Involutions and Fredholm Maps

by

P, Holm* end I.H, Spanier"

Introduction, ILet T be a Banach space and K : E~E a

completely continuous map (i,e. such that the image of a bounded
set has compact closure). Assume that X is odd (but not neces-
sarily linear) and let A, be the pet of solutions of the equa-
tion x + K(x) = 0 at the sphere $S_ of radius r from the

L4 Thcorem 10 45
origin, By a theorem of Graﬁas/} if £ maps S to a pro-

r
per subSpace of E , then A i8 non-empty. The purpose of
-this article is to initiate a closer study of the solution set
Ar in a more general context. Thus, let X be a paracompact
Hausdorff space with a fixed point free involution T , and let
v: X~ E be a proper equivariant map, Ve define a numeric.:
invariant called the coindex of o and estimate the sigzge o/
ML) = {x € le(?x) = £f{x)} in terms of this invariant, wherso
f i+ X-F is an§ compact perturbation of © . The methods we
use are based on those of Conner and Floya [1), [2], suitably
extended to the infinite dimensional situation. As in [1] the
method often covers the more general case where T is replaced
by & finite group of homeoworphisms acting freely on X .

The actual computation of coind ¢ reqﬁires in practice
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considerable regularity of the map ¢ . One case which seems
more tracitable than others is where X 1is a differentiable
manifold modelled on a Banach space and ¢ 18 a Fredholm map.
This case gains considerable importance in view of recent deve-
lopment, see e.g. £3]. The most interesting example to have in
mind is perhaps the one where ¢ is derived from a non-linear
partial differential operator on a bounded region in e ; See
again "3].

In section 1 we summerize standard properties of the
coindex of a space with involution and in section 2 we define
the coindex of an equivariant map from s space with involution
to a Banach space, In section % there is a local computation
of the coindex of a Fredholm map., Section 4 deals with the
degree of a map from one Banach meni.fold to another and section 5
relates the degree to the coindex. Section 6 establishes equi-
variant transversality which is used in section 7 where the

global result on the coindex of a Fredholm map is proved,

1., Coindex of a space with involution. et X be a para-

compact Hausdorff space and T : X - X a fixed point free invo-
lution on X , Then X - X/7 is a double covering with a charaoc-
teristic class ¢ € H1(X/T) (Cech cohomology, coefficients %),
Define the coindex of (X,T) +to be the largest non-vanishing

power of ¢ ; by abuse of notation
coind X = supin,c™ £ 0} .
In the notation of Conner and Floyd . ] the coindex map is

written oo—in@%zx , and the authors observe that it has the

following properties:



1.1 (Conner-Floyd) The coindex map assigns to each paracom-
pact Hausdorff space X with a fixed point free involution a

non-negative integer or == , such that

(Functoriality) If f: X - ¥ 1is an equivariant map between

spaces with involutions, then coind X < coind¥ .

(Additivity) If A,B are closed invariant subsets of X
and X = A U B , then

coind X < coind A + coind B + 1 ,

(Continuity) If A dis a closed invariant subset of 5 ,
then coind A = coind U for some closed

invariant neighbourhood U of A .,

(Dimensionality) coind 8% = n ; n= 0,1,+..

and such that

(Stability) If X dis compact, then coind SX = goind X+ 1,

Here ©$5X means the suspension of X eduipped with the fixed
point free involution (x,t) - (7(x),1-%t) . It is an easy
consequence of the additivity property that quite generally
coind SX < coind X + 1 .

The properties listed in 1,1 do not characterize the
coindex map., In fact a coindex based on the characieristic
class with twisted integral coefficients (instead of %2—coeffi—
cients) satisfies 1.1 as well, And if I is any principal
ideal domain, there is a coindex map based on the characteristic
class with twisted L~coefficients, having the properties 1.1
with the possible exception of the stability property. We refer

.

to .11 for the details, Until further notice coind will
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stand for any map satisfying 1.1 except for the stability pro-
perty. For convenience we also add the definition coind # = -1,
and observe that then 1.1 remains true also in the cases where
any of the spaces occurring are empty provided S@ is inter-
preted as 8° ., A coindex map is stable if it has the stability
property, For an example of & non-stable coindex map of a some-~
what different character than those already mentioned, let

coind X be the smallest integer n such that there is an equi-
variant map X - 8% ; see again " 1,

The following result in a somewhat different setting 1is

due to Yang [91:

1.2 (Yang) Tet f: X - R® be any map and let A(f) ¢ X be
the set of points =x such that F£(x) = £(Tx) . Then A(f) is

a closed invariant subset of X and

coind A(f) > coind X -n

Proof, Torm the map © = f-foT ¢ X » RY, fThen ¢ is
equivariant (with respect to the standard involution in Rn) and
A{o) = A(f) . Thus we may as well assume f equivariant., ILet
U be a closed invariant neighbourhood of A(f) such that
coind U = coind A (the continuity property) and V a closed
invariant neighbourhood of U such that coind V = coind U .
Then X-—% and V are closed invariant subsets covering XL
and so coind X < coind(X-—ﬁ) + coind V+1 , by additivity, On
the other hand, existence of an equivariant map
£

n Sn- 1

o
X-T Riwo =~

shows that coind(X-U) <n-1 . Thus coind X < n-1+ condA(f)+1,



2. Coindex of an equivariant map. In the sequel E denotes

a Banach space with its standard involution (one fixed point,
the origin). If o3 X - B is any equivariant map, we define
the coindex of ¢ Dby coind ¢ > p 1if for any sufficiently large
finite dimensional subspace P < B coind @"1F >p + dim P .

