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Introduction, Let E be a Banach space and K : E ~ E a 

completely continuous map (i,e, such that the image of a bounded 

set has compact closure), Assume that K is odd (but not neces­

sarily linear) and let Ar be the set of solutions of the equa-

tion x 

origin, 

+ K(x) = 0 at the sphere Sr of 
[4, 1'heorem 10, 

By a theorem of Granas /, if I + 

radius 
J?.45J 
K maps 

r from the 

Sr to a pro-

per subspace of E , then Ar is non-empty, The purpose of 

this article i-s to initiate a closet· study of the solution set 

Ar in a more general context. Thus, let X be a paracompact 

Hausdorff space with a fixed point free involutiqn T , and let 

cp: X ... E be a proper equivariant map, Vfe define a numeric. 1
. 

invariant called the coindex of cp and estimate the size o:· 
A( f) "' {x E Xlf(Tx) = f(x)} in terms of this invariant, whuc 

·. 
f : X ... E is any compact perturbation of ~ • The methods we 

use arc based on those of Com1er and Floyd [1], (2), suitably 

extended to the infinite dimensional situation, As in ~1] the 

method often covers the more general case where T is replaced 

by a finite group of homeomorphisms actine freely on X , 

The actual computation of coj.nd cy requires in practice 
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considerable regularity of the map cp • One case which seems 

more tractable than others is where X is a differentiable 

manifold modelled on a Banach space and cp is a Fredholm map. 

This case gains considerable importance i.n view of recent deve­

lopment, see e.g. [3]. The most interesti.ng example to have i.n 

mind is perhaps the one where cp is derived from a non-linear 

partial differential operator on a bounded region in Rn , see 

again '3]. 

In section 1 we summerize standard properties of the 

coindex of a space with involution and in section 2 we define 

the coindex of an equivariant map from a space with involution 

to a Banach space. In section 3 there is a local computation 

of the coindex of a Fredholm map. Section 4 deals with the 

degree of a map from one Banach mcni.fold to another and section 5 

relates the degree to the coindex, Section 6 establishes equi-

variant transversality which is used in section 7 where the 

global result on the coindex of a Fredholm map is proved, 

1. Co index of a space wi. th_ invoJ.ll_iJ:.£11:, Let X be a para-

compact Hausdorff space and T : X -• X a fixed point free invo­

lution on X , Then X~ X/T is a double covering with a charac­

teristic class c E H1 (X/T) (Oech cohomology, coefficients B2 ), 

Define the coindex of (X,T) to be the largest non-vanishing 

power of c ; by abuse of notation 

coind X = sup[n;cn I 0} 

In the notation of Conner and Flo;yd ~ ] the coindex map is 

written co-in~ X , and the authors observe that it has the 
2 

following properties: 
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1,1 (Conner-Floyd) The coindex map assigns to each paracom-

pact Hausdorff space X with a fixed point free involution a 

non-negative integer or x, , such that 

(Functoriality) 

(Additivity) 

(Continuity) 

(Dimensionality) 

and such that 

(Stability) 

If f: X ~ Y is an equivariant map between 

spaces with involutions, then coind X < co:ind Y. 

If A,B are closed invariant subsets of X 

and X = A U B , then 

coind X < coind A + coind B + 1 . 

If A is a closed invariant subset of S 

then coind A = coind U for some closed 

invariant neighbourhood U of A 

coind Sn = n , n = 0,1, ... 

If X is compact, then coind SX = ooind X+ 1 . 

Here SX means the suspension of X equipped with the fixed 

point free involution (x,t) _, (T(x),1-t) It is an easy 

consequence of the additivity property that quite generally 

coind SX < coind X + 1 • 

The properties listed in 1,1 do not characterize the 

coindex map. In fact a coindex based on the characteristic 

class with twisted integral coefficients (instead of ~ 2-coeffi­

cients) satisfies 1. 1 as vrell. And if L is any principal 

ideal domain, there is a coindex map based on the characteristic 

class with twisted L-coefficients, having the properties 1,1 

with the possible exception of the stability property, We refer 

to [1] for the details. Until further notice coind will 
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stand for any map satisfying 1,1 except for the stability pro-

perty. For convenience we also add the definition coind 0 = -1, 

and observe that then 1.1 remains true also in the cases where 

any of the spaces occurring are empty provided S0 is inter­

preted as S0 
• A coindex map is ~t~ble if it has the stability 

property. For an example of a non-stable coindex map of a some-

what different character than those already mentioned, let 

coind X be the smallest integer n such that there is an equi-

. t X Sn • . e " varlan map ~ , see agaln _ '. 

The following result in a somev1hat different setting is 

due to Yang [9]: 

1.2 (Yang) Let f ·. X -· Rn b d l t - e any map an e A(f) c X be 

the set of points x such that f(x) = f(Tx) Then A(f) is 

a closed invariant subset of X and 

coind A( f) > coind X- n 

Proof. Form the map <p = f - f o T : X ~ Rn . Then cp is 

equivariant (with respect to the standard involution in Rn) and 

A(c;>) = A(f) Thus we may as well assume f equivariant. Let 

U be a closed invariant neighbourhood of A(f) such that 

coind U = coind A (the continuity property) and V a closed 

invariant neighbourhood of U such that coind V = coind U . 
0 

Then X-U and V are closed invariant subsets covering X 
0 

and so coind X _:: coind (X - U) + coind V + 1 , by addi ti vi ty. On 

the other hand, existence of an equivariant map 

0 

X-U 
f n 

R - o 

0 

shows that coind (X - U) < n - 1 • Thus coind X < n- 1 + co:indA(f) + 1 • 
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2, Coindex of an equivari~t m~. In the sequel E denotes 

a Banach space with its standard involution (one fixed point, 

the origin). If cp: X ~ E is any ec:tuivariant map, we define 

the ~ndex of ~ by coind ~ ~ p if for any sufficiently 

-1 

large 

finite dimensional subspace F c E coind ~ F ~ p + dim F 

As an example consider the case where X= S , the unit 

sphere in E , and ~ is the inclusion s cE • Then for any 

finite dimensional F cE -1 
~:) F is the tmit sphere in p and 

so coind ~0 
-1F > dim p- 1 - It follOVIS that coind ql = -1 • 

Similarly, or cp is the constant map to the origin, then the 

co index of ~ is X ; and if X = SF ' 
the unit sphere in a 

finite dimensional subspace F c E and ~ is the inclusion 

sP c E , then the co index of :p is X - . Thus the co index of 

a map takes values in the range of all integers with the two 

extremes - x and x included, 

A map K X ~ E is com£act (or finite dimensional) if 

im K lies in a compact (or finite dimensional) subset of E 

A map f: X ~ E is a compact perturbation (or finite dimensional 

~rturbation) of ~ if f = ~ + K for some compact (or finite 

dimensional) map K : X ~ E . 

