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- 1. Introduction. A partially ordered linear space E’Q has the Riesz interpo-

lation property if to every four elements X5 yj < B, i, j =1, 2, such that

X < yj, i, j =1, 2, there exists z € E satisfying X,

()8

z & yj ’
i, 3 =1, 2. The investigation of spaces of this type goes back to F. Riesz
( f10] ). Recently they have been discussed by different authors (Fuchs [6},
Ij}, Bauer 52], cf, also Lindenstrauss [8] and Namioka {93. It should be
noted that in a partially ordered linear space the interpolation property men~
tioned above is equivalent to the more familiar Riesz decomposition property
([8, lemma 6.2]).

We note that a vector lattice always has the Riesz interpolation property.
The converse statement, however, is false. We give two examples of partially
ordered linear spaces with the Riesz interpolation property that are not vector
lattices: (a) The space of polynomials (with real coeffisients) on [b,1J,
(b) +the space of real-valued continuous functions f on [0,4] satisfying
f(2) = £(1) + £(3). In these examples the order relation is the usual point-
wise one. The verification of the Riesz interpolation property for example (a)
can be found in [8, PD. 75—76}. Exomple (b) is due to Namioka ({9, p. 451).
Another interesting example, which we will study in some detail in part 4 of this
paper, is the space of continuous affine functions on a Choquet simplex.

let H be the (G5 -=) complete lattice of all extended real-valued func-
tions on some set S. With pointwise addition and scalar multiplication
H = {~f & H: [f(s)] < o= for all s € 8! Tbecomes o linear space. let

v be a positive linear functional on a Riesz space in H, i.,e. a directed linear

subspace E of Ho with the Riesz interpolation property. The question arises
whether it is possible to extend v to a lebesgue integral within H, In case

E is a vector lattice in H it is well known that such an extension exists if

and only if the Daniell axiom 1is satisfieds:

(1.1) x, &€ B, n=1,2, .. ’an x € E= v(xn)T v(x).

*) All linear spaces considered in this paper are over the reals.
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It is the aim of this paper to establish necessary and sufficient condi-
tions for an extension to be possible in the general case, We will, however,
attack the problem in a slightly different form., In {1] Alfsen has developed
a theory of integration based on order, In this more general setting we are led
to consider the following problem: Given a valuation v (defined in (2.1)) on
a subset E of a G -continuous lattice H, E having the Riesz interpolation
property, we want to extend v +to a full integral within H. This extension
theory is contained in part 2 of this paper. In part 3 we add further assumptions
on E to obtain essential simplifications of the axioms introduced in part 2.
Finally, in part 4, we show that for metrizable Choquet simplexes, and also for
simplexes with closed extreme boundary, our theory can be used to give a rather
natural and straightforward construction of representing boundary measures, at
the same time proving uniqueness.,

We would like to express here our thanks to E. Alfsen for valuable help

and suggestions during the preparation of this paper.

2. BExtension theory. For explanation of terms not defined here the reader is

referred to [1]. In the seevel E is a fixed subset of a g —-continuous lattice
H. We assume that E has the Riesz interpolation property and also that E is
directed, i.e. to x, y € E there exist 24y 2, € E such that Z, EXAY ,
Z, >xv y . (All lattice operations are in H.) We use the term valuation to

denote a real-valued function v on. E satisfying
(2.1) v(x) +v(y) =v(xvy) +v(xAny) forallx, y € E,
Where we have put
Tr'(xvy)=inf{v(z)::r_\/yéz€Ej'
X(XAy)=Sup{v(Z)2XAy§Z€E§'
As we shall only consider the case when v 1is increasing, no confusion can arise
from our use of the word valuation, If E is a sublattice of H , (2.1) does

not generally coincide with the usual lattice valuation identity ([j, Do 421});

the two definitions are, however, identical if v 1is increasing.
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An increasing valuation v is called admissible if it satisfies

i

V(xwvy)

(2.2)
v(x A y)

sup {infn v(zn) s Zn‘l' z € H, z&xVvy, zné B, n = 1,2...}

€ E, n = 1,2.0-}

it

inf{supn v(zn) : ZnT z € H, z>z/ Ny, z

for all x, y € E. (2.2) will hereafter be termed condition (B). It will
turn out later that if an admissible increasing valuation v is extendable to a
full integral within H, then v(zxv y) = Wzvy), % (xAy) = v(x AN y) for
any such full integral (H, i‘:‘, ?r). In [1, th., 5, p. 429] it is proved that
an increasing valuation v on a sublattice E of H is extendable to g full

integral within H if and only if the following condition (&) is satisfied:
_ .',xn,yneE,n=1,2,...,aner, yniyéH, x>y
(2.3) {8): ==  gup_ v(x_) > inf_v(y )
n “Yn’ n n’’

It is now easily seen that in the lattice case an increasing valuation v is
extendable to a full integral within H only if it is admissible, In fact, in
this case (B) is equivalent to (1.,1) and its dual version (the (extended)
Daniell axiom),

