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Introduction, Let E be a Banach space and K : E ~ E a 

completely continuous map (i,e, such that the image of a bounded 

set has compact closure), Assume that K is odd (but not neces

sarily linear) and let Ar be the set of solutions of the equa-

tion x 

origin, 

+ K(x) = 0 at the sphere Sr of 
[4, 1'heorem 10, 

By a theorem of Granas /, if I + 

radius 
J?.45J 
K maps 

r from the 

Sr to a pro-

per subspace of E , then Ar is non-empty, The purpose of 

this article i-s to initiate a closet· study of the solution set 

Ar in a more general context. Thus, let X be a paracompact 

Hausdorff space with a fixed point free involutiqn T , and let 

cp: X ... E be a proper equivariant map, Vfe define a numeric. 1
. 

invariant called the coindex of cp and estimate the size o:· 
A( f) "' {x E Xlf(Tx) = f(x)} in terms of this invariant, whuc 

·. 
f : X ... E is any compact perturbation of ~ • The methods we 

use arc based on those of Com1er and Floyd [1], (2), suitably 

extended to the infinite dimensional situation, As in ~1] the 

method often covers the more general case where T is replaced 

by a finite group of homeomorphisms actine freely on X , 

The actual computation of coj.nd cy requires in practice 
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considerable regularity of the map cp • One case which seems 

more tractable than others is where X is a differentiable 

manifold modelled on a Banach space and cp is a Fredholm map. 

This case gains considerable importance i.n view of recent deve

lopment, see e.g. [3]. The most interesti.ng example to have i.n 

mind is perhaps the one where cp is derived from a non-linear 

partial differential operator on a bounded region in Rn , see 

again '3]. 

In section 1 we summerize standard properties of the 

coindex of a space with involution and in section 2 we define 

the coindex of an equivariant map from a space with involution 

to a Banach space. In section 3 there is a local computation 

of the coindex of a Fredholm map. Section 4 deals with the 

degree of a map from one Banach mcni.fold to another and section 5 

relates the degree to the coindex, Section 6 establishes equi-

variant transversality which is used in section 7 where the 

global result on the coindex of a Fredholm map is proved, 

1. Co index of a space wi. th_ invoJ.ll_iJ:.£11:, Let X be a para-

compact Hausdorff space and T : X -• X a fixed point free invo

lution on X , Then X~ X/T is a double covering with a charac

teristic class c E H1 (X/T) (Oech cohomology, coefficients B2 ), 

Define the coindex of (X,T) to be the largest non-vanishing 

power of c ; by abuse of notation 

coind X = sup[n;cn I 0} 

In the notation of Conner and Flo;yd ~ ] the coindex map is 

written co-in~ X , and the authors observe that it has the 
2 

following properties: 
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1,1 (Conner-Floyd) The coindex map assigns to each paracom-

pact Hausdorff space X with a fixed point free involution a 

non-negative integer or x, , such that 

(Functoriality) 

(Additivity) 

(Continuity) 

(Dimensionality) 

and such that 

(Stability) 

If f: X ~ Y is an equivariant map between 

spaces with involutions, then coind X < co:ind Y. 

If A,B are closed invariant subsets of X 

and X = A U B , then 

coind X < coind A + coind B + 1 . 

If A is a closed invariant subset of S 

then coind A = coind U for some closed 

invariant neighbourhood U of A 

coind Sn = n , n = 0,1, ... 

If X is compact, then coind SX = ooind X+ 1 . 

Here SX means the suspension of X equipped with the fixed 

point free involution (x,t) _, (T(x),1-t) It is an easy 

consequence of the additivity property that quite generally 

coind SX < coind X + 1 • 

The properties listed in 1,1 do not characterize the 

coindex map. In fact a coindex based on the characteristic 

class with twisted integral coefficients (instead of ~ 2-coeffi

cients) satisfies 1. 1 as vrell. And if L is any principal 

ideal domain, there is a coindex map based on the characteristic 

class with twisted L-coefficients, having the properties 1,1 

with the possible exception of the stability property, We refer 

to [1] for the details. Until further notice coind will 
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stand for any map satisfying 1,1 except for the stability pro-

perty. For convenience we also add the definition coind 0 = -1, 

and observe that then 1.1 remains true also in the cases where 

any of the spaces occurring are empty provided S0 is inter

preted as S0 
• A coindex map is ~t~ble if it has the stability 

property. For an example of a non-stable coindex map of a some-

what different character than those already mentioned, let 

coind X be the smallest integer n such that there is an equi-

. t X Sn • . e " varlan map ~ , see agaln _ '. 

The following result in a somev1hat different setting is 

due to Yang [9]: 

1.2 (Yang) Let f ·. X -· Rn b d l t - e any map an e A(f) c X be 

the set of points x such that f(x) = f(Tx) Then A(f) is 

a closed invariant subset of X and 

coind A( f) > coind X- n 

Proof. Form the map <p = f - f o T : X ~ Rn . Then cp is 

equivariant (with respect to the standard involution in Rn) and 

A(c;>) = A(f) Thus we may as well assume f equivariant. Let 

U be a closed invariant neighbourhood of A(f) such that 

coind U = coind A (the continuity property) and V a closed 

invariant neighbourhood of U such that coind V = coind U . 
0 

Then X-U and V are closed invariant subsets covering X 
0 

and so coind X _:: coind (X - U) + coind V + 1 , by addi ti vi ty. On 

the other hand, existence of an equivariant map 

0 

X-U 
f n 

R - o 

0 

shows that coind (X - U) < n - 1 • Thus coind X < n- 1 + co:indA(f) + 1 • 
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2, Coindex of an equivari~t m~. In the sequel E denotes 

a Banach space with its standard involution (one fixed point, 

the origin). If cp: X ~ E is any ec:tuivariant map, we define 

the ~ndex of ~ by coind ~ ~ p if for any sufficiently 

-1 

large 

finite dimensional subspace F c E coind ~ F ~ p + dim F 

As an example consider the case where X= S , the unit 

sphere in E , and ~ is the inclusion s cE • Then for any 

finite dimensional F cE -1 
~:) F is the tmit sphere in p and 

so coind ~0 
-1F > dim p- 1 - It follOVIS that coind ql = -1 • 

Similarly, or cp is the constant map to the origin, then the 

co index of ~ is X ; and if X = SF ' 
the unit sphere in a 

finite dimensional subspace F c E and ~ is the inclusion 

sP c E , then the co index of :p is X - . Thus the co index of 

a map takes values in the range of all integers with the two 

extremes - x and x included, 

A map K X ~ E is com£act (or finite dimensional) if 

im K lies in a compact (or finite dimensional) subset of E 

A map f: X ~ E is a compact perturbation (or finite dimensional 

~rturbation) of ~ if f = ~ + K for some compact (or finite 

dimensional) map K : X ~ E . 

