data,

and recommend that the conflict definition based on a strict battle death threshold should

be modified.

I also find differences in how the measures of predictive power react to country drops.

The two measures have their advantages and disadvantages depending on what is more

important to the researcher. I find that the PR AUC is better at assessing the overall model

performance. The Brier score is however better at returning countries with individually

poor predictions, and its results are easier to decompose making it easier to establish

exactly how countries affect the predictive power.
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Chapter 2

Background and theory

Having established the context and goal of this thesis, I will now describe my starting

point in greater detail. I will provide a summary of the study of armed conflict, describing

its evolution over the last decades. I summarize what can be described as the commonly

accepted findings in the field, and place my own work as a continuation of existing work.

The theoretical framework is built around key variables like wealth, population, regime

type and conflict history. Neighborhood variables are also an important component, with

spill-over effects playing a key role in modeling.

The second part of the chapter is the statistical basis behind my research design. First,

I describe the significance based approach that has become the norm for quantitative

political science. I then present criticisms of this approach, especially its application on

the study of armed conflict. Following this comes a review of alternative solutions to the

tasks performed by significance testing, such as measures of predictive power and cross-

validation methods. Lastly I will discuss influential units, as this is central to the research

design.

2.1 Armed Conflict Research

The literature on armed conflict is diverse and covers many topics, and only the most

relevant parts will be covered in this section. I will first define the unit of study, as

there are discrepancies between studies as to what constitutes an armed conflict. I then

summarize some important theoretical contributions and the most widely used predictors.

I conclude by introducing conflict forecasting and argue for its further use.

2.1.1 Defining Armed Conflict

The conflicts of interest for my purposes are only those that occur between a state and

one or more non-state actors (intrastate conflicts). These civil conflicts have become more
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Figure 2.1: Number of armed conflicts by type, 1946-2013 (Themnér and Wallensteen, 2014,
p. 544).

prevalent since the end of the Cold War, while the number of interstate conflicts has been

declining (Themnér and Wallensteen, 2014). As seen in Figure 2.1, the trend since the

end of the Cold War has been an overall reduction in conflict numbers. Interstate conflicts

have almost vanished, while internationalized conflicts have increased.

There are a number of definitions of civil conflict in the current literature, with vari-

ations between researchers and projects (Sambanis, 2004). I follow the definition used by

Gleditsch et al. (2002), which is also used in Hegre et al. (2013). This definition states that

”Internal armed conflict occurs between the government of a state and internal opposition

groups without intervention from other states.” (Gleditsch et al., 2002, p. 619). A distinc-

tion between minor and major conflicts is used, where a conflict that causes more than 1000

casualties per year is labeled a war, while those between 25 and 1000 are labeled minor

conflicts (Gleditsch et al., 2002, p. 619).This distinction between high and low intensity

conflict can be useful, as some variables have been shown to correlate with only one of two

conflict levels (Hegre and Sambanis, 2006).

Further distinctions can be made in research between finding the correlates of conflict

onset, incidence, termination, duration and severity. The most used are onset and inci-

dence, of which the latter will be used in this thesis. Most datasets are in the country-year

format, with each country observed once per year. Studying conflict incidence includes all

conflict years, regardless of whether it is the first or last year of conflict. Incidence studies

are directed at the basic, underlying factors that determine whether a country is conflict

prone.

Conflict onsets are the first country-year units after a peace year, with any following
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years of conflict not included as positive outcomes. This approach seeks to understand more

specifically what leads to the outbreak of war, rather than just the underlying factors that

make conflict more likely. Such studies need to include variables that have the potential

to change rapidly, and with a distinct effect on the political climate. An example of this is

the use of economic growth rather than just GDP, as the variable can change dramatically

from year to year. Depending on the theoretical approach, a drop in national income can

be either the last blow a weakened state can take before losing control, or the drop in

expected income that drives people to rebel rather than work.

The study of incidence and onset can be seen as studying respectively where and when

conflicts occur. Incidence is focused on revealing the slow moving factors that create an

environment where conflict becomes possible. This will tell us where conflicts are likely to

occur. Onset will also tell us this, but here the focus is more on the changes that occur

just before conflicts that act as triggers, telling us when conflicts are likely to occur.

Studying conflict termination focuses on the other end of the conflict, attempting to

find the correlates of peace. Changes that occur directly before the end of conflict may be

interpreted as necessary preconditions for a stable peace agreement. Studying both onset

and termination, in other words the duration of a conflict, gives us insight into factors

that prolong conflicts once started. Some of the variables I will put forward in the next

section affect both conflict incidence and duration. This includes geographic and economic

variables, but not all of these have the same effect on duration as they do on incidence.

While the possibility of recruiting a well trained and well armed group increases the chance

of rebellion, rebel force strength has been found to shorten the duration once a conflict is

initiated (Buhaug et al., 2009, p. 561). Factors such as these are important when simulating

incidence forecasts too. Forecasts have to predict both onsets, terminations and renewed

conflict. It is therefore important to look to studies of not just incidence, but also onset

and duration for guidance when building forecasting models.

Lastly the severity of a conflict is also the subject of many studies. Severity is often

measured in number of deaths. What qualifies as a relevant death can vary, but the dataset

used in this thesis utilizes a battle death definition where only casualties in armed fighting

between a government and a rebel force are counted. Civilian casualties that are a direct

result of fighting are also included, but indirect deaths from starvation or lack of basic

services are not. One sided violence, where a state or group assault an unarmed party, are

also dismissed. Severity can also be measured using different casualty definitions, such as

the victims of one sided violence, or violence between rebel groups without the involvement

of government forces. Another approach is indexes that combine several factors, such as

weaponry used in the conflict, destruction of property and more (Pfetsch, 2015). As with

duration, what determines severity needs not be the same as incidence or onset.
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The different studies can be used in conjunction to give more detailed pictures of what is

at risk. Incidence risk can tell us where we are most likely to see conflicts occur in the long

term. Onset studies can add to this by telling us what short term factors create the most

risk at any given time. Duration and severity studies can then tell us how long and severe

these potential conflicts are likely to be, giving us the possibility to estimate which will be

the most costly, both economically and in terms of the number of lives lost. In this way

conflict research can give crucial policy advice on where to implement counter measures,

such as aid programs focused on either food, education or governmental assistance.

In this thesis I will only examine conflict incidence, but I will be using a conflict variable

which divides conflict into two categories by their severity. The model is still aimed at

explaining incidence rather than severity; it simply seeks to explain the incidence of two

conflict categories that happen to be divided by severity.

2.1.2 Correlates of war

Much of the recent quantitative studies of armed conflict have focused on the motives and

opportunities for rebellion. Motives are the driving forces that push groups into rebellion,

while opportunities are factors that make such a rebellion a feasible option (Fearon and

Laitin, 2003; Collier and Hoeffler, 2004). Traditionally, political science has focused on

grievances as the main motive and driving force behind civil conflicts. Ethnic and religious

tensions, as well as economic inequalities, have been seen as the main culprits (Gurr, 1970,

1993, 2000). These factors have faced considerable scrutiny, and studies have cast doubt on

their relevance (Fearon and Laitin, 2003; Collier and Hoeffler, 2004). Further research has

shown that while individual economic inequalities may not be robust, horizontal inequalities

between ethnic groups do lead to an increased risk of conflict (Cederman et al., 2011). Both

richer and poorer ethnic groups are more involved in conflict than groups with wealth on par

with the national average. Correlations have also been shown between conflict and political

exclusion along ethnic lines. Discrimination against certain ethnic groups is linked with

greater risk of separatist rebellions (Cederman et al., 2010).

Some scholars criticizing the grievance based approach shift the focus from ethnic

grievances between groups to personal economic gains. Collier and Hoeffler (1998, 2004)

hypothesize that groups are more likely to rebel if they expect to profit from such ac-

tion. They find that both lower GDP per capita and access to natural resources lead to a

greater risk of war, although the effect of resources is the opposite in exceedingly wealthy

countries. Their interpretation is that poverty increases the risk of rebellion, as less is at

stake and more is to gain from taking up arms. It also means recruiters can offer lower

wages, as competing modes of income have less to offer. Natural resources are seen as a

commodity that can easily be looted by rebel groups, and this is believed to increase the
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risk of conflict through economic incentives for rebellion. Collier and Hoeffler (2004) find

support for this hypothesis using primary commodities export as a proxy for access to such

resources. While the opportunity approach is also compatible with grievances, Collier and

Hoeffler (2004) find that economic factors have more explanatory power.

Regime types have also been found to be linked with the risk of conflict, with the

theory being that different types have differing degrees of control over their territories and

populations. Hegre et al. (2001) find that coherent democracies and authoritarian states

are much less prone to conflict than intermediate regimes. Changes in regime type, in

either a more or less democratic direction, are found to be associated with conflicts. Their

findings are supported by Fearon and Laitin (2003), who find that anocracies are more

prone to conflict. Vreeland (2008) disputes their findings, pointing out problems with the

measure of democracy used. The PolityIV index includes a measure of political instability.

This means an anocratic score can be the result of, not the cause of, political violence.

Vreeland does however note that a change of regime type remains significantly correlated

with conflict even when the potentially self-fulfilling element is removed from the index

(Vreeland, 2008, p. 403). By estimating regime survival times, Gates et al. (2006) find

that the anocratic regimes are the least durable. Authoritarian regimes have established

a repressive power base, and democracies have strong institutions that enforce laws and

regulations. The intermediate regimes, on the other hand, lack both the repressive power

and the institutions, and thus also lack the ability to uphold a monopoly on violence.

Their results were tested with Przeworski (2000)’s measure of regime type, and found to

be robust. Goldstone et al. (2010) also decompose the Polity data set to create their own

measure of democracy, with which they find that pure democracies and authoritarian states

are less at risk than partial regimes.

Geographic variables are a major part of the field, featured in most major studies,

as well as being important in the historical study of conflict (Buhaug and Gates, 2002).

Natural resources, either in abundance or in scarcity, is one of the subcategories. While

there are differing opinions, some consensus is appearing in the literature as to the effect

of such resources on conflict. Onshore oil is found by some to have a positive effect on

the risk of conflict, and on the duration if located within the conflict zone (Lujala, 2010).

The effect of diamonds is less clear, but a correlation is found both with incidence and

with certain types of conflict onset (Buhaug and Rød, 2006). While natural resources are

seen as a more or less robust variable, there are many caveats and complex interactions,

including with wealth as previously mentioned. Corruption has been found to dampen the

effect of resources, as profits can be made without resorting to violence. Also, the impact

seems to be U-shaped, meaning that the effect dissipates with extreme levels of abundance.

The negative effect of natural resources at higher levels of wealth is interpreted as the
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effect of increased security that a richer state can afford, and that this effect is simply

amplified by natural resources. Fearon and Laitin (2003) argue that the opportunities

approach should be focused on these state capacities rather than on the individual’s motive

to rebel. Rather than interpreting GDP as a measure of potentially lost income, they

believe it should be seen as a proxy of state capacity to uphold basic services as well as law

and order. A poorer country will have less ability to keep its citizens pleased, and more

crucially it will not have the law enforcement capabilities to prevent rebellions, nor the

military capacities to fight them. While GDP per capita and governance are often highly

correlated, closer study has shown that government capacity, rather than cheap labor, is

the cause of increased risk (Fearon, 2011, p. 4).

Another factor found to be correlated with conflict onset is a country’s proportion

of mountainous terrain (Fearon and Laitin, 2003, p. 85). Inaccessible areas give rebels

areas of operation that are out reach of government forces. Government reach is also

affected by their capabilities, with richer countries being better equipped to go after groups

seeking refuge in this terrain. Studies using disaggregated data have not found the same

correlations as country level studies, but they also point out that this is not necessarily

contradictive, as rebels may use such areas as bases while fighting occurs elsewhere (Buhaug

and Rød, 2006, p. 327).

Apart from local terrain and resources, geographical factors also include distances.

Buhaug (2010) finds that conflicts tend to occur further from the capital in weaker states.

There is also some support for distances to borders playing a role in the occurence (Buhaug

and Rød, 2006, p. 325) of conflict, with stronger support for an effect on conflict duration

(Buhaug et al., 2009). The theory is that rebels take advantage of porous borders to evade

government forces. By operating in border areas they can slip away from pursuers by

crossing into neighboring countries where government forces cannot follow. This border

activity is related to a further geographic aspect of conflict: neighborhood spillover effects.

As groups operate on both sides of borders, the risk of conflict spreading to the neighbor

increase. Sambanis (2001, p. 268) finds that a country is more prone to conflict if it has

neighbors that are experiencing conflict, or if it is in a neighborhood that is conflict prone.

Neighborhood factors are also relevant for other variables than just conflict. Hegre et al.

(2013) include the neighborhood average of a number of variables, including male secondary

education, infant mortality rate and youth bulges. Such variables represent the potential

of conflict spreading across borders, although there are differing theoretical approaches

to the causal mechanisms. For the conflict variable, Salehyan and Gleditsch (2006) argue

that conflict diffusion is due to the movement of refugees from neighboring conflicts. While

the refugees do not necessarily fight, they can bring with them arms and ideology. They

also affect their new location by changing the ethnic make up and economic situation,
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possibly creating ethnic tension and food shortages. Other linkages include the increased

availability of arms in the region, making it easier to equip rebel groups. Alternative causes

may be more direct, such as neighboring states intervening in local disputes, or provide

support for rebel groups (Gleditsch, 2007). Such contagion is most likely to occur where

there are transnational ethnic ties, and where there are secessionist struggles (Buhaug and

Gleditsch, 2008). There are also indirect effects through decrease in trade. As conflict is

found to harm the economy, it will also harm the flow of trade. If the economy is weakened,

there will be less flow of trade, both due to lack of supply and to obstruction of lines of

communication. A great deal of trade happens between neighbors, and local conflicts will

therefore have a detrimental effect on the economy of any neighbors as well as the country

experiencing the conflict. Murdoch and Sandler (2002, 2004) find that these economic

effects are the cause of increased neighborhood risk.

Neighboring effects can be coded several ways. A neighbor can be defined as a country

that shares borders, or that is within a given distance. Conflict variables are often coded

as dummies where a positive value is given when one of the neighboring countries has

experienced conflict, often lagged by one year. The geographically larger regional variables

are also intended to pick up on many of the same effects as direct neighbors, but they are

also interpreted to include effects of ”ethnic makeup, resource endowments, and geography”

that are not given neighborhood variables (Sambanis, 2001, p. 268). These variables also

include the effects of a regions collective level of wealth, development and other variables.

The criteria for choosing regional borders vary, but examples are UN standards, cultural

regions or entire continents.

Unsurprisingly, conflicts have been shown to be contagious not only in space, but also

over time. While an unstable history should be removed from the measure of democracy,

it makes sense to include such a measure of instability in our analysis on its own. Conflict

history can be an indication of both instability and an increased opportunity to rebel.

Collier and Hoeffler (2004) use time since last conflict as a proxy for easier access to

weaponry. The more recent the conflict, the more guns are in circulation locally. Another

interpretation is that not only are guns available, but so is the manpower to use them.

Previous conflicts would result in a supply of trained veterans who would make it easier to

recruit a group capable of waging a war. It may also take time to demobilize rebel groups

after ceasefires or peace agreements, making it easier to restart conflicts. The detrimental

effects that conflicts have on the economy, health and other factors also increase the risk

of war. This creates a circle of violence, known in the literature as the conflict trap, where

ongoing conflict creates an environment more and more prone to further conflict (Collier

et al., 2003). Empirical support for the existence this effect has been found by, among

others, Hegre et al. (2013). They include dummy variables for conflict state the previous
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year, and variables for the time spent in the current state. They find that the longer a

country is in a state, the less likely it is to change.

The aforementioned suspected correlates of conflict have been studied intensively, but

the results are not always convergent. Different studies often come to opposing conclusions,

and there are a number of reasons as to why this is. Various datasets record different conflict

data, creating insecurities as to whether or not conflicts have occurred. As various studies

apply different conflict definitions to recorded data, another layer of uncertainty is added.

Further, the operationalizations of variables can also vary between different studies. The

result is a myriad of studies with varying support for different hypotheses and variables.

To test the robustness of the most common variables, Hegre and Sambanis (2006)

apply a global sensitivity analysis. Their study includes over 4 million regressions that test

different model specifications and variable operationalizations on two conflict datasets. A

number of variables are found to be very robust, with some being only partially stable.

Population and per capita income are confirmed as robust, and the two variables are

perhaps both the most used, and the most consistently significant variables found in the

literature. Unfortunately, their robustness sheds little new light on the causal mechanism

involved. Inconsistent democratic institutions are also found to be robust, supporting Hegre

et al. (2001)’s U-curve hypothesis. Rough terrain and weak militaries are found robust,

supporting the theory that rebellions are more likely to occur where rebels can evade

numerically superior government forces or where the government is incapable of restricting

rebel activities. This lends credibility to Fearon (2011)’s theory that state capacity is

crucial. Neighborhood effects are also among those found consistently significant, along

with regional dummies for undemocratic areas. This supports the theory that geographical

clustering of conflicts is caused both by bordering conflict areas as well as by regional

attributes. Some variables, such as oil exports, are found to be robust only for lower levels

of conflict, but not for a more severe definition of civil war (Hegre and Sambanis, 2006,

p. 531-533). I will be using many of the variables found robust by Hegre and Sambanis

(2006) in my model, along with interactions between them. Not all the aspects discussed

in this chapter will be included, as I also attempt to be parsimonious. For further review

of the theory see Blattman and Miguel (2010).

2.1.3 Forecasting conflict

Only to the extent that we are able to explain empirical facts can we attain the major

objective of scientific research, namely not merely to record the phenomena of our

experience, but to learn from them, by basing upon them theoretical generalizations

which enable us to anticipate new occurrences and to control, at least to some extent,

the changes in our environment (Hempel and Oppenheim, 1948, p. 138).
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Quantitative armed conflict research is a social science, but as social sciences go it is

certainly one of the more positivistic. I use the term positivistic in the sense that it is

focused on emulating the natural sciences and their law based form. Quantitative armed

conflict research aims to find laws that govern the nature of human society, more specifically

those aspects that lead to its breakdown. By statistically analyzing correlations we seek to

uncover the underlying causal relationships that lead to the occurrence of armed conflict.

The implicit goal is to understand conflict as a phenomenon, not to describe historical

events. An important aspect of understanding is to test the theories to see how our

understanding matches reality. Natural sciences rely on experiments for such tests. A

theory can gain support or be weakened depending on how well its predictions conform

with observations. The norm in conflict literature is to test theories by seeing how well

statistical models fit recorded data. This is different in that data is only examined and an

explanation is made to match it. While examining data is crucial in gaining any knowledge,

relying on it completely as a means of validating our broader theories has been criticized.

A vocal critic of established norms, argues that ”explanation in the absence of prediction

is not scientifically superior to predictive analysis, it isn’t scientific at all!”(Schrodt, 2014,

p. 290). This is perhaps an aggressive statement, but it echoes the point made by Hempel.

What sets social scientists apart from meticulous historians is the creation of theory and

generalization. If the theories actually explain typical behavior they should be able to

predict it.

A way of incorporating this aspect into research is cross-validation using existing data,

a process where models are estimated on parts of data and tested using the remaining

units that are then ”new” as far as the model is concerned. Out of sample evaluation

is a very good way of counteracting overfitting. Overfitting is when a model is specified

with so many variables that added explanatory power comes at the expense of increased

multicollinearity. This issue will be discussed further in Chapter 2.2. While out of sample

cross-validation goes some way towards addressing the issue, it is not perfect. The scientists

developing the model have still seen the data, and even if they do not estimate on the whole

set they will be aware of where conflicts have occurred. Such knowledge may influence their

research and give an unrealistic advantage compared to attempting to predict unknown

future conflicts. The advantage of forecasting ahead in time is that it allows for truly

independent predictions that can then be evaluated.

There are also practical arguments for forecasting. If our models can provide risk assess-

ments, efforts can be directed towards those countries that are most at risk of experiencing

conflict. We can also get an insight into which factors are creating the risk so that these

problems can addressed directly. Using statistical models for such purposes is not a com-

plete novelty. Both Collier and Hoeffler (2004) and Fearon and Laitin (2003) estimate risks
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for hypothetical countries, and the latter study gives advice regarding how policy makers

can reduce conflict risk. If such advice can be based in the models, then it is a small step

to simply calculate the estimated risks for real countries, creating short term forecasts.

A pioneering study into the feasibility of creating such forecasts was done by the State

Failure Task Force (Gurr et al., 1999). Their dataset only covers the 1980-1992 period,

meaning they have little data for both estimation and out-of-sample evaluation. The data

also suffers from limited data on variables of interest, resulting in their conclusion that more

data is needed before advancements can be made. They also make the important note that

not all variables that have been found statistically significant add to the predictive power

of their model (Gurr et al., 1999, p. 66). This provides support for the claim that lack of

out of-sample-evaluation leaves previous research vulnerable to overfitting.

A following study by O’Brien (2002) has a larger data set, covering 1975 to 1999.

The results are an improvement on the accuracy of the forecasts, yet he still deems the

project exploratory. Like Gurr et al. (1999), O’Brien (2002) comments that more data is

required for forecasting to become feasible. He also comments that while his forecasts do

well in anticipating ”the oiliness of the rags”, the underlying risk of conflict a country is

at, they need to include factors that could act as sparks (O’Brien, 2002, p. 807). Such a

spark may have been found by Goldstone et al. (2010). Goldstone and colleagues classify

countries by a regime type variable of their own construction, and they find that changes

in this variable predicts instability. Their model is parsimonious, using only regime types,

the infant mortality rate and a binary variable for both neighboring conflicts and state-led

discrimination. In a comparison with Fearon and Laitin (2003)’s model they find their own

to be considerably more accurate despite its simplicity (Goldstone et al., 2010, p. 204).

Moving beyond predicting only a few years ahead, Hegre et al. (2013) include projec-

tions of several key variables to forecast over several decades. Using a dynamic multinomial

logit model they simulate several scenarios, based on different projections of the indepen-

dent variables. Like previous forecasts they use historical data for model selection and

evaluation. They test several combinations of baseline variables before arriving at a par-

simonious base. Using a pool of previously statistically proven variables, they then test

a multitude of expanded models. The end result is a variation of models with varying

combinations of variables and interactions (Hegre et al., 2013, p. 256-257). These few top

performing models include different combinations of main variable groups, focusing each

one on different aspects. These models are all re-estimated on the complete data set, and

are then used to simulate. The simulation predicts probabilities for the first year of data,

before drawing realizations of these probabilities. The conflict history and neighborhood

conflict variables are then updated to take into account any positive draws. This is re-

peated for each year, and the whole process is repeated 2,000 times and averaged to create
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forecasts. Like Goldstone et al. (2010), they find that a simple model performs just as

well as the more complex models. However, to make meaningful forecasts they needed to

include more variables for which long term projections exist. The fact that very simple

models perform well leads back to the problem of overfitting. The minimal improvements

that can be found by adding additional variables do not necessarily justify their inclusion.

In the case of conflict forecasting, the choice of variables to include in forecasts determines

the direction they take. Two conclusions can be drawn from this; firstly that the principle

of parsimony is if anything even more important when forecasting. Second, to make fore-

casts beyond predicting a continuation of the status quo, we need to include more variables.

Simple models appear to perform well, but they cannot test theories beyond the variables

they include.

2.2 Statistics

All opinions are not equal. Some are a very great deal more robust, sophisticated

and well supported in logic and argument than others (Adams, 2002).

In this section I will be explaining the theoretical base for my research design. I

start by reviewing and questioning the traditional approach that is most used in modern

quantitative political science. Many of the techniques that appear most often are are

either misused or not at all applicable to conflict prediction. As a replacement I present

techniques originally developed for use in other scientific fields, which have in recent years

been applied to political science. The main points are the use of predictive power, rather

than explanatory power. This includes the use of Receiver Operator Characteristics (ROC)

curves, Precision-Recall (PR) curves, and the Area Under Curve (AUC) metrics of the two.

The F-scores that can be derived from PR are also mentioned, and I present the Brier score

as an alternative to probability-threshold based measures. Lastly, I attempt to link old

and new by presenting my approach as an analogue of established methods of testing for

influential units.

2.2.1 The significance based approach

The null hypothesis significance test is the main judge of merit for quantitative political

science (Gill, 1999, p. 647). The test is a mix of Fisher’s test of significance and Neyman

and Pearson’s hypothesis test.

The Fisher test includes only a single hypothesis, the null hypothesis, or H0. The null

hypothesis is any hypothesis to be disproven. This is not necessarily a hypothesis stating

that there is no relationship between dependent and independent variables, the null simply
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means it is to be nullified. The procedure is a simple test of whether the data exhibits the

properties that are expected given H0. A test statistic is calculated from your data, and

compared to the expected distribution of the statistic providing H0 is true. If this is our

expected distribution, and we know our calculated test statistic, we can find the p-value by

calculating the area under the curve to the right of our value. If your p-value is sufficiently

small you can reject the null hypothesis, if it is not you cannot draw any conclusion (Gill,

1999, p. 648-649).

As an example, Figure 2.2 shows a standard normal distribution. In this example our

calculated test statistic has a value of 1.84, and the area under the curve to right of this

value, and thus our p-value, is 0.033. If we are conducting a two-tailed test, as is usual, we

have to take into account the fact that the error can go in both directions. This means we

also have to include the corresponding area on the left hand side of the curve, giving us a

p-value of 0.066. This is when the arbitrary nature of the test reveals itself: Where do we

draw the line between significant and not? Fisher used .05 and .01 as thresholds for low N

agricultural experiments, and these levels have become convention. These levels may not

be appropriate for larger samples, but no clear guidelines for appropriate levels have been

agreed upon (Raftery, 1995, p. 114).

