Ma.tematisk seminar No 2 - 1969Universitetet i Oslo

Tom Lyche

Abstract.

In this paper optimal order, k-step methods with one nonstep point for the numerical solution of $y^{\prime}=f(x, y) y(a)=\eta$, introduced by Gragg and Stetter (1) are extended to an arbitrary number s of nonstep points. These methods have order $2 k+2 s$, are proved stable for $k \leq 8, s \geq 2$, and not stable for large k.

1. Introduction.

A linear k-step method for the numerical solution of $y^{\prime}=f(x, y)$ $y(a)=\eta$, can be written in the form

$$
\begin{equation*}
y_{n+k}=\sum_{i=0}^{k-1} \alpha_{i} y_{n+i}+h \sum_{i=0}^{k} \beta_{i} f_{n+i} \tag{1.1}
\end{equation*}
$$

where y_{n} is a numerical approximation to the solution y at the point $x_{n}=a+n h, n=0,1,2, \ldots$ and $f_{n}=f\left(x_{n}, y_{n}\right)$.
(l.l) is called stable if the polynomial

$$
\rho(z)=z^{k i}-\sum_{i=0}^{k-l} \alpha_{i} z^{i}
$$

has all its roots on the unit disc and the roots of modulus one are simple.

To the method (1.I) we can associate an operator L_{0} defined on the class of continously differentiable functions by

$$
L_{0}[y(x) ; h]=y(x+k h)-\sum_{i=0}^{k-1} \alpha_{i} y(x+i h)-h \sum_{i=0}^{k} \beta_{i} y^{\prime}(x+i h)(1.3)
$$

Suppose y is $p+2$ times continously differentiable. Then the method is of order p if

$$
L_{0}[y(x) ; h]=C_{p+1} h^{p+1} y(p+1)(x)+0\left(h^{p+2}\right)
$$

and $C_{p+1} \neq 0$.

Using sufficiently accurate startingvalues a stable method of order p produces a discretization error of order $0\left(h^{p}\right)$ where the $O\left(h^{p}\right)$ term increases with the error constant $C_{p+I} / \Sigma \beta_{i}$.

It therefore seems advantageous to use stable methods whose order p is as high as possible and errorconstant as small as possible. There exists k-step methods (l.l) of order $2 k$. However Dahlquist has shown that the order of a stable linear method (I.l) cannot exceed $k+2$.

One way to get stable methods of optimal order is to introduce in (1.1) the value of f in a nonsteppoint x_{n+r} where $k-1<r<k$. Then

$$
y_{n+k}=\sum_{i=0}^{k-1} \alpha_{i} y_{n+i}+h \sum_{i=0}^{k} \beta_{i} f_{n+i}+h \beta_{r} f_{n+r}
$$

It has been proved by Gragg and Stetter (1) and Danchick (2) that r can be chosen so that these methods have the optimal order $2 k+2$ and are stable for $k \leq 6$.

It is the purpose of this paper to show that we can introduce in (1.1) the values of f in s nonsteppoints $x_{n+r_{1}}, \ldots, x_{n+r_{s}}$ and obtain a $2 k+2 s$ order method which in addition to the results for $s=1$ is stable for $s \geq 2$ and $k \leq 8$. The method can be written in the form

$$
\begin{equation*}
y_{n+k}=\sum_{i=0}^{k-1} \alpha_{i} y_{n+i}+h \sum_{i=0}^{k} \beta_{i} f_{n+i}+h \sum_{j=1}^{s} \beta_{r_{j}}{ }^{f_{n+r}} \tag{1.4}
\end{equation*}
$$

The values of y in the nonsteppoints will generally not be known and have to be supported by an accurate, independent method. This gives at least s extra functionevaluations pr. integrationstep and restricts the number of nonsteppoints to be used in practice.
2. The existence and coefficients of the optimal order nonstepmethod.