Remark. A compact perturbation of a proper map is proper. 

Our first result is an extension of Yang's theorem 1.2. 

2,1 Theorem. Let ~: X ~ E be a proper equivariant map 

and f: X ~ E a compact perturbation of ~ • If im f lies in 

a k-codimensional subspace of E , then 

coind A( f) > coind ~ + lc • 
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Let E k c E be a k-codimensional subspace con-

f and let Ek cE be some complement, Let K be 

map f-cp and assume first that K is finite dim en-

that im K c Em for some m-dimensional subspace 

Finally let En be any finite dimensional sub;>pace 
1 n ii· 

Em + Ek Then cp- E /into En n Ek • Let 

restricted map, Then, by theorem 1,2 

coind A(fn) > coind 

be the 

-1En 
(j) ' - (n-k) , since clearly dim En 

-1En 

n E k 

= n- k • Since for sufficiently large coind cp - n do-

ruinates coind cp , we get coind A(fn) .:::, coind cp + k However, 

This proves the theorem in the case where K is finite dimen-

sional, 

In the case of a general compact map K let U be a 

closed invariant neighbourhood of A(f) such that coind U = 

coind A(f) Suppose there is a finite dimensional compact map 

K': X~ E such that im f' c Ek and A(f') c U, f' = cp+K' 

Since the inclusion map A(f•) c U is eQuivariant, we get 

coind A(f) = coind U.::: coind A(f').::: coind cp +k, the last in­

equality by the first part of the proof, Vie now show that there 

are such maps K' • 

First observe that given U ~ A(f) as above there is an 

e > 0 such that ljf(y) - f(Ty) 11 .<. e implies y E U In fact, 

otherwise we could pick out a sequence of points yi E X-U 

with "f( .) - f ( Ty. ) !J < 1 However, the f-f T 2cp +(K-K T) . yl I map = l -
is a compact perturbation of a proper map and therefore proper. 

Therefore (y. 1 would contain a subsequence converging to some 
l 

point y
0 

E X - A(f) ; which is impossible since by continuity 

f(y
0

) - f(Ty
0

) should equal 0 , 

is a closed invariant subspace of X , and f maps -1En cp . 
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Next, let n: E ~ E be the projection of E to Ek with 

kernel Ek 

im f c E k 

mat ion to 

f1 = <:p + K I 

K 

Then n o f = n o cp - n o K is the zero map, since 

Let K
0 

be a compact finite dimensional 1\-approxi­

(cf. [6]), and form K1 = K5 + n oK- n oK, and 

Then K' is a finite dimensional compact map, and 

n 0 f' is zero so that im f 1 c E 
k 

Now, K - K 1 = ( 1-n) ( K-K, ) 
~ 

Therefore, 1!K(x) - K 1 ( x) 1!, _<: '! 1 n :> 
-- " - ,j 

o and so !!f(x) - f' (x)!: < 

!!1-n:: .6 forall xEX. Suppose yEA(f') Then 

'!f(y) - f(Ty)'! = /!f(y) - f 1 (y) - f(Ty) + f' (Ty)g< '\f(y) - f' (y);j t 

:!f(Ty) ( ., " - f' Ty); < 2:1 - 1T ·: • 0 Hence, for o sufficiently 

small '!f(y) - f(Ty)'; _:; e and so y E U , i,e, A(f') c U, 

This completes the proof of Theorem 2,1, 

In particular, if we apply Theorem 2,1 to the case where 

X is S and cp is the inclusion i: S c E , we find that for 

any compact map K: S ~ E such that x + K(x) lies in Ek 

(some k-codimensional subspace of E) coind A(i+K) > k -1 

This, of course, implies that cov, dim A( i+K) > k- 1 , which 

is a slightly refined version of the Granas-Borsuk-Ulam theorem, 

cf. rl--1] • 

The first part of the proof shows that if 

cp: X ~ E is any equivariant map (not necessarily proper) then 

the conclusion of 'l'heorem 2, 1 remains true provided f is a 

finite dimensional (not necessarily compact) perturbation of cp , 

A map cp: X ~ E is finitely bounded if for every finite 

d . . l b F E - 1F . b d d lmenslona su space c ' , rp , cp ' lS oun e , 

Remark. If cp is proper and finitely bounded, then 

ro-1 F . ~ lS compact when F is finite dimensional, Therefore, if 
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n: E ~ E is a linear map with finite dimensional kernel, n .,. cp 

is again proper and finitely bounded. Any compact perturbation 

of a finitely bounded map is finitely bounded. 

As an application of theorem 2,1 we give: 

2,2 Theorem. Let cp: X ~ E be any equivariant UJap. 

Then the following are equivalent: 

( 1 ) coind cp ;:: p 

(2) For every finite dimensional subspace F of E 

coind -1 cp F .::: p + dim Ji' 

Moreover, if cp is proper and finitely bounded, then (1) and 

(2) are each equivalent to 

(3) For every finite dimensional subspace F of E and 

every compact equivariant perturbation f of cp 

coind f- 1F ;:: p + dim F . 

