Ui0O ¢ Department of Informatics
University of Oslo

A Biomorphic model for
automated cloud adaptation

Web server scaling based on cellular differentiation as a
case of adaptive behaviour

Gyorgi Stoykov
Master’s Thesis Spring 2015

A Biomorphic model for automated cloud
adaptation

Gyorgi Stoykov

May 18, 2015

ii

Preface

This work is dedicated to:

¢ Tanja Turundzieva - My loved mother for bringing me to this world
and providing her unconditional love. Thank you for being always
there for me. I love you.

¢ Gligor Stojkov - My supportive father that has been my strong
support at all times. Thank you for all the smart advices that you
have given me (even those which I didn't listen to). I love you.

* Aleksandar & Andona-Marija - My smaller brother and sister who
I love more than everything in this world. I will be there always for
you, you can always count on your older brother.

* Baba Mare & Dedo Done - My grandmother and grandfather that
have taught me the most important things that matter in life. Thank
you for raising me up and for teaching me how to ski and ride a
bicycle. Sometimes small things matter the most in life.

* Baba Bote & Dedo Gogo - My grandmother for being a great
professor that taught me the value of academics and a person that
had strong influence in my life decisions. My grandfather with whom
I share the same name with and who I wish was alive to be proud of
his grandson.

* Vujce Sase - My uncle who is and always will be my idol. Thank you
for teaching me how to swim and how to treat ladies.

¢ Teta Zana - My aunt for giving me life advices that always made me
think. Thank you for making all the school projects with me.

* Gjorgi Stankoski - My stepfather for being the person you can rely
on when it matters.

* Makso, Dejan, Stefan & Martin - My best friends which are my fam-
ily. Thank you for your support and love through all these years.

I want you to know that without you I wouldn’t be what I am today

ii

iv

Abstract

Cloud computing is one of the most discussed areas in computer science in
the last years. Although there is an extensive amount of research covering
this field, the field of bio-inspired cloud computing is underinvestigated
when compared to the general research area. This study tries to find an-
swers on how a biomorphic model can be implemented in the cloud in
order to achieve adaptive cloud behaviour.

The process of cellular differentiation where cells transform from one
type to another, is chosen to be the foundation model for a developed tech-
nical model. We define analogies to the cloud where stem cells are blank
servers and web servers are cells with a specific function. With a combina-
tion of configuration management, version control and cloud deployment
systems, an imitation of this biological process is applied in the cloud. The
use of automated cloud scaling as a case of adaptive behaviour is the main
goal of the research.

Two different approaches have been developed for mapping the
biological model to the cloud. The first approach consists of a prototype
where the signal detection and node activation is being triggered by
using the concept of random generated timers. The second approach is
based on the concept of random seeds which are used to coordinate the
transformation procedure. The project results were able to adapt the cloud
based on current needs, with each prototype having its advantages and
disadvantages over the other.

vi

Contents

1 Introduction

2 Background

2.1 Configuration management and deployment technologies .
211 Puppet
212 MLN&ALTO.........
21.3 Git- Version Control System

2.2 Cloud computing and virtualization
221 Virtualization
2.2.2 Cloud types, platforms and providers
2.2.3 Cloud computing from a business standpoint

2.3 Relevant work in bio-inspired cloud computing
2.3.1 Biomorphic characteristics
2.3.2 Artificial Inmune Systems
2.3.3 Artificial Hormone Systems
234 Particle Swarm Optimization
235 AntColony Optimization

3 Approach

31 Objectives

32 Designstage oo
3.2.1 Biologicalmodel
322 Technicalmodel
3.2.3 Two algorithms for prototypes
3.24 Underlying infrastructure

3.3 Implementation and experimentationstage
3.3.1 Necessary tools to build themodel
3.3.2 Infrastructure deploymentscript
3.3.3 Prototypes of the two algorithms
3.3.4 Testing the correct functioning of the setup

3.4 Measurement, analysis and comparison stage

3.4.1 Measurement and plotting scripts
342 Experiments
3.4.3 Data analysis and comparison

vii

O 0 0 N U1 U1 »1

12
14
16
16
16
20
21
21

4 ResultI- Design and models
41 Biologicalmodel
42 Technical model and Prototype Designs
421 Infrastructuredesign
422 Networks & Domains
423 Server Deployment and Configuration
424 Deployment script - deploy.py
425 Puppet .pp file generator - createpp.py
42.6 Signalling and sensor part of prototype
427 Scalingdown-resetpy
4.2.8 Monitoring and plot script - monitor.py + plot.py . .

5 ResultII - Implementation and Experiments
51 MLNskeleton
52 Puppetskeleton o 0 oL
5.3 Deployment Framework
54 HAProxyandPHP
55 Testing and experiments, .

6 Results III - Measurements and Analysis
6.1 Timing Algorithm

6.1.1 CPU and memory performance in timer interval 1-5
minutes

6.1.2 CPU and memory performance in timer interval 5-10
minutes

6.2 Random Seed Algorithm
6.3 Scalingdown

7 Discussion
7.1 Projectevolution
7.2 Algorithm comparison and proposed improvements
72.1 Timingalgorithm
7.2.2 Random seed algorithm
723 Improvements.
73 Futurework

8 Conclusion
Appendices

A Puppet and MLN files
Al MLN-buildmln
A2 Puppet
A21 Functional.pp.
A22 Stem.pp

39
39
42
44
44
46
47
49
49
58
58

61
61
63
65
66
67

69
70

70

71
72
74

77
77
78
79
79
80
80

83

91

B Frameworks and configuration files 97

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8

deploypy 97
createpp.py oo 99
signalpy 99
listen-1.py 100
listen2.py 101
reset.py 102
moNnitorpy 104
haproxy.cfg 105

ix

List of Figures

2.1
2.2
2.3
24

2.5
2.6

3.1
3.2
3.3

4.1

4.2

4.3

44
4.5

4.6
4.7
4.8
4.9
4.10

6.1

6.2

6.3

Puppet configurationrun
[lustration of a full virtualization architecture
Ilustration of a partial virtualization architecture
The three cloud service layers and the different services
insideofeachlayer
Layers and processes in the vertebrate immune system . . .
Layers and processes in a network-based artificial immune
system

Overview of planned tasks in the design stage
Overview of planned tasks in the implementation stage . . .
Overview of planned tasks in the analysis and comparison
stage

A graphical illustration of the process of chemical diffusion
orcell signalling
Chemical signals in the environment provoke changes in the
gene expressions resulting in cell differentiation
Cellular division plays an important role in the tissue
repairing pProCess v v u i
OpenStack Network Design
[lustration of a completely automated deployment process
fromstarttofinish
Design for the automatic deployment script - deploy.py . . .
Random Scenarios for algorithmone
Random Scenarios for algorithmtwo
The logic difference in the prototype algorithms
Biological model vs Technical model

CPU and memory performance in a scenario where the first
timers are distributed in a time interval between 1 and 5
minutes
CPU and memory performance in a scenario where the first
timers are distributed in a time interval between 5 and 10
minutes
CPU and memory performance from the random seed
algorithm which spawns one virtual machine instantly, and
one in every third minute afterwards

xi

6.4 A view of the system’s average resource parameters during
the process of infrastructure downscaling

Xii

List of Tables

2.1 Overview and comparison between different cloud solutions 13

4.1 Proposed analogies for the biological and technical terms . . 42
42 Elements in the design of the underlying infrastructure . . . 45

xiii

Xiv

Acknowledgements

I'would like to thank the following people and organisations of the support
that they have given me:

* Paal E. Engelstad - For being a true mentor and my support not only
in the academic field, but also personally. I greatly appreciate the
teaching positions that I have been offered. It is and always will be a
pleasure to work together with Paal.

* Anis Yazidi - For being my thesis supervisor, being dedicated and
available at all times. Without his contribution and feedback, the
quality of this thesis wouldn’t be on this level.

* Kyrre Begnum - For helping me always when I get stuck with his
extensive technical knowledge and for teaching me so many things
about system administration. I am thankful for the chance to attend
the LISA conference and I hope I will attend it again some day in the
future.

* Harek Haugerud - For allowing me to teach the security course and
all the things I have learned about IT security. I also appreciate the
opportunity for the Trondheim trip and I hope I can attend another
trip like this in the future.

* University of Oslo and Oslo college of applied sciences - for
providing me the opportunity to take part of one of the best system
and network administration degrees in the world.

¢ All of my peer students - that took the programme together with me.
Thank you for being such good friends and making Norway feel as
my second home.

XV

XVi

Chapter 1

Introduction

A few decades ago, system administrators were taking care of infrastruc-
tures that had been constructed in a centralized manner. Depending on
the size of the infrastructure, the number of servers varied, but each phys-
ical server was only running one operating system. Using some of today’s
popular data center virtualization technologies, a single hardware node can
run more than 1024 virtual machines in parallel [75]. With the current ex-
pansion of cloud based computing and its promising business aspect, there
is no doubt that cloud computing is the future in IT [45]. Most companies
that are following the current trends already have their infrastructure run-
ning in the cloud. Some companies that are usually larger in scale build
their own private clouds, while other choose to host their infrastructure in-
side a public cloud using cloud service providers. One of the benefits of
using a cloud infrastructure is having a distributed system across differ-
ent locations to improve performance. Other benefits include scalability,
redundancy and decreased operation costs when compared to traditional
infrastructures [39].

The increased amount of VMs compared to physical servers made tra-
ditional system administration tools inefficient, especially in the case of
large infrastructures. A common example for this, would be executing
commands through SSH to deploy new software packages and to modify
server configuration. In the case of a small company where this has to be
done on a couple of machines, completing these tasks is not time consum-
ing. On the other hand, if the company owns hundreds or thousands of
servers which are managed by a couple of system administrators, this be-
comes a problem. One solution to this problem would be to develop scripts
that automate these daily tasks. The drawback of using this approach is
that when something has to be changed inside of the server configuration
or something additionally has to be installed, the automation script has to
be continuously modified by the system administrator to be able to com-
plete the different necessary tasks. To overcome these challenges, the use of
configuration management systems can be implemented in the infrastruc-
ture to manage server configuration. Moreover, configuration management
systems do not have the ability to manage tasks like creation of new VMs,

managing hardware resources, shuttuing down or powering on existing
VMs, but they can be combined with deployment systems and scripts to
achieve an infrastructure where administration tasks are automated and
efficient.

The goal of this paper, is to explore how one can design and implement
a reactive system situated in the cloud which will demonstrate adaptive be-
haviour by utilizing different large-scale system administration tools which
include MLN [5] as a VM deployment tool, OpenStack [61] as a cloud plat-
form, Git [34] as a software deployment tool and Puppet [42] as a config-
uration management system. Configuration management will be used to
ensure a safe transition at runtime from the current to the new configura-
tion [54] [30]. Adaptive behaviour is a broad term and can be demonstrated
within different spheres of informatics, ranging from software develop-
ment [63] [77] to database [38] [44], network [69] [16] and system [1] admin-
istration. In principal, adaptation means that the system reacts and changes
itself based on certain parameters. These system changes can be observed
in the application code, in the database, in the operating system configu-
ration or in the hardware specifications depending on how the model for
adaptation is constructed. This project will use automated scaling as a case
of adaptive behaviour. Most projects in the area of cloud auto-scale are
based on a centralized model, where a controller is responsible for scaling
the virtual machines based on the systems needs[1] [10]. In some cases, tra-
ditional centralized management approaches may not be optimal because
of the single point of failure, dynamic requirements of applications and the
dynamic resources provided in cloud environments. On the other hand,
there are few approaches which are built upon a decentralized model, and
even fewer are bio-inspired which led to a different approach in this thesis,
by designing and building a decentralized model where the nodes have the
ability to regulate themselves, thus having an impact on the whole system.

In order to design adaptation models, one could try to search for adap-
tation examples and sources of inspiration beyond of the area of computer
science. One such source which contains countless examples is nature itself.
For example, one of the most primitive adaptation mechanisms in nature is
cellular differentiation which also falls under the area of bio-inspired com-
puting and is the fundamental inspiration to our approach. In essence, a
biomorphic design is just a design extracted from biological systems and
processes. This term was first invented by a zoologist named Desmond
Morris and it was popularized by Richard Dawkins in one of his most pop-
ular books [15]. A characteristic that is common among all biomorphic
models is that these systems are all self-organizing and dynamic. In such
models, solutions to problems arise as a result from interaction between the
individual components in the system, rather than from applying an exter-
nal mechanism or alghorithm [43]. Computer programs and systems that
have a biomorphic design are not controlled by a centralized entity and
each element inside of the system is responsible for regulating itself. In the
field of bio-inspired computing there are many models directly inspired

2

by nature, but to the best of our knowlegde biomorphism in a virtualized
cloud environment is a model that was not applied before. An alternative
term that is often used in the relevant field is biomimetric. Unlike biomor-
phic, this term refers to mimicking a certain biological behaviour rather
than being an analogy. This thesis tries to find answers on how we could
build a biologically inspired model into the cloud and what analogy can we
make with natural models like cellular differentiation? Cellular differentia-
tion is simply a process in which a less specialized cell develops to possess
a more distinct form and function in developmental biology [63]. If we look
at the cloud as the organism environment can we look at the servers as in-
dividual cells? Different types of cells have different responsibilities inside
of the organism and so do servers inside of a system. At the same time,
there are cells of the same type form tissues and organs and there are cells
without a function that can become anything like stem cells. Just as servers
with the same function are combined in clusters, there are servers which
have no configuration and are ready to be provisioned and configured to
become servers of a specific role. The role of a cell is defined by it's DNA
and so is the server role defined by it’s configuration files.

Problem Statement How to design and implement a biomorphic model for
achieving adaptive system behaviour in the cloud.

Chapter 2

Background

This chapter includes introduction to the multiple technologies that will be
used in the later chapters of this project, as well as a review of relevant
work and a presentation of several concepts in the field of bio-inspired
computing.

2.1 Configuration management and deployment tech-
nologies

Configuring servers for a specific role and maintaining the state of those
servers is a daily system administrators responsibility. In the recent pe-
riod there has been a significant rise in popularity of virtualization and
cloud computing, mainly due to the significant diminished performance
overhead of virtualization over the past few years [56]. Working with big
amount of servers very often requires automation and system administra-
tors use additional tools in order to automate daily tasks that require hu-
man interaction. Automation in big environments allows administrators
to save time and to be more efficient. One type of automation tools that
are used in big environments are configuration management utilities. Sys-
tem administrators use configuration management utilities mainly in order
to apply or change configuration files among servers in the company’s in-
frastructure and verify the correct functioning of services once configura-
tion changes happen. One of the most popular tools used for configuration
management is Puppet [42] together with CFEngine [3] and Chef [33]. For
the purpose of this project, Puppet will be implemented as a configuration
management system within the biomorphic model.

2.1.1 Puppet

In most environments, Puppet works in a client-server architecture which
is often the preferred way of building a configuration management system.
Alternatively, Puppet can be run as a standalone software, using only
the agent software combined with local puppet configuration files. In
a client-server model, the server is called a "master" and the clients are

called "agents". This software supports managing agents for both Unix-
based platforms including packages for different BSD and Linux operating
systems, as well as Windows platforms. On the other hand, operating a
puppet master on Windows servers is not supported and no package is
available for installation.

Puppet uses its own declarative language which is used to make state-
ments about the state of the configuration. An example of such declaration
would be declaring that a certain package should be present on the system
or that a service should be running. Unlike traditional custom developed
configuration tools which are procedural (i.e. they describe in what order
and how things should be done), Puppet requires users to describe the de-
sired state of the system and takes the responsibility of how to achieve this
state including the related details. By using a tool called Facter, the Pup-
pet agent reports information to the master. This information includes the
operating system that the agent is running, the IP address, hardware infor-
mation and other useful facts. By knowing such facts, Puppet can make de-
cisions on how to achieve the desired outcome. For example, by knowing
the remote operating system, Puppet can choose the appropriate package
manager and repositories that are used by that OS to install a package. If
the system is running a Red-Hat based system, Puppet will find the appro-
priate package name and install it using the "'yum’ package manager and if
the system is running a Ubuntu based OS it will execute the same proce-
dure with using the “aptitude’” package manager instead.

[Puppet Agent]

Report
Information to
Master

Apply
catalog
configuration

Gather facts
about node

N RN

Send request to Master Send catalog of
over HTTPS resources

[Puppet Master]

Check
for
Catalog

Compile
Catalog

[nodel.pp I node2.pp I node3.pp I node4.pp]

Figure 2.1: Puppet configuration run

Applying of configuration with Puppet is illustrated in Figure 2.1 and
the whole process is called a Puppet configuration run. All configuration
information is stored on the master side where Puppet runs as a deamon
waiting for requests. For each node that runs a puppet agent, there
are specific files that contain all configuration information located on the
Puppet master and referred to as 'manifests’. These files have a ".pp’
extension and can contain classes which have predefined packages and
configurations, commands which should be executed on the specific agent,
different types of checks for states of services and installed packages, as
well as other system administration tasks. All of these files are included
into one central file called ’site.pp’. One could also add node configurations
directly to this file as well, instead of a separate manifest file. The requests
for configuration initiated by the agent are executed automatically every 30
minutes by a deamon and through an encrypted connection using SSL, but
can also be requested manually if needed. Each time a request is executed
from the agent side, the catalog for that specific node will be served to the
client. The agent will apply the configuration from the catalog and report
the outcome of it to the master. If the agent has no configuration available
in the catalog, or if the configuration has already been applied, Puppet will
not do anything. This is a key feature of Puppet and is called idempotency
[40].

2.1.2 MLN & ALTO

The deployment of all the servers will be done in HiOA’s private cloud
named ALTO [58]. The cloud is running OpenStack which is currently one
of the most used open-source cloud computing platforms. OpenStack will
be responsible for the virtualization layer, together with assigning the stor-
age,memory,computational and networking properties of the provisioned
nodes. The cloud provides a Web based GUI from which the hardware
specification and deployment of the nodes can be finished. The drawback
of using the GUI is that it requires human interaction and it is not suitable
for automatic deployment and provisioning of new nodes. To overcome the
need of human interaction and automate the deployment process, Open-
Stack can be managed through MLN.

MLN [5] is a tool used for distributed infrastructure deployment and
it provides the capability for managing virtual machines in the cloud.
The tool supports cloud VM management for both Amazon EC2 and
OpenStack. MLN uses templates with pre-configured parameters, where
one could specify a variety of things from hardware specifications to
startup commands. The structure of the template is object-oriented alike
and it allows creation and use of variables and super-classes. This provides
the ability to deploy a large amount of virtual machines in the cloud at
once which for the current operalization of this project is not needed, but
could be used for future work when expanding the developed frameworks
to provide additional functionalities.

2.1.3 Git - Version Control System

When working everyday with codes and data, multiple changes are done
as the software is developed. Most often in big environments many peo-
ple tend to work on the same project at the same time. While developing
the software, it is likely that the code is frequently going to have logical er-
rors and will not work as intended. This is why it is of crucial importance
to keep track of changes that have been made to the software, so that one
could reverse back to a previous software version if needed. With using the
main features of Version Control Systems, one could keep track of changes,
save software versions, revert back to previous versions and use the VCS
to deploy a specific version of software. The most popular VCS is called
“Git” and will be used for this project.

Git is a distributed VCS which has the same software version database
spread over many nodes providing redundancy and allowing multiple
users to work at the same time. As with the above mentioned tools,
Git can be easily obtained as well, using the standard package manager
for any Linux distribution. There are many platforms offering public Git
repositories which are used for storing and managing software codes. The
most notable one is named “Github” and will be used in the proposed
bio-inspired model to deploy a specific software version once the nodes
have been provisioned by MLN and configured by Puppet. Moreover,
implementing Git in this project will allow an easy transition to updated
or new versions of frameworks in future work based on this project.

2.2 Cloud computing and virtualization

One of the most popular expressions used in relation to today’s technology
is the phrase ‘Cloud Computing’, appearing more than 110 million ! times
in websites on the Internet. Although the origin of the term is not clearly
defined, the earliest occurrence of this term used in nowadays connotation
can be traced back to 1996 in one of Compaq'’s internal documents [62]. A
number of factors contributed to the popularization of this phrase, but it is
certain that some of the most important powers that started this popular-
ization were Google who used it for the first time in an industry conference
[27] and Amazon by introducing its elastic compute cloud project [66] in
2006.

There are many different definitions on cloud computing, but gener-
ally the cloud can be viewed as a pool of combined physical and virtual
resources that are available for leasing by cloud users. Using cloud com-
puting provides users with several benefits, some of which include elas-
ticity, scalability, availability, pricing flexibility, reliability and on-demand
services. Elasticity and scalability refer to the ability of the resource pool
to grow and shrink based on users needs. The integration and combina-

IStatistic extracted using Google to search for "cloud computing” on the Internet

tion of countless virtual and physical computing nodes, storage blocks and
networks completely removes the single point of failure and offers redun-
dancy and quality of service at all times while these features are available
whenever the users need them. Moreover, the users only pay for the time
in which they actually use the resources avoiding the need of infrastructure
and operations related investments.

One of the most commonly used definitions that approximately
describes cloud computing has been coined by Mell and Grance in their
paper “Effectively and securely using the cloud computing paradigm”
[48] and was later published by the National Institute of Standards and
Technology of the USA (NIST), stating that :

Cloud computing is a model for enabling convenient, on-demand
network access to a shared pool of configurable and reliable computing
resources (e.g., networks, servers, storage, applications, services)
that can be rapidly provisioned and released with minimal consumer
management effort or service provider interaction

2.2.1 Virtualization

Virtualization as a term is often being interchangeably used with cloud
computing, but although cloud computing is based on virtualization, a
differentiation between these two terms has to be made. Virtualization
refers to the ability of sharing hardware i.e. computing and storage
resources among many different operating systems and it was pioneered
by IBM in the mid 1960’s. In virtualization, a hardware machine often
referred to as "host" provides, controls and allocates the hardware resources
that are being shared by virtual machines called "guests" by using a virtual
machine manager named hypervisor [14] [31]. Basic server virtualization
as a concept can be seen as limited and centralized since only one particular
hardware machine provides the computing resources to all VM operating
systems, while cloud computing additionally allows the capability of
distributing these resources through the network.