Figure 2.2: A normal distribution. The red ver-
tical line marks the value 1.84 on the x axis, and
the colored area is 3,3% of the area under the
curve.

Neyman and Pearson’s hypothesis test-

ing sets two hypotheses up against each

other. Like with the Fisher test we first

identify our hypotheses and an appropriate

test statistic. The distribution of the test

statistic given that the first of our hypothe-

ses is true, and a critical value of the test

statistic at a chosen significance level is de-

termined. The test statistic of our data is

then calculated, and depending on whether

it reaches a critical value or not we decide

to accept one of our two hypotheses. The

test results not just in the rejection of one,

but in the acceptance of another hypoth-

esis. The power of the test can be deter-

mined, and is interpreted as the probability

that the test correctly rejected the null-hypothesis (Gill, 1999, p. 651-652).

The two types of test have been mixed by the social sciences into a null hypothesis

significance test. Fisher applied his test to a hypothesis of interest, and took the derived

p-value as a measure of its strength. The null hypothesis significance test applies the
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test to a null hypothesis, one that says there is no correlation between dependent and

independent variables, and then interprets the p-value as the strength of a competing

hypothesis. Each variable is given a p-value which determines whether or not we trust

its effect. The interpretation of the p-value is the same as that of Neyman and Pearson’s

meaure of test power, the probability of the alternative hypothesis being rejected over

time. This mix goes against the purpose of both original tests (Gill, 1999, p. 652-653).

The p-value is not related to the odds of results being a result of chance. The p-value is the

odds of your results given that they are random (Lambdin, 2012, p. 74-80). The only thing

that can be proven is that the data does not conform to a completely random distribution.

That is, the correlation between dependent and independent variables is not non-existent.

The p-value is not a measure of the confidence you can put into the coefficient being the

true effect, only that the coefficient is not 0. This might be useful, but as Bakan (1966,

p. 426) points out: ”There is really no good reason to expect the null hypothesis to be true

in any population.”

This simplification of interpretation, giving each variable a significance level represented

by stars, is a shortcut that has become very common. Three stars is taken as a sign that

the variable is worth keeping, excusing a scientist from having to argue further for its

inclusion. The significance level diverts attention from problems such as miniscule or wide

ranging effects. An effect that is minutely small will be included due to its statistical

significance, yet may have little to no effect in practice (Lambdin, 2012, p. 72). Ziliak and

McCloskey (2008, p. 44) argue that an effect that is very powerful, but where the confidence

interval happens to cross below zero, should not be ignored on grounds of insignificance.

This focus on significance over effect has been challenged numerous times, to no avail.

A comprehensive list of articles of this nature, including works by Fisher, Neyman and

Pearson, are largely ignored by the mainstream literature, as noted with frustration by

Ziliak and McCloskey (2008, p. 57-58). Despite what they find to be insurmountable

evidence proving common practice to be at best misleading, there are few signs of change.

They argue that significance is a test of how well the model describes data, but that this

is not necessarily what we want to do. A simple example of theirs uses cutlery to explain

their argument. A spoon and a fork can be identical apart from the forked end, and even

there the two are somewhat similar. A significance test may tell you that the two are not

significantly different based on their looks. The handle is exactly the same, and the outline

of the head is very similar. Significance testing the difference would show that they are

significantly similar, but putting them to work will however instantly reveal which is the

better at scooping up soup. Having tested the scooping-power, one can conclude with ease

that the spoon outperforms the fork, despite their similar appearance. Similarly one should

not accept fork-shaped models simply because their appearance is very close to that of the
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spoon-shaped model. The two should be tested, and the one that performs best should be

chosen (Ziliak and McCloskey, 2008, p. 49). The metaphor may not be perfect, but it does

not weaken the argument that description is not the same as practical use.

Another issue is that p-value is often misinterpreted. Lambdin lists the four most

problematic and common misconceptions as ”(a) the odds your data are due to chance (b)

the odds your research hypothesis is correct, (c)the odds your result will replicate, and (d)

the odds the null is true” (Lambdin, 2012, p. 74). These variations lead to results meaning

very different things depending on the person evaluating them. As we have seen, the p-

value is a metric to be used when dealing with a sample taken from a larger population.

This means using it to analyze conflict datasets becomes problematic, even if the correct

interpretation is used. This is because the datasets are complete, encompassing the whole

population of cases. Intensive and systematic data gathering has resulted in datasets that

include, as near as makes little difference for this issue, every country in the world for the

time period being studied. As the p-value in a null hypothesis test tells us the likelihood of

our sample given a population where the null hypothesis is true, estimating a p-value on a

population is meaningless (Bakan, 1966, p. 428; Schrodt, 2014, p. 297). We do not need to

know whether our sample is representative of a population; our sample is the population.

Other critics point out that model selection based on p-values is highly susceptible

to tweaking (Raftery, 1995; Gill, 1999). A variable’s p-value is entirely dependent on

the other variables included, as illustrated by Hegre and Sambanis (2006). Tweaking

the operationalization also affects the p-value. These factors can be exploited to achieve

significant results (Gill, 1999, p. 656). By testing every possible combination of variables

it is possible to find models with the same explanatory power, but with very different

specifications, and thus theoretical implications (Raftery, 1995, p. 120).

Another method is choosing variables based on their contribution to R2. Measures

of explanatory power such as R2 are based on fit to data, and attempting to maximize

them can lead to overfitting (King, 1989, p. 24,33). By adding more variables your model

is adapting to the data at hand, gaining explanatory power for each one added. This

explanatory power comes at the cost of being able to generalize your model to new data

(Hastie et al., 2009, p. 220). While parsimony can ease the symptoms, the underlying issue

of explanation versus generalization remains. Maximizing R2 is therefore a problematic

strategy if you wish to predict.

Despite these many arguments against significance based research, it remains the main-

stay of conflict research. While it may not be interpreted correctly and it has no real

theoretical meaning when dealing with our data, it serves a role as the universal measure

of fit. It remains a useful tool for conveying certainty in variable correlation, as it sums up

a number of factors in a single figure. While the methods described in the next section are
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great at evaluating whole models, they are less precise when it comes to single variables.

It would be foolish to disregard the statistical significance of variables completely, but it

would be equally foolish to rely on significance alone.

2.2.2 Predictive power

In this section I will describe the methods that I will apply when evaluating the effect of

countries on the performance of my model. I will present the most common measures used

for model selection and evaluation in the forecasting literature. Hegre et al. (2013) utilize

the ROC AUC in their design, and this is perhaps the most prevalent measure at this time.

While I will include ROC, more weight will be put on the similar PR curves and their AUC.

A derivative of the PR curves is the F-score, which I will include for comparison. A last

measure that I use is the Brier score, which differs from the previous three in many aspects

of its calculation.

All four methods are based on predictive power, rather than explanatory power. As

discussed in section 2.1.3, models such as those of Fearon and Laitin (2003) and Collier

and Hoeffler (2004) are used to estimate risks in a manner that assumes they apply as well

to future events as to the data they are fitted on. This is problematic as their models are

built and evaluated using measures based on statistical fit, which is not the same as ability

to predict events. Predictive power is an alternative to explanatory power, and one more

suited for evaluating forecasts of future risks.

Regression models usually have outputs that include the predicted probabilities of each

possible outcome for each unit. In this paper I will be operating with a multinomial

response, but I will be collapsing the results into a dichotomous conflict or no conflict

response. This means that the output will consist of only a single probability. In this case

the probability is the model’s estimate of a country’s risk of experiencing conflict in a given

year.

The two main qualities that interest us the most when evaluating the model are cal-

ibration and sharpness (Gneiting et al., 2007). Calibration is how well a model output

corresponds with the observed events. For my conflict forecasting model the output is a

predicted conflict probability, and the observed event is a conflict occurrence. My model

will be well calibrated if it predicts higher probabilities for country-years with observed con-

flict occurrences than for those with no observed conflict. Sharpness is how well clustered

the predicted probabilities are, and is independent of observed data. A sharp forecaster

predicts probabilities that are tightly concentrated, which is a trait that is positive subject

to calibration (Gneiting et al., 2007, p. 246). I will be focusing mainly on calibration.

In order to evaluate calibration and sharpness, we start by classifying each prediction

based on two factors: The first is whether or not an event was predicted, making the
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prediction positive or negative. The second is whether the prediction matches the obser-

vation, giving either a true or a false response. The four possible outcomes are shown in a

’confusion matrix’ as seen in Table 2.1. It consists of true positives (TP), where a conflict

was both predicted and observed. False positives (FP), where a positive was predicted

but not observed. True negatives (TN), where negatives are both predicted and observed,

and lastly false negatives (FN), where an observed event was not predicted. To convert

probabilities into clear yes or no responses we need to apply thresholds. Thresholds are

critical values above which a probability is deemed to be a predicted event, while those

below are deemed to predict a non-event.

Observed

Event non-event

Predicted
Event TP FP

non-event FN TN

Table 2.1: Confusion Matrix

Having done this at any given threshold, we calculate ratios to use as comparable

summary statistics. There are several that can be used, each focusing on different aspects.

The true positive rate (TPR), also known as sensitivity or recall, is the proportion of actual

conflicts that is correctly predicted. A parallel can be drawn to the calibration term, as

this is how well the model is able to pick up on positive outcomes. The false positive rate

(FPR), or specificity, is the proportion of correctly predicted non-events. Both these deal

with a proportion of the total number of observed events or non-events. Precision focuses

on a proportion of the predicted outcomes, namely the proportion of predicted positives

that are correctly predicted. While TPR and FPR say something about a model’s ability

to correctly classify a set, precision tells us something about how much noise is included

in the predictions.

(
TPR

)
= TP

TP+FN

(
FPR

)
= TN

FP+TN

(
Precision

)
= TP

Observedpositives

These statistics can be calculated for every threshold, from 0 to 1. Choosing a single

threshold is problematic. How well a model is able separate conflicts varies greatly between

thresholds, and a trade-off must be made between being able to predict all conflicts and

being not returning too many false alarms. Replacing the 0.05p-value threshold with a an

arbitrary probability threshold would be far from an ideal solution. It is however possible

to assign loss-functions to the results, which again makes it possible to calculate the total
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cost at any threshold. The best possible outcome, the one with the lowest cost, can then

be found by cycling through all thresholds. There are also ways of evaluating models over

all thresholds without assigning a loss-function.

ROC

A Receiver Operator Characteristics (ROC) curve is a plot of the sensitivity and specificity

of a model over all thresholds, as shown in Figure 2.3. The ROC curve shows the trade off

between being able to correctly identify all conflicts in the set and the proportion of non-

events that are misclassified. At the top right corner every event is correctly labeled, but

every non-event is wrongly labeled. The bottom left is where every non-event is correctly

labeled, but every event is wrongly labeled. A perfect model would have a curve going

vertically up from the bottom left to the upper left corner, where all events and non-events

are correctly classified, and from there to the upper right corner.

Figure 2.3: An example of an ROC curve. The
y-axis is the sensitivity of the model, while the
x-axis is the specificity.

While the curve itself is a good illus-

tration of model performance, the informa-

tion it provides can also be compressed.

The proportion of the ROC plot that is un-

der the curve is known as the Area Under

Curve (AUC), and has a value ranging from

0 to 1. The ROC AUC is interpreted as

the likelihood that your model will give a

random event a higher probability than a

random non-event. An AUC of .5 would

mean your model is no better at predicting

than chance, while an AUC of 1 is a per-

fect predictor. Values under .5 are worse

than chance, but occur rarely. The better a

model is at correctly classifying outcomes,

the higher the curve and greater the AUC.

An advantage of the AUC is that it is comparable between models and datasets (Ward

et al., 2010, p. 366-367).

The ROC curve and AUC have some disadvantages. Comparing curves is often difficult,

as they can be indistinguishable, or without one being obviously better than the other. The

AUC can also be misleading, depending on your data and goal. Two models with very

different predictive characteristics can achieve the same AUC, and thus appear similar

despite producing very different results (Kuhn and Johnson, 2013, p. 264). When faced

with skewed data, meaning data containing few units with positive outcomes compared to
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the number of negative outcomes, it may give a misleadingly positive image of a model’s

capabilities. This is because of the inclusion of specificity, or false positive rate, in the ROC

curve. When the number of non-events in data outnumber the events by a large margin,

the specificity can become inflated. A model that is completely incapable of distinguishing

two equally sized groups of events and non-events will still score well with ROC AUC if

the dataset also contains a much larger group of correctly predicted non-events.

Precision-Recall

The precision-recall (PR) curve is an alternative that can sometimes distinguish between

two models that appear to have identical ROC curves. Precision is the proportion of units

predicted as positive that are actually positive. Recall is another name for sensitivity

(Davis and Goadrich, 2006, p. 233). The curve illustrates the model’s ability to keep the

level of false alarms to a minimum as it correctly identifies all real conflicts. Whereas the

ROC curve is optimal if it follows the left and upper sides of the plot, the PR curve is

optimal when it follows the upper and then right sides of the plot. Note that while recall

and sensitivity are the same thing, and appear in both curves, they are normally not given

the same axis. In the PR curve shown in Figure 2.4, recall/sensitivity is on the x-axis, as

opposed to the y-axis in ROC plots.

Figure 2.4: An example of a PR curve. The y-
axis is the precision of the model, while the x-axis
is the recall.

By replacing specificity with precision,

the PR curve is much more sensitive to false

positives than the ROC. This means that

true negatives are no longer given the same

weight, which is useful when dealing with

skewed data. While the ROC curve can

remain virtually undisturbed by a huge in-

crease in false positives (as long as the num-

ber of non-events is large enough), the PR

curve will experience much greater impacts.

In a large set of 10,000 units with only

100 positive outcomes, increases in false

positives will affect the false positive rate

negligibly. Specificity, on the other hand,

will have noticeable differences by even a

single false positive.
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As an example we can imagine a model using this example data that at a given thresh-

old predicts half of the positive cases correctly and predicts 50 false positives.

(
TPR

)
= 50

50+50
= 0.5

(
FPR

)
= 50

50+9950
= 0.005

(
Precision

)
= 50

100
= 0.5

The results show that when half the events are correctly predicted, the false positive

rate is still almost perfect. This would lead us to believe that the model is doing exceedingly

well if only the ROC is used. Should we however be using PR we would see that already

here we find that half of our predicted events are false. PR is showing us interesting details

that we would miss using ROC, making it easier to distinguish between models.

The differences become even more stark if we now compare the previous model with one

that performs worse. Below are the results of a model that predicts the same proportion

of the positive cases correctly, but also predicts 200 rather than 50 false positives.

(
TPR

)
= 50

50+50
= 0.5

(
FPR

)
= 200

200+9800
= 0.02

(
Precision

)
= 50

250
= 0.2

Both models will have the same sensitivity or recall of .5, so for both ROC and PR one

axis will remain unmoved. The difference in specificity will be a minute 0.015. Judged

by the criteria used in an ROC curve they are basically identical, but we know that the

latter model will include three times as many irrelevant units. If we use a PR curve the

difference in performance will be clear, with a change in precision from .5 to .2.

Conflict datasets are not necessarily as skewed as this, but even though this is an

exaggerated example the principle remains the same; differences between models using

conflict data will be much more easily distinguished using PR. Figure 2.5 shows the ROC

and PR curves of two drops, the Democratic Republic of Congo and the Philippines. The

two ROC curves are virtually the same, with minor differences but with AUC scores that

are close to identical. The two PR curves on the other hand display a distinct difference,

with the model that drops the DRC having a curve that is clearly superior. As I intend

to drop one of 162 units, the difference between estimations might not be very great. PR

will therefore be the better choice for evaluation, as it is more likely to reveal potential

differences.

In the analysis I will be focusing on the AUC of both types of curve rather than the

curves themselves. Both the ROC and PR curves and AUCs are based on probability

thresholds, and calculate the models performance over all of these. Collapsing the curves

into simple AUC figures discards much of the detail, but makes comparison over several

cases, or very similar cases, easier. As mentioned, the ROC AUC has a simple inter-

pretation, namely the probability that a randomly chosen event has been given a higher
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(a) ROC examples (b) PR Examples

Figure 2.5: PR and ROC comparisons of two models. While the two have almost identical ROC
curves, they have clearly differing PR curves.

probability than a randomly chosen non-event. The PR AUC has no such theoretical def-

inition, making the metric merely a way of saying which curve covers the greatest area in

PR space.

Scoring rules

Another single figure metric that can be extracted from PR curves is the F-score, which is

the harmonic mean of precision and recall at any given level of either.

F − score = 2 ∗ Precision∗Recall
Precision+Recall

Unlike the AUC measures, which summarize performance over all thresholds, the F-score

reported is the highest achieved F-score over all levels of PR. The score spans from 0 to 1,

where higher is better.

The previous three measures have been based on thresholds, and on the concept of true

or false predictions at these thresholds. A metric that is independent of this is the Brier

score, which is the mean of squared differences between predictions and observations.

Brierscore = 1
N

Σ(Pred−Obs)2

This makes the nature of the Brier score somewhat different from the curve based

measures. PR and ROC throw all predicted probabilities in a pool and then go through

them thresholdwise. This means all units are held to the same standards when it comes to

what probabilities constitute conflict. Whether the probabilities given are close to 0 or 1

becomes less important as long as they are in the correct place with regard to the group.
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This means low probability conflict years in some countries create problems not only for

the country itself, but also for other countries that have high predicted probabilities for

peace years.

The Brier score is less concerned with the ranking of predictions, as it evaluates each

observation on its own merits and then averages. The score spans from 0 to 1, but it is

worth noting that the Brier score punishes a complete miss more than a near miss. The

increase in Brier score when going from a perfect prediction to a miss by 0.1 is very small.

The perfect prediction is scored 0, and a miss by 0.1 is only scored 0.01. However, a further

increase of 0.1 in predicted probability, taking us to 0.2 in total, will result in a score of

0.04, an increase in 0.03 compared to the first 0.01. This exponential increase means that

the same incremental increase in probability is punished more heavily the further from the

observation it is. A possible weakness of the Brier score is the averaging nature, where

each unit counts the same. A skewed dataset with mostly peace will automatically be

given a decent score if it predicts a low score for all units. For a dataset of 1000 cases

with 100 events and 900 non-events, a constant prediction of 0.1 would get a Brier score

of ((900∗(.12))+(100∗(.92)))
1000

= 0.09.

A predicted probability of 0.2 for a non-event year would get a Brier score of 0.22 = 0.04.

Application

Beyond theoretical evaluation, predictive power can also be used to evaluate a model’s

practical value. By calculating risks for all countries a list of those most likely to experience

conflict can be made. These can then be individually examined to see which variables are

causing the risk. Humanitarian operations can be implemented to counteract the problem.

As with any problem we would want a model that predicts as many conflicts as possible

without raising any false alarms. By adding a loss function, a penalty for predicting the

wrong response, we can find the model that is the most economical. We can also determine

whether following the model is more economical than simply doing nothing. To do this

we need to put a price on failure. Armed conflict has been shown to reduce both GDP,

growth and trade for the countries involved and their neighbors (Gates et al., 2012, p. 1719;

Collier, 1999, p. 175; Murdoch and Sandler, 2002).

Kennedy (ming) provides a framework for evaluating whether a model is better than

simply expecting no conflict. By assigning assumed costs to false positives and false neg-

atives, and assuming that correct predictions are preferred over incorrect, they arrive at a

method of calculating the cost of decisions. With the data and model used by Goldstone

et al. (2010), he shows how a decision to simply do nothing can be compared to following a

model with a given decision threshold. Goldstone et al. (2010) use a threshold that splits

the data into quintiles, where the lower four quintiles are predicted as non-events and the
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uppermost quintile are predicted to be state failures. By comparing the resulting confusion

matrices of the ”see-no-evil” approach and that of Goldstone et al. (2010), they find that

the cost of an intervention must be less than 7.7% of the cost of allowing a state failure.

Collier (2004) calculated the cost of a conflict to be $50 billion, while Collier et al.

(2003) find an average cost of $14.1 billion for a group of armed interventions in conflict

zones. With these numbers, an intervention costs 28.2% of allowing the conflict to happen.

This makes Goldstone et al. (2010)’s model less economic than simply allowing all conflicts

to occur. It should be noted that these numbers are taken from military interventions

in conflict zones, and that preemptive humanitarian aid missions need not be as costly.

Regardless, the method shows how forecasting models can actually be assessed by criteria

that aren’t reliant on arbitrary choices of significance levels or thresholds. Goldstone et al.

(2010) are here judged on their one chosen threshold, but the method can also be used

in reverse. If the cost of both conflicts and interventions are given beforehand, and each

cell is given a cost, it is easy to calculate the ratio that is needed between cells of the

confusion matrix in order to outperform doing nothing. Any model can then be tested at

all thresholds to see if it can achieve the required values to be less costly than the control.

By undertaking a detailed cost-benefit analysis of preemptive humanitarian operations one

could establish a rough guide to how well a model should perform to be worth implementing

as a policy-guiding tool.

2.2.3 Cross-validation

As mentioned in section 2.2.1, a problem of measures of explanatory power is that they

are susceptible to overfitting. Replacing explanatory power with predictive power does

not solve this problem on its own. If predictions are compared to the same data that the

model was fitted to we are estimating its training error. Like with R2, the training error is

maximized at the cost of ability to generalize. The test error of a model measures how well

it predicts on data the model has not been exposed to before validation. Figure 2.6 shows

the trade-off between the two as model complexity changes. The reduction in training

error increases along with model complexity, but the test error follows a u-curve. The test

error is obviously of more interest, and it can be estimated through cross-validation.

Cross-validation requires us to partition our available data, using parts of for estimation

and parts for validation. One way is to simply leave a unit out of the estimation and then

predict on it, repeating this for each unit and then averaging the results. This is called

leave-one-out cross-validation (LOOCV). Another common and more effective way of doing

this is by the k-fold approach, where data is first split into k -parts. Each part is then in

turn left out of the fit and used to estimate the prediction error. The average error over

all k -parts is the model’s prediction error (Hastie et al., 2009, p. 241-242).
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Figure 2.6: Curves showing how training error (blue) decreases, while test error (red) increases
as variables are added. (Hastie et al., 2009, p. 220)

The conflict literature tends to split the data chronologically. Hegre et al. (2013, p. 256)

fit their models to data from 1970 to 2000 and validate using data from 2001 to 2009.

Similar approaches were also used by Weidmann and Ward (2010, p. 896), where data was

split by months, and O’Brien (2002). Only fitting and validating along a single split in

the data could result in a skewed estimate of prediction error. In theory, if we are seeking

to uncover the underlying factors common to all conflict, any set of conflicts should be

able to predict other conflicts. Limiting ourselves to only validating on a single group

would therefore be an unnecessary shortcut that leaves estimates vulnerable to bias that

can change depending on where we choose to partition data.

The structure of conflict history data is however of such a nature that applying k-fold

cross-validation is not without issues. The strength of k-fold validation lies in it splitting

the data randomly into groups. The UCDP/PRIO conflict dataset that I use is in a time-

series-cross-section format, where countries are repeatedly observed over time. This means

that each unit is no longer independent (Beck, 2001). The models I am using also have

neighborhood effects, making the data even more dependent on its spatial and temporal

neighbors in the dataset. Removing random units would have such an effect on those

around it in time and space that a k-fold cross-validation would not function as intended.
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Removing a conflict unit would not only have the effect of removing that single unit, but

it would remove the neighborhood effects on those around it and would distort the conflict

history of those coming after it.

A last argument for a single split is practicality. I will be cross-validating for each

country dropped, and each of these will be averaged over a large number of simulations.

With a single split the process takes several days to complete, and a 10-fold cross-validation

would probably take several weeks.

2.2.4 Unit influence

The concept of studying the effect of single units on models is nothing new. It is a common

test of robustness performed to ensure that results are stable, as opposed to being created

or disproportionately affected by some units rather than the data as a whole. My research

design is in essence a complex test of unit influence, where I adapt the goal of the test to

the new methods of evaluation.

There are numerous ways of detecting influential units or outliers in existing literature.

Extreme values on predictors could lead to an unusually large effect on its coefficient.

Similarly extreme values on the dependent variable could lead to similar effects on predictor

coefficients. Leverage statistics can also be calculated to identify units that drive results.

Commands to calculate such statistics are built into commonly used statistics packages,

such as the DFBETA function for Stata. This is based on how units affect β-coefficients and

their standard errors. Others tests examine unit influence on summary statistics of model

fit. For example, Menard (2010, p. 134-136) describes how the change in a model’s χ2 can

be used to determine unit effect on the models overall fit. Units that cause particularly

large changes in χ2 when dropped are considered influential units.

The earlier methods are based largely on how units affect explanatory power. As re-

search shifts from utilizing explanatory power to predictive power, so too should the diag-

nostic tools. As I have shown, explanatory power is not necessarily the same as predictive

power. If variables can be shown to increase significance without increasing predictive

power, then surely the same can be true of influential units.

