ISBN 82-553-0475-4 No 1
Pure Mathematics 25. Jan. 1982
A CONSTRUCTION OF INNER FUNCTIONS
ON THE UNIT BALL IN C^{P}
byErik L申w

In their recent paper [1], Iakirn and Sibony cane very close to constructing inner functions on the unit ball in C^{P}. In fact, only some minor modifications of their argunents are necessary to produce bona fide inner functions. The present paper carries out these modifications. Since we neer to point out sone information not explicitly stated (but clear from the context) in their paner, and to make the expositon self-contained, we repeat most of the material in their paner. Our lema 1, for instance, is identical to their Leme 3 , and our application of lema 1 in the proof of lema 2 is the same as theirs in the proof of Theorene 1 .

The following notations are used: B is the unit ball in C^{P}, $B_{R}=\left\{z \in C^{P}:|z|<R\right\}$. We use the distance

$$
\delta\left(z_{1}, z_{2}\right)=\frac{1}{\sqrt{2}}\left\|z_{1}-z_{2}\right\| \leqslant \sqrt{2} \text { when } z_{1}, z_{2} \in B
$$

When $z_{1}, z_{2} f \delta B$, we get

$$
\delta^{2}\left(z_{1}, z_{2}\right)=\frac{1}{2}\left\|z_{1}-z_{2}\right\|^{2}=1 \cdots \operatorname{Re}<z_{1}, z_{2}>
$$

When $z \in \partial B$, we let $B(z, r)$ denote the ball in ∂P with δ-radius r. The area of $B(z, r)$ is denoted $A(r)$. An exact formula for $A(r)$ is given in [1]. The following obvious estinate, however, is sufficient for our purposes:
(1) There exist constants C_{7} and C_{2} such that

$$
C_{1} r^{2 p-1} \leqslant A(r) \leqslant C_{2} r^{2 p-1}, 0<r \leqslant \sqrt{2}
$$

Finally μ is the ordinary area measure on ∂B, normalized such that $\mu(\partial R)=1$. The area $A(r)$ refcrs to this measure.

Iemra 1. There exist positive numhers ε_{0}, C and A, depending, only on the dimension, such that: If ε, a and R are positive numbers satisfying $0<2 \varepsilon<a<1, \varepsilon \leqslant \varepsilon_{0}$ and $R<1$, and f is a continuous function on $\partial B, U \subset \partial B$ an open set such that $\mu(U)=\mu(\mathbb{U})<1$ with $|f(z)|>a$ for all $z \in U$, then there is an entire function g
and an open set $V C \partial B$ such that
(a)

$$
\|f+c\|_{\infty} \leqslant \max \left\{\|f\|_{\infty}, T\right\}+2 \varepsilon
$$

(b)

$$
\|\varepsilon\|_{B_{R}} \leqslant \varepsilon
$$

(c)

$$
|f(z)+g(z)|>a-2 \varepsilon \text { on } U U V
$$

(d) $\bar{U} \cap \bar{V}=\varnothing$ and $\mu(V)=\mu(\bar{V}) \geqslant C$ arc $\cos a\left[\frac{\log 1 / a}{10 g A / \varepsilon}\right]^{\frac{2 p-1}{2}}(1-\mu(\mathrm{J}))$

Proof: Let $U^{\gamma}=\{Z \in \partial B ; \delta(z, U)<\gamma\}$ and $V^{\gamma}=\partial R V^{\gamma}$. U^{γ} is an open set and $\lim _{\gamma \rightarrow 0} \mu\left(U^{\gamma}\right)=\mu(\tilde{U})=\mu(U)$, hence there exists γ_{γ} such that

$$
\mu\left(V^{\gamma}\right)=1-\mu\left(U^{\gamma}\right)>\frac{1}{2}(1-\mu(T)) \text { whenever } \gamma \leqslant \gamma_{1}
$$

