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1.  INTRODUCTION

Introducing the notion of an i1 deal system - or X -
system - ih a commutative semi-group Aubert ( ((1)) , ((2)) ) has
shown that essential phrts of commutative ideal theory can be developed on
the basis of a set of axioms which are valid for most of the various notions
of ideal that appear in the literature. In the present paper a definition
of a corresponding generalized notion of module is given, and some resulté
from ideal and module theory are generalized to such modules. For complete
proofs we refer to ((3)) . The definition and fundamental properties of

an x-system are given in ((1)) .

2. MODULES OVER SEMI-GROUPS

Let M be a set with a semi-group S of operators, and let S be
equipped with an (integral) x-system. (See ((1)) or ((2)) . ) We shall
say that there is defined a y - s ystem in M with respect to S if
to every subset U of M there corresponds a subset Uy of M such that

the following axioms are valid:

(2.1) Ucu
(2.2) Uc Vy = U:y__c: Vy
(2.3) AC U

(2.4) AUy (- (AU)y
(2.5) AUC (AU)y

\ T A o ° ] |
(2.6) by_;l{é = Uy,M;éQ i
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(Here A denotes any subset of S ) M 1is then called an (x,7) -
module over S or briefly an S ~module . The subsets U
of M for which we have Uy =U arecalled y-modules in M.,
As in the case of x~systems, a y-system is defined by the set of all y-
modules. To distinguish between several yHSYSfems (;esp. x-systems) we
will sometimes speak of y1—modules, y2—modules, etc., but in general we
shall from now on use the terms 1deal and module instead
of x-ideal and y-module.

The property of finite character is defined for y-systems exactly as
for x-systems: The OS-module M is said tobeof finite char-
acter if both the x-system in S and the y-system in M are of
finite character. M is called principal if (u)y = Su for

all u €M . The operations of y-union and y-product,

denoted by uy and oy , are defined by

UyvVvV = (v
( )y

=
o
<
il

(AV)y

The axioms (2.4) and (2.5) have equivalent forms corresponding to
the various forms of the continuity axiom for x-systems. We list a sample

of the most useful ones in the following two theorems:

Theorem 1 ¢ The following statements are equivalent under the

hypothesis that U — Uy is a closure operation:

I: AU ¢ (AU
II : Ao U = Ao U
y ¥ 5
IIT ¢ A(U by V) € AU U_AV
Y y
IV A ) v = Ao Uy A v
OY ( k§ ) y t§ OY

V (U :4) = U : A
¥ y y
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Theoremn 2 : The following statements are eguivalent under the

hypothesis that A -2 AX and U — Uy are closure cperations:

I: AU c (AU)
X Y
IT ¢ A o U = Ao U
Xy y
I1T : (A U B)U € AU y BU
X ¥
IV ¢ AU B)o U = A Uy B U
( X)y %" 4% °%
Ve (U V), = U :V
y x y

3. CONGRUENCE. ADDITIVITY. QUOTIENT MODULES.

The relation
V=W mod U
(mo0d U.)
is defined by
U = (U
W)y (Ugsw)y

and called congruence modulo Uy" It is easily verified
that this relation really is a congruence with respect to multiplication by
elements of S . The canonical mapping 99 of M onto the set M of
equivalence classes is hence an operator homomorphism. In M the set of
all subsets U for which ?71(3) is a module in M defines a y-system
with respect to S , thus giving rise to a quotient module M/Uy o

The property of additivity can also be defined exactly as for x-systems:
A y-system is said to be additive if the following condition

holds for all elements and modules:

w e U v — 3 e V & mod U
r y Yy Uy v) (v yew = v( y))
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M 1is then called an additive S-module. Corresponding to theorem 2 in

((2)) we have:

Theorem 3: If denotes the canonical mapping M — M/U
it y

and the jy-system in M/Uy is denoted by 5 , the following statements are

equivalent:
I: M is additive
I P, g V) = )
TIT 99‘1(§0(vy)) = U, U T
W - p(1) = (P
vz o g ) = @) Yo o)

Fach of the statements J_mplles
(A o ¥ = A o~ V

and is implied by this if M is unitary.

L.  PRIMARY DECOMPOSITIONS

By the radical of amodule Uy in M, denoted by r(Uy) , We
mean the nilpotent radical of the ideal Uy“: M. If M is of finite charac-
ter r(Uy) is an ideal in S . A module Uy is said tobe prime
(resp primary) if av«e:Uy and v ¢ Uy implies a € Uy : M
(resp. a € r(Uy) ). If Uj is a prime (resp. primary) module then U& s M
is a prime (resp. primary) ideal. Consequently, if M is of finite charac-
ter, the radical of a primary module is a prime ideal.

A primary decomposition
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o Mao® 45 oon Qy(r) r(Qy(i)) = P}(ci)

© U =
(h1) J J y

is called irredundant if no Qy(l) contains the intersection

of the others.

