Matematisk Seminar
Nr 。 10
Uhiversitetet i Oslo
September 1963

A GENERALIZATION OF THE NOTION OF MODUIE

By
Erling Hansén

1. INTRODUCTION

Introducing the notion of an $i d e a l$ system- or x system - in a commutative semi-group Aubert (((1)), ((2))) has shown that essential parts of commutative ideal theory can be developed on the basis of a set of axioms which are valid for most of the various notions of ideal that appear in the literature. In the present paper a definition of a corresponding generalized notion of module is given, and some results from ideal and module theory are generalized to such modules. For complete proofs we refer to ((3)) 。 The definition and fundamental properties of an x -system are given in ((1)).

2. MODULES OVER SEMI-GROUPS

Let M be a set with a semi-group S of operators, and let S be equipped with an (integral) x-system. (See ((1)) or ((2)).) We shall say that there is defined $a \operatorname{y}-\mathrm{s} y \mathrm{~s}$ t e m in M with respect to S if to every subset U of M there corresponds a subset U of M such that the following axioms are valid:

$$
\begin{equation*}
\mathrm{U} \subset \mathrm{~V}_{\mathrm{y}} \Rightarrow \mathrm{U}_{\mathrm{y}} \subset \mathrm{~V}_{\mathrm{y}} \tag{2.2}
\end{equation*}
$$

$\mathrm{AU}_{\mathrm{y}} \subset \mathrm{U}_{\mathrm{y}}$
$\mathrm{AU}_{\mathrm{y}} \subset(\mathrm{AU})_{\mathrm{y}}$

$$
\begin{equation*}
A_{X} U \subset(A U)_{Y} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
U_{\mathrm{y}} \neq \varnothing \Rightarrow \mathrm{U}_{\mathrm{y}}: \mathrm{M} \neq \varnothing \tag{2.6}
\end{equation*}
$$

（Here A denotes any subset of S 。）M is then called an（ x, y ）－ module over S or briefly an $S \rightarrow m o d u l e$ ．The subsets U of M for which we have $U y=U$ are called $y-m o d u l e s$ in M ． As in the case of x－systems，$a y$－system is defined by the set of all y－ modules．To distinguish between several y－systens（resp．x－systerns）we will sometimes speak of y_{1}－modules， y_{2}－modules，etco，but in general we shall from now on use the terms ideal and module instead of x－ideal and y－module。

The property of finite character is defined for y－systems exactly as for x－systems：The S－module M is said to be of f inite cher－ a cter if both the x－system in S and the y－system in M are of finite character．M is called $p r i n c i p a l$ if（u）$=S u$ for all $u \in \mathbb{M}$ 。The operations of $y-u n i \circ n$ and $y-p r o d u c t$ ， denoted by u_{y} and o_{y} ，are defined by

$$
\begin{aligned}
& U{\underset{Y}{V}} V=(U \cup V)_{Y} \\
& A O_{Y} V=(A V)_{Y}
\end{aligned}
$$

The axioms（2．4）and（2．5）have equivalent forms corresponding to the various forms of the continuity axiom for x－systems．We list a sample of the most useful ones in the following two theorems：

Theorem 1：The following statements are equivalent under the hypothesis that $U \rightarrow U_{Y}$ is a closure operation：
$I: \quad A U{ }_{y} \subset(A U)_{y}$
II：

$$
A o_{y} U_{y}=A o_{y} U
$$

III：

$$
A\left(U U_{y} V\right) \subset A U \bigcup_{y} A V
$$

IV ：

$$
A o_{y}\left(U U_{y} V\right)=A o_{y} U U_{y} A o_{y} V
$$

V：

$$
\left(U_{y}: A\right)_{y}=U_{y}: A
$$

Theorem 2：The following statements are equivalent under the hypothesis that $A \rightarrow A_{X}$ and $U \rightarrow U_{y}$ are closure operations：

I：

$$
A_{X} U \subset(A U)_{J}
$$

II ：

$$
A_{x} \circ_{y} U=A \circ_{y} U
$$

III ：

$$
(A{\underset{X}{X}} B) U \subset A U \bigcup_{y} B U
$$

IV ：
$\left(A \cup_{x} B\right) o_{y} U=A o_{y} U y_{y} B o_{y} U$
V ：

$$
\left(U_{y}: V\right)_{x}=U_{y}: V
$$

3．CONGRUENCE．ADDITIVITY．QUOTIENT MODULES．

The relation

$$
\mathrm{v} \equiv \mathrm{~W} \quad\left(\bmod \mathrm{U}_{\mathrm{y}}\right)
$$

is defined by

$$
\left(U_{\mathrm{y}}, \mathrm{v}\right)_{\mathrm{y}}=\left(\mathrm{U}_{\mathrm{y}}, \mathrm{w}\right)_{\mathrm{y}}
$$

and called congruence modulo U_{y} 。 It is easily verified that this relation really is a congruence with respect to multiplication by elements of S ．The canonical mapping φ of M onto the set \vec{M} of equivalence classes is hence an operator homomorphism。 In $\overline{\mathrm{N}}$ the set of all subsets \vec{U} for which $\varphi^{-1}(\vec{U})$ is a module in \mathbb{M} defines a y－system with respect to S ，thus giving rise to a quotient module M / U_{Y} 。

