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Several equivalent definitions of the computable numbers are presented
in part 1. Two theorems are then proved which show that most, if not all,
the individual real numbers that have hitherto interested mathematicians are
computable. In part 2 the descision problems for the usual properties of
real numbers are shown to be unsolvable. An interesting analogy with the
theory of thie presentation of semigroups and Thue systems is also given. In
part 3 an unavoidable non-effectiveness in the theory of computable numbers
is discussed.

Many of the results given here are not new, though earlier proofs are
much longer. This paper requires no previous knowledge of its subject, but

in consequence is somewhat imprecise.

PART I. THE CLASS C OF COMPUTABLE NUMBERS

A real number & is said tobe computable if it satis-

fies one of the following requirements:

A) There is an effective rule for writing down the decimal expension of
to arbitrarily many places;

B) There is an effective rule for writing down the regular continued frac-
tion expansion of ©< +to arbitrarily many places;

C) There is a sequence %:rni% of rationals satisfying:

1) One can effectively generate ro s

2) %rnt% converges to X ,
+
3) For any positive integer n , one can effectively find an n  such
that: %rl -r i<f 10" for all 1,m > n'
D) & is defined by an effective Dedekind "cut™ i.e. by a partition of
the rationals into two non-empty, mitually disjoint classes X; Y such

that:
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1) Every element of X is smaller than every element of Y ,
2) One can effectively tell whether an arbitrary rational is in X or
in Y ;
\ . ) . ) ‘2 . .

E) There is a nested sequence %L.[ii’ri} 3 of closed intervals in the
rationals satisfying:
1) For every i , 1; é:c(.siri R
2) The length of the intervals tends to O ,
3) One can effectively generate the sequences %fliji 5 %ﬁrii% ;

F) There is a sequence of positive natural numbers ‘%:HHJ% such that:
1) One can effectively generate { mi% s

-l 1

2) TFor every i , P9f‘- . } <f T

C) and D) respectively are the constructive equivalents of the Cantor and
Dedekind definitions of the real numbers R . It is a remarkable fact that
if a real number enjoys any one of the above properties, it enjoys them all.
The class C of computable numbers is denumerable, so almost all real
numbers fail to be computable. Nevertheless it is difficult, if not imposs-
ible, to find a non-computable real number. Cantor?s diagonalization pro-
cedure for example does not work as one cannot effectively list ALL comput-
able numbers. The usual long division algorithm insures that C contains

every rational number.

Theorem 1. If function f 3 RK—~—? R and open interval

aQ. C RI{ satisfy:

a) f restricted to _(:L is continuous and monotone in each argument,

b) for every K-tuple < dy eeo dy %>  of finite decimals in 9] 5
one can effectively compute f(d1 coo dK) then f(6¥a coo CVK)
is a computable number for every K-tuple < ¥ oo Ay > of

computable numbers in .f)_ °
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Proof : For each positive integer n and for i =1, 2, seey, I
we define d, —as the m-place decimal that agrees with C?(i at the first
m decimal places, and the "m-arguments® as the < Yy eee yg > such that
~m

y. 1is either d. or d._ + 10
i im

im ( + if d;, positive, - otherwise)

for each i . As S L is open, the m-arguments all lie in _g), for
sufficiently large m -~ say m :> 1l -~ and one can effectively compute
the corresponding values of f . Consider the following process CFD started

on any integer n :

I) Set n* =max n,1 and m=1+1 ;
II) Compute the value of f for each of the o m-arguments;
III) If these values do not agree on the first nx decimal places then
increase n by 1 and return to step II; otherwise present the

common nth decimal and stop.

If o = £( Ofys oo, orK) is not a finite decimal, continuity ensures
that (;D stops for every n and monotony ensures that it presents the
nth decimal of & . If <o 1is a finite decimal the theorem is obvious—
ly true; however Cﬁ) may not stop for sufficiently large n , so our

proof is not constructive.

Now we can assert that:

C is closed under addition, subtraction, division, multiplication,

exnonentiation, root extraction and the taking of logarithms.

In particular e = exp 1 1is computable.

Theorem 2. If £f: RK-——ﬁ>R is a continuous function whose
sign can be computed effectively at any finite decimal that is not a root,
then all simple roots of f are computable.

