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FOREWORD v

Foreword

We consider classification of lower-dimensional homogeneous spaces an immedi-
ate continuation and global version of classification results obtained by Sophus Lie.
Two-dimensional homogeneous spaces were classified locally by Sophus Lie [L1] and
globally by G.D. Mostow [M]. (See also our preprint [KTD], where the complete
classification of two-dimensional homogeneous spaces, both locally and globally, is
presented.) S. Lie also obtained some results in classification of three-dimensional
homogeneous spaces and described all subalgebras in the Lie algebra gl(3,C). A
detailed account of these classifications can be found in [L2].

The problem of finding the complete description of three- and four-dimensional
homogeneous spaces as pairs, (group, subgroup) or even (algebra, subalgebra), is
extremely important and rich in applications, but it is a very difficult one: “The
description of arbitrary transitive actions on manifolds M, where dim M > 3,
presently seems to be unattainable.”([GO], p. 232)

Minimal transitive actions, that is, those that have no proper transitive sub-
groups, on three-dimensional manifolds were classified in [G]. The problem of local
classification of three- and four-dimensional homogeneous spaces was chosen by one
of the authors, B. Komrakov, as the topic of Dr. Sci. thesis for A. Tchourioumov,
the other author. (Some of the results can be found in [Tch].)

An important subclass in all homogeneous spaces is formed by isotropically-
faithful spaces. In particular, it contains all homogeneous spaces that admit an
invariant affine connection. The present preprint gives the local classification of
three-dimensional isotropically-faithful homogeneous spaces.

In 1990, the International Sophus Lie Centre, jointly with the University of
Belarus, organized an experimental group of 25 students majoring in mathematics
and working in accordance with a special syllabus oriented to modern differential-
geometric methods in the study of nonlinear differential equations. The following
idea arose: to split up the classification problem mentioned above into smaller
parts and give each part to a student; in the process of learning new material, the
student will then try to apply his newly acquired knowledge to this problem as an
illustration.

Suppose, for example, that the student is learning about differential equations;
he then writes out trajectories of one-parameter subgroups on the specific manifold
that he has been given. Studying differential geometry, he computes invariant affine
connections, metrics, curvature tensors, geodesics, etc., with special emphasis on
his example, and so on.

In their first year, the students all took an advanced course in Lie algebras and
the main part of the work on all these “smaller parts” was completed by 12 students.
We had no time to give our students an introductory course in cohomologies of Lie
algebras, and although their computation constitutes a considerable part of the
work, we do not use this language.

This work was started in Tartu University, Estonia (August 1991), continued at
the Institute of Astrophysics and Atmosphere Physics in Téravere, Estonia (Decem-
ber 1991 to March 1992), then at the “Bears’ Lakes” Space Center of the Special
Research Bureau of Moscow Power Engineering Institute (August 1993), and fin-
ished at the University of Oslo and the Center for Advanced Study (SHS) at the
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Norwegian Academy of Science and Letters. (Naturally, most of the time from Au-
gust 1991 to November 1993 was spent in Minsk, Belarus.) The story of this work
was rich in experiences and events only indirectly connected with mathematics,
something we will not here dwell on at length. We would, however, like to express
our gratitude to those who directly or indirectly made it possible for us to complete
this work.

In the future, we are going to proceed with the study of geometry of three-
dimensional homogeneous spaces in the following directions:

— description of invariant affine connections on three-dimensional homogeneous
spaces together with their curvature and torsion tensors, holonomy groups,
geodesics, etc.;

— description of invariant tensor geometric structures and their properties;

— global classification of three-dimensional isotropically-faithful homogeneous
spaces and description of inclusions among the corresponding transformation
groups;

— description of differential invariants for the homogeneous spaces to be found
and of the corresponding invariant differential equations;

— description of discrete subgroups in transformation groups together with
description of the corresponding topological factor spaces.
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Introduction

It is known that the problem of classification of homogeneous spaces (G, M) is
equivalent to the classification (up to equivalence) of pairs of Lie groups (G, G) such
that G C G. Two pairs (G1,G;) and (@Z,Gz) are said to be equivalent if there
exists an isomorphism of Lie groups 7: G; — G3 such that m(G1) = Ga.

By linearization, the problem can be reduced to the problem of classification of
pairs of Lie algebras (g,g) viewed up to equivalence of pairs. The structure of all
pairs of Lie groups (G, G) corresponding to a given pair of Lie algebras (g, g) was
described in [M]. In the study of homogeneous spaces it is important to consider
not the group G itself, but its image in Diff(M). In other words, it is sufficient to
consider only the effective action of the group G on the manifold M. In terms of
pairs (g, g), this condition is equivalent to the condition for g to contain no proper
ideals of g. In this case we say that the pair (g, g) is effective.

In the present work we classify all isotropically—faithful pairs (g, g) of codimen-
sion 3.

Definition. A pair (g,g) is said to be isotropically-faithful if the natural
g-module g/g is faithful.

We say that a homogeneous space (G, M) is isotropically-faithful if so is the
corresponding pair (g, g). From geometrical point of view it means that the natural
action of the stabilizer G, of an arbitrary point x € M on T, M has discrete kernel.

We divide the solution of our problem into the following parts:

(1) We classify (up to isomorphism) all faithful three-dimensional g-modules U.
This is equivalent to classifying all subalgebras of gl(3,R) viewed up to
conjugation.

(2) For each g-module U obtained in (1) we classify (up to equivalence) all
pairs (g, g) such that the g-modules g/g and U are isomorphic.

In Chapter I we give basic definitions and introduce the notation to be employed.
Here we also solve part (1) of the problem by classifying subalgebras in gl(3,R).

In Chapter II we develop methods for constructing pairs (g,g) given a three-
dimensional faithful g-module U. This involves computation of the first cohomol-
ogy space of g with values in the natural module £(U,g). A series of techniques
described in Chapter II allows, in some cases, to simplify the computation consid-
erably.

Finally, Chapter III gives the classification of three-dimensional isotropically-
faithful pairs itself.



CHAPTER 1

ISOTROPICALLY-FAITHFUL PAIRS

1. Basic definitions

It is assumed that the reader is familiar with the concept of a smooth manifold
and basic definitions of the theory of Lie groups and algebras.

In the sequel all manifolds (including Lie groups) to be considered are connected
real manifolds.

Definition. Suppose G is a Lie group and M is a manifold. An action of G
on M is a homomorphism of groups ¢ : G — Diff(M) such that the mapping
G x M — M given by

- (g,m) — o(g)(m) (g€ G,me M)

is smooth.
We write g.m instead of o(g)(m) when no confusion is possible.

Definition. The action ¢ : G — Diff (M) is called transitive if for any z,y € M
there exists a ¢ € G such that g.x = y; if this element g is unique, the action is
called simply transitive.

Definition. Suppose G is a Lie group, M is a manifold, and ¢ is a transitive
action of G on M. The triple (G, M, o) is called a homogeneous space.

The dimension of a homogeneous space is the dimension of the corresponding
manifold M.

Two homogeneous spaces (G1, M1, 01) and (G2, M2, 0;) are said to be equivalent,
if there exists a pair of mappings (7, 7), where

7 : G1 — G2 is an isomorphism of Lie groups,

7 : My — Mj is a homeomorphism of manifolds,
such that 7(g.z) = n(g).7(z) for all g € Gy, ¢ € M;.

Let us recall some well-known results of Lie group theory.

Proposition 1. Let o be an action of a Lie group G on a manifold M. Then
for any point * € M the stabilizer

G:={9g€G|gz=rz}

is a Lie subgroup of G.
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Proposition 2. Suppose G is a Lie group and H is a Lie subgroup of G. There
exists a unique smooth manifold structure on the set G/H of left cosets such that
the canonical action of G on G/H (by means of left shifts) is smooth.

Let G be a Lie group and H a Lie subgroup of G. In the sequel we assume that

the triple (G, G/H, ) denotes the homogeneous space where G acts transitively on
G/H by means of left shifts.

Proposition 3. Suppose (G,X,0) is a homogeneous space. Then for every
r € X the mapping a, : G/G, — X, gG, — o(g)(z) is a diffeomorphism of
the manifolds G/G, and X; and the pair of mappings (idg,a,) establishes the
equivalence of the homogeneous spaces (G, X,0) and (G,G/G,T).

So each pair (G, G), where G is a Lie group and G is a Lie subgroup of G, defines
a homogeneous space. From Proposition 3 it follows that in this way we can obtain
all homogeneous spaces (viewed up to equivalence).

Note that pairs (G1,G1) and (G, G9) define equivalent homogeneous spaces
if and only if there exists an isomorphism of Lie groups 7 : G; — G2 such that
7m(G1) = Gs. In this case we say that the pairs (G1,G1) and (G2, G2) are equivalent.

Definition. Suppose (G, M, o) is a homogeneous space. The action ¢ : G —
Diff(M) is called effective if o is an injection. The kernel of the homomorphism o
is called the kernel of ineffectiveness of the action o.

Proposition 4. Suppose H = ker o is the kernel of ineffectiveness of the action
o : G — Diff(M). Then H is a Lie subgroup of G.

Proof. Indeed, by definition H = N;epG,. Since for each ¢z € H the sub-
group G is a Lie subgroup of G, we see that H is also a Lie subgroup of G.

It is easily proved that if the action o : G — Diff(M) is not effective, then the
action ¢ : G/ kero — Diff(M) is effective.

Proposition 5. Let G be a Lie group and G a Lie subgroup of G. The canonical
action 7 of G on G /G is effective if and only if the subgroup G contains no nontrivial
normal Lie subgroups of G.

Proof. Suppose H is a normal Lie subgroup of G and H C G. Then for G €
G,h € H we have

h(GG) = (hG)G = G(G 'hG)G = GG.

It follows that H belongs to the kernel of ineffectiveness of the action o.

Conversely, suppose H is the kernel of ineffectiveness of the action ¢. Then H is
a normal Lie subgroup of G. On the other hand, hG = G for all h € H. Therefore
HCG.

Let us introduce the following

Definition. Suppose G is a Lie group and G is a Lie subgroup of G. The
pair (G, G) is said to be effective if G contains no nontrivial normal Lie subgroups

of G. ‘
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If we are interested in geometry, it is important to consider not a group G
that acts on a manifold M but the image of G in Diff(M). That is why studying
homogeneous spaces from this point of view, it is possible to restrict oneself to
effective actions.

2. Linearization of the problem

Suppose G is a Lie group and G is a Lie subgroup of G. Consider the pair (g, g),
where § is the Lie algebra of G and g is the subalgebra of § corresponding to G.
We say that the pair (G, G) is associated with the pair (g, g).

By analogy with Lie groups, a pair (g, g) is said to be effective if g contains no
nonzero ideals of the Lie algebra g.

Proposition 6. If a pair (G, G) is effective, then the corresponding pair (g, g)
1s effective.

Proof. Indeed, assume that a is a nonzero ideal in the Lie algebra g such that
a C g. Then the Maltsev closure of the ideal a is the ideal a™ lying in g ([OV],
Ch. I, §4). Suppose H is the Lie subgroup of G corresponding to the subalgebra
aM. Then H is normal and H C G. But the pair (G, G) is effective. We come to a
contradiction. Therefore the pair (g, g) is effective.

Generally speaking, the converse is false. But the following statement is true.

Proposition 7. Suppose (g,g) is an effective pair and (G, G) is the pair associ-
ated with (g,g). Then if H is a normal Lie subgroup of G and H C G, the subgroup
H is discrete.

Proof. 1t is clear.

The description of effective pairs (G, G) associated with a given pair (g, g) was
given by G.D. Mostow in [M].

The basic results of the paper are as follows.

Proposition 8. Suppose (g, g) is an effective pair and dim g — dimg < 4. Then
there exists an effective pair (G, G) associated with the pair (g, g).

Proposition 9. Suppose (g,g) is an effective pair and there exists at least one
effective pair (G,G) associated with the pair (g,g). Then there exists a unique
effective pair (a—*,G*) associated with the pair (g,g) such that the group G* is
connected and the manifold Z;_*/ G* is simply connected.

Proposition 10. Suppose (ﬁ*, G™) is an effective pair such that G* is connected
and -G”—*/ G* is simply connected. Let (g,g) be the pair corresponding to (@*, G*).
Now suppose Z* is the center of G and N(G*) is the normalizer of G* in G . A
necessary and sufficient condition for an effective pair (G, G) to be associated with
the pair (§,g) is that (G, G) be equivalent to the pair (G /(S*NZ*), G*/(S*NZ*)),
where S* is a closed subgroup of N(G*) such that G* C S* and the Lie group S*/G*

is discrete.
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3. Outline of classification of pairs

All vector spaces (including Lie algebras) to be considered are finite-dimensional
vector spaces over an arbitrary field k.

Definition. A generalized module is a pair (g,U), where g is a Lie algebra and
U is a g-module.

Generalized modules (g1, U;) and (g2, Uz) are called ssomorphic if there exists a
pair of mappings (f, F') such that

f : g1 — @2 is an isomorphism of Lie algebras,

F :U; — U, is an isomorphism of vector spaces,
and for all z € gy, u € Uy the following condition holds:

Then the pair (f, F) is called an isomorphism of the generalized modules (g1,U1)
and (g2, Uz).

A generalized module (g,U) is said to be faithful if the g-module U is faithful.
The dimension of a generalized module (g,U) is the dimension of the vector space U.

Definition. Assume that V is a vector space and g is a subspace of V. The
pair (V,g) supplied with a bilinear mapping B:gx V — V, (z,v) — z.v is called
a virtual pair if the following conditions are satisfied:

(1) ggCg

(2) the restriction of B to g x g provides g with the structure of a Lie algebra
(lz,y] = 2.y);

(3) V is a g-module with respect to B.

To any virtual pair (V, g) we can naturally assign the generalized module (g, V/g),
which is said to be associated with the virtual pair (V,g).

Suppose (Vi,91) and (Va,g2) are two virtual pairs and H : V; — V3 is an
isomorphism of vector spaces. The mapping H is called an isomorphism of the
virtual pairs (Vi,g1) and (Va,g2) if

(@) H(g) =g

(b) H(z.w)=H(z).H(v) forallze€g,velh.

Suppose H is an isomorphism of virtual pairs (V3,91) and (V3,92). Let f: g1 —
g2 be the restriction of H to gy and let F': Vi /g1 — V2/g2 be the mapping defined
by

Flv+g1)=H(v)+ge forallvelj.

Then f is an isomorphism of Lie algebras and F is an isomorphism of vector spaces.
Thus the pair (f, F') is an isomorphism of the generalized modules (g1, V1/g1) and
(g2, V2/g2). In this case we say that (f, F') is assoctated with H.

Definition. The isotropic representation of a virtual pair (V,g) is the mapping

p:g—gl(V/g)

defined by
plz)(v+g)=zv+g forallveV,zeg.
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The virtual pair (V,g) is called isotropically-faithful if the homomorphism p is
injective.

It is obvious that a virtual pair (V,g) is isotropically-faithful if and only if the
associated generalized module (g, V/g) is faithful.

Suppose g is a finite-dimensional Lie algebra and g is a subalgebra of g. For the
sake of simplicity we then simply say that the pair (g, g) is given. The codimension
of the pair (g,9) is the codimension of g in g.

Two pairs (g1, 91) and (g2, g2) are said to be equivalent if there exists an isomor-
phism of Lie algebras 7 : g3 — g2 such that 7(g;1) = g2.

Any pair (g, g) can be regarded as a virtual pair with respect to ordinary com-
mutation restricted to g x g. The isotropic representation of a pair (g,g) is the
isotropic representation of the corresponding virtual pair. A pair (g,g) is called
wsotropically-faithful if its isotropic representation is an injection.

Further we shall be interested in the following

Problem. To classify all real isotropically-faithful pairs of codimension three
(viewed up to equivalence of pairs).

According to our previous considerations, we divide the solution of the problem
into the following parts:

1°. To classify (up to isomorphism) all real faithful three-dimensional general-
ized modules (g,U).
2°. For each generalized module (g, U) obtained in 1° to classify (up to isomor-

phism) all virtual pairs (V, g) such that the generalized modules (g,U) and (g, V/g)
are isomorphic.

3°. For each virtual pair (V, g) obtained in 2° to classify (up to equivalence) all
pairs (g, g) such that the virtual pairs (V, g) and (g,g) are isomorphic.

4. Subalgebras of the Lie algebra g((3,R)

The classification (up to conjugation) of subalgebras of the Lie algebra gl(3,R).
Preliminaries:
1. In the sequel we consider only proper subalgebras of gl(3,R).

2. For the sake of simplicity instead of the standard notation for a subalgebra
of gl(3,R) such as

z 0 0
b= 0 Az O z€eR,
0 0 px

where A\, ¢ € R and Ay > 0, A < p < 1, we use the following notation:

T A >0

b= Az A<p<l
e

Here we imply that variables denoted by Latin letters run through R and that
parameters are denoted by small Greek letters.
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Theorem 1. Suppose g is a subalgebra of the Lie algebra gl(3,R). Then g is
conjugate to one and only one of the following subalgebras:

dimg=1
x x A<p<1 Az oz
1. A\ Al < 1; 2. Az i 3| -z Az A>0;
pz Ap >0
Az oz x x
4.| —z Az p>0; 5. ; 6. x ;
U
x x z z
7 AT ; 8 x| 9 T T
x x
dimg =2
T ] —1<u<\ Az oz
1. Az A < 1; 2. Az SHES ;3. —z Az AZ0;
Ap>0
Y ©y Y
y <« y T+ Ay y y
4.\ -z y A20; 5. x ; 6. x ;
Az+Hpy y y
T x Yy T
7. : 8 y ; 9. Ay ;
y Ay 1y
T Yy T z Yy —z z vy
10. T Yy |; 11. z Yy |; 12. z yl;
x z x
y y y = x
13. Y| 14. vy oy 15. vy Y|
Y ()
4 z z Yy
16. Ay ; 17. Y |; 18. ;
Ay Y
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10.

13.

16.

19.

22.

y y ¢ | y @
19. Y ; 20. ;
Ay
T y y
21. Az Yy A#L; 22 z Yy
(2A —1)z 2z
dimg =3
x y oz T oy
Yy ; 2.| -z y ; 3.1z —xz
z z
Y y T z
z y |5 5. | —y z |3 6. v ;
z —x —r -z z
y T Yy x T Yy z
Ay ; 8. z ; 9. x y
z Ay + pz x
x z T z z
y Ax+vy|; 11. y x| 12. Y |;
Y ) z
x z T z Az
Ay |—1< AL, 14, -z y |p2=0; 15.| -z Az y
Uz Uz
Az T oz T A+y =z T T z
—z Az y |p>0; 1T. x ; 18. x
7% !} Y
y oz Ty z y oz
x Al <1 20. Az A< 21. Az oz
Az Uz -z Az
ey oz T Yy z y oz
pr oz |A>0; 23. Az Y A#1; 24 x Yy
-z pz (2 =1)z 2z

A20;

A<0;
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Tz z z y z oz
25. Y l; 26. y yl; 217. Ay oy |
y Ay
z z T T oz z z
28. Y| 29. z y |; 30. z z+y|;
x Az x
rT+y =z
31. z
z—y
dimg =4
x z Az +y z z+y =z
1. u ; 2. u Az —y ; 3 u z z :
x u -y
x u x oz oy x u
4. Y ; 5.| =z = u|; 6 Az z |-1<AL]
z -y —u T Y
Ar T u x u y u
7. —x X 2z |A20; 8 Y z A< 9.l —z vy z A20;
y AT+ py Az+py
zZ u T z u z =z u
10. ; 1.y —1<p<1; 12. AS0;
y Az+py AT +y
xr z u Azt+py z 0 ou x =z u
13. Ay oy | A=0; 14. y = |A=0; 15. Yy Az+y |A=0;
-y Ay -z Y y
T oz u z A4y u xT T u
16. y T |; 17. x zZ|; 18. x z|;
Y Y
Yy ou Yy ou xT Yy u
19. z | 20. z oz |; 21. Az oz |;
x Az U
T+y =z Uu
22. x z
=Y
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dimg=>5
x u A TR u v
1l.lv y ; 2.|z —z u|; 3. x oy |;
z z -z
x v x Yy v T u v
4 y o ul; 5.|—-y x wul|; 6. Y
z z z
T u v z v x z w
7 y oz 8 T ul; 9 Az u|;
-z Y Yy Yy
x z v
10. Y U
Az + py
dimg =16
T z w Az +y z w v
l.lu y v |; 2. uwu  Arz—y wvl|; 3| =z
T )
x v w T u w
4 Ax 4y z ;D y v
u Az —y z
dimg="7
T u T w
l.jv y wl; 2 Yy o u
z v oz
dimg =8
T z v
l.lw y—z u
t S —y

Here subalgebras of the same number but with different values of parameters are

not conjugate to each other.
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Remark. To refer to subalgebras determined in Theorem 1 we use the following
notation:

d.n,

where
d is the dimension of the subalgebra;
n is the number of the subalgebra in Theorem 1.

Proof. Fix the standard basis of the space V = R3:

- () 0)

We identify the Lie algebras gl(V') and gl(3,R).
For a subalgebra g C gl(3,R) by A(g) denote the following subgroup of GL(3,R):

A(g) = {X € GL(3,R) | XgX ' = g}.
We divide the classification of all subalgebras of the Lie algebra gl(3, R) into three

parts:
I. Classification of commutative subalgebras
II. Classification of solvable non-commutative subalgebras
ITI. Classification of unsolvable subalgebras

Lemma 1. Any commutative subalgebra of gl(3,R) is conjugate to one and
only one of the following subalgebras:

1.1-1.9 3.1

2.1-2.6 32

28(A=0) 38(A=1pu=0)
29 (p=1) 3.9

210-2.14  313(A=pu=1)
216 (A=1) 320(A=p=1)
2.17

2.19 (A=1)

2.20

For the proof we need the following Lemma.

Lemma. Any maximal commutative subalgebra of gl(3,R) is conjugate to one
and only one of the following subalgebras:

x y Y z
3.1 Y ; 32| -z y ; 3.8 z ;
z z y
T Yy z z z T Yy z
3.9 T 3.13 x . T
Z T (A=p=1) Z T (=p=1) i
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Proof of the Lemma. Suppose gis a maximal commutative subalgebra of gl(3, R).
The maximality of g implies that g is an associative subalgebra. Since for any
endomorphism ¢ its nilpotent and semisimple parts are polynomials in ¢, we see
that g is a separating subalgebra of gl(3, R).

Let a be the set of semisimple and n the set of nilpotent elements of the Lie
algebra g. Then a and n are ideals in g and g = a @ n ([Bou], Ch. VII, §5,
Pr. 5). In addition a and n are associative algebras. Since a consists of semisimple
endomorphisms only, we see that the a—module V is semisimple ([Bou], Ch. I, §6,
Th. 4).

Suppose V = ®_, V; is a direct sum of isotypical components. Since any element
z of the Lie algebra g is an endomorphism of the a—module V', we see that = leaves
isotypical components invariant. It follows that V; is a submodule of the g—module
Viore=1,...,k.

Suppose (pi)1gigk 1s a system of projections corresponding to the decomposition
V =@k |V; and g; = pigp; for i = 1,... k. It is obvious that p; € g, g = X, gi,
and any subalgebra g; can be identified with some maximal commutative subalgebra
of gl(3,R), and also aNg; 3 p;.

Thus the problem of finding maximal commutative subalgebras is reduced to
finding all maximal commutative subalgebras of gl(n,R), n = 1,2,3, that contain
no projections except 0 and E,.

For n =1 the problem is trivial.

For n = 2 we have two subalgebras satisfying the required conditions:

r =y and
y T x

Suppose n = 3 and g is a maximal commutative subalgebra of gl(3,R) such
that g does not contain projections different from 0 and E3. Then the a-module
V contains exactly one isotypical component, otherwise the subalgebra g would
contain projections different from 0 and E3. Note that the a—module V is a direct
sum of isomorphic simple submodules and each of them is either two-dimensional
or one-dimensional. Since dim V' = 3, all simple submodules of the a-module V' are
one-dimensional and a = R.Fj3.

There exists a basis of V' such that n is a subalgebra of the Lie algebra

n3(R) = z,y,2 €ER

o O O
o o8
o n

Since ng(R) is non-commutative and its center has the form

Z(n3(R)) = teR,,

o o o
o o o
O OR

we conclude that dimn = 2 and the Lie algebra n is conjugate to the subalgebra




4. SUBALGEBRAS OF THE LIE ALGEBRA gl(3,R) 13

0 ay =
0 0 Py y,z €R Y, where o, 8 € R and o® + 2 # 0.
0 0 0

Then the Lie algebra g (viewed up to conjugation by diagonal matrices) has one
of the following forms:

Ty z
(1) a#0,8#0 T Y|
T

Ty z
(i) a#0, B=0 z
T

(1i1) a=0, 8#0 z vy
z

Now show that these subalgebras are not conjugate to each other. For the
subalgebra g C gl(V') define by induction the following sequence of subalgebras of
V:

Vo = V, Vn+1 = ‘ﬂ(Vn) for n Z 0.

Then we have

(2) dimVy =2, dimV; = 1;
(12) dimV; =1, dim V2 = 0;
(132) dimV; =2, dimV; = 0.

Therefore the obtained subalgebras are not conjugate to each other. The proof
of the Lemma is complete.

Proof of Lemma 1. Every commutative subalgebra of gl(3,R) is contained in a
certain maximal commutative subalgebra and, therefore, is conjugate to some sub-
algebra of one of the maximal commutative subalgebras determined in the preceding
Lemma.

Since any vector subspace of a commutative algebra is a subalgebra, the prob-
lem reduces to description (up to conjugation by elements of A(g)) of all vector
subspaces for each maximal commutative subalgebra g determined in the Lemma.
This way we can obtain all commutative subalgebras of gl(3,R) viewed up to con-
jugation. (Note that the same subalgebra can be contained in different maximal
subalgebras). Finally we determine which of the obtained subalgebras are conjugate
to each other. The one- and three-dimensional cases are trivial, and the problem
causes no difficulties when the dimension of a subalgebra is equal to 2.
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For instance consider the following case:

z
g= Yy

z

It is easy to see that the g—module V is a direct sum of three non-isomorphic
simple submodules. For o € S3, by & denote the automorphism of V' defined by

G(ei) = ey for e =1,2,3.

Then
z 0 0
A(g): 0 Y 0}oc x,y,zER*,aES;;
0 0 =z

Suppose b ic a one-dimensional subspace of g spanned by an arbitrary nonzero
element e € g. If e is a degenerate matrix, without loss of generality it can be
assumed that

, where a® + 5% # 0 and |a| > |b].

(e
Il
ocoa
o -
coo

Then a # 0 and

b= Az , where A = 2—, and therefore |A| < 1.

It is possible to show that subalgebras b corresponding to different values of the
parameter A are not conjugate to each other.
Now suppose

a 0 0
e=10 b 0], where abc # 0.
0 0 ¢

Then thre are two alternatives.
1° The numbers a, b, and c are of the same sign. Then (up to conjugation by
elements of A(g)) it can be assumed that |a| 2 |c| > |b|. And

x
b= Az , where A = ba™, p=ca™', and therefore 0 < A < p < 1.
Uz

2° Two of the numbers a, b, ¢ are of the same sign. Then it can be assumed that
bc > 0 and |b] > |c|. So

7 ‘
b
b= Az , where A = K= 2, and therefore A < p < 0.
U
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Thus any one-dimensional subspace of g is conjugate (with respect to A(g)) to
one of the following subspaces:

T x
1.1 Az , AL 1.2 Az Ap >0, A< p <1,
p

It can be shown that subspaces corresponding to different values of parameter A
are not conjugate to each other.

In order to classify (up to conjugation by elements of A(g)) all two-dimensional
subspaces of g it is sufficient to note that any two-dimensional subspace of g is
uniquely determined by a one-dimensional subspace of g*.

The classification of one-dimensional subspaces in g* consides with that in g.
Thus any two-dimensional subspace of g (up to conjugation by elements of A(g))
has the form:

2.1 Az A< 1; or 2.2 Az Ap>0, 1< <A
y pe

There exists a unique three-dimensional subspace of g and it, of course, coincides
with g:

3.1 Y
z

After similar classification of all subspaces for other maximal commutative subal-
gebras determined in Lemma we find all non-conjugate subalgebras among obtained
ones.

Lemma 2. Any subalgebra non-commutative subalgebra of gl(3, R) is conjugate
to one and only one of the following subalgebras:

2.7 38(A=1orpu=0)
28 (A£0)  3.10-3.12
20(#1) 313N #£lorp#1)

2.15 3.14 - 3.19

216 (A #1) 320 A #lorp#1)
2.18 3.21-3.31

219 N #£1) 44

2.21 4.6 —4.22

2.22 5.4 —5.10

3.3-3.7 6.5

Proof of Lemma 2. Suppose g is a solvable non-commutative subalgebra of the
Lie algebra gl(3,R) and n = Dg is the commutant of g. Then it can be assumed
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that n consists of nilpotent elements of n is a matrix with zeros on and below the
diagonal. So it can be assumed that n is a subalgebra of

It is easy to see that if dimn < 2, then n is commutative. From the classification
of commutative Lie algebras it follows that n is conjugate to one of the following
subalgebras:

o O O
O O R
o N

z oy z y z oy
a) z|; b z|; ¢ ;
X I X
d) yl; e z|; f)

Since n is an ideal in g, we have g € N(n). Thus description (up to conjugation)
of all non-commutative solvable subalgebras of gl(3,R) reduces to classification (up

to conjugation by elements of A(n)) of all subalgebras g in N(n) such that [g,g] =n
for each n specified above.

Below N(n) and A(n) for each n are written:
a) A(m)=T(3,R), N(n)=13,R)

b) An) = 0wy t)| ety Nw=| oy ot |
0 0 y/|®hUE 2% —y

T € R*, Y € Ma.tle(R) T Yy =z
, N(n) = t wu
Y € GL(2,R)

0 A(n)={(§ 7)

o ao-{ (57

XeGuzm} Nm%_wy u

Y e Matle(R), z € R*

2y 0 =z * z t
T,y €R
e) A(n)= 0 zy O ceR(’ N(n) = Yy z
0 0 2z —y
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) T) v w\|gzyeR* . T u w
f) A = Sy vl uweR |’ M=y v
Consider the case b):
Ty
n= T

Then 2 = dim n < dim g < dim N(n) = 5,9n # n, and D(N(n)) # n. Therefore
the dimension of g is either 3 or 4.

Suppose dim g = 3. Then there exists a unique one-dimensional subspace R.e of
g complementary to n such that

a ¢ 0
e=|0 b 0
0 0 26—a

Let P be an element of A(n) and

z 2z 0
P=[0 y 0], wheret =y%z7!, 2,y € R*, z € R.
0 0 ¢

Then
a c+(b—a) 0
PeP 1= {0 b 0
0 0 2b—a

It follows that the element e is diagonalizable by means of conjugation by ele-
ments of A(n) whenever a # b. If a = b we have Dg # n.

Therefore, it can be assumed that

a 0
e=|0 b 0 , where a® 4+ b? # 0.
00

32310 Az y , where A\ = é
0 0 (2A—1)z N

The subalgebras corresponding to different values of parameter A are not conjugate
to each other.
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If a = 0, the subalgebra g has the form:

z
Y
2z

3.24

o O O
o'’

It is possible to show that the subalgebras 3.23 and 3.24 are not conjugate.

Now suppose dim g = 4. Similarly we can show that without loss of generality it
can be assumed that the subspace of g complementary to n is diagonal, and g has
the form:

T+y =z U
4.22 0 x z
0 0 z—y

We consider other cases in a similar way and finally obtain the results of the
Lemma 2.

Lemma 3. Any unsolvable subalgebra of the Lie algebra gl(R) is conjugate to
one and only one of the following subalgebras:

3.3-3.5 6.1-64

4.1—-4.3 7.1
4.5 7.2
5.1-15.3 8.1

Proof of Lemma 3. Let g be an unsolvable subalgebra of gl(3,R). Then g contains
the semisimple Levi subalgebra a, where a = [a,a] C sl(3,R).

Any semisimple subalgebra of gl(3,R) is conjugate to one of the following sub-
algebras:

()| z —= ;o (1) | —z z|; (1) 2 y |; (i) sl(3,R).

-y —z z -z

Subalgebras (i¢) and (¢%¢) are maximal in s[(3,R). Therefore, if a is conjugate
to subalgebra (¢1) or (23¢), then g has one of the following forms:

T Yy Ty
34| 2 Yy 35| —2 zZ |
z -z -y -z
T+Y =z T Yy oz
43| wu x z |; 45| -y =z u
u T—y -z —u T

If the subalgebra a is conjugate to s((3,R), then g = sl(3,R) or g = gl(3,R).
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Consider in detail the case when a is conjugate to subalgebra (i). Then the
a—module gl(3,R) is a direct sum of isotypical components:

gl(3,R) =a®m; @ my,

where modules m; and my in a suitable basis have the form:

0 0 v
m; = 0 z,y€R 3 mp= 0 w s,t,v,w €R 3.
Y t 0

Since g is a submodule of the a—module gl(3,R), we see that g is a direct sum of
intersections:

O O8
o8 O©
w OO

g=(gNa)®(gnmy) ®(gNmy).

If gNnmy = {0}, then g C a ® my. Therefore g is a reductive subalgebra. Note
that the submodule m; is invariant under conjugations preserving the subalgebra a.
This implies that the subalgebra g is conjugate to one and only one of the following
subalgebras:

gnm; ={0}: 33|z -z

T z Az +y z
dim(gnm;)=1: 41|u y i 4.2 u Az —y

dim(gnNmy)=2: 51|v y

Since mg, as a subset of gl(3,R), generates the Lie algebra s((3,R), we have

g7 ms.
The a—module my is a direct sum of two isomorphic simple submodules:

my =n @ ng,

where
0 0 v 0 0O
n = 0 0 w v,w R, ng= 0 0 O s, teR 3,
0 0 O s t 0
and the isomorphism 7 : n; — ny is defined by
0 0 =z 0 00
=0 0 y}J=| 0 0 O
0 0 0 -y z 0
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Thus, if mg N g # {0}, then

0 0 ar
meNg=(a+pBmr)(n)= 0 0 ay z,y € R},
—By Bz O

where o, 8 € R and o? + 8% # 0. However, if af # 0, this set also generates the
whole Lie algebra sl(3,R). Therefore @ = 0 or # = 0. Then g N m; is the nilpotent
radical of g. In a suitable basis it has the form:

8

a)

z,y€R} or b

o o O
S O R
oo
o O O

0
0 y z,y €R
0

Since g C N(g Nmg), for cases a) and b) we have:

r w t z u t
a)gC y ; bgcClv y w
vz z

Further it is easily proved that g is conjugate to one and only one of the following
Lie algebras:

5.2,5.3,6.1-6.4, 7.1, 7.2.