Virtualization Types

There are different classifications of virtualization depending on whether
a system (server and desktop), infrastructure(network and storage) or
software(application) virtualization is being discussed. The most general
and commonly used categorization includes three types of virtualization,
namely full virtualization, partial virtualization and para-virtualization [9].

Full virtualization

In full virtualization, the host is not running any particular operating sys-
tem. Instead, the hypervisor is replacing the most important functionalities
of the OS. The benefits of using this type of virtualization and hypervisor

9

which is also called native or Type 1 [80] [11] [28] are demonstrated with in-
creased performance due to the removal of the OS layer between the hard-
ware and the virtual machine. The most common examples for this type
of hypervisor include KVM [41] [28], Microsoft Hyper-V [50], Xen [23] and
VMWare ESCi [37].

With using this type of virtualization, the result is that the guest
operating system is unmodified and unaware of the virtualization and the
actual hardware underneath. Additionally, there are security advantages as
well when using this type of virtualization compared to others, mainly due
to its isolated nature. A graphical illustration of how a full virtualization
architecture resembles is presented in Figure 2.2.

Full Virtualization

Applications Applications Applications Applications
Virtual Machine Virtual Machine Virtual Machine Virtual Machine
@
: & || O
-
HYPERVISOR
\ J
4)
HARDWARE
o J

Figure 2.2: llustration of a full virtualization architecture

Partial virtualization

Partial or frequently called OS-based virtualization is inferior to full
virtualization and mostly used on personal computers. On the other hand,
sometimes it can be the preferable option over full virtualization due to
the fact that the deployment can be carried out in a simple manner and
often it is efficient enough for small environments or testing purposes. As
the name suggests, it runs on top of an operating system running on the
host machine, but it uses a different type of hypervisor. This virtualization
and hypervisor type is named hosted or Type 2 and it is running as an
application which makes it highly dependent on the processes happening
inside the operating system. For example, if there is a process that causes a
system corruption or error in the host operating system, it will in most cases
have a negative effect on the virtual machines as well. Some applications

10

using this type of hypervisors include Oracle VirtualBox [57], VMWare
Workstation [36] and Microsoft Virtual PC [51]. A similar graphical
representation to the previous figure is shown for partial virtualization as
well in Figure 2.3.

Partial Virtualization

Virtual Machine Virtual Machine Virtual Machine

Virtual Machine

0\0 \Z
0@ @ W' HYPERVISOR
. ‘x\) o (\{\9
|\

HARDWARE

Figure 2.3: Illustration of a partial virtualization architecture

Paravirtualization

Paravirtualization is a concept that has mutual characteristics with both full
and partial virtualization. In this type of virtualization, the virtual(guest)
machines are running an operating system with a modified kernel. These
modifications replace non-virtualizable instructions with hypercalls and
make the guest operating system aware that it is virtualized. This improves
communication with the hypervisor which in turn results with improved
efficiency and performance. Although paravirtualization is running on a
host operating system, its performance is superior to partial virtualization
and depending on the workload it can be superior to full virtualization as
well [74]. The drawback of using this type of virtualization is that OS ker-
nel modifications can include support and maintenance system problems
which is not desirable in production environments. Moreover, it is only
applicable to modifiable host operating systems which limits the choice of
operating systems to open-source options only. An example of a modified
OS combined with a hypervisor that allows this type of virtualization by
virtualizing the processor and memory with using custom guest OS device
drivers is the Xen project [23].

11

2.2.2 Cloud types, platforms and providers

Generally, there are three kinds of cloud computing that are used when dis-
cussing the deployment model of a cloud system [12] [45] [17] [2]. A small
overview of the differences between these types, platforms and providers
is presented in this subsection.

In Public clouds, the whole infrastructure is provided by cloud ser-
vice providers through the Internet and they are also responsible for secur-
ing, maintaining and upgrading the hardware part of the cloud infrastruc-
ture. Furthermore, cloud service providers allocate individual customer
resources and provision their virtual machines while some also offer other
application-level service solutions. The biggest and most popular cloud
provider companies at the current moment are Amazon with Amazon Web
Services [65], VMWare with vCloud [73], Microsoft with Microsoft Azure
[49], Google with the Google Cloud Plaform [26] and Rackspace with their
managed cloud services [35]. Aside from the general benefits of cloud com-
puting, this kind of cloud usually offers a more affordable and inexpensive
infrastructure solution when compared to other cloud types. Due to the
flexible hourly pricing and the eliminated maintenance costs, it is usually
the preferred option for small to medium sized businesses. Public clouds
are also frequently used for teaching purposes in academic environments
and in online training centers.

Unlike Public clouds, Private clouds have an infrastructure that is usu-
ally owned, protected and upgraded by the company that uses them. This
cloud type is mostly deployed in organizations of large size and in some
cases in universities. The advantage of using this type of cloud over the
Public cloud is bigger control over the infrastructure and a high level of
security, due to the limited cloud usage and access for other businesses and
individuals. In universities, building a private cloud data center in univer-
sities gives researchers the ability to use the combined node cluster capa-
bilities in order to make calculations and projects that require high com-
puting resources for a low price when compared to Public clouds. When
building a private cloud, there are two options to choose from. One op-
tion is to choose an open-source cloud platform and the other option is to
buy a company cloud platform. A popular commercial option is VMWare
vSphere(vCloud Suite) [67] while open-source options include platforms
such as OpenStack, Eucaliptus, Apache CloudStack, Nimbus and Open-
Nebula [78] [76] [79] [64].

In Hybrid clouds, automation and orchestration is used to combine a
private cloud and a public cloud leased from a cloud service provider. This
type of cloud provides the advantage of having unlimited on-demand re-
sources delivered by the cloud provider, while still having a secure and
controlled local infrastructure. The private part of the hybrid cloud is
mostly used for running internal and critical applications,local virtual ma-
chines and services. On the other hand, the public part provides resources

12

for dealing with high and temporary workloads without the need of hav-
ing to upgrade and invest into the local infrastructure. Although having a
hybrid cloud is a preferred solution for most big companies, building and
maintaining the cloud is costly, thus making it a less desirable solution from
small sized businesses.

A basic overview between available cloud solutions is presented in Ta-
ble 2.1, where the cloud options are compared based on different criteria.
The type of cloud infrastructure is compared along with the option for hy-
brid support which in most platforms is supported, but in some cases it is
being offered with certain limitations. In the selected cloud solutions, the
commercial options are usually more limited than the open source solu-
tions when it comes to the choice of the underlying hypervisor. The provi-
sioning type is divided into best-effort and immediate. This classification
is discussed in “Virtual infrastructure management in private and hybrid
clouds” [67] where the authors Sotomayor et al. refer to best-effort as a
provisioning model where resources are provisioned as soon as they are
available, while in the immediate type, the resources are provisioned when
required or they are not being provisioned at all.

Amazon OpenStack | Eucalyptus Open VMWare
AWS Nebula
o 7
/) a2

Openstack Eucalyptus OpenNEme vmware
Type Public Private Private Private Private
Commercial| Commercial | Open Open Open Commercial
or Open Source Source Source
Source
Hybrid No Yes Can use | Yes Only
Cloud Amazon’s if both
Support APIs clouds use

vSphere

Hypervisor | Xen Xen, KVM, | Xen, KVM, | Xen, KVM, | VMWare

VMWare VMWare VMWare ESXi

ESXi,Hyper-

\Y
Provisioning Best-effort | Immediate | Immediate | Immediate | Immediate
type
Developmen Perl,C++, Python Java, C C++, C, | Unavailable
language Java Ruby, Java,

Bash

Table 2.1: Overview and comparison between different cloud solutions

13

2.2.3 Cloud computing from a business standpoint

From a customers perspective, different cloud computing models are being
offered by the cloud computing industry that refer to the different layers of
the cloud architecture. These models are very frequently used in research
related to cloud technologies as well, mainly when describing the layer of
cloud services that the project is examining or the underlying cloud infras-
tructure. The cloud services are grouped into three different models [45]
[2] [48], namely Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a service (IaaS). Each of these models is dependent
and built on top of another model, respectively.

Software as a Service runs on top of the other cloud services and refers
to the application part of the model. This cloud service offers end users
to run and use cloud-located applications on their local machines with-
out the need of installing the software locally. This is achieved by running
the software in the client browser, thus making the application indepen-
dent of the local platform and infrastructure. Some common examples for
SaaS for personal use include software such as Google App and Google
Docs, Gmail, Twitter, Facebook or even online browser games. Addition-
ally, SaaS is commonly used on an enterprise level with applications such
as NetSuite which is a customer relationship management application and
TurboTax which is a tax advisory software. Most of the functionalities that
these applications provide are free to use which has been one of the reasons
why small and medium sized businesses have started replacing their local
applications with cloud ones in order to reduce operating costs.

Platform as a Service is mostly used within information technology
companies that work with the development of software or websites. This
model offers a development and deployment environment that is being
rented out to companies and customers that use it to avoid the cost and
complexity of purchasing, building and managing the underlying soft-
ware and hardware layers. For example, assuming that a person wants
to develop a website and a web-based application using some commercial
software, he could choose between two available options. The traditional
choice would be to purchase hardware along with an operating system and
a development platform. This requires a lot of resources and time spent
on setting up the environment before starting the actual software develop-
ment. Instead, the person could rent out a platform which includes these
technologies from a PaaS provider, therefore eliminating the time and fi-
nancial resources spent on setting up the system in the previous case. Mi-
crosoft’s Azure cloud services, Google’s App Engine, Rackspace’s Cloud
Sites and Amazon’s Relational Database Services are a part of the currently
most used PaaS solutions.

Infrastructure as a Service is the ground layer in the cloud computing

model and refers to the leasing of virtualized storage and computing re-
sources provided by cloud service providers. This part of the model offers

14

customers the freedom to design and deploy their own infrastructure by
providing the hardware part of the cloud. It is the most used and pop-
ular model of cloud computing services used by companies of all sizes,
since it provides scalable and on-demand resources with a flexible pricing
model. As the basis for the above mentioned cloud services, it is the core
and most important layer in cloud computing. Amazon’s EC2 computing
platform along its S3 storage service and Rackspace’s Cloud Servers plat-
form are some of the most favored cloud providers used for providing IaaS
solutions. To sum up, all of the above mentioned services and their repre-
sentative layers are illustrated in Figure 2.4.

Infrastructure as a
service

Figure 2.4: The three cloud service layers and the different services inside
of each layer

15

2.3 Relevant work in bio-inspired cloud computing

The extensive research in bio-inspired computing covers a broad area
of different fields, some of which include artificial immune systems,
artifical hormone systems, genetic algorithms, cellular automata, sensor
networks and emergent systems. The most typical approach related to
self-organizing distributed systems is based on swarm intelligence [6]
and include techniques like ant colony optimization [19]. This section
contains review of previously conducted research based on concepts that
are included in these areas and related to our model and bio-inspired cloud
computing.

2.3.1 Biomorphic characteristics

Several characteristics on behaviour of biomorphic systems are classified
in previous research by Wang and Suda [77] some of which include birth
and death, adaptation, evolution, interaction based on local information,
collective interaction and autonomous action. Evolution and adaptation
refers to the ability of the individual components to be able to evolve over
time and adapt with changing information or changing the desired tasks.
The components are being added and removed(born and die) into a specific
group triggered by an event. Additionally, the components react based on
local individual information rather than global system information. Au-
tonomous action attributes to individual elements controlling themselves
rather than being controlled by a master. The characteristic behaviour of
the system is based on interaction of many similar units.

According to a study carried out by IBM [32], self-managed systems
and their functions can be classified as:

* ’Self-Optimizing’ - systems which monitor and adjust resources.
¢ ’Self-Healing’ - systems which detect and react to disruptions.
¢ ’Self-Configuring’ - systems which adapt to changing environments.

* ’Self-Protecting’ - systems which can discover and secure against
potential threats.

2.3.2 Artificial Inmune Systems

The computer virus as a biological analogy is one of the most common
computer related expressions in the everyday language. This expression
has gained popularity when Robert T. Morris launched an attack and made
the newspaper headlines in 1988 [70]. With the attack he has infected ap-
proximately 6000 computer terminals connected to the Internet which at
that time was around 10 percent of the total size. In the early ages of the
Internet, this was an unencountered problem in the field of computer net-
works, but in biology this problem was already solved with the use of the
immune system. In order to understand how this system been applied in

16

computer networks and systems, one first has to explore how the immune
system works.

There are multiple layers of defense in which the immune system is
divided. The first layer has a task of preventing infectious agents named
pathogens from penetrating into the system. An example for this layer
would be the skin, because it is impenetrable by most pathogens and
bodily secretions with antibiotic characteristics. The second layer is called
the innate immune system and this layer can detect cells that come from
the outside and are different from the body cells. The intruders that
successfully enter the system are called antigens. The immune system
reacts so that it triggers an immune response that involves different types
of defending cells. The defending cells can either devour or destroy the
intruders and there is a special type of these cells called APCs (antigen
presenting cells) that have the ability to keep samples of the intruder and
pass them to the adaptive immune system which serves as the last and
strongest layer of defense. One main difference between the cells from
the adaptive and innate immune system is that the adaptive cells called
lymphocytes have targeted attacks. Lymphocytes only attack the antigens
that they are compatible with. When the antigen presenting cells pass
one of these antigens to the lymphocytes and a match is being found, the
lymphocytes will clone and attack the antigen, as well as any cells that have
been infected with these antigens. Additionally, the adaptive system cells
have the ability to remember the antigen once they have forced it out, so
that a more effective defense is being executed in future attacks from the
same type of intruder. A basic representation of the whole process inside a
vertebrate immune system is displayed in Figure 2.5.

It is interesting that the whole process is completely decentralized and
is a result of combined simultaneous action of many independent cells. So,
how can this be applied into computer security, specifically in computer
networks ?

The first layer of security are the firewalls. They have the task of reject-
ing attacks originating from the outside network, targeted on the internal
network. Moreover, they have the responsibility of denying access to the
local networks, thus keeping intruders away from the internal network and
the local machines. If an intruder manages to get inside the internal system
and starts malicious activity, these actions will be flagged by an intrusion
detection system which is the second layer of security. The suspicious ac-
tivity becomes flagged independently of whether the attack is known or
unknown. As a last step, the activity is being examined and if there is
a match between a known attack, actions are being taken by the intrusion
prevention system which is the last and most sophisticated layer of security.
The IPS has the task of blocking or sanitizing the incoming known attack.
Additionally, if the attack is unknown, the system adapts and learns how
to combat the attack effectively. If the unknown attack has been rejected,
the defense mechanism is being memorized for future defenses.

17

Skin - First barrier for intruders

Innate Immune System - Second barrier

Lymphocytes Lymphocytes

Body

Outside Environment

Figure 2.5: Layers and processes in the vertebrate immune system

When applying the concept of AIS, it is often combined with different
algorithms so that the functionality and efficiency of the intrusion detec-
tion system are expanded. For example, in the paper “Evolution induced
secondary immunity: An artificial immune system based intrusion detec-
tion system” [13], the authors present a technique for network anomaly
detection by combining the concept of AIS with a genetic algorithm to cre-
ate an unpredictable system with improved detection capability. They use
the analogy of a memory cells (a type of lymphocytes) contained in most
immune systems with the ability to protect from anomalies. Additionally,
unlike the typical approach of having only a single primary immune re-
sponse that is often presented in most AIS researches, their approach uses
a secondary immune response that has been evolved from the previous
one.

While most of the intrusion detection systems based on artificial im-
mune systems are built upon network detection, there are also some
projects that have host intrusion detection as their main detection mech-
anism. One such project has been developed by Ou, Wang, and Ou [59]
in which an agent-based IDS is proposed. The logic of their system origi-
nates from the danger theory of the human immune system. The danger
theory was first introduced by Matzinger [46] and suggests that the human
immune system only responds when cell damage that would be prevented

18

Intrusion Detection System

Analyze traffic Analyze traffic

Rules for known attacks Rules for known attacks

Internal Network

Internet

Figure 2.6: Layers and processes in a network-based artificial immune
system

19

otherwise is detected. This immune system theory is fundamentally differ-
ent from the theory explained in Figure 2.5, because it divides the threat
for the body in damaging(dangerous) and non-damaging(safe) rather than
foreign(dangerous) and self(safe).

2.3.3 Artificial Hormone Systems

Similar to the artificial immune system, related approaches are based on an
artificial hormone system that in most cases is inspired by the human hor-
mone system. There is a variety of known responsibilities that the human
hormone system has, some of which include regulating and balancing the
processes related to growth, reproduction and digestion inside the body.
This is achieved by secreting hormones that flow through the circulatory
(blood) system in order to reach all cells inside the body. When a hormone
interacts with a cell, it can only trigger specific actions in those cells that
have that specific type of cell receptors. In the field of bio-inspired com-
puting, signals that are being sent inside the system are representing the
artificial hormones, while the computational nodes are representing the ar-
tificial cells. In some AHS based projects [8] [71] [7], the models that are
being presented have the mentioned characteristics and functions of self
managing systems included in subsection 2.3.1.

A diversity of types of hormones are presented in a number of ap-
proaches with each approach having a different goal. Brinkschulte and
Pacher divide the hormones that are represented as small messages in three
different types depending of their function. In their paper “An Agressive
Strategy for an Artificial Hormone System to Minimize the Task Allocation
Time” [7], the types of the hormones that are used and combined are the ac-
celerator, suppressor and eager value hormones. In essence, the eager value
type is used to determine the suitability of a processing element(artificial
cell) for executing a specific task. The suppressor type is used to lower
the suitability and is subtracted from the eager value, while the accelerator
type is used to prioritize a computing task and is added on the eager value.
As the title suggests, in order to improve time allocation a classic and an
aggressive strategy is offered, with the aggressive strategy having a signif-
icantly better execution time for task allocation.

Trumler, Thiemann, and Ungerer [71] propose a similar approach based
on the artificial hormone system with a goal of managing and organizing
networked systems. Their approach uses the artificial hormone system
as a method for communication between internetworked nodes while the
implementation and testing has been done in a simulated Java environment
where three resource constraints are used for optimization.

20

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a method for optimization that has a
goal of finding a global best solution by iteratively improving a set of local
solutions in regard to a specific value that is being calculated by the fitness
function [20]. This method can be used for optimizing multiple parameters
and has a population-based approach with the population being referred to
as the 'swarm’ and the candidate solutions being referred to as "particles’.
Highly nonlinear and mixed integer optimization problems can be solved
effectively using PSO, but the downside is that it comes with an expensive
computational cost [29]. On the other hand, PSO is commonly used in low
computational applications due to its simplicity of implementation [60].

A modified version of a typical particle swarm optimization algorithm
is presented in “A Novel Bio-Inspired Load Balancing of Virtualmachines
in Cloud Environment” [18]. The authors Domanal, Guddeti, et al. con-
structed the algorithm for consistently allocating incoming jobs on avail-
able VMs in the cloud. As part of their experiment, they have compared
their algorithm with two other scheduling algorithms, namely a modified
throttled load balancing algorithm and a round robin load balancing algo-
rithm. Their modified PSO algorithms has shown better results in both al-
location of the load on available VMs, as well as in average response times.

Pandey et al. [60] created a PSO-based scheduling heuristic in order to
achieve minimization of cost for executing application workflows in the
cloud. They have chosen to use the Amazon Web Service [65] platform
to execute their experiments. By comparing their PSO method to a BRS
or "Best Resource Selection" method, they explored that using PSO would
lead to reducing the total cost by three times. Moreover, they have used
particle swarm optimization in a load balancer that distributes computing
tasks to available resources.

2.3.5 Ant Colony Optimization

ACO or Ant Colony Optimization [22] [24] [12] [21] is a concept that is be-
ing applied to optimization related issues, most commonly to graph prob-
lems. In nature, ant formed groups are searching for the shortest option to
their source of food while walking randomly through a path that is usually
represented in science by a graph. On their way, they are placing informa-
tion in the form of pheromone, so that they can later use it to find the op-
timal direction to their destination in other words, their food source. Some
of the goals of the developed algorithms contained in the research include
improving routing information, minimizing resource wastage, minimizing
power consumption, balancing load and workload consolidation.

In the field of computer networks, the first two pioneering researches

[69] [16] on ACO based routing have been developed at the same time. In
“Ants and reinforcement learning: A case study in routing in dynamic net-

21

works,” the authors Subramanian, Druschel, and Chen present a so called
‘uniform ant” algorithm in which ants travel through all paths in the nest
with equal probability. The second research by Di Caro and Dorigo pro-
vided an algorithm called AntNet where they introduce two different types
of ants, namely forward and backward ants. The forward ant follows the
pheromone information and records the time from the source to the des-
tination node. Once it reaches it destination, it starts moving back to the
source and it becomes a backward ant. The backward ant updates the
pheromone tables on the way to the source, by increasing them for a time-
based amount specified by the time it took the forward ant to reach to desti-
nation. The AntNet algorithm influenced a number of other relevant works
and has been the basis for other algorithms in the ACO based routing field
[47].

Minimizing power consumption and resource wastage is the goal of a
research conducted by Gao et al. [24] in their paper “A multi-objective ant
colony system algorithm for virtual machine placement in cloud comput-
ing.” They propose an ant colony for VM allocation in the cloud with two
limitations, namely CPU and memory while the pheromone is used as an
analogy to relate to the preference for the server that is going to host the
virtual machine.

In their paper “Ant system for service deployment in private and pub-
lic clouds” [12], Csorba, Meling, and Heegaard investigate how applying of
ant colony optimization can be used for balancing load by mapping virtual
machines onto physical machines. Different services are grouped in dif-
ferent nests meaning that each service actually starts from a separate nest.
Ants are leaving these nests to find other possible locations in which ser-
vices could be hosted. The algorithm continues to work even after a pos-
sible mapping is found, because a better mapping could be found which
would lead to a potential reconfiguration of the system.