;proof, We first show that (1) implies (2). Thus, let 

F c E be an arbitrary finite dimensional subspace and F' ~ F 

a finite dimensional subspace such that coind cp- 1F• ;:: p + dim F• 

Let n: F' ~F" be an epimorphism v1ith kernel F. Then, b;T 1.2 

coind A(n • cp:cp- 1F•) coind -1 dim F" > cp F' -

> p + dim F' - dim F" 

= p + dim F • 

h f ( ' -1 ) T e conclusion now follows rom the fact that A n o cp; cp F' 

equals -1 
qJ F • 



- 9 -

Next we assume that cp is proper and finitely bounded and 

show that (2) implies (3), Thus, let F c E be arbitrary finite 

dimensional and f equivariant and compactly related to cp 

(i.e. such that f-cp is a compact map), Let n: E ~ E be a 

pro jeotion with kernel F so that A( n o f) = f- 1 F Since 

ker n is finite dimensional, n o cp is again proper and n " f 

is a compact perturbation of no cp • Therefore, since im no f 

lies in a subspace of E of oodimension equal dim F , by theo­

rem 2 

ooind A( n" f) 2:_ ooind n 1:> cp + dim F , 

Since Tioql differs from cp by a finite dimensional map 

ooind n c ::;:: = ooind cp > p and so 

ooind r 1F > p + dim F -

The implications (3) ~ (2) ~ (1) are trivial, 

It follows from the definition tha,t the ooindex of a map is 

invariant under finite dimensional equivariant perturbations. 

For proper finitely bounded maps it is invariant under compact 

perturbations in virtue of theorem 2,2 so we have the following 

corollary. 

:? • 3. Corollar_y:, If cp is proper and finitely bounded 

and f is a compact equivariant perturbation of cp , then 

ooind f = ooind ;:p , 

Yle now show that the coindex can be computed by flags in 

reasonable oases. Let <>J be a directed family of finite dimen-

7 sional subspaoes of E and ~ the family of all subspaces of 
-1\ 

E contained in some member of 4 , 'l'hen it is likewise a 
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directed family of finite dimensional subspaces, Associated to 

4 there is the notion of the co index of cp with reSJ2eCt to 

<if, based on either of the two equivalent properties: 

a) For any sufficiently large F E4 coind -1F cp • .:::: p + dim F 

b) For any F Ei . d - 1F COln cp 1 > -o ·- . + dim F • 

The fact that these are equivalent follows from the first part 

of the proof of theorem 2,2, with F,F 1 required to be in 4, 
Denote the co index of 'fl with respact to 4 by coind 4- cp Then 

the following is true 

c) coind ~- rp = coind ~' cp 

Proof. Obviously coind /.\ cp :5. coind _; cp 
~ 11/ 

To verify the opposite inequality let p be any integer 

• 

not exceeding coind <}- cp • (If coind cp= - x. 

-·1 

there is nothing to 

show.) We have to check that coind cp F;::: p +dim F for all 

F E q; But any 
;) 

F E '!f' is contained in some F 1 E for 

-1 t which coind cp F 1 ;::: p + dim P 1 
, Again the first part of he 

proof of theorem 2,2 gives the dGsired inGquality. 

A flag of, = (En} in E is a sequence E1 c E2 c ••• of 

subspaces such that dim En n anc1 UIP is dense in E 1 ) 
= • 

2.4 Theorem, Let cp: X ~ l!i be a proper and bounded 

equivariant map and 

Then coind cp = coind /. cp , 
<iJ· 

-----~--

a flag in 

1) Thus for E to admit flags it must be separable hence 

second countable. 
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Proof, Clearly coind cp :": coind ~ cp = coind ~ ~ • VIe show 

is not - x , let p be that coind~~ < coind ~ • 

any integer not exceeding 

If coind~cp 

coind4 c.0 • Suppose there is a finite 

dimensional subspace F
0 

c E such that coind 

Let 

that 

U c X be a closed invariant neighbourhood 

coind U = coind cp- 1F
0 

• Then cp(X-intU) 

-1 
cp Fo < P + dim F

0
• 

such -1 of cp F 

and F 
0 

0 

are 

disjoint closed sets in E and cp(X-intU) is bounded. Hence 

there is a distance > e > 0 between F
0 

and (Jl(X-intU) Lot 

r > 0 be a bound for ~ so that ~X c B(r) (the ball of ra­

dius r ). By the definition of a flag there is a finite dimen-
A 

sional space F 1 E 1 with dim F 1 = dim F 
0 

such that any ele-

ment in F 1 n B(r) is within distance < e of an element in 

F n B(r) 
0 

and conversely. Then Otherwise 

F1 n cp(X-intU) would be non-empty, which is impossible since 

y E F 1 n ~(X-intU) implies dist (y,F
0

) < E: as well as 

dist (y,F
0

) 

coinCJ. m-
1F 

y 0 

> E: • It follov/S that -1 coind ~ F1 < coind U = 

and so ' d -L 1' F d co1n cp ~· 1 - c1m •1 ~coin 
m-

1F - dim F < p 
y 0 0 -

which contradict the assumptions, -1 Hone o we must have co ind <p F
0 

> p + dim F
0 

Since F
0 

c E Y!as arbitrary finite dimensional, 

this implies coind ~P ;:: p , which again implies 

coind~/ ~ . 

coind ·o > ' --

3, Local co index of a FredJl.<2.l_nJ_ma1l.• Theorem 2.1 poses tho 

problem of computing the coindex of an equivariant map cp into 

E , In general this is a difficult taslc, since it requires con-

siderable knowledge about the filtration on X pulled baclc from 

E by :p , One case which seems more tractable than others, 

however, is where X is a differensiable manifold modelled on 

a Banach space and cp is a Fredholm map, cf, [3], A Fredholm 
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cp: X -• Y between Banach manifolds is 
has;: 

( dcp) x finite dimensional kernel and 

The index of cp is dim ker (dcp)x 

a smooth map such 

cokernel at every 

- dim coker (dcp)x 

which is independent of x for a connected manifold X 

We start by proving the following local result, which still 

is true for arbitrary coindex maps, 

.L.l_. Theorem. Let E, F be Banach spaces, D c E a 

symmetric open neighbourhood of the origin in E and cp: D ~ F 

an equivariant Fredholm map of Fredholm index q ~ 0 , Then for 

any sufficiently small ball B centered at the origin 

coind cpl~ - o)= q - 1 

For a stable coindex this is true also if q < 0 , 

Assume q = 0 and let L = ker dcp 
0 

and F0 = im dt;:> 

(the differential dcp taken at the origin in E ) , Also let 

Eo c E and Fo 

respectively. 