The proof of the Lemma 3 is complete.

The results of the theorem are immediate from Lemmas 1,2 and 3.



CHAPTER 11

METHODS OF CLASSIFICATION OF PAIRS

1. Structure of virtual pairs

Let (V, g) be a virtual pair and U = V/g. Suppose 7 : V — U is the canonical
surjection and s : U — V is an arbitrary section of the surjection 7 (in other words,
s is a linear mapping such that 7os = tdy). Consider the mapping Hy, : V — gx U
defined by

H,(v) =(v—son(v),n(v)) forveV.

Since

(v —son(v)) =7(v) —7w(v) =0 forv eV,
we see that v — s o m(v) € g, and therefore H, is well-defined.

Proposition 1. The mapping H, is an isomorphism of the vector spaces V and
g X U, and also the following condition holds:

Hy(g) = g x {0}.

Proof. Let us prove that the mapping G: g x U — V given by
G(z,u) =z + s(u) forall (z,u) egxU
is inverse to the mapping H,. Indeed, for any v € V we have
GoH,(v)=Gv—-son(v),n(v)) =v—som(v) +son(v) =v.
Therefore G = H,; ! and H, is an isomorphism. Moreover 7(z) = 0 and H,(z) €

g x {0} for all z € g. Conversely, if (z,0) € g x {0}, then H,;}(z,0) =z € g. It
follows that H,(g) =g x {0}.

The pair of vector spaces (gx U, gx{0}) is canonically supplied with the structure
of a virtual pair isomorphic to the virtual pair (V, g):

(2,0)-(y,u) = H(H; " (2,0).H " (y,u)) forall ¢,y € g,u € U.

In the sequel we identify g and g x {0}.
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Proposition 2. There exists a linear mapping ¢, : ¢ — L(U,g) such that for
all z,y € g,u € U we have

z.(y,u) = ([z,y] + ¢s(z)(u), z.u), (1)

and for all z,y € g the following condition holds:
¢s([2,]) = 2-¢5(y) — y.¢s(2). (2)
Proof. Indeed, we have

z.(y,u) = He(z.(y + s(v))) = He([z,y] + z.5(v)) = ([z,y] + z.5(uv) — s(z.u), z.u).

Put ¢s(z)(u) = z.8(u) —s(z.u) for z € g,u € U. In other words ¢s(z) = z.s. Then
it is clear that

gs([z,9]) = [z,y]-s = 2.(y.8) —y.(2.5) = 2.¢5(y) — y.¢s(2)-

Definition. Suppose (g,U) is a generalized module and ¢ : g — L(U,g) is a
linear mapping such that

q([z,y]) = z.q(y) —y.q(z) forall z,y €g. (27)

Then the mapping q is called a virtual structure on the generalized module (g, U).

Proposition 3. Suppose q is a virtual structure on a generalized module (g,U).
Put V; = g x U. Then the bilinear mapping g x V, — V, given by

z.(y,u) = ([z,y] + ¢(z)(u),z.u) forallz,y € g,u € U (3)

defines the virtual pair (Vy, g).
Proof. Indeed, for 1,22,y € g and u € U we have

[:cl,xg].(y,U) = ([[5”1)3;2]?’5’] + q([$1,$2])(u), [wl,wz]'u)

= ([e1, [e2,y)] = [22, [21, Y]] + [21, 9(22)(w)] — g(@2)(21.0) — [22, ¢(21)(u)]
+q(21)(22.u), 21.(22.8) — 22.(21.1)) = 21.([02, 4] + q(22)(u), 22.1)
—ap-([z1,y] + q(o1)(w), 21.4) = 1.(22.(y, ) — z2.(21.(y, u))-
So, to any virtual structure on a generalized module (g, U) we assign the virtual

pair (g x U, g) defined by formula (3). Moreover, any virtual pair (V,g) with the
associated generalized module (g,U) can be constructed in this way.

Definition. Suppose ¢; and ¢2 are virtual structures on a generalized module
(9,U). We say that ¢; and go are equivalent if the virtual pairs (V,,,g) and (V,, g)
are isomorphic.
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Proposition 4. Virtual structures ¢; and ¢, on a generalized module (g,U)
are equivalent if and only if there exist an automorphism (f,p) of the generalized

module (g,U) and a linear mapping h : U — g such that the following condition
holds:

g2(z) = foq(f ' (z)op ' —z.h forallz€g. (4)

Proof. Let H : (Vg,,9) — (Vg,,9) be an isomorphism of virtual pairs. Then we
can uniquely define mappings f € GL(g),p € GL(U), and h € L(U, g) such that

H(y,u) = (f(y) + hop(u),p(u)) forall (y,u) € V. (5)

In this case H 1(y,u) = (f 71 (y) + £~ o h(u),p~}(w)).
Then we have

H(z.(y,u)) = H([z,yl+q(z)(u), z.u) = (f([z,y])+ (a1 (e)(v)) +hop(z.u), p(z.u)).

On the other hand

H(,0).H(y,u) = f(2)-(f(y) + h o p(u), p(v))
= ([f(2), F(¥)] + [f(), o p(u)] + g2(f(2))(p(w)), f(2)-p(u))

It follows that f(z).p(u) = p(z.u) forallz € g,u € V. Thus (f,p) is an auto-
morphism of the generalized module (g, U). Putting u = 0 we obtain f([z,y]) =

[f(z), f(y)] for all z,y € g. Therefore f is an automorphism of the Lie algebra g.
Further

a2(2)(u) = Flaa(f7 ()™ (w) + ko p(f 7 (2)-p™" (w)) = [&, h(w)]

= foq(f7 (@) o™ (w) + h(z-u) = &, h(w)] = foqr (f 7 (2)) 0 p™" () — (. h)(w).
Therefore
@2(z)=foqu(f(z))op™ —x.h

Conversely, suppose that there exist an automorphism ( f, p) of the generalized mod-
ule (g,U) and a mapping h € L(U, g) satisfying condition (4). Then the mapping
H :V, — Vg, defined by (5) is an isomorphism of the virtual pairs (Vg,,g) and
(Ves» 8)-

Corollary 1. Suppose ¢; and g2 are virtual structures on a generalized module
(g9,U) and there exists a mapping h € L(U, g) such that ¢;(z) — ¢2(z) = z.h for all
x € g. Then the virtual structures ¢; and qs are equivalent.

Proof. 1t is sufficient to put p = idy and f =idy in (4).

Thus, classification (up to isomorphism) of all virtual pairs (V,g) for a given
generalized module (g,U) reduces to classification of all virtual structures on the
generalized module (g, U) (viewed up to equivalence).
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2. Matrix form

Let (g,U) be a faithful three-dimensional generalized module over the field R.
Suppose £ = {e1,...,en} is a basis of the Lie algebra g (n = dimg) and Y =
{u1,u2,us3} a basis of the vector space U.

For z € g, by A(z) and B(z) denote the matrices of the mappings

adz:g—¢g and zy:U-—-U

in the bases £ and U respectively. Then A(z) € Mat,xn(R), B(z) € Matsxs(R),
and the mapping
p:g— gli(3,R), z — B(z)

is an injection. This allows to identify the Lie algebra g with a certain subalgebra
of the Lie algebra gl(3,R). Without loss of generality it can be assumed that g is
one of the subalgebras of gl(3,R) determined in Theorem 1.

Recall that for g C gl(3,R), by A(g) we denote the following subgroup of gl(3,R):

Alg)={X €gl(3,R) | XgX ' Cg}.

Consider the homomorphism of groups

¢ : A(g) — Aut(g)

defined by
@(P):z~ PzP™' forz €g,Pc Ag).

Proposition 5. Suppose (f,p) is an automorphism of the generalized module
(g,U) and P is the matrix of the mapping p. Then P € A(g) and f = ¢(p).

Proof. For all z € g,u € U we have

p(z.u) = f(z).p(v)

or alternatively
pozy(u) = f(z)u o p(u).

In matrix form it is equivalent to
PB(z) = B(f(z))P.

We identify « with B(z) and f(z) with B(f(z)). Then for any z € g we have
PzP~! € g. Hence P € A(g). Moreover f(z) = PzP~! and therefore f = ¢(P).

There is a one-to-one correspondence between the set of mappings ¢ : g — L(U, g)
and the set of mappings C' : g — Mat,x3(R), where C(z) is the matrix of the
mapping ¢(z) in the bases fixed before.

Allowing a certain freedom of expression, we say that a mapping C : g —
Maty,x3(R) is a virtual structure on the generalized module (g,U) if the corre-
sponding mapping ¢ is a virtual structure.
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Proposition 6. A necessary and sufficient condition for a mapping
C g Ma.tnx:;(R)

to be a virtual structure on the generalized module (g,U) is that the following
condition hold:

C([z,y]) = A(z)C(y) — C(y)B(z) — A(y)C(z) + C(x)B(y) forz,ycg (6)
Proof. Indeed, we have

q([z,y]) = 2.9(y) — y.9().

In other words

q([z,y])(u) = [z, q(v)(w)] — g(v)(z-u) — [y, g(2)(w)] + ¢(2)(y-v) = ad z 0 g(y)(u)
—q(y) o zy(u) —adyog(z)(u) + ¢(z) o yu(u) foralluel.
This implies equivalence of conditions (2’) and (6)

Proposition 7. Suppose C; and C; are virtual structures on the generalized
module (g,U). C; and C, are equivalent if and only if there exist matrices P € A(g)
and H € Maty«3(R) such that the following condition holds:

Cy(z) = FCy(p  (z))P™! — A(z)H + HB(z) forz € g, (7)
where ¢ = ¢(P) and F is the matrix of the mapping .

Proof. Indeed, suppose ¢q; and ¢y are the virtual structures on the generalized
module (g,U) corresponding to Cy and Cj, respectively. Then from Proposition 4
it follows that there exist an automorphism (f, p) of the generalized module (g,U)
and a mapping h € L(U, g) such that for all z € g we have

g2(z) = foaqu(f ' (2)) o p~! —w.h.
Let H and P be matrices of the mappings h and p respectively. Then P € A(g)
and f = ¢(P). Further, the matrix of the mapping z.h is equal to A(z)H — HB(z).
Therefore condition (7) holds.

Conversely, assume that condition (7) is satisfied. Then we can uniquely define
mappings p: U — U and h: U — g such that their matrices are equal to P and H
respectively. Then putting f = ¢(P), we see that the pair (f, p) is an automorphism
of the generalized module (g,U) and condition (4) is satisfied. Hence the virtual
structures are equivalent.

Corollary 2. Suppose Cy and C; are virtual structures on the generalized mod-
ule (g,U) and there exists a matrix H € Matnx3(R) such that for all x € g the
following condition holds:

Ci(z) — Ca(z) = A(z)H — HB(z). (8)
Then C; and Cy are equivalent.

Proof. 1t is sufficient to put P = E3. Then ¢(P) = idg and F = Ej3. Therefore
condition (7) is satisfied.

Remark. Note that all expressions in (6), (7), and (8) are linear in z,y € g.
Therefore, in order to ensure that these conditions are satisfied for all z,y € g, we
must only check that they hold for z,y € £ = {e1,...,en}.
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3. Primary virtual structures

Suppose (V,g) is a virtual pair and (g,U), where U = V/g, is the generalized
module associated with (V,g).
Proposition 8. Let §j be a nilpotent subalgebra of g.

(1) A necessary and sufficient condition for the h-module V' to be a direct sum
of primary components is that the h-modules g and U be direct sums of
primary components.

(2) There exists a section s : U — V of the canonical surjection 7 : V. — U
such that for every a € h* the following condition holds:

s(U%(h)) C V=(h) 9)

Proof.

(1) Let us remark that for any z € h the endomorphism zy can be reduced to
triangular form if and only if this can be done for the endomorphisms ry = adz
and zy. Indeed, suppose zy can be reduced to triangular form; then there exists a
Jordan-Holder sequence for zvy:

{0}=VoCcViC- - CVpgr

(n =dimg, k = dimU) such that dimV; =¢,0 < ¢ < n+k, and V, = g. Then the
Jordan-Holder sequences for z4 and zy have the form:

{0}=VocVicC---CV,=g and

{0} =Vo/WC Vot /[ WC - C Vg /  W=U

respectively. Therefore the endomorphisms ¢4 and zy can also be reduced to
triangular form. Conversely, let the Jordan-Holder sequence for x4 and zy have
the form:

{0}=g0Cg1C--Cgn=9g and
{0}=UoCcU; C---CUr=U, where
dimg; =¢,0<2<n, and dimU;=1:0<2<k.

Then the sequence
{O=goCoC-CognCr(U)C--Crn ' (Th)=V

is a Jordan-Holder sequence for zy such that all quotients of the sequence are one-
dimensional. Therefore the endomorphism zy can be reduced to triangular form.
This proves the first part of the Proposition ([Bou], Ch. VII, §1, Pr. 9(1)).
(2) Let
U= U%h), Vi=) V().

aEh* aEh*
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Let Uy be a subspace of V' complementary to U;. Since the mapping 7 : V — U isa
surjection, we have 7(V*(h)) = U*(h) for all & € h*. ([Bou], Ch. VII, §1, Corollary 3
of Th. 1). Then it is obvious that m(V1) = Uy and n~*(Up) + V4 = V. Therefore
there exists a subspace Vj of the vector space V such that V4 is complimentary
to V1 and Vy C 77 1(Up). In this case m(Vy) = Up. For each a € h* consider the
mapping 7% : V*(h) — U?(h) such that 7 is the restriction of the mapping 7 to
Ve(h). Consider also the mapping 7 : Vo — Up such that mp is the restriction of
the mapping 7 to V. For a € h*, let s* be an arbitrary section of the surjection 7

and let sy be an arbitrary section of the surjection my. Now consider the mapping
s: U — V defined by

s(ug + Z u®) = so(uo) + E s*(u®),

ach* ach*

where ug € Uy, u® € U%(h) for all @ € h*. The mapping s is a section of the
surjection 7 and

s(U%(h)) cV(h) for all a € bh*.

Definition. Suppose s is a section of the canonical surjection 7 : V — U. We
say that s is consistent with the subalgebra b if

s(U%(h)) cV(h) forall a € h*.

From Proposition 8(2) it follows that there always exists such a section.

Proposition 9. Suppose s is a section of the canonical surjection 7 : V — U
consistent with the subalgebra ). Then the corresponding virtual structure qs : g —
L(U,g) on the generalized module (g,U) satisfies the following condition:

:(8*(h))(UP (b)) C g*#(h) for a,B € h*. (10)

Proof. Indeed, by definition we have gs(z)(u) = z.s(u) = z.s(u) — s(z.u) for all
z € g,u € U. Suppose z € g*(h) and u € UP(h) for a, B € h*. Then

q(z)(u) = z.5(u) — s(z.u) C z.s(UP(B)) — s(z.UP(h)) C

C 2.VA(h) = s(U*P(h)) C V*P(h) — Vori(h) c Vori(p).

On the other hand g,(z)(u) € g. Therefore ¢,(z)(v) € gnV2+A(h) = g*+A(h). This
completes the proof of the Proposition.

Definition. We say that a virtual structure g on (g, U) is primary (with respect
to B) if g satisfies condition (10).

From Propositions 8(2) and 9 it follows that every virtual structure is equivalent
to a certain primary virtual structure.
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Proposition 10. Suppose q is a primary (with respect to ) virtual structure
on the generalized module (g,U) and (Vy, g) is the corresponding virtual pair. Then

V2(h) = g%(h) x U%(h) for all a € b*.

Proof. It is obvious that g*(h) = g*(h) x {0} is contained in V;¥(h) for all
a € h*. Now let us prove the embedding {0} x U%(h) C V*(h). Indeed, suppose
(0,u) € U%(h) and z is an arbitrary element of §j. Then there exists an n € N such
that (zv — a(z))™(u) = 0. Let us prove by induction on m that for any m € N the
following condition holds:

(zv — a(2))™(0,v) — (0, (zv — a(x))™ (u)) € g%(h). (11)

The condition is evidently true for m = 0. Assuming that (11) is true for m = p,
we have

(zv = a(2))?(0,u) = (y; (ev — ()" (u)),
where y € g*(h). Then
(zv — a(@))P"(0,u) = (2v — a(2))(y, (zv - a(z))? (v))

= (2,0).(y, (zv = a(2))?(v)) — a(2)(y, (20 — &(2))" (u))
= ((zg — &(2))(¥) + a(2)((zv — &) (u), (zv — a(2))P T (u)).

Since z € g°(h), we see that the spaces U%(h) and g*(h) are invariant under zy
and zy respectively. Hence (zy — a(z))?(u) € U%(h) and (z4 — a(2))(y) € g*(h).
Since the virtual structure ¢ is primary, we have

q(z)((zv — a(z))’(v) € g*(h).
Therefore
((zv = a(2)P*1(0,u) = (0, (zv — a(2))P (u)) € g*(h).

Thus embedding (11) is true.
Put m =n in (11). Since (zv — a(z))"(u) = 0, we obtain

(zv — a(2))"(0,u) € g*(h).
This immediately implies that (0,u) € V() and finally
g%(h) x U*(h) C V7 (b).
Conversely, suppose (z,u) € V*(h) and 7 : V; — U is the canonical surjection.

Then 7(z,u) = u € U%(h) and, as we saw above, (0,u) € V;*(h). Therefore (z,0) €
V7 (h). It follows that = € g*(h) = gNV*(h) and V2 (h) = g*(h) x U*(h).
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4. Trivial cases

Definition. A virtual pair (V, g) is said to be trivial if there exists a submodule
U of the g-module V such that V =U @ g.

Note that a trivial virtual pair (V,g) is uniquely defined (up to isomorphism) by
the corresponding generalized module (g, V/g).

Proposition 11. Let ¢ be a virtual structure on the generalized module (g,U).
Then a necessary and sufficient condition for the virtual pair (Vy,g) to be trivial is
that ¢ be equivalent to the zero mapping of g into L(U, g).

Proof. 1t is obvious that the zero mapping of g into £(U, g) is a virtual structure
and defines the trivial virtual pair (Vp, g) (the submodule {0} x U is complementary
to g).

Suppose (V, g) is a trivial virtual pair and M is a submodule of V' complimentary
tog. If #: V — U is the canonical surjection (here U = V/g), then we have
m(M) = U. Therefore, there exists a section s : U — V of the surjection 7 such
that s(U) C M. Then for any z € g,u € U we have

gs(z)(u) = (z.8)(u) = z.8(u) — s(z.u) C .M — s(U) C M.

On the other hand ¢s(z)(u) € g. Therefore ¢s(z)(u) = 0 for all z € g,u € U and
¢s is the zero mapping. Thus, any virtual structure on (g,U) defining the trivial
virtual pair is equivalent to the zero mapping of g into £(U, g).

Corollary 3. Suppose ¢ : g — L(U,g) is a virtual structure on the generalized
module (g,U) and there exists a mapping s € L(U,g) such that ¢(z) = z.s for all
¢ € g. Then the virtual pair (V,g) is trivial.

Proposition 12. Suppose ¢ : g — L(U,g) is a virtual structure on the gener-
alized module (g,U) and a is a semisimple subalgebra of the Lie algebra g. Then
there exists a virtual structure § equivalent to ¢ such that §(a) = {0}.

Proof. Indeed, suppose (V,g) is the virtual pair defined by ¢. Since a is a
semisimple subalgebra of g, we see that the a-module V is also semisimple. But g
is a submodule of the a-module V. Therefore there exists a submodule M of the
a-module V such that V = M @ g. Suppose s is a section of the canonical surjection
7 : V — U such that s(U) C M. Calculation similar to that from the proof of the
previous Proposition shows that ¢s(z)(u) =0 for all z € a,u € U, i.e., gs(a) = {0}.
The virtual structures ¢ and ¢, are equivalent.

Corollary 4. If g is a semisimple Lie algebra, then every virtual pair (V,g) is
trivial.

Definition. A pair (g, g) is called trivial if there exists a commutative ideal a
in the Lie algebra g such that g® a = g.

Suppose (g,g) is a trivial pair. This obviously implies that the corresponding
virtual pair (g, g) is also trivial, but not conversely. A trivial pair is uniquely defined
(up to equivalence) by the corresponding generalized module (g, d/g)
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Proposition 13. Let (g,g) be an isotropically-faithful pair and (g,U) the cor-
responding generalized module (U = g/g). Suppose that there exists ¢ € g such
that xy = idy + ¢, where ¢ is a nilpotent endomorphism; then the pair (g,g) is
~ trivial.

Proof. By b denote the nilpotent subalgebra of g spanned by z. We identify
functions from h* with their values on the element z. It is clear that U = U(h).
Since ¢ is nilpotent, we see that the endomorphism adg ) is also nilpotent.
Further, since the g-module U is faithful and adgyyy ¢ = adgu) zu, we see that

the endomorphism adg is also nilpotent and g = g°(h). From Proposition 8(2) it
follows that dimg'(h) > dim U1(h), where §°(h) = g. From the embedding

[B%(h), 8 (M) C&*°(h) a,Beb”
it follows that g'(h) is a commutative ideal in g. This proves the Proposition.

5. Real and complex virtual pairs

In this section we put k = R. For any real vector space V, by V€ = V ®@g C
denote the complexification of V. In a similar manner we define complexifications
of other algebraic structures such as Lie algebras, modules, and so on.

We identify the vector space V with the subset VQgR of VC Then V€ = V4+(iV)
and V N (:V) = {0}.

Suppose b is a nilpotent real Lie algebra and V is a finite-dimensional real h-
module. Then the vector space VC is a hC-module. Since the field C is algebraically
closed, we see that the hC-module VC is a direct sum of primary components. A
linear function a € (h®)* such that (VC)*(hC) #£ {0} is called a weight of the
hC-module VC. Denote by AC the set of all weights of VC. Then

©= D V).

a€cAC

For A € AC, by V*(§) denote the subspace of V defined by
V() =V 0 (V) + (VO (49))
Remark. If A € AC and ) = ), then A € h* and
(VAH) = (VOXH).

(Bourbaki, N. ”Groupes et algébres de Lie”, Chapter VII, §1). So the new definition
for VA(h) is in full agreement with the old one whenever \ = ).

Proposition 14.
(1) A® = AS;
(2) VA(h) = V*(b) and
(VOXHE) + (VO HE) = (VA(H))C for all X € AS;
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(3) for any A € AT the subspace V*(h) is invariant under the action of b and

V=Y Vb)

AEAC

(4) if A € A® and \ # A, then the submodule V*(h) of the h-module V possesses
a unique complex structure J» such that

v+ w) € (VOAHT)  for all v € VA(H).

Proof. fz € B X € (h1¥)*,n € N, and v € VC, then
(zye — A(2))"(v) = (Fve — A(2))"(?)-

This proves statements (1) and (2). Then statement (3) is obvious.
Suppose A € A® and A # X. Then

VA VEOREE) = V) n (VG = {0}.

Indeed, if v € V N (VOAHC), then v = 5 € (VE)}HT) and v € (VEOAHE) N
(VEXHC) = {0}. In a similar way we see that the second equality is true.

By V* denote a subset of V such that for any v € V* there exists u € V such
that v + iu € (VE(HC). From condition (12) it follows that for any v € V* this
element v is unique. Put J*(v) = u

Let us show that V? is a subspace of the vector space V and the mapping
JM(v) is linear. Indeed, if vi,v2 € V?, then (v1 + vy) + i(J*(v1) + JA(v2)) =
(v1+3J M (v1))+(v2+iT A (v2)) € (VC),\([]C)_ Therefore v +vy € V* and J* (v +vq) =
JX(v1) + J*(v2). Similarly, if v € V*,a € R, then av € V* and J*(av) = aJ*(v).

Let us show that JNV?) C V*. Indeed, if v € V*, then —i(v + iJ*(v)) =
JAw) —iv € (VOXMBT) and J*(v) € V. In addition JA(J*(v)) = —v.

Let us show that J*(z.v) = z.J*(v) forallz € h,v € V. Indeed z.(v+iJ*(v)) =
z.v +iz.J2(v) € (VEOMNHT). Therefore JA(z.v) = z.J*(v).

Let us now show that V* = V*. Indeed, if v € V*, then v—iJ*(v) = v +iJ*(v) €
(VOX(HC). Therefore V* C V2. Similarly V* ¢ V*. This implies V* = V* and
= —J

It remains to note that

(VPO + (V) = (V)°
and, therefore, VA(h) = V2.

Definition. Suppose A is a subset of AC such that for every A € AC the set
AN {A, A} contains exactly one element. Then

V= Vb

A€A

and the decomposition itself is called a generalized primary decomposition.

Remark. Generally speaking, the set A is not defined uniquely. Nevertheless the
terms of the generalized primary decomposition are independent of A.
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Proposition 15. Suppose (g,U) is a real generalized module,  is a nilpotent
subalgebra of the Lie algebra g, and q is a virtual structure on (g,U). Then there
exists a virtual structure § equivalent to q such that gC is a primary (with respect
to hC) virtual structure on the complex generalized module (g©, U®).

Proof. Let (V,g) be the real virtual pair defined by ¢. Suppose A(‘C,,A(gc, and

AL are the sets of all weights of the §-modules V€, g€, and UC respectively. Then
AS = A(gc U A%. We have

g*(h) =gNVA(h)
and

UX(h) = =(VA(b))
for all A € A}, where 7 : V — U is the canonical surjection. Let Ay be a subset
of A such that

V= Vi

A€EAVY
is the generalized primary decomposition of the h-module V. Put Ag = Ay N A‘S
and Ay = Ay N A%. Then
o= P o)

AEA,

U= ).

A€EAY

and

For A € Ay, let # : V() — U*(h) be the restriction of the mapping 7 to
VA(h). If X = ), then by s* denote an arbitrary section of the surjection 7.

Suppose A # X and Jg, J{} are the complex structures on V*(h) and U>(b),
respectively, determined in Proposition 15(4). By VA(h)(J3) and U*(h)(J7}) denote
the corresponding complex vector spaces. Then

™ VAD)(IP) — UAH)(JD)

is a surjection of complex spaces. By s* denote an arbitrary C-linear section of the

surjection 7.

Consider the mapping s : U — V defined by

(X )= X

a€Ay a€Ay

for u_)‘ € U*(h), X € Ay. The mapping s is a section of 7. Moreover, if A € A§ and
A # A, then
T3(s(w)) = s(J3(u)) for all u € UA(p).
Suppose ¢, is the corresponding virtual structure on (g, U). It is obvious that ¢C is

a virtual structure on the complex generalized module (g€, UC) and ¢ = ¢,c. Let us
show that the section sC is consistent with hC. Indeed, if & € (UC)*(§©) for A € A§,
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then there exists u € U*(h) such that @ = u+4J}(u) and s€(@) = s(u)+iJ3(s(u)).
Since s(u) € VA(h), we obtain sC(7) € (VOA(HO).

From Proposition 9 it follows that ¢C is a primary virtual structure. Since the
virtual pairs (Vy, g) and (Vj, , g) are isomorphic, we see that ¢ and ¢, are equivalent.
The proof of the Proposition is complete.




CHAPTER III

THE CLASSIFICATION OF PAIRS

Preliminaries

1. Let g be one of the subalgebras of the Lie algebra gl(3,R) determined in
Theorem 1. We assume that the Lie algebra g acts naturally on R® ; then (g, R3)is a
faithful generalized module. The enumeration of the generalized modules obtained
in this way coincides with that of the corresponding subalgebras of gl(3,R) in
Theorem 1.

We say that a pair (g,g) (a virtual pair (V,g)) has type (n.m), if the corre-
sponding generalized module (g,d/g) (respectively, (g,V/g)) is isomorphic to the
generalized module n.m, i.e., to the generalized module (g,R3), where g is the
subalgebra of gl(3,R) supplied with the number n.m in Theorem 1.

2. Let (V,g) be a virtual pair of type n.m. Then without loss of generality we
can identify the Lie algebra g with the subalgebra n.m of the Lie algebra gl(3,R).

We suppose that U = R3. Let {u1,u2,us} be the standard basis of U:

1 0 /0

Uy = 0 5 Ug = 1 B Uz = 0

0 0 1
3. Allowing a certain freedom of notation, we define a pair (g, g) by the commu-
tation table of the Lie algebra g only. Here by {ey,...,en,u1,us,us} we denote a

basis of g (n = dimg). We assume that the Lie algebra g is generated by e1,...,en
unless the contrary is stated.

In addition, A and p are the parameters of the corresponding generalized mod-
ule. If there are some complementary conditions on A and g (comparing with
Theorem 1), they are indicated before the table. By a, 3,7, etc. we denote the
parameters appearing in the process of the classification. If there are some com-
plementary conditions on them, it is indicated just after the table. Otherwise we
assume that these parameters run through R.

4. We make use of the following notation:

Dng are the elements of the derived series of a Lie algebra g;

C™g are the elements of the lower central series of g;
t(g) is the radical of g;
Zg is the center of g;

adgq ¢, where z is an element of g, and a is an ideal in g, denotes the
restriction of the endomorphism ad z to a.
5. In the trivial case g = {0} the classification of isotropically-faithful pairs (g, g)
is equivalent to the classification (up to isomorphism) of all three-dimensional Lie
algebras g. It can be found, for example, in [J].
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Proposition 0.1. Any pair (g,g) of type 0.1 is equivalent to one and only one
of the following pairs:
1.
[?] | Uy Uz Uz
U1 0 0 0
Ug 0 0 O
us 0 0 0
2.
[J | w1 us ug
Uq 0 0 0
U9 0 0 Uy
us 0 —U1 0
3.
[ ] wi ue  ug
Uy 0 0 5]
Ug 0 0 aug
u3 —u; —aus 0, |a]<1,
4. ) i
[] ] uy Up us |
Ul 0 0 auy + us K
Ug 0 0 —u1 + aus
us —Qty — Ug U] — QU 0 , az=0,
5.
L] ] w Uz u3
U1 0 0 Uy
U9 0 0 Ui 6‘“2
Uus —U; —U;p — U2
6.
L] v we ug
U 0 2ue  —2u
u; —2us O2 Uy ’
Uus 2u3 —U1 0
7.
[,] | U1 U2 us3
Uy l 0 uz  —Us
U9 —Uus 0 U ?
us U9 —U1
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1. One-dimensional case

Proposition 1.1. Any pair (g,g) of type 1.1 is equivalent to one and only one
of the following pairs: .

1.
LI ] er wi us g
e 0 U Au 0
Wl o—w 007 0
Uz —Aug 0 0 0
us 0 0 0 0
2.
[,] e1 up Uz ug
e 0 A 0
ull —uy 161 82 0
Uz —)\uz 0 0 U
us 07 0 —u O
3 A=-1
[,] €1 uy Uz us
e U —u 0
ull —uq 01 6612 8
U U —e
Uy ¢ o0 0 0
4 A= -1
(] e1 U1 Uz ug
e 0 U —u 0
ui —uy 01 u32 0
(7%)] U2 —Usg 0
U3 0 0 0
5. 2=-1
D] e w w o ou
e 0 U —u 0
ull —Uq 01 €1 -6%1,3 0
U2 U2 —€1 — U3 0
Uus 0
6. =1
[a] I €1 Uy U2 Uus
e 0 U U 0
wi | —ws 0 G 0
Ug —Us 0 0 U
Usg 0 0 —U1 01
7.A=1
[,] ‘ €1 Ui U2 Uus3
e 0 U U 0
ui —u7 01 02 —Ug
Ug —ug 0 0 U
usg 0 wuy —uy 01

Proof. Let £ = {e1} be a basis of g, where

1 0 0
e = 0 X 0
0 00

Then A(e1) =0, and for z € g the matrix B(z) is identified with .
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Lemma. Any virtual structure q on generalized module 1.1 is isomorphic to one
of the following:

a) \#0
Ci(e1)=(0 0 p3), ps €R;

b) A =0
Ca(e1)=(0 p2 p3), p2,ps €R.

Proof. Any virtual structure ¢ has the form

Cle1)=(e1 ¢z ¢3).
Suppose A # 0. Put

H=(Cl 62/)\ O),
and Cy(z) = C(z) — A(z)H + HB(z) for z € g. Then

01(61) = (0 0 Cs).

By corollary 2, Chapter II, the virtuial structures C and C; are equivalent.
Now suppose A = 0. Similarly, putting

H=(a 0 0),
and Cy(z) = C(z) — A(z)H + HB(z) for ¢ € g, we see that

02(62) = (0 Co 03).

This completes the proof of the Lemma.

Let (g,9) be a pair of type 1.1. Thus it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma.

Consider the following cases:

1°. A # 0. Then the vectors [e1,u;] 1 < j < 3 have the form:

le1,u1] = uq,
[617U2] = Aug, ps €R
[e1,u1] = paer.
Put
[u1,us] = arer + caug + agug + azus,
[u1,us] = bies + Pruy + Bauz + Psus,
[ug,us] = crer +y1u1 + Y2usz + Ysus.
Let us check the Jacobi identity for the triples (e1,uj,ur), 1 < j < k < 3, and
(u1,ug, us).