Remark. A compact perturbation of a proper map is proper. 

Our first result is an extension of Yang's theorem 1.2. 

2,1 Theorem. Let ~: X ~ E be a proper equivariant map 

and f: X ~ E a compact perturbation of ~ • If im f lies in 

a k-codimensional subspace of E , then 

coind A( f) > coind ~ + lc • 
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Let E k c E be a k-codimensional subspace con-

f and let Ek cE be some complement, Let K be 

map f-cp and assume first that K is finite dim en-

that im K c Em for some m-dimensional subspace 

Finally let En be any finite dimensional sub;>pace 
1 n ii· 

Em + Ek Then cp- E /into En n Ek • Let 

restricted map, Then, by theorem 1,2 

coind A(fn) > coind 

be the 

-1En 
(j) ' - (n-k) , since clearly dim En 

-1En 

n E k 

= n- k • Since for sufficiently large coind cp - n do-

ruinates coind cp , we get coind A(fn) .:::, coind cp + k However, 

This proves the theorem in the case where K is finite dimen-

sional, 

In the case of a general compact map K let U be a 

closed invariant neighbourhood of A(f) such that coind U = 

coind A(f) Suppose there is a finite dimensional compact map 

K': X~ E such that im f' c Ek and A(f') c U, f' = cp+K' 

Since the inclusion map A(f•) c U is eQuivariant, we get 

coind A(f) = coind U.::: coind A(f').::: coind cp +k, the last in

equality by the first part of the proof, Vie now show that there 

are such maps K' • 

First observe that given U ~ A(f) as above there is an 

e > 0 such that ljf(y) - f(Ty) 11 .<. e implies y E U In fact, 

otherwise we could pick out a sequence of points yi E X-U 

with "f( .) - f ( Ty. ) !J < 1 However, the f-f T 2cp +(K-K T) . yl I map = l -
is a compact perturbation of a proper map and therefore proper. 

Therefore (y. 1 would contain a subsequence converging to some 
l 

point y
0 

E X - A(f) ; which is impossible since by continuity 

f(y
0

) - f(Ty
0

) should equal 0 , 

is a closed invariant subspace of X , and f maps -1En cp . 
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Next, let n: E ~ E be the projection of E to Ek with 

kernel Ek 

im f c E k 

mat ion to 

f1 = <:p + K I 

K 

Then n o f = n o cp - n o K is the zero map, since 

Let K
0 

be a compact finite dimensional 1\-approxi

(cf. [6]), and form K1 = K5 + n oK- n oK, and 

Then K' is a finite dimensional compact map, and 

n 0 f' is zero so that im f 1 c E 
k 

Now, K - K 1 = ( 1-n) ( K-K, ) 
~ 

Therefore, 1!K(x) - K 1 ( x) 1!, _<: '! 1 n :> 
-- " - ,j 

o and so !!f(x) - f' (x)!: < 

!!1-n:: .6 forall xEX. Suppose yEA(f') Then 

'!f(y) - f(Ty)'! = /!f(y) - f 1 (y) - f(Ty) + f' (Ty)g< '\f(y) - f' (y);j t 

:!f(Ty) ( ., " - f' Ty); < 2:1 - 1T ·: • 0 Hence, for o sufficiently 

small '!f(y) - f(Ty)'; _:; e and so y E U , i,e, A(f') c U, 

This completes the proof of Theorem 2,1, 

In particular, if we apply Theorem 2,1 to the case where 

X is S and cp is the inclusion i: S c E , we find that for 

any compact map K: S ~ E such that x + K(x) lies in Ek 

(some k-codimensional subspace of E) coind A(i+K) > k -1 

This, of course, implies that cov, dim A( i+K) > k- 1 , which 

is a slightly refined version of the Granas-Borsuk-Ulam theorem, 

cf. rl--1] • 

The first part of the proof shows that if 

cp: X ~ E is any equivariant map (not necessarily proper) then 

the conclusion of 'l'heorem 2, 1 remains true provided f is a 

finite dimensional (not necessarily compact) perturbation of cp , 

A map cp: X ~ E is finitely bounded if for every finite 

d . . l b F E - 1F . b d d lmenslona su space c ' , rp , cp ' lS oun e , 

Remark. If cp is proper and finitely bounded, then 

ro-1 F . ~ lS compact when F is finite dimensional, Therefore, if 
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n: E ~ E is a linear map with finite dimensional kernel, n .,. cp 

is again proper and finitely bounded. Any compact perturbation 

of a finitely bounded map is finitely bounded. 

As an application of theorem 2,1 we give: 

2,2 Theorem. Let cp: X ~ E be any equivariant UJap. 

Then the following are equivalent: 

( 1 ) coind cp ;:: p 

(2) For every finite dimensional subspace F of E 

coind -1 cp F .::: p + dim Ji' 

Moreover, if cp is proper and finitely bounded, then (1) and 

(2) are each equivalent to 

(3) For every finite dimensional subspace F of E and 

every compact equivariant perturbation f of cp 

coind f- 1F ;:: p + dim F . 

