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1 • Introducti.on, A partially ordered linear space has the Riesz interpo-

lation property if to every four elements xi, y j ~= E, i, j = 1, 2, such that 

there exists z £ E satisfying xi ~ z f: y j , 

i, j = 1, 2. The investigation of spaces of this type goes back to F. Riesz 

( [ 1 oJ ) , Recently they have been discussed by different authors (Fuchs [6.J, 

J Ll.ndenstrauss L..ra] and r 1 [1_], Bauer [2 , of, also Namioka :._9..l. It should be 

noted that in a partially ordered linear space the interpolation property men-

tioned above is equivalent to the more familiar Riesz decomposition property 

( [8, lemma 6 • 2] ) • 

We note that a vector lattice always has the Riesz interpolation property. 

The converse statement, however, is false. We give two examples of partially 

ordered linear spaces with the Riesz interpolation property that are not vector 

lattices; (a) The space of polynomials (with real coeffisients) on [0,1], 

(b) the space of real-valued continuous functions f on [01 4] satisfying 

f(~) = f(1) + f(3). In these examples the order relation is the usual point-

wise one. The verification of the Riesz interpolation property for example (a) 

can be found in [ 8, pp. 75-76]. Example (b) is due to Ncmioka ( [9, p. 45]). 

Another interesting example, which we will study in some detail in part 4 of this 

paper, is the space of continuous affine functions on a. Choquet simplex. 

Let H be the (Gi-) complete lattice of all extended real-valued func-

tiona on some set S. With pointwise addition and scalar multiplication 

jf(s)\ < 00 for all s E2 s} becomes a linear space, I~t 

v be a. positive linear functional on a Riesz space in H, i.e. a directed linear 

subspace E of H with the Riesz interpolation property. 
0 

The question arises 

whether it is possible to extend v to a Lebesgue integral within H. In case 

E is a vector lattice in H it is well kno~~ that such an extension exists if 

and only if the Daniell axiom is satisfied~ 

( 1.1) X E: E, 
n 

n = 1, 2, ,,, , x j x E: E ~ v(x ) j v(x). 
n n 

~) All linear spaces considered in this paper are over the reals. 
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It is the aim of this p~per to establish necessary and sufficient condi-

tions for an extension to be possible in the general case, We will, however, 

attack the problem in a slightly different form, In ,- ) t.1- Alfsen h~s developed 

a theory of integration based on order. In this more general setting we are led 

to consider the following problem: Given a valuation v (defined in (2.1)) on 

a subset E of a ~-continuous lattice H, E having the Riesz interpolation 

property, we want to extend v to a full integral within H. This extension 

theory is contained in part 2 of this paper. In part 3 we add further assumptions 

on E to obtain essential simplifications of the axioms introduced in part 2. 

Finally, in part 4, we show that for metrizable Choquet simplexes, and also for 

simplexes with closed extreme boundary, our theory can be used to give a rather 

natural and straightforward construction of representing boundary measures, at 

the same time proving uniqueness, 

We would like to express here our thanks to E. Alfsen for valuable help 

and suggestions during the preparation of this paper, 

2. Extension theory. For explanation of terms not defined here the reader is 

referred to [1]. In the se~uel E is a fixed subset of a o--continuous lattice 

H. We assume that E has the Riesz interpolation property and also that E is 

directed, i.e. to x, y E E there exist z1 , z2 E. E such that z1 1::. x A y , 

z2 ~ x v y, (All lattice operations are in R.) We use the term valuation to 

denote a real-valued function v on. E satisfying 

(2.1) v(x) + v(y) == v(x v y) + y_(x 1\ y) for all x, y E E , 

~here we have put 

v(x v y) = inf l v(z) 

y_(x A y) = sup t v( z) 

As we shall only consider the case when v is increasing, no confusion can arise 

from our use of the word valuation, If E is a sublattice of H, (2,1) does 

not generally coincide with the usual lattice valuation identity ( [1, p. 421]); 

the two definitions are, however, identical if v is increasing. 
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An increasing valuation v is called admissible if it satisfies 

v(x v y) = sup { inf v(z ) z J, z E R, Z ~ XV y, z E: E, n "" 1 '2 ••• } n n n n 
(2.2) 

y_(x /\ Y) v(z ) z 1 1 '2 •• • J = inf { sup z E: R, z}:zAy, z E E, n = n n n n 

for all x, y E. E. (2.2) will hereafter be termed condition (B). It will 

turn out later that if an admissible increasing valuation v is extendable to a 

full integral within H 
' 

then ~(x v y) = v(xv y), ~(x" y) = y_(x A y) for 

(H, 
A 

~). [1 ' 429] any such full integral E, In th. 5' P• it is proved that 

an increasing valuation v on a sublo.ttice E of R is extendable to a full 

integral within R if and only if the following condition (A) is satisfied~ 

(2.3) (A): 

n=1,2, ••• , X 'j X €. H, 
n 

> sup v(x ) ~ inf v(y ). n n n n 

It is now easily seen that in the lattice case an increasing valuation v is 

extendable to a full integral within R only if it is admissible. In fact, in 

this case (B) is e~uivalent to (1.1) and its dual version (the (extended) 

Daniell axiom). 

