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Abstract

One of the challenges related to modelling calcium dynamics in cardiac cells is
the large di�erence in the length scales involved. The dyad, where important
processes take place, is very small compared to the whole cell. Therefore,
resolutions �ne enough to capture the details of what happens in the dyad
result in huge computational problems for whole-cell simulations, and the
exact choice of resolution has a substantial e�ect on the problem size.

In this thesis, we investigate what grid resolution is necessary to capture the
details of what happens in the dyad. We study simple mathematical models
of calcium dynamics in the dyad and �nd analytical solutions to some of
these simple models. Numerical simulations of the models are carried out
for di�erent resolutions using �nite di�erence methods in 1D and 2D and
a �nite volume method in 3D. The accuracy of the numerical simulations is
then studied by comparing the numerical solutions to analytical solutions and
�ne-grid numerical solutions, and the results suggest necessary resolutions in
the nanometre range.
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Chapter 1

Introduction

1.1 The cardiac muscle cell

The heart is the pump of the circulatory system, responsible for pumping
blood through the vessels and thereby enabling transportation of substances
around the body.

The main mass of the heart is made up by the cardiac muscle cells, and their
contraction and relaxation is what makes the heart pump blood. The cells
have a tubular shape, each with a length of about 100 µm and a diameter of
about 10 µm. Figure 1.1 illustrates their shape and structure.

Figure 1.1: Structure of the cardiac muscle cells. The thick vertical lines
are boundaries between cells, the thin vertical lines are z-lines and the dark
dots are the cell nuclei. The illustration is taken from [4].

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: Typical action potential (in mV) of a ventricular cardiac muscle
cell taken from [16].

The cardiac muscle cells contain a large number of contractile protein �bres
(myo�laments), shortening the cells longitudinally during contraction. The
myo�laments consist of a repeating sequence of contractile units called sar-
comeres. A sarcomere is de�ned as the region between two so-called z-lines
and is approximately 2 µm long.

At the z-lines, the cell is penetrated by so-called t-tubules. These form a
network of tubular extensions of the cell membrane into the cell, are open
to the extracellular space and contain extracellular �uid. They therefore
facilitate e�ective communication between the intracellular and extracellular
space.

The synchronous contraction and relaxation of the cardiac muscle cells are
enabled by an electrical signal spreading through the cells, the so-called ac-
tion potential. In the action potential, the potential across the cell membrane
increases from a negative resting potential (depolarisation) and returns to the
resting potential again (repolarisation). A typical action potential is illus-
trated in Figure 1.2. This electrical activity leads to contraction in a process
called excitation-contraction coupling. In this process, calcium (Ca2+) plays
an important role.

This information about cardiac muscle cells is gathered from the references
[9, 18, 19].



1.2. CALCIUM DYNAMICS 3

Figure 1.3: Left panel: Illustration of a sarcomere (i.e. the region between
two z-lines, see Figure 1.1). The cell membrane (sarcolemma) forms t-tubules
at the z-lines. The SR, coloured blue, forms a network throughout the cell
and is close to the t-tubule at certain locations. Right panel: Illustration of
a calcium release unit consisting of the t-tubule, dyadic cleft and jSR. There
are RyRs located on the membrane between the jSR and the dyadic cleft and
LCCs on the t-tubule. There are also SERCA-pumps on the membrane of
the SR and Na+-Ca2+ exchangers on the t-tubule. The illustration is taken
from [3].

1.2 Calcium dynamics

An increased intracellular (cytosolic) calcium concentration is the signal that
initiates contraction in the excitation-contraction coupling in a cardiac mus-
cle cell.

In a normal heartbeat, the depolarisation of the cell membrane activates
voltage-gated L-type calcium channels (LCCs) located on the t-tubules, al-
lowing calcium to enter the cell from the extracellular space. The calcium
entering the cell through the LCCs does not alone raise the calcium con-
centration in the cytosol enough to cause contraction. Instead, it activates
ryanodine receptors (RyRs) on the membrane of the sarcoplasmic reticulum
(SR) and a larger amount of calcium is released from the SR. This process
is called calcium-induced calcium release.

The SR is a compartment within the cytosol which serves mainly as a calcium
store. The part of the SR that is close to the t-tubules, where the LCCs
are located, is called junctional SR (jSR), and the remaining part is called
network SR (nSR).

The small gap between the LCCs and the jSR is called the dyadic cleft or
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Figure 1.4: Illustration of calcium dynamics in a cardiac muscle cell taken
from [20]. Depolarisation of the cell membrane (1) leads to calcium entering
the cell through the voltage-gated LCCs (2). The increased calcium concen-
tration activates the RyRs (3) and a larger amount of calcium is released
from the SR causing a local increased calcium concentration known as a cal-
cium spark (4). The sum of calcium sparks from several local releases makes
up a calcium signal (5) which initiates contraction of the cell (6). The cell
relax (7) as calcium is pumped back to the SR by the SERCA-pump (8) and
extracted to the extracellular space by the Na+-Ca2+ exchanger (9). The
Na+-Ca2+ exchanger is driven by Na+ gradients maintained by the Na+-K+

pump (10).
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the dyad. The gap is approximately 15 nm long and spans an area with a
diameter of about 100�500 nm. This is where calcium �rst enters through the
LCCs, di�uses to reach the RyRs and additional calcium is released from the
SR. In a typical cardiac muscle cell, there are around 10,000�20,000 dyads.

After calcium is released from the SR, it di�uses out of the dyadic cleft
to the rest of the cytosol. It then binds to the myo�laments and initiates
contraction.

Both in the SR and in the cytosol, calcium is also bound to large calcium-
binding proteins, called calcium bu�ers. This limits the amount of free cal-
cium and slows down di�usion.

After contraction, the cell returns to its resting state by extracting calcium
back to the SR and the extracellular space through, e.g., the SERCA pump
and the Na+-Ca2+ exchanger (see Figure 1.3).

Calcium's role in the excitation-contraction coupling in cardiac muscle cells
is summarized in Figure 1.4, and the information presented in this section is
gathered from the references [6, 10, 14, 19].

1.3 The problem

One of the challenges related to modelling calcium dynamics in cardiac mus-
cle cells is the large di�erence in the length scales involved. The dyad, where
calcium-induced calcium release takes place, is approximately 15 nm long
and 100�500 nm wide [19]. These lengths are very small compared to the size
of a whole cell with a diameter of about 10 µm and a length of about 100 µm
[19]. In order to do numerical simulations that capture the details of what
happens in the dyad, a �ne grid resolution is required. Using this resolution
in whole-cell simulations results in huge computational problems.

In the paper by Chai et al. [3], a simulation of calcium dynamics in a sar-
comere of size 10 µm × 10 µm × 2 µm was run using a resolution of 3 nm in
each spatial direction. An explicit numerical scheme was used, and the total
number of �oating-point operations for a 1 ms simulation was estimated to
be approximately 1.9× 1017.

The simulation was carried out on the supercomputer Tianhe-2. Using 10,000
nodes on this computer, where each node was estimated to have a realistic
performance of about 150 G�op/s, a 1 ms simulation would take approxi-
mately 2 minutes.
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This simulation time would be heavily increased if the resolution was changed
from 3 nm to 1 nm. In that case, the total number of �oating-point operations
would be increased by a factor of 35 = 243, and a 1 ms simulation would
take more than 8 hours.

Simulations over a longer time period or over a larger domain would require
even more simulation time. For instance, a 100 ms simulation of a whole cell
of size 10 µm × 10 µm × 100 µm would require as simulation time of almost
�ve years for a 1 nm resolution. Using a 3 nm resolution, this simulation
would require a simulation time of about a week. The paper concludes that
a resolution of 3 nm is within reach for whole-cell simulations of subcellular
calcium dynamics, but that a 1 nm resolution is still out of reach.

From these estimations from [3] it is evident that the exact choice of grid
resolution has a substantial e�ect on the size of the computational problem
to be solved in the numerical simulations. It could therefore be useful to
know what grid resolution is actually needed to capture the details of what
happens in the dyad.

In this thesis, we address this question by studying some simple models of
calcium dynamics in the dyad and investigating the accuracy of numerical
simulations of these models for di�erent grid resolutions. After �nding an
estimated necessary resolution in the dyad, we will carry out the calculations
mentioned above to estimate how big the computational problem for a whole-
cell simulation would be using that resolution.

1.4 Outline of the thesis

The thesis is structured as follows:

In Chapter 2, the mathematical models of calcium dynamics studied in the
thesis are presented.

In Chapter 3, analytical solutions are derived for the equations of some of
these models.

In Chapter 4, the numerical methods used to solve the equations of the
models numerically are described.

In Chapter 5, results from the numerical simulations are presented, and the
accuracy of the numerical simulations is studied by comparing the analytical
solutions to the numerical solutions for di�erent grid resolutions.
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In Chapter 6, the results from the numerical simulations are summarized
and consequenses for the rates in a Markov model of the RyR channel and
consequences for whole-cell simulations are discussed.

In Chapter 7, conclusions and some suggestions for further work are pre-
sented.
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Chapter 2

Mathematical models

In this chapter, we introduce the mathematical models of calcium dynamics
studied in this thesis. In Section 2.1, a simple model of the dyad is introduced
and in Section 2.2, the model is extended to include reactions with bu�ers.
In Section 2.3, an outline of a whole-cell model is presented.

2.1 The dyad

In our simple models of calcium dynamics in the dyad, we consider a jSR
domain in addition to a dyad domain and model how the calcium concen-
tration, denoted by s and c, vary in time and space in these domains. We
assume that there is an RyR channel on the boundary connecting the two do-
mains. In addition, the jSR and dyad are connected to the nSR and cytosol,
respectively, where the calcium concentration is assumed to be constant. The
geometry of the model is shown in Figure 2.1.

Below, we will �rst introduce the model equations and boundary conditions
in a general form, followed by the formulation of the 1D, 2D and 3D problems
studied in this thesis.

nSR, [Ca2+] = s0, jSR, s(t,x) dyad, c(t,x) cytosol, [Ca2+] = c0

Figure 2.1: Illustration of the model. The calcium concentration is high in
the nSR and jSR and low in the dyad and the cytosol.

9
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2.1.1 Di�usion

Both in the jSR and in the dyad, calcium di�uses from regions with high
calcium concentration to regions with low calcium concentration. To derive
equations modelling this process, we �rst consider some arbitrarily chosen
region Ω with boundary ∂Ω in the dyad domain. In this region, we enforce
conservation of mass, written as:

d

dt

∫
Ω

c dV =

∫
Ω

R dV −
∫
∂Ω

J · n dA. (2.1)

Here R is the rate of change of calcium concentration due to some local
production, e.g. reactions with bu�ers, J is the �ux of calcium and n is the
outward unit normal vector.

Assuming that J is su�ciently smooth, the surface integral can be trans-
formed to a volume integral by applying the divergence theorem:∫

∂Ω

J · n dA =

∫
Ω

∇ · J dV.

Assuming that c is su�ciently smooth, integration and di�erentiation can be
interchanged and (2.1) yields∫

Ω

(
∂c

∂t
−R +∇ · J

)
dV = 0.

Since Ω is an arbitrarily chosen region, the integrand must be zero, and we
have:

∂c

∂t
= R−∇ · J. (2.2)

Fick's law,
J = −kc∇c, (2.3)

states that the �ux is proportional to and directed in the opposite direction
as the concentration gradient and is a reasonable assumption about the �ux
into or out of Ω due to di�usion. The parameter kc is called the di�usion
coe�cient and is speci�c for the substance, in this case Ca2+, and the �uid
in which it is dissolved, in this case the cytosol in the dyadic cleft.

Inserting (2.3) in (2.2), assuming that kc is constant and R = 0, we end up
with the di�usion equation

∂c

∂t
= kc∇2c (2.4)



2.1. THE DYAD 11

for the calcium concentration in the dyad. Similarly, the equation

∂s

∂t
= ks∇2s (2.5)

models the di�usion in the jSR. This derivation of the di�usion equation is
based on the one given in [10].

2.1.2 Boundary conditions

In our models, we assume that there is an RyR channel on the boundary
between the jSR and the dyad releasing calcium from the jSR, where the
calcium concentration is high, to the dyad, where the calcium concentration
is low. The �ux through the channel is assumed to be proportional to the
concentration di�erence between the jSR and the dyad outside the channel.

Since the �ux is directed from the jSR to the dyad, the outward normal
vector on the boundary for the jSR domain is directed in the same direction
as the �ux, and we can write J · n = ḡ(s − c) for some positive ḡ on the
boundary if the channel is open. If the channel is closed, there is no �ux,
and this can be combined in the expression

J · n = g(s− c), (2.6)

where

g(t) =

{
ḡ if the channel is open at time t;
0 otherwise.

(2.7)

Combining this with Fick's law, J = −ks∇s, we get the boundary condition

−ks∇s · n = g(s− c),

which can be rewritten as

ks
∂s

∂n
= g(c− s). (2.8)

In the dyad domain, the outward normal vector on the boundary to the jSR
is directed in the opposite direction as the �ux, so J ·n = −g(s− c), and the
corresponding boundary condition is

kc
∂c

∂n
= g(s− c). (2.9)
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In addition, the jSR is connected to the nSR and the dyad is connected to
the cytosol. Since the nSR and cytosol represent large compartments rela-
tively far from the RyR channel, we assume that the calcium concentration
is constant in these regions. This is incorporated in the models by applying
Dirichlet boundary conditions on the respective boundaries.

In 2D and 3D, we let the remaining boundaries, e.g. the upper and lower
boundaries in Figure 2.1, simply represent the end of the domain. We assume
that no calcium enters or leaves the system through these boundaries and
apply no-�ux boundary conditions.

2.1.3 Formulation of a 1D problem

Bringing the equations and boundary conditions together and de�ning the
domains

Ωs = [−Ls, 0],

Ωc = [0, Lc]

for the jSR and dyad, respectively, our 1D model is formulated as the equa-
tions

∂s

∂t
= ks

∂2s

∂x2
, x ∈ Ωs, (2.10)

∂c

∂t
= kc

∂2c

∂x2
, x ∈ Ωc (2.11)

and the boundary conditions

s(t,−Ls) = s0, (2.12)

c(t, Lc) = c0, (2.13)

ks
∂s

∂x
(t, 0) = g(t)(c(t, 0)− s(t, 0)), (2.14)

kc
∂c

∂x
(t, 0) = g(t)(c(t, 0)− s(t, 0)). (2.15)

The function g(t) is given by (2.7), and ḡ will originally be the constant
speci�ed in Table 2.1. However, in order to derive analytical solutions in
Section 3.1.1, the constant ḡ will be replaced by an explicit function of time.

Similarly, we originally assume that the initial conditions are the constants

s(0, x) = s0, c(0, x) = c0, (2.16)

but to �nd analytical solutions in Section 3.1.1, these will be adjusted to be
functions of x, and the expressions are found on page 24.
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Parameter Value Description

Ls 90 nm Length of the jSR domain in x-direction

Lc 30 nm Length of the dyad domain in x-direction

Ly 30 nm Length of jSR and dyad domains in y-direction

s0 1300 µM
Ca2+ concentration in the cytosol domain
and initial condition in the dyad

c0 0.14 µM
Ca2+ concentration in the nSR domain
and initial condition in the jSR

ḡ 131 nm/ms Flux rate through the RyR channel

ks 73.3 · 103 nm2/ms Di�usion coe�cient for Ca2+ in the jSR

kc 220 · 103 nm2/ms Di�usion coe�cient for Ca2+ in the dyad

Table 2.1: Parameters of the mathematical models of calcium dynamics.
The chosen lengths Ls, Lc and Ly are based on the size of a dyad (see e.g.
[2]). The rest of the parameters are taken from the paper [5]. Note that other
values of the lengths Ls, Lc and Ly are used in the 3D problem (see Table
2.2). Note also that we adjust ḡ and the initial conditions to �t analytical
solutions for the simulations of the 1D and 2D problems.
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2.1.4 Formulation of a 2D problem

The extension from 1D to 2D is done in a straightforward manner, except
that we introduce some special Dirichlet boundary conditions on the form
(2.19) and (2.20). This is done to introduce variation in the y-direction,
enabling us to study how well the numerical methods perform under such
variations, in a way so that we are still able to derive analytical solutions.

We extend the jSR and dyad domains to the rectangles

Ωs = [−Ls, 0]× [0, Ly],

Ωc = [0, Ls]× [0, Ly].

The 2D versions on the di�usion equations are

∂s

∂t
= ks

(
∂2s

∂x2
+
∂2s

∂y2

)
, x ∈ Ωs, (2.17)

∂c

∂t
= kc

(
∂2c

∂x2
+
∂2c

∂y2

)
, x ∈ Ωc, (2.18)

and the new Dirichlet boundary conditions are

s(t,−Ls, y) = hs(y) = s0 + A cos(By), y ∈ [0, Ly], (2.19)

c(t, Lc, y) = hc(y) = c0 + C cos(Dy), y ∈ [0, Ly]. (2.20)

For x = 0, the boundary conditions are on the familiar form

ks
∂s

∂x
(t, 0, y) = g(t, y)(c(t, 0, y)− s(t, 0, y)), y ∈ [0, Ly], (2.21)

kc
∂c

∂x
(t, 0, y) = g(t, y)(c(t, 0, y)− s(t, 0, y)), y ∈ [0, Ly], (2.22)

and we apply no-�ux boundary conditions for the boundaries in the y-
direction:

∂s

∂y
(t, x, 0) = 0,

∂s

∂y
(t, x, Ly) = 0, x ∈ [−Ls, 0], (2.23)

∂c

∂y
(t, x, 0) = 0,

∂c

∂y
(t, x, Ly) = 0, x ∈ [0, Lc]. (2.24)

The inital conditions and ḡ are adjusted to �t analytical solutions and are
speci�ed on page 37.
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nSR jSR dyad cytosol

z

x

y

s c RyR

H y

z

Figure 2.2: Left panel: Geometry of the 3D model. Right panel: The
boundary between the jSR and the dyad. The lighter area represents the
RyR channel.

2.1.5 Formulation of a 3D problem

In the 2D problem, we assumed that there was �ux through the RyR channel
on the entire boundary between the jSR and the dyad. In the 3D problem,
we restrict the channel to a quadratic area on the boundary (see Figure 2.2).

Otherwise, the extention to 3D is straightforward. The jSR and dyad do-
mains are de�ned as the rectangular boxes

Ωs = [−Ls, 0]× [0, Ly]× [0, Lz],

Ωc = [0, Lc]× [0, Ly]× [0, Lz],

and the 3D versions of the di�usion equations (2.4) and (2.5) models the
calcium concentration in these domains.

Compartments representing the nSR and the cytosol are located to the left
of the jSR and to the right of the dyad, respectively, and the concentration
in the nSR and the cytosol is assumed to be constant.

On the boundary between the jSR and the dyad, the boundary conditions are
given by (2.8) and (2.9) on the RyR-part of the boundary. On the remaining
part of the boundary between the jSR and the dyad and on the boundaries
in y- and z-direction, we apply no-�ux boundary conditions.