Since f is unifornly continuous there exists γ_{2} such that $\left|f(z)-f\left(z^{\prime}\right)\right|<\varepsilon$ when $\delta\left(z, z^{\prime}\right)<\gamma^{\circ}$. Let $r^{\prime}>0$ be a nurner such that $r \leqslant \min \left(\gamma_{1}, \gamma_{2}\right)$. Choose a maxinal disjoint farily $\left\{B\left(z_{j}, r\right)\right\}_{j=1}^{N} \quad$ of balls with $z_{j} \in V^{r}$. Maximal means that any disjoint fanily of balls with centers in V^{r} and radii r will have not more than Nr balls. Since all of these balls lie outside U, (1) gives

$$
\begin{equation*}
\Pi_{r}{ }^{C} r r^{2 n-1} \leqslant 1-\mu(U) \tag{2}
\end{equation*}
$$

The balls $F\left(z_{j}, 2 r\right)$ must cover V^{r}, hence (1) sives

$$
\begin{equation*}
{ }^{11} r^{C} 2^{2}{ }^{2 p-1} r^{2 n-1} \geqslant \mu\left(V^{r}\right)>\frac{1}{2}(1-\mu(T I)) \tag{3}
\end{equation*}
$$

(2) and (3) together give

$$
\begin{equation*}
\frac{O_{3}}{r^{2 p-1}}(1-\mu(U)) \leqslant N_{r} \leqslant \frac{C_{4}}{r^{2 p-1}}(1-\mu(U)) \tag{4}
\end{equation*}
$$

We now seek an estimate on how many points $z j$ can be at a certain distance fron zC. AB . Let

$$
V_{k}(z)=\left\{z_{j} ; \operatorname{kr} \leqslant \delta\left(z_{,} z_{j}\right)<(k+1) r\right\} \quad k=1, \ldots,\left[\frac{\sqrt{2}}{r}\right]
$$

and $N_{k}(z)=c a r d V_{k}(z)$. If $z_{j} \in V_{k}(z)$ then $F\left(z_{j}, r\right) \subset R(z,(k+2) r)$ hence (1) Gives

$$
H_{k}(z) C_{1} r^{2 p-1} \leqslant C_{2}(k+2)^{2 p-1} r^{2 p-1}
$$

which implies

$$
\begin{equation*}
N_{k}(z) \leqslant C_{5} k^{2 p-1} \tag{5}
\end{equation*}
$$

Let $\tilde{\xi}(z)=\sum_{j=1}^{N_{r} \beta_{j}} e^{-n\left(1-\left\langle z, z_{j}\right\rangle\right)}$ where B_{j} is defined by $\beta_{j}=0$ if $\left|f\left(z_{j}\right)\right| \geqslant 1$ and $\left|f\left(z_{j}\right)+\beta_{j}\right|=\left|f\left(z_{j}\right)\right|+\left|\beta_{j}\right|=1$ otherwise.

We shall show that m and r can be chosen such that g satisfies the lemma. When $z \in \partial B$ we get

$$
\begin{aligned}
\mathcal{E}(z)= & \sum_{j=1}^{{ }^{I} r}\left|\beta_{j}\right| e^{-n \delta^{2}\left(z_{i} z_{j}\right)} e^{i \theta_{n, j}(z)}= \\
& {\left[\frac{\left[\frac{\sqrt{2}}{r}\right]}{\sum_{k=0} z_{j} \in V_{k}(z)}{ }^{\left|\beta_{j}\right| e^{-n \delta^{2}\left(z, z_{j}\right)} e^{i \theta_{n, j}(z)}}\right.}
\end{aligned}
$$

There is at most one point in $\mathrm{V}_{0}(z)$. This gives, by (5)

$$
|\xi(z)| \leqslant 1+C_{5}\left[\sum_{k=0}^{\left[\frac{\sqrt{2}}{r}\right]} k^{2 n-1} e^{-k^{2} n r^{2}}\right]
$$