In the sequel v denotes a fixed admissible increasing valuation on E. 

v is supposed to satisfy the following condition (D), which will replace (A) 

in our extension procedure. 

I I I 

H) tx ' X E. E, n = 1,2, ••• , X 'l' :X: E. H, X 1' X €. 

(D)gJ n 
n n' n i 

(2.4) .l&xA 
I 

I I I X !!: yvy 
Yn E E, n = 1,2, ••• , yn J,. y € H, ynj., Y E R .l 

\Jn' ) 

==~ SUp V(X 1\ X I) ~ inf v(y V y I) 0 n- n n n n n 

Obviously, (D) always implies (A), and if E is a sublattice of R, (D) 

and (A) coincide. We put 

there exist xn E E, n = 1,2, ••• , x11 'I' x, supn v(xn) ( C.:.O} , 

and for each x E E0 vve define 

(2.5) 

I 
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We make the following obaorvations~ 

(a) 0 is increasing v 

(b) v0 (x) = sup v(x ) n n for any increasin~ sequence 

\xn~' X E. n E, 

(d) v0 I E = v. 

n =-:: 1 , 2, ••• such that 

0 for every x E E 

follows from the definition of 0 v • If 

X t n x. 

and xn 1 x, 

n = 1,2, ••• , it follows from (D) ((A) is sufficient) that 

supn v(xn) ""'v0 (x). The reverse inequality is trivial, and so we have proved 

(b). (c) follows from (b) and the definition of E0 • (d) is trivial. 

2.1 Lemma: Let x, y E. E 
0 and s > 0 be given, and let 

{x ~ ' t Ynf ' X ' y ~ E, n = 1,2, ••• , be sequences such that X t x, n1 n n n 

Then there exists a sequence tz) 
' 

z E. E n"" 1,2, ••• such that n n ' 
(a) z ":!!. XV y n = 1 '2' ••• n n n 

(b) ~ z ! is increasing. 
L n 

(c) sup v(z ) G sup v(x ~ y ) + E., n n n n n 

(d) z = sup n 
0 z C. E , n 

Proof: It follows from the definition of v(x~ v y~) that we can select 

Suppose now that have been chosen such that 

and z. :;?!, 

J. 
i = 1,2, ••• , n 

__L 
v( z. ) ~ v(x. v y. ) + ~ 

J. J. l. k :::: 

and such that 

i = 1,2,, •• , n. 

... 

y i y. n 
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We must find zn+1 ~ E such that z 1 'l!!: z ' n+ n 

n+1 
v( zn+1) ~ v(xn+1 v y n+1) + ~=1 

To this end we choose 

I 

v( zn+1) 6 v(xn+1 v y n+1) 
1 e +-.-
2 2n+1 

I 

Z ~X V y n+1 n+1 n+1 

such that 

We then choose zn+1 E E, z ~ z v z n+1 n n+1 such that 

, 1 e 
v(zn+1) ~ v(zn v zn+1) + ...... -2 2n+1 

Using (2.1) we can rewrite the last inequality: 

(2.6) v{zn+1) v(z ) 
I I +1. E .... ~ + v( z 1 ) - v( z 1\ z 1 ) 2n+1 n n+ - n n+ 2 

I 

and 

We have xnv Yn G z j\ z and it follows from the Riesz interpolation n n+1' 
t 

property that there exists w ~ E such that 
n 

xvy 6w 6z /'Z , 
n n n n n~ 

This implies that v(x v y ) ~ v(z A z I 1 ). 
n n - n n+ Using this fact, it follows from 

(2.6) that 

v(zn+1) {: v(z ) - V(X V Y ) + V(z I ~.) + 1 • --L. n n n n+. 2 n+1 • 
2 

~ v( z ) - v(x v y ) + v(x 1 v y ) n n n n+ n+1 

From the induction hypothesis we conclude that 

(2. 7) 
n+1 c 

v( z ) ~ v(x v y ) + ~ ~k n+1 n+1 n+1 L-
k=1 2 
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The oomstruated sequence \zn~ evidently satist·ies ~D.) c:.r,0 (-u)~ (o) f'ollow.s 

easiiy from (2.7). To prove 

every n = 1,2, ••• we have 

Hence we obtain 

(d) '~ must show that sup v( z ) i... ~J • n n 

sup v(x v y) ~ v0 (x) + v0 (y)- v(:X:1/\ y1) < oC ' n n n -

and the desired conclusion follows from (c). This completes the proof. 

For 

Our next lemma generalizeo the first half of lemma 1, p. 429 in [11. 