In the sequel v denotes a fixed admissible increasing valuation on E.

v is supposed to satisfy the following condition (D), which will replace (4)

in our extension procedure,

1 1 1
an, x, € B, n=1,2,..., xn’l‘ x & H, xn’i‘x € H} '

(2.4) (D)ﬁ/ ' 4 ' . be x A x
\yn’ yn € B, n=1,2,0a4, yni, y € H yni/ v E Hj

=y v y'
1 — 1
=D  sup, _v;(xn/\ xn) > inf v(ynv yn).
Obviously, (D) always implies (A), and if E is a sublattice of H, (D)
and (A) coincide. We put
EY = {x € H : there exist x € B, n-= 1925000y xn'T %, sup, v(xn) < QO}' y

and for each x € Eo we define

(2.5) v’(x) = sup { v(z) :x>3z¢ E} .
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We make the following obmorvations:
o . . .
(a) v~ is increasing

(v) +°(x) = sup, v(xn) for any increasine sequence

&xn&, x, &€ B, n-=1,2,.,. such that xnlr X,

(¢) - o0 « v9(x) < o for every x € E°

(a) follows from the definition of v°. If x € E° and an x, x, € E,
n=1,2,00. , it follows from (D) ((A) is sufficient) +that
sup,, v(xn) > v°(x). The reverse inequality is trivial, and so we have proved

(). (c) follows from (b) and the definition of E°. (d) 1is trivial.

2.1 Ilemma: et x, ¥y e E° and £ > 0 be given, and let

{xni‘- ) fynz- y X, ¥, €E, n=1,2,..,, be sequences such that x T x, ynT y.

Then there exists a sequence {znlj y 2, € B, n=1,2,.,, such that

(a) znéxnv Y, n="1,2,00
3
(v) izni' is increasing.
P -
(c) sup, v(zn) € sup, v(xn\/ yn) + &

_ o)
(d) =z = sup znf. E-,

Proof: It follows from the definition of ?7'(3:1 v y‘) that we can select

z, € B, g éx1v ¥y such that

1 1

V(Z’l) £ '\-r'(x1 Vs y1) +—t2- .

(LY

Suppose now that Zyy Zoy eeey 2y have been chosen such that 2, < Z, voe
and z, ® L,Vy;, i-= 1,2y000y n  and such that
—t— &

V(Zi) A ;(xi\’ yi) + e "-E ) i = 1’2,.:0, N,
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We must find 2, ¢B such thet =z, >z, =z . >x vy . and
- n+1
P2
V(240) € V(xqv 740+, x
k= 2
1 t
To this end we choose Z € 5, 24 hAxn_H\/ T4 such that
! - 1 £
Z -—
V(2p49) V(2 V T4) +3 e
: E > '
We then choose 2,44 € By 241 2,V 2.4 such that
- ! 1 &
r'4 — 0 cova——
V(2'n+1) - v(zn\/ Zn+1) t3 2‘n+'] '
Using (2.1) we can rewrite the last inequality:
(2.6) v(= )-‘-v(z)+v(z, )-v(z/\z' )+-1-'-—E-’——
* n+1 n n+l —‘"n n+1 2 onHl '

& \
We have xnv y, €2,/ 2

n N ! and it follows from the Riesz interpolation

t

- B < £
property that there exists W, € such that X,V v, £ W, Z, ~ zZ,

+1
1

. . . . - é
This implies that v(xn\/ yn) X(zn/\ Zn+1)'

(2.6) that
v(z,4) € v(z,) - V(xnv v, + V(Zz'mﬂ) +% R I

- - £
£ - —_—
V(Zn) v(Xn\/ yn) + V(Xn+1\/ yn+1) + 2n~l-“| *

From the induction hypothesis we conclude that

n+i

L

e !
(@.7) v(249) & ViV Tpyq) * - K

Using this fact, it follows from



The constructed sequence {zn% evidently satisties (a) ang (u)« (o) follows
easily from (2.7). To prove (d) we must show that sup v( zn) L0, For

every n = 1,2,,.. We have

v(x,)) +v(y,) = vix, v y,) + 3z, A 5,)

14

v(x, v v,) + 3z, 4 v,

Hence we obtain
- 2 .0 o ‘
sup. v(x, v ¥) £v(x) +v(y) - ulx,a 5y) <=2,
and the desired conclusion follows from (c). This completes the proof.
Our next lemma generalizeg the first half of lemma 1, p. 429 in [11.
2,2 lemma: For all x, ¥y €E° we have
(2.8) v°(x) + v°(y) = inf { v(z) sxvy<£zé EO}- + sup {vo(z) t XA Y X ZQTE()}

Proof: Since x, y e B° there exist X ¥y, €¢E, n=1,2,ss., such that

an x; ynT Y. Using the valuation identity (2.1) we obtain
o o -
vo(x) + v (y) = sup v(xn\/ yn) + sup .Y.(Xn/\ yn)

The proof will be accomplished if we can prove the following two formulae:

{t

(2.9) inf ivo(z) $XVY £ 32 EEOJ2 sup, V(xn\/ yn)

o0

x/\y&zS_Eo}

(o]
(2.10) sup {v (z) sup _Y_(xn/\ Yn)-

We first prove (2.9). Iet £ » O be given and choose 2z = sup 2, € £° as

in lemma 2,1, Then we have

o £ v , £
v (z) sup_ v(xn\/ ;).n) + £,

and, since & was arbitrary, it follows that

inf ‘{vo(z) tXVYy €2 E.Eo} £ sup ?r-(xnv yn).
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The reverse inequality follows easily from (D), and the validity of (2.9) is
proved.