Feller, Rilling, and Morin [22] present a nature inspired approach
in “Energy-aware ant colony based workload placement in clouds” us-
ing ant colony optimization for solving dynamic workload placements
in energy-aware Infrastructure-as-a-Service(laaS) cloud computing envi-
ronments. The optimization algorithms is applied to optimize the multi-
dimensional bin-packing where the physical machines act as bins and
workloads act as items that should be packed. After the ants have finished
building a solution, the pheromone trail is being updated. The update is
being done based on MIN-MAX Ant System (MMAS) [68] where only an
ant with the best solution can deposit pheromone in the path.

Additional relevant work and inspiration is contained in the Anthill
project [4] which was created by the University of Bologna in coopera-
tion with a researcher from the Norwegian University of Science and Tech-
nology. In this project, they have developed a middle-ware for peer-to-
peer systems which uses a similar ant colony approach. The network of

22

peer nodes are referred to as nests, while the society of adaptive agents
is referred to as ants that travel across the nest to complete user requests.
Anthill could be used to create a variety of classes of peer-to-peer services
that manifest resilience, adaptation and self-organizing properties. Two
frameworks have emerged from this project, namely Messor [53] which is
used as a load-balancing application and BISON [52] which is a concep-
tual framework and an acronym for "Biology Inspired techniques for Self
Organization in dynamic Networks".

23

24

Chapter 3

Approach

This chapter will outline the methodology and the necessary steps that will
be taken in order to find answers to the given problem statement : How to
design and implement a biomorphic model for achieving adaptive system
behaviour in the cloud. When developing a model based on a biological
representation it is important that clearly summarized goals are presented,
so that it is easy for other researchers with a related problem to understand
and build upon the presented design and prototype model. The approach
consists of several phases and attempts to describe how the technologies
and design will be combined and used in this project. An overview of the
key features and aspects of the project that are discussed in detail contained
in this chapter are as follows:

m Exploring the fundamental biological model

m Design of two technical models based on the biological model
® Elements in the testing cloud environment

m Software deployment tools and scripting languages

m Performance constraints

m Experimenting with the proposed models

® Implementing and comparing the proposed models

m Expected results

3.1 Objectives

As briefly described by the problem statement and the introduction section,
this study attempts to explore how a system that has reactive and adap-
tive characteristics could be implemented in the cloud. The system will be
based on a biological model and will combine the concepts and technolo-
gies described in the background section to demonstrate self-management,
self-optimization, self-protection and scalability characteristics in an auto-
mated and efficient manner. Traditional cloud scaling methods are based

25

on a centralized system where decisions are made at a single node based
on gathered information across the system.

In this approach, an alternative solution will be provided, which offers
a model where nodes are unaware of other nodes and make decisions au-
tonomously while still having an impact on the whole system. In such a
model, there will be no central controlling element and therefore a single
point of failure will be avoided. Furthermore, the assumption is that this
kind of system will react and adapt faster since the decisions are made only
based on local data, unlike centralized systems where data used for deci-
sion making originates from multiple nodes. Alternative approaches could
use a different biological model as a foundation for the logic of the technical
model. There are many appliances of biological concepts in cloud comput-
ing and informatics in general, some of which are discussed in section 2.3.

One of the goals of this project is to provide a practical implementation
of the presented prototypes so that it is easy for companies or individuals
to spawn an identical environment. Additionally, it will be designed so that
it is easily modifiable and adjustable to the company’s or individuals needs
and infrastructure. This is a challenging task because of the complexity of
the environment and requires a utilization of different tools. Some of these
tools include configuration management systems, version control systems,
cloud platforms, scripting and infrastructure deployment tools discussed
in sections 2.1 and 2.2. There is a variety of potential benefits of using such
a system, but the main benefit would be efficiency due to the scaling nature
of the system which will in turn results to reduced financial and operat-
ing costs. Furthermore, the model of the system and it’s prototypes are
based on complete automation requiring as little human interaction as pos-
sible. Automation reduces some of common tasks that system administra-
tors do, therefore allowing them to focus their efforts on improving some
other parts of the infrastructure, rather that having to expand or shrink the
system based on specific requirements.

To find a solution to our problem, the project work is divided into the
following three stages :

I Design stage.
II Implementation and experimentation stage.
III Measurement, analysis and comparison stage.

All three stages contain both theoretical and practical tasks. The first
two consist primarily of practical work, while the last stage will have a
more analytical approach. Since this is an exploratory and investigative
thesis, the focus will be more on the practical work rather than deep
analyzes, such as comparing the proposed results with other existing
models for cloud scaling. The proposed technologies and a detailed
description of the planned tasks in each of these stages is presented in the
following subsections.

26

3.2 Design stage

The design stage which is also illustrated in Figure 3.1 is the first part of the
project work and is organized into the following tasks :

1. Explore and choose a biological model.

2. Create an adaptive technical model for scaling of individual nodes,
along with a text description, pseudocode and illustrations.

3. Create two algorithms for communication and actions between
individual elements inside the system.

4. Design of the underlying technical infrastructure.

3.2.1 Biological model

The first task in the design stage will consist of examining available biolog-
ical models that could be used to demonstrate adaptive cloud behaviour.
This process should also outline the reasons that trigger certain actions in
the biological system. Additionally, a detailed view on how individual el-
ements communicate between each other and how the individual changes
affect the biological system would contribute to designing a better techni-
cal model.

An important factor when making the decision about what biological
system to use, is that previous research in the bio-inspired system
administration area has not yet implemented a similar approach in the
cloud. After a suitable model has been found, it has to be explored in
detail so that analogies between the biological and technical part can be
created. It is crucial that the analogies related to the individual biological
terms are well explained and connected to the technological terms, since
most people interested in such a study would come from a technical or
computing background.

3.2.2 Technical model

The design of a technical model has a goal of providing an overview of all
functionalities and characteristics of the system. The logic and structure of
the model will be described with text, images and pseudocode to provide
the reader with a good understanding of the system without having to dive
into and understand the developed code.

Since the focus of this thesis will be centered on scaling as a case of
an adaptive behaviour, the workload will be distributed throughout the
system on all available nodes. The type of servers used to handle the in-
coming workload will be web servers, while the distribution will be done
by a load balancing software located on a separate server. As previously
mentioned, the technical model should have self-optimizing characteristics

27

which refers to monitoring and adjusting available resources. This will be
achieved through developing a framework that will constantly gather re-
source information so that the system is aware of the availability of its local
resources at all times. Additionally, the self-configuring and self-protecting
characteristics of the system refer to the automated node configuration and
the individual security from external threats, respectively.

3.2.3 Two algorithms for prototypes

Two similar algorithms will be designed as part of the technical model
which will have the responsibility of controlling the whole system. From
these algorithms, two prototypes will be developed and responsible for
defining the communication methods between individual elements, as well
as defining what kind of processes trigger certain actions inside the system.
Both algorithms will be based on the biological model, but they will be
different in the way that they trigger their respective scaling methods. The
first algorithm, should trigger several methods that will expand or shrink
the system based on current needs, each time expanding the system by at
least one element. On the other hand, the other algorithm should expand
or shrink the system by a block of multiple elements. Both models for these
algorithms should consider the same three constraints on all the individual
nodes:

¢ CPU and system load
¢ RAM memory usage
* Web server response time

These parameters should be measured at specific time intervals which
should be identical in the two models so that at a later stage, the
effectiveness of both models can be compared in a efficient way. Once
these values are detected that they are above or below a certain threshold,
numerous different mechanisms need to be activated that will trigger
actions such as:

Deciding if an expansion or shrinkage is required.

Starting a communication process.

* Determining a specific size and time for expansion or shrinkage.

Adding or removing elements from the system.

Confirming that the system is in an adapted state.

28

3.2.4 Underlying infrastructure

Once the technical model is designed, a plan for the structure of the under-
lying infrastructure has to be created. This plan should include the amount
of virtual machines that is going to be used inside of the system when the
system is being set up. Additionally, the computing capabilities, memory
and storage sizes have to be defined so that a large amount of VMs can be
spawned at once without occupying a huge amount of cloud resources.

Depending on the created model, a number of networks will have to
be created, so that elements of a different type are separated from each
other. The idea is that different elements are connected in different do-
mains and networks, thus belonging to a dissimilar environment. Further-
more, a limitation with a maximum amount of servers for each network
has to be specified because the resources of the cloud are limited and being
shared by other students and professors for research purposes. With this
approach the traffic is going to be simulated and forwarded to the system,
and the system model will be designed to be adaptive,scaling and respon-
sive, hence no unused resources will be held by idle virtual machines.

3.3 Implementation and experimentation stage

The implementation and experimentation stage displayed in Figure 3.2
consists of multiple tasks, some of which include:

¢ Determining the necessary tools to build the models.
¢ Building an infrastructure deployment script.
¢ Implementing prototypes of the two algorithms.

¢ Testing the correct functioning of the setup.

3.3.1 Necessary tools to build the model

To build a testing and experimentation environment, different tools have to
be combined in order to achieve the desired objectives, thus finding an an-
swer to our problem statement. The procedure of picking the desired tools
and the appropriate software includes a review of available technologies
along with their functionalities and limitations.

To be able to automate the tasks inside of the infrastructure, a scripting
language has to be used. While it is possible to automate installation and
configuration tasks inside the script, it is not efficient and requires a lot of
changes inside of the code in case there is a change in the design. There-
fore, the use of a configuration management system has to be also included
inside of the technical model which will manage system configuration on
the fly. As previously mentioned, one of the objectives of this project is to

29

be able to reproduce the same environment for future research or practi-
cal purposes. This requires the use of an infrastructure deployment tool,
which will spawn a number of virtual machines, configure networks and
storage information, and manage access control inside of the OpenStack
platform. Once the underlying infrastructure is set up, the software de-
ployment of the prototypes and their updates can be managed by a version
control system. In the end, for testing and obtaining results, the system
has to be stressed with simulated web traffic which can by done by using a
benchmarking tool.

A detailed description of the used technologies and their characteristics
is contained in section 2.1 and 2.2. After reviewing the available tools that
could be implemented, the following tools have been chosen:

* MLN - as an infrastructure deployment tool
¢ Puppet - as a configuration management system

¢ Git - as a version control system and software deployment tool

Python - as a scripting language

Httperf - as a web traffic simulation and benchmarking tool

3.3.2 Infrastructure deployment script

This part of the implementation phase consists of building a framework
which will be based on the infrastructure design that has been created in
the previous stage. With the use of the deployment framework, the tasks of
configuring the network interfaces, assigning the computing and storage
resources, installing a specific operating system type and defining a host-
name for each individual VM should be automated. Moreover, the frame-
work should be dynamic, meaning that it should be able to accept multiple
user-specified parameters before starting the process of VM spawning.

To achieve this, the framework will be built using Python and it will
utilize MLN in order to manage OpenStack. Additionally, the framework
will use, create and modify MLN skeletons based on entered parameters.
The proposed user parameters that will be offered by the deployment
framework are:

(red is for mandatory parameters, blue is optional parameters)

¢ project - This parameter refers to the name of the project. This is a
mandatory parameter, since there needs to be a distinction between
different testing environments.

¢ VM-number - This parameters specifies the total amount of VMs that
will be spawned. This is a mandatory parameter because different
MLN templates are created based on this parameter.

30

e hostname - This parameter is optional and refers to the basic
hostname that will be used for all virtual machines. The hostname
naming convention consist of "basic name + vm number". If the
hostname is not specified, the basis of the hostname will be the same
as the project name.

* keypair - This parameter is used to deploy the virtual machines along
with specific security keys that are placed in OpenStack. By default,
the keypair from the MLN skeleton will be used, thus making it an
optional parameter. The idea of using this option is useful when
rebuilding the VMs with a different keypair in case of denied access.

* OS image - This parameter refers to the operating system image that
will be installed on the virtual machines. An ubuntu 12.04 image will
be configured in the MLN skeleton by default. If the user wishes
to use another image instead, he can specify the image, therefore
making the deployment support any Linux based operating system.

* OpenStack flavor - This parameter specifies the size of the computing
and storage resources provided for each virtual machine by Open-
Stack. Since the number of the VMs can vary, the smallest size for the
VM will be configured in the MLN skeleton. This will help avoid-
ing over-saturating the cloud performances. This parameter is left
optional, since the deployment framework can be used to deploy the
VMs inside of a cloud with larger performances.

It would be useful, if the user of the framework is provided with a help
menu along with a explanation of the available parameters. When the de-
ployment framework is run, the whole infrastructure with all of the virtual
machines based on the entered parameters should be simultaneously de-
ployed inside of OpenStack. The logic of the framework and its structure
will be presented in the results section with the help of illustrations, text
and pseudocode. A reader who wants to understand the code of the frame-
work in depth can refer to the Appendix section B for code details.

3.3.3 Prototypes of the two algorithms

Two identical underlying infrastructures will be deployed using the pre-
viously developed deployment framework. Each control and communica-
tion prototype will be implemented in a separate environment. The frame-
works will be based on the two algorithms modeled in the design section.
The goal of providing different environments is that it would provide as
accurate results as possible since each prototype will be run in its isolated
environment of the same type. Note that these prototypes are playing a
fundamental role in the proposed adaptable system. They are the ones
who will be responsible for all reactions inside the system.

31

Once the prototypes have been developed, the representative puppet
server for that environment will be configured so that all virtual machines
can obtain their appropriate software and configuration from the puppet
master. This means that when the whole model has been set up and
configured, the implementation and execution of the prototype scripts will
be fully automated, requiring no human interaction at all. At this point of
the project, the testing of the setup can begin.

3.3.4 Testing the correct functioning of the setup

Before running the actual experiments and gathering the data, it is of cru-
cial importance that the all of the frameworks work as intended. This re-
quires continuous testing of all the methods inside the scripts as well as
their provided outcomes and actions. All of the tests will be executed in a
real life environment rather than being simulated, so that one can be sure
that same outcome is provided in the experiment as well. Additionally,
the whole process of deployment and configuration along with the correct
functioning of all virtual machines has to be confirmed.

This testing period is planned to be spread over the course of three
to four weeks, so that the chance for any bugs inside the software is
minimized. Although there are tests that might develop during the
implementation and design stage, some tests can be planned in advance.
Some of the planned tests are summed up in the following list:

¢ Test Ty - Deploy a range of virtual machines (Testing the provisioning
process).

¢ Test T; - Run connection tests through the local network (Testing of
the underlying infrastructure).

¢ Test T3 - Inspect the location of all installed packages along with the
custom scripts (Testing of the version control system).

e Test T, - Analyze the specific configuration on each virtual machine
(Testing the configuration management system).

¢ Test T5 - Testing the control and communication mechanisms of the
developed prototypes.

¢ Test Tj - Testing the measurement and analysis tools.

3.4 Measurement, analysis and comparison stage

The last stage of work for this project starts with gathering empirical data
that will be obtained by running a set of experiments. The measurement
of several key parameters will be accomplished by using a separately
developed extraction script. In the end, the gathered data will be plotted
into several charts for an illustrated analysis and comparison. Some of the

32

these arranged tasks that will be done in this last stage of the project work
are shown in Figure 3.3 and described below:

¢ Building and implementing a data measurement script.

Building and implementing a data plotting script.

Executing the experiments.

Analyzing the obtained data and figures.

¢ Comparing the data between the two models.

3.4.1 Measurement and plotting scripts

Beside confirming and testing the correct functioning of the created system,
this is one of the most significant tasks in this project. Having a continu-
ous overview of all the important parameters will provide a foundation for
analysis and building a strong conclusion. Since the implemented proto-
types will make their decisions based on local data, it will be interesting to
observe how these actions will affect the system as a whole.

Measurment script

The measurement script will run on each node and will fetch the same
parameters on which the local elements base their decisions, namely the
CPU and system load, memory usage and server response times. Conse-
quently, it will calculate the average of the last ten web request response
times. Once this is finished, the script should store each of the extracted
parameters along with a timestamp inside of a local file. In the case of
having less than 10 requests, the response time average will be calculated
based on the available response time entries. The local file will have the
name of the hostname for that node with a .log extension. This process will
be repeated in a 30 seconds interval until canceled. To assure that the data
is accurate across the system, the NTP Linux package will be implemented
on all nodes to synchronize the time, thus having an identical timestamp.
The proposed output structure for the parameters delimited by a space in
the log file are as follows:

Proposed parameter file structure
CPU-SYSTEM-LOAD AVAILABLE-MEMORY RESPONSE-TIME-AVG

Example parameter file output

0.8 80% 1.23

33

Plotting script

Once the parameter files are created, these files will be transfered to a
central location where additional calculations will be made. The plotting
script will extract data from all available nodes across the system and
combine the data to calculate the averages on a global level, in other
words the system averages. The same procedure will be done for both of
the proposed models. The calculated parameters will then be plotted on
various charts for comparison between the two prototypes.

3.4.2 Experiments

The experimenting in this project will be done simultaneously in both en-
vironments. All virtual machines will run an Ubuntu 12.04 OS, but in the
case some other researcher wants to redo the experiment, he is encouraged
to use any other Linux operating system since the configuration manage-
ment system will take care of the package installations and configuration
of the servers. As previously described, the system will be stressed us-
ing simulated traffic. The traffic will be generated by a benchmarking tool
called Httperf !. The software that will be used as a webserver to handle all
traffic will be Apache 2. It is worth noting that the same amount of traffic
will be generated and targeted to both environments, so that the results are
as precise as possible. At the time in which the traffic generations starts,
the measurement scripts will be activated as well. Once the experiment
finishes, the data plotting and analysis will follow.

3.4.3 Data analysis and comparison

The last tasks in this phase will consist of analysing and comparing the ob-
tained data sets. The analysis part will try to look inside the data to find
answers concerning the proposed models, specifically which models of-
fer better performances and efficiency. There are two performance factors
which will be considered when analyzing the data.

The first factor that will be considered is how the parameters adjust
when expanding the system infrastructure. For example, in the case of an
overloaded system and a system expansion, the data analysis would pro-
vide answers to which system performs better, considering the memory
or CPU parameters. The superior system would be the one which adapts
faster and lowers the load off the virtual machines more quickly, resulting
in better performance.

The second factor that will be considered is how efficient the prototype
and the system is overall. Since the amount of web traffic load would differ
in size, the system might spawn additional server instances that might not
be needed in the near future. Unused machines will be turned off by the

Thttperf - http:/ /www.hpl.hp.com/research /linux/httperf/
2 Apache - http:/ /www.apache.org/

34

shrinking process, but this process often takes some time to finish. To sum
up, the time the virtual machines run in an idle state contributes to the
inefficiency of the system.

35

Design Stage)

/ Explore available biological \
models that have been applied
in cloud computing

7
N

Choose a biological model that
has not been implemented in
the cloud in a similar manner

Define clear analogies between
the biological and technical
terms

Design technical model with
the mentioned characteristics
and abilities of the system.

Describe the designed
technical model with
pseudocode, figures and text.

Model two communication and
action triggering algorithms

Figure 3.1: Overview of planned tasks in the design stage

36

q :)
\Implementatlon Stage)

/

Configuration
Management

Version Control System

Determining the necessary

tools to build the models

Scripting

\

Infrastructure deployment

Picking the specific software
to build the system

Building an infrastructure
deployment framework

Spawning two identical
infrastructures in OpenStack

Deploying the prototype
frameworks in their
appropriate environment

Defining multiple types of
tests

Figure 3.2: Overview of planned tasks in the implementation stage

37

(Analysis Stage)

)

Build a measurement script

Implement the measurement
script across the system

Store
measurements

Run repeated experiments

Build and implement a
plotting script

Analyze obtained data sets

Define comparing factors

Compare the two proposed
prototype models

.

Performance

Simulate
traffic

J

Figure 3.3: Overview of planned tasks in the analysis and comparison stage

38

Chapter 4

Result I - Design and models

This chapter contains the results from the completed tasks described in
the design stage of the approach section. The subsections below present a
fundamental description of the biological model and a detailed description
of the technical models and prototypes. Since the project work is done
in a working environment rather than being simulated, the design for the
underlying infrastructure that was used is presented in the end. The results
for the implementation and analysis stage are contained in the Result
chapters 2 & 3 respectively.

4.1 Biological model

After reviewing multiple biological concepts that have been applied in the
area of bio-inspired computing, the process of cellular differentiation has
been chosen to be the foundation for the proposed technical model of the
system. To the best of our knowledge, this is a concept that has not been
implemented for achieving adaptive cloud behaviour by now. An inter-
ested reader is encouraged to read the review of other related bio-inspired
approaches discussed in section 2.3.

In essence, the process of cellular differentiation is a process in which
the cell transforms from one type to another. During this process, the cell
changes its shape, metabolic activity, signal responsiveness and size by
modifying its gene expressions, but not the DNA itself. The result of the
transformation is usually a newly transformed cell which is able to per-
form more specific tasks inside the system. The cell types that are able to
differentiate into any type of cells are often referred to as stem cells [55]
while the area of the biology which explores the gene expression modifica-
tions is called epigenetics [72]. Please note that stem cells are not the only
type of cells that can differentiate, but rather one cell type that has this abil-

ity.
In humans, the stem cells are known to be found in a variety of differ-

ent tissues and organs, some of which include the skin, heart, blood vessels,
liver, bone marrow, brain, teeth and other locations. They are often seen as

39

undifferentiated cells with no specific function, except for their main role
of repairing and maintaining the tissue where they are located. Even then,
the process of cellular differentiation and cellular division needs to occur
in order for the tissue to be repaired. Although these two processes are dif-
ferent from each other, they are still closely related.

A basic representation of the process of cellular differentiation is
described in three phases below. Understanding some of the following
terms will provide an easier understanding of the whole process that is
also illustrated in figures 4.1 and 4.2.

¢ Cellular gene expressions - The genes inside of cells can be activated
or deactivated based on the presence of a particular chemical
concentration. The result of this process is the production of
specific chemicals inside the cell. The cells state is defined by
its gene expressions, which can be either expressed(activated) or
repressed(deactivated). Different gene expressions have a different
effect on the cell functioning. For example, when a gene responsible
for tumor suppressing is deactivated, it can lead to uncontrolled cell
division and growth which results in some type of cancer.

