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Several equivalent definitions of the computable numbers are presented 

in part 1. Two theorems are then proved which show that mosti if not all, 

the individual reej,l numbers that have hitherto interested mathematicians are 

computable. In part 2 the decision problems for the usual properties of 

real numbers are shown to be unsolvable. An interesting analogy with the 

theory of tLe presentation of semigro~ps and Thue systems is also given. In 

part 3 an unavoidable non~effectiveness in the theory of computable numbers 

is discussed. 

~hny of the reSQlts given here are not new, though earlier proofs are 

much longer. This paper requires no previous knowledge of its subject, but 

in Gonsequence is somewhat imprecise. 

P.ART I. THE CLASS C OF CONFUTABLE NUMBERS 

A real number ex is said to be c o m p u t a b l e if it satis-

fies one of the following requirements: 

A) There is an effective rule for writing down the decimal expe.nsion of 

to arbitrarily many places; 

B) There is an effective rule for 11>1I'iting down the regular coYltinued frac-

C) 

tion expansion of ex. to arbitrarily many places; 

There is a sequence { r 1 
n.) 

of rationals satisfying: 

1) One can effectively generate rn , 

2) 

3) 

5."" r l converges to -<;:;>( 
c nj 

For any positive integer n , one can effectively find an 

that: for all 
.. + 

l,m > n 

+ 
n such 

D) ex is defined by an effective Dedekind 1~cut11 i.e. by a partition of 

the rationals into two non-empty, m'~ually disjoint classes X, Y such 

that: 



E) 

F) 
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1) Every element of X is smaller than every element of Y , 

2) One can effectively tell whether an arbitrary rational is in X or 

in y • 
' 

There is a nested sequence 

rationals satisfying: 

C r · 1 
4 ll. ,r.J ,. 
L l l _.) 

1 ) For every i , 1 ( o( C: r , i ~ -., i 

of closed intervals in the 

2) The length of the intervals tends to 0 , 

3) One can effectively generate the sequences f li} ' r ri] . 
' 

c· There is a sequence of positive natural numbers ., m. ~ 
(.... l..J 

1) One can effectively generate { mi 3 
2) For every i , {q- :i } < i . 

such that: 

C) and D) respectively are the constructive equivalents of the Cantor and 

Dedekind definitions of the real numbers R • It is a remarkable fact that 

if a real number enjoys any one of the above properties, it enjoys them all. 

The class C of computable numbers is denumerable, so almost all real 

numbers fail to be computable. Nevertheless it is difficult, if not imposs-

ible, to find a non-computable real number. Cantoris diagonalization pro-

cedure for example does not work as one cannot effectively list ALL comput-

able numbers. The usual long division algorithm insures that C contains 

every rational nwnber. 

Theorem 1 If function f and open interval 

satisfy: 

a) f restricted to _S2. is continuous and monotone in each argument, 

b) for every K-tuple < d1 D •• dK ? of finite decimals in D._ 

one can effectively compute f(d1 o•• dK) then f(or; 0 0 D CY" K) 

is a computable number for every K-tuple < ~ o o o « K > of 

computable numbers in _f)_ . 
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P r o o f For each positive integer n and for i = 1, 2, ••• , n 

we define d. as the m-place decimal that agrees with ~. at the first 
liD l 

m decimal places, and the '1m-argumentsv1 as the <: y1 ••• yK > such that 

y. 
l 

is e::ther d. or 
liD 

( + if d. positive, 
liD 

otherwise) 

for each i o As SL is open, the m-arguments all lie in .fL for 

sufficiently large m say m > 1 and one can effectively compute 

the corresponding values of f • Consider the following process QP started 

on any integer n 

I) 

II) 

Set x n =max n,l and m. = 1 + 1 , 

Compute the value of f for each of the K 
2 m-arguments; 

III) If these values do not agree on the first nx decimal places then 

increase n by 1 and return to step II; otherwise present the 

th common n decimal and stop. 

If 0( = f( o(1, ••• , orK) is not a finite decimal, continuity ensures 

that Q=' stops for every n and monotony ensures that it presents the 

nth decimal of ex' o If q( is a finite decimal the theorem is obvious-

ly true; however may not stop for sufficiently large n , so our 

proof is not constructive. 

Now we can assert that: 

C is ~J,.osed under add:iJ...:h£!!..2 subtraction~division. multiplicatio.!.!.J. 

~xp~entiation, root extrasiion and~he taking of logarithms. 

In particular e exp 1 is computable. 

Theorem 2 If is a continuous function whose 

sign can be computed effectively at any finite decimal that is not a root, 

then all simple roots of f are computable. 