To the method (1.4) we associate the operator L_{s} given by
$L_{s}[y(x) ; h]=y(x+k h)-\sum_{i=0}^{k-1} \alpha_{i} y(x+i h)-h \sum_{i=0}^{k} \beta_{i} y^{\gamma}(x+i h)$

$$
\begin{equation*}
-h \sum_{j=1}^{s} \beta_{r_{j}} y^{\prime}\left(x+r_{j} h\right) \tag{2.1}
\end{equation*}
$$

We also define

$$
\begin{align*}
H_{0} & =0 \quad H_{i}=H_{i-1}+\frac{l}{i} \quad i=1,2, \ldots \tag{2.2}\\
p(i) & =(-1)^{k-i} \cdot i!\cdot(k-i)!\left(k-r_{1}\right) \ldots\left(k-r_{s}\right) \quad i=0(1) k \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
p\left(r_{j}\right)=\prod_{i=0}^{k}\left(r_{j}-i\right) \prod_{\substack{i=1 \\ i \neq j}}^{s}\left(r_{j}-r_{i}\right) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
t(i)=H_{k-i}-H_{i}+\sum_{j=1}^{s} \frac{I}{r_{j}^{-i}} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
t\left(r_{j}\right)=\sum_{i=0}^{k} \frac{1}{r_{j}-i}+\sum_{\substack{i=1 \\ i \neq j}}^{s} \frac{l}{r_{j}-r_{i}} \tag{2.6}
\end{equation*}
$$

Theorem 2.1.
Suppose
(i) k, s are given natural numbers
(ii) y is $a 2 k+2 s+1$ times continously differentiable
function on an interval $[a, b]$ and $x \in[a, b]$
Then we can find nonsteppoints r_{1}, \ldots, r_{s} where $k-1<r_{1}<r_{2}<\ldots$ $<r_{S}<k$ (unique in this interval) and a point $\xi \varepsilon(x, x+k h)$ such that

$$
\begin{equation*}
L_{s}[y(x) ; h]=\frac{-M}{(2 k+2 s+1)!} h^{2 k+2 s+1} y(2 k+2 s+1)(\xi) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
M=-\frac{p(k)^{2}}{2 t(k)} \tag{2.8}
\end{equation*}
$$

The coefficients in L_{s} are uniquely gj.ven by

$$
\begin{align*}
& b_{i}=\frac{M}{p(i)^{2}} \quad i=0(1) k \quad b_{r_{j}}=\frac{M}{p\left(r_{j}\right)^{2}} \quad j=1(1) s \\
& a_{i}=2 t(i) \cdot b(i) \quad i=0(I) k-1 \tag{2.10}
\end{align*}
$$

$r_{j} j=l(l) s$ is the unique solution in $(k-l, k)$ of the system $t\left(r_{j}\right)=0 \quad j=l(I) s$ of equations.

Proof.

Suppose a_{1}, \ldots, a_{N} is N distinct real numbers, and let y be $2 \mathrm{~N}-1$ continously differentiable on a set containing $\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{N}}$. Then there exists unique constants A_{j}, B_{j} and $a \quad \xi$ in the smallest intervall containing $a_{1}, \ldots a_{N}$ such that

$$
\begin{equation*}
\sum_{j=1}^{N} A_{j} y\left(a_{j}\right)+\sum_{j=1}^{N} B_{j} y^{\prime}\left(a_{j}\right)+\frac{y^{(2 N-1)}(\xi)}{(2 N-1)!}=0 \tag{2.11}
\end{equation*}
$$

The existence of this formulae follows from a generalization (similar to Danchick (2) p. 205) of the Hermite interpolation formulae. By inserting polynomials with suitable zeros we can find expressions for the coefficients A_{j} and B_{j}.

Letting $a_{1}=x_{n}, a_{2}=x_{n+1}, \ldots, a_{k}=x_{n+k-1}, a_{k+1}=x_{n+r_{1}}, \ldots, a_{k+s}=x_{n+r_{s}}$,
$a_{k+s+1}=x_{n+k}, N=k+s+1$ we get a formulae of the form
$\sum_{i=0}^{k} \alpha_{i} y(x+i h)+\sum_{j=1}^{s} \alpha_{r_{j}} y\left(x+r_{j} h\right)+h \sum_{i=0}^{k} \beta_{i} y^{\prime}(x+i h)$
$+h \sum_{j=1}^{s} \beta_{r_{j}} y^{\prime}\left(x+r_{j} h\right)=\frac{y^{(2 k+2 s+1)}(\xi)}{(2 k+2 s+1)!}$

Now in order to obtain (2.7) we choose r_{1}, \ldots, r_{s} so that $\alpha_{r_{j}}=0$ $j=l(1) s$. It turns out that this is equivalent to the system $t\left(r_{j}\right)=0 \quad j=I(I) s$ of equations, where $t\left(r_{j}\right)$ is given by (2.6). Let

$$
D_{i}^{0}=\left\{\left(r_{1}, \ldots, r_{s}\right) \mid i-1<r_{1}<r_{2}<\ldots<r_{s}<i\right\}
$$

Then we have the following result:

Lemma 2.1.
For $i=l(1) k$ the system of equations $t\left(r_{j}\right)=0 \quad j=1(1) s$, where $t\left(r_{j}\right)$ is given by (2.6) has a unique solution in the set D_{i}^{0}. If $\left(r_{1}, \ldots, r_{s}\right)$ is a solution if $t\left(r_{j}\right)=0 \quad j=I(I) s$ then $r_{j} \varepsilon[0, k] j=1(1) s$.

