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Abstract  

Background: Surgical site infections (SSI) are associated with incremental hospital costs, 

cause diverse clinical consequences and are detrimental to quality of life. The aim of this 

study was to identify risk factors of SSI, identify clinical consequences and estimate the cost-

effectiveness of a multi-modal intervention strategy to prevent SSI in a local hospital setting. 

The strategy included use of antibiotic cement, antibiotic prophylaxis and minimum two 

surgeons for hemi arthroplasty treatment of hip fracture. 

Methods: Patient level data from Bærum hospital (Norway) was analyzed to identify risk 

factors, clinical consequences and to estimate hospital costs. Decision analytical modeling 

was employed to estimate the cost-effectiveness of the intervention strategy. The analyses 

results and available evidence informed the input parameters of the economic model. 

Second order uncertainty was explored using probabilistic sensitivity analysis.  

Results: No risk factors of statistical significance were identified. Clinical consequences 

distributed unevenly between those with deep infection and those without infection were 

new primary hemi arthroplasties (HA), reoperations, numbers of out-patient controls and 

surgeries for hip infection. Mean total one year hospital costs of those with deep infection 

were NOK414,975, NOK275,466 for those with superficial infection and NOK228,879 for 

those without infection. Mean total hospital days were 25 in the deep infection group and 

13 in the no infection group. These differences were significant. The economic model results 

indicated dominance of the multi-modal intervention strategy over the standard practice. 
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1. Introduction 

 

There seem to be a wide consensus that surgical site infections (SSI) account for a significant 

increase in mortality, morbidity and health care costs (Merollini, Crawford, Whitehouse, & 

Graves, 2013; Miletic, Taylor, Martin, Vaidya, & Kaye, 2014; Plowman et al., 2001; Scott, 

2009; Shepard et al., 2013). Since 2000, the Norwegian efforts to monitor SSI and other 

health care associated infections (HCAI) have been guided by several overlapping 

governmental agency action plans, and monitoring efforts are presently the responsibility of 

the Norwegian Institute of Public Health, through the Norwegian surveillance system for 

antibiotic consumption and healthcare associated infections (NOIS). Among those surgical 

procedures subject to surveillance are total and hemi hip arthroplasty (THA and HA). 

 

Although SSI incidence rates are readily available and agreement about the severity of these 

infections seem to have been established, agreement on concrete estimates of the 

eĐoŶoŵiĐ iŵpaĐt of HCAI’s aŶd ““I, aŶd the Đost-effectiveness of various preventive 

measures seem to be elusive.  

 

Norwegian incidence rates are available through NOIS (Kacelnik, 2014). There are  large 

unexplained variations in Norwegian SSI incidence rates between the health enterprises and 

regions presented in the NOIS report of 2013 (Kacelnik, 2014). It was our view that this 

represented potential for improvement in prevention. 

 

According to the Norwegian National Hip Fracture Register (NHBR 2014) 21.420 hip fractures 

have been treated with HA since the registry started surveillance. SSI is one of the primary 

complications to these procedures. It was our ambition to identify predictors and 

consequences of SSI among the HA treated hip fractures. 

Predictors and consequences of SSI in hemi arthroplasty treated hip fractures 

Previous research have indicated causality in the relationships between SSI and extended 

duration of surgery, patient obesity (BMI>30), patients being younger than 60 years and 

surgery waiting time. One of our goals was to identify new possible predictors. We wanted 

to explore to potentially verify or contradict the predictors already identified in previous 
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research, in order to contribute to the ongoing efforts to understand any factors important 

in facilitating SSI, and further to reduce SSI incidence. 

As already mentioned, there seem to be a wide consensus that SSI has vast clinical and 

economic consequences. Others have indicated that deep and organ space infection are the 

reason for reoperation of HA in 12% of the cases in Norway in 2013 (NHBR, 2013). Others 

indicate SSI as causing increased incidence of revision surgery, more hospital days to be 

consumed and higher health sector costs. SSI also directly or indirectly cause increased 

mortality and morbidity (Merollini et al., 2013; Miletic et al., 2014; Plowman et al., 2001; 

Scott, 2009; Shepard et al., 2013). We wanted to add to this research and further identify 

clinical consequences of SSI. In addition we wanted to make an estimate of SSI attributable 

hospital costs in the current patient population in a Norwegian setting, which - to our 

knowledge – was not available at the time of this study. 