P r o o f : It suffices to consider the case of a simple root o( that 

is not a finite decimal. As X-7-X satisfies the re~uirement of theorem 
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1, we can assume that o(' is positive. Since 0( is isolated there is an 

1-place finite decimal d such that ()( is the only root of f in 

<( d,d + 10-l > o Consider the follo-wing process Q , started on any in--

teger n 

a) Set x 
fl,nJ ; n =max 

x x 
b) 

y y 
10-n , -n Compute the sign of f(d ) for d = d,d + d + 2.10 ' 

* ' d + 10-! ; -n d+3.10' • 0 • 

c) Present the th 
n decimal of the ' d just before the first (and only) 

By ~'li'ierstrassi theorem, Q stops and presents the th 
n decimal of 

for every n • If ~ is a finite decimal and n is sufficiently large, 

thicl process may never stop so the proof is not constructive. 

C o r o 1 l a r y 2 a • All the roots of a polynomial "With computable 

coefficients are computable. In partlcular all algebraic numbers are comput-

able. 

C o r o 1 1 a r y 2 b • X -7sin X satisfies the requirements so 

1/ is computable. 

Combining theorems 1 and 2 we also have: 

C is closed under the circular. hyperbolie. inverse cir~ul~r and inver~ 

gyperbo~ions. 

PARTIL PROPERTIES OF COMPUTABLE NUMBERS 

There is a close analogy between the way in which a computable number 

is given by a rule for writing down its decimal expansion, and that in 

which a semigroup is presented by a Thue system. Just as finite se~igroups 
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can be given by a multiplication table whilst infinite semigroups require a 

Eet of defining relations, so finite decimals can be written down directly 

whilst infinite de0imals must be given by a rule. Just as not all semi-

groups can be pres8nted by Thue systems, so not all real numbers are comput-

able. 

A. Markov ((1,3)) has sho~ that one cannot effectively tell whether 

or nqt a given pair of Thue systems present isomorphic semigroups. The 

analogue of this is: 

T h e o r e m 3 • One cannot ~ffectively tell whether or not two com-

putable numbers are equal. 

P r o o f : E.L. Post ((5)) has described an infinite set K of 

positive integers such that: 

1) One can effectively generate K , 

2) K has an unsolvable decision problem, i.e. one cannot effectively 

tell whether or not a given integer is in K • 

For any positive integer n let 

Suppose we start on j ; 

P denote the following process: 
n 

a) Generate the first j elements of K , 

0) If n occurs amongst these elements, then present 1 and stop, else 

present 0 and stop. 

This process enables one to write down the decimal expansion of a computable 

number ~ • But n 

0("" 
n 

0 if and only if n E:- K 

If we could effectively tell whether or not two processes compute the same 

number, then for any n we could effectively tell whethel or not p 
n 
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computed the same ntunber a? a process for writing c.ooooo 

whether or not n is in f But this is ruled out by the definition af 

K since then we could derive a version of the Liar Paradox. 

Most interestins properties P of semigroups for exa:nple nbeing 

are 11Markov propertiesii in the following sense~ 

1) There is a Thue system ~ , that presents a semigroup enjoying P ; 

2) There is a Thue system that presents an inhibiting semigroup Sx 

ioe. if s*- can be embedded in a fi11itely presented semig:t'oup S , 

~-J.-.:-n S does not enjoy P ; 

3) P is pr8served under isomorphisms. 

The natural analogue of this is: 

if 

1) 

A property P of real numbers is said to be p s e u d o - M a r k o v 

P is non--trivial, i.f:-. there if' a computable mnnber 

joys p • 
~ 

O(p that en-

2) There is an inhibiting computable number x CJ(p such that no number, 

differing from 

joys P • 

O(x at only a finite number of decimal places, en­
P 

For each Markov property P of semigroups, Markov ((2,4)) h~s proved that 

one cannot effectively tell whether or not the sem:Lgroup pres-anted by a 

given Thue system enjoys P • Analogously we have: 

Theorem 4· For no pseudo-Markov property P oi' rAE.l numbers 

can one effectively tell whether or not a computable number enjoys P • 

P r o o f For any positive integer n , let Qn be the following 

process: 

a) Start on j ; 
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b) Generate the first j element of K • 
' 

c) If n occurs amongst these elements then present the digit in the 

.th 
J decimal place of 0( x 

p 
and stop; otherwise present the digit in 

th€- jth decimal place of 0( 
p 

enables us to write the decimal expansion of a number ~ '-""n such 

that: ex n enjoys P if and only if n 6- K • As the decision problem 

of K is unsolvable, one cannot effectively tell whether or not Qn com­

putes a number enjoying P • 

But how useful is this result? Clearly wvbeing zero~w, 1ibeing an integerH, 

and ~ 1being a prime11 and the like are pseudo-Markov properties o 1tJe also have 

T h e o r e m 5 o If P is a property of computable numbers satisfy-

ing: 

a) One can effectively generate all computable numbe:':'s that enjoy P , 

b) If a enjoys P and d is a finite deciiT.al then a + d enjoys P 

c) At least one computnble number enjoys P , 

then P is pseudo-Markov. 