A method more suited to diagnosing forecasting models is using the change in predictive

power. Beck (2001, p. 283) describes a method of specification comparison similar to

LOOCV, only using countries rather than units. If, rather than averaging and comparing

across specifications, we extract the results of each iteration we can compare the effect each

country has on predictive power. In this way we can identify which countries are shaping

the model, and which countries need a different model specification. My main method

of choosing outliers is most similar to the test of change in χ2 mentioned above, with a

single figure measure of model predictive power replacing χ2. I also present a method that
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measures influence by how much a unit affects the predicted probabilities of other units.

As predictive power is measured in how well the probabilities match observations, this is

an important aspect. A test of influence on a summary statistic will tell us how much the

unit influences this particular metric. This is an important characteristic as models are

evaluated by these metrics, but it provides no information on the scale of changes in the

results on a lower level.

I will be using PR AUC and Brier scores as my summary measures of predictive power.

I will also include two additional measures, ROC AUC and F-scores, for comparison. The

change in these measures as a country is dropped will determine whether or not a it is an

influential unit. If the predictive power increases as a country is dropped, then it does not

fit the pattern set by the rest of the data set. These units are of interest as they could reveal

problems with the model specification. Inversely, if predictive power is lost by dropping a

unit then the unit adheres to the same behavior as the majority of the data. The latter

units will also be of some interest as they have the most appropriate attributes for the

model to predict precisely. The predicted probabilities of these units could also reveal the

type of predictions that are the most harmful to each measure of predictive power.

Having identified a group of outliers it is possible to examine what makes them have

a greater influence than others. It is important to differentiate between the direct and

indirect effects on predictive power that result from dropping a country. The direct effect

is the effect of the model not having to explain the country that has been dropped. We can

get an idea of how great this effect is by examining how well a complete model predicts each

country. Poor predictions will have a detrimental effect on the model’s overall predictive

power, and so countries whose removal leads to an increase in predictive power are likely

to have poor predictions.

Due to the inclusion of neighborhood variables the removal of conflict ridden countries

will also have an effect on the status of neighbors. This could lead to the model having

trouble predicting conflicts that are the result of spillover from the dropped country. Should

a dropped country have conflicts in the period, then the result of dropping it will lead to

lower risk estimates for their neighbors. Depending on whether the neighbors experienced

conflict this could have a positive or a negative effect on predictive power. If the dropped

country does not have conflict, then dropping it will not affect the neighborhood conflict

variable. Apart from conflict, I will also be including neighborhood variables that measure

wealth and political stability. Due to the effect of these variables, some countries that are

predicted well could lead to a loss overall when removed. I am here referring to the change

in variable values, and it is important to note that this is different from the effect that is

made on the variables’ β-coefficients.

Countries also affect the predictive power through indirect effects on units. One channel
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for such effects is the model’s coefficient estimates, β̂. When a country is dropped before

estimation, β̂ will change as the model no longer has to take into account the data the

country provided. These changes will in turn change the probability estimates of other

countries, which in turn will affect the model’s overall predictive power. Estimating the

effect countries have on β̂ is done by simply comparing the β̂ of the model when estimated

with and without the country included in data (Long, p. 100). If a country has accurate

predictions and no adverse effects on its neighborhood’s predictions, then the effect on

predictive power is likely to be caused by an effect on β̂-estimates leading to global changes

in predictions.

As I will later illustrate, examining the change in predictive power is not the same as

merely looking at which countries have the worst predictions. These countries could be

found by simply estimating the model and examining the predictions, but this would not

reveal the true extent of their effect on predictive power. It is to be expected that such

countries are among those that will lead to the greatest improvement in overall predictive

power when dropped, but indirect effects may also play important roles. The nature of how

PR AUC and the Brier score are calculated will also decide how great an effect predictions

have on the estimated predictive power.

2.3 Summary

The armed conflict literature has more or less arrived at an agreement that a set of variables

appear to be linked to conflict. Among these are GDP per capita, population, regime type

and neighborhood spillover effects, which will feature in the research design of this thesis.

I have also argued that quantitative political analysis, and especially the armed conflict

field, has much to gain in using forecasting and out-of-sample evaluation using predictive

power. I have presented four measures of predictive power: PR AUC and Brier score,

which I will be using to select outliers, as well as the ROC AUC and F-score. The first

two will form the backbone of my analysis, while the latter are included to examine how

other measures respond to the same changes in data. I have also presented the rationale

behind my research design, comparing it to established test of unit influence. By dropping

countries on by one I will find those with the strongest effects on model predictive power,

which I can then examine in detail to uncover commonalities.
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Research Design

In this chapter I will present the data that is used, as well as the statistical model and

the forecasting simulator setup. The dependent variable, conflict, is gathered from the

UCDP/PRIO conflict dataset. As mentioned in the previous chapter, I will be using only

the conflicts that are classified as internal armed conflicts. The variable has three outcomes:

no conflict, minor conflict and major conflict. The independent variables are gathered from

several sources, combined in an the as yet unpublished Shared Socio-Economic Pathways

(SSP) dataset in development at PRIO. Conflict history variables are a crucial part, both

internally and in the neighborhood. These are also interacted with each other, and with

the other predictors, to take into account effects changing under different circumstances.

Other variables measuring political stability are neighboring regime changes and time since

the country gained independence. The basic variables for most conflict models, GDP

and population size, are also included. The Polity IV-index is included as a measure of

democracy despite its issues. Lastly there are a number of variables to take into account

unobserved spatial and time effects.

The simulation setup is developed from the simulator presented in Hegre et al. (2013).

I use a more recent version, modifying it to suit the nature of my study. The simulation

process is in essence a multinomial logit model that is allowed to update its own dataset

when predicting outcomes, creating a truly dynamic model. Random country effects are

added through the use of a multilevel model, while the independent variables’ effects are

estimated with a multinomial logit model. While the coefficients are estimated using Stata,

the process of estimating probabilities is done by a separate simulation program.

3.1 Data

The SSP-dataset combines information from several data sources to create a set of variables

with no missing values for the whole period from 1950 to 2013. The data is in a country-



34 Research Design

year format, with each unit representing a country for a specific year. As well as historical

data the set contains projections of five different future scenarios. The data used here

includes 1621 countries for the time period from 1950 to 2013, and only uses recorded data

and imputations.

As mentioned, all units are extremely dependent on units in spatial and chronological

proximity. It is therefore crucial that there are no missing units. The SSP-data has a very

low amount of missingness, although this comes at a cost. Data has been merged under

various assumptions to fill in missing units. These issues are taken into account when

discussing the predictive outliers. Some countries are removed from the analysis, either

wholly or partially, for various reasons. Some countries have ceased to exist before, or not

yet gained independence by, the start of the evaluation period. Others have problematically

high levels of missingness, rendering them useless.

3.1.1 Dependent variable

The dependent variable is a three leveled measure of internal armed conflict incidence

taken from the UCDP/PRIO Armed Conflict Dataset (Gleditsch et al., 2002; Themnér

and Wallensteen, 2014). Using incidence rather than onset gives a larger set of conflict

years to estimate and evaluate on. This leads to single country-years having less influence,

making evaluation less vulnerable to random errors.

The reference category is no observed conflict, coded as 0. The alternative outcomes

are minor and major conflicts. Minor conflicts, coded 1, are conflicts with 25 or more

battle related deaths. Major conflicts are coded 2, and have 1000 or more battle related

deaths. For the 162 countries included in my data there are 21345 peace years, 920 minor

conflicts and 416 major conflicts. This gives a 4.1% probability of randomly selecting a

minor conflict, and a 1.8% chance of randomly selecting a major conflict.

For simulation I will be using the conflict variable as is, with two conflict levels. Having

run the simulations I will dichotomize the variable, giving it the outcomes no conflict and

conflict. This results in some loss of data, but makes the process of evaluation much

simpler.

3.1.2 Independent variables

The model I am using is from Hegre and Nyg̊ard (ming), and is similar to the baseline

model in Hegre et al. (2013). It includes a few basic predictors and several interactions,

1Due to the simulator crashing if Burma is dropped, I am only able to present the effect of 161 countries
on predictive power. Burma is still included in the estimations of the other countries, providing both data
for estimation and evaluation. All the remaining 161 countries are named in the tables reporting the
results of my analyses, found in Appendix A.4 and A.5.1.
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as well as a few regime variables. The simplicity of the model suits the diagnostic nature

of my study. How countries behave using this model will have implications for how one

is to interpret more complex models, and more reliably understand other variables when

included.

Conflict history

Conflict risk has been shown to increase drastically in countries with recent conflict history

(Collier et al., 2008). To take this into account the model includes dummy variables for

both minor (c1t−1) and major (c2t−1) conflicts in the previous year, t− 1. As countries are

expected to become more stable over time, conflict history beyond the previous year is also

included. This stability is represented by the period of peace prior to t− 2. The variable,,

ln(t)0, is operationalized as the logged number of years since last conflict, measured at

t− 2. All conflict history variables are calculated from the dependent variable

Independence

A further measure of stability is the age of the state in question. Newer states are more

at risk of conflict as their institutions and governments have yet to establish themselves

(Fearon and Laitin, 2003; Hegre and Sambanis, 2006; Hegre et al., 2013). The variable,

ltimeindep, is coded as logged years since independence, or since 1700 if they have been

independent since before the 18th century.

GDP per capita

The data on GDP per capita is gathered from the World Bank’s World Development

Indicators (WDI) (World Bank Group, 2013), Maddison Working Paper 4 (Bolt and van

Zanden, 2013) and Penn World Tables v8.0 (Feenstra et al., 2013). The projected data

is taken from the OECD ENV-Growth projections (Chateau et al., 2012) which uses the

same PPP adjusted 2005 USD as the WDI. The WDI is therefore the main source, with

data from the other sets adjusted to be consistent. Conversion rates were arrived at by

averaging the ratio where the sets overlap. Some countries are subject to more substantial

assumptions when merging and imputing data. An example is that the conversion rate

into PPP was lacking for Somalia, and so the conversion rate of Ethiopia was used. When

such substitutions are used, the countries involved are always similar in geographical and

economic terms, and it should not cause any major issue with data validity.

The variable is log-transformed as the effect is expected to diminish with extreme values.

Interactions with (c1t−1) and ln(t)0 are included.
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Population

Population is included through the logged total population of each country in thousands.

Population data is gathered largely from United Nations World Population Prospects

(United Nations, 2013). This set contains both historical data and future projections

for use in forecasting. The variable is log-transformed as the effect is expected to dimin-

ish with extreme values. The population variable, lpop, is also interacted with both local

conflict history dummies.

Polity

The Polity2 variable from the PolityIV-project (Marshall and Jaggers, 2002) is also in-

cluded, both in a linear and a squared form. The linear variable measures the level of

democratic development, and spans from -10 for autocratic regimes to 10 for fully demo-

cratic regimes. The squared will pick up the anocratic U-curve effect, and has values from

0 for completely anocratic to 100 for fully democratic or authoritarian. Both the linear

and squared polity-variables are interacted with the local conflict history dummies. As

discussed in section 2.1.2, there are problems associated with using the squared polity vari-

able. This variable is used as it is the only one that has complete data for the whole period

and for all the countries involved. While another measure would be preferred, pragmatism

dictates the use of an inferior variable as it enables the use of much more data.

Neighborhood effects

The effect of neighborhood conflicts is included by a dummy, nc, for an ongoing conflict

in any neighboring country the previous year. Neighboring country is here defined as a

country sharing a land border, or a border over an inland sea. This means that Spain

and Morocco are not neighbors across the Straits of Gibralter, but Tanzania and the

Democratic Republic of Congo are neighbors across Lake Tanganyika. The neighborhood

conflict variable is also interacted with the local conflict dummies. As with country sta-

bility, a stable neighborhood should create more peaceful conditions. The logged number

of years all neighboring countries have experienced peace, ltnsc, is therefore included. An

interaction is also added between neighborhood peace and time since last conflict, ncts0.

Beyond conflict, a neighborhood instability is modeled by adding a variable for recent

regime changes. The dummy variable nb TSRC 5 measures whether a regime change has

occurred in neighboring countries in the last 5 years.
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Time effects

To capture unobserved global effects that are time-specific, dummies are included for each

decade. Each decade, the 1950s, 1960s, 1970s, 1980s and 1990s is given a dummy variable,

leaving all years from 2000 and onward as the reference category.

Spatial effects

Unobserved country specific effects are modeled by the inclusion of random effects for each

country. These are derived from a multilevel mixed-effects model using the same variables

as the main model and a random intercept. The random intercept of each country for both

outcomes is extracted and included here as the random1 and random2 variables.

The intercepts are not simply directly extracted from the estimated β-coefficients. Un-

der the assumption that the β-coefficients of the random intercepts are at the middle of

a probability density function(pdf) that is normally distributed, with the standard errors

as the span from mean to the confidence intervals. The random effects to be used in the

simulations are drawn at random from the pdf, and then stored for later use.

All variables and their shortened names are listed in Table A.1.

3.2 Multinomial logit model

While a multilevel model would be ideal, the simulation software can only handle a multi-

nomial model 2. As the dependent conflict variable has three outcomes, a multinomial logit

model is used. The model includes lagged independent variables, including lagged variants

of the dependent variable. This type of model is known as a ”dynamic model” (Greene,

2003, p. 558). From this model we can extract the transition probabilities between conflict

states. Table 3.1 shows the probabilities of a transition from any of the three states to any

other in the data set. If we were to include conflict state at t−1 as the only predictor then

these are the probabilities it would predict for any unit.

The multinomial model is estimated using the mlogit-function in Stata. While Stata can

be used to estimate the probabilities of all outcomes, this would be done using the recorded

conflict history data in the dataset. To create true simulations of conflict probabilties for

each year, the conflict history variables need to be updated depending on the conflict state

the previous year to the one being estimated. To do this the mlogit is merely used to

estimate coefficients, and these are then handed on to a simulator program along with the

random effect variables from the multilevel model.

2Which is why the random intercepts are extracted from a multilevel model beforehand and converted
to variables.
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The β-coefficients of the multinomial are treated in the same way as the random inter-

cepts from the multilevel model. The actual coefficients used in the simulations are drawn

at random from a probability density function defined by the multinomial β-coefficients

and their standard errors. The simulator then uses the random and multinomial coeffi-

cients to estimate the transition probabilities to each conflict state based on the conflict

state in the prior year. The simulation process is described further in the next section.

Conflict level at t

None Minor Major

None 96.8 2.8 0.4

Conflict at t− 1 Minor 21 69.8 9.2

Major 9.3 20.1 70.6

Table 3.1: Transition probability matrix. The matrix shows the probabilities of a country tran-
sitioning from one state to another.

3.3 Simulation procedure

To estimate the out-of-sample predictive power I will utilize methods developed by Hegre

et al. (2013) to produce predictions. There are some modifications, most notably the repeat

over all units and the inclusion of random country effects which also necessitates an extra

layer of loops. The simulations are important as they allow conflict history variables to be

updated. Simply predicting each year individually would not be a realistic evaluation, as

the model would be ”cheating” by checking the dataset for the correct conflict status in

the previous year.

In practice, the simulation consists of a master Stata .do-file that calls a number of

subscripts and datasets, before data and parameters are fed to a C# library that runs the

actual simulation. The master .do-file determines several aspects of the simulation:

• The parameter files to be used, determining model specification.

• The data to be used.

• The number of simulations in each step.

• The years that are to be used for estimation and simulation.

Neighborhood variables are added to the data, estimated from the conflict data and from

a database of distances between countries. In the country-by-country loop, the countries are

dropped from the data set at the start of this script. This leaves the countries’ neighborhood

effects out of both the historical estimations as well as the simulated predictions. Conflict
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history variables are also calculated using the conflict variable before the data is passed to

the simulator.

The simulator first estimates a multilevel model from which the β-coefficients and stan-

dard errors of the individual country intercepts are extracted. The multinomial model is

then estimated, and the β-coefficients of all variables are extracted along with their stan-

dard errors. A realization of the random country effects is then drawn. These realizations

are stored as variables, one for minor conflict outcomes and one for major conflict out-

comes. A realization of the multinomial coefficients is then drawn. Using these and the

realization of the random coefficients, the predicted probabilities for the first year of sim-

ulation is calculated. These probabilities are then used to draw conflict outcomes for the

year in question, which are then used to update the conflict history variables for the next

year. Having updated the relevant variables, the simulator then proceeds to the next year,

repeating the process for each year of simulation.

The year-by-year process is then repeated, creating 50 sets of predicted outcomes for

each country in each year. The inner loop of 50 is then repeated with a new draw of

multinomial coefficients, creating 5 sets of 50. This is then repeated with new draws of

random country coefficients, creating a total of 5∗5∗50 = 1250 simulations. The outcomes

are then averaged, giving a single predicted probability for each country for each year.

When the first year is completed, the conflict history variables are updated for that year

before simulations start on the second year. This set will provide a benchmark. The process

is then repeated with each country dropped before neighborhood variables are created. This

results in 50 ∗ 5 ∗ 5 = 1250 simulations for for a control set, and 50 ∗ 5 ∗ 5 ∗ 161 = 202, 500

simulations for 161 country-drop sets.

The 161 data sets, each with predictions for 161 countries over 13 years, contain a total

of 336,973 predictions. The simulator calculates the probabilities of all conflict states. The

probabilities for minor and major conflicts are combined to create a variable that is the

probability of one or the other occurring, as opposed to the unit experiencing peace. This

variable is stored as an individual Stata .dta-file. The final output from the simulator is

thus 163 datasets of predicted conflict probabilities.

The process is shown in Figure 3.13 and the process is explained below:

1. Specify the statistical model.

2. Load dataset and drop country i.

3. Estimate the multilevel model and extract the random intercepts’ β-coefficients and

their standard errors.

3The flowchart is a general illustration of the simulator. The country drop (step two on the list below)
would occur before the random effect model is estimated.
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Estimate multinomial 
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logistic regression model

Read in model 

specification (predictand 

and predictors)

No

For k-1 values for dep. var. 

Draw transition 

outcomes

Update all 

endogenous 

variables

Repeat for all years

No
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Repetition 
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Repetition 
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Repetition 

m >= M
Yes

Start

End

Yes

Figure 3.1: Flowchart showing the simulation process. The whole simulation is repeated M
times for each country drop, in this case 162 iterations. The random effect loop is repeated for
R realizations of random effects, here 5 iterations. The inner loop is repeated for B draws of
multinomial coefficients, here 5 iterations. The transition outcomes are drawn 50 times for each
country year.

4. Estimate the multinomial model and extract the variables’ β-coefficients and standard

errors.

5. Draw a realization of the random country effects.

6. Draw a realization of the multinomial β-coefficients.

7. Start simulation in first year, for my simulations 2001.

8. Calculate the probabilities of transition between levels for all countries for the first

year based on the realized coefficients and the observed values for the predictor

variables.

9. Randomly draw whether a country experiences conflict based on the estimated prob-

abilities, and then update the explanatory variables that include conflict history and

neighboring conflict for the year in question.
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10. Repeat steps 8 and 9 for each year of the simulation period, in my case 2001 to 2013,

and record the simulated outcomes.

11. Repeat step 8 to 10 fifty times to even out the impact of individual draws.

12. Repeat steps 6 to 11 five times to even out the impact of individual realizations of

the multinomial logit coefficients.

13. Repeat steps 5 to 12 five times to even out the impact of country random effect

draws.

14. Repeat steps 2 to 13 for each country in the dataset, meaning 161 repetitions and

one control run where all countries are kept.

3.4 Evaluation

For evaluation, the data is transferred to R where it is cleaned of noise and sorted. The

ROC curve coordinates are calculated using the performance function found in the ROCR-

package (Sing et al., 2005). ROC AUC is calculated using the colAUC function found

in the caTools-package (Tuszynski, 2014). PR curve coordinates are calculated using the

precision.at.al.recall.levels-function of the PerfMeas-package (Valentini and Re, 2014), and

AUC is calculated using the prauc function in the same package.

Unit influence on coefficients is estimated by dropping each unit from the control set

before the multinomial coefficients are estimated. The difference between control and drop

is taken as the country’s influence on the coefficient estimate. Estimates are done in Stata,

using the mlogit-function and the dataset from the control simulation.

Stata .do-files and R-scripts are available online at http://tinyurl.com/ottdz3q, or

available on demand.

http://tinyurl.com/ottdz3q
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Chapter 4

PR outliers

This chapter presents the results of the simulations. I will use the evaluation methods

described in Chapter 2.2.2 to evaluate country influence, ranking countries by the difference

they make on the model’s overall predictive power when they are dropped from the data.

As the literature cited asserts that PR is better suited to the data than ROC, my focus

will be on PR with ROC included for comparison. I examine the distribution of ROC and

PR curves, as well as the ROC and PR AUC. Having identified a set of predictive outliers,

I will examine their characteristics. Their values on dependent or independent variables

may reveal commonalities that could reveal weaknesses in the model specification. The

outliers’ effects on the predicted probabilities of other countries reveals to what degree

their influence is indirect or caused simply by their own predicted probabilities.

Another point of interest is also the degree to which the measures agree on outliers. If

there is no agreement between the four measures, then the choice between them will have

an even greater impact on results.

This chapter and the next will be similar in structure. In this chapter I start by

performing a test of unit influence as measured by their effect on β-coefficients, and a

test of influence on predicted probabilities. These tests are presented in this chapter but

are referenced throughout both chapters. Apart from this, both chapters follow the same

structure. Before going into detail, I present summary results for the results as a whole.

The ROC and PR curves of each iteration is compared with that of a control model where

all countries are included. I then show how the countries affect the ROC AUC and PR

AUC. The countries with the greatest negative and positive effects are selected for further

examination. Their values on important predictors are compared to reveal any common

issues that could be the results of model misspecification. The predicted probabilities of

the outliers, taken from a control model, are then compared to their conflict histories.

This is to see whether they create problems because the model has to predict the country

itself. To examine how they potentially affect the model indirectly through other countries



44 PR outliers

I then examine their effects on specific variables. I also examine how they might affect their

neighbors through the neighborhood variables and their values. Countries whose effect on

predictive power can be explained early on will receive less attention as I progress. Before

continuing to the next chapter I give a brief summary of what I have found.

4.1 Coefficient effects

Before looking at the predictive outliers, I present the results of a more conventional test of

unit effect on coefficients. To test for this I extract the dataset that is used in my control

case after the estimation of the random effects. This makes it a test of what countries

you would find with a conventional test for outliers, rather than how much the coefficients

change with each iteration of my main loop. Each country is dropped before the model

is estimated, and the absolute differences for all coefficients are calculated by subtracting

the control case coefficient from the drop case. As the coefficients vary greatly in strength,

the effect on each should be weighted to account for this. A difference of 0.2 means much

more if the coefficient is 0.4 than if it is 2.2. By dividing the absolute difference with the

value of the coefficient I derive the relative differences. The possible range of the variables

also varies. Some are dichotomous, making their possible effect simple to deduce as it is

the same as the coefficient. Other variables are continuous, and their potential effect can

be anything from near zero to infinity. To account for this I also weigh by the variables

potential effect on probability estimates. This is done by multiplying the relative differences

with the maximum possible effect of each variable. This maximum effect is the maximum

absolute value for each variable found among the units in the data set multiplied by the

variable’s coefficient. Table 4.1 shows the top ten least and most influential countries. The

multinomial coefficients from the control case including all countries, and their minimum

and maximum values from the country drops, can be found in Table A.2.

There are few surprises in the least influential countries, which are mostly smaller

and wealthier countries. In the most influential we find countries with some, by theory,

contradictive attributes. The US has a high GDP and large population, two variables that

pull in opposite directions. China has a low GDP and a large population, but very little

conflict. The others are mostly conflict prone nations, with for example Laos having several

major conflict years. As the values here are somewhat arbitrary, setting a strict cutoff point

for what is deemed a more influential unit is unreasonable. Considering the distribution

of differences, any unit below 100 would be considered as without any noticeable effect.

Units below 400 have some effect, but not enough to stand out. From 400 to 1050 are

influential units, while those over 1050 stand out as very influential. These are approximate

values, and which limit to choose depends on how many countries you believe can count
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Rank Weighted diffs Country

1 2.19 Slovenia

2 3.10 Qatar

3 3.91 Norway

4 4.00 Bahrain

5 4.92 Luxembourg

6 5.40 New Zealand

7 5.52 Lithuania

8 6.02 Australia

9 6.13 Singapore

10 6.40 Bhutan

(a) Least influential.

Rank Weighted diffs Country

153 1366.15 China

154 1436.02 Nicaragua

155 1462.12 Indonesia

156 1501.44 Colombia

157 1577.27 Congo

158 1820.34 France

159 1889.56 DRC

160 2027.80 Lebanon

161 3645.44 Laos

162 5050.84 USA

(b) Most influential.

Table 4.1: The least and most influential countries by effect on coefficients.

as exceptional in a group of 162.

Measuring influence through effect on coefficient estimates is only one way of measuring

unit influence. As I am more interested in predictions than on the coefficients, it would

be more useful to examine country effect on the estimated probabilities of other units. By

comparing the predicted probabilities of conflict of all countries in the control with those in

country drop models I can calculate the effect the dropped country has on the remaining

countries’ probabilities. Table 4.2 shows the top and bottom ten countries by absolute

difference in country probabilities. Dividing these differences by number of units gives us

the average effect of the unit for each prediction. For example, Liberia has an average

effect of Diff
Countries∗Y ears

= 42.01
161∗13 = 0.02, or 2% on each unit’s predictions.