Prevention and cost-effectiveness 

Several studies have investigated the effectiveness of practical SSI prevention measures, and 

several strategies have been indicated effective. We would like to refer the reader to a 

meta-analysis of such studies for a thorough introduction to the available strategies 

(Anderson et al., 2014). Aside from these practical measures, surveillance systems are 

featuƌed as a ĐoƌŶeƌstoŶe iŶ effoƌts to ƌeduĐe HCAI’s, aŶd suƌǀeillaŶĐe ǁith feedďaĐk to 

suƌgeoŶs aƌe said to possiďlǇ ƌeduĐe ƌates of ““I’s ďǇ aŶ estiŵated ϮϬ% (Sparling et al., 2007; 

A. P. Wilson et al., 2006).  

However, whether or not implementation of such preventive measures is economically 

desirable for the society, the health care sector or health care providers themselves is at this 

time an open discussion, and its conclusion depend on the costs of the strategies, the 

effectiveness of the strategies, the perspective of the researcher, and the systems under 

which the health care sector is financed (Jenks, Laurent, McQuarry, & Watkins, 2014) 

(Drummond, Sculpher, Torrance, O'Brien, & Stoddart, 2005). We wanted to, and were given 

the opportunity to assess the cost/effectiveness of a multi-modal SSI prevention 

intervention in the setting of a local hospital in Bærum municipality in Norway.  
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Materials and methods 

The hospital management at Bærum hospital provided a data file by means of the Nimes 

system (Nirvaco AS) for quality assurance, medical coding, procedure and diagnosis registry 

and analysis of activity data. We included patients admitted to Bærum hospital for hip 

fracture (ICD-10 code: S72.0/.1/.2) and subsequently treatment with a hemi prosthesis 

(NCMP/NCSP code: NFB.02/-.12, cemented and non-cemented) from September 2010 

through January 2014 that had completed at least one year follow up by December 2014. 

Admission for hip fracture treated with hemi arthroplasty as described by the ICD-10 and 

NCMP/NCSP codes above would define the index event. 

Statistical analysis and data cleaning was performed using Microsoft Excel 2010 and Stata13. 

Economic decision analytical modeling was performed using TreeAgePro. 

Thesis structure 

This introduction included a brief presentation of the problem area and its context, the 

objectives of the present study and a short description of the material and methods utilized. 

In chapter 2 a deep tour of the theoretical background is provided, moving from a broad 

perspective on hip fractures, towards hip fracture treatment and complications related to 

this the most common treatment methods. We move on, still in chapter 2, to discussing 

nosocomial (=hospital acquired infections, health care associated infections) and SSI and 

related prevention strategies. Chapter 3 include a presentation of the study site at Bærum 

hospital and the multi-modal intervention strategy to be evaluated. In chapter 4 we present 

and clearly define the study objectives. We further move on to present and discuss our data 

material and the methods used in analysis and evaluation, in chapter 5, before we move on 

to presenting our results in chapter 6. The paper concludes with a discussion followed by our 

conclusion, in chapters 7 and 8. 
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2. Theoretical Background 

We examined selections of the scientific literature about hip fractures and the treatment of 

such. The information we found was on costs, incidence and complications and 

consequences of some of the treatment options available and also hip fracture as a 

standalone event. We discussed arthroplasty and surgical site infection and other health 

care associated infections thoroughly in relation to each other and to hip fracture.  

We began elaborating on hip fracture, before we moved on to its treatment and further 

moved to discuss surgical site infection as a complication, and finally prevention of such 

infections, with a brief discussion on the cost-effectiveness of prevention efforts and the 

potential for perverse incentives in preventing infection. 

Hip Fractures 

Most patients with hip fractures are characterized by older age (>70 years), frailty, and 

functional deterioration, and their long-term outcomes are poor with increased costs 

(Prestmo et al., 2015). Hip fracture was in this thesis defined as fracture of the femoral neck 

and fracture in the area of the small and large femoral knot, the definition including ICD-10 

diagnostic codes S72.0, S72.1 and S72.2. Liv Faksvåg Hektoen of Oslo and Akershus 

University College writes in her 2014 report on the costs of hip fracture in the elderly in 

Norway:  

͞NorǁaǇ is oŶ the ǁorld top ǁheŶ it Đoŵes to hip fraĐtures. This is resourĐe iŶteŶsiǀe seeŶ iŶ 

an economic perspective and very challenging for the elderly themselves. According to the 