Assuming $n r^{2}$ is large, we get

$$
|g(z)| \leqslant 1+C_{5} \sum_{k=1}^{\infty} e^{-k n r^{2}}<1+2 C_{5} e^{-n r^{2}}:=1+A e^{-n r^{2}}
$$

Hence, if we choose n and r such that

$$
\begin{equation*}
n r^{2}=\log A / \varepsilon \tag{6}
\end{equation*}
$$

we get

$$
\begin{align*}
& |g(z)|<1+\varepsilon \text { and }|g(z)|<\varepsilon \text { if } z \in \partial B \text { and } \tag{7}\\
& z \notin B\left(z_{j}, r\right) \text { for any } j \text { with } B_{j} \neq 0
\end{align*}
$$

implies that the above calculations hold. We shall also assume ε_{0} is small enough to guarantee that $n r^{2} \geqslant 1$. Condition (6) can be satisfied with arbitrarily snall r and arbitrarily large n.
(7) implies parts of (a) and (c). Since f is outside all the halls, $|f(z)+g(z)|>a-\varepsilon$ on $T J$. If $z \in \partial B$ and $z \notin B(z, r, r)$ for any j with $B_{j} \neq 0$, we get $|f(z)+\mathcal{E}(z)| \leqslant\|f\|_{\infty}+\varepsilon$. If $z \in B(z, r)$ for sone j with $\beta_{j} \neq 0$, we get
(8) $|f(z)+g(z)| \leqslant\left|f\left(z_{i}\right)-f\left(z_{j}\right)\right|+\left|f\left(z_{j}\right)+B j^{e n\left(1-<z_{j} z_{j}>\right)}\right|$

$$
+\left|\sum_{k \neq j} B_{k} e^{-n\left(7 \cdots<z, z_{k}>\right)}\right| \leqslant \varepsilon+1+\varepsilon=1+2 \varepsilon
$$

This proves (a).
$\stackrel{1}{\mathrm{r}} \mathrm{r}$
Let $W=\underset{j=1}{U} \Gamma\left(z_{j}, r\right)$. We shall now deternine a certain open subset V of W such that $|f(z)+\varepsilon(z)|>a-2 \varepsilon$ in V and rive an estinate on its area。 If $\left|f\left(z_{j}\right)\right| \geqslant 7$, then $\beta_{j}=0$, so (7) gives that $|f(z)+g(z)|>1-2 \varepsilon>a-2 \varepsilon$ in $B(z, r)$, so we can let the entire ball be in V.

Next, we pick out certain subsets of the balls $B\left(z_{j}, r\right)$ with $B_{j} \neq 0$. To do this, introduce the notations $\alpha=\left|f\left(z_{j}\right)\right|$, $s=\left|e^{-n\left(1-<z, z_{j}>\right)}\right|=e^{-n \delta^{2}\left(z, z_{j}\right)} \quad$ and $\quad \theta=\arg \left(e^{\left.-n\left(1-<z_{i}, z_{j}\right\rangle\right)}\right)=$ $n \operatorname{In}\left\langle z, z_{j}>:=n y\right.$. If $\pi(z)$ is the projection of z on the real tangent space of ∂P at z_{j}, y is the component of $\pi(z)$ orthogonal to the complex tangent space. Since

$$
\begin{aligned}
& |f(z)+g(z)| \geqslant\left|f\left(z_{j}\right)+\beta_{j} e^{-n\left(1-<z_{,} z_{j}>\right)}\right|-\left|f(z)-f\left(z_{j}\right)\right| \\
& -\left|\sum_{k \neq j} \beta_{k} e^{-n\left(1-<z, z_{j}>\right)}\right| \geqslant\left|f\left(z_{j}\right)+f_{j} e^{-n\left(1-<z, z_{j}>\right)}\right|-2 \varepsilon= \\
& \left|\alpha+(1-\alpha) s e^{i \theta}\right|-2 \varepsilon
\end{aligned}
$$

we get that $|f(z)+g(z)|>a-2 \varepsilon$ if $\left|\alpha+(1-\alpha) s e^{i \theta}\right|>a$, hence if

$$
\alpha^{2}+2 \alpha(1-\alpha) s \cos \theta+(1-\alpha)^{2} s^{2} \geqslant a^{2}
$$