2. 2 lemma: For all x, y E E 0 we have 

Proof: Since 0 x, y E; E there exist x , y E.. E, 
n n n==1,2, ••• , such that 

Using the valuation identity (2.1) we obtain 

v0 (x) + v0 (y) = sup v(:x: v y ) + sup v(x 1\ y ) 
n n n n- n n 

The proof will be accomplished if we can prove the following two formulae: 

(2 9) · f J v0 ( ) x V y / z <!: E0 ;? -( ) • ~n l z "" .._ = supn v xn v y n 

= sup v(x 1\ y ) • · n- n n 

We first prove (2.9). let E > 0 be given and choose 

in lemma 2.1. Then we have 

v0 ( z) ~ sup v(x v y ) + E. ' n n n 

and, since C was arbitrary, it follows that 

0 z = sup z E. E as n n 
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The reverse inequ~lity follows easi~ from (D), and the validity of (2.9) is 

proved. 

To prov~ (2.10) we observe that 

sup t v(z) X 1\ y ~zE..E~, 
.J 

and it follows immediately that 

sup S v 0 ( z) : x A y :!: z €. E0 ~ ~ sup v(x A y ) • l J n- n n 

We prove the reverse inequality. let £) 0 be given. From (2.11) it follows 

that there exists z E:: E, z ~ ::c 1\ y, such that 

Putting zk = z~ = z, k = 1, 2, ••• , we have that zk v z~ ..J... z, and application 

of (D) yields 

v( z) ~ sup v(x /\ y ) • 
n- n n 

C. was arbi trarJ, and we cone lude that 

sup j v 0 (z): XI\ y ~ z E E0 } ~sup v(x 1'\ y ), l n- n n 

~· e. d. 

The difficult part in the extension procedure will be to prove the validity 

of the ":Beppo levi property". The proof in the lattice case, contained in the 

second half of lemma 1, p. 429 of [1], rests heavily upon the possibility of 

performing lattice operations. Nevertheless, it turns out that a rather delicate 

use of the Riesz interpolation property does the work. 

2.3 Lemma~ If X. t x E H, X E E0 , n = 1, 2, •• •, and sup v 0 (x ) ~ c::..o , n n n n 

then, given E.) o, there exists z €. E0 , z ~ x, such that 
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Proof: For every n there exist X k E. E, n, k = 1,2, ••• , such that 

xn,k t xn. We put Y1 ,k = x 1,k' k = 1,2, ••• , and choose, in accordance with 

lemma 2.1, an increasing sequence tY2 ,k} , y 2 ,k € E, k = 1,2, ... , such 

that Y2 ,k ~ y1 ,k Y x2 ,k , k = 1 ,2,,.,, and such that 

Fl-om ( 2, 9) and the fact the. t x1 v x2 = x2 we have 

hence it follows that 

Suppose now that we have found increasing sequences {Yi,kf , Yi,k E E, 
. . . k 

k = 1,2, ••• , for i = 2,3, ••• , n such that y. k ~ y. 1 kv x. k, k = 1,2, ••• ~ 
~, ~- ' ~, '" 

i = 2,3, ••• , n and such that 

Evidently, 

i c 2,3, ••• , n, 

y :!!I X 
n n 

0 and y E. E , 
n 

Using lemma 2.1, 

we select an increasing senuence ~Y l -.r E. E k - 1 2 such 
~ l n+1,kJ' "n+1,k ' - ', ••• , 

that 

From ( 2 , 1 0) ~ (2.8) 

k=1,2, ••• , and such that 

and the fact that x ~ y 1\ x +1 we obtain n n n 

Y 1\. x ~ z C: E0 ;(, 
n n+1 
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From the inductj_on hypothesis it then follows that 

We now select a diagonal sequence {zn} by setting zn = Yn,n for every 

rt = 1,2,... We easily verify that zn+1 = Yn+1,n+1 ~ Yn+1 ,n ~ Y - z 
n,n - n ' 

hence { zn \ is increasing. We put 

all k * n tho.t 

z = sup z • n n 
For a fixed n we have for 

Z ~ Z = y ~ y ~ X . , 
k k,k n,k n,k 

and it follows that z ~ sup x · = x • This is valid for every n, hence 
k n,k n 

z ~ sup x = x. The choice of the sequences Sy t ensures that 
n n l n,kJk 

v(z ) = v(y ) ~ SUDk v(yn k) 6 v0 (xn) + S. n n,n , 

It follows that 

and we conclude that 

the proof. 

0 z E: E This completes 

In the next lemma we use for the first time the fact that v is admissible. 

lemma~ For all 0 x, y E E v;e have 

Proofg v0 is increasing, hence we ho.ve 

s 0 07 inf l v ( z ) : x A y ~ z E E ! 

let E > 0 be given. There exist x , y ~ E, 
n n 

According to condition 

£. 
+-

2 

(B) 

n = 1,2, ••• , such that 

we can now find 
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Suppose now that z1 , z2 , ••• , zn ~E0 have been ohosen such that 

zk ~xk/\ yk' k = 1,2,, •• , n and z1 ~ z2 ~ ••• !:. zn and suoh that 

' k E. 
v0 (zk) ~y_(xk/\ yk) +.L' . , k = 1,2, ••• , n. 

i=1 2~ 

Using (B) again, we choose 
I 0 

zn+1 E. E.' 
I 

zn+1 ~ xn+1 J\ Y n+1 ' 