Norwegian Patient Register (NPR) approximately 9,000 people incur hip fractures in Norway 

every year. In other words, a hip fracture happens every hour. Oslo has the highest reported 

hip fractures incidence in the world (Osnes et al., 2004). Incidence of hip fracture increases 

with age. Advancing age increases risk of low bone density that increases the risk of fragility 

fracture (SBU, 2003). Seven out of ten hip fractures affects women. During one year, 1 in 

1,000 55 year old men and women break their hip, while among 90 year olds, 60 of 1,000 

women and 50 men in 1000 get a hip fracture (Lofthus et al., 2001; Osnes et al., 2004).͟ 

(Hektoen, 2014) pp. 8-9. Own translation) 
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Incidence and risk factors 

Hip fractures regularly occur in relation to falling(NIPH, 2015a). In Norway the annual 

number of hip fracture procedures was reported between 7000 and 10000 during the period 

2005 through 2013 and has been slightly declining the last two years(NHBR, 2014). Although 

the age specific risk of hip fracture, measured as new fractures per age group (figure 2), has 

been decreasing in Norway in the latter years (NHBR, 2013; NIPH, 2015b) the number of hip 

fractures will likely increase as the population of Norway is aging (Hektoen, 2014; NIPH, 

2015b). Figure 1 (NIPH, 2015b) shows the strong increase in the risk of fracture at 70 years of 

age, while figure 2 shows the decreasing age specific hip fracture risk. 

 

Figure 1 (NIPH, 2015b): The risk of hip fracture (per 10.000 population per year) by age and 

sex in Norway. 

 

Figure 2 (NIPH, 2015b): Age specific hip fracture risk (per 10.000 popuplation per year) 

according to year. 
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Consequences 

Elderly patients with fracture constitute a large patient group which to a large extent 

requires municipal welfare services after their hospital stay. Many patients experience 

considerable pain and become dependent on help in their everyday activities (Hektoen, 

2014). Hip fractures require a lengthy rehabilitation phase, in which regeneration of function 

and health related quality of life (figure 3) in many instances is not possible (Lofthus et al., 

2001; Osnes et al., 2004).  

 

 

Figure 3 (NHBR, 2013): EQ-5D indeks (as measure of HRQoL) by time (before, 4 months, 1 

year, 2 years) after fracture. 

Survival 

The survival for patients having suffered hip fracture is significantly lower than for hip and 

knee prosthesis surgery in general which is also reflected in a significantly higher 

comorbidity as measured by the ASA classification (American Society of Anestesiologists) at 

time of surgery (NHBR, 2014).  

 

 

Fracture of colli femoris 

Fracture of the trochanter 
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Figure 4 (NHBR, 2014): Survival (%, y-axis) by years after operation (years, x-axis) in Norway. 

Notice the 92,6% 30-day survival rate. 

 

Costs 

The latest estimation of the societal costs (excluding the Đost of faŵilǇ ŵeŵďeƌs’ tiŵe) of hip 

fractures in Norway has been estimated by Hektoen (Hektoen, 2014). In her report on the 

costs of hip fracture in the elderly she has used three typical patient pathways to make 

estimates of an annual monetary resource use one year following the fracture for a 

population of 396 >70 years old patients. The pathways are based on the place to which the 

patient is discharged. These include (annual estimated costs) home (NOK 322.000), nursing 

home (NOK 953.000) and rehabilitation institution (NOK 469.000) (see table 5 in (Hektoen, 

2014). She reports an average total cost of all pathways including those who died during the 

index stay of NOK 542.000. Excluding those who died during the index stay results in an 

annual estimate of NOK 562.000. This is an increase in costs of about NOK 500.000 from an 

annual average health care and personal assistance resource use valued at NOK 30.000 the 

year before fracture. Assuming equivalent monthly costs for the next year as in the last 

months of year one, Hektoen get a minimum estimate of the health care  and personal 

assistance costs related to one hip fracture in a person living at home and still alive of NOK 

800.000 – 1.000.000 (Hektoen, 2014). With 9000 hip fractures annually, the societal costs 

are clearly substantial. 