This holds if $s \geqslant a$ and $\cos \theta \geqslant a$. $s \geqslant a$ holds if

$$
n \delta^{2}\left(z, z_{j}\right) \leqslant \log \frac{1}{a}
$$

hence in a ball with radius ρ, such that

$$
\begin{equation*}
n p^{2}=\log \frac{1}{a} \tag{9}
\end{equation*}
$$

(6) and (9) show that we may assume $\rho<r$. The condition cos ny $\geqslant a$. means that we have to pick out certain strins in the ball $B(z, j, p)$ An easy geonetric argurient shows that these strips will have a total area which is at least $\frac{\operatorname{arc} \cos a}{2 \pi} A(\rho)$. The set V obtained satisfies $\mu(\nabla)=\mu(V)$ and $\nabla \cap \Pi=\varnothing$.

We now get by (1),(4),(6) and (9)

$$
\begin{aligned}
& \mu(V) \geqslant \frac{\arccos a}{2 \pi} A(\rho) \cdot \Pi_{r} \geqslant \frac{C_{2}}{2 \pi}(\arccos a) \rho^{2 p-1} N_{r} \geqslant \\
& \frac{C_{1} C_{3}}{2 \pi}(\arccos a)\left(\frac{\rho}{r}\right)^{2 p-1}(1-\mu(U))= \\
& \frac{C_{1} C_{3}}{2 \pi}(\arccos a)\left[\frac{10 g 1 / a}{10 g A / \varepsilon}\right]^{\frac{2 p-1}{2}}(1-\mu(U))
\end{aligned}
$$

This proves (c) and (d). Finally, if $|z| \leqslant R$, then $\operatorname{Re}\left(1-<z, z_{j}>\right) \geqslant 1-R$. Hence, since $n r^{2} \geqslant 1$, (4) gives

$$
\begin{aligned}
& |g(z)| \leqslant N_{r} e^{-n(1-R)} \leqslant C_{4} \frac{1}{r^{2 p-1}} e^{-n(1-R)} \leqslant C_{4} n^{\frac{2 p-1}{2}} e^{-n(1-R)} \\
& \text { Choosing } n \text { large enough proves (b). }
\end{aligned}
$$

Remark: Lemma 1 holds with $U=\varnothing$, in which case the condition $|f(z)|>a$ on U is empty and $V_{r}=\partial B$ for all r. It is also clear from the construction that $\left\|F_{N}\right\|_{U}<\varepsilon$, a property we shall not need.

Lemma 2: Let f be a continuous function on ∂B with $\|f\|_{\infty} \leqslant 1$ and let $\varepsilon>0, R<1$. Then there is an entire function h and an open set $U \subset \partial B$ such that
(1)

$$
\| f+h_{\infty} \leqslant 1+\varepsilon
$$

(2)

$$
\|h\|_{B_{R}} \leqslant \varepsilon
$$

(3)

$$
|f(z)+h(z)|>1-\varepsilon \quad \text { for } \quad z \in U
$$

(4)

$$
\mu(U)>1-\varepsilon
$$

Proof: Let $a=1-\frac{1}{2} \varepsilon$ and choose ε_{i} such that $4 \sum_{i=1}^{\infty} \varepsilon_{i}<\varepsilon$. Apply lena 1 to the data $a, \varepsilon_{1}, R, f, U=\varnothing$ to produce an entire function ${ }^{h_{1}}$ and an open set U_{1} such that
(a) $\quad\left\|f+h_{1}\right\|_{\infty} \leqslant 1+2 \varepsilon_{1}$
(b)