c F 

Then 

be complementary subspaces to E 
0 

dcp can be condidered a linear map 

li' 11 Eo ~ F ~0 0 
<t-. Fo ,, which is zero on }:; 

0 
and maps E0 isomorphi-

cally to Fo Let '!'· E 
0 0 " Fo -· ' be a linear map which 

maps E isomorphically 
0 

to F 
0 

and is zero on Eo • Form 

cp + ·'• D ~ F where 11' is just the restriction of '¥ to D • 'I ' ' 
Then cp + + is equivariant, and d(cp+::) = dcp + 'i' is an isomer-

phi sm. Hence 'P + ,j is a local equivariant diffeomorphism 

around the origin. Now, to compute the coindex of cp close to 

the origin, consider (B-o) n C?-
1 (F

0 
':' F'} for finite dimensioral 

and a small ball B around o E E , Then 

(cp+•v)- 1 (F ;:!l F'} and so cp + ~ establishes an equivariant 
0 

homeomorphism (B-o) n cp- 1 (:1!'
0 

. ., F'} ~ (c?+~)(B-o) n (F
0 

!'l F•) 
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It follows that these two sets have the same coindex, Further­

more, (~+$)(B) is a neighbourhood of the origin o E F and 

so contains a small ball B' , This gives equivariant inclusions 

(B'-o) n (Fo ":' F' ) c (~+*) (B-o) 'I (F ."!) ]' ' ) c F 1l F• - 0 show-
0 0 

ing that the cotndex of (cp+-'•) (D-o) r: (Fo ~ F') is precisely 

dim F 
0 

(i) F• - 1 • Therefore coind cp)- o > -1 • Since clearly 

-1 is the greatest lower bound for coind (B-o) n cp- 1 (F "D F} -
0 

dim F
0 

® F• as F' runs through the finite dimensional sub­

spaces of F0 
, the co index of (?: B - o is in fact precisely -1 

This proves the result in the case where q = 0 , If q > 0 , 

replace cp by the composite map 

i 

which is then Fredholm of index 0 Applying the special case 

just proved gives coind i o ~ i B - o = -1 for B a small ball. 

Thus, for sufficiently large F" = F' $ l!Rq c Fo :3:1 l!Rq 

coind (B-o) n (i o ~)- 1 (F
0 

1l F"} - dim Fo 1) F" equals -1 • But 

(i"~)- 1 (F 'f) F"} -1 ( 9 F • 1 It follows that = cp F 
0 ·0 ' 

coind (B-o) n -1 ( 
~ Fo 1:1 F'} - dim Fo .'£1 F' equals q - 1 for F' 

large, or equivalently that coind cpJB-o = q- 1 Finally sup-

pose that q < 0 In this case replace cp by the composite ma:p 

pr 
D X lRl.-q ~ D F 

which is then Fredholm of index 0 Again by the first part 

of the proof we find coind (B"-o) n (~ opr)- 1 (F
0 

11 F 1 } 

- dim F 11 F' = -1 where B" c D x lRl.-q is a small ball of the 
0 

form B x B' around o in D x m-q , Suspending 

(B-o) n cp- 1 (F 1l F']- q times we get 
0 

S-q(B-) n S-q~- 1 (F0 0F•1 c (B"-o) n (~opr)- 1 (F 0 r:tlF 1 1 ~ 

s-q(B-o) n s-q~- 1 (F0 11 F'} 
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where the maps are equivariant. Therefore, if the coindex map 

is stable, coind (B"-o) n (cp opr)- 1 [F
0 

® F'} = coind (B-o) n 

cp- 1 (F
0 

~ F•l- q or coind (B-o) n cp- 1 (F
0 
~ F•]- dim F

0 
® F' = 

q - 1 This again implies coind cp 1 B - o = q - 1 • 

In section 7 we give a considerable improvement of theo-

rem 3.1. However, in doing so it is necessary to restrict atten­

tion to cohomology coindices and smooth separable Banach spaces 

(i.e, eeparable Banach spaces with smooth partitions of unity). 

4. The degree of a map. We turn to the definition and pro-
' 

perties of the degree of a map, Since equivariance is irrele-

vant in this case, we may conveniently forget about the involu-

tion T on X For a more complete discussion we refer to [3]. 

Let L(E) be the Banach algebra of bounded linear operators 

on E and GL(E) the multiplicative subgroup of invertible 

elements, Let c(E) be the completely continuous operators and 

L
0

(E) and GL
0

(E) the subsets of L(E) and GL(E) ' 
respec-

tively, of operators of the form I + T 
' 

T E c(E) Then 

GL
0

(E) is a subgroup of GL(B) • It is known that GL
0

(E) has 

two components, We denote the component containing the identity 

SL
0

(E) and the other SL~(E) . Given a Banach manifold lii a 

a-structure on M is an admissible atlas (cpi' Ui l maximal vti th 

respect to the property: For any i, j the differential d(cpjepi- 1
) 

at any point lies in GL
0

(E) , The a-structure is orientable if 

it admits a subatlas for which the differentials actually lie in 

SL
0

(E) , An orientation is a subaltas maximal with respect to 

this property, Observe that any finite dimensional ma :1i:lbld has 

a unique a-structure and that orientability in this case has its 

usual meaning. A smooth map f: 111 ~ N between a-manifolds 
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(i,e, manifolds with distinguished a-structures) is a c-~ap if 

for any local representative '!/Cfli-
1 

d(YI/Cfli- 1 ) at any point is in r,
0

(E) 

of f the differential 

This implies that f 

is Fredholm of index 0 Suppose f is a proper c-map between 

oriented manifolds M,N with N connected, 

~~ree of f is defined: 

Then the oriended -· ----~----u 

By the Smale-Sard theorem f has a regular value y in N . 

Then f- 1(yl c M con~ts of a finite number of points, Count 

these with their proper signs; this gives the degree, 

deg f = r sgn 

xEr 1 (y} 

df . 
X 

The sign (of f) at x E f- 1 (y} is determined as follows: 1'ake 

any local representative 

d(~ .fcp.- 1 ) at ~.(x) is 

I f -1 
Vj cpi around x . The derivative 

J l l 

point, Define sgn dfx 

then in 

to be 1 

GL
0 

(E) since 

if d(*.fcp.- 1 ) 
J l 

X is a regular 

is in SL (E) 
0 

and -1 othervlise, (The value does not depend on the choice 

of local representative.) This definition of degree obviously 

extends the finite dimensional one, of, r51. 

