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Preface

Abstract
In 1862, substituting for professor O. J. Broch, Ludvig Sylow gives the first lectures
ever given on the field of Galois theory in Norway, at the University of Christiania.
He lectures on, amongst other things, what he calls “reciproke ligninger” (reciprocal
equations), i.e. equations of the form

f(x) = x2n + a1x
2n−1 + a2x

2n−2 + ...+ an−1x
n+1 + anx

n

+ an−1x
n−1 + ...+ a2x

2 + a1x+ 1 = 0,

see [6, p.59-60]. It turns out that there are some interesting relations between the
solutions of these equations.

About one hundred and fifty years later, the Norwegian Julie Kjennerud, who
majored in mathematics at the University of Oslo in 1938 but later worked as uni-
versity lecturer in botany, puzzles with some notes she has and tells an old colleague
about them. She is then over 100 years old, but have discovered some interesting
polynomials, which she calls “koeffisient symmetriske polynomer” (coefficient sym-
metrical polynomials) and which have roots with certain properties[1]. They turn
out to be exactly the type of polynomials Sylow lectured about.

These polynomials and their roots is exactly the theme of this thesis: we shall
look into these special types of polynomials, calling them palindromic polyno-
mials. What can a polynomial’s coefficients possibly tell us about its roots? And
can certain connections between the roots help us calculate the polynomial’s Galois
group?

We will see how symmetry of the coefficient leads to special pairwise connec-
tions between the roots. Then we will use these connections to derive formulas for
finding roots of these polynomials up to and including degree nine.
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Having developed these tools we will consider the Galois groups of the palin-
dromic polynomials, before we “upper our game” and consider polynomials which
are not precisely palindromic, and which we shall call semipalindromic polynomials.
Only some of their roots have the pairwise connection of the palindromic polyno-
mials’. How can we detect that a polynomial is semipalindromic, and what do the
Galois groups of the semipalindromic polynomials look like?
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Historical note

Before we start considering polynomials and their roots, let us take a second
to shortly review the history of solving equations, starring both the Norwe-
gian mathematician Niels Henrik Abel and the French genius Evariste Galois.

Finding the zeroes of different polynomials has been studied since the
Babylonian time, about 1600 BC. The quadratic-, or abc-formula, for finding
the roots of second degree polynomials is well known to most people. It is a
quick and easy way to find the two complex roots of a quadratic equation.
A little more tricky, and not so well known, is Cardano’s formula for finding
the three complex roots of a cubic polynomial. Still it exists and even a not
very advanced calculator will use it to find the solutions of these equations.
Actually, there is also an even more complicated formula for finding the roots
of a quartic equation.

Even though these two last formulas look rather horrendous, only basic
algebraic operations such as,

+,−,×,÷,√, 3
√
, 4
√
, 5
√
, ...

and the coefficients of the polynomial are used to find expressions of its roots.

Some time (maybe even a very long time) after these formulas were de-
rived, at least one mathematician asked himself for how high degrees he could
find such expressions. The mathematician was the Norwegian Niels Henrik
Abel, and he would be the one to show that it’s impossible to find a formula
for calculating the roots of a general polynomial of degree five or higher,
using only algebraic operations. But it would take him some time even just
to realize that this was the case.

As a matter of fact, while Abel was still a student at “Katedralskolen”,
he actually thought he had found a formula for calculating the five complex
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roots of any quintic polynomial, and neither Abel nor any other Norwegian
mathematician could find any flaws in it. But after some time Abel himself
realized that this formula could not be correct for all polynomial fifth degree
equations. With time his belief that no such formula existed grew stronger
and stronger, but his suspicion was hard to prove. It turned out that the
Italian mathematician Paolo Ruffini had actually given a proof of this some
years earlier, which Abel did not know about at first, but was made aware of
later. Eventually he found flaws in both Ruffini’s and his own first attempted
proof.

But Abel succeeded at last! In 1823 he presented a proof to what is now
known as the Abel-Ruffini theorem: there is no general algebraic solution,
meaning solution in radicals, to equations of degree five or higher.

Actually, Abel proved that there are some polynomials which can not
be solved using radicals. What the proof doesn’t include are conditions for
saying which of the quintic (and higher degree) equations that are unsolvable
by radicals. An example of an equation which can not be solved by radicals
is x5−x+1 = 0, while the equation x5−x4−x+1 = 0, which may look more
complicated, actually can be solved by an algebraic formula using radicals.
As he became interested in other fields of mathematics, e.g. elliptic curves,
Niels Henrik Abel never solved the question of which equations of degree five
or higher could not be solved by radicals. His life ended at a young age, and
his question was still unanswered.

Niels Henrik Abel was born on Finnøy in Ryfylke in Norway the 5th of
August 1802. His father, Søren Georg Abel, was vicar and a prominent man.
In 1804 Niels Henrik’s grandfather, the vicar at Gjerstad in Aust-Agder died,
and Søren Georg moved here with his family to fill the shoes of his dead fa-
ther. Niels Henrik grew up at Gjerstad with an older brother, three younger
brothers and one sister.

In 1815 he traveled to Christiania to attend “Katedralskolen”. As his
mathematics teacher was fired after beating a student to death, Bernt Michael
Holmboe became Abel’s new teacher. Holmboe was a different type of
teacher, giving his students independent tasks, challenging them mathemati-
cally. Holmboe and his challenging tasks were probably what triggered Abel’s
interest in mathematics. It has been said that without the influence of Bernt
Michael Holmboe, Abel would probably not have been the mathematician he
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was.

Even as a young student, Abel probably had more mathematical knowl-
edge than any other contemporary Norwegian. He had to study on his own.
After publishing an article in Magazin for Naturvidenskaberne in the spring
of 1823, some of the Norwegian professors understood that Abel needed to go
abroad to widen his knowledge, but lack of funds forced him stay in Christia-
nia. The same summer, though, he got the opportunity to go to Copenhagen.
Here he started his work on elliptic curves, which he would later become fa-
mous for. After this visit, Abel became even more eager to travel further,
and after writing a letter to the King he got funds to travel again the summer
of 1825.

Figure 1: Niels Henrik Abel.

In Berlin he met an engineer with
great interest in mathematics, Au-
gust Leopold Crelle. Crelle wanted
to publish a mathematical journal,
and in 1826 the first number of Jour-
nal für die reine und angewandte
Mathematik (often called Crelle’s
Journal) was published. In his
first article for Crelle, Abel pub-
lished an expansion of the Abel-
Ruffini theorem. Abel would come
to publish most of his articles in
Crelle’s journal, which quickly gave
the magazine a reputation as the
leading mathematical journal in Eu-
rope.

The summer of 1826 Abel finally reached the most important destination
of his trip, Paris, which was the greatest mathematical center at that time.
But his visit was a great disappointment. As he received no response on
his big Paris-thesis from the “Academy of Science” and felt more and more
unhappy in the city, Abel returned to Berlin in the beginning of 1827. In
May the same year he returned to Norway. Having caught tuberculosis in
Paris, he was already affected by the disease. Still he continued to work on
his big thesis on elliptic functions, and as he finished the paper he resumed
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his work on equations.
Being increasingly ill from his disease, Abel could not return to Christia-

nia after spending Christmas with his fiancee, Christine Kemp, at Froland
Verk in 1828. As he understood his life was coming to an end, Abel wrote
down a resumé of a proof of what is these days called “Abel’s addition theo-
rem”. The resumé was sent to Crelle. On the 6th of April 1829 Abel died in
poverty at Froland Verk, having left the world of mathematics a lot of new
and useful results and theories.

12 years after his death, in 1841 Abel’s Paris-thesis was published, and
it was also included in his collected work, which was published in 1881.

A couple of years after Abel presented the Abel-Ruffini theorem, the
young and promising student Evariste Galois wondered why the formulas
Abel had been looking for didn’t exist. His idea was to study the symmetries
of the solutions of polynomial equations. In 1846, long after his death, an
independent proof of Abel’s theorem, proved by Galois, was published. In
addition, Galois could describe which polynomials could, and which could
not, be solved using radicals.

The story about the young and promising Galois is unfortunately both
short and unsuccessful in many ways. Though Galois brought forth some
very important mathematics, most of it was never presented during his own
lifetime. There is little doubt that the loss of his potential, already at the
age of 20, was a great tragedy for the scientific world.

Figure 2: Evariste Galois at Lycée
Louis-le-Grand.

Evariste Galois was born in
France in 1811. As a young boy
he was home taught by his mother,
but as he was about to turn twelve,
he started the famous school Lycée
Louis-le-Grand in Paris. Being held
back by the headmaster from enter-
ing the advanced rhetoric class at
age fifteen, Galois was introduced
to mathematics - which would be-
come his life-long (although this was,
as already revealed, not long) fas-
cination. He lost interest for all
other subjects and focused almost
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entirely on the problems of mathe-
matics.

One of Galois’ teachers, Louis Paul Emilie Richard, published his first
paper, which was also his first sweep into what would become his new the-
ories about groups and fields. He wanted to show, by first introducing the
idea of a group, that to find the roots of certain polynomials, one would have
to create a special group for the polynomial and some of its properties would
determine whether or not the polynomial was solvable (meaning by radicals).
This group is now known as the “Galois group” of the polynomial.

As Galois continued his studies at the Lycée, Richard encouraged him to
submit two papers to the “Academy of Science”, but Galois never got recog-
nition for the work done in these papers.

Neither his academic nor his personal life treated Galois well. In 1829 his
father committed suicide, and only days after, Galois re-failed the exam to be
accepted to the Ecole Polytechnique, the greatest scientific college in France
at that time. His only option was then to attend the next best college, the
Ecole Préparatoire.

In February of 1830 the then 18 years old Galois again presented his ideas
to the “Academy of Science”, attempting to win the great mathematical honor
“the Grand Prize”. But again luck was against him, and the secretary died
before even reading his paper.

During his time at the Préparatoire Galois became interested in poli-
tics, making him involved in protests and discussions. Living in poverty and
serving time in prison due to political “battles”, made is life tough. July of
1831 was really not a good month for him. He moved into his own apart-
ment, breaking ties with his family. Again he was, due to leading a political
protest, arrested and sentenced to six months in prison. As he got ill during
his sentence, he got transferred to a hospital where he met a girl he fell head
over heels in love with. But she turned his love down, and he insulted her
somehow, which might have led to the notorious duel on the 31st of May
1832, ending his life the next day[2].

There is no historical agreement on the exact reason for the duel which
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cost Evariste Galois his life. Some think it was a lovers’ quarrel while others
believe it was political. History is not even clear on whom he fought or how
he got to the hospital, but the fact that he died from his injuries the next
day, not yet 21 years old, is certain.

Whomever Galois fought and for whatever reason, Galois seems to have
been pretty aware of and convinced of his impending death. The entire night
before the duel Galois sat up, finishing his mathematical memoirs, consist-
ing of a letter to Auguste Chevalier, outlining his ideas, and three attached
manuscripts. During the night he also wrote letters to his Republican friends.

Not until 1843 were Galois’ mathematical contributions published, we pic-
ture the first page of his memoirs on the next page. Joseph Liouville had re-
viewed the manuscripts Galois left behind, and declared them sound. Galois’
collected work turned out just some 60 pages, but it contains many important
ideas which have had consequences for nearly all branches of mathematics[3].
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Figure 3: The first page of Galois’ memoirs.
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Introduction

Although they both died at a young age, Abel and Galois left the world of
mathematics a lot of new ideas and theories. Both are perhaps most famous
for their work on the solvability of polynomial equations, but using different
methods.

To study the solvability of polynomials by radicals, Galois considered
permutations of their roots leaving the coefficient field fixed. The modern
approach is to study automorphisms determined by these permutations.

As mentioned earlier Galois first created what he called groups, and then
one special group, the Galois group, associated to a polynomial. In this
master thesis we are going to look at the Galois group of different types of
polynomials. Let us first introduce some of the theory and the main result
of Galois theory.

Definition 0.0.1. Let F be a field with algebraic closure F̄ . Let f(x) be a
polynomial in F [x]. A field E ⊆ F̄ is the splitting field of f over F if it
is the smallest subfield of F̄ containing F and all the zeroes of f in F̄ .

Definition 0.0.2. A polynomial P (x) over a field K is separable if roots
are distinct in an algebraic closure of K. The number of its distinct roots is
equal to its degree.

The splitting field of a polynomial is an important part of its Galois
theory. The next definition will also be quite useful as we start considering
polynomials:

Definition 0.0.3. A finite extension K of F is a finite normal extension
of F if K is a separable splitting field over F . A separable extension of a
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field F is an algebraic field extention K ⊇ F such that for every α ∈ K, the
minimal polynomial of α over F is a separable polynomial.

Having introduced the notion of a splitting field, we can “finally” reveal
what this much spoken of Galois group is.

Definition 0.0.4. Let P (x) be a polynomial in F [x], F a field, and assume
E with F ⊆ E ⊆ F̄ is the splitting field of P over F . Then the Ga-
lois group, Gal(E/F ), of P is the group of all automorphisms of E which
leaves F fixed. If F ⊆ E ⊆ F̄ , we also say Gal(E/F ) is the Galois group of E.

Galois theory has basically one main theorem. This is stated generally
for fields, which is also how we state it here, but before we do so, we need to
introduce one more definition.