As an example consider the case where X = 5§ , the unit
sphere in E , and ¢ 1s the inclusion S < B . Then for any
finite dimensional F < B m_1F is the unit sphere in P , and
so coind m"TF > dinm F~1 . It follows that coind ¢ = -1,
Similarly, or ¢ 1is the constant map to the origin, then the
coindex of ¢ is x ; and if X = SF , the unit sphere in a
finite dimensional subspace F c E , and o© 1is the inclusion
SF < E , then the coindex of 3 1is -, Thus the coindex of
a map takes values in the range of all integers with the two

extremes -x and > included,

Amap X : X - B is compact (or finite dimensional) if

im K lies in a compact (or finite dimensional) subset of E .

Amap f: X - E is a compact perturbation (or finite dimensional

perturbation} of ¢ if f = ¢ +K for scme compact (or finite

dimensional) map X : X - B ,

Remark. A compact perturbation of a proper map is proner,

Our first result is an extension of Yang's theorem 1.2,

2.1 Theorem, Tet o: X - E be a proper equivariant map

and f: X - E 3 compact perturbation of ¢ , If im f 1lies in

a k-codimensional subspace of E , then

coind A(f) > coind o +k .
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Proof, Let Ek C B be a k-codimensional subspace con-
taining im £ and let Ek C £ be some complement, Let K be
the compact map f-¢ and assume first that K is finite dimen-
sional, i.e, that im K < E™ for some m-dimensional subspace
E" of E ., Finally let JOR 9 any finite dimensional subgpace
containing E™ + EX . Then o 'E® Jinto E® N E, . Let

! be the restricted map., Then, by theorem 1,2

1

2 o B - B 0 B

coind A(f™M) > coind o EY - (n-k) , since clearly dim EB™ n By
- n-k . Since for sufficiently large E" coind m—iEn - n do-
minates coind v , we get coind A(f") > coind ¢ +k ., However,
A(L) < m"1Em c m“1En as is easily checked, and so A(f) = ACEMY,
This proves the theorem in the case where K isg finite dimen- |
sional, |

In the case of a general compact map K let U be a
closed invariant neighbourhood of A(f) such that coind U =
coind A{(f) . Suppose there is a finite dimensional compact map
K': X - E such that im f' < B and A(ft*y cu, f' = @+K' .,
Since the inclusion map A(f') ¢ U is equivariant, we get
coind A(f) = coind U > coind A(f') > coind © +k , the last in-
equality by the first part of the proof. We now show that there
are such maps K' .

Pirst observe that given U o A(f) as above there is an
e > 0 such that "f(y) - f(Ty)l < ¢ implies y € U, 1In fact,
otherwise we could pick out a sequence of points Y € X-T
with ?f(yi) —f(Tyi)H =< % . However, the map f-~f T = 2¢+(EK T)
is a compact perturbation of a proper map and therefore proper,
Therefore {yi? would contain a subsedquence converging to some

point y € X - A(f) 3 which is impossible since by continuity

f(yo) - f(TyO) should equal O ,

is a closed invariant subspace of X, and f maps o EY



k

Next, et mw: B - B be the projection of E to E with

kernel Ek » Then mef = moep - meK 18 the zero map, since
im f C Ek . Let K6 be a compact finite dimensional &-approxi-
mation to K (ef, [6]), and form K' = K, + MoK - meK, and
f' = 9+K'" ., Then K' is a finite dimensional compact map, and

mef' is zero so that im f' < ®_ ., Now, K-K' = (1~n)(K~K5) .
Therefore, K(x) - K'(x)! < M-ul + & and so Hf(x) - £'(x)} <
Mow .8 for all x € X . Suppose y € A(f') . Then
H(y) ~ fley)t = ley) - £ (y) - £(1y) + £1(Ty) i< E(y) - £ (9l 4
fr(ry) -Af‘(‘l‘y)f <28 - wh 8 , Hence, for 5 sufficiently |
small f(y) - £(?y)! < ¢ and so y €U, i,e, A(f') c U,
This completes the proof of Theorem 2.1,
In particular, if we apply Theorem 2,1 to the case where
X 18 B8 snd ¢ 1is the inclusion 1: 8 = E , we find that for
any compact map XK: S - I such that =x + K(x) 1lies in B
(some k-codimensional subspace of E ) coind A(i+K) > k-1 ,
This, of course, implies that cov, dim A{(i+K) > k-1 , which

18 a slightly refined version of the Granas-Borsuk-Ulam theorem,

cf. HJ.

Remark, The first part of the proof shows that if
w: X - E dis any equivariant map (not necessarily proper) then
the conclusion of Theorem 2.1 remains true provided f dis a

finite dimensional (not necessarily compact) perturbation of o .

A map o: X - E is finitelxrbounded if for every finite

dimensional subspace PF CE , o | @“1F is bounded.

Remark. If w» d4s proper and finitely bounded, then

m_1F is compact when F is finite dimensional, Therefore, if



m: T - ¥ is a linear map with finite dimensional kernel, mo®
is again proper and finitely bounded. Any compact perturbation

of a finitely bounded map is finitely bounded.

As an application of theorem 2,1 we give:

2,2 Theoremnm, Let o®: X - I be any equivariant map.

Then the following are equivalent:
(1) coind ¢ > p

(2) TFor every finite dimensional subspace F of E

coind m-1F > p + dim F

Moreover, if ¢ is proper and finitely bounded, then (1) and

(2) are each equivalent to

(3) For every finite dimensional subspace F of E and
every compact equivariant perturbation £ of o

coind £7'1 >p + dim F ,

Proof, We first show that (1) implies (2). fThus, let
FcE be an arbitrary finite dimensional subspace and F' D F
a finite dimensional subspace such that coind m—TF' > p + dim Pt

Let mn: T " be an epimorphism with kernel F , Then, by 1.2

-1

coind A(me o @ ' F') > coind o™ Fi - dim BV

> p + dim ' - dim F"

= p + dim P ,

1

The conclusion now follows from the fact that A(moop;o” F')

equals o P .