$$
\left\|h_{1}\right\|_{D_{R}} \leqslant \varepsilon_{1}
$$

(c)

$$
\left|f(z)+h_{1}(z)\right|>a-2 \varepsilon_{1} \text { on } U_{1}
$$

$$
\begin{equation*}
\sigma_{1}=\mu\left(\Pi_{1}\right) \geqslant C \operatorname{arc} \cos a\left[\frac{10 \Omega 1 / a}{10 \xi A / \varepsilon_{7}}\right]^{\frac{2 p-1}{?}} \tag{d}
\end{equation*}
$$

Suppose entire functions h_{1}, \ldots, h_{n} have been chosen, together with open sets $\mathrm{U}_{7}, \ldots, \mathrm{U}_{n}$ such that if $W_{i=1}=\mathrm{U}_{\mathrm{K}=1}^{\mathrm{U}} \mathrm{U}_{\mathrm{k}}$, then $\overline{\mathrm{T}_{i}+7} n \overline{T_{i}}=\varnothing$ and $\mu\left(U_{i}\right)=\mu\left(\Psi_{i}\right)=\sigma_{i}$. The function h_{n+1} and the open set U_{n+1} is then obtained by applying lemma 1 to the data $a-2 \sum_{k=1}^{n} \varepsilon_{k}, \varepsilon_{n+1}, R, f+\left(h_{7}+\ldots+h_{n}\right), W_{n}$. This produces a sequence $\left\{h_{k}\right\}$ of entire functions and a sequence $\left\{U_{k}\right\}$ of disjoint open sets such that
(a)

$$
\left\|\Gamma+\sum_{k=1}^{n} h_{k}\right\| \leqslant 1+2 \sum_{k=1}^{n} \varepsilon_{k}<1+\varepsilon
$$

(b)

$$
\left\|\sum_{k=1}^{n} h_{k}\right\| P_{R} \leqslant \sum_{k=1}^{n}\left\|h_{k}\right\|_{B_{R}} \leqslant \sum_{k=1}^{n} \varepsilon_{k}<\varepsilon
$$

(c)

$$
\left|f(z)+\sum_{k=1}^{n} h_{k}(z)\right|>a-2 \sum_{k=1}^{n} \varepsilon_{k}>a-\frac{1}{2} \varepsilon=1-\varepsilon \text { on } W_{n}
$$

(d) $\quad \sigma_{n}=\mu\left(U_{n}\right) \geqslant C \arccos \left(\operatorname{a-2} \sum_{k=1}^{n-1} \varepsilon_{k}\right)\left[\frac{\log 1 / a-2^{n-1} \varepsilon_{k}}{10 g A / \varepsilon_{n}}\right]^{\frac{2 p-1}{2}}\left(1-\ldots \sum_{k=1}^{n-1} \sigma_{k}\right)$

$$
\geqslant C \text { arc cos } a\left[\frac{\log 1 / a}{\log \Lambda / \varepsilon_{n}}\right]^{\frac{2 p-1}{2}}\left(1-\sum_{k=1}^{n-1} \sigma_{k}\right)
$$

If $\sum_{k=1}^{\infty} \sigma_{k}<1$, (d) shows that there is a constant C_{G} such that

$$
\sigma_{n} \geqslant C_{6} \frac{1}{\left[\log A / \varepsilon_{n}\right]^{\frac{2 p-1}{2}}}
$$

This is clearly impossible if $\sum_{n=1}^{\infty} \frac{1}{\left[\log A / \varepsilon_{n}\right]^{\frac{2 p-1}{2}}}=+\infty$, which can be achieved by

$$
\varepsilon_{n}=A \tau^{\left(\frac{2}{2 p-1}\right)}
$$

for sone small τ. Hence we nay assume that $\sum_{k=1}^{\infty} \sigma_{k}=1$, so for n sufficiently large, $U=W_{n}$, we get

$$
\mu(\mathrm{U})=\sum_{K=1}^{n} \sigma_{K}>1-\varepsilon
$$

Which is (4) in the lena. Letting $h=\sum_{k=1}^{n} h_{k}$, (7), (2) and (3) are just (a), (b) and (c)

Remark: We shall apply leman 2 repeatedly with the hypothesis $\|f\|_{\infty} \leqslant$ for sone a, in which case the conclusions of the lemma hold with 1 replaced by a in (1) and (3). We shall refer to f, a, ε, R as data for the lemma.