Definition 0.0.5. Let {σi|i ∈ I} be a collection of automorphisms of the
field E. Then the field E{σi} is the fixed field of {σi|i ∈ I}. In our theorem
below this means e.g. that KGal(K/E) is the fixed field of all the automor-
phisms in Gal(K/E).

We are now ready to state the main theorem of Galois theory [4, theorem
53.6, p.451]:

Theorem 0.0.6. Let K be a finite normal extension of the field F and let
its Galois group be Gal(K/F ). For a field E, where F ⊆ E ⊆ K, let λ(E)
be the subgroup of Gal(K/F ) which leaves E fixed. Then λ is a one-to-one
map of the set of all such intermediate fields E onto the set of all subgroups
of Gal(K/F ). The following properties hold for λ:

1. λ(E) = Gal(K/E)

2. E = KGal(K/E) = Kλ(E)

3. For H ⊆ Gal(K/F ), λ(KH) = H

4. The degree of K over E, [K : E] = |λ(E)| and the degree of E over
F , [E : F ] = (Gal(K/F ) : λ(E)), the number of left cosets of λ(E) in
Gal(K/F ).
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5. E is a normal extension of F if and only if λ(E) is a normal subgroup
of Gal(K/F ). When λ(E) is a normal subgroup of Gal(K/F ), then

Gal(E/F ) ' Gal(K/F )/Gal(K/E).

6. The diagram of subgroups of Gal(K/F ) is the inverted diagram of in-
termediate fields of K over F .

As we will use it quite often, we state 5. also for fields Q ⊆ E ⊆ F , where
F is a finite normal extension of the field Q and Gal(F/Q) is its Galois group:

5. E is a normal extension of Q if and only if λ(E) is a normal subgroup
of Gal(F/Q). When λ(E) is a normal subgroup of Gal(F/Q), then

Gal(E/Q) ' Gal(F/Q)/Gal(F/E).

We are now ready to start our work on the Galois theory of some special
types of polynomials.
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Chapter 1

Palindromic polynomials

Definition 1.0.7. A polynomial P (x) ∈ Q[x]

P (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

of degree n is said to be palindromic if an−i = ai for i = 0, 1, 2, ..., n.

Example 1.0.8. Examples of palindromic polynomials are:

• x2 + 2x+ 1

• x4 + 1

• 4x3 + 2x+ 4 ♣

1.1 Roots of palindromic polynomials
Since we are interested in finding the zeros of palindromic polynomials, we
might as well assume that an (and thereby also a0, since the polynomial is
palindromic) is equal to 1, because if an 6= 1 we simply divide all coefficients
by an.

For simplicity we shall usually denote a palindromic polynomial with
coefficients in Q as

P (x) = xn + a1x
n−1 + a2x

n−2 + ...+ a2x
2 + a1x+ 1.

21



22 CHAPTER 1. PALINDROMIC POLYNOMIALS

Observation 1.1.1. Assume P has roots α1, α2, ..., αn, where some of the
roots may have multiplicity greater than 1. Then

P (x) = (x− α1)(x− α2) · · · (x− αn).

And because every monic palindromic polynomial has constant term 1, this
means

1 = (−α1)(−α2) · · · (−αn) = (−1)n · α1α2 · · ·αn

=⇒ α1α2 · · ·αn =
1

(−1)n
= (−1)n.

So for palindromic polynomials the product of the roots always equals (−1)n,
where n is the degree of the polynomial.

Example 1.1.2. Consider the case n = 2. Since (−1)n = (−1)2 = 1 and
every second degree polynomial has two roots (which might be the same with
multiplicity 2), the roots are each other’s inverses. In other words: if we call
the roots α1 and α2, for a palindromic second degree polynomial we must
have

α2 =
1

α1

.

Let’s see that using the well known abc-formula gives us the same result:
A second degree palindromic polynomial looks like P (x) = x2 + bx+ 1, and
the abc-formula gives

α1 =
−b+

√
b2 − 4

2
, α2 =

−b−
√
b2 − 4

2

If we now consider α1 and 1
α1
, we see that

α1 =
−b+

√
b2 − 4

2
=⇒ 1

α1

=
2

−b+
√
b2 − 4

=
−b−

√
b2 − 4

2
= α2.

Which again shows that the two roots of a second degree palindromic poly-
nomial are each other’s inverses. ♣

Example 1.1.3. Let n = 3 then if α1, α2, α3 are the roots of P (x) = x3 +
ax2 + ax+ 1, we have

α1 · α2 · α3 = (−1)3 = −1.
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Further we see that for third degree palindromic polynomials α = −1 will
always be a root:

P (−1) = (−1)3 + a(−1)2 + a(−1) + 1 = −1 + a− a+ 1 = 0.

If we let α1 = −1 we must have α2 · α3 = 1, or α3 = 1
α2
. In addition we have

P (x) = x3 + ax2 + ax+ 1 = (x+ 1)(x− α2)(x− α3)

= x3 + (1− α2 − α3)x
2 + (α2 · α3 − α3 − α2)x+

α2 · α3

= x3 + (1− α2 − α3)x
2 + (1− α3 − α2)x+ 1

(where we’ve used the fact that α1 = −1 and α2 · α3 = 1), so we see that

a = 1− α2 − α3.

♣
As in the example above with n = 3 we can deduce that for all odd n,

a palindromic polynomial of degree n has α = (−1) as a root (which might
have multiplicity greater than 1).

Proposition 1.1.4. If P (x) is a palindromic polynomial of odd degree n,
then (-1) is a root of P (x).

Proof. Let

P (x) = xn + a1x
n−1 + a2x

n−2 + ...+ a2x
2 + a1x+ 1

be a polynomial of odd degree, n = 2m+ 1. If we evaluate P at x = −1, we
have

P (−1) = (−1)n + a1(−1)n−1 + a2(−1)n−2 + ...+ a2(−1)2 + a1(−1) + 1

= (−1) + a1 · 1 + a2 · (−1) + ...+ a2 · 1 + a1 · (−1) + 1

= a1 − a2 + ...+ a2 − a1

From this it seems all terms will cancel, but let us take a look to be sure this
is the case:
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Assume first that i is even, say i = 2k. Since P is palindromic we know
that an−i = ai, and we see that evaluated at x = −1 we have

ai(−1)i = ai · (−1)2k = ai · 1 = ai.

But we also have that

n− i = 2m+ 1− 2k = 2(m− k) + 1

is odd, so
an−i(−1)n−i = ai(−1)n−i = ai · (−1) = −ai.

This shows that if i is even, then n − i is odd, so evaluated at x = −1 the
sum aix

i + aix
n−i cancel.

Now if we assume i is odd, i = 2k + 1, evaluated at x = −1 we have

ai(−1)i = ai(−1) = −ai.

But then
n− i = 2m+ 1− (2k + 1) = 2(m− k),

is even, so
an−i(−1)n−i = ai(−1)n−1 = ai · 1 = ai,

which shows that also if i is odd the sum aix
i + aix

n−i evaluated at x = −1
cancel.

Lastly we make sure no terms are left uncancelled. Since n is odd, P has
n + 1, which is even, terms. This means there is no “middle term” which is
not cancelled, and we have

P (−1) = −1 + a1 − a2 + a3 − a4 + ...+ a4 − a3 + a2 − a1 + 1 = 0.

The next proposition, describing on more property of palindromic poly-
nomials, will turn out to be surprisingly useful in the following.

Proposition 1.1.5. A polynomial P (x) ∈ Q[x] of degree n is palindromic if
and only if

P (x) = xnP

(
1

x

)
.
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Proof. =⇒ Assume first that P (x) is palindromic:

P (x) = xn + a1x
n−1 + a2x

n−2 + ...+ a2x
2 + a1x+ 1.

Then we have

xnP

(
1

x

)
= xn

((
1

x

)n
+ a1

(
1

x

)n−1
+ a2

(
1

x

)n−2
+ ...

+ a2

(
1

x

)2

+ a1

(
1

x

)
+ 1

)
= 1 + a1x+ a2x

2 + ...+ a2x
n−2 + a1x

n−1 + xn = P (x)

⇐= Now assume P (x) = xnP ( 1
x
), which means that

xnP

(
1

x

)
= xn

(
an

(
1

x

)n
+ an−1

(
1

x

)n−1
+ an−2

(
1

x

)n−2
+ ...

+ a2

(
1

x

)2

+ a1

(
1

x

)
+ a0

)
= an + an−1x

1 + an−2x
2 + ...+ a2x

n−2 + a1x
n−1 + a0x

n = P (x).

Comparing coefficients we see that we must have an−i = ai for all i, which
means P (x) is palindromic.

Lemma 1.1.6. The product of two palindromic polynomials is a palindromic
polynomial. If both P (x) and Q(x) are palindromic polynomials and Q is a
factor in P , the quotient R(x) = P (x)

Q(x)
is also palindromic.

Proof. Let P (x) and Q(x) be two palindromic polynomials of degrees n and
m respectively. The product, R(x), of P and Q is a polynomial of degree
n+m, and we need to check that it is palindromic. According to proposition
1.1.5 it suffices to show that R(x) = xn+mR

(
1
x

)
.

We know that P (x) = xnP
(
1
x

)
and that Q(x) = xmQ

(
1
x

)
, so

R(x) = P (x)Q(x) = xnP

(
1

x

)
· xmQ

(
1

x

)
= xn+mP

(
1

x

)
Q

(
1

x

)
= xn+mR

(
1

x

)
.
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So we have R(x) = xn+mR
(
1
x

)
and hence the product of two palindromic

polynomials is palindromic.

Now let
R(x) =

P (x)

Q(x)
,

assume n > m, and that Q is a factor in P . Then

R(x) =
xnP

(
1
x

)
xmQ

(
1
x

)
= x(n−m)P

(
1
x

)
Q
(
1
x

)
= x(n−m)R

(
1

x

)
,

which shows that R(x) = P (x)
Q(x)

is a palindromic polynomial of degree n −
m.

The previous lemma turns out to be quite useful as we try to characterize
the roots of a palindromic polynomial. We will first use it to prove the
following:

Lemma 1.1.7. Let P (x) be a palindromic polynomial. If α 6= ±1 is a root
of P , then so is 1

α
, and their multiplicity is the same.

Proof. We first show that if α 6= 0 is a root of P , then so is 1
α
. Since P is

palindromic P (x) = xnP ( 1
x
), which means that if α 6= 0 is a root of P , then

P (α) = 0 =⇒ αn︸︷︷︸
6=0

·P
(
1
α

)
= 0 =⇒ P

(
1
α

)
= 0,

so 1
α
is a root of P as well1.

Now assume α 6= ±1 is a root of multiplicity r, larger than the multiplic-
ity, s, of 1

α
. Then

P (x) = (x− α)r
(
x− 1

α

)s
(x− α1)

n1(x− α2)
n2 · · · (x− αm)nm(x−1)t(x+1)n−1 ,

1Note that since all palindromic polynomials hava constant term equal to 1, 0 is never
a root.
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where α1, ...αm, 1, (−1) are the rest of the roots of P with multiplicities
n1, ..., nm, t, n−1 respectively (where t and n−1 could be zero). Observing
that

(x− α)
(
x− 1

α

)
= x2 −

(
α + 1

α

)
x+ 1

=⇒ (x− α)s
(
x− 1

α

)s
=
(
x2 −

(
α + 1

α

)
x+ 1

)s
,

by lemma 1.1.6 (x− α)s
(
x− 1

α

)s is palindromic and hence so is

R(x) :=
P (x)

(x− α)s
(
x− 1

α

)s =(x− α)r−s(x− α1)
n1(x− α2)

n2 · · ·

(x− αm)nm(x− 1)t(x+ 1)n−1 .

But now R(x) is a palindromic polynomial where α is a root even though 1
α

isn’t. As we saw in the start of the proof, this can not be the case. Hence if
α 6= ±1 is a root of P , then 1

α
is a root with the same multiplicity.

Before we state our theorem, we benefit from first stating, and proving,
one more lemma.

Lemma 1.1.8. If α = 1 is a root of a palindromic polynomial, then it is of
even multiplicity.

Proof. We know from the lemma above that if αi 6= ±1 is a root of P , then
1
αi

is a root as well and it has the same multiplicity, ni. If we denote the
multiplicity of the root (−1) as n−1 (might be 0) and the multiplicity of the
root 1 as r, we can rewrite P as

P (x) =(x− 1)r(x+ 1)n−1

(
x2 −

(
α1 + 1

α1

)
x+ 1

)n1

· · ·(
x2 −

(
αm + 1

αm

)
x+ 1

)nm

.

If we now assume the multiplicity of 1 is odd, say r = 2k+1, k ≥ 0, and note
that (x− 1)2 = x2 − 2x+ 1 is palindromic, we see that

P (x) = (x− 1)2k+1(x+ 1)n−1

(
x2 −

(
α1 + 1

α1

)
x+ 1

)n1

· · ·(
x2 −

(
αm + 1

αm

)
x+ 1

)nm

= (x− 1)
(
x2 − 2x+ 1

)k
(x+ 1)n−1

(
x2 −

(
α1 + 1

α1

)
x+ 1

)n1

· · ·(
x2 −

(
αm + 1

αm

)
x+ 1

)nm

,



28 CHAPTER 1. PALINDROMIC POLYNOMIALS

where both (x2 − 2x+ 1)
k, (x+ 1)n−1 and

(
x2 −

(
αi + 1

αi

)
x+ 1

)ni

are palin-
dromic for i = 1, ...,m. This means the product of them is also palindromic,
so their product has 1 as constant term. But when multiplied with the last
factor (x− 1), of P , we see that the constant term changes to −1. Hence
P (x) can not be palindromic, which contradicts our assumption that the root
1 is of odd multiplicity.