Suppose now that N = E with its canonical a-structure 

and that f: M _, E is just Fredholm of index 0 Then, by a 

result of Elworthy and Tromba =3], there is a unique a-structure 

of = [cpi,l:\ 1 on M making f a c-ma;:>. \le will say that f is 

orientable if of is orientable, Then, if f is proper, the 

degree of f is defined, and it can be shovm that up to sign 

it is a proper Fredholm homotopy invariant. In particular the 

parity of the oriented degree of a proper Fredholm map f: M _, E 

of index 0 is defined and invariant under proper Ji'redholm 

homotopies, It is easy to see that this invariant is precisely 

the degree mod 2 of f as defined by Smale, [7], 
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Given f; M _, E as above we next turn to the computation 

of deg f by homological methods, But first we need a corollary 

of a result of Elworthy and Tromba, \/e briefly indicate the 

proof. 

4,1 Lemma. Let 

transverse to En c E . 

f: M _, B be a Fredholm map of index 0 , 

If f is orientable, so is !if"' f- 1En 

Mn is an n-dimensional regular submanifold of !11 

with a normal bundle Vlhich can be realized as a tubula:rneigh­

bourhood in M , This implies that !lin can be covered by local 

coordinate neighbourhoods of !VI (trivial parts of the tubular 

neighbourhood), each of which is nicely diffeomorphic to open 

product sets Un X U1 in E In these trivializations the 

local images of n 
M are the slices un x 0 , and the local re-

presentatives of f take the form 

(x,y) _, (x• (x,y), :l'' (y)) 

v1here y'; E' _, E• is a linear operator on a complement of En 

The reader may check that these trivializations restrict to an 

orientable atlas on Mn , 

Remark, An actual orientation of of on M restricts 

to an orientation on Mn , such that if 'P' . i ' ~·· are restric­J 
tions of charts :pi' ~oj 

only if 

on IV! to 

d((pjtpi -1) 

!.ln , then d ( (jl •. cp •. - 1) is in 
J l 

if and is in 

tials taken at any point in the domain of 

SL
0

(E) , the differen­

-1 co'. w'. 
'J'l 

Remark, The considerations above hold under more general 

circumstances. In particular we later use the simple generali-
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sation of lemma 4.1 where E is replJced ty .Jn open subset N c I~. 

Again consider an orientable proper Fredholm map f: M _, B 

which is transversal to En c E 
' 

with Mn and fn: Mn ~ En 

above. Let y E En be a regular value for fn Then y is 

a regular value for f and r1 (yl = (fn)-1 (yl • Choose an 

orientation for M (with respect to of)' Then Mn inherits 

an orientation, and sgn dfn = sgn df 
X X 

for all s ( r
1 £ 1 Y. ' 

the first remark above. Thus deg f = deg fn . However, deg 

can be computed by well knovm homological methods: Let 

yn E Hn(En) be a generator (Cech cohomology with compact sup­c 

ports, coefficients Z). Then deg f is up to sign the value 

on yn of the composite homomorphism 
n·x· 

Hn(En) £_> HnO~n) ~ H (mn) ..E;_> :E 
c c 0 

as 

by 

fn 

In particular we can choose yn such that the homological degree 

comes out with the right sign, 

If Em c En are two finite dimensional subspaces of E to 

which f is transverse vre get a diagram 

;' t ,. 'I II 

m·:' 
Hm(Em) L> Hm(iV!m) ;' H (Mm) ·--·> LZ c c 0 

where is the suspension or the Thorn isomer-

phism of the normal bundle of in and Hm( Mm) - Hn(Mn) c c . 

is the composite of the Thorn isomorphism - Hn(Un) and 
c 

the transfer un being an open tubular 

neighbourhood of in n L1 • 'l'his diagram commutes when 

Hm(Em) - Hn(En) is the particular Thorn map which sends ym 
0 c 

to yn 
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Similarly, if f is transversal to an ascending se~uence 

(En) in E we get an infinite commutative ladder of groups and 

homomorphisms, each stage of which computes the degree of f 

Suppose next that in fact a countable collection (En} is 

picked out at random in E and that f is not necessarily 

transversal to (En} Let (En} be a se~uence of complements 

in E to the members of (En} such that we have short exact 

se~uences 

0 

The composites 

f 
M -· E 

;h 
~ 

;6 
E ~ E 

n 

E n 

--· 0 

are a-proper Fredholm maps. Therefore their regular value sets 

vn are residual by the Sard-Smale theorem, It follows that the 

sets .-1 
Jn vn are residual, and therefore so is their intersection 

v• • If y E v• then 

and so the origin o E 

jn(y) is a regular value 

E n is a regular value of 

of jn of 

jn o (f-y) 

Then the translate f- y is transverse to En for all n . 

' 

Hence f- ty is a smooth compact finite-dimensional homotopy 

from f to g = f -y with g 6 (En} • In particular deg f 

= deg g Now define Mn = g-1Ip for n = 1,2, ... , and we 

may apply the discussion above with n g,g substituted for 

Observe also that we may choose 
F! 'I 

·:y. as small as we want, so 

that ''f- (f-ty)\! is small throughout the homotopy. 

Finally let V be a closed symmetric neighbourhood of the 

origin in E and f: (V,bdV) ~ (E,E-o) with f proper and 

bounded and Fredholm in V bdV Then f bdV is closed and 

hence bounded away 

/
round o 

open ball in F , 

from o E F • Therefore, if D 

M = f- 1D is an open subset in 

is a small 

V - bdV and 
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fD: M ~ D is a proper Fredholm map between oriented manifolds. 

Then the degree of fD is well defined and obviously independent 

of the particular choice of D . By definition this is the de­

gree of f: (V, bdV) ~ (E,E-0) , If [En} is a flag in E , we 

may suppose that f is transversal to (IP} on the interior 

of- V , otherwise f can be deformed into such a map by a small 

compact homotopy (V,bdV) xI -• (E,E-0) , and it is easy to 

check that the degree stays fixed under such a deformation. 