Comparing Tables 4.1 and 4.2 we find that while Norway, Bahrain and Luxembourg

are among those with the least effect on coefficient estimates, they are among the countries

with the greatest effect on predicted probability estimations. The complex structure of the

model may be why these countries could make such differences without there being visible

effects on coefficient estimates. To reiterate, the coefficient test above is not taken from the

simulation loop, but from looping a simple multinomial model over country drops using

the control case data from my simulations. This means that the differences in coefficients

of each country could be greater in the actual simulations than what is observed here.

Also unobserved is the effect each country has on the multilevel model and the extracted

random effects of each country. Adding to this is the effect on neighborhood variables, not

through coefficients but through presence in a neighborhood.

The full list of countries and their effect on coefficients can be found in Table A.3, while

the full list of effect on predicted probabilities can be found in Table A.4.
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Rank Country Difference

1 Bosnia-Herzegovina 39.18

2 Mauritius 40.26

3 Gabon 41.25

4 Azerbaijan 41.71

5 Liberia 42.01

6 Slovenia 42.15

7 Netherlands 42.22

8 Madagascar 42.35

9 Niger 42.47

10 Fiji 42.49

(a) Least influential.

Rank Country Difference

152 El Salvador 60.65

153 Sierra Leone 63.00

154 Turkey 65.59

155 Finland 69.60

156 Kenya 70.32

157 UAE 70.80

158 Luxembourg 73.68

159 Bahrain 74.02

160 Armenia 78.87

161 Norway 86.93

(b) Most influential.

Table 4.2: The least and most influential countries by effect on coefficients.

4.2 Outlier scores and groups

A quick look at the bigger picture is necessary before going into details. The results

are divided in 4 groups, divided by period and evaluation method. Hegre et al. (2013)

argue that models with history variables tend to be unfairly rewarded for predicting a

continuation of the status quo. They therefore calculate evaluations both from 2001 to

2009, and also on only the last three years of the evaluation period, from 2007 to 2009.

By leaving a gap between the last estimation year and the first evaluation year, the first

”free” years are removed from the process. The model has to rely on its own estimation

of the country’s evolution over the gap period to give it a correct starting point for the

evaluation period. Dividing the data like this is highly sensitive to the conflict history in

the gap period. If a peaceful country has a short period of conflict that coincides with this

gap then the gap goes from handicap to performance boost. It is however likely that the

gap will have the expected effect for most countries. To test whether it is a reasonable

assumption that countries perform better on the whole period, I calculate results using

both the whole and the latter part of the evaluation period.

To get a visual impression of the results, I plot the curves of each iteration of the

country drop loop starting with ROC. Figure 4.1 shows the distribution of ROC curves

for all country drop models and the control. Figure 4.1a shows the ROC curves for the

whole 2001-2013 period, while Figure 4.1b shows the 2006-2013 period. The higher curves

are those of countries who affect the model adversely, resulting in a boost to performance

when they are dropped. Inversely, the lower curves are units whose removal reduce the

accuracy. The variations are not extreme, but there are substantial differences between
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the control and the best and worst performing iterations. Considering that the difference

is merely the removal of one unit, not a respecification of the model, large changes are not

to be expected. By eyeballing the curves, there appears to be change of a magnitude that

is interesting to examine further.

A few curves appear as distinct outliers in the top left part of the plot. Finland, Norway

and Bahrain fall below the others by a small margin in both time periods. Among those

that appear above the others briefly are Cambodia and Thailand. These curves are not

however consistently outside the main cluster, so picking outliers from this plot is difficult.
1 The variation between countries appears to be slightly greater when the evaluation period

is limited to 2006-2013, while the control appears to be very similar.

Having established that ROC differences are small but great enough for analysis, I

move on to PR. Figure 4.2a shows the distribution of PR curves for all iterations. It

is immediately clear that there is a greater variation than with the ROC curves. This

supports the claim that PR AUC is the better metric for assessing models using this data.

As with the ROC curves, the variation among PR curves appears to increase in the limited

period compared to the full. There are some curves that appear to stand out, but the

cluster is still too thick to reliably discern outliers.

To more easily differentiate between the models I calculate the AUC of both ROC and

PR curves. The control model’s AUC is subtracted from the AUC of the country drop

models. As for the curves, positive values indicate that removing the country leads to an

increase in predictive power, and that the countries are problematic to include. Negative

values indicate a decrease in predictive power, and that the country is supportive of the

model. Table 4.3 shows the ten countries whose drop result in the greatest increase in

AUC. In other words these are the countries that are the most detrimental to the model’s

predictive power. The table contains the 10 worst for both measures and both periods.

Full tables of all country effects on PR AUC can be found in Tables A.5 and A.6. To avoid

cluttering and an overwhelming amount of tables I focus on PR and on the countries with

negative effects on model accuracy.

Figure 4.3 shows the full sets for both periods and both measures in a scatter plot form.

The variation in PR is somewhat greater than that of ROC, as shown by the curves. For

the whole period the PR-differences span from -0.063 to 0.023, and ROC spans -0.015 to

0.004. The variation increases for both PR and ROC when moving to the limited evaluation

period. Here the PR AUC difference spans from -0.084 to 0.018 and from -0.017 to 0.005 for

ROC. Both measures are reduced for the control case when limiting the period, supporting

the handicap theory.

1The curves in the plot are not marked, but by following the URL in the caption you will find an
interactive plot. In this you can zoom in on parts of the curve, and identify individual curves by hovering
over them. Links to online plots are provided for all plots where this function is of use.
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Country ROC AUC

1 China* 0.004

2 Nigeria* 0.003

3 Morocco 0.003

4 Cote D’Ivoire 0.003

5 Malaysia* 0.003

6 Spain 0.003

7 Syria* 0.003

8 DRC* 0.003

9 Sierra Leone 0.003

10 Hungary 0.002

(a) ROC 2001-2013 - Control: .954

Country ROC AUC

1 Jordan 0.005

2 Malaysia* 0.005

3 China* 0.005

4 Syria* 0.005

5 DRC* 0.004

6 Nigeria* 0.004

7 Libya 0.004

8 Denmark 0.004

9 Angola 0.004

10 Venezuela 0.004

(b) ROC 2006-2013 - Control: .944

Country PR AUC

1 Djibouti* 0.023

2 Spain* 0.016

3 Angola* 0.011

4 Qatar 0.011

5 Macedonia 0.010

6 DRC* 0.010

7 Syria 0.008

8 Slovenia 0.008

9 Uzbekistan 0.008

10 China 0.007

(c) PR 2001-2013 - Control: .820

Country PR AUC

1 Angola* 0.018

2 Tanzania 0.008

3 Djibouti* 0.007

4 Austria 0.005

5 Spain* 0.005

6 DRC* 0.004

7 Cyprus 0.004

8 Mali 0.003

9 Canada 0.003

10 Lithuania 0.001

(d) PR 2006-2013 - Control: .781

Table 4.3: ROC and PR AUC differences from control. Asterixes mark those that appear in both
periods.

The countries in the upper right quadrants of Figure 4.3a and 4.3b are those that have

a negative effect on both ROC and PR AUC when dropped. Conversely, the lower left

quadrant contains those that have a positive effect on both when dropped. The upper

left contains those with a positive effect on PR but negative on ROC, while the lower

right contains those that have a positive effect on ROC but negative on PR. Some of the

outliers are shared, but we also see a great deal of outliers on one axis that sits within

the main cluster on the other. Only a few countries appear distinctly in the top right,

whereas the lower left is more scattered and shows several countries outside the tighter

main cluster. The center of the cluster is somewhat into the negative side the first period



4.2 Outlier scores and groups 49

for both measures.

Comparing the two periods reveals that limiting the evaluation period has indeed in-

creased variation, although the difference is much more distinct for PR. For PR AUC the

cluster shifts towards negative values, with only a few units left on the positive side. For

ROC AUC the opposite appears to happen, with more units moving up into positive val-

ues. While there appears to be a relationship between ROC and PR, the two measures do

not share all the same outliers. China, Syria, the DRC, Spain and Angola are some of the

countries consistently in positive space, strongly indicating a poor fit with the model.

On the negative side of the scale, the two measures appear to agree to a greater ex-

tent. Turkey, Bahrain, Luxembourg, the Philippines and Finland being among those most

frequently observed in extreme positions.

Limiting the evaluation period has also lead to a decrease in the control model AUC.

The reduction in ROC AUC is small, from .954 to .944, but the PR AUC has a more

drastic decrease from .82 to .781.

Having established a list of countries of interest, I will now examine these in greater

detail in an attempt to uncover why they deviate. To reiterate, the countries from Tables

4.3c and 4.3d are those countries whose removal leads to an increase in overall model

accuracy. These are collected in the first column of Table 4.4, and are from here on

referred to as the destructive countries. When the two periods are combined there are a

total of 16 destructive countries. I also separate those that have the most positive effect by

the same rule. These are countries that appear among the 10 with the most negative effect

on PR AUC when removed for either period, from here on referred to as the reinforcing

countries. A list of 15 reinforcing countries is found in the second column of Table 4.4.

Comparing this list to the results of the coefficient influence test, we find that several

countries from Table 4.4 appear among those that have the greatest effect on coefficients.

On the destructive side, the DRC, Angola, Syria and China make an absolute weighted

relative difference of over 400 to the coefficients. This means that the remaining twelve

would most likely not have been found to be influential units by conventional methods. The

DRC and China are well above 1000, making them among the most influential by effect

on coefficients. It is also clear that coefficient influence does not equal a negative effect on

predictive power; from the reinforcing column we find Indonesia at almost 1500, making

it the eighth most influential country by effect on coefficients. Cambodia and Sudan are

also far up the list, while Yemen has levels approaching interesting. This leaves eight more

countries in the reinforcing group that would not be picked up by the coefficient test, for

a total of twenty for both groups combined.
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Destructive Reinforcing

1 DRC Finland

2 Angola Bahrain

3 Spain Turkey

4 Slovenia Ethiopia

5 Syria Indonesia

6 China Luxembourg

7 Djibouti UAE

8 Qatar Sudan

9 Macedonia Kyrgyzstan

10 Uzbekistan Yemen

11 Tanzania Uganda

12 Lithuania Mexico

13 Austria Cambodia

14 Cyprus Zambia

15 Canada UK

16 Mali -

Table 4.4: The outlier groups by effect on model accuracy.

It would be logical to expect to find countries from the reinforcing group among those

with the least effect on coefficients; countries who adhere perfectly to the remaining groups

coefficients should increase overall predictive power by adding well predicted results. It is

therefore interesting to see that the country with the least effect on coefficients is Slovenia,

followed closely by Lithuania and Canada. These are all in the destructive group, meaning

they have a strong negative influence on the model’s predictive power despite not influenc-

ing coefficient estimates. Reassuringly there is also some agreement between the tests on

this end, with Bahrain, Finland, Luxembourg, the UAE, Kyrgyzstan and Zambia having

minimal effect on coefficients and a positive effect on model predictive power.

Continuing to the effect on individual predicted probabilities in Table A.4, it becomes

clear that Slovenia’s results are hard to explain. The country had the smallest coefficient

effect, and also has the sixth smallest effect on predicted probabilities. Austria, Lithuania

and Canada are also ranked very far down by effect on probabilities while having negligible

effects on the coefficients. On the other hand we also find that the UAE, Luxembourg,

Bahrain and Finland have some of the greatest effects on probabilities. These countries had

very low effects on coefficients, yet somehow affect other countries’ predicted probabilities

almost twice as much as India, which had a great effect on coefficients.

The three measures, effect on coefficients, effect on predicted probabilities, and effect on
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PR AUC, appear to have some correlation but also display a great degree of disagreement.

The disagreement is likely to be amplified by the complex structure of the research de-

sign. The random effects and numerous neighborhood variables are likely to create various

dynamics that are hard to predict, and which are not necessarily logical at first glance.

Going forward I will compare descriptive statistics to look for any differences between

outliers on either side and the remaining group of countries. I go on to examine whether

the countries are outliers simply because their own predicted probabilities in the control

simulation do not match observations. I then examine how the countries affect others

by looking at their effect on predicted probabilities, effect on coefficients and how they

affect their neighborhoods. I will attempt to explain any country whose effect cannot be

explained by either its own predicted probabilities or effect on coefficients by examining its

neighborhood. If there is an effect on others that cannot be accounted for through these

channels, a last possible way the countries could effect others is the effect that a country

has on the multilevel model that the random effects are taken from. This effect is harder

to track, as it isn’t enough to examine the difference in the two random effect variables’

coefficients. Each country is also given values on the variables, and tracking the change in

these values for 161 countries over 161 models and for two variables is an expansive task.

As the list of countries is large and there are multiple pathways, I will not be going into

the full details of each. Countries that can be explained by the first step will receive less

attention in the next.

4.3 Group attributes

In this section I will go through some basic descriptive statistics, comparing destructive

and reinforcing outliers with the other countries in the dataset. There are 16 countries in

the destructive group, 15 in the reinforcing group, and 146 in the remaining group. Tables

providing descriptive statistics for some variables are provided in Appendix A.4.2. The

outliers have an average of 46.6 years of data, compared with 56 for reinforcing and 53.6

years for the others. The destructives are slightly younger nations, with the average time

in independence being 16 years shorter than the other groups. The destructive outliers

have roughly the same proportion of major conflicts as the main group, 5% compared to

4%. They do however have fewer minor conflicts. 7% of the destructive country units

are minor conflicts compared to 10% in the remaining countries. The reinforcing outliers

are clearly more conflict prone, with 20% of the units in minor conflict and 11% in major

conflict.

The destructive outliers have shorter peaceful periods than the other groups. As they

also experience less conflict, they would appear to have their conflict years interspersed with
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peace years, while the main group has longer continuous periods of peace and conflict. The

reinforcing countries have even shorter periods of peace, but this could be explained by the

much heavier presence of conflict.

Population and GDP per capita characteristics for the groups appear similar. The

populations of the destructive outliers are both approximately 1 million greater on average

than the main group, with the reinforcing countries 2.4 million over this. The destructives

are slightly wealthier on average, while the reinforcing countries are poorer than the main

group by a small margin. The neighborhood variable ranks the reinforcing group as the

wealthiest, closely followed by the destructives and then the main group. The differences

in logged numbers are miniscule, which means they have little impact on calculations of

predicted probabilities.

The Polity variables are hard to interpret from the descriptives. The destructive outliers

are slightly more democratic on average, and have lower average levels of anocracy than

the other groups. The reinforcing countries appear similar to the main group, yet there

are some differences. The top line of Figure ?? shows histograms of the different groups’

distributions on the Polity variable. The destructive countries appear to have no real

pattern, although there is a slightly denser area around -5 on the scale. The reinforcing

group has similar grouping tendencies around very weak autocratic values, but there are

also groups at either end of the scale. The reinforcing group is somewhat concentrated at

a point slightly left of the middle, but also has countries at either extreme. The lack of a

clear pattern in the destructive group and the low N of both outlier groups makes it hard

to conclude whether there is a connection between the Polity variable and effect on model

performance. The reinforcing group hints at the model being better at handling either

extremes or slightly autocratic anocracies, but as the destructive group has similarities

such a conclusion is tenuous.

Other variables, such as ncts0, ltsnc and nb TSRC 5 shows miniscule differences, if any,

between groups. This is an indication that they are behaving as theoretically expected. The

most interesting difference between groups is in conflict occurrence and length of peaceful

periods. The destructive countries are more peaceful, with conflicts spread out over time.

The reinforcing units are conflict prone with even shorter peaceful periods. The conflict

history must be examined in more detail to uncover whether this is due to a problem with

the model or with the conflict definition.

4.4 Predicted and observed values

To get a more intuitive understanding of the conflict history, we must look at the data

in another way. Figure 4.4 gives a more intuitive view of the conflict occurrences than
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summary tables. We can see that seven countries, Canada, Cyprus, Austria, Tanzania,

Qatar, Jordan and Slovenia are without any conflict. The rest vary from a single conflict,

as in Macedonia, to nearly only conflict, as in Angola. As expected, the countries have

short periods of conflict interrupting mostly peaceful timelines. Angola and the DRC

are exceptions, with especially Angola seeing high levels of conflict. Already it is clear

that some countries are poorly predicted due to the way I have delimited estimation and

evaluation periods. Two years into the evaluation period, Angola ends its 27 year conflict

streak and becomes more peaceful. The model will need time to adapt to such a change,

and is hampered further by the conflict recurring every few years.

The majority of conflicts occur in the estimation period, with Mali being the only

country to experience more conflict as of 2001 than before. Mali is mostly peaceful, but

the limited evaluation period sees more conflict than peace, putting Mali in an opposite

position of Angola. We can also see that for this data, having a gap between estimation

and evaluation could possibly give the model an advantage rather than a disadvantage.

Apart from China, each country has a more uniform distribution after 2006. For example,

should the model predict only peace for Macedonia then the limited set would be perfectly

predicted, as opposed to the full period that contains a conflict. A model predicting only

conflict for Mali could also possibly benefit from using the limited set, as the removal of

five peace years would lead to a great reduction in false positives. Though, as we shall soon

see, Mali is predicted as continued peace, and limiting the evaluation period only damages

its results further.

The reinforcing group is presented in Figure 4.5. As expected we see much more conflict,

but there are also perfectly peaceful countries. Uganda, Sudan, Ethiopia and Turkey are

all almost entirely conflict stricken after 1980. The UK, Cambodia and Indonesia also have

long periods of conflict, but these cease towards the end of the period. Mexico stands

out as it has conflict, but very little. Yemen also has less than the other conflict stricken

countries in the group, but its conflicts are most often grouped.

To see whether the countries’ effect on the model’s total predictive accuracy is due

to the model having to predict the country’s own outcomes, I examine the results of the

control model. If the predicted probabilities of a country do not match observations, then

it will have a negative effect simply due to the model having to predict their conflict

histories. Figures 4.6, 4.7 and 4.8 show the predicted and observed values for Uzbekistan,

Angola, Sierra Leone, the DRC, Djibouti, Mali, Syria, China, Macedonia, Tanzania, Sudan,

Ethiopia, Uganda and Yemen. The remaining countries have no observed conflicts and have

low predicted probabilities. Austria, Canada, Qatar and Slovenia vary between perfect

zeroes and 0.6% predicted probability. Cyprus barely exceeds 1% at its maximum, while

Spain and Lithuania vary between 1% and 2%. Jordan, with 1% to 3.3%, is the most at
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Figure 4.4: Conflicts over time for the destructive group. Blue dots represent peace, yellow
diamonds are minor conflicts and the red squares are major conflicts. The first vertical line
marks the cut point between the estimation and evaluation period, and the second line marks the
start of the limited evaluation period.

risk. The average predicted probability for all units in the control set is 15.1% for the full

period and 14.5% for the limited period.

The first three countries of Figure 4.6 are the destructive countries with the most ex-

treme predicted probabilities. Uzbekistan has a single minor conflict, while the DRC and

Angola have several minor conflicts and one major each. Uzbekistan’s high starting values

are related to the two consecutive conflicts prior to the evaluation period. The neighboring

conflict variable is also active for all years except 2002. A high population and middling

GDP also contributes to high estimates, which go down over time as conflict history vari-

ables change from recent conflict to lasting peace. Just as the predicted values fall, a minor
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Figure 4.5: Conflicts over time for the reinforcing group. Blue dots represent peace, yellow
diamonds are minor conflicts and the red squares are major conflicts. The first vertical line
marks the cut point between the estimation and evaluation period, and the second line marks the
start of the limited evaluation period.

conflict occurs, after which the curve start to flatten. Uzbekistan was a predictive outlier

when evaluating on the whole period, however the effect on model precision is reversed

when using the limited period. As we can see from Figure 4.6a, there are no conflicts after

2006. The predicted probabilities are lower in this period, but they remain at a level above

the global average.

Angola is the third most destructive country by effect on PR AUC using the entire

evaluation period, and the third most destructive using the limited period. Figure 4.6b

shows the predicted probabilities dropping from over 90% to 60% over the full period.

The constant drop is due to the steady increase in GDP and neighborhood GDP, which
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counteracts the increase in population and time in independence. The Polity interactions

and neighboring conflicts weaken the impact of the conflict variables, which is why there

are no spikes after conflicts. The recurring conflicts keeps the time in peace variable

from building up, which is why the probabilities remain high. These rapid transitions

are problematic, but may also be the result of the chosen conflict threshold. A closer

look reveals that there were 20 battle related deaths in 2003, meaning it is coded as peace

despite there being a clear case for arguing that the conflict was merely in a lull in this year2.

There are also a small number of battle deaths reported for several of the other peace years,

while the conflict in 2007 is at exactly 25 battle related deaths. Using a country-year based

dichotomous conflict variable based only in battle related deaths becomes problematic in

these circumstances, as the model has no chance of reacting to a situation that is moving

up and down at the threshold.

Two of the five conflicts remain when limiting the evaluation period, along with six

peace years. Angola had experienced only conflict prior to the evaluation period, and

the model continues to predict high probabilities in the evaluation period. This gives

the model an advantage when using the full period, as three of the first five years are

conflicts. Skipping these years leaves the model predicting more conflict for a period that

is considerably more peaceful than previously. The average predicted probability to average

conflict occurrence ratio is much higher in the limited period. For the whole period, the

average predicted probability is 75% and occurrence is 38%. This equals a .75
5/3

= 2 ratio

of predicted conflicts to observed conflicts. For the limited period the predictions are 66%

and the occurrence 25%, resulting in a ratio of .66
2/8

= 2.6. This means that the model

predicts 2 conflicts in Angola for every observed conflict using the whole set, and 2.6 using

the limited set.

The Democratic Republic of Congo displays much the same characteristics as Angola.

It has five years of continuous conflict before the evaluation period, and has very high

predicted probabilities that are reduced over time. Six of the thirteen years are conflict

years, the most of all the outliers. There is little economic growth to account for the fall in

probabilities, but the population growth is also very low. As with Angola, the neighboring

conflict weakens the impact of minor conflicts.

Djibouti does not have the same extreme predicted values as the previous countries. The

first year is very high, followed by a sharp drop that stabilizes at around 20%. The initial

high values are the result of a conflict prior to the evaluation period, and the sheer drop is

attributed to the sharp rise in the time since conflict variable and its GDP interaction.

Mali has five conflict years but low predicted probabilities. Mali has two conflicts in the

estimation period, but these are separated from both each other and the evaluation period

2All battle death numbers from country-years coded as peace are taken from the UCDP GED (Sundberg
et al., 2010)



60 PR outliers

by several years. There is no increase in predicted probability leading up to the conflict

in 2007, and only after three years of conflict is there a marked increase in predicted risk.

This hints at a problem with the lagging of variables which will be explored further later.

The constant presence of neighboring conflict reduces the impact of the minor conflicts,

and the probabilities remain at a low level even when the conflict variables take effect.

Being a small and poor country one would expect much higher probabilities, especially

considering the neighboring conflict. The time since previous conflict variable would keep

the estimations low, but the increase after the first domestic conflict occurrence should be

greater than what we observe.

Syria experiences an almost flat probability curve over the period, with a long period

of peace being interrupted by a sharp conflict escalation in the last three years. The

model does not react to the increased conflict level even after two conflict years.3 Being a

moderately strong autocracy with a long period of peace keeps the probabilities very low,

but the outbreak of conflict should give a marked increase. Syrias conflicts are all in the

2006-2013 period, yet Syria is an outlier when using the whole period but not the limited.

This is somewhat counter-intuitive, as the peace years with a low predicted probability

should help increase the country’s overall predictive power.

Figure 4.7 shows the remaining destructive outliers. China has a completely flat risk

curve, with single occurrence mid-period. The single conflict does not lead to a surge in

predicted probabilities, despite the resetting of a very high value on the time since conflict

variable. The random effect variables, coupled with strong economic growth, appear to

keep the probabilities low despite a high population.

Macedonia also has low probabilities for the whole period, with a small increase for 2004,

and a single experienced conflict in the first year. The conflict results in a small spike,

albeit too late, but the level quickly returns to normal as the time since peace variables

return to positive values. Tanzania has no observed conflict, but sees a steady rise in

predicted probabilities through the period. This is the result of growth in the population,

neighborhood time in conflict, and time since independence somehow outmatching the time

since conflict. The baseline is above the minimum due to a high population and low GDP

combined with an anocratic Polity score.

The remaining countries are among the countries on the other end of the scale when

it comes to effect on model PR AUC. If they are dropped from the model, then the PR

AUC will decrease, meaning their presence strengthens the model. Cambodia has predicted

values that increase over time despite there being no conflict. This could be because of

neighboring conflict, or changes in other variables. The predicted values exceed those of

Tanzania, and yet Cambodia has a positive effect on model PR AUC while Tanzania has a

3This increases the suspicion that the simulator does not handle the lagging of conflict history properly.
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negative effect. Indonesia has a very high predicted risk for the first years, which then drops

rapidly towards low values. This coincides with conflicts occurring the first five years, with

peace for the rest of the period. This apparently quick reaction to a halt in conflict, with

an almost perfect separation of conflict and peace by predicted probabilities, is probably as

good as a structural model can get. The sudden drop is helped by Indonesia’s moderately

democratic Polity score, which amplifies the effect of the conflict history variables. The

predicted probabilities respond very well to the change in observed conflict, and correcting

for an assumed erroneous lag the results become even better.

Turkey has minor conflict occurrences in every year of the evaluation period. The

predicted probabilities are high, but go down over the period. They are kept up by the

combination of conflict and Polity, as well as Turkey’s random effects. A curiousity is that

Turkey’s effect on model PR AUC increases in the limited period, where predictions are

worse. While high, the probabilities drop below 70% by the end of the period. This puts

them below many peace units in other countries examined here. Uganda follows the same

pattern, and both countries appear to see little change over the period apart from a slow

growth in both populations and GDP. Uganda especially fits the model by being poor and

conflict stricken in a poor and conflict stricken neighborhood.