The property of additivity can also be defined exactly as for x－systems： A y－system is said to be ad ditive if the following condition holds for all elements and modules：

$$
w \in U_{y} U_{y} V_{y} \quad \Rightarrow \quad(\exists v)\left(v \in V_{y} \& w \equiv v\left(\bmod U_{y}\right)\right)
$$

M is then called an additive S-module。 Corresponding to theorem 2 in ((2)) we have:

Theorem 3: If φ denotes the canonical mapping $M \rightarrow M / U_{Y}$ and the y -system in $\mathrm{M} / \mathrm{U}_{\mathrm{Y}}$ is denoted by $\overline{\mathrm{y}}$, the following statements are equivalent:

$$
\begin{array}{cl}
\text { I : } & \mathrm{M} \text { is additive } \\
\text { II : } & \varphi\left(\mathrm{U}_{\mathrm{y}} \mathrm{U}_{\mathrm{y}} \mathrm{~V}_{\mathrm{y}}\right)=\varphi\left(\mathrm{V}_{\mathrm{y}}\right) \\
\text { III : } & \varphi^{-1}\left(\varphi\left(\mathrm{~V}_{\mathrm{y}}\right)\right)=\mathrm{U}_{\mathrm{y}}{U_{\mathrm{y}} V_{\mathrm{y}}}^{\text {IV : }} \\
\underline{\mathrm{V}:} \mathrm{\varphi}\left(\mathrm{~V}_{\mathrm{y}}\right)=(\varphi(\mathrm{V}))_{\overline{\mathrm{y}}} \\
& \varphi\left(\mathrm{~V} \mathrm{U}_{\mathrm{y}} \mathrm{~W}\right)=\varphi(\mathrm{V}) u_{\mathrm{y}} \varphi(\mathrm{~W})
\end{array}
$$

Each of the statements implies

$$
\varphi\left(A \circ_{y} V\right)=A \circ_{y} \varphi(V)
$$

and is implied by this if M is unitary.
4. PRIMARY DECOMPOSITIONS

By the r adical of a module U_{y} in M, denoted by $r\left(U_{y}\right)$, we mean the nilpotent radical of the ideal $U_{Y}: M$ 。 If M is of finite character $r\left(U_{y}\right)$ is an ideal in S. A module U_{y} is said to be prime (resp, primary) if $a v \in U_{y}$ and $v \notin U_{y}$ implies $a \in U_{y}: M$ (resp. $a \in r\left(U_{y}\right)$). If U_{y} is a prime (resp. primary) module then $U_{y}: M$ is a prime (resp. primary) ideal. Consequently, if M is of finite character, the radical of a primary module is a prime ideal.

A primary decomposition

$$
(401) \quad U_{y}=Q_{y}^{(1)} \cap Q_{y}^{(2)} \cap \ldots \cap_{y}^{(r)} \quad r\left(Q_{y}^{(i)}\right)=P_{x}^{(i)}
$$

is called irredundant if no $Q_{y}^{(i)}$ contains the intersection of the others.

Theorem 4: If the decomposition (401) is irredundant, then U_{y} is primary if and only if $P_{x}^{(1)}=P_{X}^{(2)}=\ldots=P_{x}^{(r)}$.

In a given primary decomposition we can therefore group together components with the same radical and get a primary decomposition in components with mutually different radicals. Such a decomposition will be called a shortest primary decomposition.

With the given definitions one can by some modification of the corresponding parts of ideal theory prove:

Theorem 5: Let $U{ }_{y}$ be a module admitting an irredundant primary decomposition (4.1) . Then a prime ideal P_{x} is identical to one of the $P_{x}(i)$ if and only if there exists an element v of $M-U_{y}$ such that the ideal $U_{Y}: V$ is primary with P_{X} as radical。 The prime ideals P_{X} (i) are therefore uniquely determined by $U_{Y} \quad P_{X}$ is a minimal member of the $P_{X}(i)$ if and only if P_{X} is a minimal prime ideal containing $U_{y}: M$ 。 If (4.1) is a shortest primary decomposition also the components corresponding to those ininimal prime ideals are uniquely determined by U_{J}.
5. NOETHERIAN MODULES

An S-module M of finite character satisfying the ascending chain condition for submodules will be called n o etherian . An S-module of finite character is noetherian if and only if every module in M has a finite basis. In a noetherian S-module which is additive and principal, one can prove that every irreducible module is primary, and consequently:

Theorem 6：In a noetherian S－module which is additive and principal every module has a finite primary decomposition．

The next theorem depends also essentially on the condition of additivity：

Theorem 7：Let M be an additive and principal S－module of finite character having a finite basis．Then if S is noetherian，so is M 。

Proof：Let $U{ }_{y}$ be any module in M 。 Suppose first that M has a basis consisting of one single element v 。 Since S is noetherian the ideal $U_{y}: v$ has a finite basis $s_{1}, \ldots \circ, s_{r}$ ，and since M is principal， the elements $s_{1} v, s_{2} v, \ldots, s_{r} v$ form a basis for U_{y} ．