1. [61, [ulaU'Z]] + [uZ) [61,u1]] + [ula [U’Z’el]] =0
a1u1 + Aagug + psaze; — (A + 1)(a1e1 + ajug + agug + asuz) =0

S
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1. P33 — ()\ —|— 1)a1 = 0

2. a1=0
3. a2=0

2. [eq, [u1,us]] + [us, [e1, u1]] + [u1, [us, e1]] =0
Brui + ABauz + psfses + psur — (brer + Brus + Bauz + Bzuz) =0

5.b01 =0
6.p3=0
7.A=1)B; =0
8. B3 =0

3. [61, [u2a US]] + [U3, [61, u2]] + [’LLz, [U3, 61]] =0
y1u1 + Ayaug — (cre1 + y1us + youz +ysuz) =0

9. c1 = 0
10. A—=1)y; =0

4. [ula [u2, U3]] + [’LL3, [ul, UZ]] + [UZ, [U3, ul]] =0
(v2 + B1)(arer + aguz) =0
12. (,31 + 72)a1 =0
13. (ﬂl + ‘)’2)013 =0

It follows that the pair (g, g) has one of the following forms
1.1°. A # +1

[7] l €1 Uy U2 us

€1 0 Uuq Aug 0

Uy —uy 0 0 Bru1

U2 —)\U2 0 0 Y2U2

u3 0 —fiur  —vyau2

1.2°. A= -1

[ 3 ] | €1 31 Uz us
€1 0 Uy —U9 0
U3 —uy 0 ajer + aguz  Prug
Ug Uz  —aje; — 0igug You2
Uus 0 —pP1Ul —-’)’2’U,2 0 ;

where a1 (81 +72) = as(B1 +72) = 0.

1.3°. A =1
] e ow “ s
€1 0 Ui U2 0
ul —uq 0 0 Brui + Baus
Ug —1Ug 0 0 YUl + Yo U2
u3 0 —piur — Paus  —v1u1 — You2 .

Consider the corresponding cases.
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1.1°. A # £1. If 42 — AB;y = 0, then the pair (g,g) is equivalent to the pair
(g1, 91) by means of the mapping 7:§; — g, where

m(e1) = ey,
m(u1) = u1,
m(ug) = ug,

7T(U3) = ug — ﬁlel.

If 72 — AB1 # 0, then the pair (g, g) is equivalent to the pair (gs,g2) by means of
the mapping 7: g, — @ such that

7'('(61) = €1,
m(u1) = uq,
W(“Z) = U2,

m(u3) = (us — Bre1)/(ABr — 72).

1.2°. M= —-1. If By + 2 # 0, then a; = a3 = 0 and as in the case 1.1° we see
that the pair (g, g) is equivalent to one of the pairs (§1,91) or (g2,82) for A = —1.
Now suppose 31 + 72 = 0. The mapping 7:g' — g such that

m(e1) = ey,
7T('U,1) = Uiy,
m(ug) = ug,

ﬂ'(’d3) = Uug — ﬁlel.

establishes the equivalence of pairs (g, g) and (g, g'), where the latter has the form:

[7] l €1 751 Ug U3
€1 0 Uy —Ug 0

Uq —uy 0 aie; + azus 8

U9 U —aje; —ogug

us 1f 0 0 0.

If ay # 0 and a3 # 0, then the pair (§',g') is equivalent to the pair (gs,gs) by
means of the mapping 7:gs — @', where

m(e1) = eq,
m(u1) = uy,
m(ug) = al—luz,
m(ug) = a3a;1U3.
Smilarly, the pair (g',g') is equivalent to one of the pairs (gs,gs), (§4,94) or

(glagl))\=—1 when (a1 75 0,013 = 0), (a1 = 0,&3 7é 0), or (a1 = a3 = 0), re-
spectively.
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1.3°. A = 1. In this case each pair is determined by a matrix of the form

A= (5 ! ’5 2 ) It easy to show that if two matrises A and A’ of this form are
172

conjugate then, the corresponding pairs are equivalent. So, we can assume that A
has one of the followig forms:

0 (g 2) a,beR; i) (g ;) a€R; i) (Z “a”), a,beR.

In case ¢) as in 1.1° we see that the pair (g, g) is equivalent to either (g;,g1) or
(gz,gz) for A =1.

In case 1) the pair (g, g) is equivalent to the pair (g, g6 ) by means of the mapping
m:g¢ — @, where

m(e1) = e1, |
7T(U1) = Ui, ‘
m(ug) = ug, ‘

m(us) = us — ae;.

In case 7i7) it can be assumed that b # 0. Then the pair (g, g) is equivalent to
the pair (gs, g¢) by means of the mapping m:ge¢ — g such that

7T(81) = €1,
m(u1) = u1,
m(uz) = ug,

m(us) = b7 (uz — aey).

2°. XA = 0. In this case after checking the Jacoby identity we see that the pair
(9, 9) has the following form:

[a] | €1 Ui U2 Uus

e1 0 Uy 0 0

uj —uy 0 Uy Bruy

U2 0 —aiuy 0 cie1 + yauz + y3us3
us 0 —,81111 —C1€1 — Y2U2 — 7Y3U3 0 s

where ¢; = o172 + B173. The mapping 7: g’ — g such that

71'(61) = €1,
m(uy) = uq,
m(uz) = uz + azes,
m(u3) = uz + Brea,

establishes the equivalence of the pairs (g,g) and (g',g’) where the latter has the
form:

[7] ‘ €1 Ui Uz us
el 0 w 0 0
U1 —U1 0 0 0
U9 0 0 0 Y2U2 + Y3us3
U3 0 0 —vyoug —ysus 0 .
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It is easy to show that the pair (g',g’) is equivalent to either (g1,81) or (g2,92) for
A=0.

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

Since Z(g1) # {0} and Z(g2) = {0}, we see that the pairs (g1,9:1) and (g2,92)
are not equivalent.

Note that D?g; = D?g, = {0} but D?g; # {0} for : = 3,4,5. It follows that
the pairs (g1,91) and (g2,82) (A = —1) are not equivalent to any of the pairs
(9i,9i), 1 = 3,4,5. Since

Dgs Ngs # {0}, Dgs N Z(gs) = {0};
DgsNgs = {0}, Dgs N Z(gs) # {0}

Dgs Ngs = {0}, Dgs N Z(gs) = {0},

we see that the pairs (g;,9:), ¢ = 3,4,5 are not equivalent to each other.

Let A = 1. For the pairs (g1,81), (82,92), (86,96), and (g7,97) consider the
homomorphisms f;:g; — gl(2,R) (: = 1,2,6,7), where fi(z) is the matrix of the
mapping ad z|pg,; in the basis {u1,u2}, € §;. Then

n@={ (5 1) zer}
A ={ (5 7)|sver}s
i) ={ (5 V)] ever}s
f7(ﬁ7)={(_xy g) xeR}.

Since the subalgebras fi(g;) (¢ = 1,2,6,7), are not conjugate, we conclude that the
corresponding pairs are not equivalent.
This completes the proof of the Proposition.

Proposition 1.2. Any pair (g,9) of type 1.2 is equivalent to one and only one
of the following pairs:

1.
[,] \ €1 Uy U2 Uus3
e 0 i Au u
w | —u ¢ 0* Ho?
U2 —dug 0 0 0
us —puz 0 0 0
2. p=x24+1 A< -1
[,] | €1 Ui U2z Uus3
€1 0 Uy )\u2 ()\ -I- 1)’(1,3
U1l —Ui 0 us 0
u —Au —uz 0 0
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3. pu=1-X0<A<1/2

[’] | €1 Uy U2 Ug
el 0 u; Aug (1= Aug
Uy —uy 0 0 0
U2 —-/\U2 0 0 Ui
us ()\ - 1)U3 0 —Ui 0

Proof. Let € = {e1} be a basis of g, where

1 0 0
€1 = 0 A 0 .
0 0 p

Then A(e;) =0, and for z € g the matrix B(z) is identified with z.
Lemma. Any virtual structure ¢ on generalized module 1.2 is trivial.

Proof. Any virtual structure g has the form

Cle1)=(c1 c2 c3).

Put
H=(c1 c/A cs/p).

Now put Cy(z) = C(z) + A(z)H — HB(z). Then
Ci(er)=(0 0 0).

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent. This
completes the proof of the Lemma.

Then
le1, u1] = ua,
[e1, u2] = Aug,
[e1, us] = pus.
Put

[u1,u2] = arer + aqu + aguz + agus,
[u1,us] = bres + Brus + Baua + Baus,
[ug,us] = cre1 +y1u1 + Y2u2 + Y3us.
Let us check the Jacobi identity for the triples (e1,u;,u;), 1 <7 < j < 3 and
(u1,uz2,us).

1. [e1, [ug, ua]] + [u1, [uz, e1]] + [uz,[e1,u1]] =0
ajuy + Aagug + pazug — (A + 1)(are; + arur + agug + aguz) =0

L.A+1a; =0
2.a1=0
3.a2=0

4. (u—)\—l)ag———O
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2. [e1, [ur, us]] + [u1, [us, e1]] + [uz, [e1,u1]] = 0
Bruy + ABzug + pBsus — (k4 1)(brer + Brus + Bauz + Pauz) =0

5. (p+1)by =0
6.8, =0
7.8, =0
8. B=0

3. [e1, [uz, us]] + [uz, [us, e1]] + [us, [e1, uz]] = 0
y1u1 + Ayeug + pysus — (p+ A)(crer + y1u1 + yauz + ysuz) =0
9. C1 = 0
10. (u+XA =1y =0

4. [ug, [uz, us]] + [u2, [us, ua]] + [us, [u1, uz]] = 0
)\bl'LLz — Hai1uz = 0
13. 6, =0
14. a; = 0

It follows that the pair (g, g) has one of the following forms:
1°p+A#land p—A#1

[,] ‘ €1 Uy Uz Uus
e 0 uUp AU U
w | w0 0% HoP
U2 —Auz 0 0 0
ug —pug 0 0 0
2°.p—=A=1
(] l e1 U Uz ug
e1 0 U1 Aug (A +1)us
Ui —U1 0 agus
Ug — Ao —o3U3 0
us —(A+1)us 0 0 0
.op+r=1
[a] | €1 U1 U2 Uug
€1 0 Ui )\U2 (1 - )\)u;;
Ui —U1 0 0 0
U —)\uz 0 0 Y1U1

Uus ()\ - 1)U3 0 —Y1U1

Consider the following cases:

1°. p+ X #1and p— A # 1. Then the pair (g,g) is equivalent to the trivial

pair (ﬁl, gl)
2°. p—A=1. 2.1°. ag = 0. Then the pair (g, g) is equivalent to the trivial pair

(51,91)-
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2.2°. a3 # 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means of
the mapping 7 : g2 — @, where

m(e1) = ey,
m(u1) = uq,
m(uz) = azus,
m(us) = us.

.pu+A=1.
3.1°. 41 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, g1)-

3.2°. 41 # 0. Then the pair (g,g) is equivalent to the pair (g3, g3) by means of
the mapping 7 : g3 — @, where

n(e1) = eq,
m(u1) = us,
m(uz) = 12,
m(ug) = us.

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

Since dimD?g; = 0, dimD?g, = 1, and dim D?gs = 1, we see that the pair
(91, 91) is not equivalent to either of the pairs (g2, g2) and (g3, g3).

Consider the homomorphisms f; : g — gl(3,R) (: = 2,3), where fi(z) is the
matrix of the mapping ad |pg,z in the basis {u1,uz,us}, £ € g;. Since the subal-
gebras f3(g2) and f3(@s) are not conjugate, we conclude that the pairs (gz2,82) and
(g3, 93) are not equivalent. This completes the proof of the Proposition.

Proposition 1.3. Any pair (g,9) of type 1.3 is equivalent to one and only one
of the following pairs:

L
[a] €1 U1 Uo Usg
€1 0 )\ul — Ug U3 + )\UZ 0
uy ug — Aug 0 0 0
U2 —UuUy — )‘UZ 0 0 0
ug 0 0 0 0
2.
[a] €1 Ul U9 U3
€1 0 )\ul — Uy U1 -|- )\U2 0
U1 Ug — )\ul 0 0 Ul
Ug —Up — Aug 0 0 u
Uus 0 —Ux —U9g 02
3 A=0
[,] I €1 Ui U us
e 0 - u 0
ull U9 0 2 €1 -gu3 8
u —_— — —
w | 00 M0 0 0
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4, A=0
L] ] e Uy U ug
e 0 —U u 0
ull Us 0 ? —ey —ll— uz 0
U —u; €] — Uus 0
5. 2=0
L] eo wn uz ug
€1 0 —Ug U 0
Uq U9 0 e
U —u; —e d 0
6. A=0
[,] | €1 Ui U2 U3
e 0 —1u u 0
ull U2 0 ? —611 0
Ug —u; e 0 0
us o0 d 0 0
7.20=0
[7] I €1 Ui Uz U3
e 0 —Uy U 0
ull Ug 0 2 u;la, 0
U —u; —uz 0 O
usz 0 0 0 O

Proof. Let € = {e1} be a basis of g, where

A 1 0
€] = -1 )\ 0 .
0 0 O

Then A(e;) = (0), and for z € g the matrix B(z) is identified with z.

Lemma. Any virtual structure ¢ on generalized module 1.3 is isomorphic to one
of the following:
0(61) =(0 0 p)a peR'

Proof. Any virtual structure ¢ has the form

C’(el) = (Cl C2 63).

Put
H=(hy hy 0),

where the set of coeflicients h; and hy is a solution of the following system:

{ —Ah1+hy=¢
—hl - )\hz = C2

Note that the solution exists, since the matrix of the system is nondegenerate. Now

put Ci(z) = C(z) — A(z)H + HB(z) for z € g. Then
C(61)=(0 0 03).
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By corollary 2, Chapter II, the virtuial structures C and C are equivalent.

This completes the proof of the Lemma.

Let (@,9) be a pair of type 1.3. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the

Lemma.
Then the vectors [e1,u;] 1 < j < 3 have the form:

[61,U1] = Auy — ug,
[e1,uz] = u1 + Aug, peR
[e1,u1] = pes.
Put
[u1,u2] = ayer + ayuy + azug + azus,
[u1,us] = brex + Brus + Pauz + Baus,

[uz,us] = crer + y1u1 + Y2uz + Y3us.

Let us check the Jacobi identity for the triples (e1,uj,ux), 1 < 7 < k < 3, and
(UI,UZa Us)-
1. [ela [u17u2]] + [Uz, [elvul]] + [u17 [u2761]] =0
1. agp—2Xia; =0
2. Oy = /\al
3. o = —/\Cllz
4. daz =0
2. [e1, [u1,us]] + [us, [e1, ua]] + [u1, [us, e1]] = 0
5. Bsp—Aby +¢c1 =0
6. B2+7 +pA=0
T.70— B —
8. Y3 = /\,83
3. [e1, [ug, us]] + [us, [e1, ua]] + [uz, [uz, e1]] = 0
9. ")/3]9—61 —)\Cl =0
10. 2= B1+p=0
11. a1 =0
4. [u1, [uz, us]] + [us, [ur, ua]] + [uz, [uz,us]] = 0
13. ﬂlal =0
14. ﬂlag = 0
It follows that the pair (g,g) has the form
[,] | e1 Uy U us3
€1 0 )\ul — U2 Uq + )\UQ
u1 Uy — Aug 0 arer + azus ﬁ1U1 +
(23 —Aug —u; —aije; — a3us 0 —Bauy + 1u2

us3 0 —Biur — Pouz  —Pruz + Baug
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where the set of coefficients satisfies the following system of linear equations:

Aa; =0,
Aaz =0,
pray =0,
Bras = 0.

The isomorophism 7 : g’ — g such that

7"(31) = 61,7T(Ul) = Ul,ﬂ(uz) = uz,ﬂ'(us) = ug + B2e1

establishes the equivalence of the pairs (g,g) and (g',g'), where the latter has the
form:

[a] l €1 Uy U2 us

e1 0 AU — ug u1 + Aug ,0

Uy uz — Aug 0 aje; + agug /B}ul

U2 —)\U2 — U3 —aze; — a3us 0 ﬂl U2
! !

u3 0 —Pius —Biuz 0,

Where /6:’[ = ,81 + )\,82

Consider the following cases:

1°. A =0.
[u1,uz) = aje; + aszus,
[u1, us] = Brua,
[ug, us] = Bruz.

1.1°. a1 # 0.

Then the pair (g, g) is equivalent to the pair (gs, g3) or the pair (g4, g4) by means
of the mapping 7 : g3(4) — @, where

7'('(61) = 61,
m(u1) = /la1|us,
T(u2) = v/]a1|us,
_aa]
TF(U3) = as us.

The pairs (g3, 93) and (ga, g4) are not equivalent, since a Levi subalgebra of (g4, 94)
is isomorphic to s5u(2), and a Levi subalgebra of (g3, gs) is isomorphic to sl(2, R).

1.2°. a3 = 0, aj 75 0.
Then the pair (g, g) is equivalent to the pair (gs,95) or (g6, 86) by means of the
mapping 7 : @s(s) — @, Where

n(e1) = eq,
ﬂ-(ul) = \/|(1_1Tu1,
m(us) = /]ax]uz,

m(us) = us.
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The pairs (g5, 9s5) and (gs, g¢ ) are not equivalent, since a Levi subalgebra of (gs, g6 )
is isomorphic to su(2), and a Levi subalgebra of (g, gs) is isomorphic to sl(2,R).
These pairs are not equivalent to the pairs (g3, gs) and (g4, g4), since dim Dgs ¢ Ng #
0 and dim'Dgg;A N g= 0.

1.3°. a3 £ 0, a; = 0.
Then the pair (g, g) is equivalent to the pair (g7, g7) by means of the mapping
7 g7 — @, where

7T(61) = €1,
m(u1) = ug,
m(ug) = ug,

m(ug) = a?,_lu;;.
The pair (g7,97) is not equivalent to any of the pairs (g;,8:), ¢ = 1,...,6, since its
nilpotent radical has a nontrivial submodule.
1.4°. a3 = ay = 0, ﬂl % 0.

Then the pair (g,g) is equivalent to the pair (g2,92) A = 0 by means of the
mapping 7 : g2 — @, where

m(e1) = e,
m(u1) = uy,
m(ug) = ug,
m(ug) = Prus.

1.50. a3 = a1 = ,81 = 0.
Then the pair (g, g) is trivial.
2°. A #£0.

2.1°. By # 0.

Then the pair (g,g) is equivalent to the pair (g2,92) by means of the mapping
7 go — @, where

n(e1) = e1,
7r(u1) =1Uj,
m(u2) = uz,

m(uz) = Prus.
2.2°. By = 0.
Then the pair (g, g) is trivial.
The pairs (g2,92) and (g1,91) are not equivalent, since the pair (g1, ;) has the
nontrivial center Z(g;) = R(us).
This completes the proof of the Proposition.
Proposition 1.4. Any pair (g,g) is equivalent to one and only one of the fol-

lowing pairs:
1.

[a] I €1 Ui Ua usg
€1 0 )\ul — Uy U+ )\U2 Hus3
Uy —A\uy + ug 0 0
U —>\’U,2 — U 0 0 0

u3 —pug 0 0 0
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2. p=2A
[a] l €1 Ui Ug us
e 0 Aup —ug  up 4+ Aug  2\u
u11 —Auy + ug l0 2 ! U3 2 0 ’
Ug —Aug — Uy —us 0 0
us —2/\’M3 0 0 0 y A> 0.

Proof. Let € = {e1} be a basis of g, where

A1 0
€1 = -1 A 0 .
0 0 u

Then A(e1) =0, and for z € g the matrix B(z) is identified with z.
Lemma. Any virtual structure q on generalized module 1.4 is trivial.

Proof. Any virtual structure ¢ has the form:

0(61)2(01 C2 63).

Put

_ (c2HAcr  —citAecs  ca
H= ( 1+ A2 1+A2 m )

and Cy(z) = C(z) + A(z)H — HB(z) for € g. Then

01(61)2(0 0 0)

By corollary 2, Chapter II, the virtual structures C and C; are equivalent. This
completes the proof of the Lemma.

Then the vectors [e1,u;],1 < ¢ < 3, have the form:

[e1, u1] = Aug — ug,
[e1,uz] = u1 + Aug,
[e1,us] = pus.
Put
[u1,u2] = arer + a1uy + agug + asus,
[ur,ug] = bres + Brus + Pauz + Baus,
[uz,u3] = cre1 + y1u1 + Y2uz + Ysus.
Let us check the Jacobi identity for the triples (e1,uj,ug), 1 < j < k < 3, and
(u1,ug,us).
L. [e, [u, ua]] + [ue, [ex, ur]] + [ug, [uz, e1]] = 0

a1(Aur — uz) + ag(us + Auz) + azpuz — 2X(arer + aquy + apug + azuz) =0
1. )\al =0

2.0[120{2:0

3. (p—2N)az =0
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2. [e1, [us, us]] + [us, [ex, ua]] + [u1, [us, e1]] = 0
B1(Aur — uz) + B2(us + Auz) + Bspus — (A + p)(brer + Bruy + Paug + Paus)+
+cier +y1ur + yeug +y3uz =0
4. Cc; = (/\ + /,l,)bl
5. B +m1 = pbh
6. —B1+72 = up2
7. Y3 = )\,63

3. [61, [u27 u3]] + [U3, [61) UZ” + [UZ, [’LL3, 61]] =0
y1(Aug — ug) + ya(u1 + Aug) + yspus — (A + p)(crer +yiur + y2uz + ysus)—
—brer — Bruy — Bauz + Bauz =0
8. b] = —()\ + ,LL)C]
9. =Bi+v2=pm
10. B2+ 71 = —p72

11. ﬂg - —)\,33
4. [uy, [ug,us]] + [us, [ur, ua]] + [uz, [us,u1]] = 0
—pa; =0
12. a; = 0

It follows that the pair (g, g) has the form:

[,] | €1 Uy U2 us
€1 0 )\ul — U2 Ui + }\U2 Hu3
Uy —)\ul + U9 0 agbu?, 0
U —AU2 — U —0oi3U

ug —,Lzzug ! (? 3 0 0,

where ag(A —2u) =0.

Consider the following cases:

1°. pw # 2.

Then a3 = 0 and the pair (g, g) is equivalent to the trivial pair (g1,g1).

2°. u =2\

2.1°. a3 # 0. The pair (g, g) is equivalent to the pair (g2,g82) by means of the
mapping 7 : g2 — @, where

m(e1) = ey,
m(uy) = uy,
m(ug) = ug,

m(ug) = agus.

2.2°. a3 = 0. The pair (g, g) is equivalent to the trivial pair (g1,91) -

Since dim D?g§; # dimD?g,, we see that the pairs (g1,91) and (g2, g2) are not
equivalent to each other.

This completes the proof of the Proposition.
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Proposition 1.5. Any pair (g,9) of type 1.5 is equivalent to one and only one
of the following pairs:

1.
]| 1w up ug
el 0 0 0 wuy
Uy 0 0 0 O
Ug 0 0 0 O
us —Uy 0 0 0
2.
[,] | €1 Ui Uy U3
€1 0 0 0 U1
Uy 0 0 0 wu
s 6 0 0 0
us —U1 —Ux 0 0
3.
[7] €1 Ui U2 us3
TR I T I
e1+au
uy 0 0 0 ‘ot
us —uy —ej—au; 0 0
4,
[7] €1 Ui Ug us
€1 0 0 0 Ul
Uy 0 0 0 —e1toauy
Ug 0 0 0 0
usg —u; er—au; 0 0
5.
[,] | el Uy Uz U3
€1 0 0 0 u
Uy 0 0 0 Uy
Ug 0 0 0 ed_
us —Uu; —UuU3 —€
6.
[>] | €1 Uy Uz  Uug
e 0 U
s 0 0 0 0
U2 0 0 e
us —uy 0 —e 01
7.
L]l ] e w uy us
e 0 0 U
u 0 0 0 ul
U 0 0 0 Uy +uz
Uus —U —U1 —U1—Ug 0
8.
[7] | €1 Ui U2 us
€1 0 0 0 U1
U1 0 0 0 aer+pPuy
U2 0 0 U2
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9.
[a] [ €1 U1 U2 ug
€1 0 0 0 U1
uq 0 0 0 ae;+(1—ajuy
Uy 0 0 0 e1+us
us —uy —aegt+(@—Du; —e;—ug 0 , a#0
10.
LI ] o wi ue g
€1 0 0 0 Uy
U 0 0 —u; O
U2 0 Uy 0 us
Uus —Uj 0 —Uus 0
11.
(] | €1 U Uz  us
e 0 U
Ui 0 0 0 u
Uus —u; —Uz —U2
12.
[7] | €1 Uy Uz us
€1 0 0 0 U1
Uq 0 0 0 U2
Ug 0 0 0 0
Uus3 —u; —ug 0 O

13. g = (f1, f2, f3, fa), 9= (fa + f3)
[’] | fi fa fs fa

0 0 0
k 0 0 0 f1J-c|}f2
f3 0 0 0 a3
fa -fi —fi-fa —afs , aFl

14. g = (f1, fo, f3, fa), 9= (f3)
[a] ‘ fi fa f3 Ja

f1 0 0 0 f 1
0 0 0 +
}Cﬁ 0 0 kdﬁ

0
fa -fi —h-f —fo—1s 0
15. §= <f1af2,f37f4)7 g= <-f1 +f3>

[a] l fi f2 f3 fa
' 0 o Hiak
f3 0

0 0
fa fo—afi —fi—afs —Bfs ﬁ({?’ , a>0
16. g = (f1, f2, f3, fa), 9= (fr + f3)
LI i o fs  fa

2 0 0 0 —f
10 0 0

10 0 0 a{‘:a

fa fo —fi —oafs y a20
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17. §= (flaf27f3af4)’ g= <f1 +f2+f3)
[a] | fl f2 f3 f4

f 0 0 0 f
fa 0 0 0 ah
fs 0 0 0 0
fa | =AA —afs 0 0, 0<|la|<1,a#0

18. §= <f11f27f3af4>7 g= (fl +f2 +f3>

| A f f i

00 0
ﬁ 0 0 b d )

0 0 0
fa - —afs —Bfs Bdcs, af>0,a<B<1

19.
[a] €1 U1 U2 U3
e 0 e 0 u
ull —e€1 d 0 U:lg
U 0 0 0
U3 —u; —ug 0 O
20.
[,] €1 U1 Uz Ug
e 0 0 er u
ull 0 0 u011 eé
U2 —€] —Uy
Us —U1 —€1 0 0
21.
[,] | €1 Uy Uz us
[ 0 0 e U
’LL11 0 0 ull —611
U9 —€1 —Ul 0 0
us —U1 €1 0 0
22.
[,] | €1 Uy U2 us
e 0 0 e U
ull 0 0 1}1
U —e; —ouy 0 (1—a)us
us —uq 0 (@—1us 0
23.
[7] | €1 Ui U3 Uus
e 0 0 e U
w0 0 0 21 0
Ug —e;  —2uy 0 €1 — ug
Uus —uy 0 ug — €1

Proof. Let € = {e1} be a basis of g, where

0 01
e1=(0 0 O
0 0 0

Then A(e1) =0, and for z € g the matrix B(z) is identified with z.

53
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Lemma 1. Any virtual structure q on generalized module 1.5 is equivalent to
one and only one of the following:

X Ci(z)=(0 0 0);

b)

Ca(z)=(1 0 0);
c)

Cs(z)=(0 1 0).
Proof. Any virtual structure ¢ has the form:

Clz)=(c1 c2 c3).

By corollary 2, Chapter II, virtual structures C and C' are equivalent if and only
if there exist P € A(g) and H € Mat; «3(R) such that for any = € g the following
condition holds:

C'(z) = FC(¢™ ()P~ — A(z)H + HB(z),

where ¢(z) = PzP~! and F is the matrix of the mapping .
We have ¢p(e1) = aeq, where a € R* . Then F' = a and P has the form:

11  T12 Z13
0 222 23 |,
0 0 %.’1111

where z11222 # 0. Put H = (hy hy hs). Then C'(e1) = (¢} ¢, c}), where

P -1

¢y =z ¢ 12 c
9 = &g C2 — 1, *
T11%22 *)
! -1 Z23 a
Cg =ari; €3 —a c2 + (z12223 — T22213)C1 + ha.
2
T11T22 T11%22

Consider the following cases:

1°. ¢; = ¢ = 0. Putting, h; = —az];'cs in (*) we obtain C'(e;) = (0 0 0).
Put Cl = C'.

2°. C1 §é 0. Putting 11 = C1y T22 = 1, T12 = C2, T23 = T13 = 0 and h] =
—acy'es, we obtain C' =(1 0 0).Put C, =C".

3°. ¢1 = 0 and cp # 0. Putting z95 = ¢g, 723 =0 and h; = —a:vl“11C3, we obtain
C'le;)=(0 1 0).PutC3 =C".

Using (*) it is easy to see that the virtual structures Cy, Cs2, and Cj are not
equivalent to each other. The proof of the Lemma is complete.

Let (g, g) be a pair of type 1.5. Then it can be assumed that the corresponding
virtual pair (g, g) is defined by one of the virtual structures determined in Lemma 1.
Put

[u1,u2] = arer + oquy + agug + azus,
[u1,uz] = brer + Brus + Baua + Baus,

[ug,us] = cre; + y1u1 + yaus + y3us.
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Consider the following cases:

1°. Suppose the virtual pair (g, g) is defined by C3. Then

[elaul] = €1,
[61,U2] = 0,

[61, u;;] = Ujy.

Let us check the Jacobi identity for the triples (e1,uj,ux), 1 < j < k < 3, and
(u1,ug,u3).

1. [e1, [u1,ug]] + [uz, [e1, ua]] + [u1, [uz, e1]] = 0
aje1 + aguy = 0
1. o] = 0
2. o3 = 0

2. [e1, [u1,us]] + [us, [e1, ua]] + [u1,[us, e1]] = 0
Bie1 + Bzug —uy =0
3.6:=0
4. B5—1=0

3. [e1, [ug, us]] + [us, [e1, ua]] + [uz, [us,e1]] = 0
vie1 + y3ui + ajer + agug =0

5.(1220
6.')/320
7.71+a1:0

4. [ula [UZa u3]] + [u37 [ula u2]] + [’U,2, [U3, ul]] =0
—cie1 + vea1e1 — (c1e1 + Y11 + Youz) — agug =0
8. Ci1 = 0
9. Y2 = 0

It follows that the pair (g, g) has the form:

[’] ! €1 Ui Ug us

€1 0 €1 Uy

uy —e1 0 arer  bieitPousrtus
Ug 0 —ajey 0 —adul

u3 —u; —biei—faus—uz aie;

Then the pair (g,g) is equivalent to the pair (g19,819) by means of the mapping
7 : @19 — @ such that

m(e1) = ex,

m(u1) = u,

m(uz) = ug + ajeq,

1
m(u3) = uz + Paug + 5(51 + Baa1)er.
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2°. Suppose the virtual pair (g, g) is defined by C3. Then

le1,u1] =0,
le1,uz] = e1,

[61, U3] = Ujy.

Using the Jacobi identity we see that the pair (g, g) has the form:

[,]l €1 U1 Uz Uug

er| O 0 e1 Ui

U1 0 0 a161+a1u1 b161+B1U1

ug | —e; —aje;—ajuy 0 creityiui—aiug+ (1 —aq)us

ug | —uy —brei—Piur —crei—yiurtajuz+(ai—us 0 )
where

{ 2b1(1 — aq) + Bra1 —af =0,
,31(1 — al) - a1(1 + 0(1) =0.
2.1°. a; = 1. Then a; =0. Put ¢t = b1 + -i—lz.

2.1.1°. t = 0. Then the pair (g, g) is equivalent to the pair (g22,822) @ = 1 by
means of the mapping 7 : gao — @, where

7r(61) =e€1,
7r(u1) = Uy — ?161,
m(u2) = uz —y1€1,

7I'(U,3) = uz + cie; — -’BQ—I(UZ - ’7161).

2.1.2°. t > 0. Then the pair (g, g) is equivalent to the pair (gz0, g20) by means
of the mapping 7 : goo — @, where

m(e1) = ey,

L, 2P,
W(“l)*\/-t-( 1 2 1)a

m(ug) = ug — €1,
1 B
m(uz) = —=(uz + c1ex — —(uz —y1€1)).
(3) \/Z(s 1€1 2(2 ’)’11))
2.1.3°. t < 0. Then we similarly obtain the equivalence of the pairs (g, g) and
(821, 921)-

Let us show that the pairs (g20,820), (821,821), and (g22,822) (o = 1) are not
equivalent to each other. Indeed, put

W, = [gi,ﬁi], 1 € {20,21,22},

and consider the homomorphisms

fi @i — gl(2,R),
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where f;(z) is the matrix of the mapping adw; z in the basis {u1,e1}. Then

f20(§20)={(z Z) m,yeR},
{5 Deoes).
f22(§22)={(g Z) wayER}-

Since the subalgebras fa(@20), f21(821), and fa2(g22) of the Lie algebra gl(2, R) are
not conjugate to each other, we conclude that the pairs (@20,820), (821,821), and
(@22, 922) a = 1 are not equivalent.

2.2°. a3 # 1. Then

ay and ﬂ1=1+al

by = ———a}
! (1 —al)zal l—oy

aj.

2.2.1°. ay # 2. Then the pair (g, g) is equivalent to the pair (@22, g22) @ # 1,2
by means of the mapping 7 : goo — @, where

m(e1) = e1,
a
7!'(7,1,1) = ui — ! €1,
1 — O
W(Uz) = U2 — 71€1,

_ Gi—amn . _
m(uz) = ug + o e1 1_a1(u2 Y1€1)-

Here a = a3.
2.2.2°. @y =2, ¢; —a1y1 = 0. Then the pair (g, g) is equivalent to the pair
(922, 922) @ = 2 by means of the mapping 7 : ga2 — @, where

7'&'(61) =e1,
m(u1) = u1 +aze,
m(uz) = ug — e,

m(us) = ug + ay(uz — y1€1).