Since we do not �nd analytical solutions in this case, we let ḡ be the constant
in Table 2.1 and the initial conditions be the constants s0 and c0 for the jSR
and dyad, respectively.
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Parameter Value Description

Ls 96 nm Length of the jSR domain in x-direction

Lc 36 nm Length of the dyad domain in x-direction

Ly 18 nm Length of jSR and dyad domains in y-direction

Lz 18 nm Length of jSR and dyad domains in z-direction

H 6 nm
Length of the sides of the quadratic RyR area
(see Figure 2.2)

Table 2.2: Length parameters speci�c to the 3D model. The lengths Ls,
Lc, Ly and Lz are based on the size of a dyad (see e.g. [2]). The value of H,
the length of the sides of the RyR channel, is chosen to �t easily with the
implementation of the numerical method used in the 3D simulations and so
are the values of the other length parameters.

2.2 Bu�ers

In the model introduced in Section 2.1, the interaction between calcium and
calcium bu�ers is ignored. In this section, we extend the model to include
such interactions.

We �rst consider how to model calcium bu�ering in general and then formu-
late a speci�c model, adding two bu�ers to the 1D problem in Section 2.1.3.
The general derivation of equations is based on the one given in [10] and the
speci�c model is based on the model in [5].

2.2.1 The general case

To derive equations modelling the interaction between calcium and bu�ers,
we apply the law of mass action, which states that given a reaction on the
form

A+B
k−−→ C,

where k is the rate constant, the rate of the reaction is given by

d[C]

dt
= k[A][B],

where [X] denotes the concentration of the substance X.
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The chemical reaction between calcium and a bu�er can be represented by
the reaction

P + Ca2+
kon
�
ko�

B, (2.25)

where P represents the bu�ering protein and B represents calcium bound to
the bu�er.

Letting Btot denote the total bu�er concentration, c the concentration of free
calcium and b the concentration of calcium bound to the bu�er, the law of
mass action states that the rate of change in calcium and bu�er concentration
due to calcium-bu�er reactions is given by

db

dt
= R(c, b),

dc

dt
= −R(c, b),

where
R(c, b) = konc(Btot − b)− ko�b.

To get a model for the total change in concentration, the R(c, b)-term is
added to the di�usion equations, and we get the equations

∂c

∂t
= kc∇2c−R(c, b),

∂b

∂t
= kb∇2b+R(c, b),

if we assume that the bu�er is free to di�use and that kc and kb are the dif-
fusion coe�cients for free calcium and calcium bound to bu�er, respectively.

Initial conditions for the bu�ers

To �nd appropriate initial conditions for the concentration of calcium bound
to bu�er, we assume that the bu�er reaction (2.25) is initially in equilibrium,
i.e. that the reaction rates for the forward and backward reactions are the
same. This means that

konc(Btot − b) = ko�b.

Letting c0 denote the initial concentration of free calcium, the initial concen-
tration of calcium bound to the bu�er is then given by:

b0 =
konc0Btot

konc0 + ko�
. (2.26)
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Parameter Value Description

kb 25 · 103 nm2/ms Di�usion coe�cient for CMDN

Bc
tot

24 µM Total CMDN concentration in dyad

kc
on

34 · 10−3 ms−1µM−1 On rate for CMDN Ca2+ bu�ering

kc
o�

238 · 10−3 ms−1 O� rate for CMDN Ca2+ bu�ering

bc0 0.471 µM
Initial concentration of Ca2+

bound to CMDN in the dyad

Bs
tot

30 · 103 µM Total CSQN concentration in jSR

ks
on

102 · 10−3 ms−1µM−1 On rate for CSQN Ca2+ bu�ering

ks
o�

65 ms−1 O� rate for CSQN Ca2+ bu�ering

bs0 20.1 · 103 µM
Initial concentration of Ca2+

bound to CSQN in the jSR

Table 2.3: Parameters for the bu�ers taken from [5].

2.2.2 Formulation of a 1D problem with bu�ers

In this section, we will extend the 1D problem in Section 2.1.3 by including
two bu�ers in the model. A bu�er called calsequestrin (CSQN) is introduced
in the jSR and a bu�er called calmodulin (CMDN) is introduced in the dyad.
CSQN is the main calcium-binding bu�er in the SR [1]. It is a stationary
protein located in the jSR, where it among other functions enables storage
of large amounts of calcium [1]. CMDN is a mobile calcium-binding protein
free to di�use throughout the cytosol including in the dyad [22].

Letting bs denote the concentration of calcium bound to CSQN and bc the
concentration of calcium bound to CMDN, we get the following system of
equations:

∂s

∂t
= ks

∂2s

∂x2
−Rs(s, bs), x ∈ [−Ls, 0], (2.27)

∂bs
∂t

= Rs(s, bs), x ∈ [−Ls, 0], (2.28)

∂c

∂t
= kc

∂2c

∂x2
−Rc(c, bc), x ∈ [0, Lc], (2.29)

∂bc
∂t

= kb
∂2bc
∂x2

+Rc(c, bc), x ∈ [0, Lc], (2.30)
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where

Rs(s, bs) = ks
on
s (Bs

tot
− bs)− kso�bs, (2.31)

Rc(c, bc) = kc
on
c (Bc

tot
− bc)− kco�bc. (2.32)

The boundary conditions (2.12)−(2.15) are applied for s and c, where ḡ is the
constant in Table 2.1. For CMDN we apply the no-�ux boundary conditions:

∂bc
∂x

(t, 0) = 0,
∂bc
∂x

(t, Lc) = 0. (2.33)

The initial conditions are the constants s0 and c0 for s and c, respectively,
and the initial conditions for the bu�ers are calculated from (2.26).

2.3 The cell

In a typical cardiac muscle cell there are around 10, 000− 20, 000 dyads [14].
To model calcium dynamics in the whole cell, the model of one dyad would
therefore have to be expanded to include several dyads.

Since calcium is free to di�use out of the dyadic cleft into the bulk cytosol,
these dyads should be connected by a large cytosol compartment. Similarly,
the di�erent jSR compartments should be connected by an nSR.

Expanding the model to include several dyads in addition to cytosol and
nSR compartments connecting them would obviously imply a much larger
domain. In the 3D model of the dyad and jSR presented in Section 2.1.5,
the domain is 132 nm × 18 nm × 18 nm. A whole cell of size 100 µm × 10
µm × 10 µm [19], would then have a roughly 108 times larger volume.

In this thesis, we only do simulations of calcium dynamics in one dyad.
Since the spatial domain of a dyad is much smaller than that of the whole
cell, the size of the computational problem to be solved in the simulations
is much more manageable. We can therefore easily do simulations using
di�erent grid resolutions to investigate what resolution is necessary to get
accurate simulations of the dyad. By extension, this resolution would also be
necessary for whole-cell simulations because we expect that in order to get
accurate simulations of a large system of dyads, we need to use a resolution
�ne enough to give accurate simulations of one dyad.
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Chapter 3

Analytical solutions

The systems of equations involved in models of calcium dynamics are gen-
erally too complicated to be solved analytically. Instead, numerical meth-
ods are used to �nd approximations of the solutions, and the accuracy of
these numerical solutions will usually depend on the grid resolution used in
the simulations. To investigate what resolution is necessary to get accurate
simulations of calcium dynamics in the dyad, we will in this thesis use the
numerical methods described in Chapter 4 to �nd numerical solutions of the
models from Chapter 2 for di�erent grid resolutions.

In our attempt to �nd the necessary resolution, it would be very convenient
to also have analytical solutions of the equations since that would allow us to
determine exactly how close the numerical approximations are to the exact
solutions. In this chapter, we therefore derive analytical solutions to the
simple 1D and 2D models without bu�ers introduced above.

Note though that in the derivation of the analytical solutions, we adjust the
�ux from the jSR to the dyad to �t the analytical solutions. This �ux would
normally be given by the mathematical model of the RyR channel, e.g. as
the boundary conditions (2.8) and (2.9), where ḡ is a speci�ed constant. In
the solutions derived below, however, we need to adjust the parameter ḡ to
be a constructed function of t (and y for the 2D problem).

In Chapter 5, we will compare numerical solutions for di�erent resolutions
to the analytical solutions derived in this chapter.

21
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3.1 Analytical solutions of the 1D problem

In this section, we derive analytical solutions of the 1D problem described
in Section 2.1.3. The solutions of the system depend on whether the RyR
channel is open or closed. We will consider the case where the channel is
open for t < t∗ and then closed for t ≥ t∗ for some t∗.

3.1.1 Open channel

We �rst assume that the channel is open. In that case, we �nd that solutions
on the form

s(t, x) = a1e
−a2t sin(a3(x+ Ls)) + a4x+ a5, (3.1)

c(t, x) = b1e
−b2t sin(b3(x− Lc)) + b4x+ b5 (3.2)

ful�l the equations and boundary conditions (2.10)−(2.15) of the 1D problem
if the parameters, the initial conditions and ḡ are adjusted in a certain way.
This is explained in detail below.

Ful�lling the di�usion equations

First, the solutions should satisfy the di�usion equations

∂s

∂t
= ks

∂2s

∂x2
,

∂c

∂t
= kc

∂2c

∂x2
.

Inserting s and c on the form (3.1) and (3.2) yields

−a1a2e
−a2t sin(a3(x+ Ls)) = −ksa1a

2
3e
−a2t sin(a3(x+ Ls)),

−b1b2e
−b2t sin(b3(x− Lc)) = −kcb1b

2
3e
−b2t sin(b3(x− Lc)),

and for this to be ful�lled for all t and x, we must have:

a2 = ksa
2
3, (3.3)

b2 = kcb
2
3. (3.4)
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Ful�lling the Dirichlet boundary conditions

Next, we need the solutions to satisfy the Dirichlet boundary conditions

s(t,−Ls) = s0, c(t, Lc) = c0.

Inserting x = −Ls in (3.1) and x = Lc in (3.2), we �nd

s(t,−Ls) = − Lsa4 + a5,

c(t, Lc) = Lcb4 + b5,

which means that we require

s0 = − Lsa4 + a5, (3.5)

c0 = Lcb4 + b5. (3.6)

Ful�lling the Neumann boundary conditions

The solutions should also ful�l the Neumann boundary conditions

ks
∂s

∂x
(t, 0) = ḡ(t)(c(t, 0)− s(t, 0)),

kc
∂c

∂x
(t, 0) = ḡ(t)(c(t, 0)− s(t, 0)).

To �nd the necessary conditions for these to hold, we �rst note that the
boundary conditions imply

ks
∂s

∂x
(t, 0) = kc

∂c

∂x
(t, 0).

Inserting s and c on the form (3.1) and (3.2) gives

ks(a1a3e
−a2t cos(a3Ls) + a4) = kc(b1b3e

−b2t cos(−b3Lc) + b4).

To make this true for all t and x, we must have:

ksa1a3 cos(Lsa3) = kcb1b3 cos(Lcb3), (3.7)

ksa4 = kcb4, (3.8)

a2 = b2. (3.9)
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When these conditions are ful�lled, the Neumann boundary conditions hold
if we adjust ḡ(t) to be

ḡ(t) =
kc

∂c
∂x

(t, 0)

c(t, 0)− s(t, 0)
=

ks
∂s
∂x

(t, 0)

c(t, 0)− s(t, 0)

=
ks(a1a3e

−a2t cos(a3Ls) + a4)

b1e−b2t sin(−b3Lc) + b5 − a1e−a2t sin(a3Ls)− a5

. (3.10)

This means that in order to �nd analytical solutions of the 1D problem
(2.10)− (2.15) on the form (3.1) and (3.2), we need to construct ḡ in the �ux
through the open RyR channel to be the function (3.10).

Initial conditions

For the initial conditions to match the solutions s and c on the form (3.1)
and (3.2), we de�ne the initial conditions as

s(0, x) = sinit(x) = a1 sin(a3(x+ Ls)) + a4x+ a5, (3.11)

c(0, x) = cinit(x) = b1 sin(b3(x− Lc)) + b4x+ b5, (3.12)

where we have simply inserted t = 0 in s and c on the form (3.1) and (3.2).

Finding the solutions

Bringing everything together, we end up with seven equations (3.3) − (3.9)
that must be satis�ed. This can be achieved by chosing some values for
a1, a3 and a4 and adjusting the rest of the parameters to satisfy the seven
equations.

The system (3.3), (3.4) and (3.9) can be solved by

a2 = ksa
2
3, b2 = a2, b3 =

√
ksa2

3

kc
. (3.13)

From (3.7) we get

b1 =
ksa1a3 cos(Lsa3)

kcb3 cos(Lcb3)
, (3.14)

condition (3.8) yields

b4 =
ks
kc
a4, (3.15)
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and (3.5) and (3.6) give

a5 = s0 + Lsa4, b5 = c0 − Lcb4. (3.16)

If these conditions are satis�ed and ḡ and the initial conditions are adjusted
as explained above, (3.1) and (3.2) are solutions of the 1D problem (2.10)−
(2.15).

Special case with constant ḡ

For the solutions on the form (3.1) and (3.2) to be solutions of the 1D prob-
lem, we needed to use a ḡ(t) constructed to �t the analytical solutions. This
is a drawback since, as metioned above, the value of ḡ would normally be
given by the mathematical model. A typical choice is that ḡ is a speci�ed
constant like the one given in Table 2.1. It could therefore be interesting to
consider the special case were the parameters in the analytical solutions are
adjusted to make ḡ(t) a speci�ed constant.

One way to make the function ḡ(t) constant is to choose a1 = 0. In that
case, (3.14) gives that b1 is also zero. Inserting this in (3.10) shows that ḡ(t)
in this case is the constant function:

ḡ(t) =
ksa4

b5 − a5

.

By inserting a1 = b1 = 0 in (3.1) and (3.2), we end up with the linear
solutions

s(t, x) = a4x+ a5,

c(t, x) = b4x+ b5.

Using the de�nition of a5 and b5 from (3.16), these solutions can be rewritten
as

s(x) = a4(x+ Ls) + s0, (3.17)

c(x) = b4(x− Lc) + c0. (3.18)

If we have some value of ḡ speci�ed by the model, we can now determine the
values of a4 and b4 and �nd the resulting solutions. We want to �nd a4 and
b4 so that

ksa4

b5 − a5

= ḡ.
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Inserting (3.15)− (3.16), we get

ksa4

c0 − ks
kc
Lca4 − s0 − Lsa4

= ḡ,

and solving for a4 gives

a4 =
kcḡ(c0 − s0)

kskc + Lcksḡ + Lskcḡ
. (3.19)

From (3.15) we now have that b4 is given by:

b4 =
ks
kc
a4 =

ksḡ(c0 − s0)

kskc + Lcksḡ + Lskcḡ
. (3.20)

This means that in the case of an open channel with a constant ḡ(t) = ḡ,
we get solutions on the form (3.17) and (3.18), where a4 and b4 are given by
(3.19) and (3.20).

The jump s(t, 0)− c(t, 0) is then given by

s(0)− c(0) =
kcks(s0 − c0)

kskc + Lcksḡ + Lskcḡ
.

In the way we have constructed the solutions and initial conditions above, the
solutions (3.17) and (3.18) will in this case be speci�ed as initial conditions
and as time goes by, the solutions will stay the same. Since nothing happens,
these solutions for a constant ḡ(t) are not so suitable to test the accuracy of
the numerical simulations.

The solutions could be of interest for other initial conditions, though, because
solutions of a system like the 1D problem (2.10)− (2.15) for an open channel
with a constant ḡ could be expected to eventually reach steady-state solutions
that do not change with time. Since (3.17) and (3.18) are solutions satisfying
the equations and boundary conditions in this case, we expect these solutions
to be the steady-state solutions of the system for other initial conditions as
well. In that case, we do not know the solutions for small values of t, but
expect the solutions to approach (3.17) and (3.18) as t → ∞. This means
that for an open channel with a constant ḡ and some chosen initial conditions,
e.g. the constants s0 and c0, our derived analytical solutions serve as expected
steady-state solutions of the system. In Chapter 5, this will be investigated
by numerical simulations.
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Parameter Value
t∗ 2.0 ms
a1 −310 µM
a3 −0.0072 nm−1

a4 −1.97 µM/nm

Table 3.1: Choice of values for the free parameters used in the adjusted
solutions. The remaining parameter values are given by (3.13)− (3.16) and
in Table 2.1.

Choice of free parameters

In the solutions constructed above, we ended up with three free parameters
a1, a3 and a4. Although any choice of values for these parameters would
satisfy the equations and boundary conditions, in our attempt to study the
accuracy of numerical simulations of calcium dynamics, we wish to choose
values so that the analytical solutions are close to the solutions of the original
mathematical model.

In the simulations presented in Chapter 5, we assign a4 the value speci�ed
by (3.19), where the parameters, including the constant ḡ, are the ones given
in Table 2.1. Since the solutions s(x, t) and c(x, t) given by (3.1) and (3.2)
approach

s(t, x) = a4x+ a5,

c(t, x) = b4x+ b5

as t → ∞, this assures that the steady-state solutions are the same as they
would have been if we had used the constant ḡ instead of the constructed
ḡ(t).

The choice of values for a1 and a3 were done by doing simulations with dif-
ferent values, trying to �nd some appropriate a1 and a3 that gave somewhat
reasonable solutions, e.g. by ensuring that ḡ(t) was positive for all t ≥ 0 and
that the initial conditions were almost constant. The chosen values are given
in Table 3.1.

The time to close the channel, t∗, was chosen as the time where the solutions
in the simulations seemed to have reached steady state.
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3.1.2 Closed channel

We will now derive solutions of the 1D problem when the channel is closed,
i.e. when there are no-�ux boundary conditions on the boundary between
the jSR and the dyad.

To �nd the analytical solutions in this case, we use Fourier's method, which
allows us to adjust the solutions to satisfy the initial conditions of our choice.
We can therefore �nd the solutions for a closed channel, given that the chan-
nel has been open until t = t∗. Introductions to Fourier's method for solving
partial di�erential equations are given in e.g. [15, 24].

Since there is no connection between the two domains in this case, the equa-
tions for s and c can be solved separately, and we will solve the equation for
s, the calcium concentration in the jSR, �rst.

Homogeneous Dirichlet boundary condition

To use Fourier's method, we initially consider a homogeneous Dirichlet bound-
ary condition. This means that we are looking for solutions of the problem:

∂s

∂t
= ks

∂2s

∂x2
, x ∈ [−Ls, 0], (3.21)

s(t,−Ls) = 0, (3.22)

∂s

∂x
(t, 0) = 0. (3.23)

Afterwards, the constant s0 can be added to the solution to ful�l the bound-
ary condition s(t,−Ls) = s0. Since the derivative of a constant is zero, the
di�usion equation and no-�ux boundary condition will still be satis�ed.

Separation of variables

As a �rst step to �nd a solution of (3.21)−(3.23), we assume that the solution
can be separated into its t and x dependency in the sense that [24]:

s(t, x) = T (t)X(x).

If we put this into equation (3.21) and assume that neither X(x) nor T (t) is
zero, we �nd

T ′(t)X(x) = ksT (t)X ′′(x) ⇒ T ′(t)

T (t)
= ks

X ′′(x)

X(x)
= −λ,
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for some constant λ.