Theorem: There exist inner functions in B

Proof: Let $\left.\| a_{i}\right\},\left\{\varepsilon_{i}\right\}$ be sequences such that a_{i} increases strictly to $1, a_{i}{ }^{+} \varepsilon_{i} \leqslant a a_{i+1}$ and $\sum_{i=1}^{\infty} \varepsilon_{i}<\frac{1}{2}$. Apply lena 2 to the data $f_{0}=0, a_{1}, \varepsilon_{1}, P_{7}=\frac{1}{2}$ to get an entire function f_{1} and an open
set $\mathrm{U}_{1} \subset \partial \mathrm{~B}$ such that

$$
\begin{align*}
& \left\|f_{1}\right\|_{\infty} \leqslant a_{1}+\varepsilon_{1} \leqslant a_{2} \tag{1}\\
& \left\|f_{7}\right\|_{B_{R_{1}}} \leqslant \varepsilon_{1}
\end{align*}
$$

(2)

$$
\begin{equation*}
\left|f_{1}(z)\right|>a_{1}-\varepsilon_{1} \text { for } z \in U_{1} \tag{3}
\end{equation*}
$$

(4)

$$
\mu\left(U_{1}\right)>1-\varepsilon_{1}
$$

Since f is continuous, there exists an R_{2}, such that $R_{1}<R_{2}<1$ and such that

$$
\begin{equation*}
\left|\mathrm{f}_{1}\left(\mathrm{R}_{1} z\right)\right|>a_{1}-2 \varepsilon_{1} \text { for } z \in U_{1} \tag{5}
\end{equation*}
$$

Suppose that we have inductively found entire functions f_{1}, \ldots, f_{n}, open sets ${ }^{{ }^{J}}{ }_{7}, \ldots .{ }_{n}$ and real numbers ${ }_{R_{1}}, \ldots, R_{n+1}$, such that, if we let $h_{n}=\sum_{i=1}^{n} f_{i}$, then

$$
\begin{equation*}
\left\|h_{n}\right\|_{\infty} \leqslant a_{n+1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f_{i}\right\|_{R_{R_{i}}} \leqslant \varepsilon_{i}, \quad r_{j}<R_{i+1}<1 \text { for } i=1, \ldots, n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left|h_{n}(z)\right|>a_{n}-\varepsilon_{n} \text { for } z \in U_{n} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \mu\left(U_{n}\right)>1-\varepsilon_{n} \tag{4}\\
& \left|\ln _{n}\left(R_{n+1} z\right)\right|>a_{n}-2 \varepsilon_{n} \text { for } z \in U_{n} \tag{5}
\end{align*}
$$

We then apply lemma 2 to the data $n_{n}, a_{n+1}, \varepsilon_{n+1}$ and R_{n+1} to produce a new function f_{n+1} and an open set U_{n+1}. Properties (1) to (4) follow immediately for h_{n+1}, and (5) is just a consequence of its continuity. We assume jim $\mathrm{F}_{\mathrm{n}}=1$. By (2),

$$
h=\lim h_{n}=\sum_{i=1}^{\infty} f_{i}
$$

exists and satisfies $\|h\|_{B_{\frac{1}{2}}}<\frac{1}{2}$. By (1), $\|h\|_{\infty} \leqslant 1$. Let