2.2.3°. a1 = 2, ¢; — a1 # 0. Then the pair (g,g) is equivalent to the pair
(@23, 0823) by means of the mapping 7 : g23 — @, where

7‘-(61) = €1,
1 a
m(uy) = uy + —ey,
C1 —a1M €L — a1

m(uz) = ugy — y1€1,

7T(’LL3) = m(“g + ayug — al'ylel).
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Consider the homomorphisms

fi 1 @i — gl(3,R),

where f;(z) is the matrix of the mapping adpg,, ¢ = 22,23, in the basis {u1,e1,uz}.
Then

ar oy 0
f22(822) = 0 = 0 z,y ER p,
0 0 (a—1)z
2 'y O
fa3(@23) = 0 z —z||z,yeR
0 0 =«

It is clear that the subalgebras fa2(g22) and f23(g23) are not conjugate and that the
subalgebras f22(g22) with different values of the parameter a are also not conjugate.
Therefore, all pairs obtained in section 2.2.2° are not equivalent to each other.

Note that no one of the subalgebras 1.5.20, 1.5.21, 1.5.22 (o = 1) is equivalent
to any of the subalgebras 1.5.22 a # 1, 1.5.23. To prove this, it is sufficient to
compare the dimensions of the commutants.

3°. Suppose the virtual pair (g, g) is defined by C;. Then

[e1,u1] = 0,
[61, Ug] = 0,

[61, ’U,3] = Uji.

Using the Jacobi identity we see that the pair (g, g) has the form:

[a] I €1 U1 U2 Usg

er | 0 0 0 Uy

up| 0 0 o Uy by e1+ BrurtBauz

ug | 0 -0 Uy 0 cieit+yiuityaus— o us
ug | —u1 —brei—Prur—PBaug —crei—y1u1—y2uz +oqus 0 ;

where
artb=ai(y2 — B1) = a1 =0.

3.1°. If oy = B2 =0, then the pair (g, g) is equivalent to one and only one of the
pairs (§:,8:), ¢ = 1,...,9; if a1 # 0, then the pair (g, g) is equivalent to (g10,g10)
The proof is similar to that for case 2.°.

3.2°. Consider in detail the case where: a3y = 0 and (82 # 0.

Then the mapping 7 : g’ — g such that

m(e1) = Paer,
m(uy) = ug,
by b1
m(ug) = ug + —e1 + —ui,
(ue) =wzt g e 5
1
7r(u;;)=—u3

B2
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establishes the equivalence of pairs (g, g) and (g',g'), where the latter has the form:

[a] | €1 Ui U2 us3
€1 0 0 0 Ui
(75} 0 0 0 U2
U2 0 0 0 tie1t+tourttzug
us —U1 —U9 —tlel—tzul—t3U2 0 , (**)
where
7261

1
ho=gla-"g7)
ty = i(ﬁz’)ﬁ — 21 + b1),
B2

t3 = %(72 + B1).

We see that t1,t3, and t3 are arbitrary real numbers.
Suppose
V =2(Dg) and a={adyz|z€ g}

Then V =Re; ® Rus ®Ruz and a=R(adyus) is a one-dimensional subal-
gebra of the Lie algebra gl(V).

Let W = V(g = g = Rey. The Lie algebra g can be identified with the Lie
algebra a X V. Note that the following condition holds:

V=WaaW)®a(a(W)).

Conversely, suppose V = R?® and a is a one-dimensional subalgebra of gl(V'). Let
W be a one-dimensional subspace of V such that V =W @ a(W) @ a(a(W)). Put
g =axV and g = W. Then the pair (g, g) is equivalent to some pair of form (**).

Therefore there exists a one-to-one correspondence between the set of desired
pairs (g, g) and the set of pairs (a, W), where a is a one-dimensional subalgebra of
gl(V) and W is a one-dimensional subspace of V such that

V=WaaW)da(a(W)).

Here V = R3.

Lemma 2. Suppose a; and a; are subalgebras of gl(V'). Then the Lie alge-
bras g3 = a1 AV and g2 = a; AV are isomorphic if and only if there exists an
endomorphism ¢ € GL(V') such that az = pa;p~".

Proof. Indeed, suppose there exists a ¢ € GL(V) such that a; = pa;p 1.
Consider the mapping f : g — g2 defined by

flz,v) = (pap™",p(v)) for z € a1, v € V.

It is easy to see that f is an isomorphism of Lie algebras.
The converse statement is obvious.
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Lemma 3. Let g2 = a1 AV, g1 = Wy, g2 = as AV, and g2 = W, where a,
and ay are subalgebras of gl(V'), W1 and W, are one-dimensional subspaces of V.
Then a necessary and sufficient condition for the pairs (g1,82) and (g1,92) to be
equivalent is that there exist a ¢ € GL(V') such that a; = pa;0~! and o(W;) = Wa.
In other words, the group GL(V') acts on the set of pairs (a, W) and the action is
defined by

¢ (a, W) = (pap™, o(W)).
Proof. 1t immediately follows from the previous Lemma.

Let us classify (up to transformations determined before) all pairs (a, W).
It is known that any one-dimensional subalgebra a of the Lie algebra gl(3,R) is
equivalent (up to conjugation) to one and only one of the following subalgebras:

-
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o O
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O OO ooy ©

0 = O
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Consider in detail the case when a = a;. Recall that

A(a) = {X € GL(3,R)|XaX ' =a}.
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a b 0
A(a) = 0 a 0]|a,ceR*beR
0 0 ¢

Any one-dimensional subspace W of V is equivalent (up to the action of elements
of A(a)) to one and only one of the following subspaces:

0 1 0 1
w,=R|1|, Wo=R|0], Wa=R|1]|, Wa=R[0].
0 0 1 1

Note that the condition

Let o # 1, then

V=Wa&aW)ea(a(W))

holds only for W3. Let {fi, f2, f3} be the standard basis of V, that is

) () -0)

Let
-1 -1 0
fa=| 0 -1 0 | €a
0 0 -«
Then
W=R(fo+fs)=g and g=RfiOoRf/H®Rfz ORSs.
We obtain
Uf1, fa] = fu,
[f2)f4] = fl + f2,
[f3, fa] = afs.

The pair is equivalent to the pair (g13,913).
If a = 1, then there is no any one-dimensional subspace W of V such that

V=WaaW)aaaW)).

In a similar way we obtain the pairs (gi,8:), ¢ = 11,12,14,...,18.
Proposition 1.6. Any pair (g,g) of type 1.6 is equivalent to one and only one

of the following pairs:
1.
[,] | €1 Uy Uz U3
e 0 0 wus wu
u 0 0 ¢ 0
U9 —U9 0 0 0
U3 —-u; 0 0 O
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2.
[,] | €1 Ui Uz U
e 0 0 Us U
u 0 0 0 wu
U2 —U2 0 0 0
Uus —Ux —U1 0 0

Proof. Let £ = {e1} be a basis of g, where

0 01
€1 = 0 1 0
0 00

Then A(e;) =0, and for = € g the matrix B(z) is identified with z.

Lemma. Any virtual structure q on generalized module 1.6 is equivalent to one
of the following:

Cl(el):(p 0 0)7 peR.
Proof. Any virtual structure ¢ has the form

0(61)'—‘(61 Co 63).
Put
H = (Cg Co 0),
and Cy(z) = C(z) + A(z)H — HB(z). Then

Cl(el)z(cl 0 0)

By corollary 2, Chapter II, the virtual structures C and 'y are equivalent.

Thus it can be assumed that the corresponding virtual pair is defined by one of
the virtual structures determined in the Lemma. Then,

[e1, u1] = pex,
[e1, ug] = ugz,
[e1,us] = uy.
Put
[u1,uz] = arer + a1uy + agug + agus,
[ur,us] = brey + Pruy + Pausg + Paus,
[ug, us] = cre1 + y1ur + Y2us + Ysus.
Let us check the Jacobi identity for the triples (e1,u;,uj), 1 < ¢ < j < 3, and
(ul,uz,ua)-
1. [e1, [u1,us]] + [u1, [u2, e1]] + [uz, [e1,u1]] = 0
paje; + agug + a3uy — aje; — oquy — oup — ogugz =0
1. pa;g —a; =0
2. a3 — a1 =0
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2. [617 [u1>u3]] + [uh [U3, 61]] + [U3, [el’ul]] =0
Baug + Baus =0
5. B2 =0
6. 33 =0

3. [617 [u27u3” + [Uz, [U3, 61]] + [U'?n [61,u2]] =0
Yaug + Y3u1 — c1€1 — YU — Youg — yauz =0

7.¢c1 =0
8. Y1 = 0
9. Y3 = 0
4. [ug, [uz, us]] + [uz, [us, ur]] + [us, [u1, u2]] = 0
b1UQ =0.
10. b, =0

It follows that the pair (g, g) has the form:

[a] | €1 Ui U2 us
el 0 0 Ug Uy
U1 0 0 0 Bruq
Uy —Us 0 0 Yo U2
us —uy  —fiur  —Yaus

Consider the following cases:
1°. f1 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, g1) by means
of the mapping 7 : g1 — @, where
m(e1) = eq,
71'(11,1) = Ui,
7T(U2) = Uz,
m(ug) = ug — y2€1.
2°. B1 # 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means of the
mapping 7 : gg — g, where
m(e1) = eq,
m(u1) = Brus,
m(ug) = ug,
m(us) = Prug — Y2B1€1.

Now it remains to show that the pairs determined by the Proposition are not
equivalent to each other.

Since dim Z(g1) = 1 and dim Z(gz) = 0, we see that the pairs (g1,91) and
(g2, 92) are not equivalent.
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Proposition 1.7. Any pair (g,9) of type 1.7 is equivalent to one and only one
of the following pairs:

1.
[,] e1 Uy U u3
e 0 Uy Au
o 2 4w g
U2 —Aug 0 0 0
us —Up — U3 0 0 0

2. 2=0
[7] €1 Uy U2 Usg
e 0 U 0 U U
u}l —1uy O1 0 ! 6_ s
Ug 0 0 0 u
U3 —u;—uz 0 —up 01

3 A=2
[a] | €1 Uy U9 Usg
eq 0 u;  2us uy + ug
uy —uq 0 0 U
Uz —2usg 0 0 02
U3 —uy —ug —ug O 0

Proof. Let € = {e1} be a basis of g, where

Then A(e1) =0, and for z € g the matrix B(z) is identified with .
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor ey, that is h = g.

Lemma. Any virtual structure q on generalized module 1.7 is equivalent to one
of the following:
a)A=0
Ci(e1)=(0 p 0), peR

D) A#£0
02(61) = (0 0 0)

Proof. Any virtual structure ¢ has the form:

0(61)2(01 Cy C3 )

Suppose A = 0. Put
H=(61 0 63—-61)

and Ci(z) = C(z) + A(z)H — HB(z) for z € g. Then Ci(z) = (0 ¢; 0). By
corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
Now suppose A # 0. Similarly, putting

H=(Cl 62/)\ 03—61)
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and Cy(z) = C(z) + A(z)H — HB(z) for z € g, we see that
02(61) = (0 0 0),

and the virtual structure C is trivial.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 1.7. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°. A = 0. The vectors [ey,u;], 1 < i < 3, have the form:
ler, u1] = uy,
[e1, uz] = pey,
lex, us] = ug + us.

Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U*(h)
for all @ € h* (statement 10, Chapter II).

Thus
§(h) =Res ®Ruz, §7(h) =Rus & Rug
and
[u1,uz] = a1uy + azus,
[ulau3] =0,

[uz,us] = y1u1 + Y3u3.
Let us check the Jacobi identity for the triples (e1,uj,ux),1 < j < k < 3, and
(’U,l,U2,U3).
1. [ex, [ur, ua]] + [ug, [er, u]] + [u1, [uz, e1]] = 0
ajur + azur + agus + puy —oquy — aguz =0
1. a3 +p= 0

2. [ex, [ur, us]] + [us, [er,u1]] 4 [u1, [uz,e1]] = 0
0=0

3. [e1, [uz, u3]] + [us, [e1, uz]] + [uz, [us,e1]] =0
71u1 + ysu1 + y3us + a1uy + aguz — y1uy — ysuz — puy —puz =0
2. a3 —p= 0
3. (e 5] + Y3 —P= 0

4. [ua, [uz, us]] + [us, [ur, ua]] + [uz, [us,u1]] = 0
0=0

It follows that the pair (g, g) has the form:

[7] I €1 U1 Uz Uus

€1 0 U1 0 Ul + Us
Uy —U1 0 oz]Oul

U9 0 —Q1Uy

YiU1 — U3
Uus —U1 —Usg 0 —Y1U1 + a1ug 0
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1.1°. a3 +v1 = 0. The pair (g,g) is equivalent to the trivial pair (g1,91) by
means of the mapping 7 : g3 — g, where

m(e1) = e1,
m(u1) = uq,
7r('U,2) = U2 -I— ajiéq,

m(us) = us.

1.2°. a3 + 71 # 0. The pair (g, g) is equivalent to the pair (g2,82) by means of
the mapping 7 : go — @, where

m(e1) = e1,

m(u1) = us,

1 (a5}
Uz +

Y1+ aq Y1+ o

’/T(Ug) = Uus.

W(U2) = €1,

Since dim Z(g1) # dim Z(g2), we see that the pairs (g1,91) and (g2,82) are not
equivalent.

2°. M #£0.
The vectors [e1,u;],1 < 7 < 3, have the form:

[61,U1] = Ui,
[61,U2] = )\UQ,

[e1, us] = u1 + us.

Since the virtual structure ¢ is primary, we have

a9 (h) = Rey, V() C Ruy @ Rus, g (h) = Rus.

Therefore
2.1°. If A = —1 then
[u1,u2] = azer,
[u1, us] = 0,
[UQ,Ug] = Cjé€y.
Using the Jacobi identity for the triples (e1,u2,u3) and (u,uz,us), we obtain
a; = ¢1 = 0, and the pair (g, g) is equivalent to the trivial pair (g1, g1).
2.2°. If A =2 then
[ula U'Z] =0,
[ur, us] = Baug,

[uz, Us] =0.
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So, the pair (g, g) has the form:

[7] l €1 Uy U2 us
(3] 0 Uy 2U2 Uy + us
U1 —Ui 0 0 2U2Q
U2 —2uq 0 0 0
u3 —uy —uz —fauz 0 0
2.2.1°. By = 0.
The pair (g, g) is equivalent to the trivial pair (g1,91).
2.2.2°. By % 0.

Then the pair (g, g) is equivalent to the pair (g3, gs) by means of the mapping
7 :gs — @, where

n(e1) = eq,
m(u1) = uq,
m(uz) = Baua,
m(ug) = us.

Since dimD?g; # dimD?g;, we see that the pairs (g1,91) and (gs,g3) are not
equivalent.

2.3°. f A # —1 and X\ # 2 then

[u1,uz] =0,
[ula U3] = 0,
[ug,us] = 0.

It is easy to see that the pair (g, g) is equivalent to the trivial pair (gi1,91).
Thus the proof of the Proposition is complete.

Proposition 1.8. Any pair (g,g) of type 1.8 is equivalent to one and only one

of the following pairs:
1.
[ | e wi up ug
e 0 0 up u
U 0 0 0 ¢
U2 —U1 0 0 0
Uus —U2 0 0 0
2.
[,] | €1 31 Uz U3
e 0 0 u U
ull 0 0 ui ug
U —u; —u; 0  ug
us —uy —uy —uz 0
3.
[7] | €1 U1 U2 usg
e 0 0 u u
ull 0 0 01 ui
U9 — Ui 0 0 aeq + U9
us —Ug —U; —OE; — U2
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4.
[,] e1 U1 Uz U3
e 0 0 U U
u 09 81 i
U —Uu [
ug —u; 0 —-e d
3.
[,] €1 Uy U2 us
e 0 0 wu U
o 60 0 0 0
U2 —U1 0 0 —€1
ug —uy 0 e O

Proof. Let £ = ey be basis of g, where

0 1 0
e = 0 0 1
0 0 0

Then A(e;) =0, and for z € g the matrix B(z) is identified with z.

Lemma. Any virtual structure q on generalized module 1.8 is equivalent to one
of the following:

Cle)=(p 0 0), pekR

Proof. Any virtual structure ¢ has the form:

Cler)=(c1 ¢ c3).
Put
H = (62 C3 0)
Now put Cy = C(z) + A(z)H — HB(z) for « € g. Then

Ci(ex)=(ex 0 0).

By corollary 2, Chapter II, the virtual structures C' and C are equivalent.
This completes the proof of the Lemma.

Let (g,g) be a pair of type 1.8. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma.

Then the vectors [e1,u;], 1 < j < 3 have the form

le1, u1] = pex,
[61,u2] = U1,

[61, Us] = Uu2.
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Put
[u1,uz] = are1 + aquy + agug + azus,
[u1,us] = brey + Brur + Bouz + Psus,
[ug,us] = c1e1 + y1u1 + y2uz + Ysus.
Let us check the Jacobi identity for the triples (eq,us,u;), 1 < ¢ < j < 3, and
(ula U2, U3).
1. [eq, [u1,u2]] + [u1, [ug, e1]] + [uz,[e1,u1]] =0
paier + aguy + azug — puy =0

1.pa1=0
2. 01320
3. p=ay

2. [e1, [ur, us]] + [u1, [us, e1]] + [us, [e1,u1]] = 0
pPier + Bauy + Pauz — arer — agug — pug — pug =0

4. a1 —pp1 =0
5. 011—62:0
6. 2p—ﬂ3=0

3. le1, [ug, us]] + [ug, [us, e1]] + [us, [e1,u2]] = 0
prier + y2u1 + ysug — bier — Biu1 — ajug — 2puz =0

7.p=0
8.0 =0
9.i—72=0
10. 011—")/320

4. [Ul, [Uz,us]] + [uz, [Ua,ul]] + [U?n [Ul,UZ]] =0
yaaruz + a1(y2us + aruz) — arysur — a1(vau1 + aruz) =0

11. a3y2 =0
It follows that the pair (g, g) has the form
| € U1 U2 us
el 0 0 Uy Ug
uy 0 0 QiU Yau1 + iUz
Usg —uq —aquy A
u3 —uy —7Yu; —aguy —A 0 )

where A = cie1 + 71u1 + You2 + ayus, azy2 = 0.
The mapping 7 : g’ — @ such that

n(e1) = es,
m(u1) = uq,
m(uz) = ug,

m(uz) = uz + 11€1,

establishes the equivalence of pairs (g, g) and (g',g'), where the latter has the form:

| € Ui U2 us
€1 0 0 U1 U9
Uy 0 0 Uy You1 + agug
Uz —uy —aquy 0 cier + Yau2 + ajug
u3 —Uy —7YU1l — Qr1U2 —Cie] — YUz — ;U3 0 )
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where a1y, = 0.

Consider the following cases:
1°. a3 =0, v2 # 0.
Then the pair (g, g') is equivalent to the pair (g3, gs) by means of the mapping
7 : g3 — @', where
m(e1) = ey,

1
m(u;) = :Y-;ui, 1<17<3,

Consider the pairs (g3, 93) and (g}, 95) with parameters a and o' respectively. It is

possible to show that these pairs are not equivalent, whenever a # o'.
2°. a1 # 0, 72 = 0. Then the pair (g',g') is equivalent to the pair (g2,g82) by
means of the mapping 7 : g2 — @', where

1

m(e1) = a—lel,
m(uy) = o%ul’
1
’/T(Uz) = a—luz,
m(us) = us + 5;61 - ;Tllul
3°. a1 = 72 =0.
3.1°. ¢; = 0. Then the pair (g', g') is equivalent to the trivial pair (g1,91)-

3.2°. ¢ > 0. Then the pair (g',g’) is equivalent to the pair (g4, 94) by means of
the mapping 7 : g4 — @', where

m(ey) = 61,

m(ui) =

ui, ¢t =1,2,3.
\/—11

3.3°. ¢1 < 0. Then the pair (g, g') is equivalent to the pair (gs, gs5) by means of
the mapping 7 : g5 — @', where

m(e1) = ey,

ui, 1<i <3

1
W(uz) = ——\/__?1

Now it remains to show that the pairs determined by the Proposition are not
equivalent to each other.

Since dimDgy # dim Dgy, we see that the pairs (gs4,94) and (g1,81) are not
equivalent. Similarly, since dimDgs # dim Dgy, the pairs (gs,985) and (g1,91) are
not equivalent.
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The algebra g4/Z(g4) contains a one-dimensional ideal, while algebra gs/Z(gs)
does not contain any one-dimensional ideal. Hence, the pairs (gs,95) and (g4,94)
are not equivalent.

Since dim Z(g1) = dim Z(g4) = dim Z(gs) = 1 # dim Z(g;) = dim Z(g2) = 0,
we see that no one of the pairs 1.8.1, 1.8.4, and 1.8.5 is equivalent to any of the
pairs 1.8.2 and 1.8.3.

Since dim D%, # dim D?gs, we see that the pairs (g2, g2) and (g3, g3) are not
equivalent.

This complete the proof of the Proposition.

Proposition 1.9. Any pair (g,g) of type 1.9 is trivial.

[7] | €1 (451 U U3

el 0 uol Uy 3 Uy  Ug -6— U3
Uy —U1

U9 —u;—ug 0 0 0
Uus —Ug2 — Ug 0 0 0

Proof. Consider z € g such that

O
[

1

z=10

0

Note that zy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-

tion 13, Chapter II, the pair (g,g) is trivial.
And this proves the Proposition.
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2. Two-dimensional case

Proposition 2.1. Any pair (g,g) of type 2.1 is equivalent to one and only one

of the following pairs:

1.
[,] I €1 €2 Uy U U3
e 0 0 u; Au 0
e 0 0 0 "0° us
U1 —Uu1 0 0 0 0
U9 —)\U2 0 0 0 0
Uus —Uus 0 0 0

2. A =-1.
[7] I €1 €2 u1 ug us
e 0 0 U —u 0
e 0 0 0 07 us
uy —u; 0 0 e 0
U2 U 0 —e 7 0
Uus 0 —Us 0 0 0

X

Then A(e1) = A(ez) =0, and for = € g the matrix B(z) is identified with .
Note that g is a nilpotent Lie algebra.

Lemma. Any virtual structure q on generalized module 2.1 is equivalent to one

of the following:
0 0 0 r O
“m=(o§o) am=(050)

a)A=0
b)yAN#0
C(e1) =C(ez) =0.

Proof. Let ¢ be a virtual structure on generalized module 2.1. Without loss of
generality it can be assumed that ¢ is primary. Consider the following cases:

1°. A =0.

Since

g"0(h) =Rei @ Rez,  UHO(h) = Ruy,
U(O’O)(b) = Ruy, U(O’l)(b) = Rus,

0 cl, 0 0 c2, 0
ce=(o & o) c-(0 % 0).

Let us check condition (6), Chapter II, for z,y € €.

we have

C([e1, e2]) = A(e1)C(e2) — C(e2)B(e1) — A(e2)C(e1) + Ce1)B(ez).
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et =(3 9 9)+(3 3 9).

cer=(§ 7 8). cea=(3 7 8)

2°. A # 0. Since

We have

It follows that:

g (h) =Res @ Rea, UV(h) O Ruy,
U(A,o)(b) > Rug, U(O’l)(b) D Rug,

we have
0(61) = 0(62) = 0.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 2.1. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the

Lemma. Put
[ui,us] = arey + azes + a1ug + aguz + agus,

[u1,us] = biey + baeg + fru1 + Baug + Paus,
[uz,us] = cie1 + caea + Y11 + Yaug + Y3us.

Consider the following cases:

1°. A =0. Then
[61’62] = 0?
[e1,u1] = uy, le2,u1] =0,
[el,uz] = pe; + gez, [62, Uz] =re; + sez,
[61,”3] = 07 [62,U3] = us.

Using the Jacobi identity we see that the pair (g, g) has the form:

[a] ‘ €1 €2 Uy Uz Ug
e 0 0 wu 0 0
e2 0 0 0 0 ou
Uq —Ui 0 0 Uy 0
Ug 0 0 —aquy ]0 ’)’3u3
U3 0 —ug d —Y3U3

The pair (g, g) is equivalent to the pair (g1, g1) by means of the mapping 7 : g; — g,
where
7'('(61) = €1,

m(e2) = ez,
m(u1) = uq,
m(uz) = aze; + uz — y3ez,

7T(’LL3) = us.
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2°. A #0. Then

[61, 62] = 07

[el,ul] = Ui, [ez,uﬂ
[61,U2] = Aug, [ez,uz]

[e1,us] =0, le2, us]

)
Y

0
0
u

3.

2.1°. A = —1. Using the Jacobi identity we see that the pair (g, g) has the form:

[] ] e ez ur usug
e 0 0 w3 —-u0
ex 0 0 0 0°u
U1 —uy 0 0 aie1 0
Ug ups 0 —ajeq 10 0
s 0 —uz 0.0 0.

Consider the following cases.
2.1.1°. a3 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1,81).
2.1.2°. a3 # 0. Then the pair (g,g) is equivalent to the pair (g2, 92) by means
of the mapping 7 : go — g, where

m(e1) = eq,
m(ez) = eq,
m(u1) = ug,

1

7T(U2) = a—l"LLQ,

m(us) = us.

2.2°. X\ # —1. Using the Jacobi identity we see that the pair (g, g) is trivial.

Since dimDgy; # dim Dg;, we see that the pairs (g2,92) and (g1,91) are not
equivalent.

This completes the proof of the Proposition.

Proposition 2.2. Any pair (g,g) of type 2.2 is equivalent to one and only one
of the following pairs:

1.
[,] ] €1 €2 Uy Uz us
el 0 0 up Aug O
€2 0 0 Uy 0 pu9,
U1 —Uq —u; 0 0 0
U2 —)\’U,g 0 0 0 0
ug 0 —puz 0 0 0
2. Ad=p=1
[a] | €1 €2 U1 U2 us
e 0 0 wu u 0
e; 0 0 w0 u3
Uy —U; —Ui 01 0 0
Ug —Usg 0 0 0 Uy
Us 0 —Uus 0 —U3 0
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Proof. Let € = {e1,e2} be a basis of g, where

1 0 0 1 0 O
6120)\0,62= 0 0 O
0 0 0 0 0 pu

Then A(e1) = A(ez) = (0), and for z € g the matrix B(z) is identified with z.
Note that g is a nilpotent Lie algebra.

Lemma. Any virtual structure g on generalized module 2.2 is trivial.

Proof. Suppose q is a virtual structure on generalized module 2.2. Without loss
of generality it can be assumed that ¢ is primary. Since

9(0’0)(9) =g, U(l’l)(g) = Ruy, U(o”‘)(g) = Rus, U0 — Rus,,

we have

C(e1) = C(eq) =0,
and this completes the proof of the Lemma.
Let (g,9) be a pair of type 2.2. Then it can be assumed that the corresponding
virtual pair (g, g) is defined by the trivial virtual structure. Then
[e1,e2] =0,
ler, u1] = uq, le2, u1] = ua,
[e1,ug] = Aug, [e2,uz] =0,

[61,?13] = 01 [62,’(1,3] = pug.

Since the virtual structure ¢ is primary, we have

9°(g) =9%(g) x U%(g) forall a €g”
(Proposition 10, Chapter II). Thus

3®Y(g) = Re; @ Rea, g1V (g) = Ruy, 8% (g) = Rug, §#(g) = Rus

and

[u1,us] € gOT11(g),

[u1,us] € g #+(g),

[uz, us] € g (g).
Consider the following cases:

1°. X # 1 or p # 1. We have
[UI’UZ] =0,
[u1,us] =0,

[uz, Us] =0.
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It is clear that the pair (g, g) is equivalent to the trivial pair (g1,g1).
2°. A= p =1. We have
[ula uZ] =0,

[ulau?)] = 07
[Uz,u3] =71Uz1.

So, the pair (g, g) has the form:

[a] | €1 €2 Ui U2 Uz
e 0 0 u U 0
e 0 0 w 0  ug
U1 —U1 —U71 0 0 0
Ug —uy 0 0 0 Y1U1
Uus 0 —Uus 0 —Y1U1

Consider the following cases.

2.1°. 41 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1,9;).

2.2°. 41 # 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means of
the mapping 7 : go — @, where

m(e1) = e1,
7'('(62) = €2,
m(u1) = uy,

1

m(ug) = —uq,
(uz) e
7T(U3)=’u,3.

Since dim D%g; # dim D?gy, we see that the pairs (@1,91) and (g2,g2) are not
equivalent. And this completes the proof of the Proposition.

Proposition 2.3. Any pair (g,g) of type 2.3 is equivalent to one and only one
of the following pairs:

1.
[;] ] €1 €2 751 Uy Uug
e 0 0 Aup —uy  up + Au 0
e 0 0 o R M
(3 Uz — Aug 0 0 0 0
U —u; —Aug 0 0 0 0
Uus —Uus 0 0 0
2. 2=0
Ll ] en e2 wn up wg
e 0 0 —Uy U 0
e 0 0 0° 0 wu
U1 Ug 0 0 e 0
U2 —Uq 0 —e 01 0
us 0 —Us 0 0 0
3 2=0
[3] | €1 €2 U Uy U3
e 0 —u U 0
e; 0 0 0° 0 u3
uq Ug 0 0 —e O
U9 —U1 0 € 0 0
us 0 —Us (jl 0 0
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Proof. Let € = {e1, ez} be a basis of g, where

A 10 00 0
e1=|-1 X 0], =0 0 0
0 0 0 00 1

Then A(e;) = A(ez) =0, and for z € g the matrix B(z) is identified with z.
Lemma. Any virtual structure q on generalized module 2.3 is trivial.

Proof. Put . ‘
C(e,):(cll 12 013>,i=1,2.

2 (2
Ca1 €3 Ca3

Let us check condition (6), Chapter II, for z,y € €.
C([e1, e2]) = A(e1)C(e2) — C(e2)B(er) — A(e2)C(e1) + C(e1)Bez).

We have
00 0)__ A —c2, 2 +Ad, 0 4 0 0 ¢ .
0 00 Ae3y —c2, 3+ A3, O 0 0 ci4
We obtain the system of linear equations:

2 .2
(ciy = Acfy
2 _ 2
cf1 = —Acqy
2 _ 1.2
{ €32 = Acjy

2 _ 2
c31 = —Achy

1 1
ci3 =¢C33 =10

It follows that ¢2; = ¢, = c2, = c2, = ci; = ci; = 0.
So, any virtual structures ¢ on generalized module 2.3 has the form:

e, ¢, 0 0 0 ¢
@=L & 0) @=(00 &)

Aejitel,  =epitAcr, c2
H= 142 1422 13

Put

)‘C%1+°;2 _C§1+)‘C;2 62
1+X2 1+A2 23

and Cy(z) = C(z) + A(z)H — HB(z) for z € g. Then
01(61) = 01(62) = 0.

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent. This
completes the proof of the Lemma.
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Let (g,9) be a pair of type 2.3. Then it can be assumed that the corresponding
virtual pair (g, g) is determined by the trivial virtual structure. Then

[e1,€2] =0,

le1,u1] = Auy —ug, [ez,u1] =0,
[e1,u2] = Aug +u1, [e2,u2] =0,
[e1,u3] =0, le2, us] = us.

[u1,uz] = arer + azez + oqug + aguz + agus,
[u1,us] = bie; + breg + Brur + PBouz + Baus,
[uz,us] = cre1 + caea + y1u1 + y2u2 + Y3us.
Let us check the Jacobi identity for the triples (e;,uj,ux), 1 =1,2, 1 <5<k <3,

and (u1,ug,us).

1. [e2, [ur, ua]] + [ug, [e2, u1]] + [u1, [ug, e2]] =0
o3ug = 0
1. a3 — 0

2. [er, [ur, uz]] + [uz, [e1, wa]] + [u1, [uz, e1]] = 0
a1 uy — ajug + agdug + aguq — 2X(a1e1 + agzep + ajug + agug) =0

2. )\a1=0
3. /\a2=0
4. 012—-)\@1:0
5 a1+ dag =0

3. [62, [ulau3]] + [U3, [623 ul]] + [ub [’LL3, 62]] =0
ﬂg’u,g — blel — 6262 — ﬂlul — ﬂg’l.tg — ﬁ3U3 = 0

6. by =0
7. by =0
8./ =0
9.8, =0

4. [61a [u17u3]] + [’LL3, [ela ul]] + [ula [u3a 61]] =0
—ABsusz + cre1 + caeg + v1u1 + youz + ysuz =0

10. 3 — B3 = 0
11. C; = 0
12. Cy = 0
13. 71 =0
14. v, =0

5. [e1, [ug,us]] + [us, [e1, u2]] + [ug, [us,e1]] =0
—fB3ug — Ayzuz =0
15. ,83 + )\’)/3 =0

6. [627 [u2>u3]] + [u3> [627 u2]] + [u2a [U3, 62]] =0
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Ysug — Y3uz = 0

7. [ug, [ug, us]] + [us, [u1, uz]] + [ug, [uz,u1]] = 0
v3Bsus — Y3f3us — aguz =0

16. ag — 0
It follows that the pair (g, g) has the form:

[,] | €1 €2 Ui U2 us

0 0 Aupg—wus ui+dupy 0
6 0 0 o T
Uq Ug — )\ul 0 0 ajel 0
Ug —u; —Aug 0 —aje; 0 0
us 0 —ug d 0 0

9

where Aa; = 0. Consider the following cases:

1°. A #0.

Then a; = 0 and the pair (g, g) is equivalent to the trivial pair (g1, g1).

2°. A =0.

2.1°. a1 = 0. The pair (g, g) is equivalent to the trivial pair (g1,g1).

2.2°. a1 > 0. The pair (g, g) is equivalent to the pair (g2,82) by means of the
mapping 7 : g2 — @, where

7'('(61) = €1,
m(ez) = eq,
1
7T(U1) = ﬁul,
1
m(uz) = 7(1—:“2,
7!'(’!1,3) = Uus.

2.3°. a3 < 0. Then the pair (g, g) is equivalent to the pair (gs,gs) by means of
the mapping 7 : g3 — g, where

w(e1) = eq,
m(e2) = eq,
m(uy) = \/éaful’
m(ug) = ! Ug
m(uz) = us.

Now it remains to show that the pairs (g1,81), (82,82) and (gs,93) are not
equivalent to each other whenever A = 0.