Sudan and Ethiopia have the same amount of conflict as Turkey, and also start at very

high levels of predictied conflict probability. For them the predictions remain above 80%

for the entire period. Ethiopia and Sudan are also in the same position as Uganda when

it comes to GDP, but they have even greater populations.

Yemen is a country where the model appears to predict conflict before its first occur-

rence. The predicted probabilities rise steadily before the outbreak, reaching over 30% at

the first conflict unit. Curiously there is no marked increase in probabilities after conflict

onset. Yemen has a rich neighborhood and stable period that keeps the probabilities down

leading up to the evaluation period, but the underlying poverty, high population for a

country of its size and anocratic regime makes it conflict prone. This is reflected in the

random effects that also pull Yemen towards higher probabilities.

The countries from Figure 4.6 have predictions that alone could account for the countries

being outliers. Whether the same is true for the countries in Figure 4.7 is not as certain.

While Syria has three unpredicted conflicts, the remaining three are more precise. China

and Macedonia miss a single conflict each, and Tanzania has a relatively low level of

predicted probabilty and no conflict. These are more likely to indirectly affect the predictive

power, as their direct effects appear to be small. The remaining outliers with a negative

effect on PR AUC have no experienced or predicted conflict, which should leave them

predicting perfectly. Any effect on AUC should therefore be through indirect effect on

other countries’ predictions. The two positive countries shown here are more uncertain.
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By predicted results alone, Cambodia should be much more destructive than Tanzania,

yet it is on the opposite end of the scale. Indonesia appears to be the model country, with

predictions rapidly changing in a pattern that follows conflict occurrence. Compared with

the negative outliers Indonesia is clearly better at distinguishing conflict years from peace.

There are several years with very poor predictions after the transition to peace, but the

predictions adapt relatively fast compared with Sierra Leone. The other countries that

have a great positive effect on model PR are countries with low predicted probabilities

that experience no conflict, and countries with very high probabilities that experience only

conflict, or mostly conflict with single peace years. The latter have the same error rate as

China or Macedonia, even with less extreme values in the correct direction. This shows that

the PR AUC rewards correct predictions of positive outcomes more than correct negative

outcomes.

The observed conflict pattern found in Angola, transitioning back and forth between

conflict and peace, is problematic for the model to adapt to. Slow moving structural

variables have no way of picking up such fluctuations unless the war is of a scale that it

affects the GDP on a major scale. While this is true, it is more reasonable to look at the

dependent variable in this case. Are the fluctuations in our coding of conflict based on

sound reasoning? Looking more closely at the data, we find that the two coded conflicts in

2007 and 2009 both are recorded at 25 battle deaths, exactly the threshold to be counted

as conflict. 2003 is coded as a peace year, but there are 21 recorded battle deaths, as well

as numerous victims of one sided political violence that do not count towards the conflict

status. As the same groups are involved, it is only our choice of time unit that creates

breaks in conflict or peace. This is an underlying problem that arises when using a binary

definition of conflict with a strict threshold; any country transitioning from one side to the

other will cause issues if the transition is gradual.
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(a) Sudan (b) Ethiopia

(c) Uganda (d) Yemen

Figure 4.8: Predicted conflict probabilities versus observed conflict over evaluation period.

4.5 Indirect effects through coefficient effects

A large portion of the indirect effect of units is likely to be through their effect on the

model’s coefficients. The effect of different variables vary depending on the units involved

in the model’s estimation, and this in turn affects the predicted probabilities of all units

involved. As we have seen previously, many of the predictive outliers have very little effect

on coefficients. A.3 Figures B.1 and B.2 shows the distributions of country effects on key

variables with outliers on individual variables highlighted. Recurring countries found in

many of the figures are Iraq, Indonesia, the USA, France and Pakistan. This is in line with

the previous test of effect on coefficients.

From the destructive outlier group, only China, Angola, Syria and the DRC are among
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those that clearly disturb the model. China is seen to reduce the effects of conflict history,

as well as increasing the effect of Polity and reducing that of squared Polity. Syria has less

influence, but the effects are on the important conflict history variables. Angola causes

large increases in many conflict variables as well as the neighboring regime change variable.

It also drastically reduces the effect of GDP.

Figures B.3 and B.4 highlight the predictive outliers, and we see that Spain is also

outside the main group on several variables. Spain has a positive effect on the neighboring

conflict variable, nc, and the related ncts0 variable. This is a very common variable, and

would explain why Spain has a large effect on PR despite not having a large effect on

coefficients in total. Spain also negatively effects the squared Polity variable, a powerful

and theoretically crucial variable.

The other destructive countries are however not of great influence on any variable.

Tanzania and Sierra Leone are seen as distinct from the group, but not by a noteworthy

margin. The remaining predictive outliers are in the main core of units, with weak effects.

This, as well as the presence of a myriad of extreme outliers that are not on the list of

predictive outliers, indicates that coefficients are not as important to the effect on other

units as first expected.

Further, there is no uniformity among the destructive countries when it comes to effect

on the variables. While the DRC and China have some similarities, they are often on

opposite ends. Only on c2, the effect of a major conflict the previous year, does there

appear to be a uniformly negative effect.

Indonesia and Cambodia are among the countries that have great effects on coefficients.

These show that units affecting the coefficients is not the same as being detrimental to

predictive power. Indonesia has an effect on a great deal of coefficients, with the strongest

being on several conflict history variables, GDP, and the neighborhood regime change

variables. Indonesias long conflict stretches means it increases the power of conflict in the

previous year, which could create better results overall as we have seen that the increase

in probabilities in response to a conflict is often too small. Cambodia affects the Polity

and squared Polity variables the most. While the unaltered Polity variable has a relatively

weak effect, the squared variable has five times its potential for major conflict outcomes

and ten times the potential for minor conflicts. While Cambodia has a large effect on

coefficients overall, it is likely that it is this effect on the Polity variables that is crucial

in making it an influential unit. Yemen is also clearly visible as having a large effect on

conflict history variables, reducing the effect of c1, c2 and nc on minor conflicts. It also

affects ncts0 negatively for both outcomes. This is somewhat hard to understand when

looking at Yemen’s conflict history, as it often has minor conflicts following both minor

and major conflicts. The effect on ltsc0 is easier, as Yemen does have longer periods of
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peace between conflict instances.

4.6 Indirect effects through neighborhoods

This leaves several countries that have no effect on any coefficients, with perfect predictions,

that still have strong negative effects on the model’s overall PR AUC. Austria and Canada

for example both appear in the top ten list for the limited period. I will now examine

whether these countries have any effect on their neighbors by influencing their neighborhood

variables’ values. There are only two neighborhood variables in the model, and these cover

GDP and regime change. The regime change variable records any regime change occurring

in the neighborhood the past five years, and any country without a regime change will not

change the neighbors if removed. The GDP variable averages the neighboring countries

logged GDP per capita.

The removal of Canada would for example lead to a sharp reduction in the US’ value

on the neighborhood GDP variable, as Mexico with its much lower GDP would be the only

remaining neighbor. Comparing the predicted probabilities of the US from the control to

the Canada drop reveals that removing Canada has no clear effect. Some years see an

increase, including 2001, when the US experienced a conflict. Other years see a reduction

in predicted probability when Canada is not present. In conclusion it would appear that

Canada has no concrete effect on predictions as a neighbor.

Lithuania is very similar to Estonia and Latvia, and yet only Lithuania appears to

have a negative effect on PR. There is no apparent reason why Lithuania should stand

out. All three share borders with Russia, and no other countries with conflict. All three

are perfectly predicted, peaceful countries with no strong effects on coefficients. Its border

with Poland cannot account for the great differences, and since it should have no greater

effect on Russia than its Baltic neighbors it is hard to explain Lithuania’s effect on PR

through neighborhood effects.

Austria is surrounded by perfectly predicted and peaceful neighbors, and while Austria

is richer than some of its neighbors, they all have at least three other neighbors. This

dilutes the small negative effect that Austria might have. Austria has not had any regime

changes in the evaluation period, leaving this variable unchanged in its neighbor if Austria is

removed. As all of Austria’s neighbors are peaceful, a negative effect on neighbors predictive

precision would have to be through a negative effect on the neighborhood GDP per capita.

These would increase the neighbors predicted probabilities, making the predictions less

accurate. However, none of Austria’s neighbors has a neighborhood that is noticeably

wealthier if Austria is removed.

Cyprus is an island, and as such has no neighbors that it can affect. Qatar only borders
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Saudi Arabia, and has an extreme GDP. This effect is diluted, as Saudi Arabia has eight

neighboring states. As Saudi Arabia also has perfect predictions for the whole period, it

is unlikely that neighborhood effects can account for Qatar being destructive.

The effect of countries on their neighborhood gets more complicated with many neigh-

bors and differing conflict levels among these. Angola is richer by far than most countries

in Central Africa, and as such it has a positive effect on the neighborhood GDP variable of

its neighbors. One neighbor is the DRC, with a high conflict level. The average predicted

probability of the DRC is increased by 2.5% when Angola is removed, which could account

for some of the difference in PR AUC. Angola also has a negative effect on other neighbors

that have no conflict, and as such its removal would also be destructive for the model’s PR

AUC. Attempting to calculate the exact effect on the model’s PR or ROC AUC caused by

neighborhood variables in this fashion would be an extremely intricate task.

4.7 Summary

There are few common denominators for the destructive outlier group. Disregarding An-

gola, the DRC and the perfectly predicted countries, we find that one repeating feature

is short conflict spells interrupted by short peaceful periods. This is hard for the model

to quickly adapt to, and results in poor precision. The first years of conflict are often

completely unexpected, and when they fail to reappear the next year there is the added

penalty of the conflict history variables giving increased risk predictions for a peace year.

Angola and the DRC could be outliers merely because of their predictions, which contain

several misses due to the patchy conflict history in the evaluation period. This is a symptom

of their conflicts being coded as peace when they could arguably be described as dormant.

As I have also pointed out there is also a problem with the casualty numbers being near the

threshold in the case of Angola. The two also have strong effects on a number of variables.

Angola is reasonably wealthy by regional standards, something that should have reduced

conflict levels.

For Mali, the model fails to respond quickly and forcefully to the onset of conflict. The

first year comes as a surprise, but the conflict variables are not strong enough to create

the needed increase in probabilities to predict the following years of conflict. A quicker

response from the conflict history variables could have helped, but the problem lies more

with the power of the effect than the response time. The predictions for Syria do not

respond at all to conflict, although this is probably due to a faulty lag. It is still reasonable

to assume that the effect of the conflict variables would, as in Mali, be to weak to predict

the continuing conflict in Syria.

Uzbekistan appears to be predicted rather well, with a steep downward curve after
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conflicts just prior to the evaluation period. There are however still many false positive

years, which is probably the reason behind its detrimental effect on the model.

China is very well predicted apart from a single conflict year. China is a special case,

having an enormous population and low GDP, yet barely any conflict. The random effects

push China to a reasonable conflict probability level despite its poor starting point, but

China’s effect on several variables gives it influence over other units’ predictions, and this

influence manifests itself negatively.

Spain is present because of its conflict history, where all its conflict take place after

Spain has transitioned to an almost perfect democracy. This causes Spain to affect the

Polity variables enough to cause disturbances in other countries.

Djibouti and Tanzania could be explained by their high probabilities and lack of conflict.

Djibouti has had a conflict history that the model spends the first years of the conflict

period adapting to. This brings Djibouti down to a lower probability level, but it still stays

at a suspiciously high level for a country without conflict. This is likely due to Djibouti

being in a very poor and conflict stricken neighbourhood, driving its own predictions up.

Tanzania also suffers from a problematic neighborhood, and is itself a poor nation. Their

lack of conflict therefore goes against some of the core principles of the theory and the

model.

The results appear to indicate that PR does indeed punish false positives quite harshly.

Some countries have poor predictions that will lead their inclusion in the data to have a

negative effect on the model’s overall PR. As an example, the conflict risk predictions for

the DRC are lower over time as conflict occurrence increases. This results in the years with

conflict occurrences having on average 6% lower predicted risk than the peace years. —

While many destructive outliers can be explained, and the reinforcing countries could

simply be the result of their fit to the model, there is a surprising amount of countries with

no apparent reason to be on the list of destructive countries. Canada, Cyprus, Austria,

Lithuania, Qatar and Slovenia are all almost perfectly predicted. They have virtually

no effect on coefficients. While Lithuania might have some effect on Russia, the others

have no detrimental effects on their neighborhood of any consequence. It should be worth

mentioning again that the effect on coefficients was measured from a control model, and not

the actual simulations, which means there could be effects on coefficients in the simulations

that I have not uncovered here. However, the most likely reason they stand out is that

they somehow affect the multilevel model and the random effects estimations.

It is important to note that the effect on coefficients is not straight forward to interpret.

Reinforcing countries like Indonesia and Cambodia often appear very close to destructive

countries like the DRC and China in the plots of effects on coefficients. This makes it hard

to conclude whether the effect is positive or negative, as two countries with the same effect
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on a variable end up having opposite effects on predictive power.



Chapter 5

Brier outliers

In this chapter I will repeat the process in the last chapter, replacing PR AUC with Brier

scores when evaluating predictive power. This is done to compare how the measures differ

in their responses to influential outliers, and see if the results support the findings in the

previous chapter regarding outliers and their attributes.

To reiterate, I will first identify the groups of destructive and reinforcing outliers by

measuring each country’s effect on predictive power when dropped from the dataset. I

then examine the groups, comparing their attributes, conflict history and individual per-

formance. I then examine to what degree they have indirect effects, and whether there

are any countries than can only be explained through their effect on the random country

effects.

While both measures are likely to have some of the same outliers, it is also to be expected

that there are differences. As Brier judges predictions individually it is likely to not treat

some of the PR outliers as harshly. Macedonia and Tanzania are examples of countries

where the probabilities are essentially quite low and correct, but the countries end up being

destructive outliers by PR nonetheless. This could be because their peace years are given

higher probabilities than other countries’ conflict years, thus making the predictions for

Tanzania and Macedonia seem erroneous when compared to the entire model. Brier score

should disregard this, as these low probabilities would be judged on their own merit rather

than how they fit in with other countries’ predictions.

I also display country distribution by effect on F-score. The F-score is also in use as a

measure of predictive power (D’Orazio et al., 2011; Hegre et al., ming), and it is included

for comparison and to illustrate how the measures differ, and I will not be discussing it to

a great degree.
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5.1 Outlier scores and groups

First off is a look at the bigger picture. Table 5.1 shows the worst performers by both

scores. Several other countries that were found to be inexplicable destructive outliers by

PR are also destructive by Brier, but they remain outside the top ten. Tables A.11 and

A.12 show the full list of countries by effect on Brier score for both periods. Both measures

score better using the full period than the limited, and by a decent margin. The differences

in outlying units between periods are very small, with only three countries being different

for Brier score and two countries for F-score. The two measures have few destructive

outliers in common, with only Slovenia appearing in the lists for both Brier and F-score.

Slovenia and Jordan are in fact the only destructive countries that F-score has in common

with any of the other measures. The Brier score list shows a greater degree of convergence

with PR. Angola, the DRC, Syria, Mali and Slovenia are shared as top ten countries with

a destructive effect. Figure 5.1 shows that while there is little agreement between Brier

and F-scores in the destructive end, the reinforcing countries in the lower left are shared.

Among these we find Turkey and Finland, who were also among the countries with the

most reinforcing effect for both PR and ROC AUC. The reinforcing group shows an even

greater overlap between Brier and PR. Bahrain, the UAE, Luxembourg and Cambodia

are among the most reinforcing for both measures. Without further study it is already

clear that the Brier outliers are mostly countries one might expect to find. Only Poland

and Slovenia stand out as completely unexpected, whereas the F-score outliers include

Bulgaria, Japan, Slovenia and France. France is not inconceivable, but the other three are

not those you would expect to find. Turkmenistan and Kazakhstan are also slightly odd,

as they are peaceful dictatorships with relative wealth.

Table 5.1 shows the most destructive countries by effect on Brier score. The Brier

results are clearly less affected by the choice of evaluation period, showing a greater degree

of overlap. This is likely due to the fact that PR compares pooled results, and the units

included in the limited group change the characteristics of the group in such way that the

effect of individual predictions changes. Brier predictions are judged the same in either

period, and the only change comes from which units are included in the country itself.

There is also a solid overlap with the outlier groups by PR, but at first glance the

destructive countries appear to have fewer inexplicable members. Slovenia remains a cu-

riosity. As I have shown previously, it has perfect predictions and does not stand out by its

effect on others. The other perfectly predicted western democracies are gone, but Poland

steps in as a replacement. The remaining countries are African and Asian countries with

a history of conflict.

Comparing the scores between periods reveals that, as with the AUC measures, limiting

the period leads to a decrease in accuracy. It also leads to increased effects and scattering
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Country Brier

1 DRC* -0.003

2 Angola* -0.002

3 Somalia* -0.002

4 CAR* -0.002

5 Iran -0.002

6 Pakistan* -0.001

7 Poland* -0.001

8 Sierra Leone -0.001

9 Chad -0.001

10 Syria* -0.001

(a) 2001-2013 - Control: .055

Country Brier

1 Angola* -0.003

2 Pakistan* -0.003

3 Poland* -0.002

4 Somalia* -0.002

5 DRC* -0.002

6 Mali -0.002

7 Syria* -0.002

8 Niger -0.001

9 CAR* -0.001

10 Slovenia -0.001

(b) 2006-2013 - Control: .064

Country F-Score

1 Bulgaria* 0.021

2 Dominican Republic* 0.017

3 Jordan* 0.016

4 Kazakhstan* 0.015

5 Kenya* 0.013

6 Japan* 0.012

7 Slovenia* 0.010

8 Haiti* 0.010

9 Papua New Guinea 0.009

10 France 0.009

(c) 2001-2013 - Control: .758

Country F-Score

1 Bulgaria* 0.040

2 Nepal 0.029

3 Jordan* 0.028

4 Kazakhstan* 0.027

5 Haiti* 0.027

6 Dominican Republic* 0.026

7 Japan* 0.026

8 Kenya* 0.024

9 Slovenia* 0.023

10 Turkmenistan 0.023

(d) 2006-2013 - Control: .717

Table 5.1: F score and Brier score differences from control. Asterixes mark those that appear in
both periods.

of countries. While many countries appear to remain in the same positions relative to each

other, the space between them is inflated.
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Destructive Reinforcing

1 DRC Finland

2 Angola Bahrain

3 Somalia Turkey

4 Slovenia Norway

5 Syria Armenia

6 CAR Luxembourg

7 Iran UAE

8 Pakistan North Korea

9 Poland Kyrgyzstan

10 Sierra Leone UK

11 Chad Cambodia

12 Mali Mexico

13 Niger

Table 5.2: The outlier groups by
effect on model accuracy.

Using the same selection criteria as with PR, all countries that appear in either period

are selected as outliers. Table 5.2 shows the destructive and reinforcing groups. Among

the reinforcing countries there are only three countries that did not appear as reinforcing

for PR: Norway, Armenia and North Korea. These are all perfectly predicted, peaceful

countries. Norway is obviously among the well fitting cases, with a small population,

high GDP and strong democracy in a rich neighborhood. Norway happens to be the

country with the greatest effect on predicted probabilities, and also the third smallest

effect on coefficient estimates. These results seem somewhat contradictive, but again it is

possible that Norway has an effect through the random effects. North Korea and Armenia

have average effects on coefficients. While North Korea has a median effect on predicted

probabilities, Armenia is second only to Norway.

The newcomers among the destructive countries are Somalia, CAR, Iran, Pakistan,

Poland, Sierra Leone, Chad and Niger. Apart from Poland, these are all countries with

well known conflict histories. Iran is high on the list of countries by effect on coefficients,

with Chad not far behind. Pakistan and Somalia are also above the 400 mark, while Niger

lurks just below. While these countries would be picked up by a test of effect on coefficients,

Sierra Leone would probably not be. CAR would not have attracted any attention, and

Poland barely has any effect. Sierra Leone is on the other hand high on the list by effect on

predicted probabilities, with Chad being a bit over average. Niger is ninth least influential,

while the rest are all on the middle of the scale.
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5.2 Group attributes

While the analysis of descriptives on PR outlier groups revealed few differences beyond con-

flict history, the Brier groups show more contrast. There are 13 countries in the destructive

group and 12 in the reinforcing, leaving 136 in the remaining group. Tables containing the

full descriptive statistics by group on the variables discussed below are found in Chapter

A.5.2.

As with PR, the destructives are still younger countries. For Brier score the difference

is 23 years on average. Data availability is just over 53 years for all groups. The conflict

pattern is reversed compared with the PR outliers, with the destructive group having

almost twice the amount of minor conflicts compared to the other two groups. 19% of the

destructive units are minor conflicts, while the reinforcing and remaining groups have 11%

and 10%. Major conflicts are even more skewed, with 9% of the destructive country units

compared to 2% among the reinforcing, and 5% among the remaining. The destructive

group again has shorter periods of peace than the main group, and the reinforcing countries

has the longest periods of continuous peace. While the short periods in the destructive

unites could be explained by the sheer volume of conflict, this also looks like what was

found in the last chapter, where units featuring quick transitions back and forth between

peace and conflict were found to be destructive. The reinforcing countries’ longer periods

also supports this, and the topic will be explored further when I present the conflict history

of the two outlier groups.

The destructive countries are situated in more conflict prone neighborhoods, as 68% of

their units have neighboring conflicts, compared to the 40% and 43% of the other groups.

The interaction between neighborhood conflicts and time since conflict interaction shows

that the destructive group has a much lower average than the other groups. This means that

the conflicts in the destructive group are more synchronized with neighboring conflicts. The

ncc1 and ncc2 variables have a negative effect. This means the model assumes the effect

of neighboring conflict weakens if the country has itself experienced conflict the previous

year. It could appear that this assumption does not hold for the destructive outliers here,

as there are many consecutive conflict years where the predictions underestimate the risk

in the presence of neighboring conflict.

The destructive group has a somewhat higher population than the other two groups.

A clear trend can be seen in the GDP variable, where the destructive countries are poorer

on average than the main group, and the reinforcing group is richer. Both these variables

have coefficients that should increase the probabilities of the outliers, which would mostly

be beneficial. Their interactions are mostly pulling in the same direction, but it appears

that population interacted with major conflict in the previous year slightly diminishes the

overall risk of conflict.
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Moving on to the Polity variables we find interesting differences. The destructive out-

liers are far less democratic and more anocratic than the others. The reinforcing countries

are more democratic and less anocratic, while the remaining group is more evenly dis-

tributed with a slight democratic shift. This suggest that the model is better at handling

countries at either extreme.

5.3 Predicted versus observed values

Brier has an advantage over PR when it comes to disentangling the effects of countries

on model score. Unlike with PR AUC it is easy to calculate whether or not a country’s

Brier scores pull the model’s overall Brier score up or down. The Brier score is averaged

over all units regardless of data structure. By calculating the Brier score of the country

and comparing it to that of the control model we see whether it has had a positive or

negative effect. The control model Brier score for the whole period is 0.061, and 0.064

for the limited period. Any country whose own average is above this will have a negative

effect on the model average, and so here it will be easier to determine to what degree each

country’s predictions are responsible, rather than their indirect effects.

Figures 5.2 and 5.3 present the conflict histories of the destructive and reinforcing

groups. We can see that the destructive countries in Figure 5.2 do indeed have great deal

of conflict. Poland and Slovenia stand out as the only countries without any conflict in

the dataset. Mali, Niger, Syria and CAR have lower levels of conflict, all of it scattered

in smaller groups along the timeline. Such grouping tendencies create problems for cross-

validation. If only a single split between estimation and evaluation is used, the point in time

that data is divided by dictates the results of the evaluation. When conflict periods coincide

with the division of data, the evaluation can return results that are more pessimistic than

is fair regarding model accuracy.

An example is CAR, that has all of its conflict in the evaluation period. With no conflict

in the estimation set, CAR’s particular attributes will not be taken into account in the

model. When including random country effects these could also suppress the probabilities

as the model is only concerned with keeping probabilities low in the estimation period,

ignoring the conflict that awaits in evaluation. Mali is in a similar position, and as we

have seen already the model fails to react to the sudden conflict surge there. Pakistan also

appears to be experiencing the same problem, although it does see some conflict in the

last decade of the estimation period. Sierra Leone has a continuous period of conflict that

ends just into the evaluation period. The same is true for the DRC, but here the conflict

reignites. Angola is again present with its many fluctuations. Iran, Chad and Somalia

are all mostly conflict, but with a few peaceful years in and around the evaluation period.
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Figure 5.2: Conflicts over time for the destructive group. Blue dots represent peace, yellow
diamonds are minor conflicts and the red squares are major conflicts. The first vertical line
marks the cut point between the estimation and evaluation period, and the second line marks the
start of the limited evaluation period.

Overall it would appear that the problem is again that there are abrupt changes in conflict

status, often going back and forth between states, which creates problems when classifying.