Next we assume that o 18 proper and finitely bounded and
show that (2) implies (3)., Thus, let F < L be arbitrary finite
dimensional and f equivariant and compactly related to ¢
(i.e. such that f-¢ is o compact map)., Let m: E - B be a
projection with kernel F so that A(ne ) = =y . Since
ker m is finite dimensional, mno @ 1is again proper and mwel
is a compact perturbation of mow . Therefore, since im mof

lies in a subspace of I of codimension equal dim ¥ , by theo-

rem 2

coind A(neo f) > coind Mmoo + dim ¥ ,

Since mneiy differs from ¢ by a finite dimensional map
coind mop = coind » > p and so

coind £7F > p + din P .

The implications (3) = (2) = (1) are trivial,
It follows from the definition that the coindex of a map is
invariant under finite dimensional eguivariant perturbations.

For proper finitely bounded maps it is dinvariant under compact

perturbations in virtue of theorem 2,2 so we have the following

corollary.

2,3 GCorollary. If @ is proper and finitely bounded

and f is a compact equivariant perturbation of ¢ , then

coind f = coind o .

We now show that the coindex can be computed by flags in
reasonable cases, DLet 5j be a directed family of finite dimen-
gyl

sional subspaces of E and 4' the family of all subspaces of

AN
E contained in some member of « , Then ¢ 4is likewise a
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directed family of finite dimensional subspaces, Associated to

J{ there is the notion of the coindex of ¢ with respect to

& based on either of the two equivalent properties:

a) TFor any sufficiently large T 614 coind m"qF > p + dim ¥,

) Tor any ¥ € 4 coind o= B > p + aim F .

The fact that these are equivalent follows from the first part
of the proof of theorem 2.2, with TF,F' required to be in 4ﬁ .
Denote the coindex of v with respact to @i by coindqﬁm . Then

the following is true

r

c) coind?!p = coind ; o
¢ 9

Proof, Obviously coind Ao < coind(,m

4 4

To verify the opposite inequality let p be any integer
not exceeding coind¥§Q). (If coind o= - , there is nothing to
show.) We have to check that coind @_TF > p + dim P for all
e %& . But any F Efg'js contained in some F' € @ﬁ , for
which coind @_1F' > p + dim B , Again the first part of the
proof of theorem 2,2 gives the desired inequality.

A flag @; = {E"} in B is a sequence E' ¢ 82 ¢ vvv of
1)

subspaces such that dim I = n and UE" is demse in B .

2.4 Theorem, Let o@: X - & be a proper and bounded

equivariant map and Q; = {El} , 1= 1,2,,., a flag in I .

Then coind o = coind , v ,
Y,

i

1) Thus for E +to admit flags it must be separable hence

second countable,
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Proof, Clearly coind o < ooind}@m = coindgtp . Ve show
that ooindéiw < ¢oind ¢ . If ooian@ is not -x, let p Dbe
any integer not exceeding ooindéfm .  Suppose there is a finite
dimensional subspace Fo c & such that coind quFO < p + din FO.
Let U < X be a closed invariant neighbourhood of @—1F0 such
that coind U = coind o™ 'F_ . Then @(X-intU) and F_ are
disjoint closed sets in B , and ©(X-intU) is bounded, Hence
there is & distance > e > 0 between F_ and p(X-intlU) . TLet
>0 be a bound for + so that oX < B(r) (the ball of ra-
dius r ). By the definition of & flag there is a finite dimen-
sional space F1 € é% with dim F1 = dim FO such that any ele-
ment in B, N B(r) is within distance < e of an element in
FO n B(r) and conversely. Then @"1F1 < U ., Otherwise
F1 N @{X~-inty) would be non-empty, which is impossible since
y € By N o(X-intU) dimplies dist (y,EO) < ¢ as well as
dist (y,F ) > ¢ . It follows that coind ¢~ 'F, < coind U =

coind ¢_1

.. -'"l-—\ + . "*1 s e
FO ;, and so coind © F, - dim F1 < coind @ Eb-—dlml% D
which contradict the assumptions, Hence we must have ooindmfﬁ%
> p -+ dim FO . Since FO < T was arbitrery finite dimensional,
this implies coind o > p , which again implies coindp» >

coind‘%/cp .

3. Local coindex of a Fredholm map, Theorem 2.1 poses the

problem of computing the coindex of an equivariant map ¢ into
E ., In general this is a difficult task, since it requires con-
siderable knowledge about the filtration on X pulled back from
E by 9 ., One case which seems more tractable than others,
however, is where X is a differensiable manifold modelled on

a Banach space and ¢ is a Predholm map, cf, £3]., A PFredholm
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map o: X - Y between Banach manifolds is a smooth map such
that (dm)za%%inite dimensional kernel and cokernel at every
x € X . The index of ¢ dis dinm ker (dq))X - dim coker (dcp)X ,
which is independent of x for & connected manifold X ,

We start by proving the following local result, which still

is true for arbitrary coindex maps.