Indeed, note that the Lie algebra g; is solvable and the Lie algebras go, g3 are
unsolvable. It follows that the pair (gi,8:1) is not equivalent to the pairs (g2,g2)
and (gs, 93)-

Since the Levi subalgebras of gz and g3 are isomorphic to s((2,R) and su(2),
respectively, we see that the pairs (g2, g2) and (gs,9s) are not equivalent.

The proof of the Proposition is complete.
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Proposition 2.4. Any pair (g,g) of type 2.4 is equivalent to one and only one
of the following pairs:

1.
[7] | €1 €2 Ui U2 U3
e1 0 0 Ul U2  pug
€9 0 0 —Ug U] AU3
/51 —uy Ug 0 01 0
U9 —U9 —Uy 0 0 0
Us —HUus3 —)\U3 0 0 0 ;
2. A=0,pu=2
' [,] l €1 €2 U3 U2 U3
e 0 0 U uy  2u
e 0 0 —up u 0
Ui —Uuq Ug 0 w3 O
U2 — U9 —UuUi3 —UuUs 0 0
Uus —2’LL3 0 0 0 0

Proof. Let € = {e1,e2} be a basis of g, where

0 0
€1 = 0 y €9 = —1
H 0

ae)=(g o) Ae=(7 g).

and for z € g, the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by e;.

O O =
o= O
oo

> o O
N—

Then

Lemma. Any virtual structure q on generalized module 2.4 is equivalent to one

of the following:
a) N\ #OQorpu+#0
01(61) = 01(62) = 0;

b)A=p=0

Proof. Let g be a virtual structure on generalized module 2.4. Without loss of
generality it can be assumed that ¢ is primary. Since

g @(h) > Res @ Rey,

UD () D Ruy & Rug, UM(h) D Rus,

we have ) \
(0 0 ¢35 (0 0 cf3
C(el)‘<0 0 cgg)’ C(ez)‘<0 0 &)
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Let us check condition (6), Chapter II, for z,y € &:

C([e1, e2]) = A(e1)C(e2) — Cle2)B(er) — A(e2)C(e1) + Cle1)B(ez).

We have ) el
_o_ (0 0 pez 0 0 Acgy
=0 (0 0 #Cgs) 0+<0 0 Aezz )
We obtain the system of linear equations:

1 — 02
{ Aciz = pcis,

1 a2
Acyy = picy3.

So, any virtual structure ¢ on generalized module 2.4 has the form:

0 0 ¢ 0 0 ¢
cer=(5 0 3) -0 0 L)

1 02 12
where Acjg = pcis, Acyg = pcss.

Suppose A # 0 or p # 0. Put
(0 0 hu
H*(o 0 h23)’

where the set of coefficients A3, ko3 is a solution of the following system:

i3 = phas,
6%3 = /“Lh237
C%g = )\h13a
C%3 = )\hzg.

It is easily proved that the solution exists.

Now put Cy(z) = C(z) + A(z)H — HB(z). Then
01(61) = Cl(ez) = 0.

By corollary 2, Chapter II, the virtual structures C and C; are equivalent.
This completes the proof of the Lemma.

Let (g,g) be a pair of type 2.4. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°. A= p =0. Then

[61762] =0,
[e1,u1] = ua, le2, u1] = —ug,
[e1, ua] = ua, le2, ug] = u1,

[61 ) U3] = pe1 + qez, [62a u3] =re; + S€2,
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Since the virtual structure ¢ is primary, we have

g%(h) =g%(h) x U*(h)
for all @ € h* (Proposition 10, Chapter II). Thus

ﬁ(o)(f)) D Re; @ Rep @ Rug, ﬁ(l)(f]) D Ruj & Rug,

and
[u1, uz] € g2 (b), (1, us] = 0,
[ur,us] € @), = [u1,us] = Brus + Baus,
[uz, us] € g (h), [u2, us] = y1u1 + y2us.

Let us check the Jacobi identity for the triples (e;,uj,ux),7 =1,2, 1<j<k<3,
and (uq,ug,us):
L. [e2, [u1, us]] + [u1, [us, e2]] + [us, [e2, u1]] = 0
—Prug + Baui + rus — sug + yiu1 + youz =0
Lr+B+m=0
2. —,Bl—s-l-’)/z =0

2. [e1,[u1,us]] + [u1,[us, e1]] + [us,[e1,u1]] =0
Bru1 + Baug + puy — qua — Bruy — Paug =0
3.p=0
4.q=0

3. [e2, [uz, us]] + [u2, [us, e2]] + [us, [e2,uz]] = 0
—Y1u1 + Youy + rug + suy — fruy — Pauz =0
5. 79 +s—p1=0
6. — i+ — P =0

Then the pair (g,g) is equivalent to the trivial pair (gi,91) by means of the
mapping 7 : @3 — @, where
n(ei) =€, i =1,2,
m(uy) = uq,
W(UQ) = U2,
m(uz) = uz + frer — Paes.
2°. A#0or p#0. Then
[617 62] =0,
[e1, u1] = uz, [e2,u1 = —uy,

[61,U2] = Uz, [62,u2] = Uy,

[61,U3] = Husg, [62,U3] = >\U3,

Since the virtual structure ¢ is primary, we have

dO0) D Re; ®Rez, g (h) O Ruy @ Ruy,
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g(ﬂ) (b) ) Ru37

and
[u1,u2] € 3P (), [u1, us] = azus
[u,us] € gOTM(h), =  [u1,us] = bier + baez + frur + Bous
[ug,us] € gATH(p), [ug, us] = c1e1 + cae2 +Y1u1 + Y2u2

Using the Jacobi identity we see that the pair (g,g) has the form:

[,] I €1 €2 31 U2 us
el 0 0 Uy ug  pug
€2 0 0 —U9 Ul )\u;;
Ui —U3 Ug 0 a3usg 0
U9 —U9 —Uz —a3usg 0
u3 —pug  —Aug 0 0,

where a3(A\? + (. —2)%) = 0.
2.1°. a3 = 0. Then the pair (g,g) is equivalent to the trivial pair (g1,g1).

2.2°. a3 # 0. Then the pair (g,g) is equivalent to the pair (gz,g2) by means of
the mapping 7 : g2 — g, where

m(er) = e1,m(e2) = ez, w(u1) = uy, m(uz) = uz, 7(uz) = agus.

Since dimD%g; # dimD?g,, we see that the pairs (§1,91) and (g2,92) are not
equivalent.

Thus the proof of the Proposition is complete.

Proposition 2.5. Any pair (g,g) of type 2.5 is trivial.

[7] I €1 €2 Uy u2 us
€1 0 0 0 U2 Ui
€2 0 0 uy 0 wus+Aug
Uy 0 —uq 0 0 0
Ug —Usg 0 O 0
U3 —u; —uz—Au; 0 O 0

Proof. Consider = € g such that

A+1

8

Il
oo
oo

+
0
1

Note that zyy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.
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Proposition 2.6. Any pair (g,g) of type 2.6 is trivial.

[7] I €1 €2 U1 U2 Usg
e 0 0 U 0 wu U
e 0 0 0w Y™
uj —U1 0 0 02 0
U2 0 —U2 0 0 0
us —U1 — U3 0 0 0 0

Proof. Consider = € g such that

1 01
z=|10 1 0].
0 01

Note that zy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.

Proposition 2.7. Any pair (g,g) of type 2.7 is equivalent to one and only one
of the following pairs:

1.
[ ] ea e2 wi uz ug
e e 0 0
e | —ee T 0 0 uw
Uy 0 0 0 0 0
Ug 0 0 0 0 O
Uus —U3 —Uus 0 0 0
2.
[7] I €1 €2 Uy U2 Uus
e e 0 0 u e
o —e1 i 0 0 “a©
Uy 0 0 0 0 0
U 0 0 0 0 0
Us —Uy — €2 —Usg 0 0 0
3.
[a] | €1 €2 U1 U usz
e 0 e 0 0 U
e; —e1 0 0 0 ui:l;
uy 0 0 0 w O
Ug 0 0 —-u3 0 -—ug
Us —Uy —Uug 0 us 0

Proof. Let € = {e1,e2} be a basis of g, where

00 1 00 0
es=[0 0 0], ea=(0 0 0
000 00 1

Then
ae=(g ) ae=(3 9),

and for & € g the matrix B(z) is identified with z.
By h denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor es.
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Lemma. Any virtual structure ¢ on generalized module 2.7 is equivalent to one
of the following:

o(el)=(8 : g) Cles) = 0.

Proof. Let g be a virtual structure on generalized module 2.7. Without loss of
generality it can be assumed that g is primary. Then,

. o 0 0 0 O
cwr=(% % 2). con=(3 3 2)

Let us check condition (6), Chapter II. Direct calculation shows that

1 1
C(el)=(c(1)1 s ?), Cles) = 0.

Cas

0 0 0
H = ,
(C%l ciz 0)

and Ci(z) = C(z) — A(z)H + HB(z) for z € g. Then

cen=(g o ). Citen)=o

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
This completes the proof of the Lemma.

Let (g, 9) be a pair of type 2.7. Then it can be assumed that the corresponding
virtual pair is defined by one of the virtual structures determined in the Lemma.
Then,

[61, 62] = €1,
[elaull = 0) [62,61] = 01
[61’ 'LL2] = 0’ [62, U2] = 0,

[e1,us3] = pes + u1, [e2,us] = us.

Since the virtual structure ¢ is primary, we have

=" a3 eV ®),
where
g(_l)(b) = Rey,

3V (h) = Rez ® Ruy @ Ruy,
gV (h) = Rus.
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Therefore

[u1,u2] = ages + ayuy + agus,
[Ul,ua] = ﬂaua,
[Uz,ua] = Y3us.

Using the Jacobi identity we see that

[u1,u2] = ajug,
[ula u3] = 0’
[uz,us] = —aqus,

where the coeflicients a; and p satisfies the equation a;p = 0.
Consider the following cases:

1°. a3 = p = 0. Then the pair (g, g) is equivalent to the trivial pair (g1,g1)-
2°. a3 =0, p # 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means
of the mapping 7 : go — g, where
7'('(61) = ey,
71'(62) = €3,
77(“1) = pu1,
7"-(u2) = puz,
m(ug) = pus.

3°. a3 #0, p = 0. Then the pair (g, g) is equivalent to the pair (g3, g3) by means
of the mapping 7 : gs — g, where

m(e1) = eq,

7(ez) = eq,

m(uy) = uq, \
m(uz) = ayug,

m(us) = us.

Since dim Z(g3) = 0 and dim Z(g;) = dim Z(gz) = 2, we see that the pair
(@3, 93) is not equivalent to any of the pairs (g1,g1) or (g2,82).

Since dim([g1,81] N Z(g1)) = 1 and dim([gs, g2] N Z(g2)) = 0, we see that the
pairs (g1,91) and (@2, 92) are not equivalent.

The proof of the Proposition is complete.

Proposition 2.8. Any pair (g,g) of type 2.8 is equivalent to one and only one

of the following pairs:
1.
[)] | €1 €2 U3 Uz Ug
€1 g\) )\81 8 0 )\'Uq
e -Xe u u
w1 0or 0 0 ¢ ‘¢
Usg 0 —U9 0 0 0
Uus —U3 —/\’U,3 0 0 0




2.2=0
32=0
4. A=0
5 2=1
6. \=—
7.

8 A=0

D=
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[a] | €1 €2 (751 U3 Uug
e 0 0 0 0 U
e 0 0 0 " 0
U1 0 0 0 0w+ aey
U2 0 —Usg 0 0 0
Us —uy —u;—ae; 0 0
[ | eo e2 wr up wug
€1 0 0 0 0 Uq
€2 0 0 0 U 0
Uy 0 0 0 02 e
s 0 —uw 0 0 @
U3 —U1 0 —e€1 0 0
[ ] e e2 ur uz ws
e1 0 0 0 w
e 0 0 0 u 0
s 0 0 0 0 —e
U2 0 —U2 0 0 0
usg —u; 0 e O 0
LI ] er e2 ur up us
e 0 e 0 u
e; —e 01 0 wu u;,
Uy 0 0 0 02 u
3 0 —up 0 0 O
Us —U3 —UuUz —Uy 0 0
[,] €1 €2 Uy U2 us3
€1 0 —%61 0 0 (751
€9 %61 0 0 Uy —'1‘U3
w1 o o0 0o o0 b
U2 0 —U2 0 0 €1
usz —uq %ug 0 —e 0
[,] I e1 ) Uy Uz U3
e 0 e e 0 wu
e; —ey O1 01 U )\ulg
Uy —e1 0 0 02 Usg
Uz 0 —U2 0 0 0
Uus —U1 —A’U,3 —Uus 0 0
[,] I €1 €2 U U2 us3
€1 0 0 0 0 U1
€9 0 0 0 U €1
u 0 0 0 0 wLae
U2 0 —Usg 0 0 0
us —u; —ep —uy3—ae; 0 0
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9. 2=0
[3] | €1 €2 U1 U2 U3
€1 0 0 0 Uy
€9 0 0 0 U2 €1
Ui 0 0 0 0 —e€]
U2 0 —uz 0 0 0
Uus —U3 —e1 €1 0 0

10. A=0
[7] l €1 €2 Uy U2 U3
=11 1 350
€ U [
wp | 0 0 0 0 0
U2 0 —ug 0 0 0
us —U1 —e€1 0 0 0

11. A=0
Ll ] e e2 wn uz us
€1 0 0 0 Uy
€2 0 0 0 U2 €1
U1 0 0 0 0 e
up | 0 —u; 0 0 0
Uus —Ux —e€1 —€1 0 0

Proof. Let € = {e1,e2} be a basis of g, where

0 0 1 00
€1 = 0 0 O , €2 = 0 1
0 00 0 0

aen=(9 3) A= 0)s

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of Lie algebra g spanned by es.

Then

Lemma. Any virtual structure q on generalized module 2.8 is equivalent to one
of the following:

a)
01(61)=<18 g g>, Ci(e2) =0;
B) A =0
cxe=(2 5 8)s ae=(5 5 7):
O A=1

Proof. Let g be a virtual structure on generalized module 2.8. Without loss of
generality it can be assumed that ¢ is primary. Since

g(_)‘)(b) D Rela U(O)(b) ) Rul’
) DRes, UM (h) D Ruy,
UM () D Rug,
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we have:

2
21 €22 €33 21 Co3

cl 0 2, 2, 2
cen=(F 4 d) ce=(d T D).

Let us check condition (6), Chapter II for e, e3:

C([e1, e2]) = A(e1)C(e2) — Clez)B(ex) — A(e2)C(e1) + C(e1)B(ez).

We have:
Acty 0 Aefg ) _ (Ah 0 Aejz)
Aed, Aedy Aeds )T L0 0 0

(X 0 + Act; 0 Aelg n AN 0 Al
0 0 ¢ 0 0 O 0 ciy Aeda/)©
21 22 23

We obtain the system of linear equations:

( )\cgl =0
A3y — 2 4+ Al =0
{ Ak =0
Ac%z = C%z
\ Cgl =0

So, any virtual structure ¢ has the form:

a) A ¢ {0,1}

cl. 0 Mt + 2 2, 2
Cley) = ( (1)1 0 %3), Cles) = ( (13 53) Ciz %3)

Ca3

2
—cl 2 G2 _Gs
H = ( €13 — Co3 A1 2 )

2
1 Ca3
Cy3 0

Now put Cy(z) = C(z) + A(z)H — HB(z). Then

14+ Xk 0 0
Cl(el)=(611-|6 Cas 0 0>’ C1(62)=0-

By corollary 2, Chapter II, the virtual structures C' and C are equivalent.

B)A=0

1 1 2
_ (1 0 e _ (0 0 ¢
@M—(% OQJ’CW”‘@ O@J'

1

89
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Now put Cz(z) = C(z) + A(z)H — HB(z). Then

1 2
(e 000 (0 0 i3
Caer) = (c%l 0 0)’ Ca(e2) = (0 0 2, /)"
By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.

A=1
cer=(3 4 &) ce=o

Cyp €323

0 00
H= (—c%3 0 0) )
Now put Cs(z) = C(z) + A(z)H — HB(z). Then

1 1 0 0
03(61) - (Cll -(|)_023 6%2 0) , 03(62) = 0_

By corollary 2, Chapter II the virtual structures C' and C5 are equivalent.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 2.8. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider the following cases:

1°. A ¢ {0,1}. Then

]
[ ] = peiq, [62’u1] = Oa
le1,us] =0, [e2, ug] = ua,
le1, us] = u

1, [e2,us] = Aus.
Since the virtual structure ¢ is primary, we have

g%(h) = g%(h) x U%(h) for all o € h*
(Proposition 10, Chapter II). Thus

§V(H) D Rey, §V(h) > Ruy,

§7(h) D Rez @ Rus, §V(h) D Rug,
and

[u1,us] € ﬁ(l)(h)a [u1,us] = are; + aguy

[u1,us] € ﬁ()‘)(b)a = [u1,us] = Psus
[uZ, U3] € g()‘ﬂ)(b)a [uz,us] =cie1 + ce2 +Y1U3.
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Let us check the Jacobi identity for the triples (e;,uj,ux), 1 =1,2,1 < j <k <3
and (uq,ug,us):

1. [61’ [UI)U’?]] + [ula [u2761]] + [u27 [elaul]] =0
0=0

2. [627 [ula U3]] + [ula [u3> 62]] + [U3, [623 ul]] =0
ABsuz — ABsus =0

3. [e2, [u, ua]] + [u1, [ug, e2]] + [uz, [e2,u1]] = 0
—Aaiey + agug —aje; — agug =0
1. (A +1)a; =0

4. [61, [ul’u3]] + [ula [u?n 61]] + [u37 [61,U1” =0
Bsur —pu; =0
2.85=p

5. [er, [ug, us]] + [uz, [us, e1]] + [us, [e1, u2]] = 0
coAer + yiper + agug +aje; =0
3. Q9 = 0
4. a1 +c2A+mp=0

6. [e2, [uz, us]] + [uz, [us, e2]] + [us, [e2, u2]] = 0
—c1he; — A(cier + caeg +711u1) — c1e1 — cgeg — U =0
5. (2A4+1)e1 =0
6. A +1)e2=0
7.A+1)yn =0

7. [U’la [UZa u3]] + [U’27 [u3’ ul]] + [u3: [ula UZ]] =0
—ciper —p(cier + cae2 +y1u1) — aquy =0
8. pc1 = 0
9. DbCa = 0
10. TP +a; = 0

It follows that the pair (g, g) has the form:

A£E -1, N # -1
(,] e1 €2 uyp Uz U3
€1 0 ey pey 0
es —Aey 0 0 us Aug
Uy ——gel 0 0 02 pus
U —Usg 0 0 0
U3 —u; —Aug —pug 0 0
A=-1
[a] €1 €2 U1 Ug us
€1 0 —%61 pex 0 Uy
e2 el 8 8 162 —Fus
51 —pey pus
U2 8 —U9 0 0 ciey
Uus —uq JUs  —puz —cieg 0, cap=0
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A=-1
[,] | €1 €9 Ui U2 us
e1 0 —e1  pep 0 Uy
es e1 0 0 Ug —Ug
uUq —]661 0 0 aiey pus
Ug —us —azey 0 Y1U1
Uz —uy Uus —puz —71u1 0, a+ 7P = 0

Consider the following cases:

1.1°. XM ¢ {-1,—7,0,1}.
1.1.1°. p = 0. Then the pair (g,g) is trivial.
1.1.2°. p # 0. Then the pair (g,g) is equivalent to the pair (g7,g7) by means
of the mapping 7 : gy — @, where
m(ei) =€, 1=1,2,
(w) =
™ = —uy,
1) = 2t
m(uz) = ug,
1
m(uz) = —us.
(us) P
1.2°. A= —1.
1.2.1°. ¢; =0, p=0. Then the pair (g,g) is trivial.
1.2.2°. ¢; =0, p # 0. Then the pair (g,9) is equivalent to the pair (g7,97) by
means of the mapping 7 : g7 — @, where
m(ei) =€, 1 =1,2,
1
TU1) = —U1,
(u1) "
W(UZ) = Uz,
1

7T(U3) = ;us»,.

1.2.3°. ¢1 # 0, p = 0. The pair (g,9) is equivalent to the pair (gs,g6) by means
of the mapping 7 : g¢ — @, where
m(e;) =€, t =1,2,
m(u1) = uq,

1
7!'(?1,2) = a’dz,

7'&'(1.1,3) = Uus.

1.3°. A=—-1.
1.3.1°. p = 0. Then the pair (g,g9) is equivalent to the trivial pair (g1,g1) by
means of the mapping 7 : gy — g, where

7r(e,~) = €4, 1= 1,2,
m(u1) = us,
m(uz) = uz — 11€1,

m(us) = us.



2. TWO-DIMENSIONAL CASE 93

1.3.2°. p # 0. Then the pair (g,g) is equivalent to the pair (g7,g7) by means
of the mapping 7 : g7 — g, where

m(e;) =€ ¢t =1,2,

1

m(uy) = EUh

m(ug) = ug — 11€1,
1

7T(U3) = ;u,?,.

2°. X =0. Then
[61, 62] = 0
ler,u1] = pes +qez  [e2,u1] =0
le1,u2] =0 [e2, ug) = ug
[61,7./,3] = Uy [62, u3] =re; + Seg

Since the virtual structure ¢ is primary, we have

a9 (h) = Re1 @ Rez ® Ruy @ Rug, g (h) = Ru,

and
[ula ’U,2] € g(l)(b), [ul)u2] = Qg U2,
[ui,us] € ﬁ(o)(b), = [u1,u3] = bires + brez + Brus + Bsus,
[uz, us] € 1 (h), [uz, us] = y2uz.

Using the Jacobi identity we see that the pair (g,g) has the form:

[7] I €1 €2 Ui U2 Uus

el 0 0 pe 0 u

es 0 0 01 Ug rell

uq —1661 0 0 0 bres+boea+PBrus+pus
Ug —Ug 0 0 YaUs2

us —U1 —Te1 —blel—b2ez—ﬂ1ul —pus —’)/z'uz 0

where f1p=0, rp=0, by =p,.
Consider the following cases.
2.1°. p = 0.
Then the mapping 7 : g3 — @, such that

m(ei) =¢€;, 1=1,2,
m(uy) = ug,
m(ug) = ug,

m(us) = ug + yz2€2,
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establishes the equivalence of the pair (g,g) and (g',g’), where latter has the form:

[a] l €1 €2 Uy U9 Uug
e1 0 0 0 Uy
€2 0 0 0 Ug rey
U 0 0 0 0 bier + ,Blul
Ug 0 —Ug 0 0 0
Uus —Uy —rex —6161 - ,3111,1 0 0

2.1.1°. r = 81 = by = 0. Then the pair (g,g) is trivial.
2.1.2°. r = 1 = 0, by # 0. Then the pair (g,9) is equivalent to the pair
(9, 9i)i=3,4 by means of the mapping 7 : g; — g, where

m(ei) =ei, t = 1,2,

1
m(uj) = Wr:'

(lfbl >0theni=3,ifb1<0theni=4).

2.1.3°. r =0, B1 # 0. Then the pair (g,g) is equivalent to the pair (g2,92) by
means of the mapping 7 : g2 — g, where

Uy, .7= 1a2’33

7r(e,~) =€, t=1,2,
1
m(u;) = —uj, j =1,2,3.
I3}
2.1.4° r #0, 1 = by = 0. Then the pair (g,9) is equivalent to the pair
(9i, 9i)i=9,10 by means of the mapping 7 : g; — @, where

r

m(e1) = \/EI—ICI,

m(e2) = eg,

r
m(uy) = —Ib—l|u1,

7T(lt2) = U2,
1

/———lbl|u3a

(if b > 0 then ¢ = 9, if by < 0 then i = 10).

2.1.5°. r #0, B1 =0, by # 0. Then the pair (g,g) is equivalent to the pair
(@11, 9811) by means of the mapping 7 : 11 — @, where

’/T(’U,g) =

m(ei) =€, 1 = 1,2,

1
m(u;) = ;u]‘, 7 =123.
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2.1.6°. r #0, B4 # 0. Then the pair (g,9) is equivalent to the pair (gs,gs) by

means of the mapping 7 : gg — @, where

m(e1) = —ﬁ%eh
m(e2) = ez,

r
m(uy) = I—B—lz—ul,

m(ug) = ug,
m(ug) = lu
3 —ﬂl 3.

2.2°. p#0. Then p; =r =0.
Then the pair (g,g) is equivalent to the pair (g7,g7) by means of the mapping
7 : g7 — @, where
m(e;) =ei, 1 =1,2,
1
m(uy) = ;ul,
m(uz) = ug,
1
m(us) = 1—9(u3 + 712€2).
3°. A =1. Then
[e1,e2] = ex
ler,u1] = pe;  [ez,u1] =0
ler, u2] = qez  [e2,uz] = uz
ler,us] = w1 [e2,u3] = us

Since the virtual structure ¢ is primary, we have
§7V(h) =Re1, §O(h) =Rez O Ruy,

§V(h) = Ruy @ Rus,

and
[u1,us] € gV (h), [u1, ug] = agug + agus,
[u1,us] € ﬁ(l)(b), = [u1,us] = Baug + Paus,
[u27u3] € Q(Z)(b)a [’U,z,’u,3] =0.

Using the Jacobi identity we see that the pair (g,g) has the form:

[a] I €1 €2 U1 Uz 23]

e1 0 e € 0 u

€9 —€1 d p01 U2 u;

Uy —%el 0 0 0  ~uz+ pus
Uoy —Usg 0 0 0

u3 —uy —uz —7vyug —puz 0 0
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3.1°. p=0.
3.1.1°. 42 = 0. Then the pair (g,g) is trivial.

3.1.2°. 42 # 0. Then the pair (g,9) is equivalent to the pair (gs5,95) by means
of the mapping 7 : g5 — @, where

m(e;) = e, t =1,2,

m(u1) = uq,
W(Uz) = Y2U2,
m(usg) = us.

3.2°. p # 0.
Then the pair (g,g) is equivalent to the pair (g7,97) by means of the mapping
7 : g7 — @, where
m(ei) =€, 1 =1,2,
m(uy) = 1u
1) = DU
W(UZ) = Uz,

1
m(us) = 17(1?“3 + Y2u2).

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

Since dim D%g; # dim D?gr, we see that the pairs (§1,91) and (gr,g7) are not
equivalent.

Consider homomorphisms f; : gi — gl(2,R),7 = 1,2,3,4,8,9,10,11, where fi(z)
is the matrix of the mapping ad |pg,z. Since the subalgebras fi(gi), ¢ = 1,2,3,4,
are not conjugated, we see that the pairs (g;, gi), ¢ = 1,2, 3,4 are not equivalent.
Similarly, the pairs (gi,8:), ¢t = 8,9, 10, 11, are not equivalent to each other.

Since dim D%g; # dim D?ge, we see that the pairs (g1,91) and (ge,g6) are not
equivalent.

Since dim Z(g;) # dim Z(gs), we see that the pairs (g1,91) and (g5,95) are not
equivalent.

Since dimDg; # dimDg;, ¢ = 1,2,3,4, j = 8,9,10,11, we see that the pairs
(9i,9:) and (g;,9;) are not equivalent.

Thus the proof of the Proposition is complete.

Proposition 2.9. Any pair (g,9) of type 2.9 is equivalent to one and only one
of the following pairs:

1.
[a] €1 €2 Uy U2 Usg
e1 0 (1—p)es ur Aug pug
€9 (/,L - 1)62 0 0 Uy
Uy —uy 0 0 0 0
Ug —A\ug 0 0 0 0
Uus —pus —uq 0 0 0
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22 A =p+1
[7] €1 €2 Uy U9 us
el 0 (1—plex w1 (p+1ug pug
€2 (p—1)es 0 0 uq
U1 —U1 0 0 0 Ug
Us —(p+ Dug 0 0 0 0
Uus —pus —U3 —U2 0 0
3A=1-2u
[a] €1 €2 U1 U2 U3
e1 0 (1-—plez ur (1—2p)uz pus
€2 (ﬂ — 1)62 0 0 0 U1
U1 —uy 0 0 0 0
U (2p — 1)uz 0 0 0 e
us —pu3 —uy 0 —eg 0
4. A=0
[a] €1 €2 U]  Ug  Ug
e1 0 (1—p)es w1 0 pug
€9 (,u - 1)62 0 0 0 Ui
Uy —uy 0 0 wu; O
U9 0 0 —Uz 0 —us
Us —pus —uy 0 wus 0, p#E1
5. p=0
[>] l €1 €2 U1 U2 Uug
e 0 e u Au 0
e; —eq (f 01 02 uq
Ul —Ul 0 0 0 €9
Ug —Aus 0 0 0 auUs
us 0 —uU; —e3 —QUg 0 a=0
6. n=20
[,] l €1 €2 Ui U9 U3
e 0 e u Au 0
e; —eg (52 01 02 Uy
Uy —uy 0 0 0 —es
Us —Aug 0 0 0 aug
us 0 —u; ey, —au, 0 a=20
7. p=
[,] l €1 €2 Uy Uz Uug
e 0 e U Au 0
e; —eq (f 01 02 U
wvi | =4t 0 0 0 O
U9 —/\UQ 0 0 0 U
us 0 —Ul 0 —U9 02
8 p=1/2
>] €1 €2 U U2 Us
€1 0 %62 Uy }\UZ %u;), + €2
€ —%62 0 0 0 U1
Ui —Ui 0 0 0 0
Ug —AUg 0 0 0 0
u3 —%ua —e —u; 0 O 0
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9. A=0, p=1/2

[,] €1 €2 U1 U2 us
€1 0 :,1262 Ul 0 %u,g + €2
€2 —%62 0 0 0 Uy
Uy —U1 0 0 0 0
Ug 0 0 0 0 €
us -—%’LL3 — €2 —Uj 0 —E€9 0

10. A=3/2, p=1/2

[a] €1 €2 U1 U2 us
€1 0 %62 Uy %UZ %U3 + eg
€2 —%ez 0 0 0 Uy
U1 —Uq 0 0 0 Ug
U2 ‘—%UQ 0 0 0 0
Uus -—%u;; — €2 —U1 —Uy 0 0
11. A=0, p=1
[ ] eo e2 ur us us
e 0 0 wu 0 wu
e; 0 0 01 e u3
Uy —U1 0 (f 01
U2 0 —€2 0 0 Uus
us —UuUs —Ui 0 —Uus 0
122 0=-2, u=2
[a] I €1 €2 Uy U9 Ug
e 0 —e U —2uy  2u
e; €9 02 01 2 u13
751 —U1 0 0 e 0
Ug 2u9 0 —e9 (? —eq
us —2U3 —U1 0 €1 0
13. A=1, u=0
L1 ] eo e2 wr uz ug
e 0 e U U 0
e; —e ] 01 02 Uy
Ui —U1 0 0 0 Ui
U9 —U9 0 0 0 [
us 0 —Uy U3 —€2 (%
4. A=1, u=0
[,] | €1 €2 U1 Uz  Ug
e 0 e u U 0
e; —eg (f 01 02 Uy
U1 —uq 0 0 0 U9
U2 —uy 0 0 0 wu
Uus 0 —Ur —U2 —U2 02
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LI ] e e U1 Uy ug
e 0 e U u 0
e; —eg (? O1 02 Uy
Ui —Ui 0 0 0 ez + us
U2 —ug 0 0 0 oy
Uus3 0 —U; —€y — Uy —OUY 0 0<axl
16. A=1, u=0
[,] | €1 €2 Ui U2 us
e 0 e U U 0
e; —es (? 01 f Uy
Uy —Uy 0 0 0 —eg + U2
Ug —1Us 0 0 0 Qusg
U3 0 —Uuy] €9 — Uy —QU 0 a>0
17 20=1, pu=0
[,] | €1 €2 Ui Uz us
e 0 2e Uy —2up; —u
e; —2e9 02 01 €1 ? U s
U1 —Uui 0 0 —Uus 0]
U2 2’LL2 —€1 Uug 0
Usg Uus —uy; 0 0 0

Proof. Let €= {e1,e2} be a basis of g, where

100
€1 = 0 A 0 y, €2 = .
0 0 pu

= (§18): =% 1)

and for z € g the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor e;.

o O O
o O O
o O =

Then

Lemma. Any virtual structure ¢ on the generalized module 2.9 is equivalent to
one of the following:

a) p ¢ {0,5,2}, A # £(1 - p)
01(61) = 0, 01(62) = 0;
b) :u¢{0a%a172}7 A=1-up

02(61)=<8 2 g>, Ca(e2) = 0;
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opg{0,3,1,2}, \=p—1

o O

Cs(e1) =0, Cs(ez) = ( 1(; g) :
d) p=0,A# +1

0
—p

Cuter) = (

o o
o3
~
Q

~—~
9]

[\

N’
Il

k=

e)up=0,A=1

oiw=(4 2 1), ot

f):u‘=01>‘=_1

0 0
crien= (5 § o), Crlen=0;
hp=3A=3
0
08(61)-_—(0 p)’ Cs(e2) = 0;
Z)N:%aAz_%

)= (5 5 5)r o= (7 &

Jprp=1LA1x=0
0
Cule)= (g 2 9)+ Cuten)=(§
k)u=2,A#+1
0
Cii(e1) =0, 011(62)=<'8 8 >§

Dp=2,1=1

Ciz(e1) =0, Ciz(er) = (16 g 8) ;
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m)p=2,A=-1

= (32 9). cuer=(3 § 3)

Proof. Put . . .
13 (2 1
C(e,-)=<cn ‘12 013), i=1,2.

€31 Cy2 C3
By Proposition 9, Chapter II, without loss of generality it can be assumed that
q is primary. Then we have:

g (h) O Rey, UD () > Rug,
g (h) DRes,  UN(h) D Ruy, (*)
U™ () > Rus,

and c}; = ¢2; = ¢2, = 0. Checking condition (6), Chapter II, for e;, e2, we obtain:

{ C%l = (,LL - 1)ci3a

(**)
(1 - #)Ciz = )‘ng-

Consider the following cases:
1°. u ¢ {0,3,2}, A # £(1 — p). Then, from (*) and (**) it follows that

0 0
Cle=0, Cle=(§ 2 0) x=0

2°. p#{0,1,1,2}, A =1— pu. Then from (*) it follows that
0 0 O
C(e]_) - (0 c%2 0) 3 0(62) - 0.