;proof, We first show that (1) implies (2). Thus, let 

F c E be an arbitrary finite dimensional subspace and F' ~ F 

a finite dimensional subspace such that coind cp- 1F• ;:: p + dim F• 

Let n: F' ~F" be an epimorphism v1ith kernel F. Then, b;T 1.2 

coind A(n • cp:cp- 1F•) coind -1 dim F" > cp F' -

> p + dim F' - dim F" 

= p + dim F • 

h f ( ' -1 ) T e conclusion now follows rom the fact that A n o cp; cp F' 

equals -1 
qJ F • 
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Next we assume that cp is proper and finitely bounded and 

show that (2) implies (3), Thus, let F c E be arbitrary finite 

dimensional and f equivariant and compactly related to cp 

(i.e. such that f-cp is a compact map), Let n: E ~ E be a 

pro jeotion with kernel F so that A( n o f) = f- 1 F Since 

ker n is finite dimensional, n o cp is again proper and n " f 

is a compact perturbation of no cp • Therefore, since im no f 

lies in a subspace of E of oodimension equal dim F , by theo

rem 2 

ooind A( n" f) 2:_ ooind n 1:> cp + dim F , 

Since Tioql differs from cp by a finite dimensional map 

ooind n c ::;:: = ooind cp > p and so 

ooind r 1F > p + dim F -

The implications (3) ~ (2) ~ (1) are trivial, 

It follows from the definition tha,t the ooindex of a map is 

invariant under finite dimensional equivariant perturbations. 

For proper finitely bounded maps it is invariant under compact 

perturbations in virtue of theorem 2,2 so we have the following 

corollary. 

:? • 3. Corollar_y:, If cp is proper and finitely bounded 

and f is a compact equivariant perturbation of cp , then 

ooind f = ooind ;:p , 

Yle now show that the coindex can be computed by flags in 

reasonable oases. Let <>J be a directed family of finite dimen-

7 sional subspaoes of E and ~ the family of all subspaces of 
-1\ 

E contained in some member of 4 , 'l'hen it is likewise a 
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directed family of finite dimensional subspaces, Associated to 

4 there is the notion of the co index of cp with reSJ2eCt to 

<if, based on either of the two equivalent properties: 

a) For any sufficiently large F E4 coind -1F cp • .:::: p + dim F 

b) For any F Ei . d - 1F COln cp 1 > -o ·- . + dim F • 

The fact that these are equivalent follows from the first part 

of the proof of theorem 2,2, with F,F 1 required to be in 4, 
Denote the co index of 'fl with respact to 4 by coind 4- cp Then 

the following is true 

c) coind ~- rp = coind ~' cp 

Proof. Obviously coind /.\ cp :5. coind _; cp 
~ 11/ 

To verify the opposite inequality let p be any integer 

• 

not exceeding coind <}- cp • (If coind cp= - x. 

-·1 

there is nothing to 

show.) We have to check that coind cp F;::: p +dim F for all 

F E q; But any 
;) 

F E '!f' is contained in some F 1 E for 

-1 t which coind cp F 1 ;::: p + dim P 1 
, Again the first part of he 

proof of theorem 2,2 gives the dGsired inGquality. 

A flag of, = (En} in E is a sequence E1 c E2 c ••• of 

subspaces such that dim En n anc1 UIP is dense in E 1 ) 
= • 

2.4 Theorem, Let cp: X ~ l!i be a proper and bounded 

equivariant map and 

Then coind cp = coind /. cp , 
<iJ· 

-----~--

a flag in 

1) Thus for E to admit flags it must be separable hence 

second countable. 
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Proof, Clearly coind cp :": coind ~ cp = coind ~ ~ • VIe show 

is not - x , let p be that coind~~ < coind ~ • 

any integer not exceeding 

If coind~cp 

coind4 c.0 • Suppose there is a finite 

dimensional subspace F
0 

c E such that coind 

Let 

that 

U c X be a closed invariant neighbourhood 

coind U = coind cp- 1F
0 

• Then cp(X-intU) 

-1 
cp Fo < P + dim F

0
• 

such -1 of cp F 

and F 
0 

0 

are 

disjoint closed sets in E and cp(X-intU) is bounded. Hence 

there is a distance > e > 0 between F
0 

and (Jl(X-intU) Lot 

r > 0 be a bound for ~ so that ~X c B(r) (the ball of ra

dius r ). By the definition of a flag there is a finite dimen-
A 

sional space F 1 E 1 with dim F 1 = dim F 
0 

such that any ele-

ment in F 1 n B(r) is within distance < e of an element in 

F n B(r) 
0 

and conversely. Then Otherwise 

F1 n cp(X-intU) would be non-empty, which is impossible since 

y E F 1 n ~(X-intU) implies dist (y,F
0

) < E: as well as 

dist (y,F
0

) 

coinCJ. m-
1F 

y 0 

> E: • It follov/S that -1 coind ~ F1 < coind U = 

and so ' d -L 1' F d co1n cp ~· 1 - c1m •1 ~coin 
m-

1F - dim F < p 
y 0 0 -

which contradict the assumptions, -1 Hone o we must have co ind <p F
0 

> p + dim F
0 

Since F
0 

c E Y!as arbitrary finite dimensional, 

this implies coind ~P ;:: p , which again implies 

coind~/ ~ . 

coind ·o > ' --

3, Local co index of a FredJl.<2.l_nJ_ma1l.• Theorem 2.1 poses tho 

problem of computing the coindex of an equivariant map cp into 

E , In general this is a difficult taslc, since it requires con-

siderable knowledge about the filtration on X pulled baclc from 

E by :p , One case which seems more tractable than others, 

however, is where X is a differensiable manifold modelled on 

a Banach space and cp is a Fredholm map, cf, [3], A Fredholm 
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cp: X -• Y between Banach manifolds is 
has;: 

( dcp) x finite dimensional kernel and 

The index of cp is dim ker (dcp)x 

a smooth map such 

cokernel at every 

- dim coker (dcp)x 

which is independent of x for a connected manifold X 

We start by proving the following local result, which still 

is true for arbitrary coindex maps, 

.L.l_. Theorem. Let E, F be Banach spaces, D c E a 

symmetric open neighbourhood of the origin in E and cp: D ~ F 

an equivariant Fredholm map of Fredholm index q ~ 0 , Then for 

any sufficiently small ball B centered at the origin 

coind cpl~ - o)= q - 1 

For a stable coindex this is true also if q < 0 , 

Assume q = 0 and let L = ker dcp 
0 

and F0 = im dt;:> 

(the differential dcp taken at the origin in E ) , Also let 

Eo c E and Fo 

respectively. 