This results in the two ordinary di�erential equations:

X ′′(x) +
λ

ks
X(x) = 0, (3.24)

T ′(t) + λT (t) = 0. (3.25)

Boundary condition (3.22) is now

X(−Ls) = 0, (3.26)

and boundary condition (3.23) is

X ′(0) = 0. (3.27)

Finding X(x)

The solution of equation (3.24) depends on the sign of λ. If we assume λ ≤ 0,
the trivial solution X(x) = 0 is the only possible solution. We therefore
assume λ > 0. The solution of equation (3.24) is then on the form:

X(x) = C cos
(√

λ
ks
x
)

+D sin
(√

λ
ks
x
)
.

Boundary condition (3.27) now implies D = 0, and then boundary condition
(3.26) implies

C cos
(
−
√

λ
ks
Ls

)
= 0 ⇒

√
λ

ks
Ls = (2k−1)

π

2
⇒ λ

ks
=

(
(2k − 1)π

2Ls

)2

for any integer k.

We have now found a family of possible values of λ;

λk =

(
(2k − 1)π

2Ls

)2

ks

and corresponding functions;

Xk(x) = cos

(
(2k − 1)π

2Ls
x

)
.

Since we have no conditions for the constant C, we can choose any coe�cient
for the Xk(x)-functions.
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Finding the particular solutions

Equation (3.25) has a solution on the form

T (t) = Ee−λt,

so any

Tk(t) = e−( (2k−1)π
2Ls

)
2
kst

with any coe�cient will satisfy the system (3.24)− (3.27).

Multiplying Tk(t) and Xk(x), we �nd the particular solutions

sk(t, x) = Tk(t)Xk(x) = e−( (2k−1)π
2Ls

)
2
kst cos

(
(2k−1)π

2Ls
x
)
,

all ful�lling (3.21) − (3.23). Since the system is linear and homogenous, we
see that any linear combination of these particular solutions will satisfy the
system. This is called the principle of superposition [13].

Adjusting the solution to an initial condition

The particular solutions can now be used to �nd a solution that ful�ls the
initial condition

s(t∗, x) = fs(x).

To �nd this solution, we �rst assume that the function fs(x) can be expressed
as a Fourier series on the form

s(t∗, x) = fs(x) = s0 +
∞∑
m=1

αm cos
(

(2m−1)π
2Ls

x
)
, (3.28)

where αm are some appropriate constants.

In that case, we see by insertion that the solution

s(t, x) = s0 +
∞∑
m=1

αme
−( (2m−1)π

2Ls
)
2
ks(t−t∗) cos

(
(2m−1)π

2Ls
x
)

(3.29)

satis�es both inital condition (3.28), equation (3.21), boundary condition
(3.23) and the boundary condition s(t,−Ls) = s0.

In order to �nd appropriate values for αm, we �rst note that for m,n ≥ 1 :∫ 0

−Ls
cos
(

(2m−1)π
2Ls

x
)

cos
(

(2n−1)π
2Ls

x
)
dx =

{
Ls/2 if m = n,
0 if m 6= n.
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We can now use (3.28) to calculate∫ 0

−Ls
(fs(x)− s0) cos

(
(2k−1)π

2Ls
x
)
dx =

∞∑
m=1

αm

∫ 0

−Ls
cos
(

(2m−1)π
2Ls

x
)

cos
(

(2k−1)π
2Ls

x
)
dx

= αk

∫ 0

−Ls
cos
(

(2k−1)π
2Ls

x
)

cos
(

(2k−1)π
2Ls

x
)
dx

= αk
Ls
2
.

This can be used as a formula for αm:

αm =
2

Ls

∫ 0

−Ls
(fs(x)− s0) cos

(
(2m−1)π

2Ls
x
)
dx. (3.30)

A solution for c

Using the same arguments, it can be shown that the c-solution is given by

c(t, x) = c0 +
∞∑
m=1

βme
−( (2m−1)π

2Lc
)
2
kc(t−t∗) cos

(
(2m−1)π

2Lc
x
)
, (3.31)

where

βm =
2

Lc

∫ Lc

0

(fc(x)− c0) cos
(

(2m−1)π
2Lc

x
)
dx (3.32)

and fc(x) is the function de�ning the initial condition c(t∗, x) = fc(x).

Coe�cients for our special case

We will now connect the two solutions s and c by assuming that the channel
has been open until t = t∗.

Assuming that the solutions are on the form

s(t, x) = a1e
−a2t sin(a3(x+ Ls)) + a4x+ a5,

c(t, x) = b1e
−b2t sin(b3(x− Lc)) + b4x+ b5

for an open channel, we can use the initial conditions

fs(x) = s(t∗, x) = a1e
−a2t∗ sin(a3(x+ Ls)) + a4x+ a5,

fc(x) = c(t∗, x) = b1e
−b2t∗ sin(b3(x− Lc)) + b4x+ b5
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to �nd solutions for after the channel is closed.

The coe�cients are calculated using (3.30) and (3.32), and we �nd:

αm =
2

Ls

∫ 0

−Ls
(fs(x)− s0) cos

(
(2m−1)π

2Ls
x
)
dx

= −8Lsa1a3e
−a2t∗ cos(a3Ls)

4L2
sa

2
3 − (2m− 1)2π2

+
8Lsa4

(2m− 1)2π2
, (3.33)

βm =
2

Lc

∫ Lc

0

(fc(x)− c0) cos
(

(2m−1)π
2Lc

x
)
dx

=
8Lcb1b3e

−b2t∗ cos(b3Lc)

4L2
cb

2
3 − (2m− 1)2π2

− 8Lcb4

(2m− 1)2π2
. (3.34)

This means that if the channel has been open until t∗ and the solutions are
on the form (3.1) and (3.2) for an open channel, then the solutions are on
the form (3.29) and (3.31) where αm and βm are given by (3.33) and (3.34)
after the channel is closed.

Partial sum approximations

The analytical solutions (3.29) and (3.31) are represented as in�nite sums.
In Table 3.2, we observe how the partial sums

sM(t, x) = s0 +
M∑
m=1

αme
−( (2m−1)π

2Ls
)
2
ks(t−t∗) cos

(
(2m−1)π

2Ls
x
)
, (3.35)

cM(t, x) = c0 +
M∑
m=1

βme
−( (2m−1)π

2Lc
)
2
kc(t−t∗) cos

(
(2m−1)π

2Lc
x
)

(3.36)

change when we increase M and thus include more of the terms in the sums.

The di�erence is de�ned as

DM =
‖sM − sM−1‖
‖sM‖

+
‖cM − cM−1‖
‖cM‖

, (3.37)

where sM and cM are the partial sums (3.35) and (3.36) at time t = 2.001
ms when t∗ = 2.0 ms.
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M DM

2 8.480e-03
4 5.721e-04
6 4.642e-05
8 2.448e-06
10 7.322e-08
12 1.174e-09
14 9.792e-12
16 4.180e-14
18 9.030e-17
20 9.803e-20

Table 3.2: Observing how the partial sums (3.35) and (3.36) change with
M. The parameters are given in Table 2.1 and Table 3.1, and the di�erence
DM is calculated from (3.37).

We calculate the di�erence analytically using the norm

‖u‖ =

√∫
Ωu

u2dx,

where Ωu is Ωs and Ωc for s and c, respectively.

Studying Table 3.2, we observe that the di�erence between the approxima-
tions and thereby the e�ect of including more terms becomes small quite
quickly. We conclude that we can compute the solutions to desired accuracy
by adding a su�cient number of terms. In the calculations and plots pre-
sented in Chapter 5, the analytical solutions are given by (3.35) and (3.36)
with M = 20.

The special case with constant ḡ

After �nding analytical solutions for an open channel above, we considered
the special case where the parameters were chosen so that ḡ(t) was a constant
speci�ed by the model. In that case, we found that solutions on the form
(3.17) and (3.18) were expected steady-state solutions of the 1D problem
with an open channel and some chosen initial conditions.

To make ḡ constant, we let a1 = b1 = 0. For the solutions for after the
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channel is closed, this means that we get

αm =
8Lsa4

(2m− 1)2π2
, (3.38)

βm = − 8Lcb4

(2m− 1)2π2
, (3.39)

where a4 and b4 are given by (3.19) and (3.20).

Assuming that the solutions have reached steady state when the channel is
closed, the solutions (3.35) and (3.36) where αm and βm are given by (3.38)
and (3.39) can then be used as analytical solutions for after the channel is
closed for the original 1D problem with a constant ḡ.

3.2 Analytical solutions of the 2D problem

In this section, we derive analytical solutions to the 2D problem described
in Section 2.1.4. We again consider the case where the channel is open until
t = t∗ and then closed.

3.2.1 Open channel

Analogously to the 1D problem, we �nd that solutions on the form

s(t, x, y) = a1e
−a2t sin (a3(x+ Ls)) + a4x+ a5 + a6 cosh(a7x) cos(a8y),

(3.40)

c(t, x, y) = b1e
−b2t sin (b3(x− Lc)) + b4x+ b5 + b6 cosh(b7x) cos(b8y) (3.41)

ful�l the equations and boundary conditions (2.17)−(2.24) of the 2D problem
for an open channel if the parameters, initial conditions and ḡ are adjusted
as explained below.

Ful�lling the di�usion equations

First, the solutions must satisfy the di�usion equations

∂s

∂t
= ks

(
∂2s

∂x2
+
∂2s

∂y2

)
, (3.42)

∂c

∂t
= kc

(
∂2c

∂x2
+
∂2c

∂y2

)
. (3.43)
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Di�erentiating s on the form (3.40), we �nd

∂s

∂t
=− a1a2e

−a2t sin (a3(x+ Ls)) ,

∂2s

∂x2
=− a1a

2
3e
a2t sin (a3(x+ Ls)) + a6a

2
7 cosh(a7x) cos(a8y),

∂2s

∂y2
=− a6a

2
8 cosh(a7x) cos(a8y),

and inserting this in (3.42) yields:

−a1(a2 − ksa2
3)e−a2t sin (a3(x+ Ls)) = ksa6(a2

7 − a2
8) cosh(a7x) cos(a8y).

For this to be satis�ed for all x and t, we need

a2 = ksa
2
3, (3.44)

a2
7 = a2

8. (3.45)

From (3.43) we similarly get the conditions

b2 = kcb
2
3, (3.46)

b2
7 = b2

8. (3.47)

Ful�lling the boundary conditions on the y-boundary

Next, the solutions should satisfy the no-�ux boundary conditions

∂s

∂y
(t, x, 0) =

∂s

∂y
(t, x, Ly) =

∂c

∂y
(t, x, 0) =

∂c

∂y
(t, x, Ly) = 0.

Di�erentiating s on the form (3.40), we �nd

∂s

∂y
= −a6a8 cosh(a7x) sin(a8y).

Inserting y = 0, we see that the boundary condition ∂s
∂y

(t, x, 0) = 0 is ful�lled,

but to make sure ∂s
∂y

(t, x, Ly) = 0, we let

a8 =
k1π

Ly
(3.48)
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for some integer k1.

Similarly, ∂c
∂y

(t, x, 0) = 0 is ful�lled for any choice of parameters, while
∂c
∂y

(t, x, Ly) = 0 requires

b8 =
k2π

Ly
(3.49)

for some integer k2.

Ful�lling the Dirichlet boundary conditions on the x-boundary

The solutions must also satisfy the Dirichlet boundary conditions

s(t,−Ls, y) = s0 + A cos(By),

c(t, Lc, y) = c0 + C cos(Dy).

Inserting x = −Ls in s on the form (3.40) gives

s(t,−Ls, y) = −a4Ls + a5 + a6 cosh(a7Ls) cos(a8y).

For this to equal s0 + A cos(By), we need

−a4Ls + a5 = s0, (3.50)

a6 cosh(a7Ls) = A, (3.51)

a8 = B. (3.52)

For c we similarly get the conditions

b4Lc + b5 = c0, (3.53)

b6 cosh(b7Lc) = C, (3.54)

b8 = D. (3.55)

Ful�lling the Neumann boundary conditions on the x-boundary

Finally, the solutions should satisfy the Neumann boundary conditions

ks
∂s

∂x
(t, 0, y) = ḡ(t, y)(c(t, 0, y)− s(t, 0, y)),

kc
∂c

∂x
(t, 0, y) = ḡ(t, y)(c(t, 0, y)− s(t, 0, y)).
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We again note that these imply

ks
∂s

∂x
(t, 0, y) = kc

∂c

∂x
(t, 0, y).

Inserting s and c on the form (3.40) and (3.41), we get

ks
(
a1a3e

−a2t cos (a3Ls) + a4

)
= kc

(
b1b3e

−b2t cos (b3Lc) + b4

)
,

and for this to be satis�ed for all x and t, we must have:

ksa1a3 cos(Lsa3) = kcb1b3 cos(Lcb3), (3.56)

a2 = b2, (3.57)

ksa4 = kcb4. (3.58)

When these conditions are satis�ed, the Neumann boundary conditions hold
if we adjust ḡ(t, y) to be

ḡ(t, y) =
kc

∂c
∂x

(t, 0, y)

c(t, 0, y)− s(t, 0, y)
=

ks
∂s
∂x

(t, 0, y)

c(t, 0, y)− s(t, 0, y)

=
ks (a1a3e

−a2t cos (a3Ls) + a4)

b1e−b2t sin (−b3Lc) + b5 + b6 cos(b8y)− a1e−a2t sin (a3Ls)− a5 − a6 cos(a8y)
.

(3.59)

This means that ḡ has to be a constructed function, now given by (3.59), in
order for (3.40) and (3.41) to be solutions of the 2D problem (2.17)− (2.24).

Initial conditions

The initial conditions are speci�ed by

s(0, x, y) = sinit(x, y)

= a1 sin (a3(x+ Ls)) + a4x+ a5 + a6 cosh(a7x) cos(a8y), (3.60)

c(0, x, y) = cinit(x, y)

= b1 sin (b3(x− Lc)) + b4x+ b5 + b6 cosh(b7x) cos(b8y), (3.61)

where we have simply inserted t = 0 in s and c on the form (3.40) and (3.41).
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Finding the solutions

Bringing everything together, we end up with 15 equations (3.44) − (3.58)
that must be ful�lled. This can be achieved by choosing some numbers a1,
a3, a4, A and C and some integers k1 and k2 and adjusting the rest of the
parameters to satisfy the 15 equations.

From (3.48), (3.49), (3.52) and (3.55) we get

a8 = B =
k1π

Ly
, b8 = D =

k2π

Ly
. (3.62)

The conditions (3.45) and (3.47) are satis�ed if

a7 = a8, b7 = b8, (3.63)

and (3.51) and (3.54) results in

a6 =
A

cosh(a7Ls)
, b6 =

C

cosh(b7Lc)
. (3.64)

The system (3.44), (3.46) and (3.57) can be solved by

a2 = ksa
2
3, b2 = a2, b3 =

√
ksa2

3

kc
, (3.65)

condition (3.58) gives

b4 =
ks
kc
a4, (3.66)

and (3.56) results in

b1 =
ksa1a3 cos(Lsa3)

kcb3 cos(Lcb3)
. (3.67)

Finally, (3.50) and (3.53) is solved by

a5 = s0 + Lsa4, b5 = c0 − Lcb4. (3.68)

We see that we get the same conditions for a1 − a5 and b1 − b5 as we did
for the solutions of the 1D problem and some new conditions for the new
parameters introduced in the 2D solutions. If these conditions are fu�lled
and ḡ and the initial conditions are adjusted as explained above, (3.40) and
(3.41) are solutions of the 2D problem (2.17)− (2.24).
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Parameter Value
A 100 µM
C −10 µM
k1 2
k2 2

Table 3.3: Parameters used in the 2D simulations. The rest of the pa-
rameters are given in Table 2.1 and Table 3.1 and by (3.13) − (3.16) and
(3.62)− (3.68).

Choice of free parameters

In the 2D solutions constructed above, we ended up with seven free param-
eters a1, a3, a4, A, C, k1 and k2. In the simulations presented in Chapter 5,
we use the same values of a1, a3 and a4 as for the 1D simulations. We also
use the same value of t∗. The values are speci�ed in Table 3.1.

The amplitudes A and C in the Dirichlet boundary conditions are chosen
to be 100 µM and −10 µM, respectively, motivated by the magnitude of
the decrease and increase in calcium concentration due to release through
the RyR channel observed in the 1D simulations. The integers k1 and k2 in
the Dirichlet boundary conditions are both chosen to be 2, representing a
decreased or increased concentration in the middle of the boundary similar
to the RyR boundary in the 3D problem.
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3.2.2 Closed channel

To �nd solutions of the 2D problem (2.17)−(2.24) when the channel is closed,
we again use Fourier's method. We solve the problem in two steps:

• First, we �nd solutions sE(x, y) and cE(x, y) of the steady-state prob-
lems

∂sE
∂x2

+
∂sE
∂y2

= 0,

∂cE
∂x2

+
∂cE
∂y2

= 0,

with the correct boundary conditions (2.19)− (2.24).

• Then, we �nd solutions sH(t, x, y) and cH(t, x, y) of the full equations

∂sH
∂t

= ks

(
∂sH
∂x2

+
∂sH
∂y2

)
,

∂cH
∂t

= kc

(
∂cH
∂x2

+
∂cH
∂y2

)
,

with the correct version of the no-�ux boundary conditions (2.21) −
(2.24) and the homogeneous version of the Dirichlet boundary condi-
tions (2.19) and (2.20).

• The solutions

s(x, y, t) = sE(x, y) + sH(t, x, y),

c(x, y, t) = cE(x, y) + cH(t, x, y)

will then satisfy the full system (2.17)− (2.24) with the correct bound-
ary conditions.

We will start by �nding the solutions sE and sH .

Steady-state solution for s

The steady-state solution sE satis�es the equation

∂sE
∂x2

+
∂sE
∂y2

= 0 (3.69)
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and the boundary conditions

sE(−Ls, y) = hs(y) = s0 + A cos(By), (3.70)

∂sE
∂x

(0, y) = 0, (3.71)

∂sE
∂y

(x, 0) =
∂sE
∂y

(x, Ly) = 0. (3.72)

We assume that we can �nd a solution of this system that can be separated
into its x and y dependency in the sense that [24]

sE(x, y) = X(x)Y (y). (3.73)

Putting this into equation (3.69), we get the two ordinary di�erential equa-
tions:

X ′′(x)− ρX(x) = 0,

Y ′′(y) + ρY (y) = 0.

Using the same approach as in Section 3.1.2, we �nd that

ρn =

(
nπ

Ly

)2

, Yn(y) = cos

(
nπ

Ly
y

)
, Xn(x) = cosh

(
nπ

Ly
x

)
, n = 0, 1, 2...

is a family of solutions that satis�es the equation (3.69) and the homogenous
Neumann boundary conditions (3.71)− (3.72).