 

30-day survival 
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Hip fracture treatment - Arthroplasty 

 

͞AƌthƌoplastǇ foƌ an intracapsular hip fracture entails replacing the femoral head, which has 

fractured from the femur with an artificial hip joint. The type of arthroplasty may be either a 

hemi arthroplasty (partial hip replacement) or a total hip replacement (THR). Hemi 

arthroplasty (HA) involves replacing the femoral head with a prosthesis whilst retaining the 

natural acetabulum and acetabular cartilage (...) The metal femoral stems used for an 

aƌthƌoplastǇ ŵaǇ ďe eitheƌ held iŶ plaĐe ǁith ĐeŵeŶt oƌ iŶseƌted as a ’pƌess fit’, ǁithout 

cement (...) Total hip replacement involves the replacement of the acetabulum in addition to 

the feŵoƌal head.͟ 

(Parker & Gurusamy, 2006)  

 

We used total hip arthroplasty (THA) synonymously with total hip replacement (THR). 

Incidence 

In Norway, around 8000 primary hip arthroplasties are performed every year. In addition to 

this, nearly 1300 revision surgeries are done. The most complete (97% degree of coverage 

for the years 2008-2011) record of performed primary hip arthroplasties, both HA and THA, 

with common causes of primary operation, revision and complications can be found in the 

reports of the National Registry for Joint Prostheis and hip fractures (NHBR) report of 2014 

(NHBR, 2014).  

 

Complications to hip arthroplasty and complication risk factors 

The NHBR reports that the risk of early revision surgery is increasing and that an increase in 

deep infections make up the main portion of reported causes for revision, in addition to 

luxation and fracture close to the prosthesis (NHBR, 2014). Håvard Dale et al, having done 

substantial research into the risk factors of early revision due to infection in Norway, have 

found that the use of uncemented total hip arthroplasties (THA) is related to a 5 times 

increase in relative risk of early revision due to deep infection from 1987-1992 to 2007-2009 

although the results are complicated due to changes in confounding factors (Dale et al., 

2009). NHBR (NHBR, 2014) data shoǁ that the use of uŶĐeŵeŶted THA’s has ďeeŶ iŶĐƌeasiŶg 
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in the latter years, for older patients (>80) as well. The reason for using uncemented 

prosthesis in the elderly is that especially in ill elderly patients with hip fractures, cementing 

the femur prosthesis can increase the risk of embolization during cementing. It is unclear 

how big an impact this has on mortality associated with elective arthroplasty and whether 

possible reduced perioperative mortality with uncemented femur is offset after some 

months by increased mortality due to reoperations for fracture, luxation or infection(NHBR, 

2013).  

 

However, Dale (Dale et al., 2012) further finds an increased risk of revision due to infection 

after primary THA in Denmark, Finland, Norway and Sweden in recent years. Also, he finds 

the cumulative rate of revision due to infection after THA increased and he concluded that 

there seems to be a true increase in incidence of prosthetic joint infections. He finds support 

for his findings in two other publications (Kurtz et al., 2008; Pedersen, Svendsson, Johnsen, 

Riis, & Overgaard, 2010). Finally, the risk patterns for revision due to infection appear to be 

different for HA and THA (Dale et al., 2011). 

 

To summarize, the primary complication to hip arthroplasty is revision surgery, whereof 

luxation, fracture close to the prosthesis and deep infections constitute the main causes. 

Additionally, the effects on morbidity and mortality of using uncemented prosthesis in old, ill 

patients are unclear. The risk of revision due to infection after THA seems to be increasing in 

all the Nordic countries. Also, risk patterns for revision due to infection may differ between 

HA and THA. 

 

 

Hemi Arthroplasty (HA) 

Hemi arthroplasty was in this thesis defined by the NCMP/NCSP codes NFB.02/-.12. 

Incidence 

The use of HA for hip fracture treatment is steadily increasing in Norway. Today 90 % of all 

dislocated hip fractures are treated with insertion of hemi arthroplasty (HA), which is a 

change from 2005 when the equivalent number was only 50 % (NHBR, 2014). Also, an 
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increase in the portion of primary hip fracture operations constituted by HA for all fractures 

of the hip from 18,9 to 37,4% is reported by the NHBR (NHBR, 2013). 

 

Complications 

Complications to HA include revision surgery and surgical site infection, whereof deep and 

organ space infections might be among the more severe in itself, and certainly through its 

impact on the reoperation rate. Deep and organ space infection is given as the reason of 

reoperation of HA in 12,3% of the cases in 2013 (NHBR, 2013). According to Dale, the 

incidence of revision due to infection in Norway was 1.5% after primary HA during 2005-

2009 and the incidence of surgical site infection in Norway was 7.3% after primary HA during 

2005-2009 (Dale et al., 2011).  The Norwegian surveillance system for antibiotic 

consumption and healthcare associated infections (NOIS) (Kacelnik, 2014), using national 

data, report an incidence of deep and organ space infections after HA of 2,5%, with variation 

between hospitals from less than 1 up to 9%. Westberg (Westberg, Snorrason, & Frihagen, 

2013) found an incidence of deep infection post HA after hip fracture of 9%. 