c F 

Then 

be complementary subspaces to E 
0 

dcp can be condidered a linear map 

li' 11 Eo ~ F ~0 0 
<t-. Fo ,, which is zero on }:; 

0 
and maps E0 isomorphi-

cally to Fo Let '!'· E 
0 0 " Fo -· ' be a linear map which 

maps E isomorphically 
0 

to F 
0 

and is zero on Eo • Form 

cp + ·'• D ~ F where 11' is just the restriction of '¥ to D • 'I ' ' 
Then cp + + is equivariant, and d(cp+::) = dcp + 'i' is an isomer-

phi sm. Hence 'P + ,j is a local equivariant diffeomorphism 

around the origin. Now, to compute the coindex of cp close to 

the origin, consider (B-o) n C?-
1 (F

0 
':' F'} for finite dimensioral 

and a small ball B around o E E , Then 

(cp+•v)- 1 (F ;:!l F'} and so cp + ~ establishes an equivariant 
0 

homeomorphism (B-o) n cp- 1 (:1!'
0 

. ., F'} ~ (c?+~)(B-o) n (F
0 

!'l F•) 
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It follows that these two sets have the same coindex, Further

more, (~+$)(B) is a neighbourhood of the origin o E F and 

so contains a small ball B' , This gives equivariant inclusions 

(B'-o) n (Fo ":' F' ) c (~+*) (B-o) 'I (F ."!) ]' ' ) c F 1l F• - 0 show-
0 0 

ing that the cotndex of (cp+-'•) (D-o) r: (Fo ~ F') is precisely 

dim F 
0 

(i) F• - 1 • Therefore coind cp)- o > -1 • Since clearly 

-1 is the greatest lower bound for coind (B-o) n cp- 1 (F "D F} -
0 

dim F
0 

® F• as F' runs through the finite dimensional sub

spaces of F0 
, the co index of (?: B - o is in fact precisely -1 

This proves the result in the case where q = 0 , If q > 0 , 

replace cp by the composite map 

i 

which is then Fredholm of index 0 Applying the special case 

just proved gives coind i o ~ i B - o = -1 for B a small ball. 

Thus, for sufficiently large F" = F' $ l!Rq c Fo :3:1 l!Rq 

coind (B-o) n (i o ~)- 1 (F
0 

1l F"} - dim Fo 1) F" equals -1 • But 

(i"~)- 1 (F 'f) F"} -1 ( 9 F • 1 It follows that = cp F 
0 ·0 ' 

coind (B-o) n -1 ( 
~ Fo 1:1 F'} - dim Fo .'£1 F' equals q - 1 for F' 

large, or equivalently that coind cpJB-o = q- 1 Finally sup-

pose that q < 0 In this case replace cp by the composite ma:p 

pr 
D X lRl.-q ~ D F 

which is then Fredholm of index 0 Again by the first part 

of the proof we find coind (B"-o) n (~ opr)- 1 (F
0 

11 F 1 } 

- dim F 11 F' = -1 where B" c D x lRl.-q is a small ball of the 
0 

form B x B' around o in D x m-q , Suspending 

(B-o) n cp- 1 (F 1l F']- q times we get 
0 

S-q(B-) n S-q~- 1 (F0 0F•1 c (B"-o) n (~opr)- 1 (F 0 r:tlF 1 1 ~ 

s-q(B-o) n s-q~- 1 (F0 11 F'} 
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where the maps are equivariant. Therefore, if the coindex map 

is stable, coind (B"-o) n (cp opr)- 1 [F
0 

® F'} = coind (B-o) n 

cp- 1 (F
0 

~ F•l- q or coind (B-o) n cp- 1 (F
0 
~ F•]- dim F

0 
® F' = 

q - 1 This again implies coind cp 1 B - o = q - 1 • 

In section 7 we give a considerable improvement of theo-

rem 3.1. However, in doing so it is necessary to restrict atten

tion to cohomology coindices and smooth separable Banach spaces 

(i.e, eeparable Banach spaces with smooth partitions of unity). 

4. The degree of a map. We turn to the definition and pro-
' 

perties of the degree of a map, Since equivariance is irrele-

vant in this case, we may conveniently forget about the involu-

tion T on X For a more complete discussion we refer to [3]. 

Let L(E) be the Banach algebra of bounded linear operators 

on E and GL(E) the multiplicative subgroup of invertible 

elements, Let c(E) be the completely continuous operators and 

L
0

(E) and GL
0

(E) the subsets of L(E) and GL(E) ' 
respec-

tively, of operators of the form I + T 
' 

T E c(E) Then 

GL
0

(E) is a subgroup of GL(B) • It is known that GL
0

(E) has 

two components, We denote the component containing the identity 

SL
0

(E) and the other SL~(E) . Given a Banach manifold lii a 

a-structure on M is an admissible atlas (cpi' Ui l maximal vti th 

respect to the property: For any i, j the differential d(cpjepi- 1
) 

at any point lies in GL
0

(E) , The a-structure is orientable if 

it admits a subatlas for which the differentials actually lie in 

SL
0

(E) , An orientation is a subaltas maximal with respect to 

this property, Observe that any finite dimensional ma :1i:lbld has 

a unique a-structure and that orientability in this case has its 

usual meaning. A smooth map f: 111 ~ N between a-manifolds 
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(i,e, manifolds with distinguished a-structures) is a c-~ap if 

for any local representative '!/Cfli-
1 

d(YI/Cfli- 1 ) at any point is in r,
0

(E) 

of f the differential 

This implies that f 

is Fredholm of index 0 Suppose f is a proper c-map between 

oriented manifolds M,N with N connected, 

~~ree of f is defined: 

Then the oriended -· ----~----u 

By the Smale-Sard theorem f has a regular value y in N . 

Then f- 1(yl c M con~ts of a finite number of points, Count 

these with their proper signs; this gives the degree, 

deg f = r sgn 

xEr 1 (y} 

df . 
X 

The sign (of f) at x E f- 1 (y} is determined as follows: 1'ake 

any local representative 

d(~ .fcp.- 1 ) at ~.(x) is 

I f -1 
Vj cpi around x . The derivative 

J l l 

point, Define sgn dfx 

then in 

to be 1 

GL
0 

(E) since 

if d(*.fcp.- 1 ) 
J l 

X is a regular 

is in SL (E) 
0 

and -1 othervlise, (The value does not depend on the choice 

of local representative.) This definition of degree obviously 

extends the finite dimensional one, of, r51. 