3.1 Theorem, Let E, T be Banach gpaces, D ckE o

symmetric open neighbourhood of the origin in E and ¢: D - I
an equivariant Fredholm map of Fredholm index ¢ > 0 ., Then for

any sufficiently small ball B centered at the origin

coind ka - 0)= q - 1

I'or a stable coindex this is truvwe 8lgo if g < 0 ,

Proof, Assume g = O and let & = ker dy and PO = i dy
(the differential de¢ taken at the origin in B ). Also let
B° ¢ E and FO < P be complementary subspaces 1o Eo and B°
respectively., Then dp can be condidered a linear map

P . ; " o . .
EO » B° - FO 3 P° which is zero on bo and maps E~ disomorphi~

cally to F° , Tet ¥ B, e - FoD P be a linear map which
maps Eo isomorphically to FO and 18 zero on B , TForm

o+ % ¢ D-F , where ¢ 1is just the restriction of ¥ to D .
Then o + * 1is equivariant, and d(o+*) = dp+ Y is an isomor-

phism, Hence o + 4 1s a local equivariant diffeomorphism
around the origin, Now, to compute the coindex of ¢ close to
the origin, consider (B-o) n @"1{FO T Pt} for finite dimensioral
P' ¢ F° and a smell ball B around o € B, Then éﬁ[Fo ALY =
(®+¢)"1{FO ®» Pt} and so o + ¥ establishes an equivariant

homeomorphism (B-o) N @"1{FO DR} - (ort)(B-0) n (FO »R) o,
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It follows that these two sets have the same coindex., Further-
more, (o+y)(B) is a neighbourhood of the origin o € F and

so contains a small bhall B' , This gives equivariant inclusions
(B'-0) n (FO 2F') < (p+y)(B-o) n (F_ ™ P') < F, ® F' - o show-
ing that the coindex of (o+*)(B-0) N (FO D M) is precisely
dim F_ @ F' - 1 . Therefore coind © B- o > -1 , Since clearly
-1 is the greatest lower bound for coind (B-o) N w—1[FO o F} -
dim FO D F* as F' runs through the finite dimensional sub-
spaces of 1 , the coindex of o B-o is in fact precisely -1 .
This proves the result in the case where 9 =0, If q >0 ,
replace o by the composite map

) i
-y

D P - ® 2gY

wnich is then Fredholm of index 0 ., Applying the special case
just proved gives coind ieco|B-o = -1 for B a small ball,
Thus, for sufficiently large F' = F? o RY ¢ 7° 2 g4

coind (B-o) N (iO(p)—1{FO D FP"Y - dim F,® F' equals -1 ., But
(ic,m)"{FO D P} = m“{po 5P} ., Tt follows that

coind (B-o) N m"1{Fo D Fr} - dim P, @ TF' equals g~-1 for @
large, or equivalently that coind ®|B-0 = g~-1 . Pinally sup-

pose that ¢ < 0 , In this case replace ¢ by the composite map

_q PT
Dx®R* - D - T

which is then Fredholm of index 0 , Again by the first part
of the proof we find c¢oind (BY-0) n (@eopr)_1{Fo D P}

- dim P_® P' = -1 where B'" cD xR ¢ is a small ball of the
form B x B' around o in D xR™¢, suspending

(B-o) n @"1{FO D P'l - q times we get
s"9(B- ) n S"q¢"1{FO D F1) © (B'0) N (popr)” {F @ P} -

s"%4(B-0) n s’q@”j{FO D P
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where the maps are equivariant, Therefore, if the coindex map
is stable, coind (B"-0) n (e apr)"1{Fo @ F'} = coind (B~o) n
cp_q[Fo DY - g or coind {B-o) n c_p"i{FO D FrY - dim P, @ F' =
qg~1 . This again implies coind ¢'B-0= g~-1 .,

In section 7 we give a considerable improvement of theo~
rem 3,1, However, in doing so it is necessary to restrict atten-
tion to cohomology coindices and smooth separable Banach spaces

(i.e., separable Banach spaces with smooth partitions of unity).

4, The degree of a map, We turn to the definition and pro-

perties of the degree of a map, Since eguivariance is irrele-
vant in this case, we may conveniently forget about the involu-
tion T on X . For a more complete discussion we refer to [ 31,
Let ©L(E) Ybe the Banach algebrs of bounded linear operators
on B and GL(E) the multiplicative subgroup of invertible
elements, TLet c¢(E) be the completely continuous operators and
L,(B) and GLC(E) the subsets of TL(E) and GL(E) , respec-
tively, of operators of the form I + T, T € ¢(E) . Then
GLC(E) is a subgroup of GL(®) . It is known that GLC(E) has
two components, We denote the component containing the identity
SLO(E) and the other SL;(E) . Given a Banach manifold M a
c~structure on M 1is an admissible atlas {mi,Ui} maximal with
respect to the property: Tor any i,j the differential d&%g£1)

at any point lies in GLO(E) . The c-structure is orientable if

it admits a subatlas for which the differentials actually lie in

SL,(E) . An orientation is a subaltas maximal with respect to
this property. Observe that any finite dimensional maunifold has
& unique c-structure and that orientability in this case has its

usual meaning. A smooth map f: M - N beitween c-manifolds
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(i.e. manifolds with distinguished c-structures) is a c-map if
for any local representative @jf@i‘q of f the differential
d(ﬁjfmi"1) at any point is in I_(B) . This implies that I

ig Fredholm of index O , Suppose f 1is a proper c-map between
oriented manifolds M, with N connected, Then the oriended
degree of f is defined:

By the Smale-Sard theorem f has a regular value y in N .
Then f"1{y} c M congsts of a finite number of points, Count
these with their proper signs; this gives the degree,

deg f = ¥ sgn dfT .
fo“1{y}

The sign (of £) at x € £~1{y} is determined as follows: Take

1 around x ., The derivative

any local representative ¢jf@i"
d($jf@i"1) at mi(x) is then in GLO(E) since x is a regular
point., Define sgn df_ to be 1 if d(¢jfmi"1) is in 8L (B)
and -1 otherwise. (The value does not depend on the choice
of_local representative,) This definition of degree obviously

e

extends the finite dimensional one, c¢f, 51,

Suppose now that N = E with its canonical c-structure
and that f: M - B is just Fredholm of index O ., Then, by a
result of Blworthy and Tromba 1 3], there is a unique c-structure
Cp = {@i’Ui} on M meking £ a c-map, Ve will say that £ is
orientable if Cp is orientable, Then, if £ 1is proper, the