* Cellular signaling - By producing different proteins, cells diffuse
chemicals into the nearby environment. The chemicals in the
environment might have an effect on the cell function and structure,
because the cells have the ability to sense chemicals on their walls
and the close habitat. Whether any changes are triggered inside the
cell depend on multiple factors like the quantity, quality and the
type of the chemical signal. One could see this as a process where
cells are using their ability of chemical diffusion into the surrounding
environment as a way of communicating with other cells. Although
cell signaling is a complex topic, fundamentally it can be divided into
two basic types of communication used in bio-inspired computing
[25]. The first type of communication which is often referred to
as diffusion, occurs when cells spread the chemicals over a certain
range in any direction. The second type of communication is targeted
communication and it is often referred to as emission. This type
consists of cells communicating directly to other cells through their
cellular membranes.

¢ Cellular division - The process of cellular division is a process in
which the cell replicates and divides itself into two daughter cells.
In most cases the daughter cells will have the same characteristics
and function. The case of division where daughter cells do not share
the same characteristics is called asymmetric division. The different
behaviour of the daughter cells is mainly stimulated by different
chemicals on the cellular membranes, as well as the difference in their
chemical compositions [25].

40

Phase 1

This is the first phase of cellular differentiation where the cells emit signals.
These signals can be triggered based on a diversity of reasons. For example
in the case of a damaged tissue, cells that are near the tissue or part of
it will send replicate signals into the environment which will result in an
enhanced process of cellular division. Another example can be observed
when cells become aware of the lack of space in the close environment,
consequently beginning to send inhibit signals to nearby cells that are used
to stop cell growth. When a cell death happens, chemical diffusion is being
ceased, therefore inducing nearby cells to regenerate the dead cell. Cellular
signaling is illustrated in Figure 4.1 where cells of a specific function inside
the tissue diffuse chemical signals that reach the stem cell environment.

Phase 2

Now that the chemical signals are spread throughout the environment,
nearby stem cells will sense these chemicals on their membranes (illus-
trated on the left side in Figure 4.2). Some of these stem cells will enter
the process of cellular diffusion, while others will retain their current struc-
ture and function. If the chemical persists in the environment, more cells
will start their transformation process. On the other hand, if the chemical
is absent the remaining stem cells will not transform anymore.

Phase 3

The stem cells will carry out the process of cellular differentiation by
altering the gene expressions using the received chemical signals. Based on
the required cell type, specific genes will be either expressed or repressed,
thus providing a different protein and chemical output. Once this process
is finished, the result will be modified gene expressions and a changed cell
type (illustrated on the right side in Figure 4.2). In example, the stem
cell would have transformed into a muscle cell, bone cell or any other
type of cell with a specific function. The last step for the tissue repairing
process which is a common characteristic in self-healing systems is cellular
division. This process, also shown in Figure 4.3 begins after the process of
cellular differentiation has finished.

Bio-Tech relationships

The main question that remains to be answered at this point is how this
process of cellular differentiation can be applied to our technical model and
what analogies could we make. Looking at the mutual characteristics of the
individual elements, it is observable that the cells and servers attributes
inside of the particular system are very much alike. For example, cells that
have an identical responsibility and function inside the biological system
are very likely to have the same inside structure. Additionally, such cells
with a same role usually tend to be grouped inside a system in order to
finish the necessary tasks. In large scale environment, servers practically

41

do the same. A server which is running only an operating system without
any additional software has no role inside the system until it has been
provisioned, configured and activated. Furthermore, servers of the same
type (i.e. webservers) often have an identical configuration and are
grouped together, which can be seen in techniques such as server clustering
and load balancing. The communication between cells is accomplished
by sending chemicals in the environment, while between servers it is
accomplished through the network in the form of TCP or UDP packets.
The following table contains some analogies that are going to be used when
referring to the system features throughout the remaining chapters:

Biological term Technical term

Cellular Structure and | Server OS and Configu-

Gene Expressions ration

Cellular Signaling TCP Signals

Cells of a Specific Func- | Webservers and other
tion server types.

Stem Cells Blank Servers

Cell Tissues Server Clusters

Cellular Differentiation | Server Configuration
and Function change
Cellular Environment Virtual Networks and
Domains

Table 4.1: Proposed analogies for the biological and technical terms

4.2 Technical model and Prototype Designs

After exploring the biological system and defining analogies, the next step
would be to create a cloud environment similar to the cellular environment
presented in the previous section. The following element properties have
been of high importance, when defining the underlying infrastructure
model and the prototype:

* Servers should act autonomously, no central controller is needed.
¢ Decisions are based on local resource parameters.

¢ Configuration change happens on the fly without any human
interaction.

¢ Servers should inform the environment about necessary actions with
the use of network signals.

¢ Each type of server belongs in its own environment(network and
domain).

42

Phase 1

Figure 4.1: A graphical illustration of the process of chemical diffusion or
cell signalling

4 [Phase 2] N [Phase 3])

S
)

]

@ =
@ —)

N

. /

Figure 4.2: Chemical signals in the environment provoke changes in the
gene expressions resulting in cell differentiation

43

[Cellular Division })

Cells of a specific
function
Daughter Cells

Figure 4.3: Cellular division plays an important role in the tissue repairing
process

A\ J

4.2.1 Infrastructure design

Based on the above mentioned properties, several different types of servers
have been defined, but only two types will actually imitate cells. The first
type of server will be blank servers that are running only an operating
system, which will act as stem cells. These stem cells should transform into
cells of a particular function, which in this case is web servers. How this
process is accomplished and how decisions are made is described into the
prototypes subsection. This subsection will cover the infrastructure layout,
the deployment design along with the required servers that have been set
up together with the networks and domains. The initial infrastructure
design that was used for deploying a completely new infrastructure inside
of OpenStack consists of the elements which are contained within Table 4.2.

4.2.2 Networks & Domains

While it is important to have connectivity between all nodes inside the
system, it is also important to isolate some of the traffic in different
environments. For this purpose, two networks and domains have been
created inside of OpenStack. Each network represents the surrounding
habitat around the cell or the server. Servers will communicate through
the different networks depending on which type of server they need to
reach, and for what purpose. Both networks will have a router that
will act as a gateway for Internet access to all nodes connected to these
networks. A graphical representation of the networks along with the
subnet configuration is shown in Figure 4.4. Some servers need to be
connected to both networks, i.e. the servers represented in the figure refer
to the puppet master and the MLN/Monitoring server. The webservers
and the blank servers will be connected to their respective networks.

44

Element

Role

Description

HA Proxy

Puppet Master

MLN Server

Gateway Server

Storage Server

Networks

Domains

Apache Web servers

Blank servers

Load Balancer

Configuration Manage-
ment

Provisioning
Connectivity
Monitoring

Connectivity

Isolation

Web Service

Scaling

Distributes traffic to
available webservers
Initial ~ configuration
and continuous recon-
figuration

Node creation, OS in-
stallation and Network
Interface configuration
Used as a gateway for
accessing all internal
servers.

Used to gather all data
measurements accross
the system

Two Virtual Networks
have been created in
OpenStack.

Each domain has its
own network in a sepa-
rated isolated environ-
ment.

Servers that simulate
functional cells and
serve web traffic
Servers that simulate
stem cells, ready for au-
tomated configuration
to fill systems needs.

Table 4.2: Elements in the design of the underlying infrastructure

45

192.168.51.0/24

function_cell_network

192.168.50.0/24
stem_cell_network

Figure 4.4: OpenStack Network Design

4.2.3 Server Deployment and Configuration

In this design, the servers are going to be deployed both manually and au-
tomatically, depending on the type of servers. The initial setup requires that
a working instance of a Puppet master, Monitoring server, as well asa MLN
server are configured before automatically provisioning and deploying the
rest of the infrastructure. All servers including the cell type servers will be
running a Ubuntu 12.04 operating system along with the prerequisite soft-
ware packages. Once the system is in place, the automatic deployment of
the infrastructure will be carried out.

The complete process of deploying a server from start to finish is illus-
trated in Figure 4.5. Before the server is created and provisioned, MLN
and Puppet skeletons have to be built. These skeletons will be used by
two scripts called “deploy.py” and “createpp.py’ which will generate the ac-
tual files by combining the user defined parameters and the skeletons. The
MLN skeleton contains information about the OpenStack resource config-
uration i.e. memory size, network devices and CPU cores. Additionally, in
this file the configuration for security keypairs and post-installation scripts
is also contained. There will be two Puppet skeleton that will be differ-
ent for different types of servers. The puppet .pp files contain information
about necessary packages, services and files that have to be applied on all
nodes of that particular type. Both the MLN and Puppet skeletons along
with a detailed description are presented in the implementation results sec-
tion.

The next process requires execution of MLN commands which will
be implemented in the MLN deployment script. MLN will use the
generated file to communicate with the OpenStack interface and create the
servers. Once the servers have been defined, the operating system will
be installed and when this has finished, the servers will be powered on.

46

Post-installation commands will be executed after the booting has finished
to update the software repository, install the puppet package and to
configure the domain resolution for the puppet master. The puppet agent
software will then contact the puppet master and request the particular
configuration catalog for that host. Resolving the information from this
catalog will results in configuration being applied, packages being installed
and services being started. As a last step, the communication and control
prototype frameworks will be started on the appropriate server types.

. Hardware

. Puppet Skeleton Execution of ML_N specifications

MLN Skeleton Creation Creation commands to configure configured in
OpenStack OpenStack

Running
post-installation
commands

Powering on the
servers

Installing Operating
System

Connecting to virtual
networks

Installing puppet

Requesting puppet
configuration

Installing neccessary
software packages

Starting services and
prototypes

Figure 4.5: Illustration of a completely automated deployment process
from start to finish

4.2.4 Deployment script - deploy.py

As outlined in section 3.3.2, the deployment scripts will use user entered
parameters to accomplish the automatic deployment process described
above. This script will have three main methods, namely CreateHosts,
BuildTemplate and StartDeployment.

The first(CreateHosts) method will take the user input for the number of
stem cells and functional cells and it will generate a .mlIn template file with
server definitions. This file is not a skeleton file, but rather a temporary
file that will be created, only for the hostname and individual server
definitions. MLN templates have a object oriented structure, where a node
class can inherit the main variables and characteristics from a main class.
The main class and all the other configuration is located in the mentioned
skeleton file. The second (BuildTemplate) method, will create the main
.mlIn building file by combining the previously generated server file and a
modified version of the skeleton. This main .mln file will be stored locally
and used by the third function(StartDeployment) which will execute MLN
build and start commands based on this template. A preliminary design of
the three functions, their output and the logic explained with pseudocode
is shown in the code block below and in Figure 4.6.

47

O N Ul W N =

N NN NN NN = o e s e R e e e
N U B O N = O 0N U ke W N RO

deploy.py pseudocode

Definition CreateHosts (takes # stemcells,# funccells,hostname,projectname):

total_cells = stemcells + funccells
if hostname is empty:
hostname = projectname
else:
hostname = hostname (make it lowercase)

Create cells.min file

Open cells file for input

Write stem cell info into cells.min
Write functional cell info into cells.min
Close and save cells.min

Definition BuildTemplate(takes project,keypair,flavor and os_image)

open and read skeleton.min
For items in skeleton:
If project > replace project
If keypair > replace keypair
If flavor > replace flavor
If os_image > replace os_image
write new info to build.min
close skeleton.min
append cells.min to build.min

Definition StartDeployment():

call bash command (min build -f build.min)
call bash command (min start -f build.min)

OpenStack
Flavor

i Operating
SEVRay System

Create Hosts

Method . . . Build Template

Start Deployment ‘ . .

Figure 4.6: Design for the automatic deployment script - deploy.py

48

® N O Ul W N R

ey
N Uk W N = OO

4.2.5 Puppet .pp file generator - createpp.py

The second script that is designed as part of the deployment and
provisioning process will be used to generate the puppet .pp configuration
files for both the stem cell servers and the functional type of servers.
This is a small script with two identical methods, which based on the
skeleton for each server type, creates the .pp files for all servers with that
function inside the system. The methods inside of the script will utilize
the sed Linux tool in order to replace each occurrence of the hostname and
additional information from the skeleton contents to create a distinctive
file for each host. This script will not take any user entered parameters and
the proposed method names are createStemPP and createFuncPP. In case
there is need for configuration changes, this can be done directly inside the
skeleton .pp files, since creating a script which will automatically create and
modify configurations is out of the scope of this study. Assuming that there
is a need for ten .pp files of each type, the logic of the script is described

with the pseudocode below:
createpp.py pseudocode

import linux os module

Definition createStemPP():
for server in range(1,11):
"cat" skeleton file and pipe that output to sed
use "sed" to replace each occurance of hostname+1_stem to hosthame+1_stem
Save that filename with the name
hostname_stem+1.pp

Definition createFuncPP():
for server in range(1,11):
"cat" skeleton file and pipe that output to sed
use "sed" to replace each occurance of hostname_func to hostname+1_func
Save that filename with the name
hostname+1_func.pp

4.2.6 Signalling and sensor part of prototype

As part of the details defined in the puppet configuration files, the
installation and execution of git commands is completed. Depending on
the type of the cell or server, either the sensor and reset framework or
the signalling framework will be installed and activated. This procedure
will also be fully automated and will not require any human entered
parameters. On the servers that are functional cells or web servers, a
signalling framework called ’signal.py” will be deployed. The stem cell
servers will have a framework called ‘listen.py’, which will act as a sensor
for incoming environmental signals. The focus of the complete prototype
model is to imitate the cell behaviour as much as possible.

Signalling part - 'signal.py’

The signalling framework consists of several different methods. The ba-
sic separation of methods within this framework can be done between the

49

[e R N

monitoring methods and the decision making methods. The three monitor-
ing methods will also be implemented in the monitoring scripts and will be
called FetchMemory, FetchSystemLoad and FetchResponseTime. The deci-
sion making methods will be SendSignal and Actions.

The FetchMemory function will utilize the Linux utility called free to
obtain memory information. This program fetches data from the running
memory information located in "/proc/meminfo". The method will calcu-
late the data based on the output of the free utility to obtain percentage
results for the free and used memory on the local system. The parameter
that is of importance in this function is to obtain the available free memory
in percentage on the local host.

The FetchSystemLoad function will obtain it's information from
"/proc/loadavg" where system CPU average is continuously calculated
over the course of 1, 5 and 15 minutes. The output inside of this file is
represented by decimal numbers, which can be transferred to percentages
as well. These decimal integers can go above 1.0 (i.e. 1.5), meaning that
the CPU has been completely loaded and there are processes in the waiting
queue waiting to be finished. The .5 or the additional 50% in this number,
refer to the amount of CPU load that this waiting queue of processes re-
quires. This function will fetch all three averages, but only the average for
the course of the last minute will be of importance.

The last parameter will be obtained from a custom created log
file. As part of the puppet configuration for functional cells, a modi-
fied Apache Webserver version will log the response time for each re-
quest in seconds and microseconds. The logs will be stored under
’/var/log/apache2/response_time.log’. The first column inside the log
points to the amount of seconds, while the second column points to the
amount of microseconds in which that request has been completed. If
the server webpage is a plain HTML index, the number of requests has
to be drastically increased, meaning that it will be really hard to stress
the servers. This is because the amount of requests will flood the virtual
networks and cause a network problem rather than stress the individual
servers. An additional web page algorithm has to be implemented on each
of the webservers so that the CPU is stressed. This will be done in order
to avoid over-saturating the load balancer as well as the networks with the
generated web requests. This method will calculate the average of the last
ten requests and report the calculated average as output. In the case when
there are less than 10 requests, the method will calculate the average for
the amount of request times that are available. These three methods are
outlined by the pseudocode below:

signal.py Monitoring Functions pseudocode
import linux os module
Definition FetchMemory():

memory_in_use = run free | grep Mem | use the awk expression to calculate the used memory
| convert to percentages

50

© ® N o

11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

U W N

free_memory = run free | grep Mem | use the awk expression to calculate the free memory
| convert to percentages

free_memory = output_from_os_firstcommand_module.readlines()
memory_in_use = output_from_os_secondcommand_module.readlines()
return free_memory

Definition FetchSystemLoad():
data = run linux command "cat /proc/loadavg"
data = data.readlines()
avg_values = strip the data for spaces
avg_values = split the data into individual columns with space being the delimiter

avg_1_min = avg_values[0]
avg_5_min = avg_values[1]
avg_15_min = avg_values[2]
return avg_1_min

Definition FetchResponseTime():
data = run linux command "tail -n 10 /var/log/apache2/response_time.log"
data = data.readlines()
request_size = length of output

for line in output:
seconds.append(integer(first element in the split output))
microseconds.append(integer(first element in the split output))

seconds_avg = sum(seconds)/request_size
microseconds_avg = sum(microseconds)/request_size
return seconds_avg

The two remaining methods, will be responsible for making a decision
on whether to send a signal to the network containing of stem cells.
The method called Actions will be responsible for calling the previously
presented methods to obtain the resource information. Based on the
available information it will decide if the SendSignal method will be
executed, or if no further actions will be taken. The requirement that needs
to be met in order for a signal to be sent is as follows:

¢ System load for the last minute should be above 85
* Available free memory should be below 15
* Response times should exceed 1 second.

Only if these three prerequisites have been met, the SendSignal method
will be called. This method scans the stem cell network using nmap for all
servers that have an open port 10000. Every server that is an available stem
cell will have TCP port 10000 open. Using the netcat utility an activation
signal is sent through this port number. The Actions function will be
constantly run in a while loop in an interval of 10 seconds or 6 times per
minute.

signal.py Decision methods pseudocode

Definition Actions(util, nemory,response_time):
if util >= 0.85 and memory <=15 and response_time > 1:
SendSignal()

Definition SendSignal():
Scan stem cell network

51

10
11
12
13
14
15
16
17

Sort available stem cell servers in list

for server in list:
Open TCP socket on 10000
Send signal to all servers in the stem cell network
Close communication

Definition Main():
while 1:
Actions(FetchSystemLoad(),FetchMemory(),FetchResponseTime())
sleep 10
Main()

Sensor part - listen.py

This framework plays a crucial difference between the two prototype mod-
els and the expected results. In the two identical infrastructures that will
be deployed to obtain the results, a different version of the listen.py will be
deployed. There are some methods which will be used in both versions,
but the main difference is the way that the cell or server gets activated or
changes its type. This difference and the logic of both algorithms is illus-
trated in 4.9.

First of all, since the interface IP address will vary all the time across
different nodes, a network that detects the correct IP and interface has to
be created. This method will implement the use of the Linux ifconfig com-
mand to obtain the interface configuration, the information will then be
transfered to the Linux tools cut and awk to obtain only the IP part of the
output. Then, a regex expression will be run on the obtained two IP ad-
dresses, so that the the sensor gets activated only for the IP on the interface
from the stem cell network.

The second method which is the foundation of the change management
of the system, is a method that will alter the hostname and domain part of
the server. Before changing the hostname, the method will reset the host-
name. For example, in the case of the sensor running on a server named
server9 that has a hostname of server9.stem, the method will first restore
its hostname to its original state - server9 without the extension. Once the
change has been completed it will add the new extension serverl.func and
it will run a puppet command. The puppet command will request certifi-
cate information, and since puppet is configured to resolve configurations
based on hostnames, a new configuration will be given to that server. This
process is basically simulating the process of gene expression changes in
the biological model.

The third method is the method which will listen to the TCP port. This
method has to use the exact same port 10000, which is also specified in the
signal.py framework. If that TCP port is taken for any reasons, another
port has to be redefined both at the listen.py and sensor.py. Since the
frameworks are deployed using a git repository, it should be no problem
to change the code and redistribute it to every node.

52

O ® N U W N

WORNNNNNNRNNRNRN S 2 = s s e
S O XU E DN, SO XU RN RO

listen.py Basic shared methods pseudocode

import regex and os module

Definition GetlPInterface():
regex = "IP regex to macth 192.168.51.* for example"
compile regex

eth0 = ifconfig eth0 | grep for addr | cut the left part of : | awk the IP address
eth1 = ifconfig eth0 | grep for addr | cut the left part of : | awk the IP address

for interface in [ethO,eth1]:w
result = regex.search(interface)
if result:
mainlP = result.group()

return mainlP

def SetHostname(type):

if type ==reset’:
Run Linux ("HOSTNAME="‘hostname | cut -d. -f1‘; echo $HOSTNAME;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")

elif type=="stem’:
Run Linux ("HOSTNAME-="cat /etc/hostname’; HOSTNAME=$HOSTNAME.stem;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")

elif type=="func’:
Run Linux ("HOSTNAME-="cat /etc/hostname‘; HOSTNAME=$HOSTNAME.func;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")

else:
pass

Version 1 - Timing algorithm

The first algorithm (Top part of Figure 4.9) will activate the server by using
sleep timers. The assumption is that when the system is overloaded, all or
most of the servers will start sending messages depending on how evenly
distributed the traffic load is. At the moment when each server receives
a signal, a timer will be started. The timer will be a randomly generated
integer, between one and ten which refers to one or ten minutes.

The goal of using such an approach is to avoid activating all servers at
the same time, while still being certain that at least one server will get ac-
tivated at all times. Once the timer has finished, the framework will check
whether the signal persists in the network. When a system is overloaded, it
might be the case that a huge spike in traffic occurs lasting only for a short
period of time. In the case where the signal is still present in the network
after the timer expires, it is clear that a system expansion needs to start. If
the sensor doesn’t receive a signal in a 20 seconds period, the framework
will return to its initial state.

The amount of the machines that are activated at once using this algo-
rithm is unpredictable, since it depends on the numbers generated across
all stem cell servers. For example, if two servers get the same timer and
when the timer has finished the signal is still detected, both servers will get
activated in the same time frame. This can happen for three or even four

53

O N Ul W

NN NN NN DN S = s s e e s e
N G kB ON R, O 0 N U kW= O

or more servers, but the probability of this happening decreases drastically
with the amount of servers.