3°. u#{0,%,1,2}, A =p — 1. Then from (*) it follows that

Clen=0, ce=(7 2 7).

Similarly we obtain the other results of the Lemma.
Thus it can be assumed that the virtual pair (g, g) is defined by one of the virtual
structures ¢ determined in the Lemma. Put
[u1,uz] = arer + ages + arug + agug + o3us,
[u1,u3] = biey + byea + Brus + Bauz + Paus,

[uz,us] = cre;1 + caea + y1u1 + Youz + Y3us.
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For example, consider the following cases:
1°. u ¢ {0,%,2}, A # £(1 — p). Then

le1, e2] = (1 — p)ez,

le1,u1] = ui, le2,u1] =0,
[e1, u2] = Aug, le2,ug] =0,
[617 U3] = pusg, [62a ’U,3] =Uz.

Let us check the Jacobi identity for the triples (e;,uj,uk), 1 = 1,2, 1<j < k<3,
and (ul, uz, U3).

1. [e1, [u1,uo]] + [u1, [ug, e1]] + [uz, [e1,u1]] =0
(1 — p)azes + ajug + Aaguz + pagus — (A + 1)[u1,uz] =0

1. ()\ + 1)a1 =0
2. (p+Aaz =0
3. /\011 =0
4. g = 0
5. a3 = 0
2. [ea, [ur, u2]] + [u1, [uz, e2]] + [uz, [e2,u1]] = 0
(p—1)azea =0
6. (u—1)a; =0

3. [e1, [u1,u3]] 4 [u1, [us, e1]] + [us, [e1,u1]] =0
(1 — p)baeg + Brur + ABaug + pfsus — (p+ 1)[ur,uz] =0
8.0, =0
9.8,=0
10 A=p—1)B2=0
11. B35 =0

4. [627 [ulau3]] + [ula [U3, 62]] + [u37 [62, ul]] =0
(u — 1)1)1 €y = 0
12. 5, =0

5. [61, [u27u3]] + [u2a [u3a 61]] + [U3, [61,U2]] =0
(1 — p)ezea + y1us + Aypuz + prysus — (A + p)[uz, uz] =0
13. ()\ + /J)Cl =0
14. (1A= 2u)c; = 0

15. Y1 = 0
16. Y2 = 0
17. )\’)’3 =0

6. [62, [u27u3]] + [U’Z) [’LL3, 62]] + [’U,3, [627 U’Z]] =0
(. — 1)ereg + ysuq + azeg + arer + aju; =0
18. ay = 0
19. a2+ (p—1)er =0
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20. 73 + a1 = 0

7. [ug, [ug, us]] + [uz, [us, u1]] + [us, [u1,us]] =0
—cie1 + 713f2u2 — aguy — a1 Boug =0
21. C1 + as = 0
22. Ba(13s — 1) =0
Finally, we have

A=0 A=p+1 A=1-2  A£u+1
A#1—2u
[u,us] = @yuy,  [ui,uz] =0, [u1,us] =0, [u1,us] =0,
[u1,u3] =0, [ur,us] = Baug, [u1,u3] =0, [u1,u3] =0,
[ug,us] = —ayus, [uz,usz] =0, [uz,us] = coea, [uz,us]=0.

Consider the following cases:
1.1°. A =0.
1.1.1°. @3 = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, 91).
1.1.2°. ay # 0. If 4 # 1, then the pair (g, g) is equivalent to the pair (g4,g4)
by means of the mappings 7 : g4 — @, where

m(ei) = e, t = 1,2,

W(Ul) = Uy,
m(ug) = ayus,
'7'('(’(1,3) = us,

and, in the case of y = 1, the pair (g, g) is equivalent to the trivial pair by means
of the mapping m,—1 : g1 — @, where

mu=1(ei) =€, 1 =1,2,
7r#=1(u1) = Ui,
7Tu=1(u2) = Uz — o€,

Tu=1(us) = us.

1.2°. A =144
1.2.1°. B3 = 0. Then the pair (g, g) is trivial.

1.2.2°. B, # 0. Then the pair (g, g) is equivalent to the pair (g;, g2) by means
of the mapping 7 : g2 — @, where

m(e1) = ex,
m(e2) = Baea,
m(u1) = Baua,
m(ug) = ug,

m(ug) = us.




104 ITI. THE CLASSIFICATION OF PAIRS

1.3°. A =1-2u.
1.3.1°. ¢3 = 0. Then the pair (g, g) is trivial.
1.3.2°. ¢ # 0. Then the pair (g, g) is equivalent to the pair (gs,gs) by means
of the mapping 7 : gg — @, where

m(ei) =€y 1 =1,2,

m(u1) = u1,
m(uz) = caug,
m(usg) = us.

1.4°. A # 14 p, A # 1 —2u. Then the pair (g, g) is trivial.
2°. 4 =0, A=1. Then

[617 62] = €2,
[elvul] = U1 — pez, [62,’(1,1] = Oa
[e1,u2] = gea + ug, [e2,u2] =0,

[61>u3] = pe1, [62,U3] =ui

and

[ulaU'Z] = Oa
[u1,us] = baeg + Bruq + Pauz,

[ug,us] = coeq + Y1u1 + Y2u2.

Let us check the Jacobi identity for the triples (e;,u;,ur), : =1,2,1<7 < k<3,
and (ul, Ua, U3).

1. [61, [Ul,’LL3]] + [ula [U3, 61” + [U3, [elaul]] =0
boea + B1(u1 — pe2) + B2(ges + uz2) + p(u1 — pez) + pur — [ug,us] =0
1.p=0
2. qf2 =0

5. [e1, [ug, us]] + [u2, [us, e1]] + [us, [e1,u2]] = 0
caey + y1ur + vo(gea + ug) — quq — [ug,u3] =0
3.q=0

It follows that the pair (g, g) has the form:

[ ’ ] | €1 €2 Ui U2 usg

€1 0 e u U 0

€2 —es (f 0 0 (5}

Uy —uq 0 0 0 - baeatBiurtBausg

Uy —Ug 0 0 0 Caeaty1UI Y2 U2

u3 0 —uy  —bzea—Lf1ui—Paus —crea—y1uI—Y2u2 0
Suppose that

V = Z(Dg) and a = {ady = |z € g}.
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Then V = Rey; @ Ru; ® Rug. Since
a=R(ady e1) ® R(ady u3) = R(idy) ® R(ady us),

we see that a is a two-dimensional subalgebra of gl(V') that contains the identity
mapping.

Let W =V Ng = Rez. The Lie algebra g can be identified with the Lie algebra
a AV, and g can be identified with the vector space R(idy ) x W. Also, a(W) # W,
that is ad ug(ez) ¢ Res.

Conversely, suppose V = R, a is a subalgebra of gl(V) such that the identity
mapping belongs to a. Let W be a one-dimensional subspace of V and a(W) # W.
Putting

g=aLV, g=R(dy)xW,

we obtain the pair (g, g) of type 2.9 (A =1, =0).

Therefore, there is a one-to-one correspondence between the set of desired pairs
(8,9) and the set of pairs (a, W), where a is a two-dimensional subalgebra of gl(V)
such that idy € a, W is a one-dimensional subspace of V such that a(W) # W.

Statement 1. Suppose a; and as are subalgebras of gl(V'). Then the Lie al-
gebras g1 = a; AV and gz = a3 KV are isomorphic if and only if there exists an
endomorphism ¢ € GL(V') such that

Ay = cpalgo‘l.

Proof. Indeed, suppose there exists ¢ € GL(V) such that

o = goalgo“l.

Consider the mapping f : g; — go defined by
f(z,v) = (2™, 0(v))

for z € a;, v € V. It is easy to see that f is an isomorphism.

Statement 2. Let
g =m A V, go =0y A V, g1 = R(ldv) X Wl, and g2 = R(ldv) X Wz,
where a; and a, are subalgebras of gl(V'), W1 and W, are one-dimensional subspaces
of V. Then a necessary and sufficient condition for the pairs (g1,81) and (g2,92)
to be equivalent is that there exists ¢ € GL(V) such that
a; = goalgo_l and o(W1) = Wy;

in other words, the group GL(V') acts on the pairs (a, W) :

¢ (a, W) = (pap™, o(W)).
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Proof. It immediately follows from the previous statement.

Let us classify (up to just determined transformations) all pairs (a, W). We have

1 0 0 0 b c
adegs =0 1 0], adus=(1 B m |.
0 0 1 0 B2 7

Up to conjugation and choice of A (A € R) the matrix of the endomorphism
ady(us + Aep) has one of the following forms:

0 0 0 -1 0
i) Xi = ~1 0],0<a<1; W) Xy=|1 0 0], acRy;

0 « 0 0 «
0 1 0 0 1
1) X3 = i w)Xy=(0 0 0); v)Xs=[0 0
0 0 1 0 0
By definition

F,={AcGL3,R)|AX;A™ ' =X;}, i=1,...,5.

OO =

o O O
o o=
o O O

Up to action of endomorphisms ¢ such that the matrix of ¢ belongs to F;, one-
dimensional subspaces W C V have the form:

1 1

i)zi =R (1) and z7 =R (1) for Xi;
0 1
1

i1) .'I)%:R( and x%:R(O) for Xo;
1

S O =

0
wi) 2y =R | 1] for X3;
0
0 1 0
w) Ty = 1],22=R|[0)andz}=R|[ 1] for Xy;
0 0
v) 2zt =R 0) and zZ =R (1) for X5s.
1 0
It remains to write out the pair (g, g) corresponding to the pair (a, W).
Suppose
1 0 0
a=RX;+AE3=R|{0 -1 0 +AE3,WhereOSa<1,)\€R,
0 0 «
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Then
1
adus(e) = | =1
o
Put uy = ad usz(ez), then
1 0
adU3(u1) = 1 = €9 + 0
a? a? —1

Since the vectors ez, u1, ug are linearly independent, put

0
Ug = 0
a?—1
Then
0
ad uz(uz) = & 0 = aus.
a? -1
Finally,

[62,11,3] = Ui,
[u1, ug] = ez + ug,

[u27 ’LL3] = Qu2,

where 0 < a < 1. So, the pair (g, g) is equivalent to the pair (g15, g15)-

Similarly,
if a = RX; + AE3 and W = z{, we get the pair (g5, g5) with A = 1;
if a = RXy + AE3 and W = zi, we get the pair (s, g¢) with A = 1;
if a = RXy + AE3 and W = 2, we get the pair (@16, 916 );
if a = RX;3 + A\E3 and W = 1, we get the pair (§1,91) with A =1, p=0;
if a =RX, + AE3; and W = 2}, we get the pair (g7, g7) with X = 1;
if a = RX4 + AE3 and W = z2, we get the pair (13, 913);
if a = RXy + A\E3 and W = z3, we get the pair (§14, g14);
if a = RX5 + AE3 and W = zi, we get the pair (g2, 82) with u = 0;
if a = RX5+ A\E3 and W = z2, we get the pair (g3,g3) with u = 0.
Similarly we obtain the other results of the Proposition.

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

There are only two pairs such that dim(Dg;) = 5. These are (g12,812) and
(917, 917). Note that if a; is a Levi subalgebra of @12 and a; is a Levi subalgebra of
17, then

dim(a; N g12) # dim(az N g17),

and the pairs (g12,912) and (@17, g17) are not equivalent.
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Let n; be a maximal nilpotent ideal of the Lie algebra g;, 1 < ¢ < 17. Note that
dimn; =4 and C3n; = {0}; dimn; = 4 and C®n; # {0}, for ¢ = 2,3; dimn; = 3 for
i =4,...,7,11. It follows that all pairs (g;,9;) for¢ = 2,...,7,11 are not equivalent
to the trivial pair (g1,g1). For the same reason the pairs (g9, g9), (810, 810) are not
equivalent to the pair (gs, gs).

Since dimng = 4 and C3ng = {0}, we see that the pair (gs,gs) is not equivalent
to each of the pairs (@i, ;) for ¢ = 2,3,4. Since g;-module n;/Dn; is semisimple for
i = 1 and not semisimple for : = 8, we see that the pairs (g1,91) and (gs,gs) are
also not equivalent.

Similarly we can prove that the other pairs determined in the Proposition are
not equivalent to each other.

Proposition 2.10. Any pair (g,g) of type 2.10 is trivial.

[a] l €1 €9 Uy U2 us
e 0 0 wuy wus wurtu
e; 0 0 01 u2 lu 3
uy —uy 0 0 0l O2
U2 —UuU9 —Uq 0 0 0
us3 —u;—uz —uy 0 0 0

Proof. Consider z € g such that

(e

1 0
z=}10 1
0 0

[y

Note that zy = idy 4+, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.

Proposition 2.11. Any pair (g,9) of type 2.11 is trivial.

[a] l €1 €2 Uy U Uus
e 0 U3 Ug U3 —U
e 0 0 0 u  Cup
Uy —Uuy 0 0 0 0
Ug —1Us —u1 0 0 0
us uUp — uUg 0 0 0 0

Proof. Consider z € g such that

Note that zy = idy +¢, where ¢ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.



2. TWO-DIMENSIONAL CASE 109

Proposition 2.12. Any pair (g,g) of type 2.12 is trivial.

[,] l €1 €2 Uy Uz usg
e 0 0 U1 Ug U

e 0 0 0 w u
Uy —ug 0 0 0 (f
U9 —Ug2 —U3 0 0 0
us —UuUg —U2 0 0 0

Proof. Consider z € g such that

1 00
z=10 1 0
0 0 1

Note that 2y = idy. Then, by Proposition 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.

Proposition 2.13. Any pair (g,g) is equivalent to one and only one of the
following pairs:

1.
[a] | €1 €2 Uy Uz U
e 0 0 0 w3 u
e 0 0 0 0 wu
Uy 0 0 0 0 0
U —Uy 0 0 0 O
us —Ug —Ujp 0 0 0
2.
[’] €1 €2 U1 U9 us
e 0 0 0
e 0 0 0 0 u
Uy 0 0 0 0 0
U2 —U7 0 0 0 e
Uus —Ug —U3 0 —€1 01
3.
[,] €1 €2 Ui U2 U3
e 0 0 0 u i
e 0O 0 0 0 u
w“ O 0 0 0 ¢
U9 —Ui 0 0 0 —€1
Uus —Ug2 —U1 0 €1 0
4.
[,] €1 €2 U1 U2 U
e 0 0 wu U
e 0 0 0 0 wu
bt o 0 0 0 0
Uz —uy 0 0 0 e
us —uy —u; 0 —eo (f
5.
[,] | €1 €2 Ui U2 us
e 0 0 0 U U
e 0 0 0 0 us
U 0 0 0 0 Uy
U9y —Uq 0 0 0 €9 -5 U9
us —Uz —U; —Uy —€2 — U2
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[1] @ e2 w Uz u3
e 0 0 0 U U
. 0 0 0 ¢ us
U1 0 0 0 Uy
U2 —uy 0 0 0 aei + usg
us —U2 —U1 —U1 —Qe] — U2 0
7.
[ y ] ! €1 €2 Ui U2 Us
€1 0 0 0 Uy U2
€9 0 0 0 0 es + uq
U1 0 0 0 0 (a7 5}
Ug —uq 0 0 0 (1 —a)er + eq + auqy
Us —uy —eg—u; —au; —(1—a)er —es —auy 0
8.
[7] | €1 €2 U1 (1%} Uug
e 0 0 0 U U
e; 0 0 0 0 €2 +2U1
Uy 0 0 0 0 g
Uy —Uuy 0 0 0 Be1 + ausg
us —us —ey—1u; —au; —pfe; —aus 0
9.
[,] | €1 €2 Ui U3 us
e 0 0 es U+ 2e U
e; 0 0 (? ! €9 ! u%
Uy —622 0 0 —gl 5
u —u; —2e1 —e€z U U
u§ l—uz ! —u21 O1 —2ugs 03

Proof. Let € = {e1,e2} be a basis of g, where

010 0 0 1
er=10 0 1], e={0 0 0
0 0 0 0 0 O

Then A(e1) =0, A(ez) =0, and for z € g the matrix B(z) is identified with =.

Lemma 1. Any virtual structure q on generalized module 2.13 is equivalent to
one of the following:

cen=(2 0 ¢) =57 1)

i i i
C(e,) _ (011 0}2 013) ,1=1,2.

2 (2
Co1 €33 Co3

Proof. Put

Since for any virtual structure ¢ condition (6), Chapter II, is satisfied, after some
calculation we obtain:

. ¢, o 0 cl, ¢
cen= (3 & 4. ce=(3 & 3)

21 C22 Ca3 0 c31 ¢33
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1 1
H= cip ¢i3 0
- 1 cl 0 .
Cag C23

Now put Cy(z) = C(z) + A(z)H — HB(z) for = € g. Then

Put

¢, 0 0 0 ¢, —ci,+¢c2
ae= (5 0) ae=(g & kil

1 2
€31 —Cyp T C33

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.

Let (g, g) be a pair of type 2.13. Then it can be assumed that the corresponding
virtual pair (g, g) is defined by one of the virtual structures determined in Lemma 1.
Then

[e1, e2] = 0,

[e1,u1] = per +rez, [ea,u1] =0,

le1, u2] = u, le2, ug] = pe1 +rea,

[e1, us] = uq, [e2,u3] = se1 + tea + uj.

Put

[u1,uz] = are; + azex + ayuy + agug + asus,
[u1,us] = bie1 + baea + Bius + Baug + Paus,

[uz,us] = c1e1 + caea + y1u1 + Youz + Y3us.

Using the Jacobi identity we see that the pair (g,g) 'has the form:

[7] | €1 €2 Uq U9 Uus
e 0 0 re u U

e; 0 0 02 T612 1‘3
U1 —Teg 0 0 A B
Ug —u; —-reg —A 0 C
Usg —U2 -—.E;2 -B -C 0

where
E = se; +tez + uy,
A =aje; + azeq + ajuy,
B = byez + fru1 + Baus,
C = cie1 + cea + 11Uy + Y2u2 + Y3u3,
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and
( air—r?=0,

ay +rs =0,

Bir —as —rt =0,
P2 —o1 —r =0,
Bar +1rs =0,
11ir — by =0,

¢ Bir+pPat+a=0,

B2s+ay —rs =0,

Ba+s+a;—r=0,

apr —2f1a1 =0,

az —a1p — Pi1fs =0,

a1 + o018 — B3 =0,

\  ast+cyr — ber — 2B1ag + a1by — Babe = 0.

Consider the following cases:

1°. r # 0. Then the pair (g',g') has the form:

(] €1 €2 u1 U2 us
€1 0 0 reés Uy Ug
es 0 0 0 reésg —2re1 +uy
Uq —reg 0 0 2r2ey +ruy  preg + 2rug
Ug —uy —reg —2r2eq — ruq 0 A
us —ugy —2re; —u; —preg — 2rug —-A 0

where A = 2pey + cez + puy + 2rus.
The pair (g,g) is equivalent to the pair (gg,g9) by means of the mapping 7 : g —
do, where

m(e1) = pes,
7T(62) = p262>
m(uy) = gul — 2pey,

1
m(ug) = ';’U,g,

c 1

1
m(uz) = ;(61 + 5—562 + ;ug)

2°.r =0. Then we have ay = a3 = by = a3y = =s=0.
2.1°. t # 0. Then the pair (g,9) is equivalent to the pair (g',g') by means of the
mapping 7 : § — @', where

m(e) =ei, 1 =1,2,

1
m(u;) = Ui, 1<7<3.
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The pair (g',g') has the form (*):

| @ €2 U1 U2 U3
€1 0 0 0 Uy Ug
€9 0 0 0 0 es + Uy
Uy 0 0 0 0 auq
Ug —u 0 0 0 A
us —Ug2 —€9 — U] —OU] —A 0 (*)

where A = fe; + yez + duy + aus.
Note that any pair (g,g) of the form (*) is uniquely defined by the set of param-
eters (a, 8,7, 6).

Lemma 2. Two pairs (g,9) and (g',9') of the form (*) defined by sets (a, 3,7, 96)
and (o/, 8,7, 8"), respectively, are equivalent if and only if there exist a € R*, b,c €
R such that

o = a,

g'=p,

Y =2a+B-Dr+ay,
6’=a5—%+c.

Proof. Suppose the pairs (g,9) and (g',g') are equivalent by means of a mapping
m:g—g. Let H=(hij)i<i jgs be the matrix of .

Since m(g) = g', we have h;; = 0 whenever 3 <7 < 5 and j = 1,2. Since 7 is an
isomorphism of Lie algebras, we have

([z,y]) = [r(z), n(y)] for z,y € g. (1)

Check this condition for vectors of the basis.
After some calculation we obtain that H has the form:

a 0 O Oc

b a? 0 b d
H=|0 0 a® af+bd ¢

0 0 O a f

0 0 O 0 1

Check condition (1) for vectors uy, ug, us.
1. m([u1, u2]) = [7(u1), m(uz)] = 0.
2. m([u1,us]) = [7(u1), m(u3)] = a®au; = a®a’'u; =

a = «.

3. ([uz,us]) = [7(u2),7(us)] = aBey + (b8 +a®y+ba)es + ((af +b)a+a?6)u;+
+aauy = af'e; + (b+ av')ez + ((af + b)a' + aé’ — ac + b)u; + ad'uy =
18, = :83
7 =2a+8—-Dr+ay,
' =ab - % +ec.
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So, the classification (up to equivalence) of pairs (*) is reduced to the classifica-
tion of quadruples («, 8,7,6) up to transformations determined in Lemma 2.
After elementary calculation, we see that every quadruple is equivalent to one
and only one of following:
(a7 ﬂ ) 0 ) 0)’

(a,1 -0, 1,0).
The corresponding pairs are (gs,gs) and (g7,87) respectively.
2.2°. t = 0. Then the pair (g,9) has the form (**):

| €1 €2 Ui U2 us
e 0 0 0 U U
&3 0 0 0 0 u
Uy 0 0 0 0 aug
Uz —uy 0 0 0 A
U3 —uy —u; —ou; —-A 0 (**)

where A = fe; + vyea + duy + aus.

Lemma 3. Two pairs (g§,9) and (g',g') of the form (**) defined by sets (a, 8,7, 6)
and (o', 3',7',8") respectively are equivalent if and only if there exist a,c € R*,
b,g € R such that o' = *a and

[

ifd =a=0,
§ =18
7' =308 + ay)c?
§' = —i-(a,é -9)
2)if o' # 0,
B =p
7' = ¢(68 + a?y)
8 =ab—g
Proof.

The proof is similar to that of the previous Lemma.

Since virtual structures of the form (**) are trivial, and virtual structures of the
form (*) are non trivial, we see that pairs of forms (*) and (**) are not equivalent.

Classification of quadruples (a, 8,4, 6) up to transformations determined in lem-
ma 3 shows that (g,g) is equivalent to one of the pairs (gi,g:), ¢ = 1 — —6.

Let (@,9) be a pair of the form (*). Since dim D%gy # dim D?g, we see that the
pairs (@9, 89) and (g,g) are not equivalent.

This completes the proof of the Proposition.

Proposition 2.14. Any pair (g,g) of type 2.14 is trivial.

[a] | €1 €2 Uy U2 us
e 0 0 U1 Uy +uz U +u
e; 0 0 01 ! 0 2 2u1 3
U1 —Uy 0 0 0 0
Ua —U1 — U2 0 0 0 0
us —ug —uz —u; 0 0 0
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Proof. Consider z € g such that

Note that zy = idy +, where @ is a nilpotent endomorphism. Then, by Proposi-
tion 13, Chapter II, the pair (g, g) is trivial.
This proves the Proposition.

oo~
O =
=)

Proposition 2.15. Any pair (g,g) is equivalent to one and only one of the
following pairs:

1.
L] | @ €2 Ui uz U
€1 0 601 0 0 Uq
e —e 0 wuy wu U
u 0" 0 0 ¢ e
U2 0 —U2 0 0 0
us —U1 —Ug — U3 0 0 0
2.
[7] | €1 €2 U1 Uz Uug
e 0 e 0 0 U
e; —eq d 0 Uy  Ug —I—1 U3
Uy 0 0 0 0 U
s 0 g 0 0 ¢
us —Uy —U2 — U3 v —U9 0 0

Proof. Let £ = {e1,e2} be a basis of g, where

0 0 1
es=10 0 0], e= .
0 0 O

aen=(g o) Ae=(7" 0)s

and for z € g the matrix B(z) is identified with z.

o O O
O = O
=

Then

Lemma. Any virtual structure ¢ on generalized module 2.15 is equivalent to
one of the following:

ae=(7 o )5 e =o.

Proof. Put . . .
(2 3 2
C(e,-):(cll ‘12 0,13), i=1,2.

(2 1
€1 €22 Ca3

Let us check condition (6), Chapter II for ey, e;.

C(le1, e2]) = A(e1)C(e2) — C(e2)B(e1) — A(e2)C(er) + C(e1)B(ez)
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C%l ng 033 _ 0 0 C%l + 0:111 0%2 C%s +
0 0 0 0 0 <2 0 0 0

11 1 1 11
+(0 gty (4 )
0 ¢35 €39+ ca3 €31 Cyp C33

We obtain the system of linear equation:

We have:

1 _ 2 1
€11 =¢31 + ¢y,
1 _ 2 1
Cip = C3p + 2¢qy,
1 _ .2 2 1 1
€13 = €3 — €i1 + 12 + 2¢43,
\ 4
cz; =0,
1 1
Ca2 = Cag,
1 _ 1 2 1
\ C23 = Cpy — €31 1 Ca3.
It follows that: )
(¢ =0,
1 _
c;; =0,
L, =0
§ ¢22 =0,
2 _ 1
Cag = —Ci9,
1 _ 2 1 2
€13 = —C3 — Ciz T Ciq-

So, any virtual structure ¢ on generalized module 2.15 has the form:
1 1 1 2 2 2
Cley) = (011 €12 013) Cle,) = (Cn C12 €13 )
=0 0o o) “@={0 —d, &-d-d,
Put

¢ T2 €11~ C13
Now put Ci(z) = C(z) + A(z)H — HB(z) for = € g. Then

o ( cf% 1/2¢%, 1/2c§3 ~ 11/4c§2) .

0 0 0
Cl(el)z(o 0 c%s-i-c}l)’ Culez) = 0.

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 2.15. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by the virtual structure determined in the Lemma.
Then

[617 82] = €1,
[ela ul] = 0’ [62,?1,1] = 07
[ela u?] = Oa [627 UZ] = Uz,

[61,’!1.3] =p62+u1) [62,U3]=u2-|-u;3.
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Put

[u1,u2] = are; + azes + ayuy + agug + azus,
[u1,us] = biey + byea + Bruq + Pous + P3us,
[u2,u3] = c1e1 + caea + Y1u1 + Yous + Yaus.

Let us check the Jacobi identity for the triples (e;,uj,uk), 1 = 1,2, 1< j <
k< 3:
L. [ex, [ua, ua]] + [ug, [uz, e1]] + [ua, [e1,u1]] = 0
azer + asz(pez +u1) =0
1. ay = 0
2. Qg3 = 0

2. [e2, [u1, uo]] + [u1, [uz, e2]] 4 [ua, [e2, u1]] = 0
—aje; + agug —aje; —ajuy — agug =0
3. ay = 0
4, a1 = 0

3. [617 [U’la u3]] + [ul, [u3) 61]] + [u3’ [elaul]] =0
baer + Bz(pez +u1) =0
5.b0=0
6. 33=0

4. [e, [ur, ua]] + [u1, [us, e2]] + [us, [e2,u1]] = 0
—bre1 + Poug — aguy — biey — frug — Bauz =0

7.00=0
8. 81 =0
9.012=0

5. [eq, [ua, us]] + [uz, [us, e1]] + [us, [e1, u2]] = 0
cze1 +73(pes +u1) +puz =0

10.6220
11.93 =0
12.p=0

6. [62) [uZ) Ug]] + [u2a [U3, 62]] + [u3a [62, U2H =0
—cie1 + y2ug — 2c1e1 — 2y1u1 — 27u2 =0

13. C = 0
14. Y1 =0
15. Y2 =0

7. [[u1, ua], us] + [[uz, ua], u1] + [[us, u1],us] = 0
0=0
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It follows that the pair (g,g) has the form:

[,] l €1 () U1 U2 U3

e 0 e 0 0 U

6; —e] d 0 U2 U2g —I—l us
Uy 0 0 0 0 Baus
U2 0 —Usg 0 0 0

u3 —u; —uz —uz —Paug O 0

Consider the following cases:

1°. B, = 0.

Then the pair (g, g) is equivalent to the trivial pair (g1,91)-

2°. B # 0.

Then the pair (g,g) is equivalent to the pair (g2,82) by means of the mapping

T:g— g2, Where

7('(61) = Elz-el,
m(ez) = eq,
m(u1) = %ul,
W(Uz) = U2,
m(us) = us.

Since dim D?g; # dim D2g,, we see that the pairs (g;,81) and (g2, g2) are not

equivalent.

This completes the proof of the Proposition.

Proposition 2.16. Any pair (g,9) of type 2.16 is equivalent to one and only
one of the following pairs:

1.
[a] €1 €2 uy  Ug ug
€1 0 ()\ - 1)61 0 0 U1
€2 (]. - )\)61 0 Ul )\UQ U9 + )\u;;
Uy 0 —U 0 0 0
U 0 —Au 0 0 0
us —Ui —Ug — 3\“3 0 0 0
2. A=%
[a] €1 €2 Uy Uz U3
e1 0 —%61 0 0 Uy
es %61 0 Uy %uz ug + %u:%
Uy 0 —u 0 0 0
Ug 0 —%uz 0 0 €1
Us —Uuiy —Uz — %u;; 0 —€1 0
3A=1
[a] €1 €2 Uy Ug U3
€1 0 —'%61 0 0 Uy
€9 %el 0 U1 —;—uz ug + %ug
Ui 0 —Ux 0 0
U2 0 —%’LLQ 0 0 Up
us —Uy —U2 — %u3 0 —Ui 0
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4. A=0
L] ] eo e2 w1 up g
€1 0 —€1 0 0 Uy
es e 0 Uy Ug
(751 01 —U1 0 aeq
U9 0 0 0 0 u(f
us —U; —Uy —Q&e1r —U2
5.2=0
[,] €1 €2 Ui Ug U3
€1 0 —e€1 0 0 Ui
€2 € U1 0 U9
wi | 0 —wm @ 0 e
Uz 0O 0 0 0 @
us —U;y —U2 —€1 0 0
6. A=0
[,] er ez ur uz ug
e 0 —e 0 0 wu
5 e 0 w0 uy
U1 d —U1 0 0 —e€1
Ug 0 0 0 0 0
us —Uy —U2 €1 0 0

Then
aen=(g *o1) ae=("o 0).

and for z € g the matrix B(z) is identified with z.

Lemma. Any virtual structure q on generalized module 2.16 is equivalent to
one of the following:
a) A ¢ {0,1,2)
Ci(e1) = Ci(e2) = 0;

b) A =2
0 00
02(61)=(p 0 0>, Ca(ez) = 0;
c)A=1
0 0
03(61)207 03(62)=<0 g 0)’
d)A=0
-p 0 O
Cy(er) =0, Cules) = P )
(er) e=(7 00
Proof. Put

1
Ca1 Cgg Ca3

C(rzz-)=(cl1 12 c%f"), i=1,2.
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" Let us check condition (6), Chapter II, for ey, es:

C([e1, e2]) = A(e1)C(e2) — C(e2)B(er) — A(e2)C(e1) + Ce1)B(e2)
We have:

()"‘1)031 (A_l)cgz (/\_1)633 _ 00 0%1 _
0 0 0 0 0 c%l

1 1 1 1
0 0 €31 ACgy  Cgo + ACpg

1 1 1
=(A-1) €11 €12 Ci3
= PSR R
21 €22 Ca3

We obtain the system of linear equations:

. ((1 - )‘)0:111 (1-— )‘)C%z (1- )‘)Cis) + (Ch Aciz Ciz + )‘0}3) —
0

((A=Deiy = (A =1)e3; + Aeiy

(A=Dely = (A =1)epy — ey

A=Dely = =1)edy — ety + (A = 1)cis +eip + Acqs
ﬁ A=1e}; = cp

(A=1Dchy = Az
{ (A= 1)ezs = Acys — 51 + cay

1°. X\ ¢ {0, 3,2}.

Any virtual structure ¢ on generalized module 2.16 has the form:

1—\)c2, 1z2¢2, !
C’(el)=(( 0)21 AO 22 céj ’

2 2
021 Cyg Ca3

C(ez) = ( > )\052 + )‘613 +(A=1)c3s oy C%s) _

2
2 C23 022

€1 >y T T
Now put Cy(z) = C(z) + A(z)H — HB(z). Then Ci(e1) = Ci(e2) = 0.
By corollary 2, Chapter I, the virtual structures C' and C'; are equivalent.

2°. A =2.
Then any virtual structure ¢ on generalized module 2.16 has the form:

1 1 1 2 2
Cley) = ( _‘1:23 C12 6%3 > Cleg) = (011 6121 ) 013 )
, - .
€21 0 a3 33 —2ciy cf —cip — 2y

1.2 1.2 1.2 1.2
H:(ZC” 312 34 961:»,)

(1=2) /Ae2,+(A—1)c2, 1 c2 2, c?
7= ( py LEGT Iy v iy ) (2)\ 1)2)
= 2 .
C

Put

1 11
€23 —C2 3¢
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Now put C3(z) = C(z) + A(z)H — HB(z). Then

0 00
02(61)=<c%1 0 0), 02(62)=0.

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.
3. A=1.
Any virtual structure ¢ on generalized module 2.16 has the form:
1.2 2 1 2 1.1 _ 1.2 2 2
cen= (15 B ), o= (BripTid b D).
€21 €21 C22 Ca3

Put 2 2 1 2
H= (2022—0223"‘013 i \ 0 \ )
Ca1 2¢39  2cy3—4cs,

Now put C3(z) = C(z) + A(z)H — HB(z). Then

2
03(61)20, C3(62)=<8 6(1)2 8)

By corollary 2, Chapter II, the virtual structures C' and C3 are equivalent.