Theorem 4 ¢ If the decomposition (L4.1) is irredundant, then
o () _ (@ b ()
x b'd

b'd
<

coo -

Uy is primary if and only if =

In a given primary decomposition we can therefore group together com-
ponents with the same radical and get a primary decomposition in components
with mutually different radicals. Such a decomposition will be called a
shortest primary decomposition.

With the given definitions one can by some modification of the corres-

ponding parts of ideal theory prove:

Theorem 5: Let Uy be a module admitting an irredundant prim-
ary decomposition (4.1) . Then a prime ideal P_ is identical to one of
the Px(i) if and only if there exists an element v of M - Uy such that
the ideal Uy : v is primary with Px as radical. The prime ideals Ex(i)
are therefore uniquely determined by Uy o Px is a minimal member of the
Rx(i) if and only if PX is a minimal prime ideal containing Uy : M. If

(Le1) 4is a shortest primary decomposition alsc the components corresponding

to those minimal prime ideals are uniquely determined by UT o
¥

5.  NOETHERIAN MODULES

An S-module M of finite character satisfying the ascending chain con-
dition for submodules will be called noetherians. An S-module
of finite character is noetherian if and only if every module in M has a
finite basis. In a noetherian S-module which is additive and principal,

one can prove that every irreducible module is primary, and consequently:
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Theorem 6 : In a noetherian S-module which is additive and

principal every module has a finite primary decomposition.

The next theorem depends also essentially on the condition of additivity:

Theorem 7 : Let M be an additive and principal S-module of
finite character having a finite basis. Then if S is noetherian, so is

r

M .

Proof: Let Uy be any module in M . Suppose first that M has
a basis consisting of one single element v . Since S is noetherian the
ideal Uy ¢ v has a finite basis Sqs cecs 5. 5 and since M is principal,
the elements S4Vs Sy

Suppose next that the theorem is valid for all S-modules having a basis

V, eooy, 5. v form a basis for U_ .
r y

consisting of n - 1 elements. We put:

M —

M = (v1, soa, Vn)y
Moo= )
l — V1, 0909 Vn-1 y
vl - U M

y Y N

A (U M)

x = ‘y Yy *n

The ideal AX has a finite basis a., oos, ap , and for 1 =1, 2, eqe, P

1’

Since M is additive, Uy contains elements Uys eoey up such that

u = A (mod M )
u = av (mod M )




We shall see that

U= (U )
y -_ y 9 u1’ °°°’ upy
?
It remains to prove the inclusion U & (U_, u,, eee, u)_ o Let u be
7 vy Py
any element of Uy o From u e (M ’Vn)y follows, since M is additive

and principal, that there exists an clement s € S satisfying

?
u = sV (mod M )

and we must have s € Ax . Hence

9
(M s u,]s oao,u;.p)

9 ?
ué(My Axv ) - (Ms a vns °°°°"",apvn) y

n’y 1 vy

g
Because of the additivity of M , there exists an element w € M  satisfying

w = u (mod (u19 ceos up)y)

and since all elements on the right hand side belong to Uy , we have

? 7
welM N Uy = Uy and consequently
7

u e (w, Ups ooy up)y c (Uy s Ugs oo0, up)y

The theorem is then by induction valid for all S-moduless.
As an ideal-theoretic application of the preceding theorem we prove the
following theorem, copying the original proof given by I.S5. Cohen in the

case of ordinary ideals in a noetherian ring.

Theoremnm 8 : Let S be a commutative semi-group with an x-
system of finite character which is additive and principal. If every prime

ideal in S has a finite basis, then S is noetherian.
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Proof : OSuppose that the set of ideals in S without finite basis
is not empty. This set is inductive and possesses by Zorn's lemma a maximél
element Ax o By hypothesis Ax is not prime, and hence is properly con-
tained in two ideals Bx and Cx such that Bx QXCX C Ax o By the max%mr
ality of A.X , both BX and Cx have finite bases.

Now we form the quotient semi~groups S/CX and BX/BX o CX . It ig
easily verified that the latter can be regarded as a S/Cx—module, which is
additive and principal. Every ideal in S containing CX has a finite
basis, thus S/CX is noetherian, and since B_ has a finite basis, so does

B./B_ o_ C_ . Then by the preceding theorem B _/B_o_ C._ is a noetherian
xTx x Tx ® Tx x x

S/Cx—module and consequently AX/BX o, C_ has a finite basis in BX/Bx %(Cx o

Using theorem 3, and the fact that B_ and C_ and therefore B_ o C_ has
X x X X X
a finite basis in S , this implies that Ax has a finite basis (in S ) .
We have thus reached a contradiction.
It goes without saying that a lot of other results from the ordinary
theory of modules can be formulated and proved within the present frame-

work. For a more detailed exposition the reader is referred to ((3)) -




References

(1)) K.E. Aubert: Theory of x-ideals. Acta Math. 107 (1962), p-
1—52 °

((2)) K.E. Aubert: Additive ideal systems and commutative algebra.

Matematisk seminar, Universitetet i Oslo, no. 3, 1963

((3)) E.Rs Hanbéﬁ% En generalisering av modulbegrepet. Oslo 1963,