We are now ready to state and prove the following result:

Theorem 1.1.9. A polynomial P (x) ∈ Q[x] is palindromic if and only if the
following two conditions are satisfied:

(1) 1 is a root of even multiplicity (possibly zero)

(2) if α 6= ±1 is a root, then 1
α
is a root with the same multiplicity.

Also, if (−1) is a root of a palindromic polynomial, the multiplicity is always
odd if the polynomial is of odd degree, and always even if the polynomial is
of even degree.

Proof. We start by proving our “if and only if” statement:
=⇒ (1) is lemma 1.1.8, and (2) is lemma 1.1.7.
⇐= We want to prove that if all roots not equal to ±1 of a polynomial

P (x) ∈ Q[x] come in inverse pairs, i.e. the fact that αi 6= ±1 is a root
of multiplicity ni implies that also 1

αi
is a root of multiplicity ni, and the

multiplicity of the root 1 is even, then P is palindromic. If we let r and
s be the multiplicities of the roots 1 and −1 respectively (they might be
0) and α1,

1
α1
, α2,

1
α2
, ..., αm,

1
αm

be the rest of the roots with multiplicities
n1, n1, n2, n2, ..., nm, nm respectively, we have

P (x) = (x− 1)r(x+ 1)s
m∏
i=1

(
x2 −

(
αi + 1

αi

)
x+ 1

)ni

By assumtion r is even, say r = 2k, k ≥ 0, so the polynomial (x− 1)r =

(x− 1)2k = (x2 − 2x+ 1)
k is palindromic by lemma 1.1.6. Both (x+ 1)s and

the product
∏m

i=1

(
x2 −

(
αi + 1

αi

)
x+ 1

)ni

are palindromic as well, which
means P (x) is a product of palindromic polynomial, so by lemma 1.1.6, P
must be palindromic as well.
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So we have proved our first statement and continue by proving the next;
that if (−1) is a root the multiplicity is always odd if the polynomial is of
odd degree, and always even if the polynomial is of even degree.

We know from the fundamental theorem of algebra (see e.g. [5, theorem
3.5.1]) that every polynomial of degree n has n complex roots, counted with
multiplicity. So if n is odd, any polynomial of degree n has an odd number
of roots. But from the result above we know that every other root than
(−1) comes in inverse pairs {α, 1

α
} with even multiplicity (the pair, since the

multiplicity of α and 1
α
is the same).

From the first statement we know that if 1 is a root it is of even multi-
plicity 2k where k could be 0. Now let 2n1 be the multiplicity of the pair
of roots {α1,

1
α1
}, 2n2 be the multiplicity of the pair of roots {α2,

1
α2
} and so

on, until the “last” roots {αr, 1
αr
} (r ≤ n). Let the multiplicity of (−1) be

n−1. Then the number of roots are(
r∑
i=1

2ni

)
+ 2k + n−1 =

(
2

r∑
i=1

ni

)
+ 2k + n−1.

And since n is odd and both (2
∑r

i=1 ni) and 2k are even, we must have n−1
odd.

Now, in the case of an even degree polynomial, n would be even, so since
(2
∑r

i=1 ni) and 2k are even, so must n−1.

Remark 1.1.10. Note that if αi and 1
αi

don’t have the same multiplicity,

even though P (αi) = 0 =⇒ P
(

1
α1

)
= 0, P (x) need not be palindromic.

Just consider the example P (x) = (x− 2)2
(
x− 1

2

)
= x3− 9

2
x2 + 6x− 2. P (x)

is not palindromic, but if P (α) = 0, then P
(
1
α

)
= 0 also.

1.1.1 Finding the roots

Knowing that all roots (other than possibly α = −1) of a palindromic poly-
nomial come in inverse pairs {αi, 1

αi
}, where αi and 1

αi
have the same mul-

tiplicity, will turn out to be very handy as we try to calculate the roots of
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palindromic polynomials of different degrees.

Let P (x) ∈ Q[x] be a monic polynomial of degree n. As mentioned earlier
P has exactly n complex roots, counted with multiplicity. Let α1, α2, ..., αn
be the roots of P . If we assume that all the roots are different, and that they
are the minimal number of elements we need to be able to express all the
roots of P (x) and that none of them are in Q, then the splitting field of P
would be

Q(α1, ..., αn)

and the Galois group of P would be

Gal(Q(α1, ..., αn)/Q)

which has order (at most) n!

As mentioned in the historical note, Niels Henrik Abel proved that one
can not find a formula for calculating roots of general polynomials of degree
five or higher. In fact, Galois showed that the solvability of its Galois group
determines whether or not a polynomial can be solved using radicals, as is
the case for 2nd, 3rd and 4th degree “normal” polynomials. As we just saw,
these polynomials have Galois groups of order at most 2! = 4, 3! = 6 and
4! = 24 respectively. More importantly we have Gal(Q(α1, ..., αn)/Q) ' Sn,
and Sn is solvable for all n ≤ 4, but unsolvable for n ≥ 5. Which means
we can find the roots of 2nd, 3rd and 4th degree “normal” polynomials using
radicals.

But we’ve just seen that for palindromic polynomials, every root is the
inverse of another root. So if we need to extendQ with the root αk to have the
splitting field of a palindromic polynomial P (x) ∈ Q[x], then this extension
also contains the root 1

αk
, so we get this root “for free”. This means that for a

palindromic polynomial of degree n with coefficients in Q, the splitting field
is an extension of Q with at most n

2
elements if n is even, or n−1

2
if n is odd,

because (−1) is already in Q. If we assume that n
2
or n−1

2
of these roots are

different and algebraically independent, we see that the Galois group is

Gal(Q(α1, ...αn/2)/Q) or Gal(Q(α1, ...α(n−1)/2)/Q)

which has order (at most) n
2
! or n−1

2
!, in the even and odd cases respectively.



1.1. ROOTS OF PALINDROMIC POLYNOMIALS 31

This means that there should be formulas for finding the roots of palin-
dromic polynomials of up to and including degree nine! Let’s figure out how
to do this:

We first consider the easiest case, n = 5. Since we know that (-1) is a
root, we simply divide our 5th degree polynomial by (x + 1) to find a 4th

degree polynomial of which we can find the roots, using the formula for roots
of a polynomial of degree 4.

We now consider the cases n = 6 and n = 7. In the case n = 7, (−1)
is a root, so we simply divide the polynomial by (x + 1). Since (x + 1)
is a palindromic polynomial, according to lemma 1.1.6 the quotient of a
palindromic polynomial of degree 7 and (x+ 1) is a palindromic polynomial
of degree 6. Hence we only need to consider polynomials of degree 6.

Let
P (x) = x6 + a1x

5 + a2x
4 + a3x

3 + a2x
2 + a1x+ 1

be our palindromic 6th degree polynomials, where a1, a2, a3 ∈ Q.
This polynomial has six roots, which we denote α1, α2, α3, 1

α1
, 1
α2

and 1
α3
.

Then

P (x) = (x− α1)

(
x− 1

α1

)
(x− α2)

(
x− 1

α2

)
(x− α3)

(
x− 1

α3

)
=

(
x2 −

(
α1 +

1

α1

)
x+ 1

)(
x2 −

(
α2 +

1

α2

)
x+ 1

)
(
x2 −

(
α3 +

1

α3

)
x+ 1

)
If we define

β1 = α1 +
1

α1

, β2 = α2 +
1

α2

and β3 = α3 +
1

α3

,

we can rewrite our polynomial as

P (x) = (x2 − β1x+ 1)(x2 − β2x+ 1)(x2 − β3x+ 1)

= (x4 − (β1 + β2)x
3 + (2 + β1β2)x

2 − (β1 + β2)x+ 1)(x2 − β3x+ 1)

= x6 − (β1 + β2 + β3)x
5 + (3 + β1β2 + β1β3 + β2β3)x

4

− (2β1 + 2β2 + 2β3 + β1β2β3)x
3 + (3 + β1β2 + β1β3 + β2β3)x

2

− (β1 + β2 + β3)x+ 1.
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Let

S1 = β1 + β2 + β3,

S2 = β1β2 + β1β3 + β2β3,

S3 = β1β2β3

be the elementary symmetric polynomials in the three “variables” β1, β2 and
β3. Then we have

S1 = −a1
S2 = a2 − 3

S3 = −a3 − 2S1 = 2a1 − a3

This is a set of equations which we can solve; β1, β2 and β3 are the three
solutions of the equation

x3 − S1x
2 + S2x− S3 = 0

=⇒ x3 + a1x
2 + (a2 − 3)x− (2a1 − a3) = 0.

And once we find β1, β2 and β3, we easily find α1, α2 and α3 by solving

βi = αi +
1

αi
=⇒ αiβi = α2

i + 1

α2
i − βiαi + 1 = 0,

which is easy using the abc-formula.

The last case we consider is n = 8 and n = 9. It suffices to find the roots
of a 8th degree polynomial, since we know that (−1) is a root of every 9th

degree palindromic polynomial. So let us consider the polynomial

P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ 1.

Again we let the roots be α1, α2, α3, α4, 1
α1
, 1
α2
, 1
α3

and 1
α4
. If we now define

β1 = α1 +
1

α1

, β2 = α2 +
1

α2

, β3 = α3 +
1

α3

, β4 = α4 +
1

α4

,
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we have

P (x) =
(
x2 − β1x+ 1

)(
x2 − β2x+ 1

)(
x2 − β3x+ 1

)(
x2 − β4x+ 1

)
= x8 − (β1 + β2 + β3 + β4)x

7

+ (4 + β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4)x
6

− (3β1 + 3β2 + 3β3 + 3β4 + β1β2β3 + β1β2β4 + β1β3β4 + β2β3β4)x
5

+ (6 + 2β1β2 + 2β1β3 + 2β1β4 + 2β2β3 + 2β2β4 + 2β3β4 + β1β2β3β4)x
4

− (3β1 + 3β2 + 3β3 + 3β4 + β1β2β3 + β1β3β4 + β1β3β4 + β2β3β4)x
3

+ (4 + β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4)x
2

− (β1 + β2 + β3 + β4)x+ 1

In the same manner as above we now define

S1 = β1 + β2 + β3 + β4,

S2 = β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4,

S3 = β1β2β3 + β1β2β4 + β1β3β4 + β2β3β4,

S4 = β1β2β3β4,

and see that we then have

S1 = −a1
S2 = a2 − 4

S3 = −3S1 − a3 = 3a1 − a3
S4 = a4 − 6− 2S2 = a4 − 6− 2(a2 − 4) = a4 − 2a2 + 2

Then β1, β2, β3 and β4 are the solutions to the equation

x4 − S1x
3 + S2x

2 − S3x+ S4 = 0

=⇒ x4 + a1x
3 + (a2 − 4)x2 − (3a1 − a3)x+ (a4 − 2a2 + 2) = 0,

which can be solved, using radicals. Again we can easily solve

α2
i − βiαi + 1 = 0

to find α1, α2, α3 and α4.
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Result 1.1.11.

In this box we summarize the methods derived above:
We let αi be the roots of P (x), and βi = αi + 1

αi
. If n is odd, di-

vide P by (x+1) to find a palindromic polynomial of even degree n−1.

n = 6 (and 7):

P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + a2x

2 + a1x+ 1

to find β1, β2, β3, solve

x3 + a1x
2 + (a2 − 3)x− (2a1 − a3) = 0.

then solve α2
i − βiαi + 1 = 0 to find the roots.

n = 8 (and 9):

P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ 1

to find β1, β2, β3, β4 solve

x4 + a1x
3 + (a2 − 4)x2 − (3a1 − a3)x+ (a4 − 2a2 + 2) = 0.

then solve α2
i − βiαi + 1 = 0 to find the roots.

Example 1.1.12. As an example, let us consider the polynomial

P (x) = x6 − 9
2
x5 + 8x4 − 9x3 + 8x2 − 9

2
x+ 1,

and find its zeroes, using the method derived above.
We see that in our example

a1 = −9
2
, a2 = 8 and a3 = −9,

which means that

S1 = −a1 = 9
2
,

S2 = a2 − 3 = 5

S3 = 2a1 − a3 = 0.
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So to find β1, β2 and β3, we need to solve the equation

x3 − S1x
2 + S2x− S3 = 0 =⇒ x3 − 9

2
x2 + 5x = 0

This gives us
β1 = 0, β2 = 2 and β3 = 5

2
,

which means we have

α2
1 − 0α1 + 1 = 0 =⇒ α1 = i

α2
2 − 2α2 + 1 = 0 =⇒ α2 = 1

α2
3 − 5

2
α3 + 1 = 0 =⇒ α3 = 2

We can now conclude that

P (x) = (x− i)(x− 1)(x− 2)

(
x− 1

i

)(
x− 1

1

)(
x− 1

2

)
= (x− i)(x− 1)2(x− 2)(x+ i)

(
x− 1

2

)
.