To prove (2.10) we observe that
(2.41) supivo(z) X AY 2 ZEEO} = sup{v(z) P XA Y XD EE},
and it follows immediately that

sup {v°(z) tx Ay >z er®t » sup, v(x A ¥,).

-

We prove the reverse inequality. let &£ ) O be given. From (2.11) it follows

that there exists 2z ¢ E, 2z £ x Ay, such that

sup {vo(z) XAy ZEEO} £ v(z) +€.

: 1
Putting 2y = %y = 2y k=1,2,..., we have that 2 VY 2y 4 z, and application

of (D) yields
£ <
v(z) € sup w(x A v ).
¢ was arbitrary, and we conclude that

sup {vo(z) t: XA Y 2z €E Eo} < sup X(xn/\ yn),

‘_‘_0 € d-o

The difficult part in the extension procedure will be to prove the validity
of the "Beppo levi property". The proof in the lattice case, contained in the
second half of lemma 1, p. 429 of [1} y Trests heavily upon the possibility of
performing lattice operations. Nevertheless, it turns out that a rather delicate

ugse of the Riegz interpolation property does the work,

2.3 lemma: If x.n'erH, x € Eo, n=1,2,.0., and sup vo(xn)éw,

then, given £ > 0, there exists z € E°, z > x, such that

o é . 0o .
v (z) sup v (xn) + &,
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Proof: TFor every n there exist X, k€ E, k=1,2y04., such that
H
xn,k 1‘ X We put 7y Jk © X1,k’ k=1,2,s00, and choose, in accordance with

lemma 2.1; an increasing sequence s,_yz klf ’ €EE, k= 1;2,..., such
k)

Y2,x%
S = o
that y2,k Y1 ’k\/ X2,k 9 k 1 ,2, seny and such that

£ (v, &
sup, v(yz,k) sup, v(v, kY X2,k) +%
From (2.9) and the fact that Xy V X, = X, We have
-_— s o . £ o = o
sup,_ v(y,,,k\/ x2’k) = inf { vo(z) X,V x, %2 ¢&E } v (x2),

hence it follows that

nofm

sup,. v(yz’k) £ vo(xz) +

Suppose now that we have found increasing sequences {yi’k}‘}; ’ yi,k € E,

k

]

1;.2,.000’. fOI‘ i= 2,3,000’ n SuCh that yi,k 3 yi_1’kv Xi’k ’ k = 1,2,.002

i 2,3;...; n and such that
i=-1 e

. .0 — £ .
sup, V(yi,k) < v (xi) + 3:= 3 i=2,3,004y 0,

We put ¥, = Sup, yn,k . Evidently; Y, 2 x, and v, € £°, Using lemma 2.1,

we select an increasing sequence 1yn+'],k} y € B, k=1,2400., BUCh

Y+ sk

D 5 . = IS Py
that yn+1,k > J‘n’k\/ xn+1,k y k =142,44.y and such that
sup, v(y ) € sup, v(y Vv X ) + =
k n+l,k k n,k n+i,k on
' £ 21
From (2.10), (2.8) and the fact that x, €y, A %, We obtain

- ) . Q ° ) ‘0
sup, v(yn’k\/ Xn+1,k) = inf { v%(2) : T ¥ X 4 £2€EE f

u

[o] (o] _ S [e] . . } OL
vo(y,) + vz 4) - sup { v(z) sy, Ax , =2 €E°;

N

vO(yﬂ) + vo(xn+1) - vo(xn)

i

sup, v(yn;k) - vo(xn) + vo(xn+1) .
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From the induction hypothesis it then follows that

n
e ° E — &
supy V(T 49,000 €V (xpyg) = A
i c +4 =
We now select a diagonal sequence {zn} by setting Zn yn,n for every
= o i 1T = = B =
el 192y00e¢ o We easily verify that Z Y41 ,n+1 yn+1,n yn,n Z, s

hence {znk is increasing. VWe put =z = Sup, 2 . For a fixed n we have for

all k >n that

D

7 D g = > >
e T e,k T,k T ¥

n,k !
and it follows that 2z sup, X = X This is valid for every n, hence
’
s = X. i ce
Z sup X =X The choice of the sequences {yn,k}k ensures that

v(zn) = v(yn’n) £ sup, v(yn,k) < vo(xn) + £,

It follows that

sup, v(zn) € sup vo(xn) + € <ou,

[¢)

and we conclude that z € E° and v°(z) € sup, vo(xn) +& . This completes

the proof.