Finally, we piok such that 

such that 

From (2.8) it follows that 

0 ( ) ~ vc( z ) - v(x 1\ y ) + v0 (z 1 
1) + .1 • ..§:__ v zn+1 n - n n n+ 2 2n+1 

e 1 . -+-.-
2n+1 2 2n+1 

• 

It now easily follows that 

( 2 .13) sup v0 ( z ) ~ sup v(x 1\ y ) + e < ~ . n n n- n n 

We put z = sup z • Evidently we have z ~ x 1\ y, (H is G"" -continuous.) o n n o 
I O I 

By lemma 2. 3 there exists z E.. E , z ~ z , such that 
0 

From (2.13) we then obtain, using (2.10), 

v0 (z 1
) ~ sup v(x 1\ 

n- n yn) +2E. 

"' sup 1:, v0 ( z) : X A y ~ z E. E 0 } +2€.. 



£. vvas arbitrary, and the required inequality follows. 

The following lemma completes the necessary ground work in the extension 

procedure. It generalizes the results of prop. 3.1, p. 427 and lemma 1, p. 429 

in [1]. 

2 • .5 lemma: v is extendable to an upper semi-integral (H, E~, v~) where the 

sublattice E~ of H is hereditary from abovo. 

P~oofg We define E* as follows~ 

there exists y E- E0 such that x .f: y} 

It is evident from this definition that if ~ x,yE.E, then we also have 

~ 
Xl\ytE. An easy application of lemma 2.1 yields that *" xvyE..E, and 

so we have proved that E~· is a sublattice of H. E*" is evidently hereditary 

from above. 

We now define v~ : E.fl!'·_, [- <XJ, + o<>) by 

We observe that v~· is increasing, and it then immediately follows that 

vie- I E = v. It remains to prove 

(a) v*(x) + v.,lf(y) ~ v*(x v y) + v""(x '' y) *" for all x, y €: E 

(i.e. v'*' is an upper semi-valuation). 

(b) X E. E* n = 1,2, ••• , X i X E H, -oo < sup V-)( ( X ) Z t.::><) 
n ' n n n 

-;. x e E*· and v~·(x) = sup v"'"(x ) n n 

(i.e • the "upper half" of tho Beppo levi property), 

To prove (a)' let k x, y E E and e > 9 be given. We assume that 

v*(x), v"""(y), v._·(x y y), and v;l(-(x 1'\ y) are all finite, otherwise the desired 
I I 

inequality is trivial. There exist x , y E E0 , x ':>!. x, y ~ y, such that 

0 I) *( ,C v (x ~ v x) + ~ , o 1 ~ e v (y ) ~ v (y) + 2 . Application of lemma 2.4 and 
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lemma 2, 2 yields 

v*(xvy) +v*(xAy) 

X: I A y I f z E E 0~ 

I ' , z "'~ Eoj~ X I y .:!: c-

0 I 0 I = v (x ) + v (y ) 

c was arbitrary, and (a) is proved, 

(b): let x ·6. E*, n = 1,2, ... , xn1' x e:.H, -r:Y..J<.._ sup v*(x )I... DO. n n n 

Without loss of generality we can assume v"'*(:x: ) > - 010 for n = 1 ,2, •••• 
n 

We first select such that 

0( ) ~ *( ) ~ v Y1 - v x1 + 2 • 

Using (a) of this lemma we obtain 

vo(y2) ~ v*(x2) + vo(y1)- v*(x1) +~ 

e e. 
b. v*(x2) + 2 + 4 

Proceeding by induction, we obtain an increasing sequence {Ynr, 

n = 1,2, ••• , such that yn ~ xn and 

0 
y E: E ' n 
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· It follows that 

sup v0 (y ) ~ sup v*(x ) + e <: c:.(), n n n n 

and lemma 2.3 implies that there exists 

~ ~ sup y ~ x = sup x and such that 
n n n n 

It follows that x e E* and also tho.t 

v0 (z) ~ sup v*(x ) + 2€, • 
n n 

Since S was arbitrary, we obtain 

v~(x) ~ sup v*(x ) • 
n n 

t= Eo z - such that 

The reverse inequality is trivial, and the proof is complete. 

Remark: Evidently the extension theory developed so far has a dual version, 

and we can thus also extend v to a lower semi-integral (H, E~, v.), where 

the sublattice E. of H is hereditary from below. 

2.6 T h e o r e m : An admissible ~.ncreasing valuation v on a directed 

subset E of a a-continuous lattice H, where E has the Riesz interpolation 

property, can be extended to a full integral (Lebesgue type integral) within H 

if and only if condition (D) holds. 

Then the common restriction I of the two functions 1t v , v"' of (2.14), 
tV 

(2.15) to the set E of those elements for which they are both well defined 

with the same finite value will be such an extension. 

