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1. INTRODUCTION 

Introducing the notion of an i d e a 1 s y s t e m or x-

system ih a commutative semi-group Aubert ( ((1)) , ((2)) ) has 

shown that essential p~~ts bf commutative ideal theory can be developed oq 

the basis of a set of axioms wh]ch are valid for most of the various notiqns 

of ideal that appear in the literature. In the present paper a definition 

of a corresponding generalized notion of module is given, and some results 

from ideal and module theory are generalized to such modules. For complete 

proofs we refer to ((3)) o The definition and fundamental properties of 

an x-system are given in ((1)) • 

2. MODULES OVER. SEifl-GROUPS 

Let M be a set with a semi-group S of operators~ and let S be 

equipped with an (integral) x-system. (See ( ( 1)) or ( (2)) o ) We shall 

say that there is defined a y - s y s t e m in M with respect to S if 

to every subset U of M there corresponds a subset 

the following axioms are valid~ 

(2 .1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

UcV 
y 

ucu 
y 

-~----\. --; 

AU C U 
y y 

u c v 
v v u u 

AU C (AU) 
y y 

A U C. (AU) 
X y 

u f. ¢ :::_..:) u 1V1 f. ¢ 
y y 

U of M such that 
y 
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(Here A denotes any subset of S .) M is then called an (x,y) ... 

m o d u 1 e over S or briefly an S ... m o d u 1 e • The subsets U 

of M for 'Which we have U i:::: U are called y - m o d u 1 e s in M • y 

As in the case of x-systems, a y-system is defined b~ the set of all' y-

' 
modules. To distinguish betweeri. several y .. sy'ste:trl.s (resp. x-systerns) Wf3 

will sometimes speak of y 1-modules, y 2-modules, etc., but in general we 

shall from now on use the terms i d e a 1 and m o d u 1 e inste~d 

of x-ideal and y-module. 

The property of finite character is defined for y-systems exactly ~s 

for x-systems: The S-module M is said to be of f i n i t e c h ~ r -

a c t e r if both the x-system in S and the y-system in M are o~ 

finite character. M is called p r i n c i p a 1 if (u) = Su fQr 
y 

all uE.M The operations of y - u n i o n and y - p r o d u c t , 

denoted by u and o , are defined by 
y y 

U U V (U U V) y y 

A o V = (AV) y y 

The axioms (2.4) and (2.5) have equivalent forms corresponding to 

the various forms of the continuity axiom for x-systems. We list a sample 

of the most useful ones in the following two theorems: 

T h e o r e m 1 : The following statements are equivalent under t-he 

hypothesis that U -7 U is a closure operation: 
y 

I AU c (AU) 
y y 

II A o u = A o u y y y 

III A(U U V) c AU u AV y y 

IV A oy (U ~ V) = A o u ~A 0 v y y 

v (U : A) = u A 
y y y 
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T h e o r e m 2 : The follo1dng statements are equivalent under the 

hypothesis that A --~ A and U --'> U are closure operations: 
X y 

I AU C (AU) 
X y 

II A 0 u = A o u 
X y y 

III (A U B)U C AU u BU 
X y 

IV (A V 13) o U = A o u YrB 0 u 
::X. y y y 

v (U : V) = u v y X y 

3. CONGRUENCE. ADDITIVITY o QUOTIEJ\i'T HODULES. 

The relation 

is defined by 

v _ w (mod U ) 
y 

(U ,v) = (U ,w) y y y y 

and called c o n g r u e n c e m o d u 1 o u 
y 

It is easily verified 

that this relation really is a congruence with respect to multiplication by 

elements of S o The canonical mapping of lv1 onto the set H of 

eqlrivalence classes is hence an operator homomorphism. In M the set of 

all subsets U for which f- 1(u) is a module in M defines a y-system 

1d th respect to S , thus giving rise to a quotient module M/U y 

The property of additivity can also be defined exactly as for x-systems: 

A y-system is said to be a d d i t i v e if the follo~Qng condition 

holds for all elements and modules: 

vvE.U V V 
y y y 

( 3 v )( v £ V & w '6 v(mod U ) ) y y 
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M is then called an additive S-module. Corresponding to theorem 2 in 

( ( 2) ) vre have : 

T h e o r e m 3 If Cf denotes the canonical mapping Ivi -7 M/Uy 

and the y-system in M/Uy is denoted by y , the following statem(3nts are 

equivalent: 

I 1'1 is additive 

II tpCU t{. v ) f (V y) y " y 

III f-1 (Cf (Vy)) = u u v y y y 

IV (/) (V ) = Ccp (V) )y. 
! y 

v GO(V U vv) = cpCv) tJ- cpC~tJ) 
I y y 

Each of the statements implies 

and is implied by this if M is unitary. 

4. PRU1ARY DECm1POSITIOl\TS 

By the r a d i c a 1 of a module u in 1'1 j denoted by r(U ) , we 
y y 

mean the nilpotent radical of the ideal u M • If M is of finite charac-
y 

ter r(U ) is an ideal in s A module u is said to be p rime y y 

(resp. 

(resp. 

p r i m a r y ) if av€ U and v ¢ U implies a~ U : M 
y y y 

a € r(U) ). If U is a prime (resp. primary) module then U : M y y y 

is a prime (resp. primary) ideal. Consequentlyy if M is of finite charac-

ter, the radical of a primary module is a prime ideal. 