In the next lemma we use for the first time the fact that v is admissible.
2.4 Iemma: For all x, y € E° we have
(2.12) inf ivo(z) S XAY £z éon- = sup {vo(z) tXAY 2z € Eo}‘

o . . .
Proof: v~ 1is increasing, hence we have

x/\y’ﬁzeEog

oo

inf {vo(z) t XAy £1z¢€ Eoi > sup {vo(z)

Iet € > O be given. There exist Xp0 ¥, € By n= 1,;2,..., such that

xn'f‘ x; Ty, T y. According to condition (B) we can now find z, & E°,

(x4 é ~ )
2y Xy A T such that

0 P £
"7(21)*1’_(311/\3’1)""2 .



- 10 -
Suppose now that Zyy Zpy seey T, € B° have been chosen such that
> x k=1y2,eeey n and z1ézzé...ézn and such that

i e AN

. k.
o] Z v _é__ - ' )
vi(z.) € v(x A 7)) + 1_§=1 ol kK = 1,2,000, 0.

. . ! o) oy
Using (B) again, we choose 2.4 €8, 2 > X 4 A Y,,.qs Such that

. . o’
Finally, we pick Zn+1 e B, sz

0 . . § o
v (Zn+1) £ inf { v (2) 3 z ¥z ¢

!
£ Y
From (2.8) and the fact that X, AT, = 2, A 24 it follows that

o
v (Zn+1) -

N
<
(]
—
S]
—r
!
<
P
]
>
e
N~—"
+
4
¢}
~~
N
+
-
~—"
+
N ol
=
+
-

It now easily follows that

o < - ’
(2.13) sup Vv (zn) sup _w_r_(xn/\ sn) + E&=0,

We put Z, = Sup, Z. . Evidently we have Z, 2 XA Y. (H is G -continuous, )

1 1
By lemma 2.3 there exists =z e x° y 7 0= B, s such that
or. 'y » ) o
vo(z ) —supnv(zn) + & .
From (2.13) we then obtain; using (2.10),

or. "y « .
vi(z ) £ sup, X(‘{n’\ yn) +2E

= sup {vo(z) : XA yézéEo} +2€.,
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£ was arbitrary, and the required inequality follows.
The following lemma completes the necessary ground work in the extension

procedure., It generalizes the results of prop. 3.1, p. 427 and lemma 1, p. 429

in [1].

2.5 Iemma: v is extendable to an upper semi-integral (H, E*, v*) where the

sublattice E* of H is hereditary from above.

Proof: We define EY as followss

E* ={ x €H : there exists y & E° such that x & y}‘

LN

It is evident from this definition that if x, y & E*, then we also have
X AYE E*. An easy application of lemma 2.1 yields that x v y & E*, and
so we have proved that Eﬁ' is a sublattice of H, E™ is evidently hereditary

from above.

We now define v* s B —>[-e0, +20) by
v¥(x) = inf }\vo(y) s X £y € EO}‘ .

We observe that v™ is increasing, and it then immediately follows that

v*| E = v. It remains to prove

(a) v*x) +v¥y) * v &z vy) + vz~ y) for all x, y & B

(i.e. v* is an upper semi-valuation).

(v) x, & E¥, n=1,2,..., an x €H, ~oo < sup, v*((xn)f\c><j
= x €Y and v¥(x) = sup, v"'(:{n)

(i.e. +the "upper half" of the Beppo levi property).

To prove (a), let x, y & EY and > 6 be given., We assume that

v(x), (y), v¥(zxvyy), and v (x~ y) are all finite, otherwise the desired

1 1 t - v
inequality is trivial, There exist x , y € Eo, X ®»x, y =y, such that

£ t v
©(z') £ v(x) +5, ¥(y ) £ v (y) +§2- . Application of lemma 2.4 and
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lemma 2,2 yields

vMxvy) + vzAy)

N
K
<
e

™

inf {vo(z) "2 ge Eo_} + inf {vo(z) PX AY z € Eog‘

v

inf {vo(z) s x v y' 4 oz GEOZ; + sup {vo(z) s x A y' zE—Ecg’

L}

1]

P(x') +v°(y)

IN

v*(x) + v¥(y) + £,

€ was arbitrary, and (a) is proved.

(b): ILet x & EY, n=1,2,004, an x &H, -7 sup, v*(xn)4°0.
Without loss of generality we can assume v*(}:n)) -oC for n = 1,25400 o«

We first select ¥y (S Eo, ¥y > Xy such that

o T &
v(y1)—v(x1)+2.

Then we choose v, € E°, s » T4V ox such that

2?
Cly,) £V, v oxy) + 5

Using (a) of this lemma we obtain

v(ry) € v0(3,) + vi(x,) - Py Axy) +5

> s x. . > i
Now ¥y Xy and X, > Xy thus Yy A X, 2 Xy, and it follows that

Wly,) € *(xy) +v%(r,) - V(=) +§
£ v*(xz) +§2- +%— .

