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Abstract. 

In this paper optimal order, k-step methods with one nonstep point 
for the numerical solution of y' = f(x,y) y(a) = n, introduced 

by Gragg and Stetter (1) are extended to an arbitrary number s 
of nonstep points. These methods have order 2k + 2s, are proved 
stable for k ~ 8, s ~ 2, and not stable for large k. 

1. Introduction. 

A linear k-step method for the numerical solution of y' = f(x,y) 
y(a) = n, can be written in the form 

k-1 k 
Yn+k = E a.iyn+i + h E s.f . 

i=O i=O 1 n+1 (1.1) 

where Yn is a numerical approximation to the solution y at t4e 

point xn =a+ nh, n=O,l,2, .. and fn = f(xn,yn). 

(1.1) is called stable if the polynomial 
, . 

p ( z) = zn -
k-1 

l: 
i=O 

a..z 
1 

i 

has all its roots on the unit disc and the roots of modulus one 
are simple. 

To the method (1.1) we can associate an operator L0 defined on 

the class of continously differentiable functions by 
k-1 k 

L0[y(x);h] = y(x+kh) - l: a..y(x+ih)-h l: (3.y'(x+ih)(l.3) 
i=O 1 i=O 1 

Suppose y is p+2 times continously differentiable. Then the 
method is of order p if 

and cp+l 1 o. 

Using sufficiently accurate startingvalues a stable method of order 
p produces a discretization error of order O(hp) where the 

O(hp) term increases with the error constant Cp+l/l:Bi. 
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It therefore seems advantageous to use stable methods whose order 

p is as high as possible and errorconstant 

There exists k-step methods (1.1) of order 

has shown that the order of a stable linear 
exceed k+2. 

as small as possible. 

2k. However Dahlquist 

method (1.1) cannot 

One way to get stable methods of optimal order is to introduce in 

(1.1) the value of f in a nonsteppoint xn+r where k-l<r<k.Then 

k-1 k. 
Y k = ~ ~.y · + h E s.f . + hS f n+ i=O 1 n+1 i=O 1 n+1 r n+r 

It has been proved by Gragg and Stetter (1) and Danchick (2) that 

r can be chosen so that these methods have the optimal order 

2k + 2 and are stable for k ~ 6. 

It is the purpose of this paper to show that we can introduce in 

(1.1) the values of f in s nonsteppoints xn+r , ... ,xn+r 
1 s 

and obtain a 2k + 2s order method which in addition· .to the : 

results for s = 1 is stable for s ~ 2 and k < 8. 
The method can be written in the form 

k-1 k s 
Y k = ~ ~-Y . + h ~ s.r . + h ~ a f n+ . 0 1 n+1 . 0 1 n+1 . 1 r. n+r. 

1= 1= J = J J 
(1.4) 

The values of y in the nonsteppoints will generally not be known 

and have to be supported by an accurate, independent method. 

This gives at least s extra functionevaluations pr. integration
step and restricts the number of nonsteppoints to be uaed in pract~ 
ice. 

2. The existence and coefficients of the optimal order nonstepmethod. 

To the method (1.4) we associate the operator Ls given by 
k-1 k 

1 [y(x);hJ = y(x+kh) - 1: ~1.y(x+ih) - h 1: S.yw(x+ih) 
s . 0 . 0 1 l= 1= 

We also define 

1 H. =H. l + ~ i = 1,2, ... 
1 1- l 

s 
- h E 

j =1 
S y'(x+r.h) r. J 

J 

p(i) = (-l)k-i ·i! ·(k-i)!(k-r1 ) .... (k-rs) i = O(l)k 

(2.1). 

(2.2) 

(2.3) 
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k s 

p(rj) = n (r.-i) n (r.=r.) 
i=O J i=l J J. 

(2.4) 

i1j 
s 1 t(i) = Hk . - H. + L: ---.--J. J. j =1 r.-J. 

J 
(2.5) 

k 1 s 1 t (rj) = I: ----.- + E 
i=O r.-J. i=l r.-r. 

J J J. 
( 2. 6) 

itj 

Theorem 2.1. 

Suppose 

(i) k,s are given natural numbers 

(ii) y is a 2k + 2s + 1 'times continously differentiable 
function on an interval [a,b] and x £ [a,b] 

Then we can find nonsteppoints r 1 , •.. ,rs where k-l<r1<r2< ... 

<rs<k (~nique in this interval) and a point ~ £ (x,x+kh) such that 

where 

- M = (2k+2s+l)! 

- - p(k)2 
M - 2t (!:} 

The coefficients in Ls 

b. M i O(l)k = = J. p(i)2 

are uniquely 

br. 
M = 2 

J p(r j) 

ai = 2t(i) b(i) i = O(l)k-1 

given by 

j = l(l)s 

= l(l)s is the unique solution in (k-l,k) 

j = l(l)s of equations. 