$$
V_{j}=n_{n \geqslant j} J_{n}
$$

Then $V_{j} \subset V_{j+1}$ and by (4) $\mu\left(V_{j}\right) \geqslant 1-\sum_{n \geqslant j} \varepsilon_{n}$, hence $\lim \mu\left(V_{j}\right)=1$ and $U:=\mathbb{U}_{j=1}^{\infty} V_{j}$ has full measure. If $z \in U$, then there exists j such that $z \in U_{n}$ for all $n \geqslant j$. For such $n(2)$ and (5) imply

$$
\left|h\left(R_{n+1} z\right)\right|>a_{n}-2 \varepsilon_{n}-\sum_{k>n} \varepsilon_{k} \rightarrow 1 \text { when } n \rightarrow \infty
$$

Hence, if $\lim h(t z)$ exists, which it does almost everywhere in $t \rightarrow 7$
U, its absolute value must be 1. This concludes the proof of the theorem.

Remark: We can, without any additional effort, prove a more general version of this theorem. To do this, replace the number 1 by a strictly positive, continuous function H on $\partial \mathrm{B}$. Jence, in lema 1, we now assume that $|f(z)|>a H(z)$ on U. We can carry out exactly the same construction, assuming that r is small enough to guarantee that $\left|H(z)-H\left(z^{\prime}\right)\right|<\varepsilon$ when $\delta\left(z, z^{\prime}\right)<r$. This will just add one ε to our inequalities. β_{j} is now defined by $\beta_{j}=0$ if $f\left(z_{j}\right) \mid \geqslant H\left(z_{j}\right)$ and $\left|f\left(z_{j}\right)+\beta_{j}\right|=\left|f\left(z_{j}\right)\right|+\left|\beta_{j}\right|=H\left(z_{j}\right)$ otherwise. This tine $|f(z)+g(z)|>a H(z)-3 \varepsilon$ in a ball with $B_{j} \neq 0$ if $\left|\alpha+\left(H\left(z_{j}\right)-\alpha\right) s e^{i \theta}\right|>a H\left(z_{j}\right)$, which is also satisfied if $s \geqslant a$ and $\cos \theta \geqslant a$. Hence, the conclusion holds with (b) and (d) unchanged and

$$
\begin{equation*}
|f(z)+g(z)| \leqslant \operatorname{nax}\{|f(z)|, H(z)\}+3 \varepsilon \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
|f(z)+G(z)|>a \|(z)-3 \varepsilon \text { on } U \cup V \tag{c}
\end{equation*}
$$

From this lema 2 can be immediately generalized. The assumption is now thet $|f(z)| \leqslant H(z)$ and the conclusion holds with (2) and
(4) unchanged and

$$
\begin{equation*}
|f(z)+h(z)| \leqslant H(z)+\varepsilon \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
|f(z)+h(z)|>H(z)-\varepsilon \text { for } z \in U \tag{3}
\end{equation*}
$$

Finally, the theorem also generalizes imediately. The sequences $\left\{a_{i}\right\}$ and $\left\{\varepsilon_{i}\right\}$ must now be chosen such that $a_{i} H(z)+\varepsilon_{i} \leqslant a_{i+1} H(z)$ for all z and R_{n+1} must be chosen such that

$$
a_{n} H(z)+2 \varepsilon_{n}>h_{n}\left(P_{n+1} z\right)>a_{n} H(z)-2 \varepsilon_{n} \text { for } z \in U_{n}
$$

which is clearly possible by uniform continuity. This proves:

Theoren: Let II be a strictly positive, continuous function on $\partial I_{\text {. }}$ Then there exists $f \in H^{\infty}(B)$ such that $|\lim f(t a)|=H\left(z_{z}\right)$ alnost everywhere on ∂B.

RFFPRENCES
[1] Hakin/Sibony: Fonctions holonorphes bornees sur la boule unite de C^{η}, Prepublications Université de Paris--Sud, Orsay.