Proceeding by induction, we obtain an increasing sequence {yni- s Yy 3 Eo,

n=12,s00, such that ynéxn and

n
2 — &
vo(yn) = V#(Xn) + é:T ;12 .
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"It follows that
[o] o
sup v (yn) £ sup v*(xn) + & ¢ o,

and lemma 2.3 implies that there exists 1z € E® such that

> > =
b sup ¥y, ® X = sup X and such that

v’(z) < sup vo(yn) + &,
Tt follows that x € EX and also that

(o] z *
v'(z) £ sup v (xn) + 28 ,

Since € was arbitrary, we obtain
*®, V4 *
v¥(x) £ sup, v*(x,) .
The reverse inequality is trivial, and the proof is complete,

Remark: Evidently the extension theory developed so far has a dual version,
and we can thus also extend v to a lower semi-integral (H, Ex, V=), where

the sublattice En of H is hereditary from below.

72.6 Theorem: An admissible increasing valuation v on a directed

subset E of a G -continuous lattice H, where E has the Riesz interpolation
property, can be extended to a full integral (Lebesgue type integral) within H
if and only if condition (D) holds.

:_ Then the common restriction I of the two functions +v%, vi of (2.14),
(2.15) to the set 'IC"‘_.J of those elements for which they are both well defined

with the same finite value will be such an extension.

yné Ey, n=1,2,004, yn’Tyéxi'

(2.14) v*(x)

inf ? sup v(yn)

N

{

sup {infn v(zn) 2, € B, n=1,2,000, zni« z€x%,

o0

it

(2.15) vu(x)

~/
Moreover, E will be dense in E with respect to the pseudo metric dI.
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Proof: (D) is necessary. Assume that v is extendable to a full integral

A ' '
(H, E, ¥) and let X9 X5 ¥y T,€B, n=1,2,... be such that x T x € H,

! 1 ) t ! t [
xn'fde, ynsbyEH, yn\Lyé.H and xAXx 2>2yVy, W must prove that
t — 1
é -
(2.16) sup, x(xn/\ xn) 1nan(yn\/ yn).

t — ]
We can assume that sup _\_r_(xn N X and infn v(yn V yn) are both finite,

(S

\] A
otherwise (2.16) is trivial. E is a sublattice of H, hence x A x & E,

] A ~
T,V Y, € By m= 1,200 (g, B, ¥) is a full integral, and we obtain (from
the Beppo Ievi property) that
A Ny s A 1
sup_ v(xn/\ xn)  inf v(ynv yn).
Thus, to prove (2.16) it suffices to show that
~ N ' N oy = t
vz A x ) fx(x ~x), Wy, vy) 2, vy
for n = 1,2,... » Since v is admissible and E°S E, it follows that
! . o ! .
y_(xn/\ xn) = inf 3§ v°(2) : X N x £ g¢ Eo%
. ~ ! o!
=1nf{v(z):xn/\xnézéE§
> % '
V(Xn A Xn)o

The dual inequality is proved similarly.

(D) is sufficient., We extend v +to an upper semi-integral (H, E*, v¥) as

in lemma 2.5, Similarly we also extend v to a lower semi~integral
(H, Ex, V). BEvidently v* and v, will satisfy (2.14) and (2.15) respective-

ly. From (D) it is easily se=n that
* %
x€B N E, = ve(x) £ v"(x).

It now follows from proposition 3.2, p. 428 in [1] that (H, E, I) is a full

integral, where we have put
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T - %‘_xe E'N Ex : v¥(x) = V(%)

and I =v¥* l T - ve| B, If x € E, then v*(x) = vi(x) = v(x), hence I

is an extension of v,

~
B is dense in E with respect to dI. The straightforward proof is omitted
(ef. [1, p. 430)).

We saw in the first part of this proof that
Yxay)cvlxay), Vxvy)2Wxzxvy), x,yEE
for any full integral (H, ﬁ,’%) extending v. The reverse inequalities are

both trivial, and we have proved the following

2.7 Corollary: If v is admissible, we have

vxAy) =vlxAay), Fxvy) =Wzvy); x, 7 €E
for any full integral (H, ﬁ, 7) extending v.

Remarks: The most disappointing feature in our extension theory is probably

the introduction of the "messy" condition (B). This restriction seems (to us),
however, necessary if one wants to cafry through the arguments along the same
tracks as in the classical Daniell theory and in [1}. (The difficulty is to
prove the validity of (2.12». In a certain sense we can say that in the general
case (A) "splite" into two differént conditions (B) and (D). The relation-
ship between the conditions (A), (B), (D) and the (extended) Daniell axiom
((1.1) and its dual version), which we here denote by (C), in the various
stages of generalization can}be illustrated as follows (The almost trivial

proofs of the different implications are omitted):

(1) L is a vectof lattice in the complete lattice of extended

real-valued functions on some set:

(4) = (B) &= (C) & (D).



(ii) E is a sublattice of a 6 —dontinuous lettice H:

(D)= (A)_--%(é> , (B)&=(0).