♣

Example 1.1.13. Let P (x) = x6− 5
2
x3+1. Again we use the method derived

above to find its zeroes.
We observe that a1 = a2 = 0 and a3 = −5

2
, which means

S1 = −a1 = 0

S2 = a2 − 3 = −3

S3 = 2a1 − a3 = −5
2
.

This leads us to solving the equation

x3 − 0x2 + (−3)x−
(
−5

2

)
= 0

=⇒ x3 − 3x+
(
5
2

)
= 0

Solving this equation, together with some algebraic manipulation, we obtain

β1 =
3
√

2 +
1
3
√

2
, β2 =

3
√

2

(
−1

2
−
√

3

2
i

)
+

1

3
√

2
(
−1

2
−
√
3
2
i
)
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and β3 =
3
√

2

(
−1

2
+

√
3

2
i

)
+

1

3
√

2
(
−1

2
+
√
3
2
i
) ,

so the zeroes of P (x) are

α1 =
3
√

2, α2 =
3
√

2

(
−1

2
−
√

3

2
i

)
, α3 =

3
√

2

(
−1

2
+

√
3

2
i

)
,

α4 =
1
3
√

2
, α5 =

1

3
√

2
(
−1

2
−
√
3
2
i
) , α6 =

1

3
√

2
(
−1

2
+
√
3
2
i
) .

♣



Chapter 2

Galois theory of palindromic
polynomials

As seen, the fact that a polynomial is palindromic at least halves the number
of elements of which we have to extend Q to have the splitting field of the
polynomial. Letting F be the splitting field of the palindromic polynomial
P (x), we know that the Galois group of P (x), Gal(F/Q), is the group of all
automorphisms φ : F −→ F which leave Q fixed. In fact, it turns out that
these are all the automorphisms which permutes the roots of P (x) which are
not in Q.

Now, we know that all the roots of P (x) come in “inverse pairs” (except for
possibly α = −1, which is already in Q). Since all the elements of Gal(F/Q)
are group isomorphisms, we see that if α2 = 1

α1
and φ ∈ Gal(F/Q) is such

that φ(α1) = α2, we must also have φ(α2) = α1, because

φ(α2) = φ

(
1

α1

)
=

φ(1)

φ(α1)
=

1

α2

= α1.

In the calculations and discussions of this chapter, the following result
will turn out quite handy.

Lemma 2.0.14. The expression xn + 1
xn

can be written as a polynomial in
x+ 1

x
, with coefficients in Q, for all n ∈ N.

Proof. We prove the result using induction on n.

37
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For n = 1 this is trivially true, since

x+
1

x
=

(
x+

1

x

)1

.

Assume now that the claim holds for all n up to n = k. In particular this
means that vi can find polynomials Pk−1

(
x+ 1

x

)
and Pk

(
x+ 1

x

)
in Q

[
x+ 1

x

]
such that

Pk−1

(
x+

1

x

)
= xk−1 +

1

xk−1

and

Pk

(
x+

1

x

)
= xk +

1

xk
.

Now, we have (
xk +

1

xk

)(
x+

1

x

)
= xk+1 + xk−1 +

1

xk−1
+

1

xk+1

=⇒ Pk

(
x+

1

x

)(
x+

1

x

)
= xk+1 +

1

xk+1
+ Pk−1

(
x+

1

x

)
,

which gives

xk+1 +
1

xk+1
=

(
x+

1

x

)
Pk

(
x+

1

x

)
− Pk−1

(
x+

1

x

)
,

which is a polynomial in x+ 1
x
and coefficients in Q.

With this in mind, let us now consider the Galois group of palindromic
polynomials. Since every palindromic polynomial of odd degree has (-1) as
a root, and (-1) is a rational number (which means it doesn’t add anything
to the Galois group), it suffices1to consider palindromic polynomials of even
degree 2n, where n is a natural number. Hence we explore the palindromic
polynomial

P (x) = x2n + a1x
2n−1 + a2x

2n−2 + ...+ a2x
2 + a1x+ 1,

1by prop. 1.1.4 and lemma 1.1.6 it follows that a palindromic polynomial of odd degree
2n+ 1 divided by (x+ 1) is a palindromic polynomial of even degree 2n.
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and assume it has 2n distinct roots; α1,
1
α1
, α2,

1
α2
, ..., αn,

1
αn

, none of which
belongs to Q. This means that

F = Q(α1, α2, ..., αn)

is the splitting field of P (x) over Q.
Consider the rational function

Q(x) =
P (x)

xn
=
x2n + a1x

2n−1 + a2x
2n−2 + ...+ a2x

2 + a1x+ 1

xn

= xn + a1x
n−1 + a2x

n−2 + ...+
a2
xn−2

+
a1
xn−1

+
1

xn

= xn +
1

xn
+ a1

(
xn−1 +

1

xn−1

)
+ a2

(
xn−2 +

1

xn−2

)
+ ...

+ an−1

(
x+

1

x

)
+ an.

According to lemma 2.0.14 this means that we can write P (x)
xn

as a polynomial
QP

(
x+ 1

x

)
with all coefficients in Q.

More general; if P (x) is a polynomial with coefficients in a field E, the
rational function P (x)

xn
has coefficients in E, and then by the construction in

lemma 2.0.14, we must also have QP

(
x+ 1

x

)
∈ E

[
x+ 1

x

]
.

Definition 2.0.15. If P (x) is a palindromic polynomial of degree 2n in E[x],
E a field, with roots α1,

1
α1
, α2,

1
α2
, ..., αn,

1
αn

, we define the the xn-derived
polynomial of P,QP

(
x + 1

x

)
, to be the polynomial obtained by dividing P

by xn and rewriting it as a polynomial in E
[
x+ 1

x

]
.

Proposition 2.0.16. α 6= 0 is a root of P (x) if and only if α + 1
α
is a root

of QP

(
x+ 1

x

)
.

Proof. =⇒ First assume P (α) = 0, where α 6= 0. Then we have

QP

(
x+

1

x

)
=
P (x)

xn

=⇒ QP

(
α +

1

α

)
=
P (α)

αn
=

0

αn
= 0
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⇐= Now assume QP

(
α + 1

α

)
= 0, where α 6= 0. This means

P (x) = QP

(
x+

1

x

)
· xn

=⇒ P (α) = QP

(
α +

1

α

)
· αn = 0 · αn = 0.

2.1 The Galois group

It is now clear that if α is a root of a palindromic polynomial P (x), then
α + 1

α
is a root of QP

(
x+ 1

x

)
. Continuing to consider

P (x) = x2n + a1x
2n−1 + a2x

2n−2 + ...+ a2x
2 + a1x+ 1,

this means the splitting field of QP is

E = Q
(
α1 +

1

α1

, α2 +
1

α2

, ..., αn +
1

αn

)
.

And since the coefficients of QP lie in Q, E is a splitting field over Q. Ac-
cording to Galois theory, since E is a splitting field over Q, E is a finite
normal extension of Q. Furthermore, according to point 5. in the main
theorem of Galois theory, since E is a normal extension of Q, Gal(F/E) is a
normal subgroup of Gal(F/Q). Thus

Gal(E/Q) ' Gal(F/Q)/Gal(F/E),

or equivalently the exactness of the short sequence

1→ Gal(F/E)→ Gal(F/Q)→ Gal(E/Q)→ 1.

It’s trivial to see that E ⊆ F , but we can even say something about the
degree of F over E:

Proposition 2.1.1. F is of order 2m over E, with m ≤ n.
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Proof. Assume αi + 1
αi

is a root of QP , such that

βi =αi +
1

αi
∈ E

=⇒ α2
i − βiαi + 1 = 0.

This shows that αi ∈ F is the solution of a second degree equation with
coefficients in E, which means αi is quadratic over E. This holds for every
i = 1, 2, ..., n. So each time we extend E by an element of F , we extend it
with an element of degree 2. We see that

E(α1) = Q
(
α1, α2 +

1

α2

, ..., αn +
1

αn

)
E(α1, α2) = Q

(
α1, α2, α3 +

1

α3

, ..., αn +
1

αn

)
...

E(α1, ..., αn) = Q(α1, α2, ..., αn) = F

Each time we extend E by an αi, as seen this element is quadratic over E, so
the degree increases by a factor 2, or it doesn’t increase at all since we can
not be sure that for example

E

(
α1, ..., αi−1, αi, αi+1 +

1

αi+1

, ..., αn +
1

αn

)
6=

E

(
α1, ..., αi−1,��ZZαi , αi+1 +

1

αi+1

, ..., αn +
1

αn

)
(which means that E(α1, ..., αi) = E(α1, ..., αi−1)). Hence we only know that
[F : E] = 2m, where m ≤ n.

How many elements there are in Gal(F/Q) is not that easy to “spot”. As
we have seen, not all automorphisms of F which leaves Q fixed are included
in Gal(F/Q).

So to find out more about the number of elements in F , we try to consider
the Galois groups of the xn-derived polynomial QP and Gal(F/E). Hence,
by considering the two other Galois groups in our exact sequence

1→ Gal(F/E)→ Gal(F/Q)→ Gal(E/Q)→ 1,
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we can find out more about the Galois group of F .

Let us first consider Gal(E/Q):

Gal(E/Q) is the group of all automorphisms of E which keeps Q fixed.
As we have seen these are all the automorphisms of E which permutes the
roots of QP . Since there are n roots, we have generically

Gal(E/Q) ' Sn.

So since |Sn| = n!, we get

|Gal(E/Q)| = n!

Next we consider Gal(F/E):

This is the group of all automorphisms of F leaving E fixed, meaning
that for all i only the automorphisms of F which send αi either to αi or 1

αi

can be in Gal(F/E), because if it sends αi to either αj or 1
αj
, j 6= i, then it

sends αi + 1
αi

to αj + 1
αj
, not leaving E fixed.

When the “destination of” αi by an element φ ∈ Gal(F/E) is decided, so
is the destination of 1

α1
. So there are n different α’s which can be sent to two

different values by φ ∈ Gal(F/E). Hence we must have

|Gal(F/E)| = 2n.

This provides us with enough information to say something about how
many elements are in Gal(F/Q). As we have seen, due to Galois theory
we know that Gal(E/Q) is the quotient of Gal(F/Q) with Gal(F/E), which
means that

|Gal(E/Q)| = |Gal(F/Q)|/|Gal(F/E)|
=⇒ |Gal(F/Q)| = |Gal(F/E)| · |Gal(E/Q)|
=⇒ |Gal(F/Q)| = 2n · n!
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Assuming we need to extend Q with all the n different roots of P (not
including the inverse roots because they come “for free”) to have the splitting
field of P , we have now used Galois theory and appropriate splitting fields
to find a formula for the order of the Galois group of F over Q. To see how
this actually looks for a general polynomial, we include an example.

Example 2.1.2. Let us consider these groups for a palindromic polynomial
of degree 4, meaning we let n = 2, so 2n = 4, and

P (x) = x4 + ax3 + bx2 + ax+ 1.

Now suppose α1, 1
α1
, α2 and 1

α2
are the roots of P , and that its splitting

field is
F = Q(α1, α2).

We know from our arguments above that if F is a maximal extension,
then

|Gal(F/Q)| = 2n · n! = 22 · 2! = 4 · 2 = 8.

But what kind of elements are these?
For simplicity, let us rename our roots such that {α1,

1
α1
, α2,

1
α2
} = {1, 2, 3, 4}.

We see that if we e.g. send 1 7→ 3 then we must send 2 7→ 4, so for example
the permutation (1, 3, 4, 2) ∈ Sn is not in Gal(F/Q). We’re left with these
elements:

• Order 0: {e}

• Order 2: {(12), (34), (12)(34), (13)(24), (14)(23)}

• Order 3: none

• Order 4: {(1324), (1423)}

This is a non-commutative group, just note that if h = (34) and k =
(13)(24), both in Gal(F/Q), then

hk = (34) · (13)(24) = (1423)

while
kh = (13)(24) · (34) = (1324),
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so hk 6= kh.
Up to isomorphism there are only two non-commutative groups of order

8, the dihedral group of 8 elements, D4, and the quaternion group, Q8. It
should not be too hard to see that we have

Gal(F/Q) ' D4,

but we include a geometrical explanation:

D4, the dihedral group of eight elements, is often associated with the
symmetries of the square. If we let our roots {1, 2, 3, 4} represent the corners
of a square like this,

we can represent each of our automorphism with a symmetry of the
square. Let us first consider rotating the square to the right:

Figure 2.1: Rotating once, twice and three times to the right. The automor-
phism the rotations corresponds to is written inside the squares.
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Next the square can be reflectet around one of the diagonals, and then
first reflected and then rotated:

Figure 2.2: Again the permutation corresponding to the symmetry is written
inside the squares.

The last two symmetries consist of (the first) reflecting around the other
diagonal, then (the second) first reflecting then rotating:
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The last automorphism is the identity, simply leaving the edges fixed:

Hopefully this gives, for those who were doubtfull, greater consensus that we
in fact have

Gal(F/Q) ' D4.

We also want to consider the Galois group of the x2-derived polynomial
of P , QP

(
x+ 1

x

)
. Let us first compute QP

(
x+ 1

x

)
:

Q(x) =
P (x)

x2
= x2 + ax+ b+

a

x
+

1

x2

=

(
x2 +

1

x2

)
+ a

(
x+

1

x

)
+ b

=

(
x+

1

x

)2

− 2 + a

(
x+

1

x

)
+ b

=⇒ Qp

(
x+

1

x

)
=

(
x+

1

x

)2

+ a

(
x+

1

x

)
+ (b− 2).