Proof of lemma 2.1.

Let the polynomial

$$
g\left(r_{1}, \ldots, r_{s}\right)=\prod_{j=1}^{s}\left\{r_{j}\left(r_{j}-1\right) \ldots\left(r_{j}-k\right)\left(r_{j}-r_{j+1}\right) \ldots\left(r_{j}-r_{s}\right)\right\}
$$

be given on the set

$$
D_{i}=\left\{\left(r_{1}, \ldots, r_{s}\right) \mid i-1 \leq r_{1} \leq \ldots \leq r_{s} \leq i\right\}
$$

D_{i}^{0} is the interior of $D_{i}, g=0$ on the boundary of D_{i} and $g=0$ on D_{i}^{0}. It follows since D_{i} is compact that g has an extremum on D_{i}^{0}. So we can find r_{1}, \ldots, r_{s} in D_{i}^{0} such that $\frac{\partial g}{\partial r_{j}}\left(r_{1}, \ldots, r_{s}\right)=0$. Then $\frac{\partial g}{\partial g_{j}} / g=t\left(r_{j}\right)=0$ at the same point. This proves the existence part of the lemma. For reasons of space the proof for the uniqueness must be omitted. Suppose (r_{1}, \ldots, r_{s}) is a solution of $t\left(r_{j}\right)=0 \quad j=l(1) s$. We can put $r_{1} \leq r_{2} \leq \ldots \leq r_{s}$. Then for $r_{1} \varepsilon(-\infty, 0)$ we have $t\left(r_{1}\right)<0$, and for $r_{S} \varepsilon(k, \infty)$ we have $t\left(r_{s}\right)>0$, a contradiction in both cases.
This completes the proof of lemma 2.1 and also establish theorem 2.I
3. Stability properties of the optimal order nonstepmethod.

Theorem 3.1.
The method given by (2.7) is stable for $k \leq 6$ if $s=1$, for $k \leq 8$ if $s=2$, and for $k \leq 12$ if $s \geq 3$.

To all $s \geq 1$ we can find a constant $K(s)$ so that $k \geq K(s)$ implies instability of the method given by (2.7).

Proof.
The result for $s=1$ has been proved by Gragg and Stetter (1) and Danchick (2). Using $1 /\left(r_{j}-i\right)<I /(k-i) \quad i=O(1) k-1$ we can prove by direct calculation of $t(i)$ that $\alpha_{i} \geq 0 \quad i=0(1) k-1$ for $k \leq 8$ if $s=2$ and for $k \leq 12$ for $s \geq 3$. It follows (see Danchick (2) p. 207) since $\Sigma \alpha_{i}=1$ that the polynomial $\rho(z)=z^{k}-\sum_{i=0}^{k-l} \alpha_{i} z^{i}$ has all its roots except $z=1$ in the interior of the unitdisc. Hence stability follows. By showing that $\alpha_{i} /\binom{k}{i}$ tends to infinity for some i when k tends to infinity the instability follows. (See Marden (3) p. 124).
4. Concluding remark.

We note that the methods given by (2.7) are stable for most practical values of k. The method has $2 k+2 s+1$ parameters that can be chosen freely. Therefore the order $2 k+2 s$ is the maximum
order that can normally be obtained with this number of parameters. We then look at the errorconstant $C_{2 k+2 s+1} /\left(\sum \beta_{i}+\sum \beta_{r_{j}}\right) \approx C_{2 k+2 s+1}$ for stable methods.

If the order is fixed we find by increasing the number of nonstep points that the errorconstant will decrease.

The formulae (2.7) is for $k>1$ a generalization of Lobatto quadrature and should in many cases be well suited for numerical integration.

References.

l. Gragg, W.B., and Stetter, H.J., Generalized multistep predictorcorrector methods, J.ACM 11(1964), 188-209.
2. Danchick,R., Further results on generalized predictor-corrector methods. J.COMP.A.SYST.SCIEN. 2(1968), 203-218.
3. Marden, M., Geometry of polynomials. American mathematical society, Proridence, Rhode Island, 1966.