A primary decomposition 
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u 0 ( 1) 
y = 'v<,y f"' 

Q (2) () 
y 

0 0 • 
n Q (r) 

y 
r(Q (i)) 

y 
(i).· p 
X 

is called i r r e d u n d a n t if no Q (i) 
y 

contains the intersection 

of the others. 

T h e o r e m 4 : If the decomposition (4.1) is irredundantj then 

U is primary if and only if 
y 

p (1) = p (2) 
X X 

p (r) 
X 

In a given primary decomposition we can therefore group together com-

ponents with the same radical and get a primary decomposition in components 

with mutually different radicals. Such a decomposition will be called a 

shortest primary decomposition. 

With the given definitions one can by so~e modification of the corres-

pondD1g parts of ideal theory prove~ 

T h e o r e m 5 : Let U be a module admitting an irredundant prim­
y 

ary decomposition (4.1) Then a pri~e ideal P is identical to one of 
X 

the p (i) if and only if there exists an element v of M - U 
y 

such that 
X 

the ideal U : v is primary with 
y 

P as radical. The prime ideals p (i) 
X X 

are therefore uniquely determined by u 
y 

P is a nnnimal member of the 
X 

p (i) 
X 

if and only if P is a minimal prime ideal containing 
X 

u 
y 

H o If 

(4o1) is a shortest primary decomposition also the components corresponding 

to those minimal prime ideals are uniquely deterrained by 

5. NOETHERIAN MODULES 

u 
y 

An S-modul·e H of finite character satisfying the ascending chain con-

dition for submodules will be called n o e t h e r i a n • An S-module 

of finite character is noetherian if and only if every module in M has a 

finite basis. In a noetherian S-modQ:e which is additive and principal, 

one can prove that every irreducible module is primaryj and consequently: 
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T h e o r e m 6 : In a noetherian S-module which is additive and 

principal every module has a finite primary decomposition" 

The next theorem depends also essentially on the condition of additivity: 

Theorem 7: Let lJI be an additive and principal S-module of 

finite character having a finite basiso Then if S is noetherian, so is 

1'1 • 

P r o o f : Let U be any module in 11 
y 

Suppose first that M has 

a basis consistL~g of one single element v • Since S is noetherian the 

ideal u : v 
y 

the elements 

has a finite basis ••o, s , and since 
r 

form a basis for U 
y 

1'1 is principal, 

Suppose next that the theorem is valid for all S-modules having a basis 

consisting of n - 1 elements. We put: 

The ideal 

we have 

A 
X 

H ( v1' (I 0 G 9 vn)y 

v 
( v1' vn-1 )y M 0 Q 0 ~ 

v 
u u n }1 

y y 

(U 
y 

A = U H ) v 
X y y n 

has a finite basis 0 0 0 ~ 

a. v E U 
l n :,r 

a , and for 
p 

Since Ivi is additive, U contains elements 
y 

u := av 
P P n 

y 
(mod M ) 

y 
(mod M ) 

i 1, 2, ·~·, p 

such that 
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1JiJe shall see that 

w 
U = ( U ~ u1 , ••• , u ) y y p y 

It remains to prove the inclusion 

any element of u 
y 

From 

y 
(U , u1, ••• , u) 

Y PY 
follmvs, sine e H 

and principal, that there exists an element s E. S satisfying 

u 5o sv 
n 

and we must have s € A 
X 

Hence 

i 
(mod H ) 

Let u by 

is additive 

v 
u E (M , A v ) · 

x n y 

v 
••••••• , a v ) = (lVI , u1 ~ ••• , u.p)y 

p n y 

y 

Because of the additivity of H , there exists an element w E M satisfying 

w _ u (mod ( u1 , ••• , u ) ) 
p y 

and since all elements on the right hand side belong to 
v 

wE:tvinU=U 
y y 

and consequently 

y 
u E. ( w" u1 , ••• , u ) C ( U , u1 ~ ••• , u ) 

' py Y PY 

U , we have 
y 

The theorem is then by induction valid for all S-modules. 

As an ideal-theoretic application of the preceding theorem we prove the 

following theorem, copying the original proof given by LS. Cohen in the 

case of ordL~ary ideals in a noetherian ring. 

T h e o r e m 8 : Let S be a comn1utative smni-group with an x-

system of finite character which is additive and prL~cipal. If every prDne 

ideal in S has a finite basis, then S is noetherian. 
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P r o o f Suppose that the set of ideals in S without finite basis 

is not empty. This set is inductive and possesses by ZornYs lemma a maximal 

element A By hypothesis A is not prime, and hence is properly con-
X X 

tained in two ideals B .';l.nd c such that B 0 c c A By the mrucpn-
X X X X X X 

ality of Ax , both B and c have finite bases. 
X X 

Now we form the quotient semi-groups SjC and B /B o C • 
X X X X X 

It i~ 

easily verified that the latter can be regarded as a 

additive and principal. Every ideal in S containing 

sjc -module, which is 
X 

C has a finite 
X 

basis, thus S/C is noetherian, and since B has a finite basis, so does 
X X 

B /B o C Then by the preceding theorem B /B o C is a noetherian 
X X X X X X X X 

S/C -module and consequently A /B o C has a finite basis in BjB o C 
X X X X X X 'X X 

Using theorem 311 and the fact that B and 
X 

c 
X 

and therefore B o C has 
X X X 

a finite basis in S , this implies that A has a finite basis (in S ) • 
X 

We have thus reached a contradiction. 

It goes without saying that a lot of other results from the ordinary 

theory of modules can be formulated and proved within the present frame-

work. For a 1nore detailed exposition the reader is referred to ((3)) • 
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