Using assumption (3.73), we �nd the particular solutions

sE,n(x, y) = cosh

(
nπ

Ly
x

)
cos

(
nπ

Ly
y

)
,

and by the principle of superposition,

sE(x, y) = γ0 +
∞∑
n=1

γn cosh

(
nπ

Ly
x

)
cos

(
nπ

Ly
y

)
ful�ls equation (3.69) and the three boundary conditions (3.71)− (3.72) for
any choice of the coe�cients γn. What remains is to �nd an appropriate
choice of values for γn so that the Dirichlet boundary condition (3.70) is also
satis�ed.
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Inserting x = −Ls in sE, we get

sE(−Ls, y) = γ0 +
∞∑
n=1

γn cosh

(
nπLs
Ly

)
cos

(
nπ

Ly
y

)
,

and we need to choose the values of γn so that this equals

hs(y) = s0 + A cos(By) = s0 + A cos

(
k1π

Ly
y

)
.

This is achieved by simply letting

γ0 = s0,

γk1 =
A

cosh
(
k1πLs
Ly

) ,
γn = 0, for all other n.

The resulting steady-state solution is

sE(x, y) = s0 + a6 cosh (a7x) cos (a8y) ,

where we have used the de�nition of a6, a7 and a8 from (3.62)− (3.64).

Homogeneous solution for s

The next step is to �nd a solution sH(t, x, y) of the full equation

∂sH
∂t

= ks

(
∂sH
∂x2

+
∂sH
∂y2

)
(3.74)

with the correct boundary conditions

∂sH
∂x

(t, 0, y) = 0, (3.75)

∂sH
∂y

(t, x, 0) =
∂sH
∂y

(t, x, Ly) = 0 (3.76)

and the homogenous version of the Dirichlet boundary condition

sH(t,−Ls, y) = 0. (3.77)
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Using separation of variables and the principle of superposition, we �nd that
the solution

sH(t, x, y) =
∞∑
m=1

∞∑
n=0

αmne
−λmn(t−t∗) cos

(
(2m−1)π

2Ls
x
)

cos
(
nπ
Ly
y
)
, (3.78)

where

λmn = ks

((
(2m−1)π

2Ls

)2

+
(
nπ
Ly

)2
)
,

is a solution of the system (3.74)− (3.77).

To make this solution satisfy our initial condition, we again assume that the
initial condition sH(t∗, x, y) = fs(x, y) can be expressed as a Fourier series:

sH(t∗, x, y) = fs(x, y) =
∞∑
m=1

∞∑
n=0

αmn cos
(

(2m−1)π
2Ls

x
)

cos
(
nπ
Ly
y
)
. (3.79)

To �nd appropriate values of αmn, we �rst recall that for m,n > 0, we have:∫ 0

−Ls
cos
(

(2m−1)π
2Ls

x
)

cos
(

(2n−1)π
2Ls

x
)
dx =

{
Ls/2 if m = n,
0 if m 6= n.

(3.80)

We also note that∫ Ly

0

cos
(
mπ
Ly
y
)

cos
(
nπ
Ly
y
)
dy =


Ly if m = n = 0,
Ly/2 if m = n 6= 0,
0 if m 6= n.

(3.81)

Using (3.79)− (3.81), we �nd∫ Ly

0

∫ 0

−Ls
fs(x, y) cos

(
(2k−1)π

2Ls
x
)
dxdy =

∞∑
n=0

αkn
Ls
2

∫ Ly

0

cos
(
nπ
Ly
y
)
dy = αk0

LsLy
2

,

which gives

αm0 =
2

LsLy

∫ Ly

0

∫ 0

−Ls
fs(x, y) cos

(
(2m−1)π

2Ls
x
)
dxdy. (3.82)

If we now assume l 6= 0, we similarly �nd∫ Ly

0

∫ 0

−Ls
fs(x, y) cos

(
(2k−1)π

2Ls
x
)

cos
(
lπ
Ly
y
)
dxdy

=
∞∑
n=0

αkn
Ls
2

∫ Ly

0

cos
(
lπ
Ly
y
)

cos
(
nπ
Ly
y
)
dy = αkl

LsLy
4

,
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which gives

αmn =
4

LsLy

∫ Ly

0

∫ 0

−Ls
fs(x, y) cos

(
(2m−1)π

2Ls
x
)

cos
(
nπ
Ly
y
)
dxdy (3.83)

for n ≥ 1.

We are now interested in �nding a solution for a closed channel given that
the channel has been open until t = t∗ and that the solution for an open
channel is on the form studied in the previous section, i.e

s(t, x, y) = a1e
−a2t sin (a3(x+ Ls)) + a4x+ a5 + a6 cosh(a7x) cos(a8y).

This means that the initial condition in our case is:

s(t∗, x, y) = a1e
−a2t∗ sin (a3(x+ Ls)) + a4x+ a5 + a6 cosh(a7x) cos(a8y).

Since we have assumed

s(t, x, y) = sH(t, x, y) + sE(x, y),

the initial condition fs(x, y) for sH(t, x, y) is found by:

fs(x, y) = s(t∗, x, y)− sE(x, y)

= a1e
−a2t∗ sin (a3(x+ Ls)) + a4x+ a5 + a6 cosh(a7x) cos(a8y)

− s0 − a6 cosh(a7x) cos(a8y)

= a1e
−a2t∗ sin (a3(x+ Ls)) + a4x+ a5 − s0.

The coe�cients can now be calculated using (3.82) and (3.83). We �nd

αm0 = − 8Lsa1a3e
−a2t∗ cos(a3Ls)

4L2
sa

2
3 − (2m− 1)2π2

+
8Lsa4

(2m− 1)2π2
,

αmn = 0 for n ≥ 1

and end up with the solution

sH(t, x, y) =
∞∑
m=1

αm0e
−λm0(t−t∗) cos

(
(2m−1)π

2Ls
x
)
,

which consists of the same components and coe�cients as the sum in the
solution of the 1D problem.
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Final solutions

In the end, we add s(t, x, y) = sE(x, y)+sH(t, x, y) and �nd the �nal solution

s(t, x, y) = s0 + a6 cosh(a7x) cos(a8y) +
∞∑
m=1

αme
−λm(t−t∗) cos

(
(2m−1)π

2Ls
x
)
,

(3.84)
where

αm = −8Lsa1a3e
−a2t∗ cos(a3Ls)

4L2
sa

2
3 − (2m− 1)2π2

+
8Lsa4

(2m− 1)2π2

and

λm = ks

(
(2m−1)π

2Ls

)2

.

Similarly, we can derive the solution

c(t, x, y) = c0 + b6 cosh(b7x) cos(b8y) +
∞∑
m=1

βme
−ηm(t−t∗) cos

(
(2m−1)π

2Lc
x
)
,

(3.85)
where

βm =
8Lcb1b3e

−b2t∗ cos(b3Lc)

4L2
cb

2
3 − (2m− 1)2π2

− 8Lcb4

(2m− 1)2π2

and

ηm = kc

(
(2m−1)π

2Lc

)2

for the concentration in the dyad.

To summarize, this means that the functions (3.84) and (3.85) are solutions
of the 2D problem for a closed channel, given that the channel has been open
and the solutions on the form (3.40) and (3.41) until t = t∗.

Analogously to the 1D case, we assume that we can represent these solutions
to desired accuracy using a �nite number of terms in the in�nite Fourier
sums. In the simulations presented in Chapter 5, we include the terms for
m = 1, ..., 20 in the representations of the analytical solutions.
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Chapter 4

Numerical methods

In this chapter, we describe the numerical methods used in the simulations of
calcium dynamics. The 1D and 2D problems are solved using �nite di�erence
methods, and the 3D problem is solved using a �nite volume method.

4.1 Finite di�erence method

In the �nite di�erence method, we introduce a grid of discrete points in time
and space and seek approximations of the function values of the solution in
these discrete points [11].

At the grid points, the derivatives are approximated by linear combinations
of the function values in the nearby points. These approximations are called
�nite di�erences and can be found using a �nite number of terms in Taylor
series expansions.

To de�ne the �nite di�erences used in our calculations, we consider some four
times continuously di�erentiable function f(x). The Taylor series expansion
of f can be expressed as [24]

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

24
f (4)(x+ ξ1) (4.1)

for some h > 0 and ξ1 ∈ [0, h].

Similarly, we have

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) +

h4

24
f (4)(x− ξ2) (4.2)

47
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for some for some h > 0 and ξ2 ∈ [0, h].

The �nite di�erences are found by rewriting these expressions and eliminating
some of the last terms.

Rearranging (4.1) gives

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

≈ f(x+ h)− f(x)

h
, (4.3)

and rearranging (4.2) gives

f ′(x) =
f(x)− f(x− h)

h
+O(h)

≈ f(x)− f(x− h)

h
. (4.4)

Subtracting (4.2) from (4.1), we get

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2)

≈ f(x+ h)− f(x− h)

2h
, (4.5)

and adding (4.1) and (4.2) gives

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

≈ f(x+ h)− 2f(x) + f(x− h)

h2
. (4.6)

We will now use these �nite di�erences to derive schemes to solve the 1D and
2D problems.

4.1.1 Grid for the 1D �nite di�erence schemes

In order to set up a �nite di�erence scheme for the 1D models described in
Chapter 2, we �rst introduce the following grid in time and space;
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∆xs ∆xc
x = −Ls x = 0 x = Lc

xs,0 xs,1 xs,2 xs,Ns
xc,0

xc,1 xc,Nc
jSR dyad

Figure 4.1: Illustration of the spatial 1D grid used in the �nite di�erence
schemes. We seek approximations of the solutions s and c in the grid points
marked with black dots for every time step tn.

tn = n∆t, n = 0, 1, ...,

xs,i = − Ls + i∆xs i = 0, 1, ..., Ns,

xc,i = i∆xc i = 0, 1, ..., Nc,

where

∆xs =
Ls
Ns

, ∆xc =
Lc
Nc

.

We are trying to �nd approximations of the solutions s and c in these discrete
points. These solutions can be collected in the vectors

sn =

 sn0
...
snNs

 , cn =

 cn0
...
cnNc

 , n = 0, 1, ...,

where sni denotes the numerical approximation of s(tn, xs,i) and cni denotes
the numerical approximation of c(tn, xc,i).

Since the solutions are known on the Dirichlet part of the boundary, the
unknowns can be collected in the truncated vectors:

ŝn =

 sn1
...
snNs

 , ĉn =

 cn0
...

cnNc−1

 , n = 0, 1, . . .

The inital conditions can easily be discretized by setting

s0
i = sinit(xs,i), i = 0, ..., Ns,

c0
i = cinit(xc,i), i = 0, ..., Nc.

To calculate sni and c
n
i for n ≥ 1, we use schemes derived by replacing deriva-

tives with �nite di�erences.
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4.1.2 1D explicit �nite di�erence scheme

We �rst derive an explicit �nite di�erence scheme used to calculate approxi-
mations of s, the calcium concentration in the jSR.

General scheme

By replacing the derivatives in the di�usion equation

∂s

∂t
= ks

∂2s

∂x2

at some point (tn, xs,i) with the �nite di�erences (4.3) and (4.6), we get

sn+1
i − sni

∆t
= ks

sni+1 − 2sni + sni−1

∆x2
s

.

Solving for the unknowns sn+1
i , we get the explicit formula

sn+1
i = rss

n
i−1 + (1− 2rs)s

n
i + rss

n
i+1,

where

rs = ks
∆t

∆x2
s

. (4.7)

Dirichlet boundary condition

The Dirichlet boundary condition s(t,−Ls) = s0 can be discretized by

sn0 = s0, n = 1, 2, . . .

By inserting this in the general scheme for i = 1, we get the special formula:

sn+1
1 = (1− 2rs)s

n
1 + rss

n
2 + rss0. (4.8)

Neumann boundary condition

For the Neumann boundary condition

ks
∂s

∂x
(t, 0) = g(t)(c(t, 0)− s(t, 0)),
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we can replace the derivative with the centred di�erence (4.5). This gives

ks
snNs+1 − snNs−1

2∆xs
= g(tn)(cn0 − snNs),

which can be rewritten as:

snNs+1 = snNs−1 +
2∆xs
ks

g(tn)
(
cn0 − snNs

)
. (4.9)

Inserting this in the general scheme gives a special formula for i = Ns :

sn+1
Ns

= 2rss
n
Ns−1 + (1− 2rs)s

n
Ns +

2∆t

∆xs
g(tn)

(
cn0 − snNs

)
.

Full scheme on matrix form

If we combine the schemes for the boundary and the inner points, we can
write the full scheme as a matrix problem,

ŝn+1 = Asŝ
n + dns ,

to be calculated for every time step n = 0, 1, ...

The matrix As ∈ RNs×Ns and the vector dns ∈ RNs are given by

As =


1− 2rs rs 0 · · · 0

rs 1− 2rs rs
. . .

...

0
. . . . . . . . . 0

...
. . . rs 1− 2rs rs

0 · · · 0 2rs 1− 2rs

 , dns =


rss0

0
...
0

2∆t
∆xs

g(tn)
(
cn0 − snNs

)

 .

Using the same approach to discretize the equation and boundary conditions
for the calcium concentration in the dyad, we get the matrix problem

ĉn+1 = Acĉ
n + dnc ,

where Ac ∈ RNc×Nc and dnc ∈ RNc are given by

Ac =


1− 2rc 2rc 0 · · · 0

rc 1− 2rc rc
. . .

...

0
. . . . . . . . . 0

...
. . . rc 1− 2rc rc

0 · · · 0 rc 1− 2rc

 , dnc =


− 2∆t

∆xc
g(tn)(cn0 − snNs)

0
...
0
rcc0


and

rc = kc
∆t

∆x2
c

. (4.10)
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Stability condition for the explicit 1D �nite di�erence scheme

For the explicit �nite di�erence scheme to be stable, the discretization pa-
rameters need to satisfy a stability condition. This condition is set up to
ensure that small errors in the initial conditions do not grow exponentially
for each time step.

Assuming that un is the �nite di�erence solution at time step n of the scheme
with initial condition u0 and that ūn is the solution of the same scheme with
initial condition u0+e0, we want to make sure the error en = ūn−un satis�es

‖en‖ ≤ C‖e0‖ (4.11)

for some vector norm ‖ · ‖ and some positive constant C independent of n,
∆t and ∆x. We will now consider how to make sure this condition is ful�lled
for our coupled system using an approach described in [21].

We begin by writing the scheme as one large system on the form

un+1 = Aun + d, (4.12)

where

un =

(
ŝn

ĉn

)
, d =


rss0

0
...
0
rcc0

 ,

A =



1−2rs rs 0 ··· 0 ··· ··· 0

rs 1−2rs rs
...

... ... ...
0 rs 1−2rs rs
... 2rs 1−2rs−pns pns

...
...

... pnc 1−2rc−pnc 2rc
... rc 1−2rc rc 0

... ... ...
rc 1−2rc rc

0 ··· ··· 0 ··· 0 rc 1−2rc


,

and

pns =
2∆t

∆xs
g(tn), pnc =

2∆t

∆xc
g(tn).

Similarly, the solution ūn+1 can be expressed as

ūn+1 = Aūn + d. (4.13)
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Subtracting (4.12) from (4.13), we get

en+1 = Aen,

which implies that
en = Ane0.

Consequently, we have

‖en‖ = ‖Ane0‖ ≤ ‖An‖‖e0‖ ≤ ‖A‖n‖e0‖

for a submultiplicative matrix norm consistent with the vector norm, and we
see that the stability condition (4.11) is satis�ed if

‖A‖ ≤ 1. (4.14)

Choosing the vector norm

‖u‖∞ = max
i
|xi|

and matrix norm

‖A‖∞ = max
i

n∑
j=1

|ai,j|,

we can easily verify whether the condition (4.14) is satis�ed by considering
the row sums Ri =

∑n
j=1 |ai,j| of A. Here ai,j denotes the element in row i

and column j of the matrix A.

For the matrix of our scheme, we have

Ri = |1− 2rs|+ |rs|, i = 1,

Ri = |rs|+ |1− 2rs|+ |rs|, i = 2, ..., Ns − 1,

Ri = |2rs|+ |1− 2rs − pns |+ |pns |, i = Ns,

Ri = |pnc |+ |1− 2rc − pnc |+ |2rc|, i = Ns + 1,

Ri = |rc|+ |1− 2rc|+ |rc|, i = Ns + 2, ..., Ns +Nc − 1,

Ri = |1− 2rc|+ |rc|, i = Ns +Nc,

where all the values rs, rc, p
n
s and pnc are nonnegative since

rs = ks
∆t

∆x2
s

, pns =
2∆t

∆xs
g(tn),

rc = kc
∆t

∆x2
c

, pnc =
2∆t

∆xc
g(tn),
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and we assume that g(t) is nonnegative for all t ≥ 0.

Considering these expressions, we �nd that Ri ≤ 1 for all i if ∆t satis�es the
condition

∆t ≤ min(∆t1,∆t2), (4.15)

where

∆t1 =
1

2

∆x2
s

ks + ∆xsḡ
, (4.16)

∆t2 =
1

2

∆x2
c

kc + ∆xcḡ
(4.17)

and ḡ is the maximum value of g(t).

Considering, for instance, RNs , we �rst note that (4.15) and (4.16) imply
that

2rs + pns ≤ 1 (4.18)

for all n = 0, 1, 2... This means that

RNs = 2rs + 1− 2rs − pns + pns = 1 ≤ 1.

If (4.18) did not hold, i.e. if 2rs + pns > 1, then

RNs = 2rs − 1 + 2rs + pns + pns = 2(2rs + pns )− 1 > 1.

Analogously, we can show that the remaining row sums, Ri, are all smaller
than or equal to one if the stability condition (4.15) holds. As a result, we
have ‖A‖∞ ≤ 1, and the �nite di�erence scheme is stable.

4.1.3 1D explicit �nite di�erence scheme including bu�ers

Including bu�ers in the model as described in Section 2.2.2, we get the fol-
lowing system of equations:

∂s

∂t
= ks

∂2s

∂x2
−Rs(s, bs), x ∈ [−Ls, 0], (4.19)

∂bs
∂t

= Rs(s, bs), x ∈ [−Ls, 0], (4.20)

∂c

∂t
= kc

∂2c

∂x2
−Rc(c, bc), x ∈ [0, Lc], (4.21)

∂bc
∂t

= kb
∂2bc
∂x2

+Rc(c, bc), x ∈ [0, Lc]. (4.22)



4.1. FINITE DIFFERENCE METHOD 55

We get the two new unknowns bs and bc, and the numerical approximations
of these solutions can be gathered in the vectors

bnc =

 bnc,0
...

bnc,Nc

 , bns =

 bns,0
...

bns,Ns

 ,

where bnc,i denotes the numerical approximation of bc(tn, xc,i) and b
n
s,i denotes

the numerical approximation of bs(tn, xs,i).

Schemes for s and c

The reaction terms in the equations for s and c are incorporated in the
schemes by adding reaction vectors q̂ns and q̂nc to the schemes. We de�ne

qns = ∆t

 Rs(s
n
0 , b

n
s,0)

...
Rs(s

n
Ns
, bns,Ns)

 , qnc = ∆t

 Rc(c
n
0 , b

n
c,0)

...
Rc(c

n
Nc
, bnc,Nc)


and let q̂ns be the vector qns except the �rst entry and q̂nc be the vector qnc
except the last entry.