We know that the roots of QP are α1 + 1
α1

and α2 + 1
α2
, so let us assume2 the

splitting field of QP is

E := Q
(
α1 +

1

α1

, α2 +
1

α2

)
,

which we have seen is a splitting field over Q (in this example it is easy to
see that the coefficients of QP

(
x+ 1

x

)
are in Q).

2The reason we need to, time and time again, assume something about the splitting
fields of these polynomials is because even though there is no relation between α1 and
α2 (since the splitting field of P is Q(α1, α2)), we could have Q

(
α1 +

1
α1
, α2 +

1
α2

)
=

Q
(
α1 +

1
α1

)
, and by assuming the splitting field is Q

(
α1 +

1
α1
, α2 +

1
α2

)
we avoid this.
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Now we can consider both Gal(F/E) and Gal(E/Q):
Gal(E/Q) is the group of all automorphisms of E that leaves Q fixed. This
means that the only automorphisms we can have in Gal(E/Q) are the iden-
tity map and the automorphism which sends α1 + 1

α1
to α2 + 1

α2
and vice

versa. Hence the order of Gal(E/Q), |Gal(E/Q)|, is 2, as we have already
seen, in the previous theory, that it should be.

Gal(F/E) is the set of automorphisms of F which leaves E fixed, so this
means we can either send αi to αi or 1

αi
for i = 1, 2. This leaves us, as we

have already discussed, with |Gal(F/E)| = 22 = 4.
We have the exact sequence

1→ Gal(F/E)→ Gal(F/Q)→ Gal(E/Q)→ 1,

and as we have seen, this means that Gal(F/E) is a normal subgroup of
Gal(F/Q) ' D4. If we note that

Gal(F/E) = {e, (12), (34), (12)(34)}.

it is easy3 to see that we must have

Gal(F/E) ' Z2 × Z2 ⊆ D4.

The elements of the Galois group of F is simply a composition of one
element from Gal(E/Q) and one element from Gal(F/E). Let us look at an
example. Let the permutation (1423) ∈ Gal(F/Q), which means

α1 7→
1

α2

7→ 1

α1

7→ α2 7→ α1.

If we first lift this to Gal(E/Q) it is equal to sending α1 + 1
α1

to α2 + 1
α2
,

and since we see no difference in α1 + 1
α1

and 1
α1

+α1, this is equal to (1324),
which means

α1 7→ α2 7→
1

α1

7→ 1

α2

7→ α1.

On the other hand, in Gal(F/E), where we need to keep α1 + 1
α1

and
α2 + 1

α2
fixed, this equals the map α1 7→ 1

α1
and α2 7→ 1

α2
, i.e. the permuta-

tion (12)(34).

3Let one of the Z2’s be {e, (12)} and the other one {e, (34)}



48 CHAPTER 2. GALOIS THEORY

Hence the permutation (1423) in Gal(F/Q) is equal to the product

(1423) = (12)(34) · (1324).

♣

We can exploit the fact that any palindromic polynomial can be “turned
into” a polynomial of half the degree in x + 1

x
to find formulas for the roots

of palindromic polynomials of low degrees. Let’s have a look.

Example 2.1.3. We want to find a formula for calculating the roots of a
palindromic polynomial of degree 4.

Assume P (x) = x4 + ax3 + bx2 + ax + 1. As we have seen we can find
a polynomial Qp

(
x+ 1

x

)
such that if α + 1

α
is a root of Qp, then α is a root

of P . In the case P (x) = x4 + ax3 + bx2 + ax+ 1, we find (as we’ve already
seen in example 2.1.2)

Q(x) =
P (x)

x2
= x2 + ax+ b+

a

x
+

1

x2

=⇒ Qp

(
x+

1

x

)
=

(
x+

1

x

)2

− 2 + a

(
x+

1

x

)
+ b

=

(
x+

1

x

)2

+ a

(
x+

1

x

)
+ (b− 2)

For simplicity we let y = x+ 1
x
, and see that we can solve

QP (y) = y2 + ay + (b− 2) = 0 =⇒ y2 = −ay − b+ 2

by using the abc-formula:

y =
−a±

√
a2 − 4b+ 8

2
.

So

x+
1

x
= y =⇒ x2 − yx+ 1 = 0
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and hence

x =
y ±

√
y2 − 4

2

x =

−a±
√
a2−4b+8
2

±
√

a2∓a
√
a2−4b+8−2b+4−8

2

2

x = −a
4
±
√
a2 − 4b+ 8

4
± 1

2
√

2

√
a2 ∓

√
a4 − 4a2b+ 8a2 − 2b− 4

We have now found a formula for the four roots of P (x). ♣

Remark 2.1.4. As we saw in the last example we have

y =
−a±

√
a2 − 4b+ 8

2

=⇒ x+ 1
x

=
−a±

√
a2 − 4b+ 8

2

=⇒ α1 + 1
α1

= −a
2

+ 1
2

√
a2 − 4b+ 8 and α2 + 1

α2
= −a

2
− 1

2

√
a2 − 4b+ 8.
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Chapter 3

Characterization of a
polynomial’s roots

We are interested in using the roots of polynomials to consider the properties
of their Galois groups. But finding roots of polynomials can be both hard
and time consuming. Luckily, to find the Galois group of a polynomial we
can be satisfied just knowing certain connections between its roots. We both
have and can construct tools for finding different kind of connections, which
is exactly the aim of this chapter.

3.1 The usual discriminant of polynomials

The discriminant of a polynomial is one tool for giving us some information
about the roots of the polynomial.

Definition 3.1.1. If we have a polynomial

P (x) = anx
n + an−1x

n−1 + ...+ a1x+ a0

the discriminant of P is given by

∆ = a2n−2n

∏
i<j

(αi − αj)2,

where α1, α2, ..., αn are the n roots of P .

51
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It’s not difficult to see that the discriminant of a polynomial is 0 if and
only if at least one of the roots has multiplicity more than 1. This, as men-
tioned, gives us at least some kind of information about the roots. Could
it perhaps be useful for us to create other types of discriminants to tell us
something different about the relations of some of the roots? We will look
into this question a bit later, but let us first have a closer look at our current
discriminant.

The formula for the discriminant actually gives us a homogeneous poly-
nomial of degree 2(n− 1) in the coefficients of P . Let us have a look at the
two easiest examples to illustrate this:

Example 3.1.2. Let n = 2, so P (x) = ax2 + bx+ c, and assume α1 and α2

are its roots. This gives us

∆ = a2·2−2(α1 − α2)
2

= a2(α2
1 − 2α1α2 + α2

2).

Now we also know that

P (x) = a(x− α1)(x− α2) = ax2 − a(α1 + α2)x+ aα1α2

=⇒ b = −a(α1 + α2) and c = aα1α2

=⇒ b2 = a2(α2
1 + 2α1α2 + α2

2).

This means that

∆ = a2α2
1 − 2a2α1α2 + a2α2

2 = b2 − 4a2α1α2 = b2 − 4ac.

Note that this is a polynomial of degree 2(n − 1) = 2(2 − 1) = 2 in the
coefficients of P , like stated above. We recognize this expression from the
abc-formula, as the term under the square root sign. This means that P has
two different real roots if ∆ > 0, one real root of multiplicity 2 if ∆ = 0 and
two complex roots if ∆ < 0. ♣

Example 3.1.3. Doing similar calculation we find that letting n = 3, the
discriminant of P (x) = ax3 + bx2 + cx+ d is

∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.



3.1. THE USUAL DISCRIMINANT OF POLYNOMIALS 53

We note that this is a polynomial of degree 2(n − 1) = 2(3 − 1) = 4 in the
coefficients of P . ♣

As seen, the discriminant of a polynomial is 0 if and only if at least one
of the roots has multiplicity more than 1. But could we somehow use the
discriminant to see if, for example, a polynomial has a root of multiplicity at
least three?

Let us first have a look at the easiest case. We let n = 3 such that

P (x) = x3 + bx2 + cx+ d

and assume ∆ = 0. Can we tell, using the coefficients of P if the root α has
multiplicity 2 or 3?

Let us assume P only has one root, α, of multiplicity 3. Then we know

P (x) = (x− α)3 = x3 − 3αx2 + 3α2x− α3

=⇒ b = −3α, c = 3α3, d = −α3

=⇒ b2 = 9α2 = 3c, b3 = −27α3 = 27d, c3 = 27α6 = 27d

If we now define three subdiscriminants,

∆1 := b2 − 3c

∆2 := b3 − 27d

∆3 := c3 − 27d,

for P we have

∆1 = 0, ∆2 = 0, ∆3 = 0.

We can now rewrite the discriminant using these subdiscriminants (recall
that we assume a = 1).

∆ = b2c2 − 4c3 − 4b3d− 272d2 + 18bcd

= c2
(
b2 − 3c

)
− c3 − 4b3d+ d

(
b3 − 27d

)
− b3d+ 18bcd

= c2
(
b2 − 3c

)
− c3 + d

(
b3 − 27d

)
− 5b3d− 6bd

(
b2 − 3c

)
+ 6b3d

=
(
c2 − 6bd

)(
b2 − 3c

)
+ d
(
b3 − 27d

)
+ b3d− c3

=
(
c2 − 6bd

)
∆1 + d∆2 + b3d− c3
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Recognizing that

b3d− c3 = d
(
b3 − 27d

)
−
(
c3 − 27d2

)
= d∆2 −∆3,

we have

∆ =
(
c2 − 6bd

)
∆1 + d∆2 + b3d− c3

=
(
c2 − 6bd

)
∆1 + d∆2 + d∆2 −∆3

=
(
c2 − 6bd

)
∆1 + 2d∆2 −∆3

We have now found a new expression for the discriminant, using the subdis-
criminants ∆1,∆2 and ∆3. And we know that if and only if all these three
are 0, then P has one root of multiplicity 3.

3.2 The palindromic discriminant
To obtain more information about various polynomials we can create different
types of discriminants. Let us consider one discriminant which will be zero
for all palindromic polynomials.

Definition 3.2.1. We define the palindromic discriminant, ∆p, of a polyno-
mial as

∆p = a2n−nn

∏
i 6=j

(
αi −

1

αj

)
.

Let us see what this discriminant looks like for a 2nd degree polynomial:

Example 3.2.2. Let P (x) = ax2 + bx+ c have roots α1 and α2. Then

∆p = a2
(
α1 −

1

α2

)(
α2 −

1

α1

)
= a2

(
α1α2 − 2 +

1

α1α2

)
= a2

(
S2 − 2 +

1

S2

)
=
a2

S2

(
S2
2 − 2S2 + 1

)
=
a2

S2

(S2 − 1)2 =
a2(S2 − 1)2

S2

,
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where S2 is the second symmetric elementary polynomial in the two “vari-
ables” α1 and α2, i.e. S2 = α1α2 = c

a
, which means

∆p =
a2
(
c
a
− 1
)2

c
a

=
a(c− a)2

c
.

♣
Clearly ∆p is zero for all palindromic polynomials, but it’s important to

note that there are other polynomials also satisfying this. Recall e.g. the
non-palindromic polynomial P (x) = (x− 2)(x− 2)

(
x− 1

2

)
, which gives

∆p =
(
1
2
− 1

2

)(
1
2
− 1

2

)(
2− 1

2

)
= 0.

Remark 3.2.3. We could of course also create different discriminants for
detecting other pairwise connections of roots. If we e.g. are looking for
connections like αi =

aαj+b

cαj+d
, where φ(z) = az+b

cz+d
, we could construct the

discriminant

∆φ = a2n−2n

∏
i 6=j

(
αi −

aαj + b

cαj + d

)
,

for detecting this.

3.3 Changing bases

The following may seem misplaced, but we will soon make use of it.

A basis for a vector space, V , of dimension n is a sequence of n vectors
(ν1, ..., νn) such that every vector in V can be uniquely expressed as a linear
combination of these vectors. If we express our vector space using another
basis, (ν ′1, ..., ν

′
n), we can always create a transformation which transforms the

representation of a vector with respect to the first basis to a representation
with respect to the other. A transformation like this is called a change of
basis.

Example 3.3.1. We’re not interested in complicated changes of bases. Ac-
tually all we need is to understand what a change of basis over Q is. The
easiest is the map

φ(x)n = x− n n ∈ Q.
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If we e.g. consider the polynomial P (x) = 2x2 − 3x+ 5 in Q[x], we see that

P (φ(x)) = 2(x− n)2 − 3(x− n) + 5

= 2
(
x2 − 2nx+ n2

)
− 3x+ 3n+ 5

= 2x2 − (2n+ 3)x+
(
2n2 + 3n+ 5

)
which is also a polynomial in Q[x]. ♣

How can we say something more about the Galois group of a polynomial
if we don’t know what its roots are? As we have seen we may sometimes
exploit the properties of the coefficients (if the polynomial is palindromic)
and we can use discriminants to identify if at least two of our roots satisfy
a given “connection”. But we may also say something in general about the
Galois group of a polynomial if it can be written as another polynomial just
by using a change of basis over Q. If we know more about the Galois group
of the polynomial we can “turn” our original polynomial into, we know more
about the Galois group of the original polynomial as well, due to the following
lemma:

Lemma 3.3.2. If R(x) ∈ Q[x] is a polynomial of degree n which we can
rewrite as the polynomial P (x) ∈ Q[x] of degree n, using a change of basis
over Q, then R and P have the same splitting field.