(2.15) v>'-(x) = sup L infn v(zn) : zn E: E, n = 1 ,2, ••• , 

,....., 

Z ~ Z ~X~ 
n 

Moreover, E will be dense in E with respect to the pseudo metric d1 • 
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Proof: (D) is necessary. Assume that v is extendable to a full integral 
;.... I I 

(H, E1 v) and 18 t x , :X: , y , y E E , n n n n n=1,2, ••• 
t 

and :x: A :x: 

be such that xn 1" x €- H, 
I 

X It I 
n :x: e H, y ,j, y E H, y I "" y I e. H n n ~ y v y • We must prove that 

I I 

(2,16) sup v(x A X ) d inf v(y V yn). n- n n n n 

( X I) We can e,ssume that sup v :x: 1\ n- n n 
- I 

and inf v(y v y ) are both finite, n n n ,.. 
l "' otherwise (2.16) is trivial. E is a sublattice of H, hence :x: /'- :x: E.. E, n n 

I A 
y v y E.E, 

n n 
n=1,2, ••• , ( "' ,... H, E, v) is a full integral, and we obtain (from 

the Beppo Levi property) that 

A I 
sup v(:x: A :x: ) n n n 

I 

~ inf ~(y V y ) • n n n 

Thus, to prove (2.16) it suffices to show that 

A I I 

v(x 1\ x ) ~ v(:x: A :x: ) , 
n n - n n 

for n = 1,2, •••• Since 0 "' v is admissible and E ~ E, 

= inf 1 ~( z ) : x A :x: 1 
,;:; z E E 0 ~ l n n 

I\ I 
~ v(:x: A X ) • 

n n 

The dual inequality is proved similarly. 

it follows that 

(D) is sufficient. We extend v to an upper semi-integral ( H, E"", v~) as 

in lemma 2.5. Similarly vre also extend v to a lower semi-integral 

(H, E*, vlf-). Evidently vtt- and v*' will satisfy (2.14) and (2.15) respective-

ly, From (D) it is easily seqn that 

It now follows from proposition 3.2, p. 428 in [1] that 
r-' 

(H, E, I) is a full 

integral, where we have put 
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v*(x) = v *(x) 

and I == v *" I E = v.,. I E. If x E E, then v*(x) = v.+(x) ... v(x), hence I 

is an extension of v. 
~ 

E is dense in E with respect to d 
~· ~~~~~~~--~~~~-~~~-- I" The straightfo~vard proof is omitted 

(cf. [1, p. 430]). 

We saw in the first part of this proof that 

~(xA y) 6y_(x" y), ~(x vy) ~v(xvy), x, y~E 

for any full integral 
1\ I" 

(H, E, v) extending v. The reverse inequalities are 

both trivial, and we have proved the following 

2.7 Corollary: If v is admissible, we have 

~(x;.. y) = v(xr\ y), ~(xv y) = v(xv y) x, y ~ E 

for any full integral 
A II 

(H, E, v) extending v. 

Remarks: The most disappointing feature in our extension theory is probably 

the introduction of the "messy" condition (B). This restriction seems (to us), 

however, necessary if one wants to carry through the arguments along the same 

tracks as in the classical Danie 11 theory and in [1]. (The difficulty is to 

prove the validity of (2.12». In a certain sense we can say that in the general 

case (A) 11spli ts" into ~ different conditions (B) and (D). The relation-· 

ship between the conditions (A), (B), (D) and the (extended) Daniell axiom 

( ( 1 .1) and its dual version)', which we here denote by (C), in the various 

stages of generalization can,.be illustrated as follows (The almost trivial 

proofs of the different implications are omitted): 

(i) 
1 

E is a vector lattice in the complete lattice of extended 

real-valued functions on some set: 

(A)~ (B)~ (C) ~(D) •· 
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(ii) E is a sublattice of a Q>~dontinuous lattice H~ 

(iii) E is a directed subset of a ~-continuous lattice H 

with the Riesz interpolation property: 

(D)=}(A) ~(C) , (B)~(C). 

Finally it should be pointed out that (B) by no means is necessary for an 

extension to be possible, This is demonstrated by the following example: 

Let H be the complete lattice of extended real-valued functions on [o,1J 
and define E to be the linear space consisting of the continuous affine func-

tions on lo,1] (i.e. functions of the form t ~ a t + b, a, b € fR ) , 
Obviously E has the Riesz interpolation property. We define v as the re-

striation of the ordinary Lebesgue integral to E. It is easily verified that 

v is an increasing valuation, and by the very definition v is extendable to 

a full integral. Let x, y c E be defined by x(t) = t, y(t) ~ 1 - t, 

t € [o,1J . Then :!_(x A y) = o, but -if(x A y) = l for the Lebesgue extension. 

From corollary 2.7 it follows that (B) is not satisfied. 

3. The semi-lattice condition. In a given example it may be difficult to 

prove the validity of the conditions (B) and (D). A very reasonable condi-

tion imposed on E will, however, simplify the situation drastically. We shall 

use the following notation: 

E j\ E :::1 1 X" y : x, y E: E J' 
Eo-= 1. x ~ H : there exist 

EVEc txvy :x, yE:E), 

X e: E 
n ' 

n::: 1,2, ••• , Es- is defined 

dually, A subset K of H is called an upper semi-lattic~ if x v y € K for 

all x, y E: K. A lower semi-lattice is defined dually. We now assume the fol-

lowing two inclusions to hold: 

E V E G" Ev--. 