Proof: It suffices to consider the case of a simple root o¢ that

is not a finite decimal. As x-3-x satisfies the requirement of theorem
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1, we can assume that ¢~ is positive. Since ¢ is isolated there is an

l-place finite decimal d such that ¢&¢ is the only root of f in

1

£ d,d + 10 > o Consider the following process Q , started on any in-

teger n 3

a) Set n® = max {l,n} ;

) ? ? nx -

b) Compute the sign of f(d ) for d =d,d + 10 , d + 2.10
¥

ﬁi

nX
’

d+3.0%, .00, d+ 10

1
¢c) Present the 0 decimal of the d just before the first (and only)

sign change.

By Wierstrass? theorem, Q stops and presents the nth decimal of o
for every n . If ¢X  is a finite decimal and n is sufficiently large,

this process may never stop so the proof is not constructive.

Corollary 2a . All the roots of a polynomial with computable
coefficients are computable. In particular all algebraic numbers are comput-

able.

Corollary 2b. x-—-sinx satisfies the requirements so

1T~ 1s computable.
Combining theorems 1 and 2 we also have:

C 1s closed under the circular, hyperbolie, inverse circular and inverse

hvperbolie functions.

PART IT. PROPERTIES OF COMPUTABLE NUMBERS

There is a close analogy between the way in which a computable number
is given by a rule for writing down its decimal expansion, and that in

which a semigroup is presented by a Thue system. dJust as finite semigroups
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can be given by a multiplication table whilst infinite semigroups require a
cet of defining relations, so finite deciméls cén be written down directly
whilst infinite decimals must be given by a rule. Just as not all semi-
groups can be presented by Thue systems, so not éll real numbers are comput-

able.
A, Markov ((1,3)) has shown that one cannot effectively tell whether
or not a given pair of Thue systems present isomorphic semigroups. The

analogue of this is:

Theorem 3. One cannot 2ffectively tell whether or not two com-

putable numbers are equal.

Proof: E.L.Post ((5)) has described an infinite set K of

positive integers such that:

1) One can effectively generate K s
2) K has an unsolvable decision problem, i.e. one cannot effectively

tell whether or not a given integer is in K .
For any positive integer n 1let Pn denote the following process:

Suppose we start on j ;
a) Generate the first j elements of K ,
b) If n occurs amongst these elements, then present 1 and stop, else

present O and stop.

This process enables one to write down the decimal expansion of a computable

number cz’n . But

a%h = 0 if and only if n & K

If we could effectively tell whether or not two processes compute the same

number, then for any n we could effectively tell whethe:r or not Pn
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computed the same number as a process for writing C.CO0000 :vo., and so
whether or not n is in K . But this is ruled out by the definition of
K since then we could derive a version of the Iiar Paradox.

Most interesting properties P of semigroups - for example "being

Abelian® - are "Markov properties®® in the following sense:

1) There is a Thue system er, s that presents a semigroup enjoying P ;

2) There is a Thue system that presents an inhibiting semigroup Sx 5
ic.eo. if s* can be embedded in a finitely presented semigroup S ,
*ren S does not enjoy P ;

3) P is preserved under isomorphisms.

The naturel analogue of this is:
A property P of real numbers is said tobe pseudo-Markov
if
1) P is non-trivial, i.e. there ir a computable number a(p that en-
joys P ;
2) There is an inhibiting computable number bex such that no number,
differing from CXZ§ at only a finite number of decimal places, en-—

Jjoys P .

For each Markov property P of semigroups, Markov ((2,4)) hes proved that
one cannot effectively tell whether or not the semigroup presented by a

given Thue system enjoys P . Analogously we have:

Theorem L4 . For no pseudo-Markov property P of recl numbers

can one effectively tell whether or not a computable number enjoys P .

Proof : For any positive integer n , let Qn be the following

process:

a) Start on j ;
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b) Generate the first j element of K ;
¢) If n occurs amongst these elements then present the digit in the

jth decimal place of &X'z and stop; otherwise present the digit in

the ;* decimal place of o -

Qn enables us to write the decimal expansion of a number c{'n such

that: o, enjoys P if and only if n & K . As the decision problem
of K 1is unsolvable, one cannot effectively tell whether or not Qn com-
putes a number enjoying P .