Proof. Let φ(x) be a function making a change of basis over Q, such that we
may assume R(x) = P (φ(x)). We know that

P (x) = (x− α1)(x− α2) · ... · (x− αn)

where α1, α2, ..., αn are the n roots of P . If not all, or none, of these are in
Q, the splitting field, F , of P is larger than Q;

F = Q(β1, β2, ..., βr),

where the βi’s are the elements of which we need to extend Q.
Now we have

R(x) = P (φ(x)) = (φ(x)− α1)(φ(x)− α2) · ... · (φ(x)− αn)

and since φ is a change of basis over Q, we see that the splitting field of R
must be the same as the splitting field of P .
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Let us have a look at two simple examples:

Example 3.3.3. Let P (x) = x2 + 2x+ 5 and let φn(x) = x− n with n ∈ Q.
If we now denote Rn(x) = P (φ(x)) = P (x− n) we see that

Rn(x) = (x− n)2 + 2(x− n) + 5

= x2 + (2− 2n)x+
(
n2 + 5− 2n

)
,

which gives us:

R−2(x) = x2 + 6x+ 13

R−1(x) = x2 + 4x+ 8

R0 = P (x) = x2 + 2x+ 5

R1(x) = x2 + 4

R2(x) = x2 − 2x+ 5

R3(x) = x2 − 4x+ 8

R4(x) = x2 − 6x+ 13.

We can easily find the roots of these polynomials, and if we do, we see that
the splitting field in any case is

F = Q(i).

♣

Example 3.3.4. Let P (x) = x3−3x2 +12x−10 and let again φn(x) = x−n
with n ∈ Q. Then if Rn(x) = P (φ(x)) = P (x− n) we see that

Rn(x) = (x− n)3 − 3(x− n)2 + 12(x− n)− 10

= x3 − 3nx2 + 3n2x− n3 − 3x2 + 6nx− 3n2 + 12x− 12n− 10

= x3 − (3n+ 3)x2 + (3n2 + 6n+ 12)x− (n3 + 3n2 + 12n+ 10),

which gives

R−1(x) = x3 − (−3 + 3)x2 + (3− 6 + 12)x− (−1 + 3− 12 + 10)

= x3 + 9

R0(x) = P (x) = x3 − 3x2 + 12x− 10

R1(x) = x3 − (3 + 3)x2 + (3 + 6 + 12)x− (1 + 3 + 12 + 10)

= x3 − 6x2 + 21x− 26.
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Further calculations give us:

P (x) = (x− 1 + 3i)(x− 1− 3i)(x− 1)

R−1(x) = (x− 3i)(x+ 3i)

R1(x) = (x− 2 + 3i)(x− 2− 3i)(x− 2)

so all these polynomials have splitting field F = Q(i), just as in the example
above. ♣

This technique could actually be quite useful if we can use it to “turn”
a non-palindromic polynomial in to a palindromic one. This would for ex-
ample make it a lot easier to compute the Galois group of non-palindromic
polynomials of degrees 5, 6, 7, 8 and 9. We include an example showing how
this can be useful:

Example 3.3.5. We consider the polynomial

P (x) = x6 + 6x5 + 27
2

+ 14x3 + 9
2
x2 − 3x− 1.

Using the map φ(x) = x− 1 we have

R(x) = P (φ(x)) = (x− 1)6 + 6(x− 1)5 + 27
2

(x− 1)4 + 14(x− 1)3+
9
2
(x− 1)2 − 3(x− 1)− 1

= x6 − 6x5 − 20x3 + 15x2 − 6x+ 1 + 6x5 − 30x4 + 60x3−
60x2 + 30x− 6 + 27

2
x4 − 54x3 + 81x2 − 54x+ 27

2
+ 14x3−

42x2 + 42x− 14 + 9
2
x2 − 9x+ 9

2
− 3x+ 3− 1

= x6 − 3
2
x4 − 3

2
x2 + 1,

which is a palindromic polynomial. This means we can use the techniques
we developed earlier to find the roots of R and hence the splitting field of
(both R and) P .

Using the notation of result 1.1.11 we now have

a1 = 0, a3 = −3
2
and a3 = 0,

which means

S1 = −a1 = 0

S2 = a2 − 3 = −3
2
− 3 = −9

2

S3 = 2a1 − a3 = 0.
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Hence β1, β2 and β3 are the three solutions of the equation

x3 − 0x2 − 9
2
x− 0 = 0

=⇒ x3 − 9
2
x = 0,

which gives us
β1 = 0, β2 = 3√

2
and β3 = − 3√

2
.

So solving for the roots α1, α2 and α3, we find

α2
1 − β1α1 + 1 = α2

1 − 0α1 + 1 = 0 =⇒ α1 = i

α2
2 − β2α2 + 1 = α2

2 − 3√
2
α2 + 1 = 0 =⇒ α2 = 1√

2

α2
3 − β2α3 + 1 = α2

3 + 3√
2
α3 + 1 = 0 =⇒ α3 = − 1√

2
.

So the roots of R are

α1 = i, α2 = 1√
2
, α3 = − 1√

2
, α4 = −i, α5 =

√
2 and α6 = −

√
2

Writing

R(x) = (x− i)(x+ i)
(
x−
√

2
)(
x− 1√

2

)(
x+
√

2
)(
x+ 1√

2

)
,

doing the same backwards gives us

P (x) = R(φ−1(x)) = ((x+ 1)− i)((x+ 1) + i)
(

(x+ 1)−
√

2
)(

(x+ 1)− 1√
2

)
(

(x+ 1) +
√

2
)(

(x+ 1) + 1√
2

)
= (x− (i− 1))(x− (−i− 1))

(
x−

(√
2− 1

))(
x−

(
1√
2
− 1
))

(
x−

(
−
√

2− 1
))(

x−
(
− 1√

2
− 1
))
.

Showing that the splitting field of both P and R is Q(
√

2, i). And knowing
this, we could say more about the Galois groups of these polynomials. ♣

Before we leave the topic of changing bases to find the splitting field of
polynomials, the next question could be useful:

Question 3.3.6. Given a monic polynomial of degree two, P (x) = x2 + bx+
c ∈ Q[x], with roots α1 and α2, we know that the discriminant of P is

∆P (x) = (α1 − α2)
2.
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Can we then find a palindromic polynomial of degree 2 with coefficients in
Q and discriminant equal to ∆P (x)?

Let’s try to find out what this palindromic polynomial would have to look
like. We know that a palindromic polynomial has constant term 1, so we can
assume

Q(x) = x2 + b′x+ 1,

with roots α and 1
α
, so its discriminant is

∆Q(x) =

(
α− 1

α

)2

.

This means that if we have ∆Q(x) = ∆P (x) =: ∆, we must have

∆ =

(
α− 1

α

)2

.

Let us have a closer look at it:

∆ =

(
α− 1

α

)2

=⇒ ∆ = α2 − 2 +
1

α2

=⇒ α4 − (2 + ∆)α2 + 1 = 0

Solving this equation gives us

α2 =
2 + ∆±

√
(−2−∆)2 − 4

2
=

2 + ∆

2
±
√

∆2 + 4∆

4

It’s not easy to decide whether or not this gives an α such that we have(
α + 1

α

)
∈ Q, which is what we need to have for the polynomial

Q(x) = (x− α)

(
x− 1

α

)
= x2 −

(
α +

1

α

)
x+ 1

to have coefficients in Q. It is certainly not trivial to see that this is true for
all such α. If we can find one counter example, we’re done.

Let us consider the polynomial

P (x) = x2 − 10x+ 16 = (x− 8)(x− 2).
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Then ∆P (x) = (8− 2)2 = 62 = 36. For a palindromic polynomial to have the
same discriminant, we have to have

α2 =
2 + 36

2
±
√

362 + 4 · 36

4

= 19±
√

1440

2
= 19± 6

√
10.

This means

α = ±
√

19± 6
√

10 = ±
√

10± 2 · 3
√

10 + 9

= ±
√(√

10± 3
)2

= ±(
√

10± 3).

No matter which of these α’s we choose, we have

α +
1

α
= ±2

√
10,

which is an irrational number. So we conclude that there is no palindromic
polynomial with coefficients in Q and discriminant ∆ = 36.

Hence we can not for every 2nd degree polynomial with coefficients in
Q, find a palindromic polynomial which has coefficients in Q and the same
discriminant.

3.4 The derived polynomials P (2) and P ∗

Let us now, before we explore more complicated Galois groups, consider one
way of detecting how many inverse pairs of roots a polynomial has.

Let P (x) =
∑n

i=0 aix
i ∈ Q[x] be a monic polynomial of even degree

n = 2m, with roots α1, α2, ..., αn. Then we have

P (x) =
n∏
i=1

(x− αi)

where the coefficients of P are the elementary symmetric polynomials, i.e.
ai = Sn−i. Let

P (2)(x) =
∏
i<j

(x− aiaj).
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Then the coefficients of P (2)(x) are symmetrical polynomials in α1, ..., αn and
thereby polynomial functions in the coefficients of P (x).

Example 3.4.1. If n = 2, P (2)(x) is a polynomial of degree 1, given by

P (2)(x) = x− α1α2 = x− a0.

If n = 4, P (2)(x) is a polynomial of degree 6, given by

P (2)(x) = x6 − a2x5 + (a1a3 − a0)x4 −
(
a21 + a23a0 − 2a2a0

)
x3+

(a1a3 − a0)a0x2 − a2a20x+ a30.

For example, calculation of the coefficient of x4 shows that it’s given by∑
{i<j}<{k<l}

αiαjαkαl,

where {i < j} < {k < l} means {i, j} 6= {k, l} or i = k and j < l. We can
split the index set

{{i < j} < {k < l}} = {i < j < k < l} ∪ {i < k < j < l} ∪ {i < k < l < j}
∪ {i = k < j < l} ∪ {i < j = k < l} ∪ {i < k < j = l}.

Meanwhile

a1a3 − a0 =

(
4∑
i=1

αi ·
∑
j<k<l

αjαkαj

)
− α1α2α3α4.

Those terms in the product which do not contain four different αi’s will be
indexed by

{i = j < k < l}, {j < i = k < l}, {j < k < i = l},

while there will be 4 − 3 = 1 terms of the type {i < j < k < l}, and the
result follows. ♣

For degrees higher than n = 4, it may be both hard and time consuming
to calculate the polynomial P (2)(x) in terms of the coefficients of P by hand,
but using a computer we would (more quickly) be able to find P (2)(x) for
polynomials of degree higher than 4 as well.
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What use can we then have of this “new” polynomial?
If we assume P has one inverse pair amongst its roots, which we could

detect by calculating ∆p, we must have

P (2)(1) = 0.

But P (2)(1) = 0 means that 1 is a root of P (2)(x), so dividing by x− 1 gives
a new polynomial. We now check again if 1 is a root in this new polynomial
and if it is, there is at least two inverse pairs amongst the roots of P . If we
keep on like this, we will eventually end up with

Result 3.4.2.
P (2)(x) = (x− 1)m · P ∗(x)

where P ∗(x) is a polynomial in Q[x] with P ∗(1) 6= 0. Then the polynomial
we started out with, P (x), has m inverse pairs amongst its roots.

Remark 3.4.3. We note that the result holds because we have P (2)(1) = 0
if and only if there is at least one i and j ∈ {1, 2, ..., n} such that αj = 1

αi
.

Finding the number m such that P (2)(x) = (x− 1)m · P ∗(x) tells us nothing
about whether or not some of these m pairs are equal.
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Chapter 4

Semipalindromic polynomials

We have just found a way of calculating how many inverse pairs of roots a
given polynomial has. The higher the degree, the more difficult and time
consuming the calculations become, and the method only gives us informa-
tion about how many such pairs there are amongst the roots, it doesn’t tell
us anything about whether or not any of them are equal to each other or
whether or not they are in Q.

But if we could somehow find a way to know all these properties about
the roots of a general polynomial, P in Q[x] of degree n, what could we then
say about its Galois group?

Definition 4.0.4. Let P (x) be a polynomial of degree n in Q[x], with roots
α1, α2, ..., αn. If P has at least one inverse pair of roots, i.e. for at least on
i there is one j such that αi = 1

αj
, we say that P is a semipalindromic

polynomial of degree n in Q[x].

Let P (x) ∈ Q[x] be a polynomial of degree n and let F be its splitting
field. If we need to expand Q with all the n roots, α1, α2, ..., αn, the splitting
field will be

F = Q(α1, α2, ..., αn).

If we don’t have any dependencies amongst the roots, then

|Gal(F/Q)| = n!

But what happens to the order of the group if some of the roots come in

65
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“inverse pairs”?

4.1 The Galois groups of semipalindromic poly-
nomials

Let P (x) be a semipalindromic polynomial of order n in Q[x]. First assume
it has exactly one “inverse pair” amongst its roots, and that the splitting
field is Q(α1, α3, α4, ..., αn) (we order the roots such that α2 = 1

α1
). Since

all the elements of Gal(F/Q) are automorphisms, if we have an element φ ∈
Gal(F/Q) such that φ(α1) = αi then we must also have φ(α2) = φ( 1

α1
) = 1

αi
.