degree of £ is defined, and it can be shown that up to sign
it is a proper Fredholm homotopy invariant. In particular the
parity of the oriented degree of a nroper Fredholm map f: M- I
of index 0 is defined and invariant under proper Fredholm
homotopies, It is easy to see that this invariant is precisgely

the degree mod 2 of f ag defined by Smale, L7].
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Given f: M - E as above we next turn to the computation
of deg £ Dby homological methods, But first we need a corollary
of a result of Blworthy and Tromba, Ve briefly indicate the

proof,

4,1 Temna, Let f: M - E be a Fredholm map of index O ,

transverse to ET ¢ B, If f is orientable, so is M = g,
Proof, M  is an n-dimensional regulsr submanifold of M

with 2 normal bundle which can be realized ss a tubular neigh-

' can be covered by local

bourhood in M , This implies that II
coordinate neighbourhoods of W (trivial parts of the tubular
neighbourhood), each of which is nicely diffeomorphic to open

0y oy in B, In these trivialigations the

product sets U
local images of N° are the slices U® x O , and the local re-~

presentatives of £ +take the form
(X9Y) - (XF(XSY)s ys(y))

where y': L' - L' is a linear operator on a complement of &,

The reader may check that these trivializations restrict to an

orientable atias on Mn .

Remark, An actual orientation of ce on M regtricts
to an orientation on MV , such that if P m'j are restric-

tions of charts Py P on M to I

SL(E™) if and only if d(;pjcpi”) is in SLC(E) , the differen-

, Then d($3cp3f1) is in
tiels taken at any point in the domain of mE@E—j .

Remark, The considerations above hold under more genersl

circumstances., In particular we later use the sinple generali-
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sation of lemma 4,1 where B is repl:zced by sn open subset N < &,

n

Again consider an orientable proper Fredholm map f: M - D
which is transversal to E ¢ I , with m? and % M - BT as
above, Let y € E' pe a regular value for . Then y is
a regular value for f and f"i{y} = (fn)"1{y} . Choose an

n

orientation for M (with respect to ¢.)., Then M~ inherits

an orientation, and sgn df; = sgn df for all s ¢ f—1{y} , by
the first remark asbove, Thus deg f = deg il However, deg £
can he computed by well known homological methods: Let

y& € Hg(En) be a generator (Cech cohomology with compact sup~
ports, coefficients &), Then deg f is up to sign the value

on Yn of the composite homomorphism

‘ n*
HA(E?) Lo Hl®) = i (%) £

In perticular we can choose yn gsuch that the homological degree
comes out with the right sign,
If E™ ¢ B% are two finite dimensional subspaces of E to

which f 1is transverse we get a diagran

H?(En) £ H?(Mn) =4 HO(Mn) s

1 R S
HY(E™) £ g™ 27 () - T
C C O

vhere Hﬁ(Em) - Hg(En) is the suspension or the Thom isomor~

vhism of the normal bundle of u™ 4in E" , and H?(Mm) - Hﬁ(mn)

igs the composite of the Thom isomorphism H?(Mm) - HE(UH) and

0

the transfer Hg(Un) - Hg(Mn) , U Dbeing an open tubular

m

neighbourhood of M in W%, This diagram commutes when

H?(Em) - Hg(En) is the particular Thom map which sends v ’

to Yn .
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Similarly, if £ ig transversal to an ascending sequence
{En} in B we get an infinite commutative ladder of groups and
homomorphisms, each stage of which computes the degree of f .

Suppose next that in fact a countable collection {En} is
picked out at random in I and that { 1is not necessarily

transversal to {E")} ., ILet {E™} be a sequence of complements

in I ‘to the members of [En} such that we have short exact

geguences
o - B % g B g . oo
n
The composites
f ok
M - B - B

are o-proper Fredholm maps, Therefore thelr regular value sets
Vn are residual by the Sard-Smale theorem, It follows that the
se'ts j"1V are residual, and therefore so is their intersection

non
Vi . If y € V' then jn(y) is a regular value of j of ,
and so the origin o € L is a regular value of o{f-y) .
Then the translate f -~y is transverse to E? for all n .
Hence f -ty is a smooth compact finite-dimensional homotopy
from f %o g = f -~y with g A {E"} . 1In particular deg f

n -1En

= deg g . Now define W ™ = g for n= 1,2,..,, and we

may apply the discussion above with g,gn substituted for fgfn.
Observe alsc that we may choose %yf as small as we want, so
that "f ~(f-ty)}l is small throughout the homotopy.

Finally let V be a closed symmetric neighbourhood of the
origin in E and f: (V,bdV) - (E,B-0) with f proper and
bounded and Fredholm in V - bdV , Then £ bdV is closed and
hence bounded away from o € F , Therefore, if D is a small

round o 1
open ball/in P, M= f D is an open subset in V - hdV and
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fD; M - D is a proper Fredholm map between oriented manifolds,
Then the degree of fp is well defined and obviously independent
of the particulsar choice of D ., By definition this is the de-
gree of f: (V,bdV) - (E,E-0) ., If {EB"} is a flag in B , we
may suppose that £ is transversal to {En} on the interior

of* V , otherwise f can be deformed into such & map by a small
compact homotopy (V,bdV) x I -~ (E,E-0) , and it is easy to
check that the degree stays fixed under such a deformation,
According to our ealier set-up we can now get the degree homo-
logically from the composites

(u®) - &

Nyt Nyadly ~
H, (D7) H (M) £ H

On the other hand we have the commutative diagram {(using earlier

notations and stting B" = vP n bdV)

n W

£
N T ¢ i ¢ ~ ol .
HY (D) Hy (1) = H (™) 7
=y v v }
H (BT g (vEs®y 2o (vRa3h) - oz