(i1i) B 1is a directed stibset of a O -continuous lattice H
with the Riesz interpolation property:

(D)= (8) =3(¢) , (B)=(0).

Finally it should be pointed out that (B) by no means is necessary for an
extension to be possible. This is demonstrated by the following example:
Iet H Ybe the complete lattice of extended real-valued functions on [0,1}
and define E +to be the linear space consisting of the continuous affine func-
tions on ]0,1] (i.e. functions of the form + &—>at +b, a, bR ),
Obviously E has the Riesz interpolation property. We define v as the re-
striction of the ordinary lebesgue integral to E, It is easily verified that
v is an increasing valuation, and by the very definition v is extendable to
a full integral. let x, y € E be defined by x(t) =t, y(t) =1 - t,

1

t € [0,1] . Then v(x A y) =0, but HxAy) = T for the Iebesgue extension,

Prom corollary 2.7 it follows that (B) is not satisfied.

3. The semi-lattice condition. In a given example it may be difficult to

prove the validity of the conditions (B) and (D). A very reasonable condi-
tion imposed on E will, however, simplify the situation drastically. We shall
use the following notation:

E/\E:%x/\y:x,y&E}, E\/E={XVy:x,y(:ES.

Er={xEH: there exist xneE, n=1,2,000, an xg + Eg is defined

dually. A subset K of H is called an upper semi-lattice if xv y € X for

all x; y € K. A lower semi-lattice is defined dually., We now assume the fol-

lowing two inclusions to hold:
(3.1) EAESEY , EVEECSE,,

(3.1) could reasonably be called the semi-lattice condition because of the fol-

lowing proposition.
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3.1 Proposition:

(a) EAE S EGT(_—-\ £7 is a loWer semi-lattice

(b) EV E € E,%= E4 is an upper semi-lattice.

Proof: Obviously it suffices to prove (a). If EY is a lower semi-lattice,
it follows immediately that E A E € E, since E € E°, Conversely, assume

EA E €E7, and let x, y&€ E° be given, There exist X yne E, n-= 1,2,...;
such that an Xy, Yy T Ve The assumption E A E € BT implies that we can
find, for every n, Zn,k:& E, k=1,2,s0., such that zn’k'r XA Ve We

put 2z, = 2z and choose 1z, &E such that
1 1,1 2

: < <
21,27 Pp,0 T T T XA T

This choice is, of course, made possible by the Riesz interpolation property.
Proceeding by induction we obtain an increasing sequence { zna from E such

that

Z,° NV Z. NV ees VI £ g £x A s n o= .
1,n 2,n  ° n,n n n” In 19250

We put z = sup 2 S Ec'. For a fixed n we now have for every k ¥n that

z >g D g .
k n,k n,k

limit once more we obtain 2z > x A y. On the other hand; z, £ XA Yy for

It follows that =z = sup, 2 =X AN Ve Passing to the
every n, and we conclude that 2z =x A y. Therefore x A y € E°", and the

proof is complete.

Remark: The reader might perhaps suspect the last proof to constitute a
simplification of the technique used in lemma 2.3. This is, however, not the
case; the Riesz interpolation property is used quite differently in the two

proofs in question,

Our next proposition should be compared with the observation (ii) in the

remark following corollary 2.7.
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3,2 Proposition: Iet v Ybe an increasing valuation on E, and assume that

EAEE€E’, EVEGSE,. Then the following two equivalences holds
(A)<=(D) , (B)<==(c) .

Proof: The implications (D)== (A) and (B)= (¢) are trivial,

! ! 1 1 1 1
(A)==(D): ILet an x € H, XnT x € H, yni« y € H, ‘Vn‘L y E€H,xax :yvy ,

X X

[ .
Y Y, €E, n=1,2,000s According to the previous proposition

n’ n’ n’
! 1
we can find z € E, z_€x A x, n=1,2,.4., such that =z Txnanx.
n n n n n
1 1
n = 1,2,.00’ such that Wn\.!t y\/y .

Dually we can find w € E, w Xy vy

n n n?

The required inecquality now immediately follows from (a).

(¢) =>(B): Since EAE €EY, the proof will be accomplished if we can

prove the followings: If z ©E, n= 1925000y znT z > z € E, then
sup. v(z_) ® v(z_ ). H is 0 -continuous, hence z_A z_ 1z, We choose
n n o , n ) o
t 1
in accordance with proposition 3.1 z €E, 2z, = 2, A2, n-= 15250049 such

1 1
) < _
that z_ 0\ z . From (C) it follows that sup v(zn) > sup v(zn) v(zo),

and the desired inequality is proved.