But 1
αi

is a root of P if and only if i = 1 or 2. This means that all elements
of the Galois group must map α1 to either α1 or α2. And which of these two,
α1 and α2, α1 is sent to, determines which root α2 is sent to.

This means we only have two options for which roots the automorphisms
of Gal(F/Q) can send α1 to; namely α1 and α2. And then α2 must be sent
to the inverse root. Further we have n− 2 options for which roots α3 can be
sent to, which leaves n− 3 options for α4 and so on. This means

|Gal(F/Q)| = 2 ·1 · (n−2) · (n−3) · ... · (n− (n−2)) · (n− (n−1)) = 2 · (n−2)!

Realizing the fact that a root which is one part of an “inverse pair” can
only be sent to another root which is also a part of such a pair can help us
say something more general about the order of the Galois group of semipalin-
dromic polynomials:

Proposition 4.1.1. Assume P (x) ∈ Q[x] is of degree n and that we can
detect exactly m inverse pairs amongst its roots. Assume also that if we
order the roots as α1, α2 = 1

α1
, α3, α4 = 1

α3
, ..., α2m−1, α2m = 1

α2m−1
, α2m+1,

α2m+2, ..., αn, the splitting field of P (x) is

F = Q(α1, α3, ..., α2m−1, α2m+1, α2m+2, ..., αn).

Then we have
|Gal(F/Q)| = 2m ·m! (n− 2m)!
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Proof. Since there are 2m roots which are one part of an inverse pair of roots,
we can send the root α1 to 2m different roots (including itself). Then the
“destination” of α2 = 1

α1
is already decided, so we only have one option for

the “destination” of this root. Now one pair of inverse roots is “used”, so α3

can be sent to 2m− 2 different roots. This leaves 2m− 4 options for α5, and
so on. The first root which is not a part of such a pair can then be sent to
n− 2m different roots, the next n− (2m+ 1) and so on. This gives

|Gal(F/Q)| = 2m(2m− 2)(2m− 4)(2m− 6)...(2m− (2m− 2))·
(n− 2m)(n− (2m+ 1))...1

= 2m · 2(m− 1) · 2(m− 2) · 2(m− 3) · ... · (n− 2m)!

= 2 · 2 · 2 · ... · 2︸ ︷︷ ︸
m

·m!(n− 2m)!

= 2m ·m! (n− 2m)!

Let P (x) be an irreducible polynomial of degree n in Q[x], with m pairs
of inverse roots. Then we know that

P (x) = (x− α1)

(
x− 1

α1

)
(x− α2)

(
x− 1

α2

)
· · · (x− αm)

(
x− 1

αm

)
(x− αm+1)(x− αm+2) · · · (x− αn−m),

where α1,
1
α1
, α2,

1
α2
, ..., αm,

1
αm
, αm+1, αm+2, ..., αn−m are the n roots of P .

This means we can write

P (x) =
(
x2m + a1x

2m−1 + a2x
2m−2 + ...+ a2x

2 + a1x+ 1
)︸ ︷︷ ︸

:=Q(x)

·Rn−2m(x),

where the first part is a palindromic polynomial, Q(x), of degree 2m and the
rest is a polynomial of degree n− 2m. Note that since P was irreducible in
Q, these polynomials are not (at least not both) in Q[x].
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We want to consider the rational function

P (x) =
P (x)

xm
=

=Q(x)︷ ︸︸ ︷(
x2m + a1x

2m−1 + a2x
2m−2 + ...+ a2x

2 + a1x+ 1
)

xm
·

Rn−2m(x)

=

(
xm + a1x

m−1 + a2x
m−2 + ...+

a2
xm+2

+
a1
xm+1

+
1

xm

)
·Rn−2m(x)

=

(
xm +

1

xm
+ a1

(
xm+1 +

1

xm+1

)
+ a2

(
xm+2 +

1

xm+2

)
+ ...

+ am

)
·Rn−2m(x).

As we have seen earlier this means that P can be written as the product
of the xm-derived polynomial of Q (the palindromic part of P ), by obuse of
notation we shall call it QP

(
x+ 1

x

)
, of degree m in x+ 1

x
and the polynomial

Rn−2m in x, i.e.
P
(
x, x+ 1

x

)
= QP

(
x+ 1

x

)
Rn−2m(x).

So the roots of P are α1+ 1
α1
, α2+ 1

α2
, ..., αm+ 1

αm
, αm+1, ..., αn−m, which gives

P the splitting field

M = Q
(
α1 + 1

α1
, α2 + 1

α2
, ..., αm + 1

αm
, αm+1, ..., αn−m

)
.

But as we have seen, the coefficients of P are not (at least not all) rational
numbers. To have an exact sequence as we have seen earlier we need to detect
which field M is a splitting field over.

We start by considering an example:

Example 4.1.2. Let P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x +
a6 be a polynomial with roots α1,

1
α1
, α2,

1
α2
, α3, α4 and splitting field F =

Q(α1, α2, α3, α4) (n = 6,m = 2). We have

P (x) = (x− α1)
(
x− 1

α1

)
(x− α2)

(
x− 1

α2

)
(x− α3)(x− α4)

=
(
x4 −

(
α1 + 1

α1
+ α2 + 1

α2

)
x3 +

(
α1α2 + α2

α1
+ α1

α2
+ 1

α1α2
+ 2
)
x2

−
(
α1 + 1

α1
+ α2 + 1

α2

)
x+ 1

)
·
(
x2 − (α3 + α4)x+ α3α4

)
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so1

Q(x) :=
P (x)

x2 ·R2(x)

= x2 +
1

x2
−
(
α1 + 1

α1
+ α2 + 1

α2

)(
x+ 1

x

)
+ α1α2 + α1

α2
+ α2

α1
+ 1

α1α2
+ 2,

where R2(x) = x2−(α3 + α4)x+α3α4. Recalling that x2+ 1
x2

=
(
x+ 1

x

)2−2,
gives us

QP

(
x+ 1

x

)
=
(
x+ 1

x

)2−(α1 + 1
α1

+ α1 + 1
α1

)(
x+ 1

x

)
+α1α2+ α1

α2
+ α2

α1
+ 1

α1α2
.

By proposition 2.0.16, QP has roots α1 + 1
α1
, α2 + 1

α2
.

We want to consider the “polynomial”

P
(
x, x+ 1

x

)
= x2QP

(
x+ 1

x

)
R2(x),

which has roots x+ 1
x

= α1 + 1
α1
, α1 + 1

α1
and x = α3, α4.

This means the splitting field of P
(
x, x+ 1

x

)
is Q

(
α1 + 1

α1
, α2 + 1

α2
, α3, α4

)
,

but in which field does the coefficients of this polynomial lie?
We know that for all polynomials the coefficients are elementary symmet-

ric polynomials of the roots. So since the coefficients of R2(x) are 1, α3 + α4

and α3α4, we must have R2(x) ∈ Q(α3, α4). But are the coefficients of
QP

(
x+ 1

x

)
also in Q(α3, α4)? It turns out they are! Let’s have a look:

Recalling that we have P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x+ a6
with roots α1,

1
α1
, α2,

1
α2
, α3, α4, we can calculate the first two (excluding the

coefficient 1 of x6) coefficients of P to be

a1 = α1 + 1
α1

+ α2 + 1
α2

+ α3 + α4

a2 = 2 + α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4+

= α2

α1
+ α3

α1
+ α4

α1
+ α1

α2
+ α3

α2
+ α4

α2
+ 1

α1α2
.

And as we have already seen the coefficient of
(
x+ 1

x

)
and the constant term

of QP

(
x+ 1

x

)
are (note that the coefficient of

(
x+ 1

x

)2 is 1):

b := −
(
α1 + 1

α1
+ α2 + 1

α2

)
and c := α1α2 + α2

α1
+ α1

α2
+ 1

α1α2
− 2.

1Note that the new expression for P shows that α3α4 ∈ Q.
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We want to show that both b and c are in Q(α3, α4).
As we saw

a1 = α1 + 1
α1

+ α2 + 1
α2

+ α3 + α4,

a2 = 2 + α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4+
α2

α1
+ α3

α1
+ α4

α1
+ α1

α2
+ α3

α2
+ α4

α2
+ 1

α1α2
,

which means these expressions are both in Q. Hence

a1 = b+ α3 + α4

=⇒ b = a1 − α3 − α4 ∈ Q(α3, α4)

a2 = c+ α1α3 + α1α4 + α2 + α3 + α2α4 + α3α4 + α3

α1
+ α4

α1
+ α3

α2
+ α4

α2
+ 4

=⇒ c = a2 − 4− α3α4 −
(
α1 + α2 + 1

α1
+ 1

α2

)
α4 −

(
α1 + α2 + 1

α1
+ 1

α2

)
α3

= a2 − 4− α3α4 − (a1 − α3 − α4)(α3 + α4)

= a2 − 4− α3α4 − a1α3 − a1α4 + α3α4 + α2
3 + α3α4 + α3α4 + α2

4

= a2 − 4− α3α4 + 2α3α4︸ ︷︷ ︸
∈ Q

− a1α3︸︷︷︸
∈ Q(α3,α4)

− a1α4︸︷︷︸
∈ Q(α3,α4)

+ α2
3︸︷︷︸

∈ Q(α3,α4)

+ α2
4︸︷︷︸

∈ Q(α3,α4)

=⇒ c ∈ Q(α3, α4)

This result shows that P
(
x, x+ 1

x

)
has coefficients in Q(α3, α4), which means

M := Q
(
α1 + 1

α1
, α2 + 1

α2
, α3, α4

)
is a splitting field over L := Q(α3, α4).

Then we know that M is a finite normal extension of L, and using Galois
theory again, this means Gal(F/M) is a normal subgroup of Gal(F/L), and
then

Gal(M/L) ' Gal(F/L)/Gal(F/M),

which gives us an exact sequence

1→ Gal(F/M)→ Gal(F/L)→ Gal(M/L)→ 1.

♣

Lemma 4.1.3. Let P (x) be an irreducible, monic polynomial of degree n in
Q[x]. Assume we can factor P as

P (x) = F (x) ·G(x)

with G(x) ∈ E[x] where E is a field E ⊇ Q. Then we also have F (x) ∈ E[x].
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Proof. Assume P (x) =
∑n

i=0 aix
i, F (x) =

∑r
i=0 bix

i and G(x) =
∑s

i=0 cix
i,

where r + s = n and an = br = cs = 1 (we could of course have br = c−1s ,
but this doesn’t change anything later) . If we let m be a rational number,
the element P (m) = F (m) ·G(m) is also a rational number. Further, G(m)

is an element of E ⊇ Q, which means that also F (m) = P (m)
G(m)

is in E. We
want to show that for every i ∈ {1, ..., r}, bi ∈ E and we do it by induction.
We note first that

F (x) ·G(x) =
(
xr + br−1x

r−1 + ...+ b1x+ b0
)(
xs + cs−1x

s−1 + ...+ c1x+ c0
)

= xr+s + (br−1 + cs−1)x
r+s−1 + ...+ b0c0

= xn + an−1x
n−1 + ...+ a0 = P (x). (4.1.1)

From this we find

ak+1 =
k+1∑
i=0

bi · ck+1−i.

We are now ready to start our induction, wanting to show that for every
k ∈ {0, 1, ..., r}, bk is in E.

Consider the case k = 0. We know from equation (4.1.1) that b0c0 ∈ Q,
say b0c0 = t. Since E is a field, we have c−10 ∈ E, and hence b0 = t · c−10 is in
E as well.

Now assume that the claim that b0, b1, b2, ..., bk are in E holds. Then we
need to show that also bk+1 is in E. But as we saw

ak+1 =
k+1∑
i=0

bi · ck+1−i =
k∑
i=0

bi · ck+1−i + bk+1 · c0

=⇒ bk+1 = ak+1︸︷︷︸
∈Q =⇒ ∈E

−
k∑
i=0

bi · ck+1−i︸ ︷︷ ︸
∈E

=⇒ bk+1 ∈ E,

where
∑k

i=0 bi · ck+1−i is in E because we assumed b0, b1, b2, ..., bk are in E
and already know that all ci are in E.
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Proposition 4.1.4. Both polynomials QP

(
x+ 1

x

)
and Rn−2m(x) have coef-

ficients in Q(αm+1, αm+2, ..., αn−m), which means the field

M = Q
(
α1 + 1

α1
, α2 + 1

α2
, ..., αm + 1

αm
, αm+1, ..., αn−m

)
is a splitting field over Q(αm+1, αm+2, ..., αn−m).

Proof. This follows almost immediately from the lemma above.
To make notation easier we rename the roots of P as

α1, α2 = 1
α1
, α3, α4 = 1

α3
, ..., α2m−1, α2m = 1

α2m−1
, α2m+1, α2m+2, ..., αn.

Recalling that the coefficients of all polynomials are symmetric polynomi-
als in its roots, since the roots of Rn−2m are α2m+1, ..., αn, Rn−2m(x) ∈
Q(α2m+1, ..., αn)[x] ⊇ Q.

Now, constructing the xm-derived polynomial QP

(
x+ 1

x

)
, we first split

P into two polynomials, the palindromic part, Q(x), and the “rest polyno-
mial”, Rn−2m(x), see page 67. It follows from lemma 4.1.3 that the coeffi-
cients of Q(x) are also in Q(α2m+1, ..., αn)[x]. Further we know that when
dividing Q(x) by xm and “turning it into” QP

(
x+ 1

x

)
we do not change

the coefficients other than possibly by elements of Q. This means that
QP

(
x+ 1

x

)
∈ Q(α2m+1, ..., αn)[x + 1

x
]. Which means that the field M is a

splitting field over Q(αm+1, αm+2, ..., αn−m).