In formal terms, this can be described by resorting to a binomial distri-
bution. Let n be the number of stem cells, p the probability of picking a
timer between 1 and 10 minutes (p = 1/10 in this case), and x the number
of machines that would pick the same timer. Then the probability that x
machines will pick a particular timer ¢; is given by the following formula:

(”) A (4.1)

X

listen.py Version 1 pseudocode

import sockets

Def ListenTolnterface():
IP = GetlPInterface()
port = 10000
open TCP socket (IP,port)
if message = 1;
timer = rand.int(1,11)
sleep timer
close socket
CheckSignal(IP,Port):

Def CheckSignal(IP,Port):
time.start()
while 1:
if time.end - time.start <= 20:
open TCP socket
if message == 1:
SetHostname(reset)
SetHostname(func)
puppet agent --test
return
else:
sleep (1)
else:
break
ListenTolnterface()

Version 2 - Random Seed algorithm

The second version of the algorithm (Bottom part of Figure 4.9) will use a
python pseudo-random number generator. In this concept, every node will
get the same seed planted inside the function. When a number is chosen,
this number will be identical across all nodes. The logic in this case is that
when a server receives a signal, the method for generating a random seed
number will be called. The provided number will be compared to the host-
name number. Only in the case where the hostname number matches the
generated number an activation will start. Once this process has finished,
the server will stop listening for any signals in the next three minutes. Three
minutes is a proposed time frame in which the load is expected to go down.
Using this approach, the number of the activated server will always be one

54

O ® N O U R W N =

T T N N S N S N T S S gyt
AT E WORN RSO ®NO Ok N~ o

in every three minutes.

listen.py Version 2 pseudocode

import sockets
import random
random.seed = (5000)

Def ListenTolnterface():
IP = GetlPInterface()
port = 10000
open TCP socket (IP,port)
if message = 1;
timer = rand.int(1,11)
sleep timer
close socket
CheckSignal(IP,Port):

Def CheckSignal(IP,Port):
number = random.seed(1,11)
hostname_number = 'hostname | cut -f1 -d. | tail -c 2"

if number == hostname_number:
SetHostname(reset)
SetHostname(func)
puppet agent --test
return

else:
sleep (180)
ListenTolnterface()

The activation results from both algorithms are unexpected, because
there might be different outcomes. Lets assume two random scenarios,
where the two algorithms are run. One scenario where three VMs will
bring the load in its acceptable limits (Figure 4.7, 4.8 on left) and another
one where only one VM will do the same (Figures 4.7, 4.8 on right). In the
first case, one timer on the VM rolled 2 minutes and got activated, while the
next two VMs rolled 4 minutes and they got activated around that period.
The load went down, signalling stopped and the total amount of time spent
to bring the load down was 5 minutes. Since the second algorithm has a 3
minutes time span between spawning, the process took 7 minutes, thus be-
ing inferior to the version 1. On the other hand, in the second case it is the
other algorithm who provided better performance by random chance. This
is because the smallest number generated by random chance was 5 min-
utes for the first algorithm while the second algorithm activated the stem
cell server instantly. Please note that these are only a few example scenarios
that can result even in different outcomes, since everything depends on the
random activation of the Version 1 timers.

Essentially, the outcome of the two versions of these prototypes is the
same. The whole process tries to simulate the process of cell differentiation
to the greatest degree. A short analogy between the two models, namely
the biological model and the technical model is displayed in Figure 4.10.

55

V1.1 Random Scenario

V1.2 Random Scenario

24 12
22 1.1
2.0 z 1.0 l
w18 n 09
= =
% 1.6 % 0.8
£ £
g 14 g 07
% 12 % o0s
M= M=
S 1.0 S 05
= =
3 08 3 04
£ £
< 0.6 < 0.3
0.4 0.2
0.2 0.1
00 0 0 0 0 00 0 0 0
3 4 5 6 7 8 10 3 4 5 6 7 10
Minutes Minutes
Figure 4.7: Random Scenarios for algorithm one
V2.1 Random Scenario V2.1 Random Scenario
12 12
1.1 1.1
1.0 g i 1.0
w09 n 09
= =
% 0.8 % 0.8
£ £
g 07 g 07
% o0s % o0s
M= M=
S 05 S 05
= =
3 04 3 04
£ £
< 03 < 03
0.2 0.2
0.1 0.1
00 0 00 0 0 0 0 0 0
3 4 5 6 7 8 10 3 4 5 6 7 10
Minutes Minutes

Figure 4.8: Random Scenarios for algorithm two

56

/ Version 1

Activate
transformation

Check for signal in ';(r::gﬁfoﬁnﬁirg Check if signal is Yes process
network > ! > present <
minutes No
Return to
previous state
Activate
transformation
Check for signal in Roll number from Check if number Yes process
network > seed | matches hostname
No Sleep for

three minutes and
rollback

\ [Version 2]

Figure 4.9: The logic difference in the prototype algorithms

([Biological model]

Detect need for Send chemical . Stem cell
repair or — signalsinthe |—p Nearby pells - Gene expression —p| becomes a cell of
replication environement detect signal changes occur a different type
Detect the system _Send TCP signals Listeln.py detects Hostname Blank server
overload —» in the blank server |—p» . signal and —p changes + puppet —p» becomes Web
network activates V1 or V2 conf. request server

\ [Technical model]

Figure 4.10: Biological model vs Technical model

57

O ® N O U W N

T S U SN
= O 0 0N U e W N = O

4.2.7 Scaling down - reset.py

All of the above described frameworks will be implemented to achieve
an expansion of the systems size and infrastructure. On the other hand,
since the system has to demonstrate adaptability, there needs to be a
controlling mechanism that will shrink the system when virtual machines
are running in an idle state. For this purpose, a framework called reset.py
will be running on all of the functional cells or webservers. The script
will implement similar monitoring functions to the ones presented in the
signalling framework, but the requirements will be different:

¢ System load for the last minute should be below 10%.
* Available free memory should be above 80%.

¢ Response times should be 0 seconds.

The checking for these parameters will be done in two minute intervals.
If after five consecutive checks or 10 minutes, these requirements are met,
a hostname change will occur again. This hostname change will be used to
return the webserver to the pool of blank servers. The assumption is that
our system is under constant load which will require more resources than
the ones mentioned as requirements above. As nodes get removed from the
webserver network and the load balancer configuration, the system load,
memory and response times will rise across the other webservers that are
still present in that domain.

reset.py shrinking algorithm pseudocode

import * from signal.py
counter = 0

Definition Decision(util,memory,response_time,counter):
if util <= 0.10 and memory >= 80 and response_time == 0:
counter = counter +1
if counter >= 5:
Remove()
else:
counter =0

Definition Remove():
SetHostname(reset)
SetHostname(stem)
puppet agent --test
return

Definition Main():
while 1:
counter = Decision(FetchSystemLoad(),FetchMemory(),FetchResponseTime(),counter)
sleep 120

4.2.8 Monitoring and plot script - monitor.py + plot.py

The monitoring script will be deployed on all web servers. The goal of this
script is to gather accurate local data and save these measurements to a
central location. This central location is a previously set up storage server.

58

O ® N O Ul W R

S
S o ® N @k ®0 = O

O N o Ul R W N R

e N
® N U e WN = O

The measurements script will use the FetchSystemLoad, FetchMemory and
FetchResponseTime functions and store their output along with a times-
tamp into a file. Once the experimenting finishes and all measurement files
have been transferred to the storage server, system wide calculations can
be done.

monitor.py algorithm pseudocode

import * from signal.py
import time

Definition Monitoring():
sys = FetchSystemLoad()
mem = FetchMemory()
rt = FetchResponseTime()
get timestamp
get hostname

SSH into Storage server:

open file (measurement_hostname)
file.write(sys mem rt timestamp hostname)
file.close

ssh.close

Definition Main()
while 1:
Monitoring()
sleep 60

The plotting script will be located on the storage server and will be used
to prepare the data for plotting. The responsibility of this framework is to
open all the obtained files and based on the stored data calculate the aver-
age response times, memory usage and system load for the whole system
during the experimenting stage. The timestamp will be used inside a dic-
tionary and the values will be stored inside of that timestamp. For each
time stamp separate values will be combined to calculate the system val-
ues.

plot.py algorithm pseudocode

import 0s
timestamps_mem = {}
timestamps_sys = {}
timestamps_rt = {}

Definition SumUp():
files = os.listdir("/path-to-files’)
for file_s in files:
file.open(file_s)
file_output=file.readlines():
for line in file_output:
timestamp_sys[line[3]] = line[0]
timestamp_meml[line[3]] = line[1]
timestamp_rt[line[3]] = line[2]

sum(timestamp_sys.values())
sum(timestamp_mem.values())
sum(timestamp_rt===.values())

59

60

Chapter 5

Result I - Implementation and
Experiments

This chapter provides a brief description of the work that has been done
to prepare the environment for running the experiments. In the first sec-
tion of this chapter, the skeletons described in the previous chapter along
with their structure are explained in detail. The skeletons have been built
and improved throughout the whole implementation process in order to
refine their function inside the system. During the experiments and the
building of the system, the tests discussed in section 3.3.4 have been run
interchangeably. At last, this chapter presents the developed scripts and
covers the type of experiments that have been done throughout this stage
before obtaining the results.

The first servers that have been set up manually are the Puppet and
the MLN server which run both on the same virtual machine. The storage
server for the monitoring logs along with the HAProxy have been set up
on separate instances. These servers have been configured by using SSH
and configuring the system through the command line interface, while the
networks and the router have been created using the OpenStack Horizon
WebGUL

5.1 MLN skeleton

The MLN templates will be created based on the skeleton described below,
combined with user input given to the deploy.py script. The MLN skeleton
file is structured in different blocks for different purposes, namely:

¢ Blue blocks are used for creation of MLN projects and nodes. The
node will be visible in the cloud GUI as "hostname.projectname”,
but if a hostname parameter is not given, the node name would
be the same as the project name, i.e. "projectnamel.projectname".
If a parameter is given as hostname to the deploy.py script, then
"projectnamel” will be replaced with the given parameter. The

61

® N U W e

T S T T e
N =S ©®N0 Gk ®0 = o o

created hosts will inherit the properties of two superclasses named
funccell and stemcell. In the skeleton structure below, only the func
cell is included since the stem cell class is identical to the func class
except for the parameter given to init_hostname.sh. In the stem class,
the "stem" keyword is given instead of "init_hostname.sh func".

The blocks marked with red lines will contain OpenStack configuar-
ion. The keypair specification is used for configuring preconfigured
SSH keys that are deployed on the new node, the image parameter
specifies the OS image which will be installed and the flavor contains
hardware specifications and quotas. In this case the flavor "tiny" is
used which refers to 1 VCPU, 2 GB of storage and 512 MB RAM. All
of these mentioned parameters will be replaced by the deployment
script if there is any user input for that specific variable.

The user data block is marked with violet color. This block contains
post-install commands which will be executed after successful OS
installation. In this case, the package repository information will
be updated to the latest package information. Additionally, since
no DNS server is present, one has to manually create an entry for
the nameserver and the puppet master node. To create a distinction
between the different types of nodes (stem or func), a bash script that
alters the internal hostname along with other options is obtained and
executed. In the end, the puppet agent package will get installed and
a command to request configuration from the puppet master will be
executed.

The network block marked as black will contain cloud network
configuration. Inside of this block, it is specified to what virtual
network the newly provisioned node should be placed along with the
way the node should obtain it’s IP. Because of rebuilding and testing
purposes, it is preferable to use DHCP over static addressing.

skeleton.min

global {

superclass funccell {

project projectname

openstack {

keypair puppet_key

image ubuntu-12.04

flavor m1.tiny

user_data {
echo "192.168.50.2 puppet puppet.stemcell" >> /etc/hosts
echo "192.168.51.2 puppet puppet.funccell" >> /etc/hosts
ifconfig eth1 up
dhclient eth1
echo "nameserver 8.8.8.8" > /etc/resolvconf/resolv.conf.d/head
echo "nameserver 8.8.8.8" > /etc/resolv.conf
apt-get update
wget http://opas3n.com/init_hostname.sh
bash init_hostname.sh func
apt-get install puppet -y
puppet agent --test puppet

62

23
24
25
26
27
28
29
30
31
32
33

® N U W

e e
Uk W N = O o

network ethO {
net stem_cell_network
address dhcp

network eth1 {
net function_cell_network
address dhcp

When building the complete build.mln file which is contained in the
appendix section, the deploy.py script appends the server information to
the modified skeleton. Each server that will be automatically created has
its own block. For example, if there are 2 stem cells and 2 functional cells,
the blocks would look like below:

cells.min

host server1 {
superclass stemcell

}

host server2 {
superclass stemcell

}

host server3 {
superclass funccell

}

host server4 {
superclass funccell

}

5.2 Puppet skeleton

A shortened version of the puppet skeleton is contained in the code block
below, while the complete and used files are contained in the appendix.
The version below is used to describe how certain actions can be achieved.
This .pp file has a block-like syntax similar to MLN. To fulfill the needs
described in the approach section, the code in the blocks below configures
these options :

* The violet block specifies the hostname for which this configuration
will be applied.

¢ The blue blocks install the required packages.

¢ The block makes sure that the web service is running after the
packages have been installed.

* The red blocks will execute commands after the packages and
services have been configured. The software will be pulled from the
public Github repository and the configuration files will be places in
the intended places.

63

O N Ul W N =

N2 88 22 PP AT ITATTTEEREEESBSEELLY YRR IR ENRRERNNRR IS E R E SRR
@ W = O 0O NN U e W= O YNNG W N = O v ® NN G W N = © 0O N U e WN =R O Y 0NN U ke W N = O

server1_func.pp

node ‘serveri.func’{
$php_packages = ["php5","libapache2-mod-php5","php5-mcrypt"]
package { 'apache2’:
ensure => present,
}

package {$php_packages:
ensure => "present”,
}

package { ‘git’:
ensure => "present”,
}->

exec { "git clone™:
cwd =>"/tmp",
require => [Package["git"], Package["apache2"]],
command => "git clone https://github.com/opas3n/Netlab.qgit",
path => "/usr/bin:/bin",

}
exec { "Fix interface":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/interfaces /etc/network/interfaces",
path => "/usr/bin:/bin",
}
exec { "apache-conf":
cwd => "/tmp",
require => [Exec["qgit clone"]],
command => "cp /tmp/Netlab/default /etc/apache2/sites-available/default",
path => "/usr/bin:/bin",
}->

service { ‘apache?2’:
ensure => running,
enable => true,

}

exec { "apply-index":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/index.php /var/www/index.php",
path => "/usr/bin:/bin",

}

exec { "run-signal":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "python signal.py",
path => "/usr/bin:/bin",

}

exec { "run-monitor":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "python monitor.py",
path => "/usr/bin:/bin",

}

exec { "run-reset":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "python reset.py",
path => "/usr/bin:/bin",

}

64

O N Ul W N -

NN NN NN = 2 s S S e e s
N3G A ONR~RSO©®»I 0 GOk ®RN = O

The presented pp file will transform a blank server to a web server by
completing the tasks contained in the code block above. On the other hand,
the reverse process, or the process of resetting a server, requires that all of
the above packages, as well as the software obtained from the git repository
are not present on the system. In puppet, this can be easily accomplished
by using the same syntax as above and replacing the "ensure => present"
phrase to "ensure => absent". This syntax is valid for both software pack-
ages, directories, as well as individual files located on the local system.

In the current set up, puppet has been configured to automatically sign
a certificate for each request that it receives from a server that belongs
to the .stem or .func domain. This is done to avoid the need of human
interaction in the process of authentication, but can be a major security
issue because every server has the ability authenticate as another instance.
Since this is a testing environment for running experiments, having such a
solution is acceptable, but if the frameworks are implemented in a working
production environment, changes have to be made.

5.3 Deployment Framework

The deployment framework has a built in help menu that is used to of-
fer the user a description about individual parameters that the framework
uses. Every parameter has one big letter case argument and an alternative
word argument that can be used. The help menu is given by running the
"~help” extension and the provided output is shown below:

deploy.py help menu

root@puppet:~# ./deploy.py --help

usage: deploy.py [-h] -P PROJECT -S SNUMBER -F FNUMBER [-H HOSTNAME]
[-K KEYPAIR] [-O OS]
[-T m1.tiny,m1.small,m1.medium,m1.large,m1.xlarge]

optional arguments:

-h, --help show this help message and exit

-P PROJECT, --project PROJECT
Specify the project name for the MLN project

-S SNUMBER, --snumber SNUMBER
Specify the number of stem cells/blank servers

-F FNUMBER, --fnumber FNUMBER
Specify the number of functional cells/web servers

-H HOSTNAME, --hostname HOSTNAME
This is the basis of the hostname for the deployed
nodes, if not entered,the basis will be the same as
the project name

-K KEYPAIR, --keypair KEYPAIR
Specify the keypair which will be used to access the
servers

-0 0S, --0s OS Enter this parameter in case you want to deploy a
different OS, the exact name of the OS image has to be
entered

-T {m1.tiny,m1.small,m1.medium,m1.large,m1.xlarge},

--flavor {m1.tiny,m1.small,m1.medium,m1.large,m1.xlarge}
Choose one of the available choices if you want to use
a different OpenStack flavor

65

O 0N Ul W

T T N N S N - Gy
G e WO RN = O 0 ® N U k= W= o

Once the framework has finished deploying the infrastructure, the individ-
ual servers are displayed in the OpenStack Horizon GUI. The next step was
to configure the HAProxy and to create a small php script that will stress
the CPU.

5.4 HAProxy and PHP

The HAProxy has been configured to balance the web traffic load be-
tween the available web servers. This is achieved by implementing a cus-
tom checking mechanism, so that the server can check what webservers
are available and what servers are unavailable. A simple html file called
check.html with the string "Itworks" is deployed on all web servers. The
HAProxy will scan all given IPs configured inside the main configuration
file and compare the given result. All webservers that are hosting this web-
site and that reply within a given period will be considered as active. Fur-
thermore, a statistics frontend for the load balancing has been enabled on
port 2000, so that one could have an overview of the available nodes and
additional statistics data. A truncated version of the HAProxy configu-
ration file is shown below, which configures the web server backend, the
HAProxy frontend and the statistics page. The full configuration file is
contained in the appendix section.

haproxy.cfg

listen stats :2000
mode http
stats enable
stats hide-version
stats realm Haproxy Statistics
stats uri /

frontend web
bind *:80
default_backend back

backend back
server serverl 192.168.51.6:80 check
server server2 192.168.51.7:80 check
server server3 192.168.51.8:80 check
server serverd 192.168.51.9:80 check
server server5 192.168.51.10:80 check
server server6 192.168.51.11:80 check
server server7 192.168.51.12:80 check
server server8 192.168.51.14:80 check
server server9 192.168.51.13:80 check
server server10 192.168.51.5:80 check

http-check expect string Iltworks
option httpchk GET /check.html

After configuring the HAProxy load balancer, only the active web-
servers will respond to the web requests. When targeting certain amounts
of web traffic to the servers, it is observable that the CPU and memory re-
sources are not easily depleted. A small PHP script that is deployed and
served on all servers as a web page will stress out the system, so that the

66

-
B O 0V ® N oUW N =

-

® N O Ul W N -

NN N R R e s s e s
G E ONR,S© ®I0 Gk N = o o

amount of requests can be lowered while still occupying the same quantity
of resources. The script will create arrays of random numbers, shuffle and
sort the numbers and print the output to the web page. It is created to be
dynamic so that with only a few changes inside the code (i.e. increasing the
size of the array or the shuffle size), more resources are required to display
the web page. The code of the script, as well as a sample output provided
inside the web page are displayed in the code blocks below. Note that each
time a webpage is served by the web server, different random numbers are
being displayed.

index.php

<?php

$rand_num = array();

for ($i=0; $i<200; $i++) {
$rand_num[]= mt_rand(1, 200);

}

for ($j=0;$j<=500;$j++) {
shuffle($rand_num);
sort($rand_num);

}

print_r($rand_num);

7>

index.php sample output

Array ([0] => 5 [1] => 6 [2] => 8 [3] => 9 [4] => 9 [5] => 12 [6] => 13 [7] => 15 [8] => 17 [9]
=>17[10] => 17 [11] => 17 [12] => 18 [13] => 19 [14] => 19 [15] => 19 [16] => 19 [17] => 20 [18]
=> 20 [19] => 21 [20] => 21 [21] => 26 [22] => 28 [23] => 28 [24] => 29 [25] => 29 [26] => 32 [27]
=> 34 [28] => 34 [29] => 37 [30] => 38 [31] => 38 [32] => 38 [33] => 39 [34] => 42 [35] => 43 [36]
=> 43 [37] => 44 [38] => 44 [39] => 47 [40] => 48 [41] => 48 [42] => 49 [43] => 50 [44] => 53 [45]
=> 54 [46] => 55 [47] => 55 [48] => 55 [49] => 55 [50] => 56 [51] => 56 [52] => 56 [53] => 58 [54]
=> 58 [55] => 60 [56] => 61 [57] => 62 [58] => 64 [59] => 70 [60] => 71 [61] => 73 [62] => 75 [63]
=> 76 [64] => 77 [65] => 77 [66] => 77 [67] => 79 [68] => 79 [69] => 80 [70] => 80 [71] => 83 [72]
=> 84 [73] => 85 [74] => 86 [75] => 89 [76] => 89 [77] => 92 [78] => 92 [79] => 92 [80] => 92 [81]
=> 92 [82] => 94 [83] => 95 [84] => 95 [85] => 97 [86] => 97 [87] => 98 [88] => 99 [89] => 99 [90]
=>100 [91] => 102 [92] => 102 [93] => 104 [94] => 104 [95] => 105 [96] => 105 [97] => 106 [98] =5
106 [99] => 107 [100] => 108 [101] => 109 [102] => 111 [103] => 115 [104] => 115 [105] => 115
[106] => 117 [107] => 117 [108] => 117 [109] => 121 [110] => 121 [111] => 121 [112] => 121 [113]
=> 122 [114] => 122 [115] => 122 [116] => 124 [117] => 124 [118] => 125 [119] => 126 [120] => 12
[121] => 127 [122] => 127 [123] => 128 [124] => 129 [125] => 133 [126] => 135 [127] => 136 [128]
=> 137 [129] => 137 [130] => 138 [131] => 138 [132] => 139 [133] => 140 [134] => 140 [135] => 14
[136] => 144 [137] => 145 [138] => 145 [139] => 146 [140] => 149 [141] => 150 [142] => 151 [143]
=> 151 [144] => 152 [145] => 152 [146] => 152 [147] => 152 [148] => 153 [149] => 153 [150] => 15
[151] => 154 [152] => 155 [153] => 155 [154] => 155 [155] => 156 [156] => 156 [157] => 157 [158]
=> 158 [159] => 158 [160] => 159 [161] => 159 [162] => 159 [163] => 160 [164] => 160 [165] => 1§
[166] => 163 [167] => 164 [168] => 165 [169] => 165 [170] => 166 [171] => 166 [172] => 168 [173]
=> 172 [174] => 173 [175] => 173 [176] => 175 [177] => 175 [178] => 176 [179] => 176 [180] => 17|
[181] => 176 [182] => 178 [183] => 179 [184] => 179 [185] => 181 [186] => 182 [187] => 182 [188]
=> 182 [189] => 183 [190] => 186 [191] => 189 [192] => 189 [193] => 190 [194] => 191 [195] => 194
[196] => 194 [197] => 198 [198] => 198 [199] => 200)

[e2]

N

=

N

[<2)

5.5 Testing and experiments

After the successful infrastructure deployment and the configuration of
the required servers and tools, the next part of these results consists of
running the experiments. Before obtaining the actual results, all of the
previously defined tests have been completed in order to confirm the
correct functioning of the system and the developed frameworks. Some

67

of the tasks that have been part od the testing process for the individual
servers and the system include:

e Test T; - Multiple different environment with different proportions
have been set up and rebuilt from scratch with the help of the
deployment framework.