The reinforcing countries do have a lot less conflict, and more importantly the conflicts

occur in only four of the twelve countries. They are further clustered so that there are four

major clusters and only three lone conflict years in the whole group. Mexico stands out

with two lone conflict years, while the UK has one lone conflict outside its main conflict

period. This lone conflict is also the results of the battle death threshold, as the Troubles

continued in the period here coded as peace. Cambodia’s conflicts are split by two peace

years. These years happen to coincide with the Khmer Rouge genocide, which means the
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Figure 5.3: Conflicts over time for the reinforcing group. Blue dots represent peace, yellow
diamonds are minor conflicts and the red squares are major conflicts. The first vertical line
marks the cut point between the estimation and evaluation period, and the second line marks the
start of the limited evaluation period.

political situation was far from peaceful. Turkey has continous conflict from the mid 80’s

until the end of the dataset. All other countries in the group are conflict free for the entire

period. The countries with conflict have either no conflict in the evaluation period or only

conflict.

As previously mentioned, Slovenia has very low predicted probabilities. Slovenia has

near perfect Brier scores, and has no reason to be a destructive outlier based on these. The

same is true for Poland, with similarly minute probabilities.

Apart from Turkey, all the reinforcing countries are well predicted and peaceful. Kyr-

gyzstan has the highest probabilities, but these do not exceed 7%. The other countries
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with interesting predictions are shown in Figure 5.4 and 5.5. Beginning with Syria, the

last three years are still problematic. The previous years have so low probabilities that the

Brier scores are still minute. The last three years on the other hand are punished harshly,

so the period as a whole gets a poor score.

CAR also has low probabilities, but these climb slowly over the period in response to

increased conflict levels. Conflicts occur at the start and end of the period, with a lone

conflict breaking up a peaceful stretch mid-period. Again we see the slow response to the

conflict, and that the response is too weak to clearly predict the following conflict. The

lone conflict mid-period is not far over the threshold, and there are continued hostilities

in the peace years despite the battle deaths remaining under the threshold. CAR has a

low GDP, but also a small population. Combined with a Polity score of 5 CAR manages

to keep its probabilities low, especially in the first year when the conflict history variables

have yet to set in. Once they do set in there is an increase in probabilities that climbs

above 20% towards the end of the period. The results would not be as bad had the lag been

properly timed, but the peace years would still be a problem. The effect is also somewhat

weak. It is clear that the model would not have been able to respond to the peace years,

as probabilities go up much faster than they come back down afterwards.

Niger has probabilities similar to those of CAR, between 10 and 20% for the whole

period. Niger does not experience any conflict until late in the period, and then only

experiences two years of conflict before reverting to peace. The faulty structure means the

second year of conflict is not given a higher probability. The effect is also weak when it

sets in, meaning a correct lag would only marginally improve the overall results. Niger has

very high random effects keeping its probabilities low, combined with relatively high scores

on Polity 2 for such a poor country. Continuous neighborhood conflicts also dampens the

effect of the minor conflict variable. As with Syria, it is the two conflict years that increases

the Brier score to damaging levels. Niger scores 0.135, while Syria and CAR score 0.2 and

0.451 respectively. This means they all have scores above the model average, although

CAR is far worse than the other two. All three countries’s predictions are so poor that

they could account for the destructive effect on the model. Niger is however likely to have

an effect through other channels as well, as its predictions are not as poor as the other two.

Sierra Leone has extreme values at the beginning of the period that drop quickly before

flattening out just over 50%. The conflict in the first year is well predicted, but the rest of

the period is peace and the predictions are far off. The probabilities come steadily down

as the GDP and time in peace variables increase. A problem for Sierra Leone is that the

ncts0 and ltsnc variables are positive. As the neighborhood becomes peaceful in 2004, the

effects of these keep the probabilities from falling further, leading to overestimation of the

risk.
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Comparing the countries in the lower row of Figure 5.4 shows that Sierra Leone has

predicted probabilities strikingly similar to those of the DRC and Angola. Compared to

Angola we see only a slightly lower average predicted probability of 64.7%. As only a

single conflict occurs, the observed average is 7.7%, giving a predicted to observed rate

of 8.4 over the whole period. This is drastically worse than Angola’s ratio of 2, and the

ratio for the DRC is even better at 1.5. Calculating the Brier score for the two countries’

predictions alone shows that Angola has scores of .32 and .34 depending on period, while

Sierra Leone has scores of .37 and .32. For the full period the DRC has a Brier score of

.34, which improves to .23 in the limited period. These are very similar scores, especially

for the full period, despite the fact that Sierra Leone’s predictions are much worse.

In the full period, Angola and the DRC have effects on the full model’s Brier score that

are greater than that of Sierra Leone, even though their own scores are lower. Sierra Leone

has a far larger effect on predicted probabilities, but a smaller effect on the coefficients.

This means that the indirect effects of Angola and the DRC are of a more harmful nature

than those of Sierra Leone, and that the conflicts in Sierra Leone are of a nature that fits

better with the global model than those of Angola and the DRC.

While experiencing a great deal of conflict in the eighties and nineties, Somalia was

peaceful in the last half of the 2000’s. We can see that the conflict probabilities are going

down at the start of the period before increasing in response to conflict. They gradually

increase, but even after many years they flatten and hover around 40%. The problem is

therefore not a lack of response to conflict, but rather its lack a power. The many conflicts

that are predicted at only 40% would be enough to cause major problems regardless of

whether the peace years were better predicted. Somalia is poor, but the population is

not so large that it becomes very problematic. The neighborhood and a poor Polity score

should result in high scores, but apparently not high enough to account for all the observed

conflict. The increase in the early period is helped by Somalia’s economy stalling, going

virtually without growth from 2000 to 2005. As the economy starts growing again, the

GDP variable assists in flattening the probability curve. Somalia’s probabilities alone are

enough to account for it being a destructive unit by Brier score.
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Pakistan and Mali are both countries that start the evaluation period in peace, and

countries where the model fails to respond swiftly to conflict. In Pakistan we can see

that the probabilities do rise towards the end, but considering that the last eight years

are conflict and probabilities do not reach 30% the response is slow and inadequate. The

probabilities do divide the peace and conflict years, which could explain why the country

is not as damaging when using PR. A high population and conflict stricken neighborhood

pushes Pakistan up, but the poverty is not extreme. While negative, the Polity score is high

enough to give the squared variable a high enough score to reduce the conflict probability

considerably. For both Mali and Pakistan, the problem becomes many conflict years with

low probabilities. Mali was also destructive by PR, but as mentioned Pakistan may have

escaped this due to the results being well sorted.

Iran and Chad are on the opposite end, being punished for having false positives.

They are also denied full reward for the true positives as many of these are predicted at

probabilities below 80%.

All the destructive countries, apart from Poland and Slovenia, could be destructive

simply because of their own predictions. Their individual Brier scores show that they are

clearly higher than that of the control, giving their inclusion a negative effect on full model

Brier score. Syria, Niger and Chad show slightly lower scores than the others, which could

be an indication that their indirect effects are of a more harmful nature with regards to

model Brier score than the others.

5.4 Indirect effects through coefficient effects or neigh-

borhoods

While all destructive countries apart from Poland and Slovenia can be explained by their

predictions, there are a few that also have effects on coefficients. I hypothesized that

Syria, Niger and Chad would be likely to have noteworthy effects, which they do on some

variables. Syria has effects on the important conflict history variables, which easily account

for the added destructive effect on model Brier score.

Niger has a relatively extreme positive effect on the lGDPcap, and a strong positive

effect on ltsc0. These are both important variables, and as the two are interacted any effect

is also multiplied. Chad also has a positive effect on ltsc0, and as there are no reinforcing

outliers with similar effects on the variable this could be an indication that a positive effect

on ltsc0 is particularly damaging to the model as a whole.

Among the remaining countries we find that Pakistan has a strong effect on a number

of variables, including most conflict history variables. It does however have similar effects

on many variables as Indonesia, so it is hard to say whether the effects are of a detrimental



5.5 Robustness when correcting conflict lag 85

nature overall. The other countries appear to have their effect scattered among all variables,

with no particular variable being affected to a great degree.

Poland and Slovenia are now the only destructive country yet to have an explanation,

and I have already shown that Slovenia is inexplicable. While Poland does have a slightly

lower GDP than its western neighbors, there is in no way a gap that could alone account

for Poland’s effect on model Brier score. This leaves the destructive group for Brier score

with two countries that can only be explained through their unknown effect on the random

effects.

5.5 Robustness when correcting conflict lag

Some of the predicted probabilities appear to show a problem with variable lagging, as

the model at times reacts in inexplicable ways to conflict history. Uzbekistan is a prime

example, where the predicted probabilities shoot up in 2007 following a conflict in 2004,

two years after they should have. The same pattern is found in other countries, with

varying importance for the results. In Mali the effect is not very severe, as the predictions

are very low even when the conflict variables take effect. In Indonesia the faulty lag causes

the drop in predicted probabilities after conflict cessation to come later than it should.

Here in the middle spectrum the difference made by changes in logit are the greatest, and

the effect is that 2007 and 2008 are predicted approximately 20% above the correct levels.

An erroneously lagged conflict variable is most likely to have cause the issue, but the

parameter files1 and input data appear to be correct. Also, not all countries seem to be

affected to the same extent. Djibouti appears to have a different problem. A conflict

occurred in 1999, which by the pattern established by the previous cases should have lead

to a jump in probabilities in 2002. Instead there is a peak in 2001 and a small spike in

2003. This is probably a country specific issue, as the pattern of a two year gap between

event and reaction is followed by all other cases where an effect is visible.

The faulty lag will have an effect on the validity of the results. As the input data

is correct, the cause of the problem is probable in the simulator itself. It is hard to tell

whether only the conflict variables are affected, or whether the effect of other variables are

also wrongly timed.

To test how badly the results are affected by the faulty lag I have shifted the predictions

two years backwards and rerun the analysis. The predictions here go from 2001 to 2011.

The ROC results become much more similar to those of PR. China remains the worst

1The parameter files are text files that contain information passed to the simulator. They contain
the names of the variables that are to be included and instructions for how they are to be lagged. The
parameter files and input data are saved by Stata before being sent to the simulator, making it possible
to see exactly what the simulator receives.
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offender, with the DRC and Spain climbing up the list. Nigeria also remains in the top ten,

but the rest are changed. Syria, now with only one wrongly predicted conflict, disappears

along with the others. Angola and Tanzania are among those that replace them, backing

the earlier PR finds.

The PR list for the full period remains largely undisturbed, with only minor changes

in order and magnitude. All countries have slightly lower effects on the PR AUC than

before. Macedonia climbs over Angola and Qatar, but the order of the top six is otherwise

the same. The Brier results are also very stable, with the appearance of Djibouti high on

the list as the only major change. Djibouti is one of the outliers by PR, and its predictions

are such that its addition to the list comes as no surprise.

Correcting the lag appears to make only minor differences in the results, and all major

points made so far are still valid.



Chapter 6

Conclusion

In this chapter I will first summarize the findings from the previous chapter and discuss

these in light of the results from Chapter 4. Both periods show clearly that poor pre-

dictions is the main reason for countries becoming destructive outliers, while effects on

β-estimates are less important. They also show that the threshold based conflict definition

is problematic, and that defining the divide between estimation and evaluation periods has

important consequences for the evaluation outcome.

The first part of the chapter presents the summary of Chapter 5 and the discussion of

the findings. I then present the main conclusions that can be drawn, and present possible

solutions to problems encountered. I also reiterate some weaknesses in my research that

must be taken into account when assessing the impact of the results.

6.1 Summary and discussion

The results from the analysis of the Brier scores show differences from the PR results,

but there are consistencies as well. All four measures applied support the theory that

leaving a gap between estimation and evaluation reduces accuracy. There are however

countries that benefit from the limited period, and the choice of period limits may affect

these findings. Both the destructive and reinforcing groups show a great degree of overlap

between measures. With Brier score, as with PR AUC, the groups are not the same as

would be expected from the test of effect on coefficients. There is considerably less change

between periods, showing that an evaluation gap becomes less important when using Brier

score. I believe this is because the Brier score evaluates country-years individually, without

concern for the data set, while PR AUC is dependent on all the predictions of the model.

The PR AUC is not only affected by the dropping of years for the individual country being

dropped, it is also affected by the overall change in the prediction pool for the whole model.

As other countries’ predictions are dropped with the period limitation, the data that each
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country is compared to changes in nature. This is why the Brier scores are relatively

unchanged in comparison with what I found using PR AUC.

The destructive countries as a group are distinct in a number of ways with regards to

variable values. Like with PR they are younger nations, which indicates that the time

since independence variable may be a problem for the model. The group sees more conflict

while the reinforcing countries have less, the opposite of what was found with PR. The

destructive group has shorter periods of peace, backing the finding from PR. They also

experience far more neighboring conflicts, an indication that the neighborhood variables

may not behave as expected. The groups are also split by GDP, with the destructive group

being poorer than the main group of countries, while the reinforcing group is richer. It

could be that the log function is not the correct function for GDP, creating problems for

some poorer countries. A dichotomous variable based on a threshold could be considered

as a replacement, or perhaps a categorical variable based in a qualitative assessment of

development. Lastly the destructive countries are more autocratic and anocratic. This

indicates that the squared Polity variable is problematic. While not necessarily discrediting

the anocracy theory, this fits well with the criticism of the Polity scale mentioned in the

theory chapter. Applying a different measure of democratization or using categorical regime

type variables are possible alternatives.

Many of the destructive outliers are countries with underestimated conflict probabilities

who are also located in neighborhoods with high levels of conflict. Several of these countries

are placed in a crescent following the ”spine” of the African continent. This results in a

great number of neighbors and an almost guaranteed presence of neighborhood conflict at

any given time. It could be that the constant presence of neighboring conflict in these

countries is problematic due to the interactions between neighborhood conflict and other

variables.

The observed conflict history shows that the destructive group does indeed have more

conflict, and that the conflict periods are broken up by short periods of peace. This is

similar to what was found with PR, in that the problem is fluctuations between peace and

conflict that the model has no time to react to. The reinforcing group shows a high degree

of clustering in its conflicts which further backs this conclusion. The issue appears to be a

symptom of an underlying problem with the conflict definition, and the accuracy could be

greatly increased by using a more flexible conflict definition that is based on more factors

than yearly battle related deaths.

The conflict history also reveals that how the cross-validation groups are split is im-

portant. The reinforcing group is clearly split with the evaluation group being either only

peace or only conflict. CAR is the prime example, with only peace right up until the

evaluation period starts. Sierra Leone is the opposite, with a long period of war that ends
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one year into the evaluation period. As the model is slow to react, these sudden changes

are likely to be followed by several years of conflict probability estimations that slowly

transition from one end of the spectrum to the other. Mali is not on the top list of de-

structive countries by PR or Brier for the full period, but enters both lists when the period

is limited. Looking at the conflict history it is obvious why this happens. The evaluation

gap is peaceful, just as Mali’s history, but the limited period has more conflict than peace.

When the evaluation period is no longer ”watered down” by the peace years in the gap

period, Mali’s low probabilities suddenly score much worse.

The destructive Brier group shows different patterns in its predictions compared to the

destructive group by PR AUC. As mentioned, Brier score judges countries individually

rather than by their place in the dataset as a whole. This means that countries such as

Pakistan, with predictions that separate conflicts from peace years and give them probabil-

ities that are high enough relative to the rest of the data, are not outliers by PR. They are

however outliers if the predictions are judged on their own, as numerous years of conflict

have predicted probabilities below 30%.

Because PR pools all years together when evaluating, some years with reasonable prob-

abilities can end up being more harshly judged than is perhaps appropriate. An example

is Tanzania, which becomes the second most destructive unit by PR in the limited period,

but only the fifteenth worst by Brier. This is most likely due to the presence in the set of

several conflicts predicted at below 20%, something that makes the probabilities in Tanza-

nia more damaging. As Brier judges them individually and they are relatively close to 0

their scores are quite low, and less damaging to the model. Countries like Chad and Iran

are however punished more harshly by Brier than by PR. A few peace years are harmful,

but many conflict years are predicted as low as 70%, earning them poor Brier scores as

well. These would probably be well over the majority of peace years for the whole model,

and so PR would not punish them as much as Brier.

Countries such as Djibouti and Tanzania, who have relatively well predicted peace

periods are not as destructive by Brier because their predictions are no longer compared to

those of other countries. China and Macedonia are also removed from the group, as their

single units are not of as much consequence when the score is averaged over many years.

The results is that the outliers by Brier appears more reasonable, perhaps apart from the

fact that Uzbekistan is no longer on the list. The choice is of course not as straight forward

as this, as there are pros and cons with either measure. Since PR is based on the rankings

of probabilities, the model is not forced to predict extreme probabilities for conflict years

in order to be rewarded, only higher than the vast majority of peace years. A model that

gives all peace years conflict probabilities of 0 to 20% and all conflict years 40-60% will be

judged as excellent by PR, but poor Brier score.
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Probabilities in the mid range are a problem for both measures if we think of our

predictions as time series rather than single years. Take for an example a hypothetical

country with predictions that give a fifty-fifty chance for conflict over two years. This will

yield a very poor score by Brier, and if the peace year is predicted minutely higher than the

conflict year then PR will also be poor. The predictions were however completely correct:

The chance of a conflict in the period was on average 50%, and conflicts occurred in 50% of

the period. The examples of Angola and the DRC illustrate how the cross-sectional time-

series structure of the data is ignored by the measures used here. The average predicted

conflict level is much closer to the observed in Angola and the DRC than Sierra Leone, yet

by Brier score their results are classified as similar. The two also have a much greater effect

on PR AUC than Sierra Leone, even though they intuitively appear to be much better at

correctly identifying cases. The measures of predictive power used here discriminate against

the middle spectrum of probabilities.

Treating each year as an individual unit means that we regard missing a conflict onset

by a single year a complete failure. It also means we are saying that probabilities above a

certain threshold are predictions of definite conflict while those below are of definite peace.

This is not how probabilities work. The many redraws of conflict outcomes does not correct

this problem, it only helps explore the scenarios where the less probable outcome occurs.

A probability is something that must be tested by repeated experiments, not by examining

the same case again and again expecting something different to happen. In our case this

can be done by examining how probabilities match reality over time, with each year as an

experiment.

If the goal of forecasting is to uncover the underlying risks in countries rather than

attempting perfect onset forecasts, it would seem that the measures being used to op-

timize forecasting models are less than ideal. Averaging the predicted probabilities and

observed values allows predictions to be in the middle of the spectrum without being un-

duly punished. Comparing average predicted probability with proportion of years with

conflict occurrence is not a completely realistic way of evaluating results, but it is better

than completely ignoring the fact that units are countries over a period, not individual

country years.

There are fewer inexplicable countries returned as destructive outliers with Brier score

compared to PR AUC. It is however clear that model complexity makes it difficult to trace

how each country affects the overall results. Brier does make it easier, as each country’s

individual Brier score can be calculated and compared to the full model. By comparing the

country’s score with its effect on the full model one can calculate to what extent the country

also has indirect effects, which can then be traced further. It is however clear that starting

with a fully developed model has lead to problems, especially due to the random country
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effects used. To accurately track effects a research design should start with a completely

basic design, before gradually adding complexity in the form of variables, interactions,

neighborhoods and country effects.

6.2 Conclusion

I have shown that there are indeed some countries that have greater influence on model

predictive power. Importantly, these are not the same as those found by a conventional test

of outliers that estimates differences in β-coefficients. While there is a reasonable overlap

between the results it is clear that effect on coefficients 6= effect on model predictive power,

which means that testing for influential units when using predictive power requires its

own methods. I have presented different ways of performing such a test using different

means. The simple test of differences in other units predicted probabilities is a simple way

of measuring the degree to which a unit affects the rest of the set. The expanded tests

reveal how different units have different effects on model predictive power depending on

the measure used.

The countries that have the most detrimental effect on predictive power differ in many

aspects, yet there are clear patterns that show where and when the model fails. The

outliers with a negative effect on predictive power measured by PR AUC had less conflict

than average, but the outliers with a negative effect on Brier score had considerably more

than average. Despite this, the two groups have common features. The countries whose

negative effect was due to their own poor predictions followed two patterns of conflict

history. The first is a change in conflict state between largely peaceful and largely conflict

stricken, or vice versa, that coincides with the partitioning of data between estimation and

evaluation periods. The second pattern is a recent conflict history that is either plagued

by several transitions between peace and conflict.

The first pattern is cause by a problem with cross-validation using cross-sectional time-

series data in general. K-fold cross-validation using random partitioning is highly prob-

lematic, and the best alternative is a temporal cut-off point that has to be arbitrarily

determined by the scientist. The timing of this point and the length of the gap between

estimation and evaluation affects the outcome of the cross-validation greatly. Any country

that happens to have a change between peace and conflict near to the estimation-evaluation

divide will have several years in its evaluation data that is inaccurate as the model takes

time to adapt to a change in status. A way of compensating for this could be to cross-

validate using multiple variations of estimation, evaluation and gap periods and averaging

the results. Using my data as an example, the end of the estimation period could vary

between 2000 and 2005, and the gap could vary between 0 and 10 years, with a minimum
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evaluation period of 5 years. A script that accomplishes this can easily be written, and

computationally the task is done in a matter of seconds. Averaging over many periods in

this fashion would reduce the problems that arise from having to use only the latest years

of the dataset for evaluation.

The second conflict pattern arises from the conflict operationalization used in the

UCDP/PRIO armed conflict dataset. The strict 25 battle deaths per year definition does

not pick up on the nuances of conflict situations. I have shown examples of conflicts that

are coded as ended and then restarted simply because the middle year had 4 fewer battle

deaths. The conflict is, by qualitative standards, ongoing for the whole period, but the

purely quantitative definition of conflict sees the tiny fluctuations in casualties as peace.

This creates data that is impossible to predict accurately, requiring huge leaps back and

forth in predicted probabilities. The model is behaving as it should, but it is being given

an impossible task. This leads to an unfair punishment that misleads us regarding its true

accuracy. The problem can be addressed by using a composite conflict indicator that takes

into account other factors as well as battle deaths.

The problem can also be seen as a result of the our evaluation methods not taking into

account the time-series aspect of the data. All the measures of predictive power used here

judge years by how well they are predicted on an individual basis, but this is not necessarily

the optimal solution if our goal is to predict risk of conflict in an upcoming time period.

When it comes to choice of predictive power measure there are some differences that are

noteworthy. The main difference comes from how they treat the results, with PR pooling

them all together and Brier judging each individually and then averaging. This makes

Brier less affected by single years, especially with longer evaluation periods.

My overall impression is that PR is better as a means of evaluating model separation,

as it evaluates the model responses more as a whole. Brier does have its advantages

when looking for outliers. It is much easier to determine which countries have the worst

predictions using Brier score, as it judges the results on their own merits. The Brier outlier

test thus returns countries with the worst predictions rather than those that are necessarily

the worst for the models overall ability to separate conflict and peace. It is also easier to

unravel indirect effects using the Brier score, as the effect of the countries own predictions

can easily be calculated.

A problem I have faced has been the complexity of the research design. While the

model I have applied my test of outliers to is representative of what theory prescribes

should be included, and is at the cutting edge of the forecasting field, it has lead to

problems identifying causal mechanisms. Further research on the subject would be better

served by starting with a simpler model and gradually adding complexity. By gradually

adding variables, neighborhoods and random effects to a baseline model, one would be
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better able to see how countries create problems.

A further issue is that when examining unit effects on coefficients I have used the

control model without reestimating the multilevel model and subsequently the country

random effects that are extracted from it. It is reasonable to assume that these effects are

affected by dropping countries. Any change in coefficients will also lead to a change in the

country specific intercepts which are used as random effects here. The exact changes in

all coefficients and random effects could be found by modifying the simulator to extract

these. This would provide the true effect of each country on the coefficients rather than

the approximation I have used.

To conclude, the potential of a test of influence on predictive power is great. Much can

be learned about the variables used and effect out single units by examining their effect on

summary statistics. Using different measures of predictive power will reveal outliers with

different characteristics, each useful in their own way. While the work presented here has

much room for improvement I have also come to two major conclusions that I believe will

be robust. The first is that a threshold based conflict definition can be problematic for

evaluating forecasting models. The second is that how data is split between estimation

and evaluation can have severe consequences for evaluation results. I therefore recommend

the implementation of a more flexible conflict definition, and the use of more than one

evaluation set.
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Variable name Variable description

c1 Minor conflict at t-1

c2 Major conflict at t-1

ltsc0 Logged years since last conflict. This is also lagged by one year to avoid an effect at

the first year after a conflict.

nc Conflict in a neighboring country at t-1.

ncc1 c1 interacted with nc.

ncc2 c2 interacted with nc.

ltsnc Logged years since the last neighboring conflict. Like ltsc0 this variable is also lagged

by one year.

ncts0 ltsc0 interacted with nc0. nc0 is not included itself, but is coded as 1 when there are

no neighboring conflicts.

lpop Logged total population in thousands.

lpop c1 lpop interacted with c1

lpop c2 lpop interacted with c2

lGDPcap Logged GDP PPP per capita in thousands of dollars.

lGDPcap c1 lGDPcap interacted with c1.

lGDPcap c2 lGDPcap interacted with c2.

lGDPcap ltsc0 lGDPcap interacted with ltsc0.

nb lGDPcap The average lGDPcap value of all neighboring countries. For countries with no neigh-

bors the value is set to their own lGDPcap value.

ltimeindep Logged years since the country became an independent nation.

dec50 Dummy coded as 1 for all country-years from the 1950’s, 0 otherwise.

dec60 Dummy coded as 1 for all country-years from the 1960’s, 0 otherwise.

dec70 Dummy coded as 1 for all country-years from the 1970’s, 0 otherwise.

dec80 Dummy coded as 1 for all country-years from the 1980’s, 0 otherwise.

dec90 Dummy coded as 1 for all country-years from the 1990’s, 0 otherwise.

polity2 The country’s Polity IV score.

polity2sq polity2 squared.

polity2 c1 polity2 interacted with c1.

polity2sq c1 polity2sq interacted with c1.

polity2 c2 polity2 interacted with c2.

polity2sq c2 polity2sq interacted with c2.

nb TSRC 5 A dummy variable coded as 1 if a neighboring country has experienced a regime

change in the last 5 years.

random 1 The random country effect for minor conflicts.

random 2 The random country effect for major conflicts.