The results above may at first eyesight seem a bit weird. Let us com-
pare2 the first two coefficients (not including the ones of the highest terms,
since they’re 1) of the polynomials QP

(
x+ 1

x

)
and P (x), which have roots

α1 + α2, α3 + α4, ..., α2m−1 + α2m and α1, α2, ..., αn respectively, to see how
it can actually be true that we have QP

(
x+ 1

x

)
∈ Q(α2m+1, ..., αn)

[
x+ 1

x

]
.

Computing the coefficients of P (x) using elementary symmetric polynomials

2using the notation from proposition 4.1.4
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in its roots, we have:

a1 =
∑

1≤i≤n

αi = α1 + α2 + ...+ αn

a2 =
∑

1+≤i<j≤n

αiαj = α1α2 + α1α3 + ...+ α1αn + α2α3 + ...+ α2αn + α3α4 + ...

+ α3αn + α4α5 + ...+ α4αn + α5αn + α5α3 + ...+ α6αn

+ α6α4 + ...+ α6αn + ...+ αiαi+1 + ...+ αiαn + ...

+ αn−2αn−1 + αn−2αn + αn−1αn

a3 =
∑

1≤i<j<k≤n

αiαjαk

...
an = α1α2 · · ·αn

Since the roots of QP

(
x+ 1

x

)
are β1 = α1 + α2, β2 = α3 + α4, ..., βm =

α2m−1 + α2m, denoting its coefficients bi for i = 1, ...,m, the first coefficient
is given by

b1 =
∑

1≤i≤m

βi =
∑

1≤i≤2m

αi = a1︸︷︷︸
∈Q

−
∑

2m+1≤i≤n

αi︸ ︷︷ ︸
∈Q(α2m+1,α2m+2,...,αn)

=⇒ b1 ∈ Q(α2m+1, α2m+2, ..., αn)
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And for the second

b2 =
∑

1+≤i<j≤2m

βiβj =
∑

1≤i<j≤2m
i,j odd

(αi + αi+1)(αj + αj+1)

= a2 − α1α2︸︷︷︸
=1

−α1(α2m+1 + α2m+2 + ...+ αn)−

α2(α2m+1 + α2m+2 + ...+ αn)− α3α4︸︷︷︸
=1

− α3(α2m+1 + α2m+2 + ...+ αn)−

α4(α2m+1 + α2m+2 + ...+ αn)− ...−
∑

2m+1≤i<j≤n

αiαj︸ ︷︷ ︸
∈Q(α2m+1,...αn)

= a2 −m︸ ︷︷ ︸
∈Q

− a1︸︷︷︸
∈Q

(α2m+1 + α2m+2 + ...+ αn)

︸ ︷︷ ︸
=⇒ ∈Q(α2m+1,...αn)

+
∑

2m+1≤1≤n

α2
i︸ ︷︷ ︸

∈Q(α2m+1,...αn)

+

∑
2m+1≤i<j≤n

αiαj︸ ︷︷ ︸
∈Q(α2m+1,...αn)

=⇒ b2 ∈ Q(α2m+1, ...αn).

Proposition 4.1.4 has great interest for us as we are going to consider the
Galois group of P . It shows that the field3

M = Q
(
α1 + 1

α1
, ..., αm + 1

αm
, αm+1, ..., αn−m

)
,

which is not (necessarily) a splitting field over Q, actually is a splitting field
over the field L = Q(αm+1, ...αn−m). And since F is a splitting field over Q,
it is also a splitting field over M , which according to Galois theory gives us
the exact sequence

1→ Gal(F/M)→ Gal(F/L)→ Gal(M/L)→ 1.

Let us consider what these groups look like and their orders:

3We’re back to our “usual” notation
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Gal(F/M) is the group of all automorphisms of F which leaves α1 +
1
α1
, ..., αm + 1

αm
, αm+1, ..., αn−m fixed. This means an element φ ∈ Gal(F/M)

must send αi to either αi or 1
αi

for the first m i’s, and then keep the rest of
the roots fixed. Counting our options this leaves us with

|Gal(F/M)| = 2m.

Next we look at Gal(F/L). These automorphisms need to keep all the
roots αm+1, ..., αn−m fixed, but can, for i = 1, ...,m, send αi to all αj or 1

αj

for j = 1, ...,m (also j = i). This gives 2m options for where to send α1,
and then 2m − 2 options for where to send α2 (remember it can’t be sent
to neither the same root as α1 or that root’s inverse). This leaves 2m − 4
options for the image of α3, and so on, up to and including i = m. This gives
us

|Gal(F/L)| = 2m · (2m− 2) · (2m− 4) · · · 2︸ ︷︷ ︸
m factors of 2

= 2m ·m(m− 1)(m− 2) · · · 1
= 2m ·m!

Since we have our exact sequence, we can now calculate the order of
Gal(M/L) to be

|Gal(M/L)| = |Gal(F/L)|/|Gal(F/M)| = 2m ·m!/2m = m!,

but let us also check this by “counting” the automorphisms.

Gal(M/L) is the group of all automorphisms of F which the permutes
αi+

1
αi
’s for i = 1, 2, ...,m, but leaves the n−2m other roots of P fixed. This

means an element φ ∈ Gal(M/L) can send α1 + 1
α1

to αi + 1
αi

for m different

i’s (1, 2, ...,m). This leaves m− 1 options for φ
(
α2 + 1

α2

)
, m− 2 options for

φ
(
α3 + 1

α3

)
, and so on, until there is only one option for φ

(
αm + 1

αm

)
. The

rest of the roots, the ones not part of an inverse pair, must be kept fixed,
which leaves us with

|Gal(M/L)| = m · (m− 1) · · · (m− 2) · · · 2 · 1 · 1 · · · 1︸ ︷︷ ︸
m

= m!,



76 CHAPTER 4. SEMIPALINDROMIC POLYNOMIALS

which is the same as we just saw.

Finally, let us consider an example, which turns out to be quite special,
using the theory just developed.

Example 4.1.5. Let P (x) = x6+a1x
5+a2x

4+a3x
3+a4x

2+a5x+a6 with roots
α1,

1
α1
, α2,

1
α2
, α3, α4 be as in example 4.1.2, where we saw thatQP

(
x+ 1

x

)
had

coefficients in Q(α3, α4). Hence M := Q
(
α1 + 1

α1
, α2 + 1

α2
, α3, α4

)
is a split-

ting field over L = Q(α3, α4).

Then we have

P (x) = (x− α1)
(
x− 1

α1

)
(x− α2)

(
x− 1

α2

)
(x− α3)(x− α4)

=
(
x2 −

(
α1 + 1

α1

)
x+ 1

)(
x2 −

(
α2 + 1

α2

)
x+ 1

)
(
x2 − (α3 + α4)x+ α3α4

)
.

If we assume that the polynomial P (x) is not palindromic, we must have
α3α4 = a6 6= 1 ∈ Q, because if α3α4 = 1 then α3 = 1

α4
and then all roots of

P are inverse pairs, so P would be palindromic. If we now define

β1 := α1 + 1
α1
, β2 := α2 + 1

α2
, γ := α3 + α4

and note that a6 = α3α4,

we have

P (x) =
(
x2 − β1x+ 1

)(
x2 − β2x+ 1

)(
x2 − γx+ α3α4

)
= x6 − (β1 + β2 + α3 + α4)x

5 + (a6 + 2 + β1 + β2a6 + (β1 + β2)γ)x4

− (β1β2γ + (β1 + β2)a6 + 2γ)x3 + (2a6 + 1 + β1β2a6 + (β1 + β2)γ)x2

− ((β1 + β2)a6 + γ)x+ a6,

which means

a1 = −(β1 + β2 + γ), a2 = 2 + a6(1 + β1β2) + (β1 + β2)γ,

a3 = −(2 + β1β2)γ − (β1 + β2)a6, a4 = 1 + a6(2 + β1β2) + (β1 + β2)γ,

a5 = a6(β1 + β2) + γ.
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We know from our assumption that a6 6= 1 and that all the ai’s are in Q,
which means

−a5 + a1a6 = a6(β1 + β2) + γ − a6(β1 + β2)− a6γ
=⇒ −a5 + a1a6 = (1− a6)γ

=⇒ γ =
−a5 + a1a6

1− a6
∈ Q.

And since a6 = α3α4 is rational as well, we must have

R(x) := x2 + γx+ a6 ∈ Q[x],

which again means that Q(α3, α4) = Q(α3)
4 is a splitting field over Q, so the

relation:
Q ⊆ Q(α3) ⊆ F = Q(α1, α2, α3, α4),

gives rise to the exact sequence

1→ Gal(F/Q(α3))→ Gal(F/Q)→ Gal(Q(α3)/Q)→ 1.

Let’s see what the field Gal(Q(α3)/Q) looks like. This is the group of au-
tomorphisms permuting the roots α3 and α4, but keeping Q fixed. The only
possible automorphisms are then the identity map, and the map φ, sending
α3 to α4, and vice versa, which shows that Gal(Q(α3)/Q) ' Z2.

Further we note that

β1 + β2 = −a1 − γ =⇒ β1 + β2 ∈ Q
and (2 + β1β2)γ = −a3 − (β1 + β2)a6 = −a3 + (a1 + γ)a6

=⇒ β1β2 =
−a3 + (a1 + γ)a6

γ
− 2 =⇒ β1β2 ∈ Q,

which shows that also

Q(x) :=
(
x2 − β1x+ 1

)(
x2 − β2x+ 1

)
= x4 − (β1 + β2)x

3 + (2 + β1β2)x
2 − (β1 + β2)x+ 1

is an irreducible5 polynomial in Q[x].
4because α3 + α4 ∈ Q
5recall that we assumed neither root of P was in Q
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We see that taking in account our assumptions about the roots and coef-
ficients of P (x), it must be a reducible polynomial in Q[x]. But this means
that also Q(β1, β2) = Q(β1) and that this is actually also a splitting field
over Q. Hence we have an exact sequence

1→ Gal(F/Q(β1))→ Gal(F/Q)→ Gal(Q(β1)/Q)→ 1.

And for the same reasons as for Gal(Q(α3)/Q) we have Gal(Q(β1)/Q) '
Z2.
We now claim that:

Claim 4.1.6. Gal(F/Q(β1)) ' Z2 × Z2 × Z2.

Proof. This claim is not hard to prove. We first note that this is the set of
all automorphisms which permutes the roots of P , α1,

1
α1
, α2,

1
α2
, α3, α4, but

keeps α1 + 1
α1

and α2 + 1
α2

fixed. This means we can only send α1 to itself or
its inverse. The same holds for α2. This means α3 can only be sent to itself
or α4, which determines the image of α4 leaving only the option of the root
α3 is not sent to (either α3 or α4). This means

|Gal(F/Q(β1))| = 2 · 2 · 2 · 1 = 8,

which is the same as |Z2 × Z2 × Z2|.
If we rename our roots again, just like we did in example 2.1.2, as

{α1,
1
α1
, α2,

1
α2
, α3, α4} = {1, 2, 3, 4, 5, 6}, and let

Z(1)
2 = {e, (12)}, Z(2)

2 = {e, (34)}, Z(3)
2 = {e, (56)}

we have

Z(1)
2 × Z(2)

2 × Z(3)
2 = {(e, e, e), (e, e, (56)), (e, (34), e), (e, (34), (56)),

((12), e, e), ((12), (34), e), ((12), e, (56)), ((12), (34), (56))}
' Gal(F/Q(β1)).

So we have Gal(F/Q(β1)) ' Z2 × Z2 × Z2. Our last claim is:

Claim 4.1.7. Gal(F/Q) ' D4 × Z2.
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Proof. We let the Z2 be the set {e, (56)}. We know that when permuting the
roots of P while keeping Q fixed, we can not send α3 and α4 to any other
roots than each other or themselves.

So we’re basically left with Gal(Q(α1, α2)/Q) which by example 2.1.2 is
isomorphic to D4.

After detecting which groups our Galois groups are isomorphic to, we can
now rewrite the exact sequence as

1→ Z2 × Z2 × Z2 → D4 × Z2 → Z2 → 1.

To illustrate the elements of Gal(F/Q) we list them according to order:

• Order 0: {e}

• Order 2: {(12),(34),(56),(12)(34),(12)(34)(56),(13)(24),
Ordered 2:(13)(24)(56),(14)(23),(14)(23)(56),(12)(56),(34)(56)}

• Order 4: {(1423), (1423)(56),(1324),(1324)(56)}
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If we consider these elements a bit further, we find that

Gal(F/Q) = 〈a, x, y | a = (1324), x = (12), y = (56)〉,

which is just another way of showing that Gal(F/Q) ≈ D4×Z2. To illustrate
the structure of the group we also include a figure of the cycle graph of
D4 × Z2 :

(12)(34)

(1423)(56) (1423) (1324) (1324)(56)

(e)
(12) (34) (56) (12)(56)

(34)(56)

(12)(34)(56)
(13)(24) (13)(24)(56) (14)(23)

(14)(23)(56)

Figure 4.1: The cycle graph of D4 × Z2

♣
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