¢ Test T, - Pinging between individual node and using SSH to check
accessibility has been completed throughout the topology.

¢ Test T3 and Tj - Puppet certificate requests and git commands have
been executed to check configuration results. Additionally, listing of
all present configuration files and inspecting their contents has been
done on all newly spawned or transformed servers.

* Test T5 and T¢- Running the frameworks manually, printing state-
ments and testing the Linux commands inside the scripts has been
done continuously throughout the development and implementation
process. Furthermore, testing the expected output and structure pro-
vided by the measurement tool has been accomplished.

The work that has been completed as part of the experimenting
process includes fine-tuning the .php script and the quantity of web
requests to saturate the individual web servers in order to reach
a signal triggering and system expansion. After the system has
expanded and the load on the individual servers is decreased, the
system runs in an optimal state. If the web traffic load is reduced
to a point where web servers run below the specific parameters,
the webservers will start the process of resetting and consequently
the process of system shrinking. The expansion and shrinking
experiments have been done repeatedly for a larger period of time,
and multiple common behaviours of the system are chosen to be
presented in the next chapter for analysis and comparison.

68

Chapter 6

Results III - Measurements and
Analysis

The experimenting process for enlarging and decreasing the size of the sys-
tem was repeated in the course of several months and the obtained results
from this time period are presented in this chapter. The results have been
obtained by the developed measurement script by calculating the local per-
formance average and by combining these acquired data sets from each in-
dividual server to compile system wide results.

Most experiments were conducted with a total number of ten cells, out
of which three were functional cells or webservers, and seven were stem
cells or blank servers. Only a few test experiments were carried out start-
ing with one webserver and nine blank servers. Please note that as the
amount of web servers changes, the quantity of the generated web traffic
has to be modified so that the system can be stressed out within its limits in
order to trigger the signalling process. Since most systems that could use
this type of scaling and adaptability would have at least three webservers,
the presented results are based on a topology where in the beginning of the
experiment the load was balanced between three servers.

After the experimenting process was finished and the performance
charts were plotted, it was observable that the Random Seed algorithm
prototype was performing almost identical between all experiments. On
the other hand, the Timing algorithm prototype provided different perfor-
mance outcomes due to the randomness of the built in timer method. Al-
though the performance results for this prototype were varying between
experiments, they can be grouped in two types of sets depending on the
timer distribution. The first section in this chapter presents the two most
common timing algorithm results, while the next one presents the identical
random seed algorithm outcome.

69

6.1 Timing Algorithm

From the measured results, one could observe that the main difference be-
tween the two most common result types lies in the distribution of the
timers, therefore the two different scenarios below are based on a case
where the timer interval lies between 1 & 5 minutes and 5 & 10 minutes,
respectively.

6.1.1 CPU and memory performance in timer interval 1-5 minutes

In this first case where the smallest generated timers lie between one and
five minutes, the total amount of VMs that have been spawned to lower
the system load is three, thus the final amount of web servers present in
the system was six (three functional cells + three transformed stem cells).
In the beginning of the experiment, the CPU load (displayed on the left
side of Figure 6.1) was 0.06 or 6% before the traffic generation began. The
generated traffic was gradually increased between the first two minutes
of the experiment in order to reach the system’s saturation point. As it is
noticeable on Figure 6.1, the signalling process that occurs when the load
is above 85 % started prior to the second minute, where the system load
reaches 96%. Assuming that the signal reached the other VMs around the
second minute, we can define that this is the point where all VMs in the
stem cell network (blank servers) started generating their respective timers.

The smallest generated timer was two minutes which meant that the
VM is going to sleep for two minutes (between 2 and 4 minutes on the
chart). After this period is over the VM is going to check if the signal still
persists in the network. As it is displayed in the chart, the signal was still
present in the network, since the system load is above 85% and the avail-
able memory is below 15%. This resulted in the first virtual machine being
transformed from a blank server to a web server. As one can see in the fifth
minute, the system load decreased for 14% bringing to total system load to
86%. The second timer that was chosen by the next VM was four minutes
which means that the signal presence will be checked at the sixth minute in
the chart in Figure 6.1. Different from the previous case where only one VM
had generated a specific timer, in this case two blank servers have chosen
the same timer, resulting in two activations at the same time.

After the transformation has been completed, the system load was in-
stantly decreased to 55% and the available memory was increased to 44%.
The timers generated by the remaining blank virtual machines in this case
are distributed between five and ten minutes and the process of activation
will not be completed for these VMs, but rather they will return to their
previous state. The system load for the remaining minutes of the exper-
iment varies roughly between 55% and 47% while the available memory
between 44% and 52%.

70

CPU %

Timing algorithm - CPU Timing algorithm - Memory
Case 1-Timer distribution in interval (1,5) Case 1-Timer distribution in interval (1,5)
100100
100 75 100
90 g5 38 90
v D I < S 85
80 80
70| % 8 70
g
60 60
35 54 53 E
51 51 o 51 2
50 48 20 49 3047 = 50 47 48 50 50°
w 4 4 45 45
40 R 40|
m
30 z 30
20 20
154 - - - Yoo 418 _____
10 |g 10
32
0 0
0 1 2 3 4 5 6 7 8 9 10111213 1415 16 0 1 2 32 45 6 7 & 9 10111213 1415 16
Minute Minute

Figure 6.1: CPU and memory performance in a scenario where the first
timers are distributed in a time interval between 1 and 5 minutes

One could conclude that the transformation process lasted for 4-
5 minutes and this was the time it took the prototype to bring the
system within its acceptable limits. In this case, the prototype lowered
the system load by approximately 45-55% and increased the available
memory 42%-50%. Even though only two virtual machines were needed
to bring the load down and increase the available memory, the prototype
generated activated one additional VM, thus increasing the available
system resources by a larger amount.

6.1.2 CPU and memory performance in timer interval 5-10 min-
utes

Unlike the previous scenario, in this type the generated timers that were
chosen by the seven stem cell servers were in an interval between five and
ten minutes. As it is shown in Figure 6.2, the traffic generation started at
the same period as in the other case. On the other hand, the system load
was at a 100% and the memory resources were exhausted for a longer pe-
riod of time. While the signal has been triggered at the same time, one can
see that the virtual machines were activated at a later stage.

The first virtual machine was activated at the seventh minute mark
or five minutes after the signal has been dispatched to the stem cell net-
work. This virtual machines lowered the CPU load across all individual
web servers for 13%-14% on average which is observable on the left side of
Figure 6.2. The first transformation has also increased the pool of available
memory for 10%-12%. Although the activation of the first blank server has
resulted into additional resources for use, it did not bring the system to its
desirable acceptable limits. This can be noticed in both charts displayed
between the seventh minute and ninth minute.

71

The second timer has been activated after seven minutes or at the ninth
minute mark in the chart. The changes of this activation can be spot in the
rapid increase of available free memory and the decreased system load in
the tenth minute in Figure 6.2. For the remaining period of the experiment,
the average CPU load across the system was between 68%-71% while the
free memory was between 31%-33%. In this case, only two virtual machines
were transformed to bring the system to its desirable state, thus the total
amount of active web servers in the end of the experiments was five.
Looking at these results, it is evident that the two VMs brought the total
system load down for around 29%-31%, while the total memory that has
been freed is roughly between 30%-32%. When compared to the results
from the previous case, the total transformation process took 5-7 minutes
which is drastically longer due to the fact that the amount of transformed

virtual machines was lower.

CPU %

100

90

85

80

70

60

50

40

30

20

10

Timing algorithm - CPU

Case 2 - Timer distribution in interval (5,10}
__100100100100700
2T

7f 1 70 g9 70 71 7063

17 2 3 4 5 6 7 8 9 1011 1213141516
Minute

100

90

80

70

60

50

40

30

Available Memory %

20

10

0

154

Timing algorithm - Memory
Case 2 - Timer distribution in interval (5,10}

86

33 32 37 33 37 34

__________________ Yoo ___
10 [

3233

01 2 3 4 5 6 7 8 9 10111213 14
Minute

15 16

Figure 6.2: CPU and memory performance in a scenario where the first
timers are distributed in a time interval between 5 and 10 minutes

6.2 Random Seed Algorithm

The random seed algorithm can be seen as a predictable algorithm when
compared to the timing algorithm. Although the CPU and memory perfor-
mance improvements are not foreseeable, it is certain that only one virtual
machine will always be activated when a signal is received. This behaviour
is demonstrated in the average performance data gathered from all of the
servers which is illustrated in Figure 6.3.

The traffic generation has been completed in the same way as in the
two cases that have been presented above. It is interesting that in this case,
due to nonspecific reasons the peak of 100% was reached earlier, but this
will not affect the ongoing data since there is no difference in the time at

72

which the signal is being sent. In both cases the load in the second minute
is above 85% and the signal dispatch is executed around the same period
of time. The main distinction between the two algorithms can be noticed
right at the beginning of the experiment.

After the signal has been sent, all of the virtual machines have picked a
random number based on the same random seed that has been planted
inside the method of the python framework. Only the one virtual ma-
chine which hostname number matched the generated number will start
the transformation process. At the third minute on Figure 6.3 which is also
the first minute after the instant transformation process has finished, a re-
duction of 15% in CPU usage and a 11% growth of the available memory is
manifested.

Three minutes after the transformation process has been triggered, the
sensor functionality on every individual blank server will check again for
a signal presence in the stem cell network. This process occurs in the fifth
minute when an additional second virtual machine gets activated by re-
peating the same process of seed number generation due to the signal exis-
tence in the network emitted by the stressed functional cells or web servers.
After the process of transformation which imitates cell differentiation, the
load and available resources of the system have been brought to the accept-
able limits.

The system will remain in its allowed state varying between 68%-73%
in system load and 29%-34% in available memory from the sixth minute
until the end of the experiment. The total time that has been spent to adapt
the system to the current needs excluding the first two minutes where the
traffic was generated and sent, but rather focusing on the algorithm and
transformation processes was 3-4 minutes.

73

CPU %

100

90

85

80

70

60

50

40

30

20

10

0

Random seed algorithm - CPU

mr;F}ixed activation in a 3 minute interval

73
oF 69 g3 —Z0 71 7070,

4

0 17 2 3 4 5 6 7 & 9 10111213 14 15 16
Minute

Available Memory %

100

90

80

70

60

50

40

30

20

154

10

Random seed algorithm - Memory
Fixed activation in a 3 minute interval

85

34
g -~30 31 30 3233 o 32 323

0

1

2 3 4 5 86 7 8 9 101112 13 14 15 16
Minute

Figure 6.3: CPU and memory performance from the random seed
algorithm which spawns one virtual machine instantly, and one in every

third minute afterwards

6.3 Scaling down

After the experimentation stage with expansion of the system has finished,
experiments with reducing the systems size have been repeated in order
to analyze the shrinking behaviour of the infrastructure. The experiments
consist of lowering the generated web traffic to a certain degree where only
one webserver is enough to handle all of the load, while all other servers
are being reset and returned back to the stem cell group. This procedure is
handled by the reset framework, which has a checking mechanism being
run each two minutes. The mechanism will check whether the system load
is below or equal to 10% and the available free memory is above or equal
to 80%. If the obtained parameters match the criteria after five consecutive
checks in a row, the process of reset will start on the virtual machine. This
results in a reduced number of available web servers.

In most of the experiments the gathered results were identical and the
results of one particular experiment are presented below. The experiments
where the obtained results were not as expected are mainly due to the fine
tuning of the amount of web traffic that needs to be generated in order to
meet our goals. In this sample, the experiment and shrinking of the sys-
tem continues from the first case of expansion presented above (see Figure
6.1) where the timing algorithm expands the system by three virtual ma-
chines. By the end of this experiment there are six available web servers
that are serving the incoming requests. After the sixteenth minute which is
the last minute displayed in the chart, the web traffic was instantly reduced

to bring the system in an idle state.

There is a window of ten minutes where the checks are executed, but

74

the data in this time frame is insignificant since there are no essential sys-
tem changes occurring. Every virtual machine runs the reset.py script after
it has obtained its puppet configuration catalog which means that they will
not execute the checks at the same time. If this was the case, all virtual ma-
chines would have turned off simultaneously which is what has happened
during the debugging procedure in some of the first experiments.

The illustration displayed in Figure 6.4 displays data that has been
gathered ten minutes after the web traffic reduction while the individual
data points were gathered in a five second interval for a period of one
minute. It was interesting to observe how the number of virtual machines
correlates to the average of the system’s available resources during the
contraction of the infrastructure. As the number of web servers decreases,
the CPU load rises only for a small amount, up until the point where the
last two web servers are being reset. This is manifested at the green bar at
26:45 on Figure 6.4. A similar effect can be seen with the system’s free
memory because between 6 and 3 available web servers (26:00 - 26:45,
displayed with red bars) the average memory percentage(displayed with
blue bars) has decreased for only 6%-9% percent. On the other hand, in the
last period for only two additional virtual machine resets, the free memory
got reduced by 13%-16%.

100

90| 8 8 87 g o o, o

20 80
70 ‘ ‘ ‘ ‘

60

50

30

20

HEEEFFRF 2l -

26:00 26:05 26:10 26:15 26:20 26:25 26:30 26:35 26:40 26:45 26:50 28:55 2700

B Mum. of webservers O System Load % B Available memory %

Figure 6.4: A view of the system’s average resource parameters during the
process of infrastructure downscaling

75

76

Chapter 7

Discussion

The different stages of this study are discussed in this chapter, describing
the theoretical and practical challenges that have been encoutered during
the work on this project. Furthermore, improvements of the developed
prototypes are suggested and future work is proposed as an extension of
this study.

7.1 Project evolution

In the beginning of this project, there were many alternative approaches
that could have been taken. The field of bio-inspired computing can be
seen as a underinvestigated researched area when compared to traditional
computing and there is a lot of potential for research based on biological
models especially in the field of bio-inspired cloud computing. The main
motivation for choosing a cellular differentiation model as a foundation for
the technical part was that this concept has not yet been applied to achieve
web server scaling in the cloud. Unfortunately, the time period that was
given to finish the study was limited and not enough to extend the study
in order to compare it with some of the other biological models discussed
in 2.3. This is one of the things that can be completed in a future study
where the focus will be shifted from the model designing to algorithm op-
timization and an in-depth result comparison.

Achieving adaptive behavior in this project provided some challenges
especially because decentralized nature of the biomorphic model. In fact,
the technical system had to retain all of the characteristics from the bio-
logical model. Some of these characteristics include: autonomous action
in which every element configured itself rather than being controlled by a
master, interaction based on local information which manifests in the how
the decisions are made as well as the addition and removal of individual
elements from their respective groups which is an analogy to the process
of birth and death. Some of these challenges would have been eliminated
with a centralized system, but it would come with the price of a single point
of failure and wouldn’t belong to any of the discussed bio-inspired areas.

77

It requires an extensive and long measurement period in order to be
able to make strong statements based on the extracted data from research-
ing with cloud related technologies, when compared to traditional comput-
ing. One reason for this is the shared underlying infrastructure and the way
it affects the virtual machines. Although virtual machines are isolated from
each other, stressing out the physical hardware resources might have an ef-
fect on the virtual resources. It would be interesting to observe the results
of the developed prototypes in a dedicated cloud environment which has
no other users, and compare them to the presented results which were ob-
tained from a shared cloud environment provided by HiOA’s ALTO cloud.
The outcome of such a study would be gained knowledge and experience
that can be used to add additional frameworks to the system to regulate the
available stem cell server pool, by keeping track of the cloud’s active users
and the available hardware resources.

During the testing and experimentation period there were some major
issues that were faced. One issue was that the complexity of the project
includes different technologies that have to work in a synchronised
manner in order to provision and configure the virtual machines in the
planned time interval. Some minor changes were made to the initial
framework models during the implementation stage while other changes
and improvements are suggested in the section for future work discussed
below. Another issue that was faced during the implementation stage was
the version of the software that has been used and a small bug in the MLN
software. For example, the Puppet version which was used is 2.7.11 and
was the latest version that was available from the software repository for
Ubuntu 12.04, but it lacked some important functionalities like domain
prefix matching. The bug with the MLN software was encountered when
spawning the infrastructure, because MLN could not parse the build files.
After some debugging period, this problem was ironically fixed by simply
rebooting the server.

7.2 Algorithm comparison and proposed improve-
ments

Based on the results that were presented in chapter 6, one could conclude
that both algorithms have weak and strong sides. Choosing a superior al-
gorithm version would be based on the needs of the system. The conducted
experiments were completed by gradually increasing the traffic load up un-
til a certain point at which the amount of web traffic stopped increasing.
The addition of two virtual machines was enough to bring the load down
to its acceptable limits, but if the load was higher then more virtual ma-
chines would be needed. The efficiency of the prototype mainly depends
on the number of virtual machines that need to be spawned and the accept-
able reaction time for this procedure to finish. To clarify the priorities, let
us first look at the advantages and disadvantages of both prototypes.

78

7.2.1 Timing algorithm

One of the advantages of the timing prototype is that using this model
multiple virtual machines can be spawned at once. As seen in the first
case that was presented, even though two machines were needed to handle
the load, a third one was spawned because two VMs had chosen the same
timer. If the load kept rising above the web traffic threshold, the system
would be able to support even more traffic without the need of signalling or
spawning a new virtual machine. This prototype can be seen as predictive
and efficient in this case. On the other hand, if the traffic load stayed
the same as in the presented case, one virtual machine was unnecessary
taking up cloud resources which could have been used in another way,
thus making the prototype inefficient. Additionally, as seen in the figures
that have been presented for this algorithm, it is of a highly unpredictive
nature, since the smallest generated timer can be anything between 1 and
10 minutes. To be precise, the reaction times can be extremely fast with
spawning a couple of virtual machines in the first two to three minutes,
but it can also be extremely slow taking up to 10 minutes to spawn a single
virtual machine.

¢ Advantage - Multiple VM spawning at once, possible system expan-
sion to handle increased future traffic.

* Disadvantage - Timer randomness which could lead to long reaction
times, possibly spawning additional unnecessary VMs.

7.2.2 Random seed algorithm

The advantages of the random seed algorithm over the timing prototype
is that the first reaction time is instant. Additionally, if the smallest
timer generated by the timing prototype across all individual nodes in
the system is bigger than 5 to 6 minutes, the random seed algorithm will
have quicker reaction times for transforming at least 2 virtual machines.
On the other hand, when a larger amount of virtual machines needs to
be spawned, the time it takes to transform the required stem cell servers
to functional servers is long because of the 3 minute built-in sleep timer
in the prototype. Depending on the load and the generated timers from
the timing algorithm, this random seed algorithm can both be inferior or
superior when compared to the timing algorithm.

e Advantage - Instant reaction, predictive nature because of the fixed
time spawning interval.

¢ Disadvantage - Slower reaction times as the number of needed web
server VMs increases. Can only spawn one virtual machine at once
in a three minute interval.

79

7.2.3 Improvements

To overcome the disadvantages of both algorithms, some things can be
improved in future versions that could be developed following this study.
For the timing algorithm the generated timer could be decreased to be a
random number between 1 and 5 minutes. It is worth noting that the range
in which the timer is generated has to be adapted to the amount of available
stem cell servers. If there are more than 10 stem cell servers, it would
be wise to increase the maximum timer to be over 5 minutes since there
would be a big chance that two instances are spawned at the same time.
The random seed algorithm could be changed, so that the signal detection
is done every 90 seconds instead of 180 seconds. This would allow faster
reaction times, while still allowing space for the system to adapt to the
current load. The second algorithm will not spawn more than one virtual
machine at once when there is a signal presence in the network, but with
reducing the time frame the reaction times are brought to a minimum, thus
improving the overall performance of future prototypes.

7.3 Future work

The initial goal of this study was to explore how one could design and im-
plement an adaptive cloud model based on a biological one. Although this
goal has been fulfilled, there are many other things that can be considered
affecting the way of how this goal is achieved. It would be interesting to
explore the difference between a technical model that is based on an arti-
ficial immune system or human hormone system, when compared to the
presented technical model which was based on the process of cellular dif-
ferentiation. Although many of these biological systems share the same
characteristics, the designed technical models could have a completely dif-
ferent implementation, therefore providing divergent results.