The schemes for s and c can now be written as:

ŝn+1 = Asŝ
n + dns − q̂ns ,

ĉn+1 = Acĉ
n + dnc − q̂nc .

Schemes for the bu�ers

The scheme for the concentration of calcium bound to bu�er in the dyad
is very similar, except that there are no-�ux boundary conditions on the
boundary. We get the scheme

bn+1
c = Abb

n
c + qnc ,

where the matrix Ab ∈ R(Nc+1)×(Nc+1) is given by

Ab =


1− 2rb 2rb 0 · · · 0

rb 1− 2rb rb
. . .

...

0
. . . . . . . . . 0

...
. . . rb 1− 2rb rb

0 · · · 0 2rb 1− 2rb
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and

rb = kb
∆t

∆x2
c

.

In the equation (4.20) for the concentration of calcium bound to bu�er in
the jSR, we do not have a di�usion term. We discretize the time derivative
using the forward di�erence (4.3) and get the scheme:

bn+1
s = bns + qns .

Stability condition for the scheme including bu�ers

Above we found a stability condition for the �nite di�erence scheme for the
1D problem without bu�ers by demanding that a small error in the initial
conditions should remain small for all time steps. This was done by writing
the scheme as a linear system on matrix form and �nding conditions so that
‖A‖ ≤ 1. Since the �nite di�erence scheme for the 1D problem including
bu�ers includes the nonlinear terms Rs(s

n
i , b

n
s,i) and Rc(c

n
i , b

n
c,i), we can not

�nd stability conditions for this scheme using the same approach.

Instead, we can try to �nd conditions to make sure the values of the numerical
solutions are bounded to a limited interval for all time steps, thus ensuring
that we e.g. do not get negative concentrations or concentrations larger than
some bound. This approach to determine invariant regions for numerical
solutions of �nite di�erence schemes is described in [24].

Below we will show that the numerical solutions of the explicit �nite di�erence
scheme including bu�ers will remain in the invariant regions

0 ≤ sni ≤ s∗, i = 0, ..., Ns, (4.23)

0 ≤ bns,i ≤ b∗s, i = 0, ..., Ns, (4.24)

0 ≤ cni ≤ c∗, i = 0, ..., Nc, (4.25)

0 ≤ bnc,i ≤ b∗c , i = 0, ..., Nc, (4.26)

where

s∗ = c∗, (4.27)

b∗s =
ks
on
s∗Bs

tot

ks
on
s∗ + ks

o�

< Bs
tot
, (4.28)

b∗c =
kc
on
c∗Bc

tot

kc
on
c∗ + kc

o�

< Bc
tot
, (4.29)
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for all time steps if s0
i , b

0
s,i, c

0
i and b

0
c,i are in these regions and ∆t satis�es

the condition
∆t ≤ min(∆t1,∆t2,∆t3,∆t4), (4.30)

where

∆t1 =
1

2

∆x2
s

ks + ∆xsḡ + ∆x2
sk

s
on
Bs

tot/2
, (4.31)

∆t2 =
1

ks
on
s∗ + ks

o�

, (4.32)

∆t3 =
1

2

∆x2
c

kc + ∆xcḡ + ∆x2
ck

c
on
Bc

tot/2
, (4.33)

∆t4 =
1

2

∆x2
c

kb + ∆x2
c(k

c
on
c∗ + kc

o�
)/2

. (4.34)

We begin by writing the scheme for the numerical concentration of free cal-
cium and calcium bound to bu�er in the jSR on component form

sn+1
1 = (1− 2rs)s

n
1 + rss

n
2 + rss0 −∆tRs(s

n
1 , b

n
s,1),

sn+1
i = rss

n
i−1 + (1− 2rs)s

n
i + rss

n
i+1 −∆tRs(s

n
i , b

n
s,i), i = 2, ..., Ns − 1,

sn+1
Ns

= 2rss
n
Ns−1 + (1− 2rs)s

n
Ns + pns

(
cn0 − snNs

)
−∆tRs(s

n
Ns , b

n
s,Ns),

bn+1
s,i = bns,i + ∆tRs(s

n
i , b

n
s,i), i = 0, ..., Ns,

where

Rs(s, bs) = ks
on
s (Bs

tot
− bs)− kso�bs,

Rc(c, bc) = kc
on
c (Bc

tot
− bc)− kco�bc.

Similarly, the scheme for the calcium concentration in the dyad is

cn+1
0 = (1− 2rc)c

n
0 + 2rcc

n
1 − pnc

(
cn0 − snNs

)
−∆tRc(c

n
0 , b

n
c,0),

cn+1
i = rcc

n
i−1 + (1− 2rc)c

n
i + rcc

n
i+1 −∆tRc(c

n
i , b

n
c,i), i = 1, ..., Nc − 2,

cn+1
Nc−1 = rcc

n
Nc−2 + (1− 2rc)c

n
Nc−1 + rcc0 −∆tRc(c

n
Nc−1, b

n
c,Nc−1),

and the scheme for the concentration of calcium bound to bu�er in the dyad
is

bn+1
c,0 = (1− 2rb)b

n
c,0 + 2rbb

n
c,1 + ∆tRc(c

n
0 , b

n
c,0),

bn+1
c,i = rbb

n
c,i−1 + (1− 2rb)b

n
c,i + rbb

n
c,i+1 + ∆tRc(c

n
i , b

n
c,i), i = 1, ..., Nc − 1,

bn+1
c,Nc

= 2rbb
n
c,Nc−1 + (1− 2rb)b

n
c,Nc + ∆tRc(c

n
Nc , b

n
c,Nc).
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These expressions for the solutions in the next time step can be expressed as
functions of the numerical solutions in the previous time step. Considering,
for instance, the scheme for the calcium concentration in the inner points of
the jSR domain, we can write:

sn+1
i = S(sni−1, s

n
i , s

n
i+1, b

n
s,i), i = 2, ..., Ns − 1,

S(s−, s, s+, b) = rss− + (1− 2rs)s+ rss+ −∆tRs(s, b).

We are now interested in ensuring that the function S is an increasing func-
tion with respect to all the variables. This is true if the derivative of S with
respect to each variable is positive. Di�erentiating S and using (4.30) and
(4.31), we �nd

∂S

∂s−
=

∂S

∂s+

= rs > 0,

∂S

∂b
= ∆t(ks

on
s+ ko�) > 0,

∂S

∂s
= 1− 2rs −∆tks

on
(Bs

tot
− b) > 1− 2rs −∆tks

on
Bs

tot
≥ 0,

for s−, s, s+ ∈ (0, s∗) and b ∈ (0, b∗s). So, if (4.30) holds, S is an increasing
function with respect to all the variables s−, s, s+ ∈ [0, s∗] and b ∈ [0, b∗s].

Writing the expressions for sn+1
1 and sn+1

Ns
as the functions

sn+1
1 = S1(sn1 , s

n
2 , b

n
s,1),

S1(s, s+, b) = (1− 2rs)s+ rss+ + rss0 −∆tRs(s, b),

sn+1
Ns

= SN(snNs−1, s
n
Ns , c

n
0 , b

n
s,Ns),

SN(s−, s, c, b) = 2rss− + (1− 2rs)s+ pns (c− s)−∆tRs(s, b)

and di�erentiating with respect to each variable, we can similarly show that
S1 is an increasing function with respect to s, s+ ∈ [0, s∗], b ∈ [0, b∗s] and
SN is an increasing function with respect to s−, s ∈ [0, s∗], c ∈ [0, c∗] and
b ∈ [0, b∗s].

Analogously, the numerical concentration of calcium bound to bu�er in the
jSR for the next time step can be expressed as

bn+1
s,i = B(sni , b

n
s,i),

B(s, b) = b+ ∆tRs(s, b).
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Di�erentiating B and using (4.28), (4.30) and (4.32), we �nd

∂B

∂s
= ∆tks

on
(Bs

tot
− b) > 0,

∂B

∂b
= 1−∆t(ks

on
s+ ks

o�
) > 1−∆t(ks

on
s∗ + ko�) ≥ 0

for s ∈ (0, s∗) and b ∈ (0, b∗s), so B is an increasing function with respect to
the variables s ∈ [0, s∗] and b ∈ [0, b∗s].

Likewise, we can show that the condition (4.30) also ensures that the re-
maining expressions for the numerical solutions for the next time step can
be expressed as increasing functions of the numerical solutions in the previ-
ous time step. We will now use this fact to show that (4.23) − (4.26) is an
invariant region for the numerical solutions if (4.30) holds.

First, we assume that the solutions sni , c
n
i , b

n
s,i and b

n
c,i from the previous time

step are in the region (4.23)− (4.26). Considering the calcium concentration
in the jSR, the numerical solutions at the next time step are given by:

sn+1
1 = S1(sn1 , s

n
2 , b

n
s,1),

sn+1
i = S(sni−1, s

n
i , s

n
i+1, b

n
s,i), i = 2, ..., Ns − 1

sn+1
Ns

= SN(snNs−1, s
n
Ns , c

n
0 , b

n
s,Ns).

Since S1, S and SN are increasing functions, (4.23)− (4.29) imply that

sn+1
1 ≥ S1(0, 0, 0) = 0,

sn+1
i ≥ S(0, 0, 0, 0) = 0, i = 2, ..., Ns − 1,

sn+1
Ns
≥ SN(0, 0, 0, 0) = 0

and

sn+1
1 ≤ S1(s∗, s∗, b∗s) = s∗,

sn+1
i ≤ S(s∗, s∗, s∗, b∗s) = s∗, i = 2, ..., Ns − 1,

sn+1
Ns
≤ SN(s∗, s∗, c∗, b∗s) = s∗.

Similarly, for bn+1
s,i , we have that

bn+1
s,i = B(sni , b

n
s,i),

and since B is an increasing function, it follows from (4.23)− (4.29) that

bn+1
s,i ≥ B(0, 0) = 0, i = 0, ..., Ns,

bn+1
s,i ≤ B(s∗, b∗s) = b∗s, i = 0, ..., Ns.
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This means that we have

0 ≤ sn+1
i ≤ s∗, i = 0, ..., Ns,

0 ≤ bn+1
s,i ≤ b∗s, i = 0, ..., Ns,

and using similar arguments for the dyad concentrations, we �nd that

0 ≤ cn+1
i ≤ c∗, i = 0, ..., Nc,

0 ≤ bn+1
c,i ≤ b∗c , i = 0, ..., Nc.

By induction this means that if the initial numerical concentrations, s0
i , b

0
s,i,

c0
i and b

0
c,i, are in the region (4.23)−(4.26) and ∆t ful�ls the condition (4.30),

then the numerical solutions will remain in the region (4.23)− (4.26) for all
time steps. Given the initial conditions in our model (see Section 2.2.2), we
can e.g. choose s∗ = c∗ = s0.

4.1.4 1D implicit �nite di�erence scheme

In the schemes derived so far, the solution vectors for new time steps are
found directly by an explicit formula. A disadvantage with these schemes is
that the discretization parameters have to ful�l stability conditions, requiring
small time steps.

We will now derive an implicit �nite di�erence scheme where a system of
linear equations has to be solved for every time step. This results in more
computations for each time step, but we avoid the stability conditions.

We consider the 1D problem without bu�ers described in Section 2.1.3. To
derive an implicit scheme, we discretize the time derivative in the di�usion
equations using the backward di�erence (4.4) instead of the forward di�erence
(4.3).

For s we get
sn+1
i − sni

∆t
= ks

sn+1
i+1 − 2sn+1

i + sn+1
i−1

∆x2
s

,

which can be rewritten to the implicit system

−rssn+1
i−1 + (1 + 2rs)s

n+1
i − rssn+1

i+1 = sni .

Using the centred di�erence (4.5) to discretize the derivative in the Neumann
boundary condition, we get

sn+1
Ns+1 = sn+1

Ns−1 +
2∆xs
ks

g(tn+1)
(
cn+1

0 − sn+1
Ns

)
.
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Inserting this in the general scheme yields

−2rss
n+1
Ns−1 +

(
1 + 2rs + pn+1

s

)
sn+1
N − pn+1

s cn+1
0 = snNs ,

where

pn+1
s =

2∆t

∆xs
g(tn+1).

This equation involves the unknown cn+1
0 , and the system for ĉn+1 will like-

wise involve sn+1
Ns

. To �nd the solutions ŝn+1 and ĉn+1, we therefore combine
the unknowns into a single vector un+1 de�ned by

un =
(
sn1 , · · · , snNs , c

n
0 , · · · , cnNc−1

)T
. (4.35)

Combining the schemes for the boundaries and inner points for both s and
c, we end up with the system

Aun+1 = un + d (4.36)

to be solved for every time step n = 0, 1, ...

The matrix A ∈ R(Ns+Nc)×(Ns+Nc) is given by

A =



qs −rs 0 · · · 0 · · · · · · 0

−rs qs −rs
...

. . . . . . . . .

0 −rs qs −rs
... −2rs qs + pn+1

s −pn+1
s

. . .
...

. . . −pn+1
c qc + pn+1

c −2rc
... −rc qc −rc 0

. . . . . . . . .

−rc qc −rc
0 · · · · · · 0 · · · 0 −rc qc


(4.37)

and the vector d ∈ R(Ns+Nc) is given by

d =


rss0

0
...
0
rcc0

 , (4.38)
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where we use the notation

qs = 1 + 2rs,

qc = 1 + 2rc,

pn+1
s =

2∆t

∆xs
g(tn+1),

pn+1
c =

2∆t

∆xc
g(tn+1).

Stability condition for the implicit 1D �nite di�erence scheme

For the explicit �nite di�erence schemes to be stable, we needed ∆t to satisfy
stability conditions. For the scheme for the 1D problem without bu�ers, this
was derived by writing the scheme on the form un+1 = Aun+d and enforcing
‖A‖ ≤ 1 (see page 52-54).

To check whether the implicit scheme is stable, we write it on the similar
form

un+1 = A−1un + A−1d,

where the vector un is given by (4.35), the matrix A is given by (4.37) and
the vector d is given by (4.38). Using the same argument as for the explicit
scheme, the implicit scheme is stable if ‖A−1‖∞ ≤ 1.

Considering the matrix A given by (4.37) , we observe that A is strictly
diagonally dominant, i.e. that [7]

|ai,i| >
∑
j 6=i

|ai,j|,

for all i, where ai,j denotes the element in row i and column j of A. From
[26] we have that in that case, ‖A−1‖∞ satis�es

‖A−1‖∞ <
1

α
,

where
α = min

i
(|ai,i| −

∑
j 6=i

|ai,j|).

For our matrix A, we have α = 1 (see (4.37)), so ‖A−1‖∞ ≤ 1, and the
implicit scheme is unconditionally stable. Nevertheless, the accuracy of the
numerical solution will depend on the value of ∆t, so we still need to choose
a ∆t that is small enough to give accurate simulations.



4.1. FINITE DIFFERENCE METHOD 63

∆xs ∆xc

∆y

x = −Ls x = 0 x = Lc
y = Ly

y = 0

jSR dyad

Figure 4.2: Illustration of the spatial 2D grid used in the �nite di�erence
scheme. We seek approximations of the solutions s and c in the grid points
marked with black dots for every time step tn.

4.1.5 2D explicit �nite di�erence scheme

Grid and initial conditions

To set up a �nite di�erence scheme for the 2D problem, we �rst extend the
grid to two spacial dimensions;

tn = n∆t, n = 0, 1, ...,

xs,i = −Ls + i∆xs, i = 0, 1, ..., Ns,

xc,i = i∆xc, i = 0, 1, ..., Nc,

yj = j∆y, j = 0, 1, ..., Ny,

where

∆xs =
Ls
Ns

, ∆xc =
Lc
Nc

, ∆y =
Ly
Ny

.

We let sni,j be the numerical approximation of s(tn, xs,i, yj) and cni,j be the
numerical approximation of c(tn, xc,i, yj).

The initial conditions are discretized:

s0
i,j = sinit(xs,i, yj), c0

i,j = cinit(xc,i, yj).

Like for the 1D case, the values of sni,j and c
n
i,j for n ≥ 1 are calculated using

schemes derived by replacing derivatives with �nite di�erences. In the 2D
case, we only consider an explicit scheme, and we start by considering the
scheme for s, the calcium concentration in the jSR.
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General scheme

Replacing the derivatives in the di�usion equation

∂s

∂t
= ks

(
∂2s

∂x2
+
∂2s

∂y2

)
with the �nite di�erences (4.3) and (4.6), we get

sn+1
i,j − sni,j

∆t
= ks

(
sni+1,j − 2sni,j + sni−1,j

∆x2
s

+
sni,j+1 − 2sni,j + sni,j−1

∆y2

)
,

and solving for sn+1
i,j gives

sn+1
i,j = rxs s

n
i−1,j + ryss

n
i,j−1 + (1− 2rxs − 2rys )s

n
i,j + ryss

n
i,j+1 + rxs s

n
i+1,j,

where

rxs =
ks∆t

∆x2
s

, rys =
ks∆t

∆y2
.

Boundary conditions

The Dirichlet boundary condition is discretized like it was in the 1D case and
directly inserted in the scheme for i = 1.

The derivatives in the Neumann boundary conditions are replaced by the
centred di�erence (4.5). For instance, the no-�ux boundary condition

∂s

∂y
(t, x, 0) = 0

yields
sni,1 − sni,−1

2∆y
= 0 ⇒ sni,−1 = sni,1.

The resulting expressions for the values in the points outside the grid are
inserted in the general scheme to get special formulas for the values at the
Neumann boundaries.

Full scheme on matrix form

To write the scheme on matrix form, we introduce a solution vector

ŝn =
(
sn1,0, · · · , sn1,Ny , s

n
2,0, · · · , sn2,Ny , · · · , · · · , s

n
Ns,0, · · · , s

n
Ns,Ny

)T
(4.39)
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containing all the unknown s-values at time tn.

The scheme can now be written as

ŝn+1 = Asŝ
n + dns ,

where the matrix As ∈ RNs(Ny+1)×Ns(Ny+1) is given by

As =

Ny+1︷ ︸︸ ︷

us 2rys 0 · · · 0 rxs 0 · · · · · · 0
rys us rys rxs

0
. . . . . . . . . . . .

... rys us rys rxs
...

0 2rys us 0 rxs
rxs 0 us 2rys rxs
0 rxs rys us rys rxs

. . . . . . . . . . . . . . .
...

rxs rys us rys rxs
... rxs 2rys us 0 rxs

. . . . . . . . . . . . . . . 0

rxs
. . . . . . . . . rxs

2rxs 0 us 2rys 0
... 2rxs rys us rys

...
. . . . . . . . . . . . 0

2rys rys us rys
0 · · · · · · 0 2rxs 0 · · · 0 2rys us



,

the vector dns ∈ RNs(Ny+1) is given by

dns =



rxshs(y0)
...

rxshs(yNy)
0
...
0

2∆t
∆xs

g(tn, y0)
(
cn0,0 − snNs,0

)
...