C (0]
=z T 1 ‘
¥/ . A
n¥*

£ .
gFHE", B -0) T H#N(VR,BT) = HO(VH-BH) -~ &

Thus we may equally well compute the degree from the composite
map

n':f'
Hn(En,En-O) £ Hn(vnan) o~ HO(Vn—Bn) -

5. Degree and cohomology coindex, We relate the degree to

the cohomology coindex for finite dimensional spaces, Through-
out this section coindex stands for the coindex based on the
%2-characteristio cohomology mav. By a manifold here and in

the sequal we mean o separable metrizable space which carries a
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smooth manifold structure. Relative manifolds are similarly
defined, The extra topological condition is for convenience,
It can be avoided, at least ot the expence of introducing con-
ditions on the maps occuring,

First we make Some general remarks. Consider again the
space X with the fixed point free involution VT and let
p: X = Xy = X/T be the covering map defined by T . Associated
to this double covering is a local system of groups on XT: the
stalk at any point x' € X, is % , and the action of n(XT,x')
on Z 1is given by the representation n(XT,x') - Aut (Z) = &,

which 4is simply the canonical projection
M(Xp,x') = w(Xp,x')/pp(X,x) ,  x €p{xv] .

This is the local orientation system of the covering X - XT .

Ve shall denote it Z Obeerve that the pﬁll—back of %T to

T .
X dis the trivial system % (up to egquivalence).
If XT

equivalent local systems with stalk Z on Xp o It follows that

is path commected, there can be at most two non-

(in any case) local systems with stalk % are self dual under
the tensor pairing: tensor product of a local system with itself

yields the trivial local system, Now introduce the notaticn

Gy = G G5 = vee = B

LI ) EZ

3:'.
G2=G4EG’6

1]

T

Then G, is & local system on X, for n>1 end Z, ® G, =

¢ for all n . MNext observe that if X is 8" with the

n+1
antipodal action, then G, d1s precisely the loocal orientation

system for the mapifold X, = P for every n (cf. [8) 6A3 on
p. 357)
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so that Hn(Pn;Gn) % and HY P66, .) = Z, Dby Poincaré

n+1
duality 1) Furthermore there is the following exact portion

of the Smith-Gysin sequence (with coefficients Gn } of the
double covering p: g™ - pt
) - 0.

L pfigpn, p* mean, S R
0 H(p ,Gn) HH(S:%) H (P 3G

Therefore p* dis always multiplication by 2 ,

5.1 Theorem. Tet 1 be a compact orientable manifold

of dimension n with a fixed point free involution T and

pe M - s an equivariant map of odd degree, Then coind I = n .,

Proof, Let My, be the quotient manifold M/T . There

is a commutative sguare

m(s%z) % H(;Z)

% ! an
p* | b op

M

Hn(Pn;Gn)qE (M5 ¢,)
Let vy € Hn(Pn;Gn) and g € HY(S™;Z) be generators such that
p¥y = 2g and let c = mT*y . Choose an orientation of I and
let [mM] ¢ Hn(M;%) be the corresponding fundamental homology
class., ‘Then ¢, M] dis an odd multiple of g, € Hn(Sn;Z) ( the
dual géﬁrator of g ) since the degree of w 18 oda

and

1) If Y is a path connected space, ¢ a local system on Y with
stalk & , and o: w(Y,y) - Aut (&) +the action of n(Y,y) on &

at a polnt y , then HO(Y;G) Z¢/(g-o(x)g) ,2 € &, x € n(¥,y).



- 22 -

<p¥c,[M])> = <g*p*y,(M]>
= <pFy sCP:‘eEM] >
= <2g, (2k+1)gy>
= 2(2k+1)

If M} dis any component of My , let M' = p"1Mé . Again

by Poincaré duality W (3G ) %% if G, is the orientation
system of M%

tion system of Mé . In the latter case (p!M')*c = 0 since

and H(MysG ) ~ &, if ¢, 1is not the orienta-

¢l is of finite order. Hence there must exist components

7
T

M&

ponent the map p¥: Hn(Mé;Gn) - Hn(m‘;%) sends a generator to a

for which Gn is the orientation system, For such a com-

class whose value on M1 dis %2 . Therefore
ciMt = 0 (mod 2)

if and only if
<p“(ciMi),[M‘]> = 0 (mod 4)

Since <p*c,[M]> = Z<p*(ofMé),[M‘]> , the sum Z<p*(c|Mi),[M']>
is not zero mod 4 . Therefore, for some component My

o!Mé £ 0 (mod 2) ., Hence ¢ £ 0 (mod 2) . PFinally, if

cq € HT(MT;%Q) is the characteristic class of the covering
M - My , then cg € Hn(MT;ZE) is the reduction mod 2 of ¢ ,

hence c% # 0 ., It follows that coind M > n . This completes

the proof of the theorem,

5.2 Corollary. Let (X,A) be a compact orientable

smooth relative manifold of dimension n with a smeooth involu-

tion 2) which is fixed point free on A , Let

2) Mapping A to A , of course,
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w: (X,8) - (B",B"0) be an equivariant map of odd degree with

respect to the origin o ¢ R™ . Then coind A =n -1,

Proof, Let X = m"1{0} . Then K contains the fixed
points under the involution and X is bounded away from A ,
By the continuity property there is a closed invariant neighbour-
nood U of A disjoint from K such that coind U = coind A .
Let Y =X-K and Y, =Y/t , A,=A/T, where T is the in-
volution, Then (YT9AT) is a smooth relative manifold and
Up = U/T is a closed neighbourhood of Ap o Let Nj <Yy be
an n-dimensional manifold with boundary BNT = MT such that
Iif and Y

c Y, - A - int U, < W, - M, . Then M, is con-
T T il T T

T A T
tained in UT ., Let M bhe the 1ift of MT to Y < X . Then

M is a compact orientable manifold of dimension n -1 contained
in U and so T ig fixed point free on M ., Consider the equi-

variant map

®

oL R0 - s

The degree of this map is clearly equal to the degree

with respect to the origin of ©: (X,4) - @ ,E-0) °

hence it is  odd, Now apply theorem 5.1 to get coind M=n-1,
Since M < U , coind M < coind U = coind A , Thus coind A>n-1,
But clearly also coind A < coind B™-0 = n-1 , This completes

the proof of the corollary.