But how useful is this result? Clearly "being zero", "being an integeri,

and "peing a prime”™ and the like are pseudo-Markov properties. We also have

Theorem 5. If P is a property of computable numbers satisfy-
ing:
a) One can effectively generate all computable numbers that enjoy P ,

b) If a enjoys P and d is a finite decimal then a + d enjoys P,

c) At least one computable number enjoys P ,
then P is pseudo-Markov.

Proof: It suffices to prove that there is a computable number

that does not enjoy P . Such a number is computed by the following process:

Start on any J ,

a) Generate the digit in the (3 + 1)°° decimal place of the (j + 1)°¢
computable number that enjoys P ,
b) If this digit is 5 then present 6 and stop; otherwise present 5

and stop.

So "being a finite decimal’’; "being rational® and "being algebraic® are
pseudo-Markov properties of computable numbers. If one could solve the

decision problem for any one of the properties satisfying theorem 5, one
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could solve them all and also such problems as:

Are two given computable numbers equal?
Is a given computable number an integer?
Is a given computable number O ?

Is a given computable number positive?

If one could solve any of the problems just listed then one could solve them
all, but still be unable to solve the decision problem for any property satis-
fying theorem 5. In other words the listed problems, though unsolvable, are

of a lower degree of unsolvability than the theorem 5 decision problems.

- log n)

<=

n
It is not yet known whether Euler?s constant t/ = lim (Z
n— e V=1

is rational or irrational. According to theorem 4, one cannct hope to re-
solve this by finding a general method for deciding the rationality of every
computable number ( (/ is computable). Naturally one can still hope to
solve the problem using some method that does not apply to all computable

numbers.

PART IIT. OPERATIONS ON COMPUTABLE NUMBERS

A function f can be computable in the sense that it has computable
values for computable arguments and yet non-effective in the sense that one
cannot give a general rule for computing its value. Furthermore the effect-
iveness or otherwise of a computable function depends on which of A, B, C,

D, E or F we choose to be the "official® definition of a computable number.

Theorem 6 . There is no effective way of finding a rule for
writing down the decimal expansion of a real number that is computable under

definition C .

Proof : For each positive integer n , we can effectively generate
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-
the sequence {:r?'é of rationals defined by:

P

0] if n 1is amongst the first i elements of K
% 1 otherwise

If n & K we can take 1 as nx otherwise we can take **the number of
elements cf K that one has to generate before meeting n " as nX s SO
the limit of r? is computable under definition C .

If one could effectively find the integral part i of this limit, one
could solve the decision problem of K since i =0 iff n &€ K .

For the next theorem we need to assign distinct numbers to every ex-
pression that can be formulated in a given language (possible in all langua-
ges with only denumerably many letters). For expressions that describe a
function f from the natural numbers to the natural numbers, this number

f is said to be the Goédel number of f .

Theorem 7 . If A is chosen as the official definition of a

computable number then addition is not effective.

Proof : For each effective function f , we can give rules for

writing down the decimal expansions of the numbers

3 x % % % )

df = +dO° d1 d2 cooy df = +do - dy d2 soe defined by

§’O if f stops within i steps when started on f ,
| __i £(f) =1 and iy 1
s T
t 9 otherwise

(’2 if f stops within 1 steps when started on f ,
*_ £(f) =0 and i
L=

0O otherwise
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If one could effectively find the integral part of df + dlft then one could

effectively describe the function ;D’ satisfying:

a) 75 is defined for every natural number,

b) §b takes on only the values O and 1 ,

1l
—_—
“

c) If i is the Godel number of a function vf/ such that yj (1)
then ¢ (i) =0,

d) If i is the Gddel number of a function }U such that lzﬂ(i) =0,

then ¢(1) =1
A

But if ¢ were effective, we could take Sé for 1 and derive a
contradiction.

Similar proofs show that subtraction, division, multiplication, expon-
entiation, extraction of roots and the taking of logarithms are also non
effective. Moreover for any computable number <X one can show that
Xx —yx+ o, x— x-o ,ad x —x/ e (for o #£0) are
effective if and only if (X is a finite decimal. Thus doubling but not
trebling is effective. If we had chossn to work with ternary instead of
decimal expansions, the opposite would have been true. Such dependence on
the number base can occur, as convérsion from base ‘p to base q 1is only

effective when q divides a power of p .
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