2∆t
∆xs

g(tn, yNy)
(
cn0,Ny − s

n
Ns,Ny

)
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and us = 1− 2rxs − 2rys .

A scheme for c, the calcium concentration in the dyad, is derived similarly.

Stability conditions for the explicit 2D �nite di�erence scheme

Like for the 1D case, we can derive stability conditions for the 2D �nite
di�erence scheme for the coupled system by collecting all the unknowns for
each time step into a single vector and writing the coupled system on matrix
form.

Using arguments similar to the 1D case (see page 52-54), we get the stability
condition

∆t ≤ min(∆t1,∆t2), (4.40)

where

∆t1 =
1

2

∆x2
s∆y

2

ks(∆x2
s + ∆y2) + ḡ∆xs∆y2

,

∆t2 =
1

2

∆x2
c∆y

2

kc(∆x2
c + ∆y2) + ḡ∆xc∆y2

and ḡ is the maximum value of g(t, y) for t ≥ 0 and y ∈ [0, Ly].

If we let kmax be the maximum of ks and kc, and ∆xmin be the minimum of
∆xs, ∆xc and ∆y, the condition (4.40) is satis�ed if

∆t ≤ 1

4

(∆xmin)2

kmax + ḡ∆xmin/2
. (4.41)
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4.1.6 Implementation

The 1D and 2D �nite di�erence schemes are implemented in Matlab. In this
section, some of the details of the implementation are presented.

Set up grid in time and space

The 1D grid consists of uniformly spaced points in each of the two domains.
In the code, the grid is set up by:

% Set up grid in space
Ns = round(N*Ls/(Ls+Lc)); % number of intervals in jSR grid
Nc = round(N*Lc/(Ls+Lc)); % number of intervals in dyad grid
x_s = linspace(-Ls,0,Ns+1)’; % jSR grid
x_c = linspace(0,Lc,Nc+1)’; % dyad grid

Here the parameter N denotes the total number of intervals in the spatial grid.
The number of intervals in each domain, Ns and Nc, is calculated so that the
distance between points is approximately the same in the two domains. The
parameters Ls and Lc are the lengths of the jSR and the dyad, respectively.

In 2D, we also set up a vector for the y-values and set up a 2D grid by:

y = linspace(0,Ly,Ny+1)’; % y-values of the grid
[xs, ys] = meshgrid(x_s,y); % 2D jSR grid
[xc, yc] = meshgrid(x_c,y); % 2D dyad grid

The time step parameter, dt, is set up so that it ful�ls the stability conditions
of the schemes.

Apply initial conditions

In the solvers for 1D problem without bu�ers, the initial conditions are ap-
plied by:

% Initial conditions
s = s_init(x_s);
c = c_init(x_c);

The functions s_init(x_s) and c_init(x_c) take the grid vectors x_s and
x_c as input and return vectors containing the values of the initial conditions
in the grid points.

For the implicit solver, the vectors s and c are combined to a single unknown
vector u on the form (4.35) by:
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u = [s(2:Ns+1); c(1:Nc)]; % Combined vector

When bu�ers are included, s and c are extended to store both the concentra-
tion of free calcium and the concentration of calcium bound to bu�er in every
point, and the initial conditions are applied to each of the four concentrations
in the same manner as above.

In 2D, the functions for the initial conditions take matrices as input and
return the matrices containing the initial conditions in the grid points. The
matrices are then transformed to vectors on the form (4.39).

Set up matrices and vectors

For the 1D explicit solver, the matrices As and Ac are set up by:

% Set up the matrices
As = spdiags((1-2*rs)*ones(Ns,1), 0, Ns, Ns) ...

+ spdiags(rs*ones(Ns,1), 1, Ns, Ns) ...
+ spdiags([rs*ones(Ns-2,1); 2*rs], -1, Ns, Ns);

Ac = spdiags((1-2*rc)*ones(Nc,1), 0, Nc, Nc) ...
+ spdiags([0; 2*rc; rc*ones(Nc-2,1)], 1, Nc, Nc) ...
+ spdiags(rc*ones(Nc-1,1), -1, Nc, Nc);

The values rs and rc represents rs and rc given by (4.7) and (4.10).

The d-vectors are set up by:

% Set up the d-vectors
ds = zeros(Ns,1);
dc = zeros(Nc,1);
ds(1) = rs*s0;
dc(Nc) = rc*c0;

The last element in ds and the �rst element in dc both vary with time and
are updated for every time step.

The matrix Ab for the solver including bu�ers and the matrices and d-vectors
for the implicit 1D solver and the explicit 2D solver are set up in a similar
manner.

Update solutions for every time step

In the explicit 1D solvers, the d-vectors are updated for every time step using
the �rst value in c, the last value in s and a function g(t), which computes
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the value of the function g(t) given by (2.7). In addition, the solution vectors
are updated for every time step. This is repeated until the current time, t,
reaches the speci�ed time to end the simulation, Tmax. The code for the
problem without bu�ers is:

t = 0;
while t < Tmax

% Update d-vector
ds(Ns) = 2*dt/dx_s*g(t)*(c(1)-s(Ns+1));
dc(1) = -2*dt/dx_c*g(t)*(c(1)-s(Ns+1));

% Calculate s and c for next time step
s(2:Ns+1) = As*s(2:Ns+1) + ds;
c(1:Nc) = Ac*c(1:Nc) + dc;

% Update t
t = t + dt;

end

In the 1D explicit solver including bu�ers and the 2D explicit solver, we use
similar loops to calculate new solutions for every time step.

In the implicit 1D solver, we need to solve a system of equations for each
time step. In addition, some of the values in the matrix A change with time
and are updated for every time step. This is done in the loop:

t = 0;
while t < Tmax

% Update t
t = t + dt;

% Update values in the matrix
A(Ns, Ns) = 1 + 2*rs + 2*dt/dx_s*g(t);
A(Ns, Ns+1) = -2*dt/dx_s*g(t);
A(Ns+1, Ns+1) = 1 + 2*rc + 2*dt/dx_c*g(t);
A(Ns+1, Ns) = -2*dt/dx_c*g(t);

% Solve linear system of equations
u = A\(u+d);

end

% Rearrange solution to vectors s and c
s = [s0; u(1:Ns)];
c = [u(Ns+1:Ns+Nc); c0];
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Si

Cj
∆x

nSR jSR dyad cytosol

x = −Ls x = 0 x = Lc

Figure 4.3: Illustration of the spatial 3D grid used in the �nite volume
method. The grid consists of a number of non-overlapping cube-shaped cells
with sides of length ∆x. Some arbitrarily chosen cells Si and Cj are marked
in the illustration. The calcium concentration is assumed to be piecewise
constant for each cell for each time step. The cells in the region where
x ≤ −Ls represent the nSR. In these cells the concentration is s0. The
cells in the region where x ≥ Lc represent the cytosol, and in these cells the
concentration is c0.

4.2 Finite volume method

For the 3D simulations, a code developed for the paper [3] was used. The
code is an implementation of a �nite volume method, and the �nite volume
scheme used to solve the 3D problem described in Section 2.1.5 is described
below.

4.2.1 3D �nite volume scheme

In the �nite volume method, the domain is divided into a �nite number of
cells and conservation of mass is enforced in each of the cells [12, 27].

To de�ne a �nite volume scheme for the 3D problem in Section 2.1.5, we
divide the domains Ωs and Ωc into non-overlapping cube-shaped cells with
sides of length ∆x. An illustration of the grid is given in Figure 4.3.

The cells in the jSR domain are denoted by

Si, i = 1, ..., NsNyNz,

and the cells in the dyad domain are denoted by

Ci, i = 1, ..., NcNyNz,
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where

Ns =
Ls
∆x

, Nc =
Lc
∆x

, Ny =
Ly
∆x

, Nz =
Lz
∆x

.

The concentration is assumed to be piecewise constant in the sense that

s(t, x, y, z) = si(t) for (x, y, z) ∈ Si,

c(t, x, y, z) = ci(t) for (x, y, z) ∈ Ci,
and we seek the solutions

si, i = 1, ..., NsNyNz

ci, i = 1, ..., NcNyNz,

for each discrete time step.

To the left of the jSR domain, there are cells representing the nSR. In these
cells, we force the concentration to be s0. Similarly, there are cells to the
right of the dyad domain, representing the cytosol, where the concentration
is forced to be c0.

To derive a scheme for the di�usion equations (2.4) and (2.5), we enforce
conservation of mass directly on the cells. Recall from Section 2.1.1 that
conservation of mass in a region Ω of the dyad domain can be written as

d

dt

∫
Ω

c dV = −
∫
∂Ω

J · n dA

if we assume that there is no local production of calcium, e.g. reactions with
bu�ers. Here c is the calcium concentration, ∂Ω is the boundary of Ω, J is
the �ux of calcium and n is the outward unit normal vector.

Enforcing conservation of mass on a cell Ci in the dyad domain gives

d

dt

∫
Ci

c dV = −
∫
∂Ci

J · n dA,

where ∂Ci is the boundary of cell Ci.

Since we assume that the calcium concentration is constant in each cell, we
can move the concentration out of the integral and get∫

Ci

c dV =

∫
Ci

ci dV = ci

∫
Ci

1 dV = ci∆x
3,

since the volume of a cell is ∆x3.
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This gives:

dci
dt

= − 1

∆x3

∫
∂Ci

J · n dA.

Since each cell has six boundary faces, we can write

dci
dt

= − 1

∆x3

6∑
j=1

∫
Fij

J · nij dA =
6∑
j=1

Dij, (4.42)

where Fij, j = 1, ..., 6 denotes each of the boundary faces of cell Ci, nij
denotes the outward unit normal vector of Fij and

Dij = − 1

∆x3

∫
Fij

J · nij dA. (4.43)

Conservation of mass on a cell Si in the jSR domain similarly gives

dsi
dt

=
6∑
j=1

Eij, (4.44)

where

Eij = − 1

∆x3

∫
Fij

J · nij dA.

and Fij, j = 1, ..., 6 is each of the boundary faces of Si.

In our 3D problem, there are four types of boundary faces:

1. Internal boundaries

2. Boundaries to cells with known concentration (nSR, cytosol)

3. No-�ux boundaries

4. Boundaries covered by the RyR channel

We will now explain how the contributions Dij and Eij are expressed for each
of these boundary types.
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1. Internal boundary

Assuming that the boundary face Fij is an internal boundary between the
cells Ci and Ck within the dyad domain, the �ux through the boundary is
governed by Fick's law; J = −kc∇c (see Section 2.1.1). We get:

J · nij = −kc∇c · nij.

We use the centred �nite di�erence (4.5) with h = ∆x/2 to approximate the
derivative on the boundary and get:

∇c · nij =
ck − ci

∆x
.

Inserting this in (4.43) yields:

Dij = − 1

∆x3

∫
Fij

J · nij dA = − 1

∆x3

∫
Fij

−kc
ck − ci

∆x
dA = kc

ck − ci
∆x4

∫
Fij

1 dA

= kc
ck − ci
∆x2

.

For an internal boundary face Fij between the cells Si and Sk in the jSR
domain, we similarly have

Eij = ks
sk − si
∆x2

.

2. Boundary to cell with known concentration

For a boundary face Fij between a cell in the dyad domain and a cell in
the cytosol domain, the �ux through the boundary is again assumed to be
governed by Fick's law, and we approximate the derivative with the �nite
di�erence (4.5). We get exactly the same expression as we did for inter-
nal boundaries within the dyad domain, except that the concentration ck is
known to be c0, so

Dij = kc
c0 − ci
∆x2

.

Similarly, we have

Eij = ks
s0 − si
∆x2

for boundary faces Fij between cells in the jSR and nSR domains.
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3. No-�ux boundary

On a boundary face with a no-�ux boundary condition, we have J · nij = 0,
so

Dij = 0,

Eij = 0.

4. Boundary covered by the RyR channel

To �nd the contribution from a boundary face covered by the RyR channel,
we recall from Section 2.1.2 that on the part of the boundary between the
jSR and the dyad that is covered by the channel, we have

J · n = g(t)(s− c) for the jSR,

J · n = g(t)(c− s) for the dyad.

Considering a cell Ci with a boundary face Fij against the cell Sk , we get

Dij = − 1

∆x3

∫
Fij

J · nij dA = − 1

∆x3

∫
Fij

g(t)(ci − sk) dA

= −g(t)
ci − sk
∆x3

∫
Fij

1 dA =
1

∆x
g(t)(sk − ci),

assuming that the channel covers the entire boundary face Fij.

For a cell Si with a boundary face Fij against the cell Ck, we similarly get:

Eij = − 1

∆x
g(t)(si − ck).

Final scheme

To get the �nal scheme for the solution in the cells, the contributions from
the di�erent boundary faces are added together in the sums in (4.42) and
(4.44). The time derivative in the resulting equations is discretized using the
forward �nite di�erence (4.3), and we get an explicit numerical scheme.



Chapter 5

Numerical simulations

In this chapter, we present results from numerical simulations of the mathe-
matical models described in Chapter 2. To study the accuracy of the simu-
lations for di�erent grid resolutions, errors of the numerical approximations
are computed for di�erent resolutions and collected in convergence tables. In
addition, plots of the numerical and analytical solutions are presented to get
a visual impression of how the solutions behave and how close the numerical
solutions are to the analytical ones.

Results from the following simulations will be presented:

(I) First, we consider simulations of the 1D problem where ḡ(t) is con-
structed as described in Section 3.1.1. In this case, we have analytical
solutions both for when the channel is open and for when the chan-
nel is closed. The solutions produced by the numerical simulations for
di�erent grid resolutions are compared to these analytical solutions.

(II) We then present results from simulations of the 1D problem with a
constant ḡ and constant initial conditions. In this case, we only have
analytical solutions for steady state and for when the channel is closed
after steady state is reached, but the results are more in agreement
with the original mathematical model.

(III) Next, we present results from simulations of the 1D problem with a
constant ḡ including bu�ers. We do not have analytical solutions in
this case, so we just use plots of simulations for di�erent resolutions to
see if any di�erence is visible.

(IV) Afterwards, we present results from simulations of the 2D problem with
a constructed ḡ(t, y). In this case, we have analytical solutions both
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for when the channel is open and for when the channel is closed.

(V) Finally, we present results from simulations of the 3D problem with a
constant ḡ. In this case, we do not have any analytical solutions, but to
get an impression of the accuracy of the simulations for di�erent grid
resolutions, we compare the numerical solutions for coarse grids with
the solutions produced by simulations on �ner grids.

5.1 Numerical codes

To run the 1D simulations, we use Matlab implementations of the �nite
di�erence schemes described in Section 4.1. For the 1D problem without
bu�ers, we do simulations using both an explicit and an implicit solver, and
for the problem with bu�ers, we only use an explicit solver.

Similarly, the 2D simulations are carried out using a Matlab implementation
of the explicit �nite di�erence scheme described in Section 4.1.5. The Matlab
implementations used in the 1D and 2D simulations are written for this thesis,
and some of the details of the implementation are given in Section 4.1.6.

For the 3D simulations, we use a code developed for the paper [3] by the
authors of that paper. The code is an implementation of a �nite volume
method described in Section 4.2.

5.2 Simulations of the 1D problem with a con-

structed ḡ(t)

We start by presenting results from simulations of the 1D problem described
in Section 2.1.3, were the �ux from the jSR to the dyad is constructed to
�t analytical solutions as explained in Section 3.1.1. This means that ḡ(t)
is given by the expression (3.10) found on page 24. The initial conditions
are also adjusted to �t the analytical solutions and are given by (3.11) and
(3.12).

The parameters used in the simulations are found in Table 2.1 and Table 3.1.
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5.2.1 Results case I

In Figure 5.1, we show the analytical and numerical solutions in the jSR
domain at some di�erent points in time. Figure 5.2 shows the corresponding
solutions in the dyad domain. In Figure 5.3, we show more detailed plots of
the solutions at t = 0.201 ms, where some di�erence between the analytical
and numerical solutions is visible. To get an overview of the whole domain,
the solutions from the jSR and the dyad at t = 2.0 ms are plotted together in
Figure 5.4. Figure 5.5 shows how the concentration in the midpoint of each
domain change with time.

In the simulations, the RyR channel is open until t = t∗ = 2.0 ms and then
closed. By considering Figure 5.1, Figure 5.2 and Figure 5.5, we observe that
when the channel is open, the calcium concentration in the dyad increases
and the calcium concentration in the jSR decreases. This is reasonable since
there should be calcium �owing out of the jSR into the dyad when the channel
is open. The concentration changes most extensively close to the boundary
between the domains, at x = 0, where the channel is located and remains
constant at the Dirichlet boundaries x = −Ls and x = Lc.

When the channel is closed, the concentration in the dyad decreases and
the concentration in the jSR increases until the constant solutions c0 and s0

are reached. This is also reasonable; since there is no longer any connection
between the two domains, we would expect di�usion to even out the concen-
tration di�erences in each domain. Calcium is di�using out of the dyad into
the bulk cytosol and from the nSR to the jSR.

For the simulations recorded in the plots, we use ∆xs = ∆xc = 15 nm. We
observe that the numerical solutions are very close to the analytical ones,
except at t = 2.001 ms, where we can see a small di�erence between the
numerical and analytical solutions in the dyad domain (see Figure 5.3).

5.2.2 Convergence tables

The errors of the numerical simulations of the 1D problem are collected in
convergence tables. In these tables, we compare the numerical approxima-
tions of the solutions at some point in time to the analytical solutions.

In Table 5.1 and Table 5.2, the numerical solutions at time t = 0.001 ms are
compared to the analytical solutions at that point in time. In Table 5.3 and
Table 5.4, we consider the solutions at t = 2.001 ms, i.e. 0.001 ms after the
channel is closed.
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Figure 5.1: Analytical and numerical solutions of the 1D problem with a
constructed ḡ(t) in the jSR at some di�erent points in time. The analytical
solutions are plotted with a solid line, and the numerical solutions are plotted
as dots. The numerical solutions are generated using the explicit solver with
∆x = 15 nm.
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Figure 5.2: Analytical and numerical solutions of the 1D problem with a
constructed ḡ(t) in the dyad at some di�erent points in time. The analytical
solutions are plotted with a solid line, and the numerical solutions are plotted
as dots. The numerical solutions are generated using the explicit solver with
∆x = 15 nm.

−80 −60 −40 −20 0

1140

1160

1180

1200

1220

1240

1260

1280

1300
jSR

x (nm)

[C
a

2
+
] 
(µ

M
)

 

 

analytical

numerical

0 10 20 30
0

2

4

6

8

10
dyad

x (nm)

[C
a

2
+
] 
(µ

M
)

 

 

analytical

numerical

Figure 5.3: Analytical and numerical solutions of the 1D problem with a
constructed ḡ(t) at t = 2.001 ms. The numerical solutions are generated
using the explicit solver with ∆x = 15 nm.
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Figure 5.4: Analytical and numerical solutions of the 1D problem in both
domains at t = 2.0 ms. The numerical solution for ∆x = 15 nm is plotted as
a dashed line, but is indistinguishable from the analytical one.
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Figure 5.5: Plots of how the concentration in the midpoint of the domains
change with time for the 1D problem with a constructed ḡ(t). The numerical
solutions are generated using the explicit solver with ∆x = 15 nm.
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∆x (nm) Error Error/∆x2 (nm−2)
15 0.0029183 1.30e-05
10 0.0012787 1.28e-05
5 0.00031204 1.25e-05
3 0.00011072 1.23e-05
2 4.8683e-05 1.22e-05
1 1.2046e-05 1.20e-05

Table 5.1: Comparing the numerical and analytical solutions of the 1D
problem with a constructed ḡ(t) at t = 0.001 ms for the explicit solver.
Error is calculated using (5.1) with the norm (5.2). The parameter values
are found in Table 2.1 and Table 3.1.