6. Equivariant transversality. In this section we prove a

transversality theorem for equivariant map.

A manifold V is said to be smoothly normal if given dis-

joint closed sets A,B ©¢ V there is a smooth function =n: V - R

such that:
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(1) n{x) €I for oll x €V

(2) wn(x) =0 for x €A

(3) n(x) =1 for x ¢ B

(4) m{x) = 0 implies all partial derivatives of all

orders of 7 vanish at x .

Any manifold modelled on a separable Banach space with smooth

partitions of unity is smoothly normal,

Ve first prove the following local result,

6.1 Temma, Let V Dbe a smoothly normal manifold with

closed subsets A,B ., Let E be a Banach space and {E"} a coupt~
table 3 collection of finite dimeunsional subspaces, ' and:
let o@¢: V - E be a Fredholm map which is transversal to {Ep]

on some neighbourhood of A ,. Given ¢ > 0 and a closed neigh-

bourhood NB of B +there is a smooth homotopy

H: VXI - B

such that

(1) H(x,0) = o(x) .for x €V,

m

(2) IIH(x,t) - @o(x)]l <e¢ forall xe€VvV, t 21,

(3) There 1s a one-dimensional space 2, ¢ E such that

H(x,t) -~ »(x) € B, for all x €V, te€I,

(4) There is a neighbourhood Ny of A such that
H(x,t) = o{x) for x €N, , t€T1,

%) The cases of principal interest are. when [B%} is a finite

collection (e,g. with one member) or & Tlag,



(5) H{x,%) = p(x) for x €V-Ny, t €I,

(6) H(.,1) dis transversal to {F’} on some neigh-
bourhood of B .,

Proof., Iet U Dbe an open nelghboﬁrhood of A such that
and let M be 8, closed neighborhood of B containedin intiy
» is trensversal to (E°} on U,/, Then AH(anntNB) is a
closed set disjoint from the closed set M -« U, Let N be a
closed neighbourhood of AU(V-intlly) disjoint from M - U .
Since V is smoothly normal there is a smooth map nt V- R

such that

(1) n{x) €I for all x €V,

(2) nu(x) =0 for x €N,
(3) n(x) =1 for x €EM~U,
(4) n(x) = 0 implies all partial derivatives of n

vanish at x ,

Then 1?“ (V-n"1(0)] - B 1s & PFredbolm map so that, by

[7 theorem 1.3)
Smale's theorem/,there is YeP with |yl <1 such that

1§ﬁ +y dis transversal to (E®} on V - n"'(0) . Then

H(x,t) = o(x) + t en(x)y

is a homotopy satisfying (1), (2), (3) trivially. TFor (4) we
observe that N will do as Ny in (4). Tor (5) we have that

N o (V-intly) > V~N, so H(x,t) = o(x) for x €V-N;. For

B
(6) we have that H(.,1) = » + eny is transversal to [E'} on

vV - n-1(0) . Also it is transversal to ({E"} on Ufln"1(0).Sihce
Mfqu(o) cun n"1(0), it follows that H(.,1) is transversal

to {E"}. on M "and this is a neighbourhood of B ., Hence,
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(6) holds and the proof is complete,

Now we prove the following global resuls,

6.2 Theorem, Let T be an involution on a smoothly

normal manifold X and let X be the set of fixed points of ¥,
Let B be a Banach sﬁggi/[En} a countable collection of finite
dimensional subspaces, and suppose ¢: X - E is an equi~
variant Fredholm map which is transversal to {E")} oﬁ a neigh-

bourhood of K . Then there is a smooth homotopy

H XxXx1I - B

such that:
(1) Porany t €I, H(.,,t): X - B is an equivariant
Fredholm map.

(2) There is a compact subset C < B such that

H(x,t) - o(x) € C forall x€X, te€1,

(3) fThere is & neighbourhood N of X such that
H(x,t) = ¢(x) for x €N, +t €I,

(4) H(+,1) 1s transversal to (B"} on all of X .

Proof, Let VW be a neighbourhood of X on which ¢ 1ig
trensverse regular to (B") and choose a neighbourhood W' of
K with W' cVv ., Iet {Ui,Vi} be a countable collection of

open subsets of X such that:
(a) Uv, v Usv, = x-x
(b) vV, is disjoint from oV,

(¢) U, < vy
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By induction on i we construct a sequence of homotopies

H.o: X xI - F for 1 =1,2,,.,, such that:

(d) HT(’so) =9

(e) Hy 4(-,0) = H,(+,1) for 1ix1

(f) There is an element y; € P with Hyiﬂ < é% such
that Hi(x,t) - Hi(x,o) is in the closed interval
joining ~¥ to Vi

(g) Hi(o,t): X - P is an equivariant map ,

(n) Hi(x,t) = Hi(x,O) on some neighbourhood of

tWe-xl o0y Uewou U5y U 00, UL 1T,

(1) Hi(-,1) is transversal to [F"} on some neighbour-

hood of Ui U TUi .