4°. A =0.
Any virtual structure ¢ on generalized module 2.16 has the form:

2 1 1 1 2 2 2
C(er) = €21 €12 C13 Cley) = €12 — €3 C12 C13
0 0 &) 3, 0
Put
0 -2, =2, —¢?
H = 12 12 ~ €13
T\ cl cl )
21 12 13

Now put Cy(z) = C(z) + A(z)H — HB(z) for z € g. Then

1 2
— _(ci2—ci3 0 0
04(6]_) - 0, 04(62) = ( 0 0 653 _ 6%2) .
By corollary 2, Chapter II, the virtual structures C' and C, are equivalent.
This completes the proof of the Lemma.

Let (g,9) be a pair of type 2.16. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma.

Consider the following cases:

1°. A = 0. Then
[61, 62] = —e€1,
le1,u1] =0, le2,u1] = —pe1 + u1,
[61,?1,2] = 0, [62, 1.1,2] = 0,
[

61,U3] = Ui, {62,'&3] = pe2 + Uz,
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Put

[u1,u2] = arer + azes + ajuy + agus + azus,
[u1,us] = brey + boeg + Brur + Bauz + Baus,

[ug, us] = c1e1 + caea + y1u1 + YUz + Y3us.

Let us check the Jacobi identity for the triples (e;,uj,ur), 1 =1,2,1<j <k <3
and (uy,ug,us).

1. [61, [ulau2]] + [ula [U‘?a 61]] + [u2a [elaul]] =0
—age1 +azu; =0
1. a3 = 0
2. ag = 0

2. [ex, [u1, us]] + [u1, [us, e1]] + [us, [e1,u1]] = 0
—bger + B3u; =0
3. B3 =0
4.50=0

3. [e1, [uz, us]] + [uz, [us, e1]] + [us, [e1, u2]] = 0
—c2e1 + YUy + aje; + ayuy + azuz + azuz =0
5.a1 —c3 =0
6. a1 + Y3 = 0
7. Q9 = 0

4. [621 [u17u2]] + [U‘l) [Uz, 62]] + [u27 [62,U1}] =0
are; + ay(—per +u1) —arer —aju; =0
8. a1p = 0

5. [e2, [u1, us]] + [u1, [us, e2]] + [us, [e2,u1]] = 0
bieiBi(—per +u1) — arer — ayug — pPey + puy — bres — Prug — Paug + puy =0

9.8, =0
10. p2 + a1 +pB =0
11. 2p = oy

6. [e2, [ug, us]] + [uz, [us, e2]] + [us, [e2,uz]] =0
cier + 71(u1 — pe1) + v3(pez + uz) =0

12. ¢y —py1 =0
13. v3 =0
14. Y1 = 0

7. [ur, [uz, usl] + [uz, [us, u1]] + [us, [u1,u2]] = 0
0=0
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It follows that the pair (g,g) has the form:

L] | e e u1 Usg ug

e 0 —e 0 0 u

6; e1 0 ! Uy 0 u;

Uy 0 —u 0 0 bie1+Fruq
Ug 0 0 0 0 Y2 U2

u3 —u; —uz —biei—Prur  —yus 0

1.1°. Y2 = 0, b1 =0.
Then the pair (g,g) is equivalent to the trivial pair (g;,91) by means of the
mapping 7 : g1 — @, where

m(e1) = e1,

m(e2) = e1 + ea,

m(u1) = —%61 + u1,

7‘-(“2) = U2,
_ B
7I'(’LL3) = 5—(61 + 62) — u1 + us.
1.2°. Yo = 0, by > 0.

Then the pair (g,g) is equivalent to the pair (gs,gs) by means of the mapping
7 : @5 — g, where

m(e1) = eq,
7!'(62) =e; + ez,
1 B
W(ul) - \/IZ(_ 2 e1 + ul)’
1
7T(U2) = ——=1Usy,

Vb1
1 b1
m(uz) = \/E(us u + (e1 + €2)).
1.3° v, =0, b <O0.

Then the pair (g,g) is equivalent to the pair (gs,g¢) by means of the mapping
7 : g6 — @, where

m(e1) = ey,
m(ez) = €1 + e2,
m(u1) = \/i_bl(_%el + u1),

1

m(ug) = 7 Uz,

-3

_ B
7T(U3) = \/__bl(’u,g — Ui + ?(61 + 62)).




124 III. THE CLASSIFICATION OF PAIRS

1.4°. Y2 ;é 0.
Then the mapping 7 : g4 — @, such that

m(e1) = 7ze1,

m(e2) = e1 + eq,

m(uy) = _%1"31 + ug,

1
m(uz) = ;2‘“2,

w(ug) = %(%1—(61 + e2) — u1 + us)

establishes the equivalence of the pairs (g,g) and (g4,84)-
2°. X ¢ {0, 1,2}. Then

[e1, 2] = (A = 1)ex,

[e1,u1] =0, [e2, u1] = u1,
le1,u2] =0, [e2,uz] = Aug,
[613 ’U,3] = ui, [62,U3] =1ug + >\U3,

Put

[u1,uz] = are; + azes + ayuy + azus + asus,
[u1,us] = bies + baeg + Brus + Baug + Paus,

[uz,us] = crer + caea + y1u1 + Yausz + Ysus

Using the Jacobi identity we see that the pair (g,9) has the form:

A # % e1 € Uy U2 usz
€1 0 ()\ — 1)61 0 0 Ui
€9 (]. - )\)61 0 Ul )\’u,z '%) + /\U3
u1 0 —uj 0 0 0
Ug 0 —Au 0 0 0
us —u1  —us—dus 0 0 0

and
A= % e1 €9 U Ug Uz
€1 0 -3 €1 0 0 Uy
€2 %61 0 Uy %—’LLQ U9 + §U3
U1 0 —Uq 0 0
U9 0 "%'UZ 0 0 ciéy
us Uy —uUz— %U3 0 —Ci1€1 0
2.1°. X # 1. Then the pair (g, g) is trivial.
2.2°. A=1.

2.2.1°. ¢; = 0. Then the pair (g,g) is equivalent to the trivial pair (g1,91).
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2.2.2°. ¢; # 0. Then the pair (g,g) is equivalent to the pair (g2,92) by means
of the mapping 7 : go — @, where
m(e1) = cre1,
7T(62) = é2,
m(u1) = cruq,

m(uz) = ug,

7T(U,3) = us.
3°. A =2. Then
[617 62] = €1,
le1,u1] = pea, [e2,u1] = uq,
le1,u2] =0, [e2, uz] = 2uq,
ler,us] = u1, [e2,us] = ug + 2us,
Put

[u1,u2] = are; + azes + ayus + agus + azus,
[ui,us] = brey + baea + Bruy + Paus + Baus,

[uz,us] = cre; + coea + y1u1 + Y2us + Ysus

Using the Jacobi identity we see that the pair (g,g) has the form:

[,] I €1 €2 Uy Uz Uus
e 0 e 0 0 U
e; —eq 01 U1 2ug  Ug +12u3
751 0 —Uuq 0 0 0
Ug 0 —2u 0 0 0
us —U1 —Ug — §U3 0 0 0
We see that the pair (g, g) is trivial.
4°. )\ = % Then
1
le1,e2] = —5eL
[e1,u1] =0, le2,u1] = u1,
1
[617u2] =0, [627u2] = pe1 + '2‘u2’
1
[61,U3] = Ui, [62,U3] = U2 + 57.1,3.
Put

[u1,u2] = are; + ages + ayuy + aug + azus,
[u1,us] = bies + baeg + frus + Poug + Bsus,

[ug,us] = c1e1 + c2e2 + y1u1 + Yous + Y3us
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Using the Jacobi identity we see that the pair (g,g) has the form:

[,] e1 €2 up U u3

(53] 0 —%61 0 0 U7

€s %61 0 Uy %UQ U + %’u,3
U1 0 —Ux 0

U2 0 —‘%"UQ 0 0 Y1U1
us —U; —Ug — 5U3 0 —Y1U1 0

4.1°. 41 = 0. Then the pair (g,9) is equivalent to the trivial pair (g1,81)-
4.2°. 41 # 0. Then the pair (g,g9) is equivalent to the pair (gs,g3) by means of
the mapping 7 : g3 — @, where

m(e1) = 7e1,

m(ez) = ea,
m(u1) = y1u1,
m(ug) = ua,
m(us) = us.

Now it remains to show that the pairs determined by Proposition 2.16 are not
equivalent to each other.
Since dimD%g; # dim D%g,, we see that the pairs (@1,g1) and (g2,92) are not

equivalent.

The mapping 7 : g5 — gs such that

m(ei) =€, 1 =1,2,

7r(u1) = Ui,
7T(U2) = U2 — €1,
m(us) = us,

establishes the equivalence of the pairs (g3,93) and (85,94 ), where the latter has the

form:

[a] €1 €2 Uy  Ug Uug
el 0 —%el 0 0 Uq
1 1 1
€2 5€1 0 up Fuz uUztgzuste;
Uy 0 —U1 0 0 0
Ug 0 —1y, 0 0 0
Uus —U1 —u2—5u3—61 0 0 0

Consider homomorphisms

f:31/(D’f) — gl(3,R),

f85/(D*g5) — gl(3,R),

where f(z) and f'(z) are the matrices of the mappings adpg,  and adpg, = in basis
the {e1 + a,e2 + a,uz + a,us + a}, a = g1 /D@1 = gy /D?g5.



2. TWO-DIMENSIONAL CASE 127

Since the subalgebras f;(g:/(D%8:)),¢ = 1,3 are not conjugate, we conclude that
the pairs (g1, g1) and (@3, gs) are not equivalent.

Since dim Z(g;) # dim Z(g4),¢ = 1,5, 6, we see that the pairs (g4,94) and (gi,9:)
1 =1,5,6, are not equivalent.

Consider homomorphisms

fa: 4@4& - 9[(3aR)a

fs:8; — gl(3,R),
where fo(z), fg(z) are the matrices of the mappings adpgs and ad’DﬁZ in the basis

fixed before.
Since the subalgebras fo(gg) and fﬁ(ﬁf ) are not conjugate (if a # ), we con-
clude that the pairs (g4,94) with different values of parameter « are not equivalent.
Consider homomorphisms

fi:gi — gl(3,R), i =1,5,6,

where f;(z) is the matrix of the mapping adpg; = in the basis {e1, ez, u1,uz, us}.
Since the subalgebras f;(g;) are not conjugate, we conclude that the pairs (gi,8i),
1 =1,5,6, are not equivalent.
Thus the proof of the Proposition is complete.

Proposition 2.17. Any pair (g,g) of type 2.17 is equivalent to one and only
one of the following pairs:

1.
[7] l €1 €2 Up Uz U3
€1 0 0 0 Uy
€9 0 0 0 0 wu
U1 0O 0 0 0 ¢
Ug 0 0 0 0 O
Uus —Uu1 —U9 0 0 0
2.
[a] I €1 €2 Ui U2 Uus
€1 0 0 0 0 U1
€9 0 0 0 0 Ug
U1 0 0 0 0 €1
Ug 0 0 0 0 aes
Uus —U; —Uz —€1 —Qe€2 0
3.
[,] l €1 €2 U Ug usg
€1 0 0 0 Uuq
e 0 0 0 0 Ug
U1 0 0 0 0 —€1
Ug 0 0 0 0 aes
us —uy —Ug €3 —aeg 0
4,
[a] | €1 €2 (751 Ug U3
el 0 0 0 Uy
€9 0 0 0 0 Ug
Uy 0 0 0 0 ae; — €z
Ug 0 0 0 0 e1 + aes

U3 —uy; —Uz ez —Qae; —e] — oeg 0 ,a20
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5.
[[] | eo e ur uy wug
€1 0 0 Ui
€2 0 0 0 0 wu
s 0 0 0 0 ¢
Ug 0 0 0 0 e
us —u; —uz 0 -—e 01
6.
[a] | €1 €2 Ui U2 Usg
€1 0 0 0 0 (75}
€2 0 0 0 0 Ug
Uq 0 0 0 0 €1
Ug 0 0 0 0 €1+ ez
U3 —u; —Uy —e1 —€]— € 0
7.
[)] I €1 €2 Ui Ug Uug
€1 0 0 0 Uy
€2 0 0 0 0 Ug
Uy 0 0 0 0 —e€1
U2 0 0 0 0 e1 — €2
us3 —u; —Uz € —e1ter
8.
[,] | €1 €2 Ui U2 %]
e1 0 0 0 0 Uy
€ 0 0 0 0 Ug
Uy 0 0 0 0 der + uq
U9 0 0 0 0 ﬁez + ausg
us —uy; —uz —be; —ui; —fey— aus 0 , —l<axl
9.
[7] I €1 €2 U1 Ug UuUg
€1 0 0 0 0 Uy
€2 0 0 0 0 U2
Uy 0 0 0 0 derter+uy
Us 0 0 0 0 vei+ Bes+auq
us3 —uy —ug —bej—es—uy —ye;—fPes—auy 0 , —l<axl
10.
[7] | €1 €2 Ui U2g U3
€1 0 0 0 U1
€9 0 0 0 0 Ug
Uy 0 0 0 0 be -|—’LL1
Ug 0 0 0 0 e1 + Peg + aug
us —uy; —uy —bey —u; —e; — fPey — ausg 0 , —l<axl
11.
[,] | €1 €2 Ui U3 us
€1 0 0 0 0 Ui
€ 0 0 0 0 U
s 0 0 0 0 1}
U2 0 0 0 0 €2 ‘5 Uy
Uus —U1 —U9 0 —€2 — U1
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12.
L] ] eo e w Uy u3
€1 0 0 0 U1
€ 0 0 0 0 u
s 0 0 0 0 ]
Ug 0 0 0 0 —eq + uy
Uus —Uy —U3 0 €y — Uy 0
13.
[a] l €1 €2 Ui U2 us
€1 0 0 0 U1
€9 0 0 0 0 U9
Ui 0 0 0 0 €1
Ug 0 0 0 0 aey + uy
Us —U; —Ug —€1 —0eg — U]
14.
(1] @ e2 w Uz u3
€1 0 0 Uy
€2 0 0 0 0 Ug
Uy 0 0 0 0 —e
U2 0 0 0 0 aeg -|— Ui
U3 —Uu; —Uz €} —aey—Up 0
15.
[,] | €1 €2 Ui U2 us
e1 0 0 0 0 U
e 0 0 0 0 Ug
Ul 0 0 0 0 aep
U2 0 0 0 0 e1 + aez + w1
us —UuU3 —Ug —Qey —€; — Qe — Uy 0
16.
[a] | €1 €2 U1 Ug Uus
€1 0 0 Ui
€2 0 0 0 0 wu
us 0O 0 0 0 ¢
U3 0 0 0 0 u
us —U; —U3 0 —Ul 01
17.
[7] €1 €2 Uy U2 usz
€1 0 0 0 0 Uy
€2 0 0 0 0 U2
Uy 0 0 0 0 €9
U2 0 0 0 0 [e75] + ,@62 + (751
us —u; —us —ey —ae; — Pes —uy 0
18.
[,] | €1 €2 U1 U2 ug
€1 0 0 0 0 Uy
es 0 0 0 0 Ug
Uy 0 0 0 0 Yeq + Uy
Ug 0 0 0 0 aer + feg + uy + ug
us —Uu; —Uz —Y€2—U; —OE€ — ,362 — Uy — U 0
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19.
[7] l €1 €2 Ui U2 U3
€1 0 0 0 0 Ul
€2 0 0 0 0 U2
U1 0 0 0 0 aey + uq
Usg 0 0 0 0 Bea + uy + ug
us —U1 —Ug2 —Ce1] — Uy —-662 — U1 — Uy 0
20.
[a] l €1 €2 U1 U2 Uus
€1 0 0 0 Uy
€2 0 0 0 0 U2
Ui 0 0 0 0 ey + U1
Ug 0 0 0 0 Ber + aeg + uy + ug
us —UuUy —Uy —a&e;] — Ul —,861 — (€2 — U1 — U2 0
21.
[,] | €1 €2 U U9 Ug
e1 0 0 0 Uy
€9 0 0 0 0 U9
Uy 0 0 0 0 aey + uy
Ug 0 0 0 0 e1 + aegz + ug
U3 —Uy —U —oe]— U] —€] — ey — Uy 0
22.
[a] | €1 €2 Uy Ug U3
e1 0 0 0 0 Uy
€2 0 0 0 0 Uo
Uy 0 0 0 0 ae; — fBes + uy
Ug 0 0 0 0 Ber + aes + uz
U3 —u; —up —aey+ Bes —uy —fe; — aey — usg 0 , B>0
23.
[a] ‘ €1 €2 U1 U3 U3
€1 0 0 0 0 Ui
€2 0 0 0 0 U2
Uy 0 0 0 0 aey + uy
U3 0 0 0 0 Bes + usy
us3 —u; —uy —ae;—u; —fPes —usg 0 Lo <|B|
24. |
[a] €1 €2 Ui U9 U3
er|! 0 O 0 0 ug i
e2| 0 0 0 0 Uz |
up| 0 0 0 0 der+yes+aui—usg |
upg| 0 O 0 0 Beitoes+uitaus .
uz | —u; —ug —6e;—yes —auitus —Per—bey—ui—oaus 0 181 |
25.
[,] | €1 €2 U1 U2 Uus
€1 0 0 0 Uy
€9 0 O 0 0 U2 ;
Uy 0 0 0 0 ae; + uy 1
U2 0 0 0 0 ﬂez — U2 i
u3 —uy —us —ae; —uy —fBey+ us 0 , lal<|B| ‘;
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26.
[ | e e uy Uz us
€1 0 0 0 0 Uy
€9 0 0 0 0 U2
uq 0 0 0 0 ae1+Pes+uy
Ug 0 0 0 0 e1tyes—us
u3 —uy —uz —aei—fey—u; —ej—yez+usg 0 , —1< <1
27.

LI ] eo e2 wi wup ug

e 0 0 2e e U

e; 0 0 el (? u;

Uy —2e; —eq & U PATES

U2 —€9 0 —U9 02 0

ug —uy —uy —2ugz 0 0

Proof. Let £ = {e1,e2} be a basis of g, where

0 01 0 0O
€1 = 0 0 O , €2 = 0 0 1 .
0 0 0 0 0 0

Then

A(e1)=<8 8) A(ez)=(g 8)

and for z € g the matrix B(z) is identified with z.

Lemma 1. Any virtual structure q on generalized module 2.17 is equivalent to
one of the following:

Cl(el):(‘: j g)’ 01(62):(; Z) g)

Proof. Put . ‘
] ? t
C(ei)=<c11 12 CP), i=12

Cy1 Cia  Ch3
Let us check condition (6), Chapter II, for ey, e;:

C([e1, e2]) = A(e1)C(ez) — C(e2)B(e1) — A(ea)C(e1) + Cle1)B(e2)
We have: 0 0 o 0 0 &2
(6 00)-(00 )

00 0), (00 dy)_(000
000 0 0 d 000/

We obtain the system of linear equations:
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So, any virtual structure ¢ on generalized module 2.17 has the form:

1 1 1 1 2 2
c c c c c c
_ 11 €12 €13 _ 12 €12 Ci3
C(el) = 1 1 1 ) 0(32) = 1 2 2 .
Ca1 €22 €323 Cag Cyg Ca3

1 2
H = ci3 ci3 0
T\, 2 0/
23 Ca3

Now put Ci(z) = C(z) + A(z)H — HB(z). Then

c, ¢, 0 cd, &2, 0
aen= (G & 0). ae=(3 & 0).

€31 Cao 22 Cag

Put

By corollary 2, Chapter II, the virtual structures C and C are equivalent.

Thus it can be assumed that any virtual structure ¢ on generalized module 2.17
has the form determined in Lemma 1. Then

0,

[613 62]

le1,u1] = per +rez, [ez,u1] = ser + tes,

[e1,us] = sey +tea, [e2,uz] = ve; + wey,
3]

le1, u le2, u3] = uz.

Put

[u1,us] = arer + azes + a1u1 + agus + azus,
[u1,us] = bres + beea + Bruy + Paug + Baus,

[uz,us] = cre; + eaex + y1u1 + Youz + Ysus.

Let us check the Jacobi identity for the triples (e;,uj,ux), ¢ =1,2,1 < j <k <3
and (uy,uz,us).

1. [61, [u17u2]] + [ula [u2a 61]] + [UZ, [61)“’1]] =0
aypey + ayres + agse; + agtes + azur+
+spey + sreg + stey + trey — pse; — pteg — rve; —rweg =0
l.oygptagss+ts—rv=20
2. apr+oagt+sr+t2—pt—rw=0
3. o3 = 0

2. [er, [u1, us]] + [u1, [us, e1]] + [us, [e1,u1]] = 0
Biper + Bires + Baser + PBatey + Bauy — puy —rug =0
4. ip+ B28 =0
5. Byt =0
6. B5=p
7.r=0

3. [ex, [ua, us]] + [uz, [us, ex]] + [us, [e1, uz]] = 0
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viper + yase1 + yatea + y3ur + are; + azez + ajuy + agug — Suy —tug = 0
8. vip+v2s+a1 =0

9. 72t+a2=0
10. 3+ a3 =s
11. Olzzt

o ez, [ug, ual] + [u, [uz, e2]] + [uz, [e2, us]] = 0
aise; + ajter + agver + aswes+
+vpe; 4+ swey + tweg — s2e; — steg —tvey —tweg =0
12. acus+agv+vp+ws—s2 —tv=0
13. ajt +asw —st =0

o [e2, [u, us]] + [u, [us, e2]] + [us, [e2, u1]] = 0
Biser + Bites + Baver + Powes + Bsuz — (a1e1 + ages + aquy + agug)—
—SU1 — tUQ =0
14. Bls +,62v —ay = 0
15. ﬂlt + ﬂz’w —az = 0
16. ,33—0[2—t=0
17. a1 +s=0

o le2, [uz, us]] + [u2, [us, e2]] + [us, [e2, uz]] = 0
118€1 + Y1tez + yaver + yawes + yauz — vur — wug =0
18. vis +72v =0
19. ’ylt + YW = 0
20. Y3 = W
21.v=0

o [ua, [ug, us]] + [u2, [us, ur]] + [us, [ur, uz]] = 0
—ciper — ca(seq +teg) + ya[u1, ug) + y3lur, us) + bi(ser + tez) + ba(ves + weg)+
+B1[u1, ug] — Bsuz, us] — aguy — agug — azfuy, us] — azfug, uz] =0
22 —_ clp—czs+72a1 +’)’31)1 -I- 618 -|— bz’v -I— ,31(11 b ,8361 b Ollbl —0C1 =0
23 —_ Czt + 72a2 + ')/3b2 -|- blt -I- bz’w + ﬂlaz —_ ,3302 —_ a162 — OiCy = 0
24. ypa1 + 7361 —maz — Py —a1 =0
25. y200 +73P2 + Braz — Y23 — P20 — ag — Y202 =0
26 —_ 0!1,33 — Q273 +’)/2013 + ﬂlolg = 0

Consider the following cases:
1°. p? + 82 + 2 + w? #£0.
It follows that the pair (g,g) has the form:

[7] | €1 €2 3 U2 us
e1 0 0 2te sey+teg Uy
€2 0 0 sep +%ez S€eg Ug
up | —2tey —teg—sey 0 tug —suq bie1+boes+2tus
ug |—se1—teg —2ses Su1—tug cie1tcaes+2sus
us —U1 —U?2 —b161— 262—2t’U,3 —0161—6262—ZSU3 0 )

where p = 2t, w = 2s. It follows that s +t2 # 0. The mapping 7 : §' — g, such
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that
7!’(61):62, ﬂ(u1)=’LL2,

m(eg) = e1, w(u2)=u1,
m(us) = us,

establishes the equivalence of the pairs (g,g) and (g’,g'), where the latter has the
form:

[,] e1 €2 Uy U u3

e1 0 0 2seq tey+ses Uy

€ 0 0 tei+seq étez Ug

up | —2se; —sep—tey 0 Sug—tuy b e+ bheq +2sus
Uy |—teyj—seqy —2tes tui—susg 0 cie1tcaer +2tug
us —uq —ug  —ble;—bhey—2sug —cley—chea —2tus

Thus, without loss of generality, it can be assumed that ¢ # 0. Then the pair
(9,9) is equivalent to the pair (g27, g27) by means of the mapping 7’ : go7 — @,
where

1

m'(e1) = —t~el,

S
7("(62) = €3 — '{61,

1
7' (uy) = ~u1,
, S
™ (Uz) = Uz — ?Uh

o bt bl s
! _ 1 2 2
7 (ug) = us + yrie! + 3162~ Top €l

(we have ¢} = ¢4 =0.)

2°. p=s=t=w=0.
The pair (g,g) has the form:

[,] | €1 €2 Ui U2 U3
e1r] 0 O 0 0 U1
€2 0 0 0 Ua
up | 0 0 0 0 bie1+ by €2 +,31u1-|—ﬁ2u2
uz | 0 0 0 0 ciertcaea +yu1+v2u2
Ug [(—U1 —U2 —blel—— 6262 ~ﬂ1u1—,82u2 —C1€1— C2€9 —’71U1~—-’)/2UQ O

(*)
There is a one-to-one correspondence between the set of pairs (*) and the set of
pairs (A, B), A, B € gl(2,R), where

(2 2) (2 2)
€1 C2 71 72

Lemma 2. Suppose (g,9) and (g§', g') are the pairs corresponding to pairs (A, B)
and (A', B') of matrices respectively. Then the pairs are equivalent if and only if
there exist A € R*, and S € GL(2,R) such that

A= )2548-1 .
B' = ASBS~! %)
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Proof. Suppose condition (**) is satisfied. Then the pairs (g, g) and (g',g’) are
equivalent by means of the mapping 7 : g’ — g, where the matrix of 7 has the form:

S 0 0
0 AS O
0 0 A

Suppose (g',g') is equivalent to the pair (g, g). Then there exists ' : g’ — g such
that 7'(g') = g. Its matrix has the form:

S 0 «
A=10 AS |, SeGL@ZR), \eR*
0O 0 A

in terms of the basis fixed before. This immediately implies condition (**).
Thus the proof of the Lemma is completed.

Let us remark that the classification of pairs (*) (up to equivalence) reduces to
the classification of the pairs of matrices (4,B), A,B € gl(2,R) (viewed up to
transformations (**)). As a result of the latter classification we obtain (g, g:),
i=1,... 9.

Since the pairs (g;,8i), ¢ = 1,...,26, are solvable and the pair (g27,g27) is un-
solvable, we see that no one of the pairs (gi,8i), ¢ = 1,...,26, is equivalent to the
pair (ga7,g27)-

Thus the proof of the Proposition is complete.

Proposition 2.18. Any pair (g,9) of type 2.18 is equivalent to one and only
one of the following pairs:

1.
[1 ] eo e2 wi us ug
e 0 e 0 0 wu
e% —eq d 0 uy Uil%
Uq 0 0 0 0 0
U2 0 —-uw3 0 0 O
us —Ui —Uus 0 0 0
2.
[LJ ] eo e2 wi us ug
e 0 e 0 0 U
6; —€1 6 0 Uq U,;
Uy 0 0 0  u 0
U2 0 —UuU; —Ux 0 —Uusg
us —U1 —Uus 0 Uus 0
3.
[7] | €1 €2 U3 Ug Uug
€1 0 € 0 0 e + Uy
€9 —€1 0 Uy Us
U 0 0 0 —up 0
U 0 —uy uy 0 0
us —eg—u; —ug 0 0 0
Proof. Let € = {e1,e2} be a basis of g, where
0 0 1 010
er=10 0 0}, e=10 0 O
0 0 O 0 0 1
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ae=(g 0) =3 o)

and for z € g the matrix B(z) is identified with =.
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor es.

Then

Lemma. Any virtual structure q on generalized module 2.18 is equivalent to
one of the following:

clen=(g ¢ o) Clear=o.

Proof. Without loss of generality it can be assumed that ¢ is primary. Then we

have: ) )
_ (e a2 O (0 0 O
Olea) = ( 0 0 C%s)’ Clea) = (Cgl ng 0/

Let us check condition (6), Chapter II. After some calculation we obtain:

o 0 0 0 0
(% % 3) (3 4, )

0 0 O
H = ,
(0%1 Ciz 0>

and Cy(z) = C(z) — A(z)H + HB(z) for = € g. Then

Cﬂq)z(ﬁ ; g), Ci(ez) = 0.

By corollary 2, Chapter II, the virtual structures C and C; are equivalent.
This completes the proof of the Lemma.

Let (g, g) be a pair of type 2.18. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Then

le1, e2] = €1,
ler,u1] =0, [e2,u1] =0,
le1,uz] =0, [e2, u2] = uy,

[el,us] = peg + u1, [627u3] = us.

Since the virtual structure ¢ is primary, we have:

g=a"Y) o m) oa™ ),
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where
g71(h) = Rey,
§©(h) = Rez @ Ruy @ Ruy,
ﬁ(l)(b) = Rus.

Therefore,

[u1, ug] = azes + ajui + asua,
[Ul,ua] = f3us,

[ug, us] = yaus.

Using the Jacobi identity we see that

[u1,uz] = —(p + ¥3)ua,
[ula ’LL3] = 01

[Uz,us] = Y3us,

where the coefficients a; and p satisfy the equation y3p = 0.
Consider the following cases:

1°. 73 = p = 0. Then the pair (g, g) is equivalent to the trivial pair (g1, g1).
2°. 43 # 0, p = 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means
of the mapping 7 : go — @, where

m(e1) = e1,
m(ez) = eg,
m(u1) = —y3u1,
T(u2) = —73uz,
m(us) = —y3us.

3°. v3 =0, p#0.
Then the pair (g,g) is equivalent to the pair (gs,gs) by means of the mapping
7 :gs — @, where
m(e1) = eq,
m(ez) = eq,
7"'(ul) = DU,
7r(u2) = puz,
’/T('LLg) = pus.

It is evident that the pairs determined in the Proposition are not equivalent to
each other.
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Proposition 2.19. Any pair (g,g) is equivalent to one and only one of the

following pairs:
1.
[7] €1 €2 U1 U2 usg
€1 0 (/\ — 1)61 0 0 U1
€2 (1—=XNey 0 up Uy +uz Aus
U1 0 —ul 0 0 0
Uz 0 —U1 — U2 0 0 0
ug —u3 —Aug 0 0 0
2 2=0
[7] l €1 €2 Uq Ug ug
€1 0 —€1 0 0 U1
€2 € 0 up up+ug 0
us 0 w1 0 0
Ug 0 —Ui1 — U2 0 0 e
us —U1 0 0 —e€1 01
3. A=0
[a] I €1 €2 Uy U2 us
e 0 —e 0 U
e; e 0 ' Uy Ui+ U2 01
s 0 —u; O 0
Ug 0 —uy—us 0 0 —eq
Uusg —U1 0 0 e1 0
4. A=0
[a] l €1 €2 (751 Ug U3
€1 0 —e1 0 0 (751
€es e 0 Uq U1 + ug 0
Uq O] —uq 0 0 Uy
U2 0 —U] — Uy 0 0 aey + uq
us —uUq 0 —U; —Qep — Ug
5. A=1/2
[] €1 €2 (31 U us3
€1 0 —%61 0 0 Ui
ez €1 0 up up4uz e+ sus
31 0 —U1 0 0 0
Us 0 —u;—1ug, 0 0 0
us —u; —e; —=suz 0 0 0
Proof.
Let £ = {e1,e2} be a basis of g, where
0 0 1 11 0
€1 = 0 00 , €= 01 0
0 0 O 0 0 A
Then

o

ae=(g *51) de= ("5 0)s

and for z € g the matrix B(z) is identified with .
By b denote the nilpotent subalgebra of the Lie algebra g spanned by the vec-
tor es.
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Lemma. Any virtual structure ¢ on generalized module 2.19 is equivalent to
one of the following:
a) A#0, A # 3, and A # 2
01(61) = 01(62) = 0;

B)A=0

0 0 O -p 0 O
02(61):(0 0 0)1 02(62):(0p 0 p)a pER,

c) A=

DO [

0 0 0
03(61)=(8 g), 03(62)—_-(0 0 g>, p ER;

o

d)A=2

0 0 O 0 0 0
04(61)=<O P 0), 04(62)=<0 0 0), pER.

Proof. Let q be a virtual structure on generalized module 2.19. Without loss of
generality it can be assumed that ¢ is primary. Consider the following cases:

a) A# 0, A\ # %, and A # 2. Since
8*(h) DRez, 4 7V(h) O Rey,

UD () > Ruy & Rug, UM(h) D Rus,
we have

C(el)=C(62)=(g : 8)

So, the virtual structure g is trivial. Put Cy = C.
b) A = 0. Since

Q(O)(b) = Re?a g(l)(b) = Rela
UD(h) = Ruy & Ruy, UO(h) = Rus,

0 0 ¢ 2, 2, 0
0(61)=<0 0 (1)3), C(ez)=((1)1 (1)2 c%3>.

Let us check condition (6), Chapter II, for z,y € £.

we have

C([e1, e2]) = A(e1)C(e2) — C(e2)B(e1) — A(e2)C(e1) + C(e1)B(ez).

We have:
0 0 —ci3\ _ (0 0 —cf3\_(0 0 ) _
0 0 0 0 0 0 0 0 O
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_(0 0 e}, (000
00 0 00 0)

It follows that c2, 4+ %, = 0, and the virtual structure ¢ has the form:
11 T €23

0 0 cl —c2, 2, 0
C(el)=(0 0 (1)3)’ 0(62):( 0 0 cga)'

2
_(¢ci2 O 0
H—(O 0 c%a—c%z)’

and Cy(z) = C(z) + A(x)H — HB(z) for z € g. Then

00 0 —Z. 0 0
CZ(el)z(o 0 0)’ 0(62):( 0 0 cgg)'

Put

By corollary 2, Chapter II, the virtual structures C' and C; are equivalent.