Suppose next that the theorem is valid for all S－modules having a basis consisting of $n-1$ elements．We put：

$$
\begin{aligned}
& M=\left(v_{1}, \ldots, v_{n}\right)_{y} \\
& M^{q}=\left(v_{1}, \ldots, v_{n-1}\right)_{y} \\
& U_{y}^{8}=U_{y} \cap M^{8} \\
& A_{x}=\left(U_{y} U_{y} M^{q}\right): v_{n}
\end{aligned}
$$

The ideal A_{x} has a finite basis $a_{1}, \ldots 0, a_{p}$ ，and for $i=1,2, \circ, p$ we have

$$
a_{i} v_{n} \in U_{y} \quad U_{y} M^{q}
$$

Since M is additive，U_{y} contains elements $u_{1}, \ldots o, u_{p}$ such that

$$
\begin{aligned}
& u_{1} \equiv a_{1} v_{n} \quad\left(\bmod M^{8}\right) \\
& \ldots \ldots \ldots \ldots \\
& u_{p} \equiv a_{p} v_{n} \quad\left(\bmod M^{8}\right)
\end{aligned}
$$

We shall see that

$$
U_{y}=\left(U_{y}^{8}, u_{1}, \ldots, u_{p}\right)_{y}
$$

It remains to prove the inclusion $U_{J} \subset\left(U_{y}{ }^{p}, u_{1}, \ldots o, u_{p}\right)_{y}$ 。 Let u be any element of $U{ }_{y}$. From $u \in\left(M^{q}, V_{n}\right)_{y}$ follows, since M is additive and principal, that there exists an element $s \in S$ satisfying

$$
u \equiv \mathrm{sv}_{\mathrm{n}} \quad\left(\bmod M^{8}\right)
$$

and we must have $s \in A_{x}$. Hence

$$
u \in\left(M^{q}, A_{x} v_{n}\right) \dot{y} C\left(M^{q}, a_{1} v_{n}, \ldots \ldots, a_{p} v_{n}\right)_{y}=\left(M^{q}, u_{1}, \ldots, u_{p}\right) y_{y}
$$

Because of the additivity of M, there exists an element $w \in M^{8}$ satisfying

$$
w \equiv u\left(\bmod \left(u_{1}, \ldots, u_{p}\right)_{y}\right)
$$

and since all elements on the right hand side belong to U_{y}, we have $W \in M^{8} \cap U_{y}=U_{y}{ }^{8} \quad$ and consequently

$$
u \in\left(w, u_{1}, \ldots \infty, u_{p}\right)_{y} \subset\left(U_{Y}^{8}, u_{1}, \ldots \infty, u_{p}\right)_{y}
$$

The theorem is then by induction valid for all S-modules.
As an ideal-theoretic application of the preceding theorem we prove the following theorem, copying the original proof given by I。S. Cohen in the case of ordinary ideals in a noetherian ring.

Theorem 8 : Let S be a commutative semi-group with an x system of finite character which is additive and principal. If every prime ideal in S has a finite basis, then S is noetherian.

Proof：Suppose that the set of ideals in S without finite basis is not empty．This set is inductive and possesses by Zorn${ }^{\text {is }}$ lemma a maximal element A_{x} 。 By hypothesis A_{x} is not prime，and hence is properly con－ tained in two ideals B_{x} and C_{x} such that $B_{x}{ }_{x} C_{x} C_{x} A_{x}$ 。 By the maxim－ ality of A_{X} ，both B_{X} and C_{X} have finite bases．

Now we form the quotient semi－groups S / C_{X} and $B_{X} / B_{X} o_{X} C_{X}$ ．It is easily verified that the latter can be regarded as a $S / C_{X}-$ module，which is additive and principal．Every ideal in S containing C_{x} has a finite basis，thus S / C_{x} is noetherian，and since B_{X} has a finite basis，so does $B_{X} / B_{x} O_{X} C_{x}$ ．Then by the preceding theorem $B_{x} / B_{x} O_{x} C_{x}$ is a noetherian S / C_{X}－inodule and consequently $A_{X} / B_{X} o_{X} C_{X}$ has a finite basis in $B_{X} / B_{X} O_{X} C_{X}$ 。 Using theorem 3，and the fact that B_{X} and C_{x} and therefore $B_{x}{ }^{\circ}{ }_{x} C_{x}$ has a finite basis in S ，this implies that A_{x} has a finite basis（in S ）． We have thus reached a contradiction．

It goes without saying that a lot of other results from the ordinary theory of modules can be formulated and proved within the present frame－ work．For a more detailed exposition the reader is referred to（（3））．
（（1））K．E．Aubert：Theory of x－ideals．Acta Math。107（1962），p． 1－52。
（（2））K．E．Aubert：Additive ideal systens and commutative algebra。 Matematisk seminar，Universitetet i Oslo，no．3，1963．
（（3））EoR．Hansen！En generalisering av modulbegrepet．Oslo 1963．