According to our ealier set-up we can now get the degree homo-

logically from the composites 

On the other hand we have the commutative diagram (using earlier 

notations a-nd stting Bn = vn n bdV) 
n·"-

Hn(Dn) f Hn(Mn) H (!Vln) ~ = ~ :% c c 0 

~ ' !! = •I; 'it "! ,, 

Hn(En) Hn(Vn-Bn) ~ H (Vn-Bn) :% = ~ 

c c 0 

~ ' ~ 

'! II = = ~/ "! 

Thus we ma;)' equally well compute the degree from the composite 

map 

5. Degree and cohomology_coindex, We relate the degree to 

the cohomology coindex for finite dimensional spaces, Through­

out this section coindex stands for the coindex based on the 

:% 2-characteristic cohomology map. By a manifold here and in 

the sequal we mean a separable metrizable space which carries a 
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smooth manifold structure. Helative manifolds are similarly 

defined, 'l'h!.l extra topological condition is for convenience. 

It can be avoided, at least et the expence of introducing con­

ditions on the maps occuring. 

First we make some general remarks. Consider again the 

space X with the fixed point free involution T and let 

p: X ... XT "' X/T be the covering map defined by T , Associated 

to this double covering is a local system of groups on XT: the 

stalk at any point x• EXT is ~ , and the action of n(XT,x') 

on Z is given by the representation n(XT,x•) ... Aut (?l) == !IZ 2 

which is simply the canonical projection 

This is the local orientation system of the covering X ... XT , 

We shall denote it ~T • Observe that the pull-back of ZT to 

X is the trivial system Z (up to equivalence), 

If XT is path connected, there can be at most two non­

equivalent local sys terns with stalk 7l on XT , I·~ follows that 

(in any case) local systems with stalk 7l are self dual under 

the tensor pairing: tensor product of a local system with itself 

yields the trivial local system, Now introduce the notatic.< 

G1 = G3 = G5 "' ••• = ~ 

G;2 = G 4 = G6 = ••• "'ZZT 

Then Gn is a local system on x,r for n > 1 and ?lT 0 0n = 

Gn+1 for all n • Next 

antipodal action, then 

system for the manifold 

p. 357) 

observe that if X is sn with the 

Gn is precisely the local orientation 

X = l'n T - for every n ( c f. r 8 J 6A3 on 
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so that and by Poincare 

duality Furthermore there is the following exact portion 

of the Smith-Gysin sequence (with coefficients Gn ) of the 

double covering p: Sn ~ pn 

0 -> 0 • 

Therefore p-* is always multiplication by 2 

5, 1 Theorem. Let M be a compact orientable manifold 

of dimension n with a fixed point free involution T and 

cp: M -• sn an equivariant map of odd degree. Then coind !VI = n • 

Proof. Let lilT be the quotient manifold lil/T , There 

is a commutative square 

Let y E Hn(Pn;Gn) and g E Hn(Sn;:;<:;) be generators such that 

p-::-y = 2g and let c = CJlT-:ty • Choose an orientation of !i[ and 

let [!vi] E Hn (IV! ;IZ) be the corresponding fundamental homology 

class, Then cp_/M] is an odd multiple of g~_ E Hn(Sn;:¥1) (the 
e dual ge~ator of g ) since the degree of cp is odd 

and 

1) If Y is a path connected space, G a local system on Y with 

stalk ~ , and a: n(Y,y) ~ Aut (~) the action of n(Y,y) on ~ 

at a point y, then H
0

(Y;G) ;' Ql-j(g-a(x)g) , g E 4f, x E rr(Y,y). 
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<p*c, [!II]> = <cp-:'p"y, [MJ> 

= <p~-y ,cp,~_[M]> 

If MT is any 

by Poincare duality 

system of lilrb and 

tion system of M' T 

= <2g' ( 2k+ 1 )g_~_> 

= 2(2k+1) 

component of T;IT 

Hn(M' ·G ) T' n ~2Z 

Hn(M' ·G ) T' n "' 2Z 2 

In the latter 

' 
let M' = -1M, p T Again 

if Gn is the orientation 

if G is n not the orienta-

case (p!M') *c = 0 since 

elM' is of finite order. Hence there must exist components 
I T 

Iv!T for which Gn is the orienta.tion system. For such a com-

ponent the map p~-: Hn(IVIT;Gn) _, Hn(ii'I' ;~) sends a generator to a 

class whose value on 'M'l is ±2 • Therefore 

ciMT"' 0 (mod 2) 

if and only if 

~c 

<p (cjMT),[M•]> ~ 0 (mod 4) 

Since <p*c,[M]> = I:<p-*(c !Iii') fM' ]> the sum ·'l',_ 9 l:<p*(c!MT),[M')> 

is not zero mod 4 Therefore, for some component MT 

elM• , T ;£ 0 (mod 2) Hence 
0 ' 0 (mod 2) . Finally, if 

1 
CT E H (MT;~2) is the characteristic class of the covering 

hence c~ -J 0 It follows that coind !1 > n • This completes 

the proof of the theorem. 

5.2 Corollary. Let (X,A) be a compact orientable 

smooth relative manifold of dimension n with a smooth involu­

tion 2 ) which is fixed point free on A • Let 

2) Mapping A to A , of course • 
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cp: (X,A) __, (llln ,JR1n-o) be an eq_uivariant map of odd degree with 

respect to the origin n o E lR1 • 

-1 ' 1 Let K = ~ ,O • 

Then coind A = n - 1 • 

Then K contains the fixed 

points under the involution and K is bounded away from A • 

By the continuity property there is a closed invariant neighbour-

hood U of A disjoint from K such that coind U = coind A • 

Let Y = X - K and Y - Y/'_1' T - AT = A/T , where T is the in-

volution. Then (YT,AT) is a smooth relative manifold and 

UT = U/T is a closed neighbourhood of AT • r,et NT c YT be 

ann-dimensional manifold with boundary oNT = i'IIT such that 

and c 

tained in Let Ill be the lift of lil T to Y c X , 

is con-

Then 

Iii is a compact orientable manifold of dimension n - 1 contained 

in U and so T is fixed point free on M • Consider the eq_ui-

variant map 

cp n 
~ IR-o _, 

The degree of this map is clearly equal to the degree 

with respect to the origin of cp: (X,A) __, (ffin ,JR1n-o) ' 

hence it is odd. 1/ow apply theorem 5.1 to get coind M = n-1 

Since M c U , coind M < coind U = coind A 

But clearly also coind A < coind ffin -0 = n- 1 

the proof of the corollary. 