In the convergence tables, the error is de�ned as

Error =
‖s− sa‖
‖sa‖

+
‖c− ca‖
‖ca‖

, (5.1)

where s and c are the numerical solutions at the considered point in time
and sa and ca are vectors containing the corresponding analytical solutions
in the grid points.

The norm is de�ned as

‖u‖ =

√√√√ N∑
i=0

(ui)2, (5.2)

where ui, i = 0, ...N are each of the entries in the vector u.

In all the simulations, the values of Ns and Nc are chosen so that

∆xs = ∆xc = ∆x.

For both the implicit and the explicit solver, we use ∆t = 0.1
kc

∆x2 . Studying
the last column of the convergence tables, the error seems to be close to
proportional to ∆x2 and ∆t. This �ts well with the fact that we introduced
errors of order O(∆t) and O(∆x2) when we replaced the time derivative with
the �nite di�erences (4.3) or (4.4) and the derivative in space with the �nite
di�erence (4.6).
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∆x (nm) Error Error/∆x2 (nm−2)
15 0.0028054 1.25e-05
10 0.0012604 1.26e-05
5 0.0003117 1.25e-05
3 0.00011092 1.23e-05
2 4.8818e-05 1.22e-05
1 1.2086e-05 1.21e-05

Table 5.2: Comparing the numerical and analytical solutions of the 1D
problem with a constructed ḡ(t) at t = 0.001 ms for the implicit solver.
Error is calculated using (5.1) with the norm (5.2). The parameter values
are found in Table 2.1 and Table 3.1.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.097904 4.35e-04
10 0.057353 5.74e-04
5 0.0071173 2.85e-04
3 0.0028203 3.13e-04
2 0.0011303 2.83e-04
1 0.00028217 2.82e-04

Table 5.3: Comparing the numerical and analytical solutions of the 1D
problem with a constructed ḡ(t) at t = 2.001 ms for the explicit solver.
Error is calculated using (5.1) with the norm (5.2). The parameter values
are found in Table 2.1 and Table 3.1.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.077289 3.44e-04
10 0.046897 4.69e-04
5 0.0044931 1.80e-04
3 0.0018702 2.08e-04
2 0.00070583 1.76e-04
1 0.00017573 1.76e-04

Table 5.4: Comparing the numerical and analytical solutions of the 1D
problem with a constructed ḡ(t) at t = 2.001 ms for the implicit solver.
Error is calculated using (5.1) with norm (5.2). The parameter values are
found in Table 2.1 and Table 3.1.
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5.3 Simulations of the 1D problem with a con-

stant ḡ

In the simulations presented above, we adjusted the �ux from the jSR to
the dyad to �t analytical solutions by using a special ḡ(t). Due to this, the
results might not be entirely in agreement with the results of the original
mathematical model in which ḡ was a speci�ed constant. Therefore, we will
also present results of simulations of the original mathematical model.

In Section 3.1.1, we showed that it was possible to adjust the parameters
of the constructed analytical solutions for an open channel to �t a speci�ed
constant ḡ, but that the resulting analytical solutions were independent of t,
would be speci�ed as initial conditions and were consequently not so suitable
for testing the accuracy of the numerical simulations.

However, we also argued that we could expect the solutions also for other
initial conditions to approach these analytical steady-state solutions as t →
∞. This will be con�rmed by the simulations in this section. We use a
constant ḡ and the constant initial conditions (2.16) and observe that the
solutions approach the analytical steady-state solutions derived in Section
3.1.1. We assume that the solutions have reached steady state when we close
the channel, so the solutions described on page 34 are used as analytical
solutions for after the channel is closed.

The parameter values used in the simulations are speci�ed in Table 2.1.

5.3.1 Results case II

In Figure 5.6 and Figure 5.7, the numerical solutions at some di�erent points
in time are plotted along with the expected steady-state solutions. We ob-
serve that as time increases, the solutions approach the steady-state solutions
and that the steady-state solutions are reached quite quickly.

Figure 5.8 shows how the concentration in the midpoint of each domain
change with time. The analytical solution of the problem with the con-
structed �ux are plotted in addition to the numerical solution of the problem
with a constant ḡ. We see that the concentration in the dyad increases and
the concentration in the jSR decreases much faster for the constant ḡ than
for the constructed ḡ(t). In addition, the concentration in the dyad reaches
an initial peak before settling at the steady-state solution. This behaviour is
not displayed for the constructed ḡ(t).
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Figure 5.6: Solutions of the 1D problem with a constant ḡ and constant
initial conditions in the jSR. The solid line is the numerical solution for
∆x = 5 nm, and the dotted line is the analytical steady-state solution.
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Figure 5.7: Solutions of the 1D problem with a constant ḡ and constant
initial conditions in the dyad. The solid line is the numerical solution for
∆x = 5 nm, and the dotted line is the analytical steady-state solution.
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Figure 5.8: Plots of how the concentration in the midpoint of the domains
change with time for the 1D problem with a constant ḡ and constant initial
conditions. The numerical solutions for the explicit solver with ∆x = 5 nm
are plotted with a solid line. In addition, the analytical solutions for the 1D
problem with a constructed ḡ(t) are plotted with a dashed line.
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Figure 5.9: Plots of how the numerical approximation of the concentration
in the midpoint of each domain change with time for the 1D problem with a
constant ḡ and constant initial conditions for some di�erent values of ∆x.
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To see if there is any clear di�erence in accuracy for di�erent resolutions in
this case, the numerical solution in the midpoints are plotted for di�erent
grid resolutions in Figure 5.9. The solutions for di�erent resolutions overlap
and no clear di�erence is visible except for a small di�erence in the dyad
domain right after the channel is closed.

5.3.2 Convergence tables

In the case of a constant ḡ and constant initial conditions, we do not have
analytical solutions for an open channel, except that we expect the solutions
to approach the steady-state solutions (3.17) and (3.18) as t→∞. Studying
Figure 5.6 and Figure 5.7, the solutions seem to reach this steady state quite
quickly.

In Table 5.5, we compare the numerical solutions at time t = 1.0 ms for
di�erent resolutions to the analytical steady-state solutions. The error is
calculated like before using (5.1) with the norm (5.2).

We again choose Ns and Nc so that

∆xs = ∆xc = ∆x

and use ∆t = 0.1
kc

∆x2.

Considering Table 5.5, we observe that the di�erence between the analytical
steady-state solutions and the numerical solutions at t = 1.0 ms is very small
for all values of ∆x and that the accuracy is not improved when we reduce the
value of ∆x. In fact, the error is larger for small values of ∆x than for large
values of ∆x. This suggests that the numerical schemes are able to reproduce
the linear steady-state solutions to machine precision independently of ∆x.

After steady state is reached, we have analytical solutions for after the chan-
nel is closed. In Table 5.6 and Table 5.7, numerical solutions at time t = 2.001
ms are compared to these analytical solutions when we close the channel at
t = t∗ = 2.0 ms. The errors are very close to the ones reported for the
closed channel when the �ux was constructed. This is reasonable since the
steady-state solutions are the same for a constant ḡ and the constructed ḡ(t)
when we have chosen the value of a4 like explained on page 27.
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∆x (nm) Error
15 1.1711e-12
10 1.1267e-12
5 1.2051e-12
3 1.6668e-12
2 3.6178e-12
1 1.4726e-11

∆x (nm) Error
15 1.2386e-12
10 1.1385e-12
5 1.1042e-12
3 1.3135e-12
2 3.0439e-12
1 1.2187e-11

Table 5.5: Convergence tables where the numerical solutions of the 1D
problem with a constant ḡ at t = 1.0 ms are compared to the analytical steady
state solutions. The numerical solutions are generated from the explicit solver
(left) and implicit solver (right). Error is calculated using (5.1) with the norm
(5.2). The parameter values are found in Table 2.1.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.097905 4.35e-04
10 0.057354 5.74e-04
5 0.0071174 2.85e-04
3 0.0028203 3.13e-04
2 0.0011304 2.83e-04
1 0.00028217 2.82e-04

Table 5.6: Comparing the analytical and numerical solutions of the 1D
problem with a constant ḡ at t = 2.001 ms for the explicit solver. Error is
calculated using (5.1) with the norm (5.2). The parameter values are found
in Table 2.1.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.077291 3.44e-04
10 0.046897 4.69e-04
5 0.0044932 1.80e-04
3 0.0018702 2.08e-04
2 0.00070584 1.76e-04
1 0.00017574 1.76e-04

Table 5.7: Comparing the analytical and numerical solutions of the 1D
problem with a constant ḡ at t = 2.001 ms for the implicit solver. Error is
calculated using (5.1) with the norm (5.2). The parameter values are found
in Table 2.1.
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5.4 Simulations of the 1D problem including

bu�ers

We have also run simulations of the 1D problem including reactions with
bu�ers to study how including these reactions would a�ect the results of the
simulations.

A bu�er called calsequestrin (CSQN) is introduced in the jSR, and a bu�er
called calmodulin (CMDN) is introduced in the dyad. The formulation of
the problem is found in Section 2.2.2, and the parameter values are found in
Table 2.1 and Table 2.3.

5.4.1 Results case III

Figure 5.10 shows the numerical approximations of the calcium concentra-
tions and the concentration of calcium bound to bu�ers at t = 0.1 ms. In
addition, the calcium concentration at the same point in time is plotted for
the case when there are no bu�ers present. We see that the calcium concen-
tration in the jSR is much lower for the solution without bu�ers, suggesting
that more calcium has been released from the jSR to the dyad. As there is
less calcium in the jSR, less calcium is released through the RyR channel and
there is slightly less calcium in the dyad.

Figure 5.11 shows how the concentration in the midpoint of the domains
change with time. Again, we also include plots of the calcium concentration
without bu�ers present. We see that the release of calcium from the jSR is
slower when bu�ers are included and that the initial peak in calcium concen-
tration in the dyad is slightly higher. The concentration of calcium bound
to CSQN seems to follow the concentration of free calcium while the concen-
tration of calcium bound to CMDN increases even after the concentration of
free calcium has reached steady state.

To see if there is any visible di�erence of accuracy for di�erent resolutions
in this case, the calcium concentration in the midpoint of the domains are
plotted for some di�erent values of ∆x in Figure 5.12. We again observe
that the lines overlap and no di�erence between the solutions for di�erent
resolutions is visible.
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Figure 5.10: Numerical solutions of the concentration of free calcium and
calcium bound to bu�er in the jSR and dyad domains at t = 0.1 ms. The
parameters are found in Table 2.1 and Table 2.3, and ∆x = 5 nm. The
dashed lines are the corresponding solutions when no bu�ers are present.
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Figure 5.11: Plots of how the calcium concentration and the concentration
of calcium bound to bu�ers in the midpoint of the domains change with time.
The parameters are found in Table 2.1 and Table 2.3, and ∆x = 5 nm. The
dashed lines are the corresponding solutions when no bu�ers are present.
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5.5 Simulations of the 2D problem

In this section, we present results from numerical simulations of the 2D prob-
lem described in Section 2.1.4. To �nd analytical solutions of the system,
ḡ(t, y) is constructed to be a function of t and y and the initial conditions are
functions of x and y. The expressions for the function ḡ(t, y) and the initial
conditions are found on page 37.

In all the simulations, the discretization parameters are chosen so that

∆xs = ∆xc = ∆y = ∆x,

and the parameter values are found in Table 2.1, Table 3.1 and Table 3.3.

5.5.1 Results case IV

Figure 5.13 and Figure 5.14 shows the analytical solutions of the 2D prob-
lem in the jSR and the dyad at some di�erent points in time. The solutions
behave like they did in the 1D case with a constructed ḡ(t), except for the spe-
cial Dirichlet boundary conditions creating some variation in the y-direction,
especially in the regions close to the Dirichlet boundaries.

Figure 5.15 shows how the concentration in the midpoint of each of the
domains change with time for some di�erent resolutions. In this case, we
observe some clear di�erences between the analytical and numerical solutions.
In particular, the numerical solutions in the dyad for the 15 nm and 7.5 nm
resolutions are visibly di�erent than the analytical solution.

5.5.2 Convergence tables

Like for the 1D case, the errors of the numerical simulations in 2D are col-
lected in convergence tables for some points in time. In Table 5.8, we consider
the solutions at t = 0.001 ms, and in Table 5.9, we consider the solutions at
t = 2.001 ms.

The error is again calculated from (5.1) with the norm (5.2), and we use
∆t = 0.1

kc
∆x2. We observe that the error also for this case seems to be close

to proportional to ∆t and ∆x2.
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Figure 5.13: Plots of the analytical solution of the 2D problem in the jSR
at some di�erent points in time.
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Figure 5.14: Plots of the analytical solution of the 2D problem in the dyad
at some di�erent points in time.
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Figure 5.15: Plots of how the solutions in the midpoint of each domain
change with time for the 2D problem for some di�erent values of ∆x.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.14452 6.42e-04
10 0.089784 8.98e-04
5 0.036755 1.47e-03
3 0.015916 1.77e-03
2 0.0077063 1.93e-03
1 0.0020898 2.09e-03

Table 5.8: Convergence table for the 2D solution at t = 0.001 ms. Error is
calculated using (5.1) with the norm (5.2). The parameter values are found
in Table 2.1, Table 3.1 and Table 3.3.

∆x (nm) Error Error/∆x2 (nm−2)
15 0.10977 4.88e-04
10 0.064281 6.43e-04
5 0.01816 7.26e-04
3 0.0072183 8.02e-04
2 0.0032708 8.18e-04
1 0.00083679 8.37e-04

Table 5.9: Convergence table for the 2D solution at t = 2.001 ms. Error is
calculated using (5.1) with the norm (5.2) The parameter values are found
in Table 2.1, Table 3.1 and Table 3.3.
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5.6 Simulations of the 3D problem

Finally, we present results from the numerical simulations of the 3D problem
described in Section 2.1.5. The RyR channel is in this case restricted to a
quadratic area on the boundary between the jSR and the dyad (see Figure
2.2), and ḡ is constant.

As explained in Section 4.2.1 about the �nite volume scheme used in the
simulations, the discretization parameter is ∆x in each spatial direction and
in both domains.

In the 3D case, simulations are only carried out for an open channel, and all
the parameter values are found in Table 2.1, except for the length parameters,
which are speci�ed in Table 2.2.

5.6.1 Results case V

Figure 5.16 shows the numerical solutions in the x, y-direction for z ≈ Lz/2
in the jSR domain at some di�erent points in time. Figure 5.17 shows the
corresponding solutions in the dyad domain. We observe that the calcium
concentration in the jSR decreases and the calcium concentration in the dyad
increases most extensively in the areas close to the RyR channel. As time
goes by, the change in concentration spreads deeper into the domains.

In Figure 5.18 and Figure 5.19, the 3D solutions are plotted in the y, z-
direction close to the boundary between the jSR and the dyad, where the
largest change in concentration occurs. The change is most prominent in the
middle of the area covered by the RyR channel.

Figure 5.20 shows how the numerical approximation of the concentration in
a speci�c point in each of the domains change with time for some di�erent
values of ∆x. The chosen points are (-5.75 nm, 6.25 nm, 6.25 nm) for the jSR
and (5.75 nm, 6.25 nm, 6.25 nm) for the dyad. The numerical approximations
of the concentration in these points are simply chosen as the concentration
in the �nite volume cells containing the points. We again observe di�erences
in the solutions for the di�erent resolutions, now even for the smallest values
of ∆x.
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Figure 5.16: Numerical solution of the 3D problem in the x, y-direction for
z ≈ Lz/2 in the jSR domain. The calcium concentration is indicated by the
di�erent colours of the colourbar, and we use ∆x = 0.5 nm.
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Figure 5.17: Numerical solution of the 3D problem in the x, y-direction for
z ≈ Lz/2 in the dyad domain. The calcium concentration is indicated by the
di�erent colours of the colourbar, and we use ∆x = 0.5 nm.
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Figure 5.18: Numerical solution of the 3D problem in the y, z-direction for
x ≈ 0 nm in the jSR domain. The calcium concentration is indicated by the
di�erent colours of the colourbar, and we use ∆x = 0.5 nm.
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Figure 5.19: Numerical solution of the 3D problem in the y, z-direction for
x ≈ 0 nm in the dyad domain. The calcium concentration is indicated by
the di�erent colours of the colourbar, and we use ∆x = 0.5 nm.
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Figure 5.20: Plots of how the numerical approximation of the concentration
in a point in each of the domains change with time for some di�erent values
of ∆x.
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∆x (nm) Error
6 0.088952
3 0.036803
2 0.025128
1 0.0040438

0.67 0.00013779

Table 5.10: Convergence table for the solution of the 3D problem at t =
0.001 ms. Error is calculated using (5.1) with the norm (5.2).

5.6.2 Convergence table

We do not have any analytical solutions to compare the numerical approxi-
mations to for the 3D problem. Instead, we compare the numerical solutions
to numerical solutions produced by simulations with a small ∆x.

The solution in each cell in the coarse grid is compared to the solution in
the cell in the �ne grid covering the midpoint of the cell in the coarse grid.
To make sure the cells in the �ne grid cover the midpoints of the cells in the
coarse grid, the solutions for ∆x = 6 nm, ∆x = 2 nm and ∆x = 0.667 nm
are compared to the solutions using the �ne resolution ∆x = 0.222 nm, and
the solutions for ∆x = 3 nm and ∆x = 1 nm are compared to the solutions
using the �ne resolution ∆x = 0.333 nm.

The error is again calculated from (5.1) with the norm (5.2), where the
analytical solutions are replaced by the �ne-grid numerical solutions.
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Chapter 6

Consequences

In this chapter, we discuss some consequences of the results from Chapter 5.

We start by giving a short summary of the observed accuracy of the numerical
simulations before we consider how the errors in calcium concentration can
a�ect the rates in a Markov model of the RyR channel and how this e�ect
can provide insight into what accuracy is necessary for the simulations.

Afterwards, we consider the consequences of using a resolution suitable for
the dyad in whole-cell simulations and discuss some weaknesses of our ap-
proach to �nding the necessary grid resolution for numerical simulations of
calcium dynamics.

6.1 Summary of the accuracy of the numerical

simulations

The convergence tables and plots from Chapter 5 provide some insight into
the accuracy of the numerical simulations of the considered 1D, 2D and 3D
problems. We will now give a short summary of these results.