Suppose now that N = E with its canonical a-structure 

and that f: M _, E is just Fredholm of index 0 Then, by a 

result of Elworthy and Tromba =3], there is a unique a-structure 

of = [cpi,l:\ 1 on M making f a c-ma;:>. \le will say that f is 

orientable if of is orientable, Then, if f is proper, the 

degree of f is defined, and it can be shovm that up to sign 

it is a proper Fredholm homotopy invariant. In particular the 

parity of the oriented degree of a proper Fredholm map f: M _, E 

of index 0 is defined and invariant under proper Ji'redholm 

homotopies, It is easy to see that this invariant is precisely 

the degree mod 2 of f as defined by Smale, [7], 
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Given f; M _, E as above we next turn to the computation 

of deg f by homological methods, But first we need a corollary 

of a result of Elworthy and Tromba, \/e briefly indicate the 

proof. 

4,1 Lemma. Let 

transverse to En c E . 

f: M _, B be a Fredholm map of index 0 , 

If f is orientable, so is !if"' f- 1En 

Mn is an n-dimensional regular submanifold of !11 

with a normal bundle Vlhich can be realized as a tubula:rneigh

bourhood in M , This implies that !lin can be covered by local 

coordinate neighbourhoods of !VI (trivial parts of the tubular 

neighbourhood), each of which is nicely diffeomorphic to open 

product sets Un X U1 in E In these trivializations the 

local images of n 
M are the slices un x 0 , and the local re-

presentatives of f take the form 

(x,y) _, (x• (x,y), :l'' (y)) 

v1here y'; E' _, E• is a linear operator on a complement of En 

The reader may check that these trivializations restrict to an 

orientable atlas on Mn , 

Remark, An actual orientation of of on M restricts 

to an orientation on Mn , such that if 'P' . i ' ~·· are restricJ 
tions of charts :pi' ~oj 

only if 

on IV! to 

d((pjtpi -1) 

!.ln , then d ( (jl •. cp •. - 1) is in 
J l 

if and is in 

tials taken at any point in the domain of 

SL
0

(E) , the differen

-1 co'. w'. 
'J'l 

Remark, The considerations above hold under more general 

circumstances. In particular we later use the simple generali-
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sation of lemma 4.1 where E is replJced ty .Jn open subset N c I~. 

Again consider an orientable proper Fredholm map f: M _, B 

which is transversal to En c E 
' 

with Mn and fn: Mn ~ En 

above. Let y E En be a regular value for fn Then y is 

a regular value for f and r1 (yl = (fn)-1 (yl • Choose an 

orientation for M (with respect to of)' Then Mn inherits 

an orientation, and sgn dfn = sgn df 
X X 

for all s ( r
1 £ 1 Y. ' 

the first remark above. Thus deg f = deg fn . However, deg 

can be computed by well knovm homological methods: Let 

yn E Hn(En) be a generator (Cech cohomology with compact supc 

ports, coefficients Z). Then deg f is up to sign the value 

on yn of the composite homomorphism 
n·x· 

Hn(En) £_> HnO~n) ~ H (mn) ..E;_> :E 
c c 0 

as 

by 

fn 

In particular we can choose yn such that the homological degree 

comes out with the right sign, 

If Em c En are two finite dimensional subspaces of E to 

which f is transverse vre get a diagram 

;' t ,. 'I II 

m·:' 
Hm(Em) L> Hm(iV!m) ;' H (Mm) ·--·> LZ c c 0 

where is the suspension or the Thorn isomer-

phism of the normal bundle of in and Hm( Mm) - Hn(Mn) c c . 

is the composite of the Thorn isomorphism - Hn(Un) and 
c 

the transfer un being an open tubular 

neighbourhood of in n L1 • 'l'his diagram commutes when 

Hm(Em) - Hn(En) is the particular Thorn map which sends ym 
0 c 

to yn 
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Similarly, if f is transversal to an ascending se~uence 

(En) in E we get an infinite commutative ladder of groups and 

homomorphisms, each stage of which computes the degree of f 

Suppose next that in fact a countable collection (En} is 

picked out at random in E and that f is not necessarily 

transversal to (En} Let (En} be a se~uence of complements 

in E to the members of (En} such that we have short exact 

se~uences 

0 

The composites 

f 
M -· E 

;h 
~ 

;6 
E ~ E 

n 

E n 

--· 0 

are a-proper Fredholm maps. Therefore their regular value sets 

vn are residual by the Sard-Smale theorem, It follows that the 

sets .-1 
Jn vn are residual, and therefore so is their intersection 

v• • If y E v• then 

and so the origin o E 

jn(y) is a regular value 

E n is a regular value of 

of jn of 

jn o (f-y) 

Then the translate f- y is transverse to En for all n . 

' 

Hence f- ty is a smooth compact finite-dimensional homotopy 

from f to g = f -y with g 6 (En} • In particular deg f 

= deg g Now define Mn = g-1Ip for n = 1,2, ... , and we 

may apply the discussion above with n g,g substituted for 

Observe also that we may choose 
F! 'I 

·:y. as small as we want, so 

that ''f- (f-ty)\! is small throughout the homotopy. 

Finally let V be a closed symmetric neighbourhood of the 

origin in E and f: (V,bdV) ~ (E,E-o) with f proper and 

bounded and Fredholm in V bdV Then f bdV is closed and 

hence bounded away 

/
round o 

open ball in F , 

from o E F • Therefore, if D 

M = f- 1D is an open subset in 

is a small 

V - bdV and 
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fD: M ~ D is a proper Fredholm map between oriented manifolds. 

Then the degree of fD is well defined and obviously independent 

of the particular choice of D . By definition this is the de

gree of f: (V, bdV) ~ (E,E-0) , If [En} is a flag in E , we 

may suppose that f is transversal to (IP} on the interior 

of- V , otherwise f can be deformed into such a map by a small 

compact homotopy (V,bdV) xI -• (E,E-0) , and it is easy to 

check that the degree stays fixed under such a deformation. 