Thus coind A> n- 1 • 

This completes 

6. ~uiv~riant transversali~X.· In this section we prove a 

transversality theorem for eq_uivariant map. 

A manifold V is said to be smo<2_thly normal if given dis­

joint closed sets A,B c V there is a smooth function 'n: V __, liR 

such that: 
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( 1 ) n(x) E I for all X E v 

(2) 'r)(X) = 0 for X E A 

(3) 1J(X) "' 1 for X E B 

(4) 'l')(X) "' 0 implies all partial derivatives of all 

orders of 11 vanish at X • 

Any manifold modelled on a separable Banach space with smooth 

partitions of unity is smoothly normal, 

We first prove the following local result, 

6,1 Lemma, Let V be a smoothly normal manifold with 

closed subsets A,B • Let E be a Banach space and (En} a court­

table 3) collection of fini·te dimensional subspaces, and 

let c:p: V ... E be a Fredholm map which is transversal to (En} 

on some neighbourhood of A , . Given e > 0 and a closed neig4-

bourhood NB of B there is a smooth homotopy 

H: V X I ... E 

such that 

( 1 ) H(x, 0) = cp(x) for X E v • 

(2) 1/H(x,t) - cp(x)ll < e for all X E V , t E I • 

(3) There is a one-dimensional space E1 c E such that 

H(x,t) - rp(x) E E1 for all X E v 
' 

t E I , 

(4) There is a neighbourhood NA of A such that 

H(x,t) = ;:p(x) for X E NA ' t E I • 

3) The cases of principal interest are. v1hcn (En) is a finite 

collection (e.g, with one member) or a flag, 
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H(x,t) = rp(x) for x E V- NB , 

H(.,1) is transversal to (Fn} 

bourhood of B , 

t E I , 

on some neigh-

Proof, I,et U be an open neighbourhood of A such that 
and let M be a closed nei_illlborhood of B contained in intl:S 

is transversal to {En} on U,/. Then AIJ(V-intNB) is a . 

closed set disjoint from the closed set M - U , r,et N be a 

closed neighbourhood of AU(V-intHB) disjojnt from M - u • 

Since v is smoothly normal there j_s a smooth map n: v ... m 
such that 

( 1) T)(X) E I for all X E v • 

(2) n(x) = 0 for x E N • 

0) 'IJ(X) = 1 for xEM-U 

(4) T}(X) = 0 implies all partial derivatives of 11 

vanish at X ' 

Then -2-: (V-n-1(0)) ... E. is a Fredholm map so that, by 
en [7,theorem 1,3) 

Smale's theoremj,there is y E F with IIYII < 1 such that 

: 11 + y is transversal to (En} on V- 1l-1(0) Then 

H(x,t) = ~(x) + t eT)(x)y 

is a homotopy satisfying (1), (2), (3) trivially, For (4) we 

observe that N will do as NA in (4). For (5) we have that 

N :;) (V-intNB) :::> V- NB so H(x, t) = cp(x) for x E V-N_s, For 

(6) we have that H(.,1) = ~ + eny is transversal to (En} on 

V- ,-1(0) , Also it is transversal to (~} on Unn- 1(0), Silica 

Mfl1J- 1(0) c un TJ- 1(0), it follows that H(•,1) is transversal 

and this is a neighbourhood of B , Hence, 
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(6) holds and the proof is complete, 

Now we prove the following global result, 

6.2 Th~J>~· Let T be an j.nvolution on a smoothly 

normal manifold X and let K be the set of fixed points of ~e, 

a countable c:>llection of finite L t "' b B h spaancde/(E·n} e · ~ e a anac 

dimensional subspaces, and suppose ~: X ~ E is an equi-

variant Fredholm map which is transversal to (En} on a neigh­

bourhood of K • Then there is a smooth homotopy 

H: X x I - E 

such that: 

( 1 ) For any t E I , H(•,t): X - E is an equivariant 

Fredholm map. 

(2) There is a compact subset c c: B such that 

H(x,t) - cp(x) E C for all x E X 
' t E I • 

(3) There is a neighbourhood N of K such that 

H(x,t) "'<p(x) for x E N t E I • 

(4) H( • , 1) is transversal to (En) on all of X • 

Proof, Let \7 be a neighbourhood o.f K on which cp 113 

tranuverse regular to {En} and choose a neighbourhood w• of 

K with W' c VI , Let (Ui,Vi} be a countable collection of 

open subsets of X such that: 

(a) 

(b) 

UTu. = X-K 
l 

is disjoint from TV. :1. 



- 27 -

By induction on i we construct a sequence of homotopies 

Hi~ X X I ..., F for i = 1 ? 2 ? ••• such that: 

(d) H1(.,0) = qJ 

(e) Hi+1(•,0) = H.(.,1) 
J. 

for i > 1 

(f) There is element E F VIi th !! !I < 1 such an yi ,;yi" 2i 
that Hi(x,t) - Hi(x,O) is in the closed interval 

joining -yi to yi 

(g) Hi(.,t): X ..., F is an equivariant map • 

(h) Hi(x,t) = Hi(x,O) on some neighbourhood of 

'i.W•- K] I I u1 u . .. u u. 1 ]_-
u TiJ1 u .•• IJ TiJ. 1 ]_-

(i) Hi(.,1) is transversal to [Fn} on some neighbour­

hood of Ui U TiJi • 

Assuming H. 
J 

defined for 

~0. 1 = H. 1(.,1) (or 'Po = qJ 
]_- ]_-

transversal to [Fn) on some 

[\!•- K] U U1 u ••• U Ui_ 1 IJ TU1 

j < i where 

in case i = 

neighbourhood 

LJ,,,U TiJ. 1 , 
]_-

i > 1 let 

1). Then cp. 1 is 
]_-

of 

Let 

Ai = (CW•- KJ uU1u •.• uui_ 1 ) n vi and Applying the 

local lemma 6,1 to cpi_ 1 ;vi with Ai,Bi closed sets in Vi 

Bi VIi th 1 and with NB. closed neighbourhood of E: = 2i 
any 

]_ 

contained in v. 
]_ 

we obtain a homotopy 

Ji~ v. 
]_ 

X I ..., F 

such that: 

( j) Ji(x,O) = tpi-1 (x) for X E vi 

(h) There is E F with II II 1 such that yi < --~~Yi.i 2i 
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(1) J.(x,t) = cpi-1(x) in 
l 

some neighbourhood of A. 
l 

(m) Ji (x, t) = cpi-1 (x) for X E v. - Nn. l l 

(n) Ji(·,1) is transversal to 'Fn1 
l ' on Bi . 