Table A.1: List of variables included in the model.

A.2 Country effects on coefficients and predicted prob-

abilities
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Minor conflict Major conflict

c1 2.271 (2.114, 2.55) 3.100, (2.807, 3.382)

c2 1.798, (1.553, 2.103) 4.837, (4.566, 5.447)

ltsc0 -0.058, (-0.1, -0.028) 0.021, (-0.07, 0.11)

nc 0.433, (0.299, 0.612) 1.067, (0.836, 1.454)

ncc1 -0.301, (-0.498, -0.153) -0.700, (-1.057, -0.465)

ncc2 0.153, (-0.053, 0.361) -0.098, (-0.554, 0.164)

ltsnc 0.007, (-0.006, 0.021) 0.021, (-0.02, 0.074)

ncts0 0.041, (0.013, 0.11) 0.223, (0.083, 0.381)

lpop 0.200, (0.186, 0.222) 0.283, (0.235, 0.322)

lpop c1 0.044, (0.008, 0.073) -0.004, (-0.073, 0.076)

lpop c2 -0.119, (-0.156, -0.089) 0.088, (0.027, 0.171)

lGDPcap -0.107, (-0.153, -0.076) -0.221, (-0.281, -0.145)

lGDPcap c1 0.042, (0.008, 0.098) 0.029, (-0.065, 0.121)

lGDPcap c2 0.271, (0.23, 0.327) -0.016, (-0.124, 0.056)

lGDPcap ltsc0 -0.020, (-0.022, -0.017) -0.056, (-0.068, -0.047)

nb lGDPcap -0.442, (-0.488, -0.421) -0.104, (-0.186, -0.029)

ltimeindep 0.211, (0.199, 0.225) 0.131, (0.062, 0.177)

dec50 -0.872, (-0.978, -0.793) 0.413, (0.239, 0.596)

dec60 -0.157, (-0.237, -0.097) 0.839, (0.611, 0.953)

dec70 0.252, (0.172, 0.303) 1.090, (0.939, 1.214)

dec80 0.382, (0.299, 0.46) 1.275, (1.193, 1.403)

dec90 0.245, (0.202, 0.285) 0.655, (0.541, 0.768)

polity2 -0.006, (-0.012, -0.003) -0.018, (-0.037, -0.004)

polity2sq -0.013, (-0.015, -0.012) -0.021, (-0.024, -0.018)

polity2 c1 0.040, (0.036, 0.049) 0.011, (-0.006, 0.03)

polity2sq c1 0.020, (0.019, 0.022) 0.018, (0.015, 0.022)

polity2 c2 -0.027, (-0.041, -0.012) -0.001, (-0.019, 0.021)

polity2sq c2 0.015, (0.011, 0.018) 0.017, (0.011, 0.023)

nb TSRC 5 0.067, (0.032, 0.12) -0.176, (-0.257, -0.082)

random 1 1.048, (1.015, 1.079) 0.475, (0.427, 0.561)

random 2 0.269, (0.249, 0.299) 1.171, (1.084, 1.31)

intercept -1.288, (-1.606, -1.051) -5.803, (-6.206, -5.41)

Table A.2: Coefficients for the control case, with the minimum and maximum values from drops.
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Table A.3: Differences in weighted coefficients. The absolute difference in coefficients is divided
by the coefficient, then multiplied by the maximum possible effect of the variable (The coefficient
multiplied by the maximum score of the variable in the data set.)

Rank Difference Country

1 2.19 Slovenia

2 3.10 Qatar

3 3.91 Norway

4 4.00 Bahrain

5 4.92 Luxembourg

6 5.40 New Zealand

7 5.52 Lithuania

8 6.02 Australia

9 6.13 Singapore

10 6.40 Bhutan

11 7.24 Switzerland

12 7.62 Slovakia

13 7.87 Denmark

14 8.33 German Federal Republic

15 9.09 Finland

16 10.60 Turkmenistan

17 10.78 Mauritius

18 11.48 Poland

19 13.23 Zambia

20 13.54 Czech Republic

21 15.25 Ukraine

22 16.00 Greece

23 17.50 Japan

24 17.94 Canada

25 19.08 Estonia

26 20.50 Gambia

27 20.67 United Arab Emirates

28 24.00 Netherlands

29 26.82 Portugal

30 26.94 Kyrgyz Republic

31 27.35 Italy/Sardinia

32 27.96 Guyana

Continued on next page
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Table A.3 – continued from previous page

Rank Difference Country

33 28.80 Hungary

34 29.24 Rumania

35 30.27 Fiji

36 30.50 Trinidad and Tobago

37 30.61 Equatorial Guinea

38 31.32 Ecuador

39 33.75 Albania

40 35.64 Solomon Islands

41 35.84 Lesotho

42 36.59 Malawi

43 38.36 Kuwait

44 43.96 Cyprus

45 45.10 Surinam

46 46.88 Latvia

47 47.73 Belarus (Byelorussia)

48 48.54 Austria

49 50.14 Comoros

50 51.23 Cape Verde

51 54.39 Ireland

52 54.74 Sweden

53 56.58 Taiwan

54 58.28 Saudi Arabia

55 58.85 Jamaica

56 60.59 Uruguay

57 61.24 Vietnam, Democratic Republic of

58 64.43 Botswana

59 67.46 Togo

60 71.50 Eritrea

61 75.21 Belgium

62 78.94 Chile

63 79.49 Dominican Republic

64 81.33 Namibia

65 85.36 Swaziland

66 92.18 Guinea-Bissau

Continued on next page
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Table A.3 – continued from previous page

Rank Difference Country

67 93.46 Gabon

68 96.91 Bolivia

69 97.71 Jordan

70 99.15 Mali

71 104.51 Egypt

72 106.54 Brazil

73 108.22 Armenia

74 109.02 Costa Rica

75 112.83 Kazakhstan

76 116.42 Mauritania

77 116.43 Honduras

78 116.92 Mongolia

79 119.52 Korea, People’s Republic of

80 119.88 Guatemala

81 120.09 Tunisia

82 122.59 Mexico

83 130.43 Spain

84 130.56 Moldova

85 134.16 Tanzania/Tanganyika

86 137.14 Uzbekistan

87 138.99 Ghana

88 139.28 Panama

89 139.51 Macedonia (Former Yugoslav Republic of)

90 158.14 Central African Republic

91 161.87 Madagascar

92 162.27 Burkina Faso (Upper Volta)

93 164.68 Senegal

94 170.69 Paraguay

95 173.98 Cuba

96 176.71 Nigeria

97 185.02 Ethiopia

98 186.96 Djibouti

99 190.33 Haiti

100 202.27 Bulgaria

Continued on next page
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Table A.3 – continued from previous page

Rank Difference Country

101 203.40 Oman

102 205.39 Zimbabwe (Rhodesia)

103 211.92 Cote D?Ivoire

104 212.31 Georgia

105 221.81 United Kingdom

106 222.33 Libya

107 224.52 Venezuela

108 226.25 Argentina

109 239.86 Guinea

110 247.76 Cameroon

111 254.23 Benin

112 256.37 Bangladesh

113 262.62 Korea, Republic of

114 263.01 Liberia

115 266.98 Mozambique

116 268.51 Turkey (Ottoman Empire)

117 268.75 Sierra Leone

118 274.50 Thailand

119 300.23 Croatia

120 308.10 Papua New Guinea

121 312.96 Yemen (Arab Republic of Yemen)

122 315.31 Bosnia-Herzegovina

123 341.30 Israel

124 343.72 Afghanistan

125 347.92 Tajikistan

126 357.91 South Africa

127 379.99 Rwanda

128 383.17 Niger

129 404.64 Morocco

130 429.15 Algeria

131 470.76 Philippines

132 472.86 Somalia

133 482.35 El Salvador

134 523.60 Pakistan

Continued on next page



110 Tables

Table A.3 – continued from previous page

Rank Difference Country

135 527.43 Angola

136 544.60 Syria

137 566.71 Sri Lanka (Ceylon)

138 606.57 Sudan

139 608.65 Burundi

140 628.05 Peru

141 695.39 Azerbaijan

142 728.51 Cambodia (Kampuchea)

143 733.87 Chad

144 781.50 Russia (Soviet Union)

145 809.34 Uganda

146 813.45 Iraq

147 837.31 Nepal

148 914.39 Malaysia

149 975.65 Kenya

150 1012.33 Iran (Persia)

151 1051.74 India

152 1256.57 Myanmar (Burma)

153 1366.15 China

154 1436.02 Nicaragua

155 1462.12 Indonesia

156 1501.44 Colombia

157 1577.27 Congo

158 1820.34 France

159 1889.56 Congo, Democratic Republic of (Zaire)

160 2027.80 Lebanon

161 3645.44 Laos

162 5050.84 United States of America
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A.3 Predicted probability differences

Table A.4: Differences in predicted probabilities by country

Rank Country Difference

1 Bosnia-Herzegovina 39.18

2 Mauritius 40.26

3 Gabon 41.25

4 Azerbaijan 41.71

5 Liberia 42.01

6 Slovenia 42.15

7 Netherlands 42.22

8 Madagascar 42.35

9 Niger 42.47

10 Fiji 42.49

11 Solomon Islands 42.49

12 Austria 42.71

13 Afghanistan 42.76

14 India 42.84

15 Pakistan 42.99

16 Lithuania 43.13

17 Burundi 43.40

18 Benin 43.43

19 Sweden 43.44

20 Laos 43.44

21 Bhutan 43.62

22 Sudan 43.67

23 DRC 43.83

24 Swaziland 43.84

25 Trinidad and Tobago 43.86

26 Singapore 43.88

27 Mauritania 44.02

28 Guinea 44.07

29 South Korea 44.15

30 Cape Verde 44.16

31 Uzbekistan 44.22

32 Italy 44.31

Continued on next page
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Table A.4 – continued from previous page

Rank Country Difference

33 Guyana 44.39

34 Cameroon 44.53

35 Dominican Republic 44.58

36 Slovakia 44.60

37 Croatia 44.62

38 Canada 44.62

39 Cuba 44.65

40 Mali 44.66

41 China 44.67

42 Nicaragua 44.83

43 Estonia 44.94

44 Rwanda 44.95

45 Lebanon 45.16

46 CAR 45.17

47 Comoros 45.23

48 Papua New Guinea 45.51

49 Ukraine 45.52

50 Jamaica 45.71

51 Surinam 45.76

52 Iran 45.77

53 Venezuela 45.90

54 Ethiopia 45.90

55 Bolivia 45.93

56 Equatorial Guinea 46.21

57 Argentina 46.37

58 Haiti 46.41

59 Morocco 46.57

60 Thailand 46.74

61 Oman 46.81

62 Georgia 46.84

63 Belgium 46.85

64 Belarus 46.91

65 Japan 46.94

66 Rumania 46.99

Continued on next page
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Table A.4 – continued from previous page

Rank Country Difference

67 Hungary 47.05

68 Syria 47.07

69 Switzerland 47.08

70 Egypt 47.08

71 New Zealand 47.22

72 Algeria 47.36

73 Czech Republic 47.41

74 Tanzania 47.52

75 Greece 47.59

76 Libya 47.69

77 Russia 47.77

78 Philippines 47.80

79 Ecuador 47.87

80 USA 47.88

81 Denmark 47.94

82 Jordan 47.96

83 Panama 47.97

84 North Korea 48.03

85 Cote D’Ivoire 48.10

86 Moldova 48.11

87 Somalia 48.13

88 Burkina Faso 48.29

89 Malaysia 48.33

90 Latvia 48.35

91 Tajikistan 48.36

92 Cyprus 48.49

93 Namibia 48.50

94 Senegal 48.51

95 Ghana 48.54

96 Kazakhstan 48.77

97 Ireland 48.86

98 Gambia 48.90

99 Botswana 48.93

100 Qatar 48.97

Continued on next page
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Table A.4 – continued from previous page

Rank Country Difference

101 Mexico 49.00

102 Angola 49.26

103 Kuwait 49.28

104 United Kingdom 49.35

105 Albania 49.39

106 Vietnam 49.42

107 Nepal 49.51

108 Germany 49.51

109 Uganda 49.64

110 Israel 49.68

111 France 49.87

112 Nigeria 49.92

113 Poland 49.94

114 Kyrgyzstan 50.06

115 Turkmenistan 50.08

116 Malawi 50.09

117 Guinea-Bissau 50.13

118 Lesotho 50.26

119 Togo 50.31

120 Portugal 50.43

121 Cambodia 50.47

122 Tunisia 50.56

123 Guatemala 50.61

124 Indonesia 50.71

125 Sri Lanka 50.76

126 South Africa 51.04

127 Congo 51.06

128 Yemen 51.22

129 Mongolia 51.27

130 Eritrea 51.52

131 Mozambique 51.92

132 Honduras 51.94

133 Costa Rica 52.13

134 Chad 52.29

Continued on next page
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Table A.4 – continued from previous page

Rank Country Difference

135 Macedonia 52.29

136 Paraguay 52.33

137 Spain 52.46

138 Uruguay 52.55

139 Brazil 53.75

140 Australia 54.42

141 Saudi Arabia 54.46

142 Colombia 54.53

143 Zimbabwe 54.63

144 Taiwan 54.89

145 Bulgaria 55.95

146 Djibouti 55.99

147 Peru 56.34

148 Chile 57.41

149 Zambia 57.44

150 Bangladesh 59.91

151 Iraq 60.01

152 El Salvador 60.65

153 Sierra Leone 63.00

154 Turkey 65.59

155 Finland 69.60

156 Kenya 70.32

157 UAE 70.80

158 Luxembourg 73.68

159 Bahrain 74.02

160 Armenia 78.87

161 Norway 86.93
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A.4 PR results

A.4.1 PR AUC differences

Full period

Table A.5: All countries sorted by effect on PR AUC 2001-2013

Rank PR AUC Difference Country

1 0.721 -0.047 Finland

2 0.723 -0.044 Bahrain

3 0.724 -0.043 Turkey (Ottoman Empire)

4 0.728 -0.039 Ethiopia

5 0.732 -0.036 Indonesia

6 0.732 -0.035 Luxembourg

7 0.734 -0.033 United Arab Emirates

8 0.736 -0.031 Sudan

9 0.737 -0.030 Kyrgyz Republic

10 0.738 -0.029 Yemen (Arab Republic of Yemen)

11 0.738 -0.029 Mexico

12 0.740 -0.028 Uganda

13 0.740 -0.028 Armenia

14 0.741 -0.027 Cambodia (Kampuchea)

15 0.741 -0.026 Czech Republic

16 0.742 -0.026 Philippines

17 0.742 -0.025 Italy/Sardinia

18 0.742 -0.025 Norway

19 0.743 -0.025 Algeria

20 0.744 -0.024 Lesotho

21 0.744 -0.023 United Kingdom

22 0.745 -0.022 Korea, People’s Republic of

23 0.745 -0.022 Colombia

24 0.746 -0.021 Honduras

25 0.747 -0.021 Bolivia

26 0.748 -0.019 Argentina

27 0.750 -0.018 Greece

28 0.750 -0.018 Paraguay

29 0.750 -0.018 Rumania

Continued on next page
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Table A.5 – continued from previous page

Rank PR AUC Difference Country

30 0.750 -0.017 Switzerland

31 0.750 -0.017 Zambia

32 0.750 -0.017 El Salvador

33 0.751 -0.017 Moldova

34 0.751 -0.017 Burundi

35 0.751 -0.016 Ukraine

36 0.751 -0.016 Ghana

37 0.751 -0.016 Mongolia

38 0.752 -0.016 Comoros

39 0.752 -0.016 Burkina Faso (Upper Volta)

40 0.752 -0.015 Jamaica

41 0.752 -0.015 Cuba

42 0.752 -0.015 Estonia

43 0.753 -0.015 Guyana

44 0.754 -0.014 Vietnam, Democratic Republic of

45 0.754 -0.014 Rwanda

46 0.754 -0.013 Oman

47 0.754 -0.013 Senegal

48 0.754 -0.013 Mozambique

49 0.755 -0.013 Portugal

50 0.755 -0.013 Afghanistan

51 0.755 -0.012 Togo

52 0.755 -0.012 Mauritania

53 0.755 -0.012 Pakistan

54 0.755 -0.012 Mauritius

55 0.755 -0.012 India

56 0.756 -0.011 Solomon Islands

57 0.756 -0.011 Trinidad and Tobago

58 0.756 -0.011 Fiji

59 0.756 -0.011 Korea, Republic of

60 0.756 -0.011 Kuwait

61 0.756 -0.011 Australia

62 0.757 -0.011 Costa Rica

63 0.757 -0.011 Guinea-Bissau

Continued on next page
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Table A.5 – continued from previous page

Rank PR AUC Difference Country

64 0.757 -0.011 Belgium

65 0.757 -0.011 Surinam

66 0.757 -0.010 Tajikistan

67 0.757 -0.010 Bosnia-Herzegovina

68 0.758 -0.010 German Federal Republic

69 0.758 -0.010 Hungary

70 0.758 -0.010 Tunisia

71 0.758 -0.010 Israel

72 0.758 -0.010 Cameroon

73 0.758 -0.010 Russia (Soviet Union)

74 0.758 -0.010 Brazil

75 0.758 -0.009 Kazakhstan

76 0.758 -0.009 Peru

77 0.758 -0.009 Ecuador

78 0.759 -0.008 Albania

79 0.759 -0.008 Eritrea

80 0.760 -0.008 Guatemala

81 0.760 -0.007 Croatia

82 0.760 -0.007 Madagascar

83 0.760 -0.007 Singapore

84 0.760 -0.007 Thailand

85 0.761 -0.007 Netherlands

86 0.761 -0.007 United States of America

87 0.761 -0.007 Venezuela

88 0.762 -0.006 Cote D?Ivoire

89 0.762 -0.006 Latvia

90 0.762 -0.006 Nepal

91 0.762 -0.006 Malawi

92 0.762 -0.006 Namibia

93 0.762 -0.005 Saudi Arabia

94 0.762 -0.005 South Africa

95 0.762 -0.005 Liberia

96 0.763 -0.005 Lebanon

97 0.763 -0.005 Bangladesh

Continued on next page
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Table A.5 – continued from previous page

Rank PR AUC Difference Country

98 0.763 -0.005 Gambia

99 0.763 -0.004 Niger

100 0.764 -0.004 Haiti

101 0.764 -0.004 Egypt

102 0.764 -0.004 Benin

103 0.764 -0.003 Azerbaijan

104 0.764 -0.003 Somalia

105 0.764 -0.003 Belarus (Byelorussia)

106 0.765 -0.003 Bhutan

107 0.765 -0.002 Zimbabwe (Rhodesia)

108 0.765 -0.002 Congo

109 0.766 -0.002 Iraq

110 0.766 -0.002 Laos

111 0.766 -0.001 Botswana

112 0.766 -0.001 Nigeria

113 0.766 -0.001 Bulgaria

114 0.767 -0.001 Morocco

115 0.767 -0.001 Tanzania/Tanganyika

116 0.767 -0.001 Swaziland

117 0.767 -0.001 Papua New Guinea

118 0.767 -0.001 New Zealand

119 0.767 -0.001 Taiwan

120 0.767 -0.000 Denmark

121 0.767 -0.000 Central African Republic

122 0.767 -0.000 Libya

123 0.767 -0.000 Malaysia

124 0.768 0.000 Cyprus

125 0.768 0.000 Slovakia

126 0.768 0.001 Ireland

127 0.768 0.001 Mali

128 0.769 0.001 Guinea

129 0.769 0.001 Japan

130 0.769 0.001 Dominican Republic

131 0.769 0.001 Panama

Continued on next page
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Table A.5 – continued from previous page

Rank PR AUC Difference Country

132 0.769 0.001 Nicaragua

133 0.769 0.002 France

134 0.769 0.002 Sri Lanka (Ceylon)

135 0.770 0.002 Cape Verde

136 0.770 0.002 Turkmenistan

137 0.770 0.002 Chile

138 0.770 0.003 Kenya

139 0.771 0.003 Sweden

140 0.771 0.003 Austria

141 0.771 0.004 Georgia

142 0.771 0.004 Equatorial Guinea

143 0.771 0.004 Poland

144 0.773 0.005 Jordan

145 0.773 0.005 Uruguay

146 0.773 0.005 Gabon

147 0.773 0.006 Iran (Persia)

148 0.773 0.006 Sierra Leone

149 0.773 0.006 Lithuania

150 0.774 0.007 Canada

151 0.775 0.007 Chad

152 0.775 0.007 China

153 0.775 0.008 Uzbekistan

154 0.775 0.008 Slovenia

155 0.776 0.008 Syria

156 0.777 0.010 Congo, Democratic Republic of (Zaire)

157 0.778 0.010 Macedonia (Former Yugoslav Republic of)

158 0.779 0.011 Qatar

159 0.779 0.011 Angola

160 0.783 0.016 Spain

161 0.791 0.023 Djibouti

Limited period
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Table A.6: All countries sorted by effect on PR AUC 2006-2013

Rank PR AUC Difference Country

1 0.697 -0.084 Turkey (Ottoman Empire)

2 0.721 -0.060 Sudan

3 0.721 -0.060 Mexico

4 0.721 -0.060 Cambodia (Kampuchea)

5 0.721 -0.060 Kyrgyz Republic

6 0.722 -0.060 Uganda

7 0.724 -0.058 Ethiopia

8 0.728 -0.053 Yemen (Arab Republic of Yemen)

9 0.729 -0.052 United Kingdom

10 0.730 -0.052 Zambia

11 0.730 -0.051 Philippines

12 0.731 -0.050 Finland

13 0.734 -0.047 Luxembourg

14 0.734 -0.047 Italy/Sardinia

15 0.735 -0.046 Lesotho

16 0.737 -0.044 Bahrain

17 0.737 -0.044 El Salvador

18 0.737 -0.044 Afghanistan

19 0.738 -0.043 Czech Republic

20 0.738 -0.043 Rwanda

21 0.739 -0.042 United Arab Emirates

22 0.739 -0.042 Honduras

23 0.741 -0.040 Thailand

24 0.741 -0.040 Korea, People’s Republic of

25 0.741 -0.040 Algeria

26 0.742 -0.039 Vietnam, Democratic Republic of

27 0.742 -0.039 Togo

28 0.743 -0.038 Switzerland

29 0.744 -0.037 Norway

30 0.745 -0.037 Greece

31 0.745 -0.036 Zimbabwe (Rhodesia)

32 0.745 -0.036 Surinam

33 0.745 -0.036 German Federal Republic

34 0.746 -0.035 Guinea-Bissau

Continued on next page
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Table A.6 – continued from previous page

Rank PR AUC Difference Country

35 0.746 -0.035 Ukraine

36 0.747 -0.035 Paraguay

37 0.747 -0.034 Burundi

38 0.748 -0.033 Tunisia

39 0.748 -0.033 Cuba

40 0.748 -0.033 Moldova

41 0.748 -0.033 Belgium

42 0.748 -0.033 Indonesia

43 0.749 -0.032 Comoros

44 0.749 -0.032 Bangladesh

45 0.749 -0.032 Mauritius

46 0.749 -0.032 Iraq

47 0.750 -0.031 Latvia

48 0.750 -0.031 Portugal

49 0.750 -0.031 Denmark

50 0.750 -0.031 Bolivia

51 0.751 -0.030 Guatemala

52 0.751 -0.030 Australia

53 0.751 -0.030 Somalia

54 0.751 -0.030 Hungary

55 0.752 -0.030 Saudi Arabia

56 0.752 -0.029 Jamaica

57 0.752 -0.029 Rumania

58 0.752 -0.029 India

59 0.752 -0.029 Armenia

60 0.752 -0.029 Brazil

61 0.753 -0.028 Belarus (Byelorussia)

62 0.753 -0.028 Lebanon

63 0.754 -0.027 Trinidad and Tobago

64 0.754 -0.027 Fiji

65 0.754 -0.027 Mongolia

66 0.754 -0.027 Sri Lanka (Ceylon)

67 0.755 -0.026 Kuwait

68 0.756 -0.025 Peru

Continued on next page
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Table A.6 – continued from previous page

Rank PR AUC Difference Country

69 0.756 -0.025 Mozambique

70 0.757 -0.024 Kazakhstan

71 0.757 -0.024 Eritrea

72 0.758 -0.024 Colombia

73 0.758 -0.023 Liberia

74 0.758 -0.023 Bulgaria

75 0.758 -0.023 Ghana

76 0.758 -0.023 Central African Republic

77 0.758 -0.023 United States of America

78 0.759 -0.022 Madagascar

79 0.759 -0.022 Croatia

80 0.759 -0.022 Solomon Islands

81 0.760 -0.021 Mauritania

82 0.760 -0.021 Burkina Faso (Upper Volta)

83 0.760 -0.021 Tajikistan

84 0.760 -0.021 Nepal

85 0.760 -0.021 Estonia

86 0.761 -0.020 Egypt

87 0.762 -0.019 Oman

88 0.762 -0.019 Malawi

89 0.762 -0.019 Albania

90 0.762 -0.019 Sierra Leone

91 0.762 -0.019 Korea, Republic of

92 0.762 -0.019 Senegal

93 0.763 -0.018 Guinea

94 0.763 -0.018 Gambia

95 0.763 -0.018 Cote D?Ivoire

96 0.763 -0.018 Chile

97 0.763 -0.018 Taiwan

98 0.763 -0.018 Bosnia-Herzegovina

99 0.763 -0.018 Costa Rica

100 0.765 -0.016 Israel

101 0.765 -0.016 Argentina

102 0.765 -0.016 Namibia

Continued on next page
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Table A.6 – continued from previous page

Rank PR AUC Difference Country

103 0.766 -0.015 Slovakia

104 0.766 -0.015 Benin

105 0.766 -0.015 Singapore

106 0.766 -0.015 Netherlands

107 0.767 -0.014 Ecuador

108 0.767 -0.014 Guyana

109 0.767 -0.014 New Zealand

110 0.767 -0.014 Ireland

111 0.768 -0.013 South Africa

112 0.769 -0.012 Kenya

113 0.769 -0.012 Poland

114 0.769 -0.012 Japan

115 0.769 -0.012 Russia (Soviet Union)

116 0.770 -0.011 Morocco

117 0.771 -0.010 Azerbaijan

118 0.772 -0.009 Syria

119 0.772 -0.009 Congo

120 0.772 -0.009 Haiti

121 0.772 -0.009 Sweden

122 0.773 -0.008 Swaziland

123 0.773 -0.008 France

124 0.773 -0.008 Dominican Republic

125 0.773 -0.008 Malaysia

126 0.774 -0.008 Uruguay

127 0.774 -0.007 Cameroon

128 0.774 -0.007 Gabon

129 0.774 -0.007 Georgia

130 0.774 -0.007 Iran (Persia)

131 0.775 -0.006 Equatorial Guinea

132 0.775 -0.006 Nicaragua

133 0.775 -0.006 Venezuela

134 0.775 -0.006 Chad

135 0.776 -0.005 Qatar

136 0.776 -0.005 Slovenia

Continued on next page
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Table A.6 – continued from previous page

Rank PR AUC Difference Country

137 0.776 -0.005 Uzbekistan

138 0.777 -0.005 Macedonia (Former Yugoslav Republic of)

139 0.777 -0.004 Panama

140 0.778 -0.004 Pakistan

141 0.779 -0.002 Niger

142 0.780 -0.002 Papua New Guinea

143 0.780 -0.001 Botswana

144 0.780 -0.001 Nigeria

145 0.780 -0.001 Jordan

146 0.780 -0.001 Turkmenistan

147 0.782 0.001 Cape Verde

148 0.782 0.001 Laos

149 0.782 0.001 China

150 0.782 0.001 Libya

151 0.782 0.001 Bhutan

152 0.782 0.001 Lithuania

153 0.784 0.003 Canada

154 0.784 0.003 Mali

155 0.785 0.004 Cyprus

156 0.785 0.004 Congo, Democratic Republic of (Zaire)

157 0.786 0.005 Spain

158 0.786 0.005 Austria

159 0.788 0.007 Djibouti

160 0.789 0.008 Tanzania/Tanganyika

161 0.799 0.018 Angola

A.4.2 Descriptive statistics by group

Countries are divided into three groups depending on how their presence affects model

precision. The destructive group is comprised of the countries with the greatest negative

impact on model precision, more precisely any country that is in the top ten list of either

evaluation period. The reinforcing group are those on the other end of the scale, being

those that lead to the greatest reduction in precision when removed. The others are the

remaining countries
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Destructive Reinforcing Others

N 16 15 131

Table A.7: PR outlier group sizes.