Proof. 

(2.7) 

(2.8) 

(2.9 

(2.10) 

of the system 

Suppose distinct real numbers, and let y be 

2N-l continously differentiable on a set containing 

Then there exists unique constants A., B. 
J J 

and a 

smallest intervall containing 
N N 
I: A.y(a.) + L: B.y'(a.) + 

j =1 J J j =1 J J 

al' ... aN 
y(2N-l)(~) 
(2N-l)! 

such that 

= 0 

al' ... aN. 

in the 

(2.11) 
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The existence of this formulae follows from a generalization 
(similar to Danchick (2) p. 205) of the Hermite interpolation 
formulae. By inserting polyhomials with suitable zeros we can find 
expressions for the coefficients A. and B .• 

J J 

ak+s+l : xrt+k' N = k+s+l we get a fo~ulae of the form 

k s 
E ~iy(x+ih) + E 

i=O j=l 

s 
+ h E 

j =1 
a y'(x+r.h) r. J 

J 

k 
~ y(x+r.h) + h E 
rj J i=O 

= Y(2k+2s+l)U;) 
(2k+2s+l)! 

a .y' (x+ih) 
l. 

Now in order to obtain (2.7) we choose r 1 , •.. ,rs so that 

j = l(l)s. 
t(rj) = 0 

It turns out that this is equivalent to the system 
j = l(l)s of equations, where t(rj) is given by (2.6). 

Let 

Then we have the following result: 

Lemma 2.1. 

For i = l~)k the system of equations t(r.) = 0 j = l(l)s, 
J 

where t(rj) is given by (2.6) has a unique solution in the set 
0 Di. If (r1 , •.. ,rs) is a solution if t(rj) = 0 j = l(l)s then 

rj £ [O,k] j = l(l)s. 

Proof of lemma 2.1. 

Let the polynomial 

s 
g(r1 , ••. ,rs) = j~l {rj(rj-l) •. (rj-k)(rj-rj+l) .• (rj-rs)} 

be given on the set 
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n9 
1. 

is the interior of D., g = 0 
1. 

g = 0 on 

extremum on 

0 D .• 
1. 

0 D .• 
1. 

It follows since 

So we can find 

on the boundary of 

D. is compact that 
1. 

in n9 
1. 

D. 
l. 

and 

g has an 

such that 

~aa (r1 , ... ,r) = o. Then r. s ~/g = t(r.) = 0 ag. J at the same point. 
J J 

This proves the existence part of the lemma. 
the proof for the uniqueness must be omitted. 

For reasons of spac~ 

Suppose (r1 , ... ,rp) 

is a solution of t (rj) = 0 j = l(l)s. We can put rl ~ r2 < 0 • < rs. 

Then for rl E (-oo,O) we have t(r1 ) < o, and for rs E (k,oo) 

we have t(rs) > o, a contradiction in both cases. 

This completes the proof of lemma 2.1 and also establish theorem 2.1 

3. Stability properties of the optimal order nonstepmethod. 

Theorem 3.1. 

The method given by (2.7) is stable for k < 6 if s = 1, for 

k :S 8 if s = 2, and for k < 12 if s > 3. -
To all s > l we can find a constant K(s) so that k > K(s) -
implies instability of the method given by (2.7). 

Proof. 

The result for s = 1 has been proved by Gragg and Stetter (1) and 
Danchick (2). Using 1/(rj-i) < 1/(k-i) i = O(l)k-1 we can prove 

by direct calculation of t(i) that a. > 0 i = O(l)k-1 for 
1. 

k :S 8 if s = 2 and for k < 12 for s > 3. It follows (see 
Danchick (2) p. 207) since E a. = 1 that the polynomial 

1. 

P ( z) = zk 
k-1 i 

E a.z has all its roots except z = 1 in the 
i=O J.. 

interior of the unitdisc. Hence stability follows. By showing that 

a./(~) tends to infinity for some i when k tends to infinity 
J. 1. 

the instability follows. (See Marden (3) p. 124). 

4. Concluding remark. 

We note that the methods given by (2.7) are stable for most practi= 
cal values of k. The method has 2k + 2s + 1 parameters that can 
be chosen freely. Therefore the order 2k + 2s is the maximum 
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order that can normally ·be obtained with this number of parameters. 

We then look at the errorconstant c2k+ 2s+l/(L: ~ ~i + E ~r .r~ c2k+ 2s+l 
J . 

for stable methods. 

If the order is fixed we find by increasing the number of nonstep 

points that the errorconstant will decrease. 

The formulae (2.7) is for k > 1 a generalization of Lobatto 
quadrature and should in many cases be well suited for numerical 
integration. 
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