6.1.1 Accuracy of the 1D simulations

In the simulations of the 1D problem with a constructed ḡ(t), the accuracy
was generally very good. Considering, for instance, the plots in Figure 5.1
and Figure 5.2, we observed that the numerical solutions for ∆x = 15 nm

101



102 CHAPTER 6. CONSEQUENCES

was almost indistinguishable from the analytical solutions, except for a small
di�erence right after the channel was closed. The accuracy of the solution at
t = 2.001 ms was investigated in Table 5.3 and Table 5.4, where we observed
that in order to get an error smaller than one per cent, we needed to use a
∆x of 5 nm or less.

For the 1D problem with a constant ḡ and the 1D problem including bu�ers,
we did not have analytical solutions to which we could compare the numerical
approximations. However, Figure 5.9 and Figure 5.12 did not display any
considerable di�erence between the solutions for coarse and �ne resolutions,
suggesting that the numerical approximations were good even for a ∆x as
large as 15 nm, just like for the constructed ḡ(t). The only visible di�erence
between analytical and numerical solutions occurred right after the channel
was closed and the error seemed to be close to the one for the constructed
ḡ(t).

6.1.2 Accuracy of the 2D simulations

In the 2D problem, we introduced some special Dirichlet boundary conditions
to create variation in the y-direction. This had a substantial e�ect on the
accuracy of the numerical solutions in the dyad.

Figure 5.15 showed a noticeable di�erence between the analytical and nu-
merical solutions for the larger values of ∆x. In Table 5.8 and Table 5.9, we
observed that for t = 0.001 ms and t = 2.001 ms, we needed to use a ∆x of
2 nm or 3 nm, respectively, to get errors smaller than one per cent.

6.1.3 Accuracy of the 3D simulations

In the 3D problem, we replaced the special Dirichlet boundary conditions
with a model where the RyR channel was restricted to a limited area of the
boundary between the jSR and the dyad.

In this case, we observed di�erences between the numerical approximations
for di�erent resolutions even for small values of ∆x (see Figure 5.20). In
Table 5.10, we observed that the relative errors were larger in this case than
for the 1D and 2D problems and that we needed to use a ∆x of 1 nm or less
to get an error smaller than one per cent.
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6.2 Errors in Markov model of the RyR

From the results summarized above, we have some measures of how accurate
the numerical approximations are for di�erent grid resolutions. A remaining
question is what accuracy is necessary in these kinds of simulations.

One aspect to consider in this regard is the model of the opening and closing
of the RyR channel. In the simple models studied in this thesis, we deter-
mined when the channel was open or closed deterministically by assuming
that the channel was initially open and assigning some value to the closing
time t∗. In more realistic and complex models of calcium dynamics, the
opening and closing of the RyR channel is often modelled stochastically.

In such models, the probability of the channel opening or closing will often
depend on the calcium concentration outside the channel; recall from Section
1.2 that the RyRs were activated by an increased calcium concentration in
the dyad [19]. The numerical approximations should therefore be accurate
enough to match the calcium sensitivity of the model of the RyR channel.
If a tiny change in the calcium concentration has a huge impact on the
model of the opening and closing of the channel, a small error in the calcium
concentration may result in a very unrealistic behaviour of the channel, and
we therefore need the approximations of the calcium concentration to be very
accurate. On the other hand, if a large change in calcium concentration is
needed to give any substantial e�ect on the model of the RyR channel, the
consequences of a small error in the calcium concentration are not as serious,
and we do not need the accuracy to be as good.

6.2.1 Markov model for the RyR channel

A Markov model is often used to model the opening and closing of the RyR
channel. An example of a Markov model is given in Figure 6.1. In this model,
we assume that the channel can be either in the closed state (C) or the open
state (O). If the channel is in the closed state, the probability of the channel
changing to open state during a time interval ∆t is given by ∆tkco, where kco
is called the opening rate of the channel. Likewise, if the channel is open, the
probability of the channel changing to closed state is given by ∆tkoc, where
koc is the closing rate.

The parameters kco and koc may depend the calcium concentration in the
dyad. Figure 6.2 shows how some opening and closing rates from the paper
[2] depend on this concentration.
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Figure 6.1: Markov model for the RyR channel. The channel can either be
in the open state (O) or the closed state (C). The parameters kco and koc are
the opening and closing rates of the channel and may depend on the calcium
concentration in the dyad, e.g. like the rates in Figure 6.2.
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Figure 6.2: Plots of how the opening and closing rates in a Markov model
from [2] depend on the calcium concentration in the dyad. In the upper
panel, we consider calcium concentrations from 0 to 150 µM, and in the
lower panel, we zoom in on concentrations from 0 to 20 µM.
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To get an impression of how the errors in calcium concentration can af-
fect the model of the opening and closing of the RyR channel, it could be
interesting to examine how large the resulting errors would be for the rate
parameters in the Markov model. Below we calculate errors in the rates from
[2] corresponding to the errors in calcium concentration from our numerical
simulations.

6.2.2 Computing errors in the rate parameters

Using the results of accuracy from the numerical simulations presented in
Chapter 5, we can compute the errors in the opening and closing rates for
di�erent resolutions by comparing the rates corresponding to the analytical
calcium concentration to the rates corresponding to the numerical approxi-
mations of the calcium concentration.

In Table 6.1−Table 6.3, we report the errors in the opening and closing rates
from [2] for the 1D, 2D and 3D problems. The rate errors are de�ned as

Error =
‖k(ca)− k(c)‖
‖k(ca)‖

· 100%, (6.1)

where the vector c is a collection of the numerical calcium concentration
in each of the grid points of the dyad domain for every 0.001 ms of the
simulation time and ca is a vector containing the corresponding analytical
concentrations. Furthermore, k(c) is a vector containing either the opening
or the closing rates corresponding to the calcium concentrations in c, and we
use the maximum norm de�ned as

‖u‖ = max
i
|ui|,

where ui are each of the elements in the vector u.

In other words, we �nd the relative maximum rate error over time and space.

Rate errors for the 1D problem

Table 6.1 gives the errors in the opening and closing rates of the RyR channel
corresponding to the errors in the numerical simulation of the 1D problem
with a constructed ḡ(t). The simulation is run from t = 0 ms to t = 2.6 ms,
and we close the channel at t = 2.0 ms (see Figure 5.5).

Considering Table 6.1, we observe that a 5 nm resolution is enough to make
the errors in both rates smaller than one per cent in this case.
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∆x (nm)
Error (%)

opening rate closing rate
15 7.7 5.7
10 1.9 2.8
5 0.22 0.48
3 0.16 0.2
2 0.034 0.077
1 0.0084 0.02

Table 6.1: Maximum errors over time and space of the opening and closing
rates from [2] for the simulation of the 1D problem. The error is de�ned by
(6.1).

∆x (nm)
Error (%)

opening rate closing rate
15 11 43
10 2.2 35
5 0.68 18
3 0.26 8.1
2 0.11 3.9
1 0.029 1.1

Table 6.2: Maximum errors over time and space of the opening and closing
rates from [2] for the simulation of the 2D problem. The error is de�ned by
(6.1).

Rate errors for the 2D problem

In Table 6.2, we report the errors in the opening and closing rates for the
2D problem. The simulation is again run from t = 0 ms to t = 2.6 ms,
and the channel is closed at t = 2.0 ms. For the 2D problem, we get some
negative concentrations close to the Dirichlet boundary (see Figure 5.14),
and in the calculations of the rate parameters, we use the absolute value of
the concentrations.

In this case, we observe that none of the considered resolutions give an error
smaller than one per cent for the closing rate, but the 1 nm resolution is
close, with an error of 1.1 per cent.
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∆x (nm)
Error (%)
closing rate

6 8.5
3 5.8
2 3.2
1 1.9

Table 6.3: Maximum errors over time and space of the closing rate from [2]
for the simulation of the 3D problem. The error is de�ned by (6.1).

Rate errors for the 3D problem

In Table 6.3, we consider the rate errors for the 3D problem. The simulation
is run from t = 0 ms to t = 0.1 ms with an open channel.

Since we do not have analytical solutions in this case, we replace the analyti-
cal solutions in the calculation of the errors with the numerical solutions for a
smaller value of ∆x. The rates corresponding to the numerical concentration
in each cell in the coarse grid is compared to the rates corresponding to the
concentration in the �ne grid cell covering the midpoint of the coarse grid
cell. For ∆x = 6 nm and ∆x = 2 nm, the �ne grid solutions come from a
simulation using ∆x = 0.667 nm, and for ∆x = 3 nm and ∆x = 1 nm, the
�ne grid solution comes from a simulation using ∆x = 0.333 nm.

For the 3D problem, the calcium concentration in the dyad is lower than
5 µM (see Figure 5.17). For concentrations this low, the opening rate is
assumed to be constant (see Figure 6.2), and changing the concentration due
to the numerical errors does not change the opening rate. We therefore only
consider the errors in the closing rate in this case. We again observe that
we do not get an error smaller than one per cent for any of the considered
resolutions, but the 1 nm resolution gives an error smaller than two per cent.

6.2.3 Necessary resolution for simulations of a dyad

The errors in the rate parameters represent a potential consequence of errors
in the numerical approximations of the calcium concentration in the dyad
since errors in the rate parameters can lead to even larger simulation errors
beacuse of errors in the opening and closing of the RyR channel. We are
therefore interested in using a grid resolution that gives su�ciently small
errors in the rate parameters.
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Considering the tables of rate errors above, we are again left with the question
of how large errors are acceptable. Assuming that we want the error in the
rate parameters to be smaller than one per cent, a resolution of 5 nm is
enough for the 1D problem, but for the 2D and 3D problems, the errors are
considerably larger. None of the considered resolutions make both errors that
small, suggesting that a ∆x smaller than 1 nm is necessary.

If we instead just want the errors to be smaller than two per cent, the 1 nm
resolution is su�cient for all the considered cases. Similarly, if we accept an
error of 3.9 per cent, a 2 nm resolution is enough and if an error of 8.1 per
cent is acceptable, we can use a 3 nm resolution.

6.3 Consequences for whole-cell simulations

We now return to the problem introduced in Section 1.3 and consider the
consequenses for whole-cell simulations of calcium dynamics.

Recall from Chapter 1 that we are interested in modelling calcium dynamics
in cardiac cells because calcium plays an important role in the mechanisms
controlling the contraction and relaxation of the heart and that an increased
cytosolic calcium concentration is the signal that initiates contraction [19].
The increased concentration is a result of calcium entering the dyad through
the voltage-gated LCCs and di�using through the dyad to activate the RyR
channels, which release a larger amount of calcium from the SR [20]. Since
these important processes all take place in the dyad, whole-cell simulations
of calcium dynamics need to capture the details of what happens in these
small regions.

Based on the results presented above, a ∆x of 1 nm might be a suitable choice
of resolution to get accurate simulations of calcium dynamics in a dyad. To
get an impression of the consequences of using this resolution in whole-cell
simulations, we will now use estimates from [3] to roughly estimate the size
of the computational problem for a 100 ms whole-cell simulation.

Grid size

Assuming that we use a 1 nm resolution in a �nite volume method like the
one used in the 3D simulations in this thesis for a simulation of a cardiac
muscle cell of size 10 µm × 10 µm × 100 µm, the grid would consist of
10, 000× 10, 000× 100, 000 = 1013 boxes with sides of length 1 nm.
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Number of time steps

If we use an explicit numerical method, the number of required time steps in
the simulation depends on how large we can make ∆t without violating the
governing stability condition. We assume that the model of calcium dynamics
includes reactions with bu�ers, but that the di�usion part of the equations
gives the strictest stability condition. In that case, a suitable choice of ∆t
for a 3D simulation could be [3]

∆t =
1

7

∆x2

kmax

≈ 6.5× 10−7 ms,

where kmax is the value of the largest di�usion coe�cient appearing in the
given system of equations, in our case kc. Using this ∆t, a 100 ms simulation
would require approximately 1.5× 108 time steps.

If we had used an implicit numerical method instead of the explicit method,
we would avoid the stability condition and could use a much larger value
of ∆t. This would imply much fewer time steps in the simulation. On the
other hand, using an implicit method implies more �oating-point operations
for each time step because we need to solve a nonlinear system of equations
for every time step.

Total problem size

Assuming that we use an explicit method, the paper [3] estimates around
150 �oating-point operations for each box at each time step. Consequently,
the total number of �oating-point operations for a 100 ms simulation with a
1 nm resolution would be approximately

150× 1013 × 1.5× 108 ≈ 2.3× 1023.

This is a huge computational problem. Even using 10,000 nodes on the super-
computer Tianhe-2, where each node has an estimated realistic performance
of 150 G�op/s [3], a 100 ms simulation would require a simulation time of
almost �ve years.

If we could increase the value of ∆x to 2 nm, the number of boxes in the
grid would be reduced by a factor of 23 and the number of time steps would
be reduced by a factor of 22, making the total number of �oating-point op-
erations 25 = 32 times smaller. Using 10,000 nodes on Tianhe-2, a 100 ms
simulation would then give a simulation time of about two months.
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Increasing the value of ∆x to 3 nm would make the size of the problem even
smaller as the total number of �oating-point operations would be reduced by
a factor of 35 = 243 compared to the 1 nm resolution. A 100 ms simulation
using 10,000 nodes would then require a simulation time of about a week.

On the other hand, Tianhe-2 is a very powerful supercomputer, currently at
the top of the TOP500 list of the most powerful supercomputers in the world
[23]. For a more ordinary supercomputer, it might be more realistic to use
about 100 nodes. Assuming that each node has a performance of 150 G�op/s,
the simulation time would then be increased by a factor of 100 compared to
using 10,000 nodes, and even for the 3 nm resolution the simulation time
would be longer than two years.

6.4 Weaknesses

The results of accuracy obtained in this thesis are inevitably a�ected by our
choice of models and parameters. In this section, we discuss weaknesses of
some of these choices.

As already mentioned, a disadvantage with the analytical solutions derived
in Chapter 3 is that we need to use a constructed ḡ(t) in the �ux through the
RyR channel instead of a constant ḡ speci�ed by the model. This weakness
has already been discussed in Chapter 3 and Chapter 5. In short, the results
of the simulations were clearly a�ected by using the constructed ḡ(t) instead
of the constant ḡ (see e.g. Figure 5.8), but we found no clear indications
that the accuracy was considerably worse for the constant ḡ than for the
constructed ḡ(t) (see e.g. Figure 5.9).

Another factor to consider is the use of constant Dirichlet boundary con-
ditions on the boundaries between the jSR and the nSR and between the
dyad and the cytosol for the 1D and 3D problems. This simpli�cation has
a physiological justi�cation since the nSR and cytosol represent large com-
partments relatively far from the RyR channel. Nonetheless, the Dirichlet
boundary conditions do ensure that the numerical solutions are correct at
these boundaries for every time step, which could make the numerical sim-
ulations more accurate than if we had extended the domain and let calcium
di�use through the nSR and cytosol as we would in whole-cell simulations.

Furthermore, the special Dirichlet boundary conditions for the 2D problem
had a substantial e�ect on the accuracy of the simulations, yet the form
of these boundary conditions was more motivated by the possibility to �t
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analytical solutions than to �t a model of calcium dynamics. As a result,
we did not really have any proper justi�cations for the choice of parameter
values in these boundary conditions. This is a weakness of the 2D problem
beacuse the choice of these parameter values probably had a large impact on
the accuracy of the simulations of the model.

In an attempt to get more realistic results, we constructed a 3D problem
in which the RyR channel was restricted to a limited area on the bound-
ary between the jSR and the dyad. Even though we did not �nd analytical
solutions in this case and could not determine the error exactly, these simula-
tions provided error estimates that might be more in agreement with realistic
simulations of calcium dynamics because we did not have to construct the
problem to �t analytical solutions. Nevertheless, the 3D problem studied in
this thesis is a very simpli�ed model of calcium dynamics in the dyad. Some
of the simpli�cations that can have a�ected the accuracy of the simulations
are the simple rectangular geometry of the domains and the fact that we only
included one RyR channel while there in reality are several RyR channels in
the dyad [8].

Another weakness of our approach to studying the accuracy of numerical
simulations of calcium dynamics is the absence of a stochastic model for the
opening and closing of the RyR channel. As observed above, the errors in
the calcium concentration can lead to errors in the opening and closing of
the RyR channel, which again lead to even larger simulation errors. Above,
we calculated errors in the rate parameters of a Markov model, but we have
not done any simulations studying this e�ect.

In conclusion, we have made several simpli�cations and choices in our models
of calcium dynamics that can have a�ected the results about the accuracy
of the numerical simulations. An advantage of our choices is that we have in
some cases been able to derive analytical solutions, which has allowed us to
determine exactly how close the numerical approximations are to the exact
solutions. A disadvantage is that the obtained results about accuracy might
not be representative for more complex and realistic simulations of calcium
dynamics.
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Chapter 7

Conclusions

In this thesis, we have investigated what grid resolution is necessary for
numerical simulations of calcium dynamics in cardiac cells by studying some
simple models of calcium dynamics in the dyad. The models consisted of
a jSR domain in addition to a dyad domain and modelled how the calcium
concentration varied in time and space in these domains when there was
release of calcium from the jSR to the dyad through an RyR channel.

Numerical simulations of the models were carried out for di�erent grid resolu-
tions, and the accuracy of the simulations was studied by comparing solutions
produced by the numerical simulations to analytical solutions in 1D and 2D
and numerical solutions on a �ne grid in 3D. Afterwards, this accuracy was
compared to the calcium sensitivity of an example of a Markov model for the
opening and closing of the RyR channel.

Since it is hard to say exactly how large errors are acceptable, it is hard to
conclude exactly what grid resolution would be necessary for the simulations,
but the experiments provide some insight into what errors might be expected
for di�erent resolutions. For instance, we found that a 1 nm resolution gave
errors of up to 1.9 per cent in the rate parameters of the Markov model,
a 2 nm resolution gave errors of up to 3.9 per cent and a 3 nm resolution
gave errors of up to 8.1 per cent. For whole-cell simulations all of these
resolutions result in huge computational problems, which, especially for the
1 nm resolution, might be too large even for very powerful supercomputers.

The models studied in this thesis are very simple models of calcium dynamics,
and the accuracy results obtained for these models might not be representa-
tive for simulations of more complex models. To gain more insight into what
grid resolution is necessary for numerical simulations of calcium dynamics in

113



114 CHAPTER 7. CONCLUSIONS

a dyad, it could therefore be useful to run more simulations, testing what
resolution is required in simulations of more complex and realistic models.

One suggestion for further investigation is to model the opening and closing
of the RyR channel stochastically using a Markov model. That would allow
us to study more closely how errors in the calcium concentration can lead to
errors in the opening and closing of the RyR channel and what resolution is
required to give su�ciently accurate simulations in this setting.

Moreover, the model could be extended to include several RyR channels in
the dyad, allowing us to study what resolution is necessary to give a realistic
interaction between the RyR channels in the simulations, i.e. that the release
from one channel activates release from nearby channels in a realistic manner.

Another suggestion for further study is to replace the simple geometry used
in the simulations in this thesis with a more realistic geometry of the dyad
and investigate how this a�ects the necessary resolution.
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