According to our ealier set-up we can now get the degree homo-

logically from the composites 

On the other hand we have the commutative diagram (using earlier 

notations a-nd stting Bn = vn n bdV) 
n·"-

Hn(Dn) f Hn(Mn) H (!Vln) ~ = ~ :% c c 0 

~ ' !! = •I; 'it "! ,, 

Hn(En) Hn(Vn-Bn) ~ H (Vn-Bn) :% = ~ 

c c 0 

~ ' ~ 

'! II = = ~/ "! 

Thus we ma;)' equally well compute the degree from the composite 

map 

5. Degree and cohomology_coindex, We relate the degree to 

the cohomology coindex for finite dimensional spaces, Through

out this section coindex stands for the coindex based on the 

:% 2-characteristic cohomology map. By a manifold here and in 

the sequal we mean a separable metrizable space which carries a 



- 20 -

smooth manifold structure. Helative manifolds are similarly 

defined, 'l'h!.l extra topological condition is for convenience. 

It can be avoided, at least et the expence of introducing con

ditions on the maps occuring. 

First we make some general remarks. Consider again the 

space X with the fixed point free involution T and let 

p: X ... XT "' X/T be the covering map defined by T , Associated 

to this double covering is a local system of groups on XT: the 

stalk at any point x• EXT is ~ , and the action of n(XT,x') 

on Z is given by the representation n(XT,x•) ... Aut (?l) == !IZ 2 

which is simply the canonical projection 

This is the local orientation system of the covering X ... XT , 

We shall denote it ~T • Observe that the pull-back of ZT to 

X is the trivial system Z (up to equivalence), 

If XT is path connected, there can be at most two non

equivalent local sys terns with stalk 7l on XT , I·~ follows that 

(in any case) local systems with stalk 7l are self dual under 

the tensor pairing: tensor product of a local system with itself 

yields the trivial local system, Now introduce the notatic.< 

G1 = G3 = G5 "' ••• = ~ 

G;2 = G 4 = G6 = ••• "'ZZT 

Then Gn is a local system on x,r for n > 1 and ?lT 0 0n = 

Gn+1 for all n • Next 

antipodal action, then 

system for the manifold 

p. 357) 

observe that if X is sn with the 

Gn is precisely the local orientation 

X = l'n T - for every n ( c f. r 8 J 6A3 on 
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so that and by Poincare 

duality Furthermore there is the following exact portion 

of the Smith-Gysin sequence (with coefficients Gn ) of the 

double covering p: Sn ~ pn 

0 -> 0 • 

Therefore p-* is always multiplication by 2 

5, 1 Theorem. Let M be a compact orientable manifold 

of dimension n with a fixed point free involution T and 

cp: M -• sn an equivariant map of odd degree. Then coind !VI = n • 

Proof. Let lilT be the quotient manifold lil/T , There 

is a commutative square 

Let y E Hn(Pn;Gn) and g E Hn(Sn;:;<:;) be generators such that 

p-::-y = 2g and let c = CJlT-:ty • Choose an orientation of !i[ and 

let [!vi] E Hn (IV! ;IZ) be the corresponding fundamental homology 

class, Then cp_/M] is an odd multiple of g~_ E Hn(Sn;:¥1) (the 
e dual ge~ator of g ) since the degree of cp is odd 

and 

1) If Y is a path connected space, G a local system on Y with 

stalk ~ , and a: n(Y,y) ~ Aut (~) the action of n(Y,y) on ~ 

at a point y, then H
0

(Y;G) ;' Ql-j(g-a(x)g) , g E 4f, x E rr(Y,y). 
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<p*c, [!II]> = <cp-:'p"y, [MJ> 

= <p~-y ,cp,~_[M]> 

If MT is any 

by Poincare duality 

system of lilrb and 

tion system of M' T 

= <2g' ( 2k+ 1 )g_~_> 

= 2(2k+1) 

component of T;IT 

Hn(M' ·G ) T' n ~2Z 

Hn(M' ·G ) T' n "' 2Z 2 

In the latter 

' 
let M' = -1M, p T Again 

if Gn is the orientation 

if G is n not the orienta-

case (p!M') *c = 0 since 

elM' is of finite order. Hence there must exist components 
I T 

Iv!T for which Gn is the orienta.tion system. For such a com-

ponent the map p~-: Hn(IVIT;Gn) _, Hn(ii'I' ;~) sends a generator to a 

class whose value on 'M'l is ±2 • Therefore 

ciMT"' 0 (mod 2) 

if and only if 

~c 

<p (cjMT),[M•]> ~ 0 (mod 4) 

Since <p*c,[M]> = I:<p-*(c !Iii') fM' ]> the sum ·'l',_ 9 l:<p*(c!MT),[M')> 

is not zero mod 4 Therefore, for some component MT 

elM• , T ;£ 0 (mod 2) Hence 
0 ' 0 (mod 2) . Finally, if 

1 
CT E H (MT;~2) is the characteristic class of the covering 

hence c~ -J 0 It follows that coind !1 > n • This completes 

the proof of the theorem. 

5.2 Corollary. Let (X,A) be a compact orientable 

smooth relative manifold of dimension n with a smooth involu

tion 2 ) which is fixed point free on A • Let 

2) Mapping A to A , of course • 
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cp: (X,A) __, (llln ,JR1n-o) be an eq_uivariant map of odd degree with 

respect to the origin n o E lR1 • 

-1 ' 1 Let K = ~ ,O • 

Then coind A = n - 1 • 

Then K contains the fixed 

points under the involution and K is bounded away from A • 

By the continuity property there is a closed invariant neighbour-

hood U of A disjoint from K such that coind U = coind A • 

Let Y = X - K and Y - Y/'_1' T - AT = A/T , where T is the in-

volution. Then (YT,AT) is a smooth relative manifold and 

UT = U/T is a closed neighbourhood of AT • r,et NT c YT be 

ann-dimensional manifold with boundary oNT = i'IIT such that 

and c 

tained in Let Ill be the lift of lil T to Y c X , 

is con-

Then 

Iii is a compact orientable manifold of dimension n - 1 contained 

in U and so T is fixed point free on M • Consider the eq_ui-

variant map 

cp n 
~ IR-o _, 

The degree of this map is clearly equal to the degree 

with respect to the origin of cp: (X,A) __, (ffin ,JR1n-o) ' 

hence it is odd. 1/ow apply theorem 5.1 to get coind M = n-1 

Since M c U , coind M < coind U = coind A 

But clearly also coind A < coind ffin -0 = n- 1 

the proof of the corollary. 