3.3 Corollary: let v be an increasing valuation on E and assume that

EAECSE’, EVESE,, Then v is extendable to a full integral within H
if and only if condition (A) is satisfied. Moreover, a necessary condition

for extendability is that v di& admissible,

Proof: The corcllary follows directly from proposition 3.2 and theorem 2.6,

let H denote the (=) continuous lattice of extended real-valued func-
tions on some set S, As in the introduction we define
H = {x eH: |x(s)] <> forall se s}. Iet E be a directed linear
subspace of Ho’ and assume that E has the Riesz interpolation property,

i.,es E 1is a Riesz space in H. To be able to apply our extension theory,
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we make the following observation (which is trivial in case E is a vector

lattice):

3.4 Proposition: A linear functional v on E is a valuation (in the

sense of (2.1)).

Proof: let x, y €E be given and let 2z €¢ E be such that z£x~n y. We
know that x +y =xVy +xAy, hence x +y -2 >xVy, and it follows
that v(x +37 - 2) *W(xvy), i.e. v(x) +v(y) *T(zxvy) +v(z). This

inequality is valid for every 2z € E such that z ¢ x A y, and so we have
v(x) +v(y) > v(xv y) + 3z » 7).

The reverse inequality is proved similarly.

Remark: The reader should note that the assumption that E be directed, is
r—t

essential in the last proof.

Our next proposition should be compared with proposition 3.2 and the

observation (i) in the remark following corollary 2.7.

3,5 Propositions let v be a positive linear functional on a Riesz space E

1n H and assume that E AE < ES, Then we have

(1) & (B) & (¢) &= (D) .

Proof: In virtue of proposition 3,2 it suffices to prove that (4) follows from
the (extended) Daniell axiom, i.e. the implication (C)=>(A). To this end let
Jﬁh/[‘ x e H, ynL ye¢H x=2>y, X Y, € E, n=1,2,... .« We must prove that
‘ . 5

sup_ v(xn) inf v(yn). As usual we can assume that sup v(xn) and

inf v(yn) are both finite. It is now evident that x - yn'r X -y 2 0.

(x and y need not be in Ho; nevertheless their difference is well defined

in H,) We choose z € B, 2z ¢ (xn -¥,) A0, n=1,2,..., such that

Zn4\ 0. This choice is made possible by the eonstruction given in the proof of
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propoéition 3.1, From the Daniell axiom it now follows that
- > =
sup v(xn yn) sup v(zn) o,
and the proof is complete.

Theorem 2.6 and proposition 3,5 immediately yield the following

3,6 Theorem: Iet v be a positive linear functional on a Riesz space

E in H and assume that EA E €E%, Then v can be extended to a full

integral within H if and only if the Daniell axiom (1.1) is satisfied.

Remark: Iet v and E be as in the preceding theorem, and let (H, E, I)

be the extension constructed in theorem 2.6. E ﬁill generally consist of
infinite valued functions; thus ’I'_.:" is usually not a liﬁear space. It is,
however; not hard to prove that En H0 is a vector lattice and that

I ] ’ﬁﬂ H0 is a positive linear functional, If we also assume the Stone axiom
to hold (D, Ds 459_]), we can prove that each member of E is equivalent to
& member of E N B, (mod I). Then ’f"l = E/{1] can be organized into a vector
lattice in the natural way.

There is a useful corollary to theorem 3.6 which we shall need when we
turn to the study of Choquet simplexes. We now assume that S 1is a compact
Hausdorff space. We denote the class of real-valued continuous functions on
S by ¥ (8). Iet K be some subset of H. For a given s € S the notation
(KA K)(s) € ¥%(s) means that for any x, y € K there exist z € K,

z, £ XA ¥, n=1,2,.0s, such that z, (s)/l\ (x A y)(s).

3.7 Corollary: Iet S be a compacr Hausdorff space, and let E be a

linear subspace of & (S) with the Riesz interpolation property. If E con-
tains the constant functions and (B AE(s) S B°(s) for every s € S, then
any positive linear functional on E can be extended to a full integral within

H.
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Proof: Since the function 1 is in E, and since every member of E is
continubus, E 1is directed, hence E is a Riesz space in H.
let X, Y€ E and a positive integer n be given., For every s € S we
choose z_€ E, z_  £xAy such that (x A y)(s) - 5% 2 zs(s). An easy

compactness argument implies that we can find 51, ceey By & S and open neigh-
{

k
bourhoods Ui of 859 i=1,25000y k 4y such that S = I:% Ui and such that

(xA y)(%) -%é z, (t) for all t €U, i=1,2,.s., k. Using the Riesz

1 ' ' '
interpolation property we find z €EB, 2z € XAy such that xA ¥y --% & Z, .