P r o o f It suffices to prove that there is a computable nunilier 

that does not enjoy P • Such a number is computed by the following process: 

Start on any j , 

a) Generate the digit in the (j + 1)st decimal place of the (j + 1)st 

computable number that enjoys P , 

b) If this digit is 5 then present 6 and stop; otherwise present 5 

and stop. 

So 11being a finite decimal11 , "being rational11 and 11being algebraic11 are 

pseudo-Markov properties of computable numbers. If one could solve the 

decision problem for any one of the prop8rties satisfying theorem 5, one 



- 8-

could solve them all and also such problems as: 

Are two given computable numbers equal? 

Is a given computable number an integer? 

Is a given computable number 0 ? 

Is a given computable number positive? 

If one could solve arty of the problems just listed then one could solve them 

all, but still be unable to solve the decision problem for any property satis-

fying theorem 5. In other words the listed problems, though unsolvable, are 

of a lovrer degree of unsolvability than the theorem 5 decision problems. 

l'l 

( = lim ( ~ ~ - log n) It is not yet known whether Euler?s constant 
n-7 Clo v=1 

is rational or irrational. According to theorem 4, one cannct hope to re-

solve this by finding a general method for deciding the rationality of every 

computable number ( r is computable). Naturally one can still hope to 

solve the problem !.lSiD.g some method that does not apply to all computable 

numbers. 

PART III. OPERATIONS ON C01vJPUTABLE NUMBERS 

A function f can be computable in the sense that it has computable 

values for computable argwnents and yet non-e.ffecti ve in the sense that one 

cannot give a general rule for computing its value. Furthermore the effect-

iveness or otherwise of a computable fm1ction depends on which of A, B, C, 

D, E or F we choose to be the Hofficiali~ definition of a computable number. 

T h e o r e m 6 • There is no effective way of finding a rule for 

writing down the decimal expansion of a real number that is computable under 

definition C • 

P r o o f For each positive integer n , vye can effectively generate 



- 9-

the sequence { r~ 3 of rationals defined by: 

n 
r. 

l 

if n is amongst the first i elements of K 

otherwise 

If n E:. K we can take 1 as nx otherwise we can take 11the number of 

elements cf K that one has to generate before meeting n ~~ 

the limit of n r. 
l 

is computable under definition C • 

x as n , so 

If one could effectively find the integral part i of this limit~ one 

colud solve the decision problem of K since i 0 iff n E. K • 

For the next theorem we need to assign distinct numbers to every ex-

pression ttat can be formulated in a given langudge (possible in all lru1gua-

ges with only denumerably many letters). For expressions that describe a 

function f from the natural numbers to the natural :flumbers, this number 
A 

f is said to be tte Godel number of f • 

T h e o r e m 7 • If A is chosen as the official definition of a 

computable number then addition is not effective. 

P r o o f : For each effective function f , we can give rules for 

writing down the decimal expansions of the numbers 

df +d d1 d2 
:1:.. +dx dx dx defined by = . D 0 0!) df = ••• 0 0 1 2 

A 

(0 if f stops within i steps when started on f 
) 

"' \ f(f) = 1 and i~ 1 
d. i = i l 

~ 9 otherwise 

" (2 if f stops within i steps when started on f 

"' 
:1:.. 

la 
f(f) = 0 and i) 1 

d. = 
l otherwise 
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If one could effectively find the integral part of df + d; then one could 

effectively describe the function ~ satisfying: 

a) f is defined for every natural nurnber, 

b) r takes on only the values 0 and 1 , 

c) If i is the Godel ntunber of a functi6n r such that /..)) (i) = 1 ' 
f 

then ? (i) = 0 1 

d) If i is the Godel number of a function f such that r(i) = 0 ~ 

then cj (i) :::: 1 • 

But if f were effective, we could take 

contradiction. 

/\ 

cj for i and derive a 

SL~lar proofs show that subtraction, division, multiplication, expon-

entiation, extraction of roots and the taking of logarithms are also non 

effective. Moreover for any computable number CJ( one can show that 

x -~ x + o( , x ----?' x - a/ , and x ~ x/ Ot" (for 0( f:. 0) are 

effective if and only if ~ is a finite decimal. Thus doubling but not 

trebling is effective. If we had chosen to work with ternary instead of 

decin~l expansiona, the opposite would have been true. Such dependence on 

the number base can occur, as conversion from base p to base q is only 

effective when q divides a power of p • 
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