For the current technical model, there are many things that can be im-
proved and functionalities that can be extended. One example would be
to extend the signalling capabilities, so that there are different signal types
depending on the incoming web traffic load which would provide a model
that has a predictive characteristics. Furthermore, the HAProxy configura-
tion in this project was managed manually due to time constraints. Future
models could be extended to provide an automatically manageable load
balancing configuration. During the transformation process, the individ-
ual server could SSH into the HAProxy server and add or remove itself
from the list of available web servers.

Another issue that is of crucial importance is the management of puppet
certificates. The signing of puppet certificates for authentication was done
in an automated manner for all elements belonging in a particular domain.
This is a known security vulnerability which needs to be fixed if the frame-
work is going to be deployed in a production environment. The signing

80

of the certificates for known hosts can be done in a similar manner by us-
ing SSH to execute commands on the Puppet master. The removing of old
and signed puppet certificates was also done manually during the experi-
menting process which proved to be inefficient and time consuming. Both
of these puppet certificate issues could be addressed in a separate script or
inside of the existing framework designs.

As previously mentioned, the Ubuntu and Puppet versions used in
this experiment were not the latest stable versions. The same environment
could be set up with newer versions of the software and operating system
to explore if there will be any performance improvement and difference in
the results. Additionally, more methods could be implemented as part of
the monitoring script that would fetch additional system parameters. Hav-
ing different types of local parameters would provide a better overview on
the overall system performance.

A different approach could be also taken, where a completely different
operating system is used to host the web servers. For example, with the
same available cloud resources instead of running ten Ubuntu servers,
one could more virtual machines that use a smaller and less demanding
version of Linux i.e. TinyCore Linux. Using a stripped-down Linux
version might provide better overall performance when used only for a
specific function. As previously noted, a comparison of the results of
this study with some of the other biological models discussed, could be
also completed in a future study where the focus will be shifted from
the model designing to algorithm optimization and an in-depth result
comparison. This comparison would bring additional insight into how the
current algorithms can be improved. These are only a few things that have
been thought of while working on this project and surely there will be a lot
more ideas and improvements that will emerge when working on future
projects related to this study.

81

82

Chapter 8

Conclusion

The primary goal of this study was to investigate how a biomorphic model
can be designed and implemented in order to achieve adaptive system be-
haviour in the cloud.

The biological model which was chosen as a foundation for the de-
signed technical model is cellular differentiation. Cellular differentiation
is a process where a particular cell changes from one type to another by
altering gene expressions inside the cells structure. These changes can be
triggered by releasing chemical signals in the surrounding environment.

We defined multiple analogies between blank servers which act as stem
cells, and web servers which act as cells of a specific function. The change in
the cells gene expressions results in a change of the cells structure, whereas
a puppet configuration run results in a change of the servers configuration.
The signalling process in which cells emit chemical signals is also part of
the technical model where web servers send TCP signals to the stem cell
network. The stem cells have an ability to detect the a particular chemical
presence on their membranes and so do the blank servers by running the
developed framework to detect TCP signals on their Ethernet ports.

The technical part of the problem statement is addressed by developing
two different approaches for adopting the biomorphic model in order to
solve the cloud scaling issue. For both prototypes, an identical underlying
infrastructure was deployed using the developed deployment framework,
along with a number of web servers and blank servers which run a signal
and a sensor prototype, respectively.

With the first approach, a prototype was developed which uses a ran-
dom timer mechanism each time it receives a TCP signal. On the other
hand, the second approach was based on a concept where a random num-
ber is generated from an identical seed which was planted on each stem
cell server in order to coordinate the transformation procedure across the
system. The obtained results from the system expansion show that both
prototypes can outperform each other in different scenarios. The difference

83

in the gathered results is mainly based on the amount of the targeted web
traffic and the smallest generated timer of the first prototype.

84

Bibliography

[1]

2]

[3]

4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. “An adaptive
hybrid elasticity controller for cloud infrastructures.” In: Network
Operations and Management Symposium (NOMS), 2012 IEEE. IEEE.
2012, pp. 204-212.

Michael Armbrust et al. “A view of cloud computing.” In: Communi-
cations of the ACM 53.4 (2010), pp. 50-58.

CFEngine AS. CFEngine. 2015. URL: http://cfengine.com/ (visited on
03/14/2015).

Ozalp Babaoglu, Hein Meling, and Alberto Montresor. “Anthill:
A framework for the development of agent-based peer-to-peer
systems.” In: Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on. IEEE. 2002, pp. 15-22.

Kyrre Begnum. Manage Large Networks - MLN. 2015. URL: http://min.
sourceforge.net/ (visited on 03/13/2015).

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence:
from natural to artificial systems. 1. Oxford university press, 1999.

Uwe Brinkschulte and Mathias Pacher. “An Agressive Strategy for an
Artificial Hormone System to Minimize the Task Allocation Time.”
In: Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops (ISORCW), 2012 15th IEEE International Symposium on.
IEEE. 2012, pp. 188-195.

Uwe Brinkschulte, Mathias Pacher, and Alexander von Renteln.
“An artificial hormone system for self-organizing real-time task
allocation in organic middleware.” In: Organic Computing. Springer,
2008, pp. 261-283.

V Chaudhary et al. “A comparison of virtualization technologies
for HPC.” In: Advanced Information Networking and Applications, 2008.
AINA 2008. 22nd International Conference on. IEEE. 2008, pp. 861-868.

Trieu C Chieu et al. “Dynamic scaling of web applications in a vir-
tualized cloud computing environment.” In: e-Business Engineering,
2009. ICEBE’09. IEEE International Conference on. IEEE. 2009, pp. 281-
286.

Susanta Nanda Tzi-cker Chiueh and Stony Brook. “A survey on
virtualization technologies.” In: RPE Report (2005), pp. 1-42.

85

http://cfengine.com/
http://mln.sourceforge.net/
http://mln.sourceforge.net/

[18]

[21]

[22]

[23]

[24]

Mate J Csorba, Hein Meling, and Poul E Heegaard. “Ant system for
service deployment in private and public clouds.” In: Proceedings of
the 2nd workshop on Bio-inspired algorithms for distributed systems. ACM.
2010, pp. 19-28.

Divyata Dal et al. “Evolution induced secondary immunity: An
artificial immune system based intrusion detection system.” In:
Computer Information Systems and Industrial Management Applications,
2008. CISIM’08. 7th. IEEE. 2008, pp. 65-70.

Jeff Daniels. “Server virtualization architecture and implementa-
tion.” In: Crossroads 16.1 (2009), pp. 8-12.

Richard Dawkins. The blind watchmaker: Why the evidence of evolution
reveals a universe without design. WW Norton & Company, 1996.

Gianni Di Caro and Marco Dorigo. “AntNet: Distributed Stigmer-
getic Control for Communications Networks.” In: J. Artif. Intell.
Res.(JAIR) 9 (1998), pp. 317-365.

Tharam Dillon, Chen Wu, and Elizabeth Chang. “Cloud computing:
issues and challenges.” In: Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Conference on. leee.
2010, pp. 27-33.

Shridhar G Domanal, Ram Mohana Reddy Guddeti, et al. “A
Novel Bio-Inspired Load Balancing of Virtualmachines in Cloud
Environment.” In: Cloud Computing in Emerging Markets (CCEM),
2014 IEEE International Conference on. IEEE. 2014, pp. 1-4.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. “Ant colony op-
timization.” In: Computational Intelligence Magazine, IEEE 1.4 (2006),
pp- 28-39.

Russ C Eberhart and James Kennedy. “A new optimizer using
particle swarm theory.” In: Proceedings of the sixth international
symposium on micro machine and human science. Vol. 1. New York, NY.
1995, pp. 39-43.

Patricia Takako Endo et al. “Self-organizing strategies for resource
management in Cloud Computing: State-of-the-art and challenges.”
In: Cloud Computing and Communications (LatinCloud), 2nd IEEE Latin
American Conference on. IEEE. 2013, pp. 13-18.

Eugen Feller, Louis Rilling, and Christine Morin. “Energy-aware ant
colony based workload placement in clouds.” In: Proceedings of the
2011 IEEE/ACM 12th International Conference on Grid Computing. IEEE
Computer Society. 2011, pp. 26-33.

The Linux Foundation. The Xen Project, the powerful open source
industry standard for virtualization. 2015. URL: http://www.xenproject.
org/ (visited on 03/25/2015).

Yonggiang Gao et al. “A multi-objective ant colony system algorithm
for virtual machine placement in cloud computing.” In: Journal of
Computer and System Sciences 79.8 (2013), pp. 1230-1242.

86

http://www.xenproject.org/
http://www.xenproject.org/

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Selvin George, David Evans, and Steven Marchette. “A biological
programming model for self-healing.” In: Proceedings of the 2003 ACM
workshop on Survivable and self-regenerative systems: in association with
10th ACM Conference on Computer and Communications Security. ACM.
2003, pp. 72-81.

Google. Google Cloud Computing, Hosting Services & Cloud Support —
Google Cloud Platform. 2015. URL: https:/ /cloud.google.com/ (visited
on 03/25/2015).

Google. Search Engine Strategies Conference. 2006. URL: http://www.
google.com/press/podium /ses2006.html (visited on 03/15/2015).

Irfan Habib. “Virtualization with kvm.” In: Linux Journal 2008.166
(2008), p. 8.

Rania Hassan et al. “A comparison of particle swarm optimization
and the genetic algorithm.” In: Proceedings of the 1st AIAA multidisci-
plinary design optimization specialist conference. 2005, pp. 18-21.

Geir Horn et al. “Analysing the Lifecycle of Future Autonomous
Cloud Applications.” In: ().

IBM. Virtualization in Education. 2007. URL: http://www-07.ibm.com/
solutions/in/education /download /Virtualization%20in%20Education. pdf
(visited on 03/25/2015).

Autonomic IBM Computing et al. “An architectural blueprint for
autonomic computing.” In: IBM White Paper (2006).

Chef Software Inc. Chef : IT automation for speed and awesomeness. 2015.
URL: https://www.chef.io/chef/ (visited on 03/14/2015).

GitHub Inc. GitHub - Build software better, together. 2015. URL: https:
//github.com/ (visited on 03/14/2015).

Rackspace US Inc. Rackspace Managed Cloud Services - More than just
infrastructure. 2015. URL: https: / / www . rackspace.com/ (visited on
03/29/2015).

VMware Inc. 2015. URL: http : / / www . vmware . com / products /
workstation (visited on 03/25/2015).

VMware Inc. vSphere ESXi Bare-Metal Hypervisor. 2015. URL: http:
/ / www . vmware . com / products / esxi- and - esx / overview (visited on

03/25/2015).

Zachary G Ives et al. “An adaptive query execution system for
data integration.” In: ACM SIGMOD Record. Vol. 28. 2. ACM. 1999,
pp- 299-310.

Derrick Kondo et al. “Cost-benefit analysis of cloud computing
versus desktop grids.” In: Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on. IEEE. 2009, pp. 1-12.

Spencer Krum et al. Pro Puppet. 2nd. Berkely, CA, USA: Apress, 2013.
ISBN: 1430260408, 9781430260400.

87

https://cloud.google.com/
http://www.google.com/press/podium/ses2006.html
http://www.google.com/press/podium/ses2006.html
http://www-07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
http://www-07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf
https://www.chef.io/chef/
https://github.com/
https://github.com/
https://www.rackspace.com/
http://www.vmware.com/products/workstation
http://www.vmware.com/products/workstation
http://www.vmware.com/products/esxi-and-esx/overview
http://www.vmware.com/products/esxi-and-esx/overview

[51]

[52]

KVM. Kernel Based Virtual Machine. 2015. URL: http:/ /www . linux-
kvm.org/page/Main_Page (visited on 03/25/2015).

Puppet Labs. Puppet Labs: IT Automation Software for System Adminis-
trators. 2015. URL: https://puppetlabs.com/ (visited on 03/14/2015).

Kenneth N Lodding. “The hitchhiker’s guide to biomorphic soft-
ware.” In: Queue 2.4 (2004), p. 66.

Pramote Luenam and Peng Liu. “The design of an adaptive intru-
sion tolerant database system.” In: Foundations of Intrusion Tolerant
Systems. IEEE Computer Society. 2003, pp. 14-14.

Sean Marston et al. “Cloud computing—The business perspective.”
In: Decision Support Systems 51.1 (2011), pp. 176-189.

Polly Matzinger. “Tolerance, danger, and the extended family.” In:
Annual review of immunology 12.1 (1994), pp. 991-1045.

Michael Meisel, Vasileios Pappas, and Lixia Zhang. “A taxonomy of
biologically inspired research in computer networking.” In: Computer
Networks 54.6 (2010), pp. 901-916.

Peter Mell and Tim Grance. “Effectively and securely using the cloud
computing paradigm.” In: NIST, Information Technology Laboratory
(2009), pp. 304-311.

Microsoft. Microsoft Azure: Cloud Computing Platform & Services. 2015.
URL: https://azure.microsoft.com/en-us/ (visited on 03/29/2015).

Microsoft. Virtualization for your modern datacenter and hybrid cloud.
2015. URL: http://www.microsoft.com /en-us/server-cloud /solutions /
virtualization.aspx (visited on 03/25/2015).

Microsoft. Windows Virtual PC. 2015. URL: http://www.microsoft.com/
en-us/download/details.aspx?id=3702 (visited on 03/25/2015).

Alberto Montresor and Ozalp Babaoglu. “Biology-inspired ap-
proaches to peer-to-peer computing in bison.” In: Intelligent Systems
Design and Applications. Springer, 2003, pp. 515-522.

Alberto Montresor, Hein Meling, and Ozalp Babaoglu. “Messor:
Load-balancing through a swarm of autonomous agents.” In: Agents
and Peer-to-Peer Computing. Springer, 2003, pp. 125-137.

Brice Morin et al. “Models@ run. time to support dynamic adapta-
tion.” In: Computer 42.10 (2009), pp. 44-51.

US Department of Health National Institutes of Health and Human
Services. Stem Cell Information. 2015. URL: http://stemcells.nih.gov/
info/basics/pages/basics4.aspx (visited on 04/25/2015).

Daniel Nurmi et al. “The eucalyptus open-source cloud-computing
system.” In: Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. IEEE. 2009, pp. 124-131.

Oracle. Oracle VM VirtualBox. 2015. URL: https: //www.virtualbox.org
(visited on 03/25/2015).

88

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
https://puppetlabs.com/
https://azure.microsoft.com/en-us/
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=3702
http://www.microsoft.com/en-us/download/details.aspx?id=3702
http://stemcells.nih.gov/info/basics/pages/basics4.aspx
http://stemcells.nih.gov/info/basics/pages/basics4.aspx
https://www.virtualbox.org

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Oslo and Akershus University College of Applied Sciences. HiOA is
getting its own cloud. 2015. URL: http://www.hioa.no/eng/News/HiOA-
is-getting-its-own-cloud (visited on 03/23/2015).

Chung-Ming Ou, Yao-Tien Wang, and Chung-Ren Ou. “Intrusion
detection systems adapted from agent-based artificial immune sys-
tems.” In: Fuzzy Systems (FUZZ), 2011 IEEE International Conference
on. IEEE. 2011, pp. 115-122.

Suraj Pandey et al. “A particle swarm optimization-based heuristic
for scheduling workflow applications in cloud computing environ-
ments.” In: Advanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on. IEEE. 2010, pp. 400—407.

The OpenStack project. OpenStack Open Source Cloud Computing
Software. 2015. URL: https : / / www . openstack . org/ (visited on
03/19/2015).

MIT Technology Review. Who Coined 'Cloud Computing’? 2011. URL:
http://www.technologyreview.com / news /425970 / who- coined- cloud-
computing/ (visited on 03/13/2015).

Ichiro Satoh. “Self-Adaptive Resource Allocation in Cloud Applica-
tions.” In: Proceedings of the 2013 IEEE/ACM 6th International Confer-
ence on Utility and Cloud Computing. IEEE Computer Society. 2013,
pp- 179-186.

Peter Sempolinski and Douglas Thain. “A comparison and critique of
eucalyptus, opennebula and nimbus.” In: Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on.
Ieee. 2010, pp. 417-426.

Amazon Web Services. Amazon elastic compute cloud. 2015. URL: https:
//aws.amazon.com/ec2/ (visited on 03/08/2015).

Amazon Web Services. Announcing Amazon Elastic Compute Cloud
(Amazon EC2) - beta. 2006. URL: https:/ /aws.amazon.com /about-
aws / whats- new /2006 /08 / 24 / announcing- amazon - elastic- compute-
cloud-amazon-ec2---beta/ (visited on 03/13/2015).

Borja Sotomayor et al. “Virtual infrastructure management in private
and hybrid clouds.” In: Internet computing, IEEE 13.5 (2009), pp. 14—
22.

Thomas Stutzle and Holger Hoos. “MAX-MIN ant system and
local search for the traveling salesman problem.” In: Evolutionary
Computation, 1997., IEEE International Conference on. IEEE. 1997,
pp- 309-314.

Devika Subramanian, Peter Druschel, and Johnny Chen. “Ants
and reinforcement learning: A case study in routing in dynamic
networks.” In: IJCAI (2). Citeseer. 1997, pp. 832-839.

Michael Wine - The New York Times. A Youth’s Passion for Computers
Gone Sour. 1988. URL: http: / / www . vmware . com / consolidation /
consolidate.html (visited on 03/15/2015).

89

http://www.hioa.no/eng/News/HiOA-is-getting-its-own-cloud
http://www.hioa.no/eng/News/HiOA-is-getting-its-own-cloud
https://www.openstack.org/
http://www.technologyreview.com/news/425970/who-coined-cloud-computing/
http://www.technologyreview.com/news/425970/who-coined-cloud-computing/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
http://www.vmware.com/consolidation/consolidate.html
http://www.vmware.com/consolidation/consolidate.html

Wolfgang Trumler, Tobias Thiemann, and Theo Ungerer. “An artifi-
cial hormone system for self-organization of networked nodes.” In:
Biologically Inspired Cooperative Computing. Springer, 2006, pp. 85-94.

University of Utah. Epigenetics. 2015. URL: http://learn.genetics.utah.
edu/content/epigenetics/ (visited on 04/25/2015).

VMWare. Cloud Computing is vCloud Air by VMuware. 2015. URL: http:
//vcloud.vmware.com/uk/ (visited on 03/25/2015).

VMWare. Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. 2015. URL: http:/ / www . vmware . com / files / pdf /
VMware paravirtualization.pdf (visited on 04/01/2015).

VMware. Server Consolidation. 2015. URL: http://www.vmware.com/
consolidation/consolidate.html (visited on 03/08/2015).

Gregor Von Laszewski et al. “Comparison of multiple cloud frame-
works.” In: Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE. 2012, pp. 734-741.

Michael Wang and Tatsuya Suda. “The bio-networking architecture:
A biologically inspired approach to the design of scalable, adaptive,
and survivable/available network applications.” In: Applications and
the Internet, 2001. Proceedings. 2001 Symposium on. IEEE. 2001, pp. 43—
53.

Matt Weinberger. Three Open Source-Based Cloud Alternatives to Open-
Stack. 2015. URL: http://siliconangle.com/blog/2012/04 /24 /three-open-
source-based-cloud-alternatives-to-openstack/ (visited on 03/25/2015).

Xiaolong Wen et al. “Comparison of open-source cloud management
platforms: OpenStack and OpenNebula.” In: Fuzzy Systems and
Knowledge Discovery (FSKD), 2012 9th International Conference on.
IEEE. 2012, pp. 2457-2461.

Andrew] Younge et al. “Analysis of virtualization technologies for
high performance computing environments.” In: Cloud Computing
(CLOUD), 2011 IEEE International Conference on. IEEE. 2011, pp. 9-
16.

