
Matematisk Seminar 
Universitetet i Oslo 

Nr. 11 
Oktober 1963 

A CERTAIN CLASS OF MAP$ BETV~ OPERATOR ALGEBRAS 

By 

Erling Stormer 



- 1 -

As in most of mathematics our knowledge about operator algebras has to 

a great extent been obtained through the study of maps between them~ The 

study of two types of maps has been particularly informative: homomorphisms 

and positive linear functionals. The following objection to restricting our-

selves to these maps raises itself, namely, there are too few homomorphisms 

and the range of a linear functional is too small, being the complex numbers. 

Let me first say what a c* -algebra is; it is an algebra of (bounded) 

operators acting on a Hilbert space, closed in the uniform topology (the one 

defined by the norm) and containing the adjoint of each operator in it. We 

assume for simplicity that the algebra has an identity operator (always de-

noted by I ) • An operator A is positive A 3- 0 , if (.Ax,x) 4 0 for 

all vectors x , and A is self-adjoint if Among the positive 

linear functionals (linear functionals f such that A ~ 0 implies 

f(A) ~ 0 ) two types have distinguished themselves, namely the ext:ceme 

points (pure states) of the convex set of all positive linear functionals 

f such that f(I) = 1 ( f is then called a state), and the vvmidpointsH 

of these convex sets - the traces. For example, the spectral theorem is 

obtained by studying the pure states of an abelian x C -algebra. 

The purpose of the present note is to describe a class of maps including 

both pure states and homomorphisms. We say a linear map ¢ of one c* -

algebra into another is positive if A?-- 0 implies ¢(A) -;r 0 • 

D e f i n i t i o n : Let ¢ be a positive linear map of a ex -
I 

algebra 01 into a ex -algebra J3 such that y{i(I) =I • We say 

</-' is pure s t a t e p r e s e r v i n g if f 0 fb , is a 

pure state of 01_ for each pure state f of rf3 • 

Remark Since the composition of two pure state preserving maps 

clearly is pure state preserving, and since the identity map of a ex -

algebra is pure state preserving, the ex -algebras form a category with 
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the pure state preserving maps as the maps. 

E x a m p 1 e 1 • Let 01.. and (}3 be Cx -algebras and f a :rure 

'"'"' state of 0(_. Then the mapping f : A _, f(A)I I being the identity 

rv 
in is pure state preserving. We identify f and f and say f 

is .a pure state of CYL into U3 o 

This is immediate 1 for if g is a pure state of 03 then f(A) = 
/V ,-,; ' 

g(f(A)) ~ so g o f = f , is a pure state of en. 

Example 2. If' rp is a x-homomorphism or :t.-anti-homomorph-

ism of 0{ onto 02> then ¢ i::! pure state preserving o ( p is a 
I 

x-homomorphism means 1' is a homomorphism and cp (A1:.) 

dually for x-anti-homomorphisms.) 

cp(A)x , 9-nd 

It is elementary to show that a state f of Cr( is pure if and only 

if whenever g is a positive linear functional of (){ such that f - g 

is positive, we say g ~f , then g is a scalar multiple of f • Let f 

be a pure state of 18 and let g be a positive linear functional of 01.... 

such that g ::; f o ¢' Then = 0 implies = 0 so 

0 ~ g(AxA) ~ f( ~ (AxA)) 0 . In particular g(A) = 0 , using the 
y 

Cauchy-Schwarz inequality. It follows easily that g = g o ¢ , where 
y y 

g is a positive linear functional of Q; = r;/J (00, g ~ f • Thus 
y 

g = .y( f , and g = ex.. f o ¢ , - f o ¢ is pure. 

We will need the following result; if 01 is an irreducible c* -

algebra acting on a Hilbert space H , i.e. 0( has no closed invariapt 

subspaces of H except 0 and H 9 then the state A _,. (Ax,x) is pure 

on Ot for each unit vector x in H • Now each state f of a eX ..,. 

algebra Gt can be written in the form: f(A) = ( cyf(A)x,x) , where x 

is a unit vector in a Hilbert space Hf , and cpf is a x-homomorphism of 

(7[ into the operators of H • It is easy to show from what we have seen, 

that f is pure if and only if Cf f(Ol) is irreducible. From this we 

arrive at a class of maps which are close to being pure state preserving. 
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Example 3 Let crt be an irreducible Cx -algebra acting on 

a Hilbert space K • Let H be a Hilbert space and V a linear isometry 

of H into K o Then the map A ~ VxAV has the property that the state 

A ~ (vZAVx~x) is pure for each unit vector x in H • 

The surprising thing is that we get all the pure state preserving maps 

from a combination of the three examples above. 