Assuming Hj defined for j < 1 where 1 > 1 1let
Py_q = Hi_1(»,1) (or o, = o 1in case 1 = 1), Then P _q 18
transversal to {F"} on some neighbourhood of
Ofv-xl u Ty uesou U,y 0 I0, ULLU T0, 4 . Tet
A = (TVW - K] uﬁ1u...uﬁi_1) nv, and B, = ﬁi .  Applying the
local lemma 6,1 to @1_1;Vi with 4,,B, closed sets in V,

with e = ;% and with Ny  any closed neighbourhood of B,
i
contained in Vi we obtain a homotopy

Ji: Vi x I - B

such that:

(3) Ji(x,O) = @i~1(X) for x €V,

; v wiin e o< L
(h) There is y; € P with in” < S such that

Ji(x,t) - @i_1(x) is in the interval from -y, to y,; .
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(1) Ji(x,t) = mi_q(x) in some neighbourhocod of Ai

(m) Ji(x,t) = mi_q(x) for x € V, - NBi

(n) Ji(-,1) is transversal to [F'} on B,

Define Ji: TV, xI - T so that Ji(xgt) = Ji(TX,t) .

By (m) we can extend J, and J! to a homotopy

H.:e X x I - m
1

such that I, V,xI =Jd,, H TV,xI = J}, and Hi(x,t) = cpi_j(l{)
for x € X - (ViUTVi) .+ Then M, has the properties (a) - (4)
inclusive,

With the H, defined we define H: X X I - P by the

formula
t~(1_% o ,
i A4
H(x,1) = Hi(x,T) , X EU,UTU UK

Then H has properties (1) and (4). It also has property (3)
because H(x,t) = @(x) for x € W' , +t+ &¢I, To show H has
property (2) let ¢ be the set of sums of Eﬁq,yj] + Dyé,y2}+... .

This is compact because ﬂyiﬂ < ?% . Then

H{x,t) - o(x) € ¢ forall x¢X, t €1,

completing the proof.

7, Global coindex of a Fredholm map,. We assume E 1is a

separable Banach space admitting smooth partitions of unity
and coindex is the coindex based on E2~0haracteristic cohomo-

logy class,
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7.1 Theoremn, Let V be a closed symmetric neighbour-

hood of the origin in £ and o: (V,bdV) - (E,E-0) a proper
equivariant Fredholm map of Fredholm index 0 . Suppose o 1is

bounded and orientable of odd degree relative to the origin.

Then
coind @, bdV = -1
Proof, First observe that since obdV ¢ E-0 , it follows
that coind o;bdV < -1 , Thus it suffices to verify the opposgite

inequality, Next, since ¢ 1is Fredholm of index 0 at the
origin, there is a finite dimensional map *: V - E with support
in int V such that o+% 1is a local diffegmorphism around the
origin besides being proper equivariant and Predholm of index O
(cf, first part of the proof of theorem 3.1). Since the degree
only depends on the values of the map at bdvV , ¢+ 9% also has
odd degree with respect ot the origin in T , and

since the coindex is invariant under finite dimensional perturba-

tions, coind (@+%)bdV = coind ¢ bdV , Thus we may as well
work with o+ V¥ , or what comes to the same , we may as well
asgume that o dis a local diffeomorphism at the origin,

Next let {B"} be a flag in I, Since ¢ 18 a local
diffeomorphism, x is transversal to {En} in a neighbourhood
around the origin in E . By theorem 6,2 there is a map
o': (V,bdV) - (E,E-0) smooth on int V and transversal to {En},
which is homotopic to © through smooth equivariant compact
perturbations of o . In particular o' 1is proper orientable
equivariant and Fredholm of index O and has odd

degree . Moreover, by corollary 2.3
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coind o' 'bdV = coind wjbdV , Again we may as well continue with
' instead of ¢ , or equivalently, we may suppose that ¢ is
transversal to (B} on int V . Next, let V* = o  #% ,

B" = bav n V' , Then the (Vn,Bn) are coherently orientable
compact invariant relative manifolds of dimension n ; compact
since the o, V%: Vv - F? are both proper and bounded and coher-
ently orientable by the remark following lemma 4,1, At this
point we shall use the fact that both the degree and the coindex
are computable by means of the flag {En3 ;, 1.e. in terms of the
filtration {Vn,Bn3 on V,hdV , For the degree this means the

following: There is a commutative diagram

Hn+1(En+13En+1_O) % Hn+1(vn+1’Bn+1) ~ HO(VH+1»Bn+1) 7

I

3 1 ? T 1a.

"y

.x_
(", ER-0) 20 (R, 3" H, (VI-B) - %

where the two first verticsl maps are ‘transfers induced by the
respective normal structures, and the third vertical map is in-
duced by the inclusion, The unspecified horizontal maps are
duality isomorphisms and augmentations, Thus the unique gene-
rators of the groups H(BE",2"-0) are all mapped to the same
element of Z by the composite horizontal maps, This element
is the degree of » with respect to o 2 B (ef, section 4).
By assumption it is odd, Similarly coind m;bdV is computable
in terms of the filtration BY; i.e. coind @|bdV > -1 iff
coind B" > n-1 for all n (cf, theorem 2.4).

The result now follows from corollary 5.2 which applies %o

the relative manifold (V°,B™) .
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Remark, According to Blworthy and Tromba [ ] the map o
is always orientable and of odd degree if Ko(V) 4is the trivial

group, e.g., if V is contractible,

Remark, The proof of theorem 7,1 applies without change
to the more general case where (V,bdV) is replaced by a rela-
tive manifold (X,A) with invelution modelled on a smooth
Banach space E , except for the first part where ¢ has to be
modified (smoothly, eguivariantly, +++) so as to be transversal
to the flag {En} on a neighbourhood of the fixed point set C ,
Since C must be compact, this can probably always be done,

fully ; .
The proof/covers the case where € 1is empty or contains one

noint.
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