¢) A= 1. Since
g(O)(b) = R62a g(1/2)(b) = Rel)

UMD (h) = Ruy & Rug, U (h) = Rus,

o@=(o 5 o) =30 F)

Now put C3 = C.
d) A = 2. Since

we have

@(0)({)) = Re?a g(_l)(b) = Rela
UD(h) = Ruy ® Rug, UP(h) = Rus,

0 0 O 0 00
cer=(4 a4, o) “=(5 5 o)

Let us check condition (6), Chapter II, for e; and e;. We have

0 0 0\ _ (00O N 0 0 0
¢ ¢ 0/ \0 00 ¢ cptey 0)°
It follows that c}; = 0, and the virtual structure ¢ has the form:
0 0 O 0 00
Cler) = (0 chs 0)’ 0(62)‘(0 0 0)‘

Now put Cy = C.
This completes the proof of the Lemma.

we have



2. TWO-DIMENSIONAL CASE 141

Let (g, g) be a pair of type 2.19. Then it can be assumed that the corresponding '
virtual pair (g,g) is defined by one of the virtual structures determined in the "
Lemma. Consider the following cases:

1°. A #0, A # 1, and \ # 2. Then

[61, 62] = ()\ - 1)61,

[el,ul] =0, [ez,ul] = Uy,
[61,u2] =0, [62,U2] = Uy + Ug,
[61» Us] = Ui, [ez,us] = Aug.

Since the virtual structure ¢ is primary, we have

a%(h) = g*(h) x U%(p) for all & € h*.
Thus |
§9®5) D Res, 5 V(B) O Rey, |
UD(h) > Rur & Ruz,  UN(h) > Rus,
and
[u1,uz] € §2(b),
[u1, us] € g+ (b),
[uz, us] € gV ().
1.1°. Suppose A = —1. Then

[Ul,uz] = a1€y1,
[u1,u3] = baes,
[Uz,us] = C2€3.
Let us check the Jacobi identity for the triples (e;, uj,ur), ¢ =1,2; 1 <j <k < 3,

and (u1, ug,us):

1. [e1, [u1,us]] + [us, [e1, u1]] + [u1, [us, e1]] =0
—26262 =0
1. b2 =0

2. [eq, [ug, us]] + [us, [e1, uz]] + [uz, [uz, e1]] = 0
—2c0eq +aje1 =0
2. Cy = 0
3. ay = 0

It follows that the pair (g, g) is equivalent to the trivial pair (g1,91).
1.2°. Suppose A # —1. Then

[ula u2] =0,

[u17u3] =0,

[Ug, U3] =0.
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The pair (g, ) is equivalent to the trivial pair (g;,g1).

2°. A =0. Then
[617 62] = —€1,
[e1,u1] =0, [e2,u1] = u1 — pe,
[61, u2] =0, [52, Uz] = uy + ua,
[61, U3] = U1, [62, u3] = pes3.

Since the virtual structure ¢ is primary, we have

39(h) = Re @ Rus, g (h) = Res ® Ruy & Ruy.

Therefore
[u1,us] € 2 (h),
[u1,us] € g (B),
[uz,us] € gV (h),
and

[ul,uZ] = 07
[ui,us] = brer + Brui + Bauaz,
[ug, us] = cre1 + y1u1 + Y2us2.

Using the Jacobi identity we obtain:

{ p=0by =B =0,
Y2 = 1.
It follows that the pair (g, g) has the form:
[>] | €1 €2 U1 Uz us
€1 0 —€1 0 0 Ui
€2 eq 0 uy u1 4 ug 0
Uy 0 —uq 0 0 Bru1
Ug 0 —ujp—us 0 0 cier + viu1 + frug
u3 —uy 0 —Bur  —crer — 71u1 — Prug 0

2.1°. Suppose f; = 0.
2.1.1°. ¢; = 0. The pair (g, g) is equivalent to the trivial pair (g1, g1) by means
of the mapping 7 : g1 — @, where

m(e1) = es,
m(e2) = ea,
m(u1) = uq,

m(uz) = ug — y1€1,

m(us) = us.
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2.1.2°. ¢; > 0. Then the pair (g, g) is equivalent to the pair (g2, g2) by means
of the mapping 7 : g2 — @, where

n(e1) = ea,

m(ez) = ez,
1

NG

1
m(uz) = ﬁ(uz - mer),
1

—\/C_I’LL3.

2.1.3°. ¢1 < 0. Then the pair (g, g) is equivalent to the pair (gs, gs) by means
of the mapping = : g3 — @, where

m(u1) = —=ua,

7T(U3) =

m(ey) = ea,

m(eg) = eg,
1
m(u1) = *\/:—c—lul,
1
m(uz) = \/:c—l(uz — 71€1),

1
m(ug) = ﬁ

2.2°. Suppose By # 0. Then the mapping 7 : g4 — g such that

us.

n(e1) = Pieq,

m(ez) = ea,

m(u1) = us,

m(ug) = ug — Y161,
1

7T(U3) = Eua,

establishes the equivalence of (g,g) and (g4, 84). Here a = 51;2'(01 + Bim)-

It remains to show that the pairs (g;,8i), ¢ = 1,2, 3,4, are not equivalent to each
other.

Consider the homomorphisms f; : g; — gl(3,R), where f;(z) is the matrix of the
mapping adpg;, ¢ = 1,...,4, in the basis {u1, e1,uz}. We have:

T oy =z

fi(gr) = 0 z 0]|lz,yeRy,
0 0 =z
T Yy =z

fa(92) = 0 z yllz,yeR,,
0 0 =z
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f3(g3)= { -y x,yER},

x
T+y y z+y
fa(ge) = 0 r oy z,y €eR}.

O O 8
o' w

0 0 z+y

Since the subalgebras f1(g1), f2(82), f3(83), and f4(g4) of the Lie algebra gl(3,R)
are not conjugate, we conclude that the pairs (g1, 81), (92,92), (83,93), and (94,94)
are not equivalent to each other.

3°. A= % Then
1
[61,62] = —561,
[617u1] == 0) [62,1&1] = Uy,
[61,U2] =0, [62, uz] = uy + ug,
[61,U3] = U1, [62,U3] = pey + -us.

2

Since the virtual structure ¢ is primary, we have

d9(h) =Rez, V(h) = Rus @ Rug, g2 (h) = Re; @ Rus.

Therefore
[u1,u2] € g (h),
[u1,us] € g3/ (p),
[uz, us] € g2 (p),

and
[ul, u2] = 0,

[ul, U3] - 0,
[uz,u3] = 0.
3.1°. p= 0. Then the pair (g, g) is equivalent to the trivial pair (g, g1).

3.2°. p# 0. Then the pair (g,g) is equivalent to the pair (gs,gs) by means of
the mapping 7 : g5 — g, where

n(e1) = ey,
m(ez) = eg,
m(uy) = I—)ul,
1
m(ug) = —uq,
(uz) ’
1
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Since the virtual structures (gs,gs) and (gi,g:) for any ¢ = 1,2, 3,4 are not isomor-
phic, we see that the pairs determined in the Proposition are not equivalent to each
other.

4°. A = 2. Then

[e1, e2] = ea,

[e1,u1] =0, [e2,u1] = uy,

[e1, uz] = pea, [en,u2] = u1 +ua,

le1,us] = w1, [ea,us] = 2us.
Since the virtual structure ¢ is primary, we have:

ﬁ(o)(b) = Rey, Q(l)(b) = Ru; ® Rug,

§2(h) = Ruz, g V(h) = Rey.

Therefore
[u1,uz] € g (h),

[us,us] € §°(p),
[uz, us] € 5(3)(())’

and
[ul, Uz] = o;gus,

[ul’u3] = Oa
[uz, ’U,3] =0.
Using the Jacobi identity we obtain p = a3 = 0. It is clear that the pair (g,g) is

equivalent to the trivial pair (gi,g1).
This completes the proof of the Proposition.

Proposition 2.20. Any pair (g,g) of type 2.20 is equivalent to one and only
one of the following pairs:

1.
[,] | €1 €2 Uy Uz Ug
€1 0 0 0 U1 0
€9 0 0 0 0 u
w“ 0 0 0 0 0
U2 —Uy 0 0 0 0
us 0 —uy 0 0 0
2.
[,] l €1 €2 U1 Uz Ug
€1 0 0 U1 0
e 0 0 0 0 wu
ot 0 0 0 0 0
U2 —U3 0 0 0 e
Usg 0 —Uq 0 —€1 d
3.
[a] | €1 €2 Ui U2 usg
e 0 0 0 e1+u
e; 0 0 0 ! €2 ! uq
Uy 0 0 0 2uq 0
U2 —€1 —Up —E€9 —2u1 0 €2 — U3

usz 0 —uy 0 —eg + ug
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4.
[,] | €1 €2 UuUq U2 Ug
0 0 0 e1+u 0
o 0 0 0 el
Uuq 0 0 S 2161
—e1 —uU; —ey —2u e —u
Zﬁ 10 ! —u21 0 ! —e1 + ug ! 3
5.
[a] | €1 €2 U1 U9 us
e1 0 0 0 e1+u; O
€9 0 0 0 €2 u
Ui 0 0 U1 01
U2 —€1 —Uj —€2 —Ui 0 0
ug 0 —u; 0 0 0
6.
[a] l €1 €2 Uiy Uz U3
a8 g 1o
e e u
w 0 0 0 (0)‘ 0
—-u; —e e
Z;Z; 0 ! —ull 0 —€9 (f
7.
[ | ea ez wi us ug
€1 0 0 Uy 0
e 0 0 0 e up
us 0 0 0 0 0
Us -u; —e; 0 0 O
us 0 -u; 0 0 O
8.
[7] | €1 €2 221 U9 us
e 0 0 0 e1+u 0
e 0 0 0  eite  u
Uy 0 0 0 2u1
Ug —e;1 —u; —eyp —ey —2up 0 ey — Ug
us — U1 0 —€2 + Us
9.
[u] €1 €2 U1 U2 Uug
€1 0 0 0 uq aeq
€2 0 0 0 0 Uy + (a + 1)62
Uy 0 0 0 0 2auq
Ug —Uq 0 0 e1 + aug
Usg —ae; —u; —(a+1l)es —2au;r —e; —aug 0
10.
[,] €1 €2 131 U3 Uus
e1 0 0 0 uy aey
€2 0 0 0 0 u1 + (a + 1)es
Uy 0 0 0 0 (20 + 1)uy
U2 —Uy 0 0 0 e + (Ol + 1)U2
us —ae; —u;—(a+1)eg —(2a+1Du; —eg — (a+ 1)ug 0




11.

12.

13.

14.

15.

16.

17.

18.
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[a] | €1 €2 Uy U2 us
e 0 0 0 u —e
s | 0 0 0 e |u
U1 0 0 0 —€e1 —Ux
Ug —u; —€e1 e 0 —€2
us €1 —u; U1 €3 0
[7] | €1 €2 Ui Uz Uus
0 0 0 Ui —261
0 0 0 e —ez + uy
0 0 0 0 23u;
—uq —ey 0 0 €2 — Ug
261 €g — U1 3u1 Ug — €2 0
[,] I €1 €2 U1 U2 us
e 0 0 0 U —e
e; 0 0 0 "611 Ull
Uy 0 0 0 601 —uy
%) —U1 €1 —€1 [
us €1 —Ui Ul —e9 (f
[,] | €1 €2 Ui Ua Uus
1 1 % o
—e —eq +u
0 0 0 0" i Y
U —uq e1 0 0 ey — U3
us 261 €2 — U3 3U1 U2 — €9
[7] | €1 €2 Uy U9 U3
e1 0 0 0 wuir+e e
€9 0 0 €2 u
us 0 0 0 w0
U9 —U; — €1 —€2 —U3 0
Uus3 —es —u7 0 0
[a] I €1 €2 U1 U2 U3
e 0 0 0 wu;—e e
e; 0 0 0 1--62 ! u21
Ul 0+ 0 0 —6Ll 8
U —u e e U
us 2 4 000
[,] e1 ez Uy Ug us
e 0 0 0 u; +ae; e;+e
e; 0 0 0 ! wes ! ull + eg
U1 0 0 0 auy U
Ug —Uu; — aeyp —aer —ouy 0 01
us —e1 —ey —U;—ey —Up 0 0
[,] €1 €2 Ui U2 Uus3
e 0 0 0 U ae
es 0 0 0 0w+ ae
uy 0 0 0 0 (a+1)u
U2 —U1 0 0 U2
Us —ae; —u; —ae; —(a+u; —ug 0

147
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19.
[7] €1 €2 Ui U9 Uusg
e1 0 0 0 Uy (B+1)es
es 0 0 0 0 u + pesg
Uy 0 0 0 0 a+ Bluy
Ug —uq 0 0 0 a— 1ug
us3 —(B+ 1)61 —u; —fBes —(a+PBlur (1 —a)ug
20.
[7] €1 €2 Ui U2 Uus3
e1 0 0 0 ui + eq (ﬁ + 1)ey
€9 0 0 0 €2 Ui + €2
U3 0 0 0 . U (,3 + 1)u1
Ug —U; — €1 —uy 0 0
Uus —(ﬁ + 1)61 —Uuy — ﬂez —?ﬂ -|- 1)'LL1 O 0
21.
[a] €1 €2 Ul U9 Uus
e1 0 0 0 ui + Ber aey
€2 0 0 0 €1 + ,862 u1 + (O{ + 1)62
Ui 0 0 0 ﬁul — €1 (s 4751
ug |—uy —pPer  —e; —PBey  —fui+e
Us —ae;  —u3—(a+1l)es —auy 0 , 820
22.
[7] €1 €2 Ui U2 usg
€1 0 0 0 Uy aeq
€2 0 0 0 er ur+ (a+1e;
U1 0 0 0 0 (@ — 1D)uq
U2 —Ui —e1 0 0 —U2
us —ae; —u1—(a+1l)es (I1—a)ur ug 0
23.
[’] €1 €2 Ui U2 Uus
e1 0 0 0 aey + uy Bey
e2 0 0 0 aeg —er ur+(B+1)es
Uy 0 0 e1 + auy Pu1
U9 —ozel — Uy —ae + e1 —e1 — QU 0
u3 —Be1  —up — (Zﬁ +1es —Puy 0 ,a=0
24.
[’] €1 €2 Uy U9 us
e1 0 0 0 Uy oeq
€2 0 0 0 —e; uy+ (a+1)eg
Uy 0 0 0 0 (o —1)uy
U2 —U1 (1 —U2
us —ae; —ur—(a+1)es (I1—ajur wu 0
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25.
[,] €1 €2 Ui U9 us
a—1
e1 0 0 0 U] — ey e
€9 0 0 0 —e1 — aeg uy + "‘T"'zez
Uy 0 0 0 -g—el —eg — ﬁzz—g-ul _2_a§+_1u1 - %el
1
up | —ui +aer er toaey —3ey + ey + 2%y 0 3 (u2 + 3us)
— 1 1
us 1—-3—0161 —Uuy — ﬁ;—"—z—eg %61 —_ l‘%ul —E(U2 + 31,&3) 0
26.
[)] €1 €2 Uy U2 Uus
e1 0 0 0 Uy es + aeq
e 0 0 0 0 U1 + aes
U1 0 0 0 0 (a + 1)u1
U2 —U1 0 0 U2
u3 —ex —aey —uy —aey —(a+1l)uyr —ug 0

0 10 0 0 1
es=1({0 0 0], eao=1({0 0 O
0 0 0 0 0 0
Then A(e;) = A(e2) = 0 and for z € g, the matrix B(z) is identified with «.
Lemma 1. Any virtual structure q on the generalized module 2.20 has the form:

0 c, 0 &2, (2
cen=(5 & &) cw=(5 2 B).

Cag  Ca3 22 Ca23

Proof. Put _
Cle;) = (c;k) , 1=1,2.

15€2
1<k<3
Checking condition (6), Chapter II, for e; and e;, we obtain

1 1 _ 2 2 _
ci; =€ =¢jyp = ¢z =0.

This completes the proof of the Lemma.

Let (g,g) be a pair of type 2.20. Then the virtual pair (g,g) is defined by a
certain virtual structure on the generalized module 2.20. Lemma 1 implies that the
pair (g, g) has the form:

[a] €1 €2 U U9 U3
0 0 0 clej+clegt 1es+cl

€1 C1261 2027 UL | C13€17T C33€2

€2 0 0 0  cise1tciper  cfzer+cizeatuy
Uy 0 0 0 z Y

1 1 2 2
U | —C19€1 —Cg9€2—UL  —Cig€1—Chp€2 —T 0 z
uz | —Cj3€1—Cz3€2 —Cj3€1—Ci3€a—Ul —Y —z 0 ,
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where z,y,z € g.
Therefore a = Re; @ Res @ Ru; is a commutative subalgebra of g. Note that

a= Zg(g)

Now prove that a is an ideal in g. It is clear that [e;,z] € a and [ez,z] € a
for all z € g. Assume that there exists z € g such that [ui,z] ¢ a. Then there
exists y € g such that [y, [ul,a:]] # 0. But [u, [:c,y]] = 0 (since [z,y] € a) and
[2,[y,u1]] = O (since [y,us] = 0). Therefore the Jacobi identity for the triple
(ZE, Y, ul)

[ya [ulaw]] + [uh [xay]] + [:l}, [yvul]] =0
does not hold. Thus, our assumption leads to a contradiction, and therefore a is a
commutative ideal in g.

Consider two cases:
I. The Lie algebra contains no subalgebras complementary to a.

Lemma 2. Any virtual structure on the generalized module 2.20 is equivalent
to one and only one of the following:
a) 01(61) = 01(62) = 0,‘

eiw=(8 4 2) o= (3 2 1)

¢) Cy(er) =0, 03(62):<g ! g)

d)C4(el)—<8 0 é),cu(ez):(g . ?)

saio=(3 3 o= (31 1)

pai-(3 8 Pcer-(3 1 %)

g)07(61):<8 8 g>707(62)=(8 8 p—(i)—l);

weien= (3 3 Bcie- (300

1)09(61)=(8 g g),09(62)=<8 11, qgl),p>0;
0 p ¢ 0

j)C9(61)=(0 0 0>,C9(62)=<0 _pl q_(lil),p>0-

Proof. The Lemma is immediate from the classification of the virtual pairs (g, g)
of type 3.20 (A = p = 0) (Proposition 3.20).

Now suppose that the virtual pair (g,g) is defined by the virtual structure a)
from Lemma 2. Then

[e1,e2] =0,
[61,’”1]=0, [62,U1]=0,
[61,UZ]=U1, [62’u2]=07

[61,U3]=O, [62,U3]=U1.
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Since a is an ideal, it can be assumed that

[ui,u2] = ares + azes + aqug,
[u1,us] = bres + baea + Brug,

[ug,us] = c1e1 + caea + y1u1 + Y2u2 + Y3us.

Using the Jacobi identity, we see that the pair (g, g) has the form:

[ ,] I €1 €2 Ui U2 us
e1 0 0 0 Uy 0
€9 0 0 0 0 Uy
Ul 0 0 0 —7Y3Uu1 YUy
Ug —uy 0 Y3uy T
us3 0 —U1  —7YoU1 — 0 ,

where * = c1e1 + caez + y1uy + You2 + y3us. _ v
Put ul = us+z1e1 + 2260 +z3u;1 and uf = uz+y1e1 +yzez +ysu;. The subspace
Ruf, @ Ruj is not a subalgebra complementary to a if and only if the equation

[ug, ug] = sup + tu 1)

is unsolvable (with respect to s,t, z;,y;,¢,7 = 1,2,3). From (1) it follows that
s = 72, t = 73, and that the variables z;,y;,¢,j = 1,2,3, satisfy the following
system of linear equations:

Y2Z1 +Yy3y1 = ¢,
Y2Z2 + Y3Y2 = c2,

Y1 — 22 =71-

The system is inconsistent if and only if 7, = y3 = 0 and ¢ + % # 0.
There is no restriction of generality in assuming ¢y # 0. Then the pair (g, g) is
equivalent to the pair (g2, g2) by means of the mapping 7: g2 — @, where

m(e1) = cre1 + czea, m(e2) = e,

m(ur) =uy, w(ug)= c1_1“2 — Z—iez, m(u3) = c1uz — c2usz.

In a similar way we consider the cases b)-j) of Lemma 2 and obtain the following
pairs:

b) 2.20.3, 2.20.4;

¢) 2.20.6;

d) the desired pairs do not exist

e) 2.20.8;

f) the desired pairs do not exist

g) 2.20.9, 2.20.10;

h) the desired pairs do not exist

) 2.20.11, 2.20.12;

i) 2.20.13, 2.20.14.
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The pairs obtained in different cases are not equivalent, since the corresponding
virtual pairs are not isomorphic.
Since the algebra
[8s,D*8s] + D*gs

is non-commutative and the algebra
[64,D°8a] + D?s

is commutative, we see that the pairs (gs, gs) and (g4,94) are not equivalent.

Let 7 : g — a; = 9:;/D%@i, ¢ = 9,10, be a canonical surjection and a; =
7(Z(Dg;)). Then the pairs (8, as) and (@10, a10) are not equivalent. Therefore the
pairs (@9, d9) and (g10,10) are also not equivalent.

The pairs (g11,011) and (g12,912) are not equivalent, since the corresponding
virtual pairs are not isomorphic. Similarly we prove that the pairs (g13,g13) and
(914, 014) are also not equivalent.

I1I. The Lie algebra g does contain subalgebras b complementary to the ideal a.

Lemma 3. Let d be the projection of g onto a associated with the decomposition
g=a®b. Thend € Der(g,g) = {¢ € Der(g)| ¢(g) = g}

Proof. Since g € a, we have d(g) = g. In order to prove the Lemma it is sufficient
to show that the condition

d([z,y]) = [d(z),y] + [z,d(y)] (2)

holds in the following cases:

1°. z,y € a. Then both sides of equality (2) are equal to zero, since the ideal a
is commutative.

2°. z €a, y € b. Then [z,y] € a and d([z,y]) = [z,y]. On the other hand,
since d(z) = z and d(y) = 0, we obtain

[d(z),y] + [z,d(y)] = [=,y].

3°. z,y € b. Then [z,y] € b and both sides of equality (2) are equal to zero.
The proof of Lemma 3 is complete.

For every complementary subalgebra b let us construct a Lie algebra p = p(g, b)
in the following way:

p = § x R, where the bracket operation is defined by [(z,a), (y, b)] = ([=,y] +
ad(y) — bd(z),0). Here d is the projection of § onto the ideal a. Let us remark that
(p,p) is an isotropically-faithful pair of type 3.20 (A = p = 0). It is easily proved
that the pairs (p,p) corresponding to different complementary subalgebras b are
pairwise equivalent.

Since dimp = dimg + 1, we see that g is a maximal subalgebra of p such that
g D Dp. Moreover, the Lie algebra g defines uniquely the subalgebra g, namely
g=gnp.

Therefore, in order to determine all the desired pairs it is sufficient
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1°. for any pair (p,p) of type 3.20 (A = p = 0) to find (up to the action of the
group Aut(p,p)) all maximal subalgebras § in p of codimension 1 such that g O Dp;

2°. for any subalgebra g from 1° to construct the pair (g, g), where g = g N p;

3°. to select all isotropically-faithful pairs of type 2.20 from the obtained ones.

Proposition 3.20 gives the classification of all pairs of type 3.20. In particular,
the pairs of type 3.20 (A = p = 0) are the following ones:

a) 3.20.1 A=pu=0);
b) 3.20.4 (A =p=0);
c) 3.20.9 (A =p=0);
d) 3.20.13;
e) 3.20.14;
£) 3.20.15;
g) 3.20.16;
h) 3.20.17;
i) 3.20.18.
For example, consider the pair 3.20.1 (A = g = 0). It has the form:
[a] €1 €2 €3 Uy Uz U3
e 0 e e up 0 0
e; —eg (f ()3 01 u 0
es —e3 0 0 0 01 U
wi | —wuz 0 0 0 0 0
Ug 0 —U1 0 0 0 0
us 0 0 —U1 0 0 0
Direct computation shows that
( /1 0 0 0 0 O )
a 0 0 O «
'utA—l W eR ;
Aut(p,p) = b 000 c a\ (-
Ylo o o u ¢ dllacarer), (d>=—tA(b)
0 0 0 O A
(\oo 0o o ©) )

Up to the action of Aut(p,p), any maximal subalgebra g of p such that Dp C g
and dim(g N g) = 2 is isomorphic to one of the following algebras:

1°. g = Rez D Re3 ) Rul D RUQ &) Ru;;.
In this case g = g N p = Rey @ Rez and the pair (g, g) is equivalent to the trivial
pair (g1,91). The equivalence is established by the mapping 7 : §; — @, where

m(ei) = eiy1, ©=1,2
m(uj) =u;, j=1,2,3.
2°. ﬁ = Reg o) R€3 &, Rul ) R(?.Lz - 61) &) Ru;;.

In this case g = g N p = Rez @ Res and the pair (g,g) is equivalent to the pair
(@5, 95) by means of the mapping 7 : g5 — g, where

m(ei) = eiy1, 1=1,2;
m(u1) = uq,
m(uz) = ug — ey,

m(us) = us.
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Continuing in the same way, we obtain the pairs 2.20.7, 2.20.16-2.20.26.

Proposition 2.21. Any pair (g,g) of type 2.21 is equivalent to one and only

one of the following pairs:

1.
[,] €1 €2 Uy ug u3
€1 0 (1 - /\)62 Ui )\UQ (2/\ - I)U3 !
€2 ()\ — 1)62 0 U1 U2 ‘
U1 —u 0 0 0 0
Ug -\ —uy 0 0 0 |
us (1- 2)\3113 —ug 0 0 0 i
2 A=1/2 |
[] e1 e2 U1 uz ug ‘
€1 0 %62 U1 %Ug 0 |
1
€2 —5¢€2 0 0 Uy U2 !
Uy —U3 0 0 0 0 i
Ug —Lyg —u; O 0 €9 !
us 6 —U2g 0 —€2 0 :
|
3. A=1/2 ‘
[,] €1 €2 Uy U2 us !
el 0 %62 Uy %uz 0 |
ez —%62 0 0 u; ug
U1 —U 0 0 0 0
U9 —lu2 —U1 0 0 —E€9g
ug %) —U2 0 €2 0
4. A =0
[a] I €1 €2 U1 uQ usg
el 0 e uq 0 —ug
€2 —€2 (52 U1 Uo
Ul —Ui 0 0 Uq Uz
U2 0 —U1 —U1 Uus
us uz —us —uUz —Uz 0
Proof.
Let £ = {e1, €2} be a basis of g, where
1 0 0 01 0
e1=10 A 0 , e2=|0 0 1], where A # 1.
0 0 2x-1 0 0 O

Then

Aler) = (

3 IE)\)’ Alez) = (/\

and for z € g the matrix B(z) is identified with z.

By b we denote the nilpotent subalgebra of the Lie algebra g spanned by the

vector ej.

0 0
-1 0)°




2. TWO-DIMENSIONAL CASE 155

Lemma. Any virtual structure q on generalized module 2.21 is equivalent to
one of the following:

a) A =0.
C(e1) = C(eq) =0;
b)A:%.
_(0 0 p _ .
C(el)—(o —%p 0), C(e;) =0, peR;
) A= 2.

0 0 O
C(61)=(0 0 p>7 0(62)=0’ pGR;

d) A ¢40,3, 3}
0(61) = C(ez) =0.

Proof. By statement 9, Chapter II, without loss of generality it can be assumed
that the corresponding virtual structure is primary. Then

g@) DRe;,  UD(h) O Ruy,
g1 V(h) D Res, UN(h) D Ruy,
U(ZA—I)(U) D Rus,

and for
A=0:
0 0 0 O
cen=(2 % 9) ce=(3 2 %)
A=1
0 0 ¢ 0 0 0
cen=(5 & 2)s cler=(5 o o)
A=2

C(el)=<8 : c°1> Clez) = 0.

Consider in detail the first case. Checking condition (6), Chapter I, for z,y € £,
we obtain:

Cler) =0, C(eg)z(g i Cg).

_ 0 C4 0
H= (64 — C3 0 0) ’
and Cy(z) = C(z) — A(z)H + HB(z) for ¢ € g. Then, we see that Ci(e;) =

C 1(62) = 0.
Similarly we obtain the other results of the Lemma.

Put
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Let (g, g) be a pair of type 2.21. Then it can be assumed that the corresponding
virtual pair (g,g) is defined by one of the virtual structures determined in the
Lemma. Consider now the case, when A = %

Using the Jacobi identity for the triples (e, uj,ux), 1 = 1,2, 1 < j < k <3, we
see that the pair has the form:

[a] €1 €2 U1 (%) Uug

el 0 %62 Uy %uz 0

€9 —%62 0 0 Uy Ug

(73] —U1 0 0 O ,Blul
_1 0 0

U2 2U2 —Uuy C2€9 + ,31’(1,2

u3 0 —up —Piur  —caeq — Brug

1.1°. 4cg + B? # 0. The mapping 7 : g2 3 — §, where

7'((61) = €1,
m(ez) = ea,
1

7T(U1) = ?’U,l,

1 1
m(ug) = ;uz + 5/3162,

2

1
m(uz) = —ug — Pre;, t=—————m—m
t V |4co + B2

establishes the equivalence of the pairs (g, g) and (g2,3,92,3)-
1.2°. 4¢c2 + 2 = 0. The mapping 7 : g1 — @, where

7T(61) = €1,
m(e2) = eg,
7r(u1) = Ui,

1
m(ug) = ug + 5,3162,

77(“3) = ug — Pre1,

establishes the equivalence of the pairs (g, g) and (g1,81).

2°. A = % Similarly we obtain:

[7] €1 €2 Uy U9 U3
1 2 1

€1 0 562 Uy 5—’(12 §U3

€9 —-%62 0 0 U1 U2

Uy —2U1 0 0 0 0

U3 —Zug —u3; 0 0 YUl

Uus —§U3 —U2 0 —Y1U1 0
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The pair (g, g) is equivalent to the trivial pair (g1,91) by means of the mapping
7 :g1 — g, where

m(e1) = ey,
m(ez) = eg,
m(u1) = uq,
m(uz) = ug,

m(us) = ug — Y1€2.

3°. X ¢ {%,2}. Continuing in the same way as in the cases 1° and 2°, we obtain:

273

[’] €1 €2 U1 U9 us

€1 0 (1 — )\)62 U1 )\UZ (2)\ — 1)’LL3
€9 ()\ - 1)62 0 0 Uy Uz

Ui —U1 0 0 a1uUy ai1uU

U . - —o Uy 0 aiug

Usg (1- 2)\2)U3 —Ug —aqUs —Q1U3 0 ,

where the coeflicients a; and A satisfy the equation a3\ = 0.
4.1°. a3 # 0. The mapping 7 : g4 — @, where

m(e1) = e1,
m(ez) = ea,
1
m(uy) = —&;ul,
1
m(ug) = Zuz,
1
m(ug) = ;l—ug,

establishes the equivalence of the pairs (g, g) and (g4,84).

4.2°. a = 0. The pair (g, g) is trivial.

Now it remains to show that the pairs determined in the Proposition are not
equivalent to each other.

Consider the homomorphisms f; : g; — gl(3,R), ¢ = 2,3, where fi(z) is the
matrix of the mapping ad z|pg, in the basis {e2,u1,us} of Dg;, = € g;.

Since the subalgebras fi(gi), ¢ = 2,3, are not conjugate, we conclude that the
pairs (g2,92) and (@3, gs) are not equivalent.
The proof of Proposition is complete.

Proposition 2.22. Any pair (g,g9) of type 2.22 is trivial:

[’] | €1 €2 Uy U2 U3
€1 0 ed 0 Uy U2
e —e 0 wus 2u
" of o o ¢ 0
Ug —u; —ug 0 O 0
usg —ug —2u; 0 O 0.
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Proof. Let € = {ey,e2} be a basis of g, where

aen=(§ o) ae=(7 9)s

and for z € g, the matrix B(z) is identified with z.
By b denote the nilpotent subalgebra of the Lie algebra g, spanned by e.

o O o
S O =
o= O
O O O
o = O
N O O

Then

Lemma. Any virtual structure q on generalized module 2.22 is equivalent to
the following one:

cien=(3 8 8). cen=(3 9 9).

Proof. Let ¢ be a virtual structure on generalized module 2.22. Without loss of
generality it can be assumed that ¢ is primary. Since

gV (h) = Res, g”(h) = Res,
UO(h) =Ruy, UD(h) = Rug, UP(h) = Rus,

cien=(5 9 5) =5 o)

Let us check condition (6), Chapter II, for eq, ez € &:

we have

c(e1) = A(e1)C(e2) — C(e2)B(e1) — A(e2)C(e1) + C(e1)B(ea).
We have
G1D-GEO-61 9GO

and so ¢ =8 =0.
This completes the proof of the Lemma.

o o
N———

Let (g, g) be a pair of type 2.22. Then it can be assumed that the corresponding

virtual pair (g,g) is defined by the virtual structure determined in the Lemma.
Then
[e1, 2] = eq,

le1,u1] = pe1, [ez,u1] =0,
le1,ug] = w1, [ez,us] = ug,

[61,U3 = U2, [62,U3] = 2’&3.
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Since the virtual structure ¢ is primary, we have

g%(h) =g%(h) x U%(h) forall oebh™

Thus

§0(5) =Rer, §O(h) = Rez ® Ruy,
§V(h) =Ruz,  §(h) = Rug,

and
[u1,U2] = Q2U32,

[Uh Us] = ﬁsus,
[UZ, Ug] = 0

Let us check the Jacobi identity for the triples (e;j,uj,ur) 1 =1,2, 1 <j <k <3,
and (u1,ug,us).

1. [e1, [ur, ua]] + [u1, [uz, e1]] + [ug, [e1,u1]] = 0
aguy —pu; =0
l.ag—p=0

2. [ex,[u1,us]] + [u1, [us, e1]] + [us, [e1,u1]] =0
Bsug — aguz —puz =0
2.85—p—az=0

3. [617 [u27u3]] + [u27 [U3, 61]] + [u37 [61,u2]] =0
Bauz =0
3. 835=0

This implies that the pair (g, g) is trivial.
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