We use the Riesz interpolation property once more together with induction to
obtain an increasing sequence {zn% s 2y € E, such that
XAY - %-é z, £ExAy, n-= 1,2;... . Tt follows that xA y € EY, Since

1 € E, we conclude from Dini's lemma that any positive linear functional on

E satisfies the Daniell axiom, Now theorem 3.6 applies.,

4, Applications. For explanation of terms not defined here the reader is

referred to [31. Ilet X be a compact, convex subset of a lecally convex
Hausdorff space over the reals. The extreme boundary of X is denoted by Xé.
K is the class of real-valued continuous concave functions on X,

R =Kn-X the class of continuous affine functions., ﬁTTl(X) denotes the set
of probability measures on X, A measure fA.ETnl(X) represents x € X if
}A(f) = f(x) for all f ef. A boundary measure is a measure M equl(X) which
vanishes off every boundary set ("Bordtire" in [3]), If X is also a simplex,
i.e. X is affinely isomorphic to the base of a lattice cone, we shall see how
éur extension theory can be used to give a very natural construction of re-
presenting boundary measures in case (a) X.e is closed or (b) X is
metrizable., The connecting link is provided by the following fact proved by
Edwards ([4]; cf. also [5, the 2.1]): X is a simplex if and only if [} has
the Riesz interpolation property. Note that if f& possesses the Riesz inter-
pélation property, so does §4|x§ = -if]xg : f‘Ef% }. (This follows from

13, Satz 2.4.4; Vergleichsprinzip].) We recall to the reader the definition of
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the u.s,c: (concave) envelope f and the 1l.s.c, (convex) envelope f of

a bounded real-valued function f:
?=inf{g:fég(=f:1}; £=sup {g:f2gef] ],

We also note that ([3, Korollar 3.1.4])

X, = m{Bf : fe -j{j where B, is the boundary set ix s T(x) = f(x)} .

41 T hecoremn: Iet X be a simplex with closed extreme boundary Xe.

To every x &€ X there exists a unique boundary measure r«x&m _1'_(X) represent—

ing =x.

Proof: let x€ X be given, We define a linear functional v, on E =-QIXe
by setting jrx(f ‘Xe) = f(x) for fefl. v is well defined and positive
‘because of [3, Satz 2.4.4_]. H contains the constant functions, hence E 1is
a Riesz space in the (F-) continuous lattice H of extended real-valued func—
tions on Xe. It h1, h,2 eﬁ, h‘l N h2 is continuous, hence
hy A B, | X, = by A b, | X,. Ve conclude that (E AE)(y) € 8%(y) for every
Yy € Xe’ From corollary 3.7 it follows that Vi is extendable to a full
integral within H, Iet (H, E, ?rjx) be the extension of theorem 2.6, We now
prove that G(X) | X € E. Letd denote the set of all finite joins of
elements in 5 . According to [ 3, Iemma 3.1.1] 39 -:F is dense in €(X) (sup-
norm topology); hence it suffices to prove that flxe = %, « This inclusion,
however; is obvious since £ is a sublattice of H. We now define HX by
putting )ux(f) = Vx(f l Xe) for every f£€& ¥(X)., Evidently J44 1s a positive
linear functional on L?(X), and jv(x(1) = '\\rlx(‘l l Xe) = 1, hence jdi_ e‘hﬂ(x).
Furthermore, R (£) = 'x‘r’x(f ! X,) = vx(fﬁ X,) = £(x) for all £ ¢fi, and final-
ly /Ax(-f - f) =0 for all f €& —)K., Therefore, A, is a boundary measure
representing x.

To prove uniqueness let H1,/12 be two boundary measures both represent-
ing x. Evidently ,’41lﬁ =H2‘ﬂ « It suffices to prove that PL”‘? =/12l3: .

Let feﬁ’) be given. We have }41(f) =/H1('f), /{2(:&‘) =/v<2(?). We have just
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proved that E A E € B9, or equivalently, EVE € Es;. From proposition 3.1
-it follows that _‘)OIXe € Eye  Accordingly, let hneﬂ, n=1,2,,.0, be such
\
that h | X | T|X =f]X . Since X is a simplex, f is affine, hence
n' eV e e
hn~l« f. It follows that }41(?_") = 1r11m}<1(hn) = 1;m/42(hn) =f{2(f). This

completes the proof.

4.2 The ore ms Iet X bve a metrizable simplex. To every x &£ X there

exists a unique boundary measure ,L{x E‘hﬂ(x) representing x.

Proof: Our proof is based upon the following fact: If X 1is a metrizable,
compact; convex subset of a locally convex Hausdorff Space; there exist to
every l.s.c., affine function f on X hHEF} gy n o= 1,2,...; such that
hn'f\ f. Dually, if g 1is an u.s.c. affine function on X, there exist

k €fl, n=1,2..., such that k J g. The proof of this statement is
omitted; we only mention that it is based on an application of the Hahn-Banach
theorem and on the fact that a metrizable compact space is an countable,

Iet x&€ X be given. We define Ve on E =~Q \Xe just as in the proof of

theorem 4,1, To be able to use theorenm 3.6 we have to prove that EAE & EY,

This, however, is now immediate: If hy, B, efl, h,A h, is l.s.c. and
é,ffine since X is a simplex; hence there exist gneﬂ s B =1,2,404s, such
It follows that EA E & EUT The rest of the proof is

that g, 1 n,A n, .

almost identical with the corresponding part of the proof of theorem 4.1.

Remark: It should be noted that we do not make use of the existence of a

s;trictlJy convex function on X in the last proof, cf. !:_3, Satz 3.2.4].
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