Thus coind A> n- 1 • 

This completes 

6. ~uiv~riant transversali~X.· In this section we prove a 

transversality theorem for eq_uivariant map. 

A manifold V is said to be smo<2_thly normal if given dis

joint closed sets A,B c V there is a smooth function 'n: V __, liR 

such that: 
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( 1 ) n(x) E I for all X E v 

(2) 'r)(X) = 0 for X E A 

(3) 1J(X) "' 1 for X E B 

(4) 'l')(X) "' 0 implies all partial derivatives of all 

orders of 11 vanish at X • 

Any manifold modelled on a separable Banach space with smooth 

partitions of unity is smoothly normal, 

We first prove the following local result, 

6,1 Lemma, Let V be a smoothly normal manifold with 

closed subsets A,B • Let E be a Banach space and (En} a court

table 3) collection of fini·te dimensional subspaces, and 

let c:p: V ... E be a Fredholm map which is transversal to (En} 

on some neighbourhood of A , . Given e > 0 and a closed neig4-

bourhood NB of B there is a smooth homotopy 

H: V X I ... E 

such that 

( 1 ) H(x, 0) = cp(x) for X E v • 

(2) 1/H(x,t) - cp(x)ll < e for all X E V , t E I • 

(3) There is a one-dimensional space E1 c E such that 

H(x,t) - rp(x) E E1 for all X E v 
' 

t E I , 

(4) There is a neighbourhood NA of A such that 

H(x,t) = ;:p(x) for X E NA ' t E I • 

3) The cases of principal interest are. v1hcn (En) is a finite 

collection (e.g, with one member) or a flag, 
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H(x,t) = rp(x) for x E V- NB , 

H(.,1) is transversal to (Fn} 

bourhood of B , 

t E I , 

on some neigh-

Proof, I,et U be an open neighbourhood of A such that 
and let M be a closed nei_illlborhood of B contained in intl:S 

is transversal to {En} on U,/. Then AIJ(V-intNB) is a . 

closed set disjoint from the closed set M - U , r,et N be a 

closed neighbourhood of AU(V-intHB) disjojnt from M - u • 

Since v is smoothly normal there j_s a smooth map n: v ... m 
such that 

( 1) T)(X) E I for all X E v • 

(2) n(x) = 0 for x E N • 

0) 'IJ(X) = 1 for xEM-U 

(4) T}(X) = 0 implies all partial derivatives of 11 

vanish at X ' 

Then -2-: (V-n-1(0)) ... E. is a Fredholm map so that, by 
en [7,theorem 1,3) 

Smale's theoremj,there is y E F with IIYII < 1 such that 

: 11 + y is transversal to (En} on V- 1l-1(0) Then 

H(x,t) = ~(x) + t eT)(x)y 

is a homotopy satisfying (1), (2), (3) trivially, For (4) we 

observe that N will do as NA in (4). For (5) we have that 

N :;) (V-intNB) :::> V- NB so H(x, t) = cp(x) for x E V-N_s, For 

(6) we have that H(.,1) = ~ + eny is transversal to (En} on 

V- ,-1(0) , Also it is transversal to (~} on Unn- 1(0), Silica 

Mfl1J- 1(0) c un TJ- 1(0), it follows that H(•,1) is transversal 

and this is a neighbourhood of B , Hence, 
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(6) holds and the proof is complete, 

Now we prove the following global result, 

6.2 Th~J>~· Let T be an j.nvolution on a smoothly 

normal manifold X and let K be the set of fixed points of ~e, 

a countable c:>llection of finite L t "' b B h spaancde/(E·n} e · ~ e a anac 

dimensional subspaces, and suppose ~: X ~ E is an equi-

variant Fredholm map which is transversal to (En} on a neigh

bourhood of K • Then there is a smooth homotopy 

H: X x I - E 

such that: 

( 1 ) For any t E I , H(•,t): X - E is an equivariant 

Fredholm map. 

(2) There is a compact subset c c: B such that 

H(x,t) - cp(x) E C for all x E X 
' t E I • 

(3) There is a neighbourhood N of K such that 

H(x,t) "'<p(x) for x E N t E I • 

(4) H( • , 1) is transversal to (En) on all of X • 

Proof, Let \7 be a neighbourhood o.f K on which cp 113 

tranuverse regular to {En} and choose a neighbourhood w• of 

K with W' c VI , Let (Ui,Vi} be a countable collection of 

open subsets of X such that: 

(a) 

(b) 

UTu. = X-K 
l 

is disjoint from TV. :1. 
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By induction on i we construct a sequence of homotopies 

Hi~ X X I ..., F for i = 1 ? 2 ? ••• such that: 

(d) H1(.,0) = qJ 

(e) Hi+1(•,0) = H.(.,1) 
J. 

for i > 1 

(f) There is element E F VIi th !! !I < 1 such an yi ,;yi" 2i 
that Hi(x,t) - Hi(x,O) is in the closed interval 

joining -yi to yi 

(g) Hi(.,t): X ..., F is an equivariant map • 

(h) Hi(x,t) = Hi(x,O) on some neighbourhood of 

'i.W•- K] I I u1 u . .. u u. 1 ]_-
u TiJ1 u .•• IJ TiJ. 1 ]_-

(i) Hi(.,1) is transversal to [Fn} on some neighbour

hood of Ui U TiJi • 

Assuming H. 
J 

defined for 

~0. 1 = H. 1(.,1) (or 'Po = qJ 
]_- ]_-

transversal to [Fn) on some 

[\!•- K] U U1 u ••• U Ui_ 1 IJ TU1 

j < i where 

in case i = 

neighbourhood 

LJ,,,U TiJ. 1 , 
]_-

i > 1 let 

1). Then cp. 1 is 
]_-

of 

Let 

Ai = (CW•- KJ uU1u •.• uui_ 1 ) n vi and Applying the 

local lemma 6,1 to cpi_ 1 ;vi with Ai,Bi closed sets in Vi 

Bi VIi th 1 and with NB. closed neighbourhood of E: = 2i 
any 

]_ 

contained in v. 
]_ 

we obtain a homotopy 

Ji~ v. 
]_ 

X I ..., F 

such that: 

( j) Ji(x,O) = tpi-1 (x) for X E vi 

(h) There is E F with II II 1 such that yi < --~~Yi.i 2i 
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(1) J.(x,t) = cpi-1(x) in 
l 

some neighbourhood of A. 
l 

(m) Ji (x, t) = cpi-1 (x) for X E v. - Nn. l l 

(n) Ji(·,1) is transversal to 'Fn1 
l ' on Bi . 