90

http://learn.genetics.utah.edu/content/epigenetics/
http://learn.genetics.utah.edu/content/epigenetics/
http://vcloud.vmware.com/uk/
http://vcloud.vmware.com/uk/
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/consolidation/consolidate.html
http://www.vmware.com/consolidation/consolidate.html
http://siliconangle.com/blog/2012/04/24/three-open-source-based-cloud-alternatives-to-openstack/
http://siliconangle.com/blog/2012/04/24/three-open-source-based-cloud-alternatives-to-openstack/

Appendices

91

© ® N U R WN =

R R B R B) 0 W W W G W W W W NNNNRNRN NN NN e s s s s s s e
S U R LN R, O OO0 R DN R, OO XTRURE DN R, SO URE®N RO

Appendix A
Puppet and MLN files

A.1 MLN - build.mln

build.min

global {
project final
}

superclass funccell {
openstack {

keypair puppet_key

image ubuntu-12.04

flavor m1.tiny

user_data {
echo "192.168.50.2 puppet puppet.stemcell" >> /etc/hosts
echo "192.168.51.2 puppet puppet.funccell" >> /etc/hosts
ifconfig eth1 up
dhclient eth1
echo "nameserver 8.8.8.8" > /etc/resolvconf/resolv.conf.d/head
echo "nameserver 8.8.8.8" > /etc/resolv.conf
apt-get update
wget http://opas3n.com/init_hostname.sh
bash init_hostname.sh func
apt-get install puppet -y
puppet agent --test puppet

}

network eth0 {
net stem_cell_network
address dhcp

network eth1 {
net function_cell_network
address dhcp

}

superclass stemcell {
openstack {

keypair puppet_key

image ubuntu-12.04

flavor m1.tiny

user_data {
echo "192.168.50.2 puppet puppet.stemcell" >> /etc/hosts
echo "192.168.51.2 puppet puppet.funccell" >> /etc/hosts
ifconfig eth1 up
dhclient eth1
echo "nameserver 8.8.8.8" > /etc/resolvconf/resolv.conf.d/head

93

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

echo "nameserver 8.8.8.8" > /etc/resolv.conf
apt-get update

wget http://opas3n.com/init_hostname.sh
bash init_hostname.sh stem

apt-get install puppet -y

puppet agent --test puppet

}

network ethO {
net stem_cell_network
address dhcp

}

network eth1 {
net function_cell_network
address dhcp

}

host server1 {
superclass stemcell

}

host server2 {
superclass stemcell

}

host server3 {
superclass stemcell

}

host server4 {
superclass stemcell

}

host server5 {
superclass stemcell

}

host server6 {
superclass stemcell

}

host server7 {
superclass stemcell

}

host server8 {
superclass funccell

}

host server9 {
superclass funccell

}

host server10 {
superclass funccell

}

94

O ® N U W N =

N W Y Ul @ Ul Ol U1 U1 U1 Ul o s s e B W) 0) 0 0 00 L) L)W W RN NINNNNRNRN RN S s s e s s s s
R =2 ST ®IUSNT RO R, SO ®IOEREOROR,SDOD®IRNAOEDRNRS SO B®IRNAEBDNR,S ORI E N~ O

A.2 Puppet

A.2.1 Functional .pp

server1_func.pp

node 'serveri.func’{
$php_packages = ["php5","libapache2-mod-php5","php5-mcrypt"]
$apache_default = "filecontent"
package { 'apache2’:
ensure => present,
}

package {$php_packages:
ensure => "present”,
}

package { ‘git’:
ensure => "present”,
}->

exec { "git init":
cwd => "/root",
require => [Package["git"], Package["apache2"]],
command => "git init",
path => "/usr/bin:/bin",

}
exec { "git clone":
cwd => "/tmp",
require => [Package["qit"], Package["apache2"]],
command => "git clone https://github.com/opas3n/Netlab.git",
path => "/usr/bin:/bin",
}
exec { "Fix interface":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/interfaces /etc/network/interfaces",
path => "/usr/bin:/bin",
}

exec { "apache-conf":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/default /etc/apache2/sites-available/default",
path => "/usr/bin:/bin",
}->
service { 'apache2’:
ensure => running,
enable => true,

}
exec { "apply-index":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/index.php /var/www/index.php",
path => "/usr/bin:/bin",
}
exec { "apply-check":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "cp /tmp/Netlab/check.html /var/www/check.html",
path => "/usr/bin:/bin",
}

exec { "remove-html-index":

95

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

O N Ul W e

RN R NN NN 2o s s s s
N O U k= W N = O W0 N O U & W N~ O

cwd => "/tmp",
require => [Exec["qgit clone"]],
command => "rm /var/www/index.html",
path => "/usr/bin:/bin",

}

exec { "run-signal":
cwd => "/tmp",
require => [Exec["qgit clone"]],
command => "python signal.py",
path => "/usr/bin:/bin",

}

exec { "run-monitor":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "python monitor.py",
path => "/usr/bin:/bin",

}

exec { "run-reset":
cwd => "/tmp",
require => [Exec["git clone"]],
command => "python reset.py",
path => "/usr/bin:/bin",

}

A22 Stem .pp

server1_stem.pp

node ‘serveri.stem’{
$php_packages = ["php5","libapache2-mod-php5","php5-mcrypt"]
$apache_default = "filecontent”
package { 'apache2’:
ensure => absent,
}

package {$php_packages:
ensure => absent,
}

package { ‘git’:
ensure => absent,
}

file {/tmp/Netlab’:
ensure => absent,
path => ’/tmp/Netlab’,
recurse => true,
purge => true,
force => true,

}

package { 'ntp’:
ensure => present,
}

96

Appendix B

Frameworks and configuration
files

B.1 deploy.py

O ® N Ul R W N R

BB W 0 W W W W W W ORNNNNNNNRNRN S S s e e s s
KRB S P®®IINATEIRNR, OO R®IDNAEDDNR,S O ®NO TR ®N~ O

deploy.py

#!/usr/bin/python
import argparse
import 0s

import time

Parsing all arguments given to the script

parser = argparse.ArgumentParser()

parser.add_argument("-P", "--project", help="Specify the project name for the MLN project",
required=True)

parser.add_argument("-S", "--snumber", help="Specify the number of stem cells/blank servers",
type=int, required=True)

parser.add_argument("-F", "--fnumber", help="Specify the number of functional cells/web servers",
type=int, required=True)

parser.add_argument("-H", "--hostname", help="This is the basis of the hostname for the
deployed nodes, if not entered,the basis will be the same as the project name")
parser.add_argument("-K", "--keypair",

help="Specify the keypair which will be used to access the servers")
parser.add_argument("-O", "--0s", help="Enter this parameter in case you

want to deploy a different OS, the exact name of the OS image has to be entered")
parser.add_argument("-T", "--flavor", help="Choose one of the available choices

if you want to use a different OpenStack flavor",
choices=['m1.tiny’,m1.small’,’m1.medium’,’m1.large’,’m1.xlarge’])

args = parser.parse_args()

project = args.project
stem_cell_number = args.snumber
func_cell_number = args.fnumber
hostname = args.hostname
keypair = args.keypair

0S_image = args.os

flavor = args.flavor

def CreateHosts(stem_cell_number,func_cell_number,hostname):
Get total ammount of servers
total = stem_cell_number + func_cell_number
Counters for servers
count_f=func_cell_number
count_s=stem_cell_number

if hostname==None:
hostname = project.lower()

97

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

else:
hosthame = hostname.lower()

os.popen("rm cells.min")
w_file = open("cells.mIn", ’a’)

for i in range(1,total+1):

if count_s > 0:
count_s =count_s - 1
w_file.write("host " + hostname + str(i) + " {\ n")
w_file.write(" superclass stemcell \ n")
w_file.write("\ n \ n")

elif count_f > 0:
count_f =count_f-1
w_file.write("host " + hostname + str(i) + " {\ n")
w_file.write(" superclass funccell \ n")
w_file.write("\ n\ n")

w_file.close()

def BuildTemplate(project,keypair,flavor,os_image):
r_file = open("skeleton.min",’r’)
output = r_file.readlines()
output_save = []
for line in output:
if "project” in line:
x = line.replace("projectname”,project)
output_save.append(x)
elif "keypair" in line:
if keypair |= None:
x = line.replace("puppet_key" ,keypair)
output_save.append(x)
else:
output_save.append(line)
elif "flavor" in line:
if flavor != None:
x = line.replace("m1.tiny",flavor)
output_save.append(x)
else:
output_save.append(line)
elif "image" in line:
if os_image != None:
x = line.replace("ubuntu-12.04",0s_image)
output_save.append(x)
else:
output_save.append(line)
else:
output_save.append(line)
r_file.close()

w_file = open(’build.min’, 'w’)

for line in output_save:
w_file.write(line)

w_file.close()

os.popen(“cat cells.min >> build.miIn")

def StartDeployment(project,stem_cell_number,func_cell_number,hostname,keypair,0os_image,flavq
CreateHosts(stem_cell_number,func_cell_number,hostname)
BuildTemplate(project,keypair,flavor,0s_image)
os.popen("min build -f build.mIn")
os.popen("min start -p " + project)

print project, stem_cell_number, func_cell_number, hostname, keypair, os_image, flavor
StartDeployment(project,stem_cell_number,func_cell_number,hostname,keypair,os_image,flavor)

98

=

=

© N U R WN R

P T T N T N S e
B ONRR, SO ®»NGE®N = O

O N O Ul WN R

WL W WRNNNNNNRNRNNRNIDNRE 2 2 e s s s e
DR RSO ®I T E DRNR SO XU RN~ o

B.2 createpp.py

createpp.py

#! /usr/bin/python
import os

def createStemPP():
foriin range(1,11):

sed = "sed -e 's/server" +str(i)
sed += "/server" + str(i+1) +"/g;n™
output = os.popen("“cat server"+ str(i) +"_stem.pp | " + str(sed)
+" > server" + str(i+1) + "_stem.pp")
output = output.readlines()
sed =""

def createFuncPP():
foriinrange(1,11):

sed = "sed -e 's/server" +str(i)
sed += "/server" + str(i+1) +"/g;n™"
output = os.popen("cat server"+ str(i) +"_func.pp | "
+ str(sed) + " > server" + str(i+1) + "_func.pp")
output = output.readlines()
sed ="

createStemPP()
createFuncPP()

B.3 signal.py

signal.py

#! /usr/bin/python

from __future__ import division
import 0s

import socket

import time

def FetchMemory():
memory_in_use = os.popen("free | grep Mem | awk 'print $3/$2 * 100.0™)
free_memory = os.popen("free | grep Mem | awk 'print $4/$2 * 100.0™)
memory_in_use = memory_in_use.readlines()
free_memory = free_memory.readlines()

Alternative is to use used memory
#print memory_in_use[0].strip()
free_mem = free_memory[0].strip()
return free_mem

def FetchSystemLoad():
output = os.popen("cat /proc/loadavg")
output = output.readlines()
avg_values = output[0].strip().split()
avg_1_min = avg_values[0]
avg_5_min = avg_values[1]
avg_15_min = avg_values[2]
#print avg_1_min
#print avg_5_min
#print avg_15_min
return float(avg_1_min)

def FetchResponseTime():
output = os.popen("tail -n 10 /var/log/apache2/response_time.log")

output = output.readlines()

99

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71

O ® N O U W=

T T T
W N = © 0 0N U W N = O

request_size = len(output)

seconds =[]

microseconds = []

for line in output:
seconds.append(int(line.strip().split()[0]))
microseconds.append(int(line.strip().split()[11))

seconds_avg = sum(seconds)/request_size
microseconds_avg = sum(microseconds)/request_size

return seconds_avg

def Actions(util, memory,response_time):
print "Average system load ", util
print "Free memory in %", memory
print "Average response time in seconds/microseconds ", response_time

if float(util) >= 0.85 and float(memory)<=15 and int(response_time)>0:
SendSignal()

def SendSignal():
ips = os.popen("nmap -p T:10000 192.168.50.0/24 | grep -B 3 'open’
| grep report | grep -Eo ’[0-9]1,3\.[0-9]1,3\.[0-9]1,3\.[0-9]1,3’
| egrep -Ev ’192.168.51.2|192.168.51.4™)
all_ip=1]
for ip in ips.readlines():
all_ip.append(ip.strip())

for ip in all_ip:
print ip
os.popen("echo ’activate’ | nc " + ip + " 10000")

def Main():
while 1:
Actions(FetchSystemLoad(),FetchMemory(),FetchResponseTime())
time.sleep(10)
Main()

B.4 listen-1.py

listen-1.py

#! /usr/bin/python
import os

import time
import re

import random

def GetlPInterface():
Regex matching the correct interface belonging in the stem subnet
regex_py ="\ d+\.\ d+\.50 \.\ d+"
regexpy = re.compile(regex_py)

Fetching IP for ethO

eth0 = os.popen("/sbin/ifconfig eth0 | grep ‘inet addr:’ | cut -d: -f2 | awk ’{ print $1}"")
eth0 = eth0.readlines()[0]

eth0 = eth0.strip()

Fetching IP for eth1

eth1 = os.popen("/sbin/ifconfig eth1 | grep ‘inet addr:’ | cut -d: -f2 | awk '{ print $1}"")
eth1 = eth1.readlines()[0]

eth1 = eth1.strip()

Running regex to get IP of stem cell network

for interface in [ethO,eth1]:

100

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

© ® N O U W N =

g
U W N = O

result = regexpy.search(interface)
if result:
final_IP = result.group()
return final_IP

print GetlPInterface()

def ListenInterface():
output = os.popen("nc -1 10000")
output=output.readlines()[0].strip()
if output =="activate":
timer = GenerateTimer()
timer = timer * 60
time.sleep(timer)

#print "confirmation signal"

signal = os.popen("nc -1 10000")

signal=signal.readlines()[0].strip()

time.sleep(20)

if signal=="activate’:
SetHostname(reset)
SetHostname(func)
os.popen("puppet agent --test puppet")
return

else:
os.system("killall -9 nc")
ListenInterface()

def SetHostname(hosttype):
if hosttype=="reset’:
output=0s.popen("HOSTNAME="hostname | cut -d. -f1*;
echo $HOSTNAME; echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="stem’:
output=0s.popen("HOSTNAME="cat /etc/hostname‘; HOSTNAME=$HOSTNAME.stem;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="func’:
output=0s.popen("HOSTNAME-="cat /etc/hostname’; HOSTNAME=$HOSTNAME.func;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
else:
pass

def GenerateTimer():
return random.randint(1,11)

ListenInterface()

B.5 listen-2.py

listen-2.py

#! /usr/bin/python
import 0s

import time

import re

import random
random.seed(100)

def GetlPInterface():
Regex matching the correct interface belonging in the stem subnet
regex_py = "\ d+\.\ d+\.50 \.\ d+"
regexpy = re.compile(regex_py)

Fetching IP for ethO

eth0 = os.popen("/sbin/ifconfig eth0 | grep 'inet addr:’ | cut -d: -f2 | awk { print $1}™")
eth0 = eth0.readlines()[0]

eth0 = eth0.strip()

101

17
18

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

O N U W=

R e
B W N = o

Fetching IP for eth1

eth1 = os.popen("/sbin/ifconfig eth1 | grep ’inet addr:’ | cut -d: -f2 | awk ’{ print $1}™")
eth1 = eth1.readlines()[0]

eth1 = eth1.strip()

Running regex to get IP of stem cell network
for interface in [eth0,eth1]:
result = regexpy.search(interface)
if result:
final_IP = result.group()
return final_IP

print GetlPInterface()

def SetHostname(hosttype):
if hosttype=="reset’:
output=0s.popen("HOSTNAME="hostname | cut -d. -f1;
echo $SHOSTNAME; echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="stem’:
output=0s.popen("HOSTNAME-=‘cat /etc/hostname’; HOSTNAME=$HOSTNAME.stem;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="func’:
output=0s.popen("HOSTNAME="‘cat /etc/hostname‘; HOSTNAME=$HOSTNAME func;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
else:
pass

def Listeninterface():
output = os.popen("nc -1 10000")
output=output.readlines()[0].strip()
if output =="activate":
hostnamenumber = os.popen(’hostname | cut -f1 -d. | tail -c 2’)
hostnamenumber = hostnamenumber.readlines()
hostnamenumber = hostnamenumber[0].strip()
number = random.randint(1,10)
if str(number) == str(hostnamenumber):
SetHostname(reset)
SetHostname(func)
os.popen("puppet agent --test puppet")
return
else:
os.system("killall -9 nc")
time.sleep(180)
ListenInterface()

ListenInterface()

B.6 reset.py

reset.py

#! /usr/local/python
import time
import os

counter =0
def SetHostname(hosttype):
if hosttype=="reset’:
output=0s.popen("HOSTNAME="hostname | cut -d. -f1°;
echo $HOSTNAME; echo $SHOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="stem’:
output=0s.popen("HOSTNAME="cat /etc/hostname‘; HOSTNAME=$HOSTNAME.stem;
echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
elif hosttype=="func’:
output=0s.popen("HOSTNAME="cat /etc/hostname‘; HOSTNAME=$HOSTNAME func;

102

15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

echo $HOSTNAME > /etc/hostname; hostname $HOSTNAME;")
else:

pass

def FetchMemory():

memory_in_use = os.popen("free | grep Mem | awk ‘print $3/$2 * 100.0™")
free_memory = os.popen("free | grep Mem | awk ’print $4/$2 * 100.0™")
memory_in_use = memory_in_use.readlines()
free_memory = free_memory.readlines()

Alternative is to use used memory
#print memory_in_use[0].strip()
free_mem = free_memory[0].strip()
return free_mem

def FetchSystemLoad():
output = os.popen("cat /proc/loadavg")
output = output.readlines()
avg_values = output[0].strip().split()
avg_1_min = avg_values[0]
avg_5_min = avg_values[1]
avg_15_min = avg_values[2]
#print avg_1_min
#print avg_5_min
#print avg_15_min
return float(avg_1_min)

def FetchResponseTime():

output = os.popen("tail -n 10 /var/log/apache2/response_time.log")

output = output.readlines()

request_size = len(output)

seconds =[]

microseconds = []

for line in output:
seconds.append(int(line.strip().split()[0]))
microseconds.append(int(line.strip().split()[1]))

seconds_avg = sum(seconds)/request_size
microseconds_avg = sum(microseconds)/request_size

return seconds_avg

def Decision(util,memory,response_time,counter):
if float(util) <= 0.10 and float(memory)>=80 and int(response_time)==0:
counter = counter + 1
if counter >= 5:
Remove()
else:
counter =0
return counter

def Remove():
SetHostname("reset")
SetHostname("stem")
os.popen("puppet agent --test puppet")
return

def Main():
while 1:
Decision(FetchSystemLoad(),FetchMemory(),FetchResponseTime(),counter)
time.sleep(120)

103

O 0N Ul N

S 29 922 PYALIPTIATIAEEEEEEEBSELSEZLELYERPEIRERERIEREREIERENRREIEI SR E DRSS
5 BRSSO OIS RERO RS0 ®SSEG SR E S eI ORIV AESEOBISARDODNRLSO IR0 R D0 = O

B.7 monitor.py

monitor.py

#! /usr/bin/python

from __future__ import division
import os

import paramiko

import time

def FetchMemory():
memory_in_use = os.popen("free | grep Mem | awk ’print $3/$2 * 100.0™)
free_memory = os.popen("free | grep Mem | awk 'print $4/$2 * 100.0™)
memory_in_use = memory_in_use.readlines()
free_memory = free_memory.readlines()

Alternative is to use used memory
#print memory_in_use[0].strip()
free_mem = free_memory[0].strip()
return free_mem

def FetchSystemLoad():
output = os.popen(“cat /proc/loadavg”)
output = output.readlines()
avg_values = output[0].strip().split()
avg_1_min = avg_values[0]
avg_5_min = avg_values[1]
avg_15_min = avg_values[2]
#print avg_1_min
#print avg_5_min
#print avg_15_min
return float(avg_1_min)

def FetchResponseTime():

output = os.popen("tail -n 10 /var/log/apache2/response_time.log")

output = output.readlines()

request_size = len(output)

seconds =[]

microseconds = []

for line in output:
seconds.append(int(line.strip().split()[0]))
microseconds.append(int(line.strip().split()[1]))

seconds_avg = sum(seconds)/request_size
microseconds_avg = sum(microseconds)/request_size

return seconds_avg

def CreateData():
hostname = o0s.popen("hostname")
hostname = hostname.readlines()[0].strip()
epoch_time = int(time.time())
data = str(FetchSystemLoad()) + " " + str(FetchMemory()) + " "
+ str(FetchResponseTime()) + " " + hostname + " " + str(epoch_time)

ip ="188.226.151.105"

user = "root"

passwd = "mypassword"

cmd = "echo " + data + " >> data.dat"

s = paramiko.SSHClient()
s.set_missing_host_key_policy(paramiko.AutoAddPolicy())
s.connect(ip, 22, user, passwd)

stdin, stdout, stderr = s.exec_command(cmd)
result=stdout.read()

s.close()

return result

104

66

O ® N O Ul N R

U1 U Ul R s R R B R R R R R W W W W W W W W W WNENNNRNNNRNRNRNE S e e s e
R 23S © ®I Gk ORI ATEBRNR,SO®INAEDRNROS O ®®IOT RN~ O

print CreateData()

B.8 haproxy.cfg

global
log 127.0.0.1 local0
log 127.0.0.1 local1 notice
#log loghost local0 info
maxconn 4096
#chroot /usr/share/haproxy
user haproxy
group haproxy
daemon
#debug
#quiet

defaults
log global
mode http
option httplog
option dontlognull
retries 3
option redispatch
maxconn 2000
contimeout 5000
clitimeout 50000
srvtimeout 50000

listen stats :2000
mode http
stats enable
stats hide-version
stats realm Haproxy Statistics
stats uri/

frontend web
bind *:80
default_backend back

backend back
server server1 192.168.51.6:80 check
server server2 192.168.51.7:80 check
server server3 192.168.51.8:80 check
server server4 192.168.51.9:80 check
server server5 192.168.51.10:80 check
server server6 192.168.51.11:80 check
server server7 192.168.51.12:80 check
server server8 192.168.51.14:80 check
server server9 192.168.51.13:80 check
server server10 192.168.51.5:80 check

http-check expect string ltworks
option httpchk GET /check.html

haproxy.cfg
this config needs haproxy-1.1.28 or haproxy-1.2.1

105

	Introduction
	Background
	Configuration management and deployment technologies
	Puppet
	MLN & ALTO
	Git - Version Control System

	Cloud computing and virtualization
	Virtualization
	Cloud types, platforms and providers
	Cloud computing from a business standpoint

	Relevant work in bio-inspired cloud computing
	Biomorphic characteristics
	Artificial Immune Systems
	Artificial Hormone Systems
	Particle Swarm Optimization
	Ant Colony Optimization

	Approach
	Objectives
	Design stage
	Biological model
	Technical model
	Two algorithms for prototypes
	Underlying infrastructure

	Implementation and experimentation stage
	Necessary tools to build the model
	Infrastructure deployment script
	Prototypes of the two algorithms
	Testing the correct functioning of the setup

	Measurement, analysis and comparison stage
	Measurement and plotting scripts
	Experiments
	Data analysis and comparison

	Result I - Design and models
	Biological model
	Technical model and Prototype Designs
	Infrastructure design
	Networks & Domains
	Server Deployment and Configuration
	Deployment script - deploy.py
	Puppet .pp file generator - createpp.py
	Signalling and sensor part of prototype
	Scaling down - reset.py
	Monitoring and plot script - monitor.py + plot.py

	Result II - Implementation and Experiments
	MLN skeleton
	Puppet skeleton
	Deployment Framework
	HAProxy and PHP
	Testing and experiments

	Results III - Measurements and Analysis
	Timing Algorithm
	CPU and memory performance in timer interval 1-5 minutes
	CPU and memory performance in timer interval 5-10 minutes

	Random Seed Algorithm
	Scaling down

	Discussion
	Project evolution
	Algorithm comparison and proposed improvements
	Timing algorithm
	Random seed algorithm
	Improvements

	Future work

	Conclusion
	Appendices
	Puppet and MLN files
	MLN - build.mln
	Puppet
	Functional .pp
	Stem .pp

	Frameworks and configuration files
	deploy.py
	createpp.py
	signal.py
	listen-1.py
	listen-2.py
	reset.py
	monitor.py
	haproxy.cfg