(3.1) could reasonably be called the semi-lattice condition because of the fol-

lowing proposition. 
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3.1 Proposition: 

(a) E A E G Ecr~ Eo- is a lower som:i-lat-tice 

(b) E v E ~Eo-~ Eo- is an upper semi-lattice. 

Proof: Obviously it suffices to prove (a). If E If"" is a lower semi-lattice, 

it follows immediately that E A E ~ E~ since E ~ E~. Conversely, assume 

E 1\ E ~Eo--; and let x, y E E.,... be given. There exist xn' yn E: E, n = 1 ,2, ••• , 

such that X t x, n 

find, for every n, 

Yn t y. The 

z k E: E, k n, 

assumption 

= 1,2, ••• , 

E A E ~E~ implies that we can 

such that zn,k 1' xn A y n. We 

put z1 = z1, 1 and choose z2 C: E such that 

z1 2 v z;2,2 ~ z ~ x2 A Y2• 
' 

2 

This choice is, of course, made possible by the Riesz interpolation property • 

Proceeding by induction we obtain an increasing sequence .S z ·~ from E 
t n ~ 

that 

We put 

z1 · V z2 v ••• v z ~ z !::. x A y 
,n ,n n,n n n n n=1,2, •••• 

z = sup 
n 

z E Eo
n 

For a fixed n we now have for every k ~ n 

such 

that 

z ~ z 
k 

':;!, z 
n,k· It follows that z ~ supk z k=XI'Yo Passing to the n, n n 

limit once more we obtain Z ~ X 1\ Y• On the other hand, z l: X 1\ Yn for n n 

every n, and we conclude that Z = X /\ Y• Therefore X A. y E:.Eo-

' 
and the 

proof is complete. 

Remark: The reader might perhaps suspect the last proof to constitute a 

simplification of the technique used in lemma 2.3. This is, however, not the 

case; the Riesz interpolation property is used quite differently in the two 

proofs in question. 

Our next proposition should be compared with the observation (ii) in the 

remark following corollary 2.7. 
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3.2 Proposition: Let v be an increasing valuation on E, and assume that 

E t\ E ~ Eo--; E v E 4;; Ea.• Then the following two e~uivalences hold: 

(A)~(D) , (B)~·(c) • 

Proof: The implications (D)-=9 (A) and (B)-=::7 (c) are trivial. 

(A)~(D): X '"' x' Let X f X E- H, I E H, n n 
y J., y e- H, 

n 

I I I I 

y j.. y E H,X"-X ~yvy , 
n 

I 

y E E, 
n 

we can find z E E, 
n 

n = 1,2, •••. Acco~ding to the previous proposition 
I 

z -6xAx, n=1,2, ••• , n n n 
such that z 'f' x A x 1 

• 
n 

Dually we can find w <£ E, 
n 

n = 1,2, ••• , such that 
I 

w j;yvy. 
n 

The re~uired ine~uality now immediately follows from (A). 

(c) ~(B): Since E A E £ E~ the proof will be accomplished if we can 

prove the following: If z e E , n = 1 , 2 , • • • , 
n 

zlz~z~E 
n o ' 

then 

z Az 1'z. n o o sup v(z ) ~ v(z ). n n o 
H is rJ -continuous, hence We choose 

I I 

in accordance with proposition 3.1 z E E, 
n 

zn ~ zn A z0 , n = 1,2, ••• , such 

that z 1 1' z • n o 
From (C) it follows that 

I 

sup v(z ) ~ sup v(z ) = v(z ), n n n n o 

and the desired inequality is proved. 

3.3 Corollary: Let v be an increasing valuation on E and assume that 

Then v is extendable to a full integral within H 

if and only if condition (A) is satisfied. Moreover, a necessary condition 

for extendability is that v is admissible, 

Proof: The corollary follows directly from proposition 3.2 and theorem 2.6, 

Let H denote the (~-) continuous lattice of extended real-valued func-

tions on some set s. As in the introduction we define 

H = (x E- H lx(s)1 
0 

<._.;::.o for all s.::sj. let E be a directed linear 

subspace of H ' and assume that E has the Riesz interpolation property, 
0 

i.e. E is a Riesz space in H. To be able to apply our extension theory, 
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we make the following observation (which is trivial in case E is a vector 

lattice): 

3.4 Proposition: A linear functional v on E is a valuation (in the 

sense of (2.1)). 

Proof: Let x, y E E be given and let z E. E be such that z 6 x 1\ y. We 

knowthat x+y=xVy+x/\y, hence x+y-z~xvy, anditfollows 

that v(x + y- z) ~ v(x v y)~ i.e. v(x) + v(y) ~ v(x v y) + v(z). This 

inequality is valid for every z E E such that z ~ x A y, and so we have 

v(x) + v(y) ~ v(x V y) + !_(X 1\ y) • 

The reverse inequality is proved similarly. 