T h e o r e m 1 • Let Oi and [8 be x C -algebras and a 

positive linear map of Of into (}3 such that cp (I) I • Then '/; 

is pure state preserving if and only if for each irreducible x-representa-

tion (i.e. ±-homomorphism) 

state of 0'1 or 

(If) of 03 ~ rtf o ¢ is either a pure 

= Vx p V , where V is a linear isometry 

of H the Hilbert space on which rf ( i3) acts into a Hilbert 

space K , and is an irreducible x-homomorphism or x-anti-homo-

morphism of en into the operators on K • 

The sufficiency follows from the previous discussion. If f is a pure 

state of 03 then f = C-t)xf f ~ where (f f is an irreducible represen

tation of £ and x a unit vector in Hf (wx(A) = We may 

assume '"'WJ = lj f for some pure state f • Then has the 

property that VJ z o ( 'f f o cjJ ) is a pure state of (Jl for each vector 

state CV z due to a unit vector z in Hf • Theorem 1 is thus a corollary 

of 

T h e o r e m 2 • Let cJ-( be a x C -algebra and H a Hilbert space. 

Let ~ be a positive linear map of (~Yl into the operators on H such 

that 9) (I) = I • Then c_p.) X¢ is a pure state of c:7( for each unit 

vector x in H if and only if either cf is a pure state or cj 
Vxr V ~where V is a linear isometry of H into a Hilbert space K 

and f is an irreducible ±-homomorphism or ±-anti-homomorphism of 

into operators on K o 

The first thing we show, is that for two unit vectors x and y in H , 
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c_,J dJ 
x! 

and v) ¢ 
Y. 

are unitarily equivalent, i.e. there exists a Hilbert 

spD.ce K and an irreducible representation of on K such that 

and CAJY~ ==cu y1 e It follows that 

l 

where is a map of 

is a vector state CA.) w 

p ((n) into the operators on H 
\ 

I 

of p·Ccn) due to a unit vector 

such that Cfx 'Y( 
w in K • If 

we denote by B(H) all the bounded operators on H , and similarly for K 

we use a result by Kadison to show that ( has an eXtension mapping (. 

bf B(K) into B(H) which is ultra-weakly continuous and has the property 

that (!J X '7 is a vector state for each unit vector x in H • 

say much about the ultra-weak topology, except that it enables us to work 

on operators of finite rank~ hence to work on matrices. 

Instead of saying more about the proof, I will say a few words about 

applications of Theorem 1 • Certain maps of c* -algebras have attracted 

attentio~ by several mathematicians, namely Cx -homomorphisms. They a+e 

•t• li A "th th t th t .-1-J (A2 ) -- rf, (A)2 . l. f posl lve near maps f Wl e proper y a 1 't' 

A is self-adjoint. 

C o r o l l a r y • Let 0( and 03 be eX -algebras and p a 

ex -homomorphism of 01._ onto Then is 

either a x-homomorphism or a x-anti-homomorphism for each irreducible 

x-representation '1( of 

P r o o f : Using the argument of example 2 it is easy to show that 

¢} is pure state preserving. Let 0{-/ be an irreducible x-represent-

ation of 0:) on a Hilbert space H • By Theorem 1 is 

either a pure state of o·1 or is of the form rr v with v and f 
as in the theorem. Now is clearly a ex -homomorphism. If 

is a state it is therefore a homomorphism (a eX -homomorphism 

of a ex -algebra into an abelian eX -algebra is a homomorphism). We 

assume ~ o c{J == Vx \ V • Since V is a linear isometry VVx == P 
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is a projection in B(K) • Then the map A ..-, PAP is a rf- -homomorphism 

of t? (00 ~ since the map B -7 VBVX is an isomorphism of B(B:) into 

B(K) • With A self-'adjoint in C (CJL) 

= (PA2P - PAPAP) - (PAPAP - PAPPAP) 

= 

Thus AP = PAP , and taking adjoints, AP = PA , for each self-adjoint 

operator A in (7 (0(..) • Thus the subspace P(H) is invariant under 

e ( oo is irreducible' hence P(H) = H , P = I The map 

Thus ~~ o ¢ , p ((J() is either is an isomorphism of 

a homomorphism or an anti-homomorphism. QED. 

We remark that the assumption made in the above corollary that 9 be 

surjective, is much stricter than necessary. However, the proof would, un-

der weaker assumptions, be much more complicated. 