Define J I • TV i X I _, I•' so that J:l_(x,t) = Ji(Tx,t) i' 

By (m) we can extend Ji and J! 
l 

to a homotopy 

Hi: X X I _, F 

such that Hi;vi xI= Ji, ni;'rVixi = J:l_, and I\(x,t) = cpi_ 1(x) 

for x E X - (V.UTV.) Then Hl. has the properties (d)- (i) 
l l 

inclusive. 

VIi th the Hi defined we define H: X x I ~ F by the 

formula 

t-( 1-.:l-) 
H(x, t) = Hi (x, 

1 
-}-) 

I -i+1 

H(x,1) = Hi(x,1) , 

1 -l.~,-~"<1 1 
l ":: v - i+1 

Then H has properties (1) and (4). It also has property (3) 

because H(x,t) = cp(x) for x E \1' , t E I • To show H has 

property (2) let C be the set of sums of [-y1,y1J + C-y2 ,y2 J+ ... 

This is compact because !I Y. 'I 
' l' 

Then 

H(x,t) - cp(x) E C for all x E X , t E I , 

completing the proof. 

7. Global coindex of a Fredholm map. VIe assume E is a 

separable Banach space admitting smooth partitions of unity 

and coindex is the coindex based on ~ 2-characteristio cohomo

logy class, 
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7.1 Theorem. Let V be a closed symmetric neighbour-

hood of the origin in E and qJ: (V,bdV) ~ (E,E-o) a proper 

equivariant Fredholm map of Fredholm index 0 Suppose (fl is 

bounded and orientable of odd degree relative to the origin. 

Then 

coind qJ;bdV - -1 . 

Proof. 
--~ 

First observe that since qJbdV c E- 0 , it follows 

that coind qJibdV ~ -1 , Thus it suffices to verify the opposite 

inequality. Next, since (fl is Fredholm of index 0 at the 

origin, there is a finite dimensional map ·1•: V ~ E with support 

in int V such that qJ + 'Y is a local diffeqmorphism around the 

origin besides being proper equivariant and Fredholm of index 0 

(cf, first part of the proof of theorem 3.1). Since the degree 

only depends on the values of the map at bdV , (fl + ~ also has 

odd degree with respect ot the origin in E , and 

since the coindex is invariant under finite dimensional perturba-

tions, coind ( q>+•'•) I bdV = coind c,o: bdV • Thus we may as well 

work with (fl + li ' or what comes to the same 
' 

we may as well 

assume that cp is a local diffeomorphism at the origin. 

Next let (En) be a flag in E 'j Since (fl is a local 

diffeomorphism, 'Jl is transversal to pPJ in a neighbourhood 

around the origin in E • By theorem 6,2 there is a map 

cp': (V,bdV) ~ (E,E-o) smooth on int V and transversal to (En}, 

which is homotopic to qJ through smooth equivariant compact 

perturbations of Q • In partj_cular cp' is proper orientable 

equivariant and Fredholm of index 0 and has odd 

degree , Moreover, by corollary 2,3 
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coind <p':bdV = coind cpjbdV, Again we may as well continue with 

tp' instead of <p , or equivalently, we may suppose that cp is 

transversal to (En) on int V • Next, let vn = cp- 1Fn , 

Bn = bdV n vn • Then the (Vn,Bn) are coherently orientable 

compact invariant relative manifolds of dimension n ; compact 

since the •vn vn -• Fn Cj) I : are both proper and bounded and coher-

ently orientable by the remark following lemma 4.1. At this 

point we shall use the fact that both the degree and the coindex 

are computable by means of the flag [En1 , i.e. in terms of the 

filtration [Vn,Bnl on V,bdV For the degree this means the 

following: There is a commutative diagram 

Hn+1(En+1 ,En+1_0 ) cp* Hn+1 (Vl1+1 ,Bn+1) ~ H (vn+1_Bn+1) ~~ ~ = 0 

1' ~ '1\ . ~ 
hd • I = ' 

Hn(En,En-0) 
cp•* 

Hn(vn,Bn) ~ H (Vn-Bn) ~~ ~ = 0 

where the two first vertical maps are transfers induced by the 

respective normal structures, and the third vertical map is in-

duced by the inclusion. 'rhe lmspecified horizontal maps are 

duality isomorphisms and augmentations, Thus the unique gene

rators of the groups Hn(En,En-0) are all mapped to the same 

element of Z by the composite horizontal maps. This element 

is the degree of <:p with respect to o C: E ( cf, section 4). 

By assumption it is odd, Similarly coind ';l; bdV is computable 

in terms of the filtration coind cpjbdV > -1 iff 

coind Bn > n-1 for all n (cf, theorem 2,4). 

The result now follows from corollary 5,2 which applies to 

the relative manifold (Vn,Bn) • 
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Remark. -·--- According to Elvrorthy and Tromba [ ] the map cp 

is always orientable and of odd degree if KO(V) is the trivial 

group, e.g. if V is contractible, 

The proof of theorem 7.1 applies without change 

to the more general case where (V,bdV) is replaced by a rela

tive manifold (X,A) with involution modelled on a smooth 

Banach space E , except for the first part where cp has to be 

modified (smoothly, equivariantly, •••) so as to be transversal 

to the flag [En] on a neighbourhood of the fixed point set C 

Since C must be compact, this can probably always be done, 
fully 

The proof7covers the case where C is empty or contains one 

point. 
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