Remark: The reader should note that the assumption that E be directed, is 

~ssential in the last proof. 

Our next proposition should be compared with proposition 3.2 and the 

observation (i) in the remark following corollary 2.7. 

3.5 Proposition: Let v be a positive linear functional on a Riesz space E 

ip H and. assume that E A E .;, E ~ Then we have 

(A)~ (B)# (C)~ (D) • 

Proof: In virtue of proposition 3.2 it suffices to prove that (A) follows from 

the (extended) Daniell axiom, i.e. the implication (c) }(A). To this end let 

X 'f X E H, Yn J., y c- H, X ~ y, X ' y E: E, n"" 1,2, ••• We must prove that n n n 

sup v(x ) ~ inf v(yn). As usual we can assume that sup v(x ) and n n n n n 

inf v(y ) are both finite. It is now evident that X - y 1' X y ~ o. n n n n 

(x and y need not be in H ' 0 
nevertheless their difference is well defined 

in H.) We choose z ~ E, 
n z ~ex -y)/\0, n=1,2, ••• , n n n such that 

z 1' o. 
n 

This choice is made possible by the eonstruct'ion given in the proof of 
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proposition 3.1. From the Daniell axiom it now follows that 

sup v(x - y ) ~ sup v(z ) = 0 , n n n n n 

and the proof is complete. 

Theorem 2.6 and proposition 3.5 immediately yield the following 

3.6 T he o r e m: Let v be a positive linear functional on a Riesz space 

E in H and assume that E 1\ E .;;- E~ Then v can be extended to a full 

integral within H if and only if the Daniell axiom (1.1) is satisfied. 

Remark: Let v and E be as in the preceding theorem, and let (H, E, I) 
~ 

be the extension constructed in theorem 2.6. E will generally consist of 
rJ 

infinite valued functions, thus E is usually not a linear space. It is, 
I'-' 

however, not hard to prove that E n H is a vector lattice and that 
0 

I I En H0 is a positive linear functional. If we also assume the Stone axiom 

to hold ([1, p. 459]), we can prove that each member of E is equivalent to 

a member of E n H0 (mod I). Then ,£.1 = E/[.I] can be organized into a vector 

lattice in the natural way. 

There is a useful corollary to theorem 3.6 which we shall need when we 

turn to the study of Choq_uet simplexe~. We now assume that S is a compact 

Hausdorff space. We denote the class of real-valued continuous functions on 

S by ~ (s). Let K be some subset of H. For a given s ~ S the notation 

(K 1\ K)(s) ~ :KJ""(s) means that for any x, y E K there exist 

z ~ x '' y, n = 1 ,2,. •• , such that z (s) f (x A y)(s). n n 

z E.. K, n 

3.7 Corollary: Let S be a compacr Hausdorff space, and let E be a 

linear subspace of <f (s) with the Riesz interpolation property. If E con

tains the constant functions and (E AE(s) ~ ~(s) for every s ~ s, then 

any positive linear functional on E can be extended to a full integral within 

H. 
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Proof: Since the :function 1 is in E, and since every member o:f E is 

continuous, E is directed, hence E is a Riesz space in H. 

Let x, y E E and a positive integer n be given. For every s ~ S we 

choose z E E, s z ~ x ~ y such that s 

compactness argument implies that we can 

(x 1\ y) ( s) ....1 ~ z ( s). - 2n s An easy 

:find 81 , ••• , sk E. S and open neigh-

bourhoods u. o:f si, i = 1,2, ••• , k , such that S = t:J 
1=1 u. and such that 

~ ~ 

(x" y) ( t) 1 (t) :for all t e. u., i = 1,2, ••• , k Using the Riesz --6 z 
n s. ~ 

~ I I 1 I 

z ~XI\ such that XA interpolation property we :find z €: E, n n y y-- 6 z n n 

We use the Riesz interpolation property once more together with induction to 

obtain an increasing sequence zn E: E, such that 

It :follows that x " y E. E Q, Since 1 x A y-- b z ~ x A y, n = 1,2, ••• 
n n 

1 € E, we conclude :from Dini's lemma that any positive linear :functional on 

E satisfies the Daniell axiom, Now theorem 3.6 applies. 