No conflict Minor conflict Major conflict

Destructive 0.88 0.07 0.05

Reinforcing 0.68 0.20 0.11

Others 0.86 0.10 0.04

Table A.8: The proportion of dyads in different conflict states by group.

Min. 1st Qu. Median Mean 3rd Qu. Max.

ltimeindep

Destructive 2.16 2.70 3.03 3.42 4.19 5.64

Reinforcing 2.20 2.97 3.42 3.84 4.78 5.64

Others 2.12 2.96 3.27 3.82 5.01 5.66

ltsc0

Destructive 0.06 1.41 2.11 2.26 2.95 4.73

Reinforcing 0.29 0.71 2.17 2.03 2.82 4.73

Others 0.00 1.74 2.40 2.55 3.23 5.64

Table A.9: Descriptive statistics for logged years since independence and logged years in a state
of peace.

.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

ncts0

Destructive 0.00 0.00 0.74 1.34 2.22 4.65

Reinforcing 0.03 0.34 1.06 1.35 2.50 4.59

Others 0.00 0.42 1.40 1.63 2.55 5.64

ltsnc

Destructive 1.08 1.54 2.29 2.18 2.67 3.21

Reinforcing 0.78 1.62 1.98 2.00 2.39 3.21

Others 0.85 1.63 2.13 2.13 2.64 3.21

lpop

Destructive 6.14 7.62 9.05 8.99 10.10 13.77

Reinforcing 5.92 8.49 9.24 9.25 10.63 11.87

Others 5.89 7.99 8.75 8.84 9.64 13.47

lGDPcap

Destructive 6.42 7.40 8.50 8.47 9.59 10.73

Reinforcing 6.29 7.16 7.45 8.30 9.77 11.08

Others 6.19 7.33 8.30 8.23 9.05 10.36

nb lGDPcap

Destructive 6.56 7.28 8.83 8.44 9.56 10.15

Reinforcing 6.79 7.24 8.65 8.53 9.69 10.02

Others 6.54 7.40 8.20 8.24 8.94 9.99

polity2

Destructive -10.00 -5.08 -2.58 0.39 8.97 10.00

Reinforcing -9.37 -4.01 -2.73 -0.58 2.84 10.00

Others -10.00 -4.27 -0.27 0.64 5.84 10.00

polity2sq

Destructive 22.83 39.53 67.17 66.13 100.00 100.00

Reinforcing 9.00 30.84 44.58 52.23 76.17 100.00

Others 0.00 36.00 46.91 52.35 64.66 100.00

nb TSRC 5

Destructive 0.00 0.33 0.54 0.50 0.75 0.83

Reinforcing 0.00 0.18 0.57 0.44 0.70 0.84

Others 0.00 0.27 0.52 0.47 0.71 0.86

Table A.10: Descriptive statistics for ncts0, ltsnc, lpop,lGDPcap, nb lGDPcap, polity2, polity2sq
and nb TSRC 5.
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A.5 Brier results

A.5.1 Brier score differences

Tables of all countries and the effect on model Brier score when dropping them from the

dataset. As a lower score is better with Brier, the effects here are opposite of those on

PR. A positive effect when dropped equals a negative impact, meaning the country is

reinforcing, and vice versa for negative effects.

Full period

Table A.11: All countries sorted by effect on Brier score 2001-2013

Rank Brier score Difference Country

1 0.067 0.006 Turkey (Ottoman Empire)

2 0.066 0.005 Norway

3 0.066 0.005 Finland

4 0.066 0.005 Bahrain

5 0.066 0.004 Armenia

6 0.066 0.004 United Arab Emirates

7 0.065 0.004 Luxembourg

8 0.065 0.003 Mexico

9 0.064 0.003 Cambodia (Kampuchea)

10 0.064 0.003 United Kingdom

11 0.064 0.003 Kyrgyz Republic

12 0.064 0.003 Italy/Sardinia

13 0.064 0.003 Fiji

14 0.064 0.003 Togo

15 0.064 0.003 Indonesia

16 0.064 0.003 Argentina

17 0.064 0.003 Korea, People’s Republic of

18 0.064 0.003 Guatemala

19 0.064 0.003 Bolivia

20 0.064 0.003 El Salvador

21 0.064 0.002 Mozambique

22 0.064 0.002 Latvia

23 0.064 0.002 Yemen (Arab Republic of Yemen)

24 0.064 0.002 Tunisia

Continued on next page
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Table A.11 – continued from previous page

Rank Brier score Difference Country

25 0.064 0.002 Rumania

26 0.064 0.002 Burkina Faso (Upper Volta)

27 0.064 0.002 Zambia

28 0.064 0.002 Honduras

29 0.064 0.002 Vietnam, Democratic Republic of

30 0.064 0.002 Comoros

31 0.064 0.002 Czech Republic

32 0.064 0.002 Portugal

33 0.063 0.002 Surinam

34 0.063 0.002 New Zealand

35 0.063 0.002 Australia

36 0.063 0.002 Trinidad and Tobago

37 0.063 0.002 German Federal Republic

38 0.063 0.002 Ukraine

39 0.063 0.002 Oman

40 0.063 0.002 Malawi

41 0.063 0.002 Guinea-Bissau

42 0.063 0.002 Switzerland

43 0.063 0.002 Brazil

44 0.063 0.002 Philippines

45 0.063 0.002 Korea, Republic of

46 0.063 0.002 Belarus (Byelorussia)

47 0.063 0.002 Albania

48 0.063 0.002 Madagascar

49 0.063 0.002 Jamaica

50 0.063 0.002 Cuba

51 0.063 0.002 Belgium

52 0.063 0.002 Greece

53 0.063 0.002 Lebanon

54 0.063 0.002 Bosnia-Herzegovina

55 0.063 0.001 Uganda

56 0.063 0.001 Tajikistan

57 0.063 0.001 Netherlands

58 0.063 0.001 Ghana

Continued on next page
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Table A.11 – continued from previous page

Rank Brier score Difference Country

59 0.063 0.001 Singapore

60 0.063 0.001 Gambia

61 0.063 0.001 Ecuador

62 0.063 0.001 Costa Rica

63 0.063 0.001 Afghanistan

64 0.063 0.001 Ethiopia

65 0.063 0.001 Slovakia

66 0.063 0.001 Mauritania

67 0.062 0.001 Gabon

68 0.062 0.001 Zimbabwe (Rhodesia)

69 0.062 0.001 Solomon Islands

70 0.062 0.001 Taiwan

71 0.062 0.001 Paraguay

72 0.062 0.001 Mongolia

73 0.062 0.001 Mauritius

74 0.062 0.001 Algeria

75 0.062 0.001 Peru

76 0.062 0.001 Morocco

77 0.062 0.001 Croatia

78 0.062 0.001 Lesotho

79 0.062 0.001 Namibia

80 0.062 0.001 Saudi Arabia

81 0.062 0.001 Burundi

82 0.062 0.001 Haiti

83 0.062 0.001 Congo

84 0.062 0.001 Guyana

85 0.062 0.001 Uruguay

86 0.062 0.001 Moldova

87 0.062 0.001 Colombia

88 0.062 0.001 Nicaragua

89 0.062 0.001 Estonia

90 0.062 0.001 United States of America

91 0.062 0.001 South Africa

92 0.062 0.001 Swaziland

Continued on next page
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Table A.11 – continued from previous page

Rank Brier score Difference Country

93 0.062 0.001 Kuwait

94 0.062 0.001 Eritrea

95 0.062 0.001 Azerbaijan

96 0.062 0.000 Denmark

97 0.062 0.000 Cameroon

98 0.062 0.000 Senegal

99 0.062 0.000 Sri Lanka (Ceylon)

100 0.062 0.000 Sudan

101 0.062 0.000 Kazakhstan

102 0.062 0.000 Venezuela

103 0.062 0.000 Japan

104 0.062 0.000 Benin

105 0.062 0.000 Turkmenistan

106 0.062 0.000 Kenya

107 0.062 0.000 Bangladesh

108 0.062 0.000 Chile

109 0.062 0.000 Russia (Soviet Union)

110 0.062 0.000 Botswana

111 0.062 0.000 Libya

112 0.062 0.000 Equatorial Guinea

113 0.062 0.000 Hungary

114 0.062 0.000 Cape Verde

115 0.061 0.000 Egypt

116 0.061 0.000 France

117 0.061 0.000 Laos

118 0.061 0.000 Cote D?Ivoire

119 0.061 -0.000 Cyprus

120 0.061 -0.000 Liberia

121 0.061 -0.000 Bhutan

122 0.061 -0.000 China

123 0.061 -0.000 Guinea

124 0.061 -0.000 Rwanda

125 0.061 -0.000 Papua New Guinea

126 0.061 -0.000 Qatar

Continued on next page
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Rank Brier score Difference Country

127 0.061 -0.000 Georgia

128 0.061 -0.000 Sweden

129 0.061 -0.000 Panama

130 0.061 -0.000 Nepal

131 0.061 -0.000 Spain

132 0.061 -0.000 Dominican Republic

133 0.061 -0.000 Macedonia (Former Yugoslav Republic of)

134 0.061 -0.000 Tanzania/Tanganyika

135 0.061 -0.000 Nigeria

136 0.061 -0.000 Canada

137 0.061 -0.000 Israel

138 0.061 -0.000 India

139 0.061 -0.000 Lithuania

140 0.061 -0.000 Austria

141 0.061 -0.000 Bulgaria

142 0.061 -0.000 Jordan

143 0.061 -0.001 Uzbekistan

144 0.061 -0.001 Niger

145 0.061 -0.001 Malaysia

146 0.061 -0.001 Iraq

147 0.061 -0.001 Ireland

148 0.061 -0.001 Slovenia

149 0.060 -0.001 Mali

150 0.060 -0.001 Thailand

151 0.060 -0.001 Djibouti

152 0.060 -0.001 Syria

153 0.060 -0.001 Chad

154 0.060 -0.001 Sierra Leone

155 0.060 -0.001 Poland

156 0.060 -0.001 Pakistan

157 0.060 -0.002 Iran (Persia)

158 0.060 -0.002 Central African Republic

159 0.059 -0.002 Somalia

160 0.059 -0.002 Angola

Continued on next page
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Table A.11 – continued from previous page

Rank Brier score Difference Country

161 0.059 -0.003 Congo, Democratic Republic of (Zaire)

Limited period

Table A.12: All countries sorted by effect on Brier score 2006-2013

Rank Brier score Difference Country

1 0.071 0.007 Turkey (Ottoman Empire)

2 0.070 0.006 Finland

3 0.069 0.006 Norway

4 0.069 0.006 Armenia

5 0.069 0.005 United Arab Emirates

6 0.069 0.005 Bahrain

7 0.069 0.005 United Kingdom

8 0.068 0.005 Kyrgyz Republic

9 0.068 0.004 Mexico

10 0.068 0.004 Korea, People’s Republic of

11 0.068 0.004 Luxembourg

12 0.068 0.004 Tunisia

13 0.068 0.004 Cambodia (Kampuchea)

14 0.068 0.004 Vietnam, Democratic Republic of

15 0.068 0.004 Italy/Sardinia

16 0.068 0.004 Argentina

17 0.068 0.004 Fiji

18 0.067 0.004 Bolivia

19 0.067 0.004 Togo

20 0.067 0.003 Latvia

21 0.067 0.003 New Zealand

22 0.067 0.003 Rumania

23 0.067 0.003 Comoros

24 0.067 0.003 Guatemala

25 0.067 0.003 Indonesia

26 0.067 0.003 Portugal

Continued on next page
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27 0.067 0.003 German Federal Republic

28 0.067 0.003 Honduras

29 0.067 0.003 Burkina Faso (Upper Volta)

30 0.067 0.003 Trinidad and Tobago

31 0.067 0.003 Afghanistan

32 0.067 0.003 Zambia

33 0.067 0.003 Surinam

34 0.067 0.003 El Salvador

35 0.067 0.003 Jamaica

36 0.066 0.003 Lebanon

37 0.066 0.003 Ukraine

38 0.066 0.003 Brazil

39 0.066 0.003 Sri Lanka (Ceylon)

40 0.066 0.003 Belarus (Byelorussia)

41 0.066 0.003 Belgium

42 0.066 0.002 Uganda

43 0.066 0.002 Madagascar

44 0.066 0.002 Malawi

45 0.066 0.002 Mozambique

46 0.066 0.002 Cuba

47 0.066 0.002 Czech Republic

48 0.066 0.002 Tajikistan

49 0.066 0.002 Gambia

50 0.066 0.002 Australia

51 0.066 0.002 Guinea-Bissau

52 0.066 0.002 Oman

53 0.066 0.002 Switzerland

54 0.066 0.002 Yemen (Arab Republic of Yemen)

55 0.066 0.002 Gabon

56 0.066 0.002 Korea, Republic of

57 0.066 0.002 Slovakia

58 0.066 0.002 Philippines

59 0.066 0.002 Senegal

60 0.066 0.002 Greece

Continued on next page
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Table A.12 – continued from previous page

Rank Brier score Difference Country

61 0.066 0.002 Bosnia-Herzegovina

62 0.066 0.002 Costa Rica

63 0.066 0.002 Solomon Islands

64 0.066 0.002 Zimbabwe (Rhodesia)

65 0.066 0.002 Ecuador

66 0.066 0.002 United States of America

67 0.066 0.002 Albania

68 0.065 0.002 Burundi

69 0.065 0.002 Algeria

70 0.065 0.002 Netherlands

71 0.065 0.002 Congo

72 0.065 0.002 Haiti

73 0.065 0.002 Eritrea

74 0.065 0.002 Denmark

75 0.065 0.002 Liberia

76 0.065 0.002 Azerbaijan

77 0.065 0.001 Ghana

78 0.065 0.001 Croatia

79 0.065 0.001 Mauritania

80 0.065 0.001 Colombia

81 0.065 0.001 Mauritius

82 0.065 0.001 Morocco

83 0.065 0.001 Ethiopia

84 0.065 0.001 Guinea

85 0.065 0.001 Cote D?Ivoire

86 0.065 0.001 Uzbekistan

87 0.065 0.001 Libya

88 0.065 0.001 Paraguay

89 0.065 0.001 Namibia

90 0.065 0.001 Mongolia

91 0.065 0.001 Saudi Arabia

92 0.065 0.001 Sudan

93 0.065 0.001 Taiwan

94 0.065 0.001 Kuwait

Continued on next page
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Table A.12 – continued from previous page

Rank Brier score Difference Country

95 0.065 0.001 Estonia

96 0.065 0.001 Nicaragua

97 0.065 0.001 Rwanda

98 0.064 0.001 Moldova

99 0.064 0.001 Singapore

100 0.064 0.001 Cameroon

101 0.064 0.001 Swaziland

102 0.064 0.001 Kazakhstan

103 0.064 0.001 Equatorial Guinea

104 0.064 0.001 Egypt

105 0.064 0.000 Guyana

106 0.064 0.000 Uruguay

107 0.064 0.000 Peru

108 0.064 0.000 South Africa

109 0.064 0.000 Benin

110 0.064 0.000 Bangladesh

111 0.064 0.000 Lesotho

112 0.064 0.000 Hungary

113 0.064 0.000 Cape Verde

114 0.064 0.000 Japan

115 0.064 0.000 Nepal

116 0.064 0.000 Jordan

117 0.064 0.000 India

118 0.064 -0.000 Turkmenistan

119 0.064 -0.000 Thailand

120 0.064 -0.000 China

121 0.064 -0.000 Iraq

122 0.064 -0.000 Cyprus

123 0.064 -0.000 Sweden

124 0.064 -0.000 Russia (Soviet Union)

125 0.064 -0.000 Georgia

126 0.064 -0.000 Botswana

127 0.064 -0.000 Bhutan

128 0.064 -0.000 Macedonia (Former Yugoslav Republic of)

Continued on next page
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Table A.12 – continued from previous page

Rank Brier score Difference Country

129 0.064 -0.000 Panama

130 0.064 -0.000 Ireland

131 0.064 -0.000 Laos

132 0.063 -0.000 Chad

133 0.063 -0.000 Nigeria

134 0.063 -0.000 Lithuania

135 0.063 -0.000 Chile

136 0.063 -0.001 Venezuela

137 0.063 -0.001 Qatar

138 0.063 -0.001 France

139 0.063 -0.001 Israel

140 0.063 -0.001 Bulgaria

141 0.063 -0.001 Kenya

142 0.063 -0.001 Papua New Guinea

143 0.063 -0.001 Malaysia

144 0.063 -0.001 Spain

145 0.063 -0.001 Dominican Republic

146 0.063 -0.001 Djibouti

147 0.063 -0.001 Tanzania/Tanganyika

148 0.063 -0.001 Sierra Leone

149 0.063 -0.001 Austria

150 0.063 -0.001 Canada

151 0.063 -0.001 Iran (Persia)

152 0.063 -0.001 Slovenia

153 0.062 -0.001 Central African Republic

154 0.062 -0.001 Niger

155 0.062 -0.002 Syria

156 0.062 -0.002 Mali

157 0.062 -0.002 Congo, Democratic Republic of (Zaire)

158 0.062 -0.002 Somalia

159 0.062 -0.002 Poland

160 0.061 -0.003 Pakistan

161 0.060 -0.003 Angola
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A.5.2 Descriptive statistics by group

Destructive Reinforcing Others

N 13 12 137

Table A.13: Brier outlier group sizes.

No conflict Minor conflict Major conflict

Destructive 0.71 0.19 0.09

Reinforcing 0.87 0.11 0.02

Others 0.85 0.10 0.05

Table A.14: The proportion of dyads in different conflict states by group.

Min. 1st Qu. Median Mean 3rd Qu. Max.

ltimeindep

Destructive 2.16 3.03 3.03 3.27 3.33 5.64

Reinforcing 2.20 2.80 3.70 3.90 5.08 5.64

Others 2.12 2.93 3.33 3.83 5.01 5.66

ltsc0

Destructive 0.06 0.95 1.74 1.48 2.01 3.37

Reinforcing 0.84 2.16 2.74 2.95 3.48 5.11

Others 0.00 1.64 2.42 2.52 3.21 5.64

ncts0

Destructive 0.00 0.01 0.15 0.58 1.05 2.03

Reinforcing 0.00 0.94 2.15 1.92 2.64 4.59

Others 0.00 0.43 1.38 1.64 2.63 5.64

Table A.15: Descriptive statistics by group.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

nc

Destructive 0.13 0.38 0.86 0.68 0.93 1.00

Reinforcing 0.00 0.11 0.36 0.40 0.57 1.00

Others 0.00 0.03 0.38 0.43 0.80 1.00

ltsnc

Destructive 1.08 1.61 2.13 2.00 2.30 3.14

Reinforcing 0.78 1.68 2.13 2.01 2.22 3.21

Others 0.85 1.60 2.13 2.15 2.66 3.21

lpop

Destructive 7.60 8.62 8.99 9.23 10.38 11.34

Reinforcing 5.92 7.93 8.49 8.72 9.97 11.11

Others 5.89 7.85 8.87 8.88 9.69 13.77

lGDPcap

Destructive 6.42 6.81 6.90 7.53 8.06 9.94

Reinforcing 6.66 7.87 9.34 9.02 9.96 11.08

Others 6.19 7.30 8.34 8.26 9.14 10.73

nb lGDPcap

Destructive 6.61 7.17 7.38 7.73 8.03 9.91

Reinforcing 7.25 8.53 9.33 9.03 9.73 10.02

Others 6.54 7.38 8.28 8.27 9.01 10.15

polity2

Destructive -6.44 -4.63 -2.35 -2.03 -1.48 10.00

Reinforcing -9.37 -4.25 1.74 1.50 10.00 10.00

Others -10.00 -4.27 -0.27 0.65 6.02 10.00

polity2sq

Destructive 24.51 34.11 40.70 44.95 49.70 100.00

Reinforcing 9.00 32.24 72.64 65.51 100.00 100.00

Others 0.00 36.00 47.42 53.50 69.23 100.00

nb TSRC 5

Destructive 0.38 0.59 0.73 0.68 0.81 0.86

Reinforcing 0.00 0.21 0.39 0.40 0.61 0.84

Others 0.00 0.25 0.52 0.46 0.70 0.84

Table A.16: Descriptive statistics for ncts0, ltsnc, lpop,lGDPcap, nb lGDPcap, polity2, polity2sq
and nb TSRC 5.
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Appendix B

Figures

B.1 Coefficient effects

This appendix contains all figures referenced in the main text.

Figures B.1 and B.2 shows the centered effect of dropping each country on coefficients.

The countries with the most extreme effects are highlighted and named.

Figures B.3 and B.4 shows the centered effect of dropping each country on coefficients

with the destructive countries by PR highlighted.

Figure B.5 shows distribution of countries’ average polity scores by group.
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(a) c1 (b) c2

(c) ltsc0 (d) nc

(e) ltsnc (f) ncts0

Figure B.1: Differences in coefficients resulting from country drops. X-axes are coefficients for minor outcomes and Y-axes
are for major.
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(a) lpop (b) lgdpcap

(c) nb lgdpcap (d) polity2

(e) polity22 (f) nb TSRC 5

Figure B.2: Differences in coefficients resulting from country drops. X-axes are coefficients for minor outcomes and Y-axes
are for major.
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(a) c1 (b) c2

(c) ltsc0 (d) nc

(e) ltsnc (f) ncts0

Figure B.3: Differences in coefficients resulting from country drops. X-axes are coefficients for minor outcomes and Y-axes
are for major.
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(a) lpop (b) lgdpcap

(c) nb lgdpcap (d) polity2

(e) polity22 (f) nb TSRC 5

Figure B.4: Differences in coefficients resulting from country drops.
X-axes are coefficients for minor outcomes and Y-axes are for major.
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