Define J I • TV i X I _, I•' so that J:l_(x,t) = Ji(Tx,t) i' 

By (m) we can extend Ji and J! 
l 

to a homotopy 

Hi: X X I _, F 

such that Hi;vi xI= Ji, ni;'rVixi = J:l_, and I\(x,t) = cpi_ 1(x) 

for x E X - (V.UTV.) Then Hl. has the properties (d)- (i) 
l l 

inclusive. 

VIi th the Hi defined we define H: X x I ~ F by the 

formula 

t-( 1-.:l-) 
H(x, t) = Hi (x, 

1 
-}-) 

I -i+1 

H(x,1) = Hi(x,1) , 

1 -l.~,-~"<1 1 
l ":: v - i+1 

Then H has properties (1) and (4). It also has property (3) 

because H(x,t) = cp(x) for x E \1' , t E I • To show H has 

property (2) let C be the set of sums of [-y1,y1J + C-y2 ,y2 J+ ... 

This is compact because !I Y. 'I 
' l' 

Then 

H(x,t) - cp(x) E C for all x E X , t E I , 

completing the proof. 

7. Global coindex of a Fredholm map. VIe assume E is a 

separable Banach space admitting smooth partitions of unity 

and coindex is the coindex based on ~ 2-characteristio cohomo­

logy class, 
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7.1 Theorem. Let V be a closed symmetric neighbour-

hood of the origin in E and qJ: (V,bdV) ~ (E,E-o) a proper 

equivariant Fredholm map of Fredholm index 0 Suppose (fl is 

bounded and orientable of odd degree relative to the origin. 

Then 

coind qJ;bdV - -1 . 

Proof. 
--~ 

First observe that since qJbdV c E- 0 , it follows 

that coind qJibdV ~ -1 , Thus it suffices to verify the opposite 

inequality. Next, since (fl is Fredholm of index 0 at the 

origin, there is a finite dimensional map ·1•: V ~ E with support 

in int V such that qJ + 'Y is a local diffeqmorphism around the 

origin besides being proper equivariant and Fredholm of index 0 

(cf, first part of the proof of theorem 3.1). Since the degree 

only depends on the values of the map at bdV , (fl + ~ also has 

odd degree with respect ot the origin in E , and 

since the coindex is invariant under finite dimensional perturba-

tions, coind ( q>+•'•) I bdV = coind c,o: bdV • Thus we may as well 

work with (fl + li ' or what comes to the same 
' 

we may as well 

assume that cp is a local diffeomorphism at the origin. 

Next let (En) be a flag in E 'j Since (fl is a local 

diffeomorphism, 'Jl is transversal to pPJ in a neighbourhood 

around the origin in E • By theorem 6,2 there is a map 

cp': (V,bdV) ~ (E,E-o) smooth on int V and transversal to (En}, 

which is homotopic to qJ through smooth equivariant compact 

perturbations of Q • In partj_cular cp' is proper orientable 

equivariant and Fredholm of index 0 and has odd 

degree , Moreover, by corollary 2,3 



- 30 -

coind <p':bdV = coind cpjbdV, Again we may as well continue with 

tp' instead of <p , or equivalently, we may suppose that cp is 

transversal to (En) on int V • Next, let vn = cp- 1Fn , 

Bn = bdV n vn • Then the (Vn,Bn) are coherently orientable 

compact invariant relative manifolds of dimension n ; compact 

since the •vn vn -• Fn Cj) I : are both proper and bounded and coher-

ently orientable by the remark following lemma 4.1. At this 

point we shall use the fact that both the degree and the coindex 

are computable by means of the flag [En1 , i.e. in terms of the 

filtration [Vn,Bnl on V,bdV For the degree this means the 

following: There is a commutative diagram 

Hn+1(En+1 ,En+1_0 ) cp* Hn+1 (Vl1+1 ,Bn+1) ~ H (vn+1_Bn+1) ~~ ~ = 0 

1' ~ '1\ . ~ 
hd • I = ' 

Hn(En,En-0) 
cp•* 

Hn(vn,Bn) ~ H (Vn-Bn) ~~ ~ = 0 

where the two first vertical maps are transfers induced by the 

respective normal structures, and the third vertical map is in-

duced by the inclusion. 'rhe lmspecified horizontal maps are 

duality isomorphisms and augmentations, Thus the unique gene­

rators of the groups Hn(En,En-0) are all mapped to the same 

element of Z by the composite horizontal maps. This element 

is the degree of <:p with respect to o C: E ( cf, section 4). 

By assumption it is odd, Similarly coind ';l; bdV is computable 

in terms of the filtration coind cpjbdV > -1 iff 

coind Bn > n-1 for all n (cf, theorem 2,4). 

The result now follows from corollary 5,2 which applies to 

the relative manifold (Vn,Bn) • 
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Remark. -·--- According to Elvrorthy and Tromba [ ] the map cp 

is always orientable and of odd degree if KO(V) is the trivial 

group, e.g. if V is contractible, 

The proof of theorem 7.1 applies without change 

to the more general case where (V,bdV) is replaced by a rela­

tive manifold (X,A) with involution modelled on a smooth 

Banach space E , except for the first part where cp has to be 

modified (smoothly, equivariantly, •••) so as to be transversal 

to the flag [En] on a neighbourhood of the fixed point set C 

Since C must be compact, this can probably always be done, 
fully 

The proof7covers the case where C is empty or contains one 

point. 
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