4. Applications. For explanation o:f terms not defined here the reader is 

referred to (3]. Let X be a compact, convex subset o:f a locally convex 

Hausdorff space over the reals, The extreme boundary o:f X is denoted by 

J{is the class o:f real-valued continuous concave :functions on x, 
X • e 

.P. = J{ n -X the class o:f continuous a:f:fine :functions. 't'.1' :(x) denotes the set 

o:f probability measures on X, A measure fA E:.11l:(x) represents x E: X i:f 

~(:f) = :f(x) :for all :f e .R. A boundary measure is a measure }""' E:~L:(x) which 

vanishes off every boundary set ( 11l3ord'i.ire 11 in [3] ) . If X is also a simplex, 

'i.e. X is affine ly isomorphic to the base o:f a lattice cone, we shall see how 

our extension theory can be used to give a very natural construction o:f re-

presenting boundary measures in case (a) X e is closed or (b) X is 

metrizable. The connecting link is provided by the following :fact proved by 

Edwards ([4] ~ c:f, also [5, th. 2 ,1] ) : X is a simplex if and only if ..A has 

the Riesz interpolation property, Note that if J1 possesses the Riesz inter

polation property, so does 5i lxe = ·~ f lxe : :f e. ..A j. (This follows from 

l3, Satz 2,4 .4, Vergleichsprinzip],) We recall to the reader the definition o:f 

• 
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the u.s,c• (concave) envelope f and the l.s.c. (convex) envelope f of 

a bounded real-valued function f: 

f = inf { g : f ~ g ~ J9 } ; f = sup { g f ~ g E- Ff 3 • 

We also note that ([3, Korollar 3.1.4]) 

X = n i B : f E: -:){'? where Bf is the boundary set t x f(x) = f(x) ~ • e , f \ 

4 •. 1 T he o r e m: !Bt X be a simplex with closed extreme boundary X • e 

To every x £ X there exists a unique boundary measure ~x E:~ :(x) represent-

ing x, 

Proof: let x <e X be gi von, We define a linear functional v on E = P I X x .'\ e 

by setting vx(f \ Xe) = f(x) for 

because of [3, Satz 2.4.4]. fl. 
f E-Ji, v is well defined and positive 

X 

contains the constant functions, hence E is 

a Riesz space in the (~-) continuous lattice H of extended real-valued func-

tions on Xe, If h1 , 112 EJ1, h 1 A h2 is continuous, hence 

h1 A h2 J Xe = h1 f\ h2 I X0 • We conclude that (E A E )(y) ~ E17(y) for every 

y E X • From corollary 3,7 it follows that v is extendable to a full e x 

integral within H. Let (H, E, ";f ) be the extension of theorem 2.6, We now 
X 

prove that 't?(x) I xe ~ E Let ~ denote the set of all finite joins of 

elements in f1 , According to [3, lemma 3 .1 .1] 3' -.f is dense in -e'(x) (sup

norm topology), hence it suffices to prove that (f! Xe t;;; E . This inclusion, 
r-' 

however, is obvious since E is a sublattice of H. We now define f-'. by . X 

putting u (f) , v (f \ X ) rx x e 

linear functional on t(x), 

for every f € t(x). Evidently ~ x 

and L1 ( 1) = 'V ( 1 I X ) = 1, hence 
~-·x x · e 

is a positive 

Furthermore, lJ (f) = v (f J X ) = v (f \ X ) = f(x) for all f E- Ji , and final-rx x e x e 

ly f"-x(f - f) = 0 for all f E -}(. Therefore, f-<x is a boundary measure 

representing x. 

To prove uniqueness let ~1 ,;u2 be two boundary measures both represent

ing x. Evidently j-L 1 1.Ff = JJ 21ft. It suffices to prove that J--l 1 1~ =P2 l<f . 
let f ef be given. We have j--t 1(f) =:)1 1(1), f<. 2(f) =;.< 2(f). We have just 
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proved that E /\ E G Ecr; or equivalently, E V E '= Eo-• 

.• it follows that JIXe ~ E~ 
I 

Accordingly, let h E:o 
n Jl' 

that h I X t 'fl X =: f I X • n e y • e e 
Since X is a simplex, 

h .J., f. 
n It follows that }-1. 1 (f) "' lim f-1 (hn) "' 

n 
completes the p~oof. 

From proposition 3.1 

n = 1,2, ••• , be such 

f is affine , hence 

This 

4.2 T h e o r e rn: let X be a rnetrizable simplex. To every x ~ X there 

exists a unique boundary measure kx ~~:(x) representing x. 

Proof: Our proof is based upon the following fact: If X is a metrizable, 

compact, convex subset of a locally convex Hausdorff space, there exist to 

every l.s .. c. affine function f on X h ~J+ 1 n = 1,2, ••• , 
n 

such that 

h 1' f. Dually, if g is an u.s.c. affine function on X, there exist 
n 

kn E B , n = 1 , 2, ••• , such that k ~ g. 
n 

The proof of this statement is 

omitted, we only mention that it is based on an application of the Hahn-Banach 

theorem and on the fact that a metrizable compact space is 2nd countable. 

let x E X be given. We define v on E - n 1 X x - .Jl e just as in the proof of 

theorem 4.1. To be able to use theorem 3.6 we have to prove that E A E ~EO: 

'.phis, however, is now immediate: 

~ffine since X is a simplex, hence there exist gn E ~ , n = 1 , 2, •• , , such 

that gn '\ h1 A h2 • It follows that E A E t; EO: The rest of the proof is 

almost identical with the corresponding part of the proof of theorem 4.1 # 

Remark: It should be noted that we do not make use of the existence of a 

strictly convex function on X in the last proof, of. [3, Satz 3.2.4]. 
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