 

As infection in and around the prosthetic joint seem to be an important complication of this 

procedure, not only in its own right but also through influencing the rate of revision surgery, 

the next paragraph will examine some of the predictors of infection in hip fracture patients 

by previous research. Infection of the prosthetic joint and of the surgery wound will be 

discussed thoroughly in the section on nosocomial and surgical site infections. 

Risk factors of SSI in the HA group 

Few studies have examined risk factors of surgical site infections in this group. Dale 

identified age <60, insertion after fracture and short duration of surgery as risk factors of 

revision due to infection (Dale et al., 2011). Furthermore, he finds that there may be 

differences in risk pattern between SSI and revision due to infection after arthroplasty (Dale 

et al., 2011). Westberg (Westberg et al., 2013) found that a preoperative waiting time of 72 

and 96 hours gave a statistically significant increase in risk of prosthetic joint infection 

(p=0,01 and 0,04), and a stay of more than 24-36 hours was associated with an 

͞unacceptable͟ risk of infection (p=0,06 and 0,08). Obesity (=BMI>30) was also found 
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statistically significant (p=0,04), so was having one or more and two or more of the 

considered risk factors (p=0,01 and 0,02).  

 

It seems that knowledge can influence practice, and that changing practice in line with new 

research does influence complication rates. The change in hip fracture treatment practice 

(mentioned in the paragraph about HA incidence) is believed to be related to the risk of 

reoperation after hip fracture being higher when using internal fixation than when using 

hemi prosthesis. A reduction in the reoperations as a portion of all post hip fracture 

surgeries has in fact been observed over the period of practice change, from 17% in 2005 to 

10 % in 2013 (NHBR, 2014; Parker & Gurusamy, 2006).  

 

In summary, predictors of revision and infection after HA treated hip fractures indicated in 

the research presented here are age<60, short duration of surgery, preoperative waiting 

time above 24 hours and having a BMI>30. In addition, knowledge of best practice and 

understanding the risk factors of infection may influence practice and in turn reduce the 

incidence of infection. Infection prevention strategies, HCAI and SSI will be discussed 

thoroughly in the following chapter. 

 

Nosocomial, or Hospital and Health Care Associated Infections (HAI/HCAI) 

and Surgical Site Infections (SSI) 

 

Nosocomial infections, also known as Hospital/Health Care Associated Infections (HAI/HCAI), 

are a cause of a significant increase in morbidity, mortality, direct hospital costs and national 

healthcare system costs (Merollini et al., 2013; Miletic et al., 2014; Plowman et al., 2001; 

Scott, 2009; Shepard et al., 2013). This chapter will provide a scope of the problem of these 

types of infections nationally and internationally and will further go on to present methods 

of prevention, including both national systematic surveillance systems and more practical 

measures. The Norwegian surveillance system for antibiotic consumption and healthcare 

associated infections (NOIS) will be presented briefly as an example of a surveillance system. 

Finally a brief review and discussion of cost-effectiveness analysis literature in the context of 

infection prevention strategies will be presented. This last section will show that the 
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presence of perverse incentives and narrow perspectives might complicate the decision on 

whether or not to invest in infection prevention strategies. 

 

Costs 

Nuŵďeƌs fƌoŵ the UŶited “tates oŶ aŶŶual diƌeĐt hospital Đosts of HAI’s ƌaŶge fƌoŵ U“D 

28,4 billion to USD 45 billion using various consumer price indexes and adjusting to 2007 

dollars (Scott, 2009). A UK study indicated that infected patients on average incurred costs 

almost three times higher than those not infected, and remained in hospital 2,5 times longer 

(Plowman et al., 2001). An Australian cost-effectiveness analysis of a basic SSI prevention 

strategy related to total hip arthroplasty (THA) surgery indicated that AUD 3909 could be 

saved per QALY gained (Merollini et al., 2013). P.J.  Jenks (Jenks et al., 2014) also report in a 

UK studǇ oŶ the ĐliŶiĐal aŶd eĐoŶoŵiĐ ďuƌdeŶ of ““I’s that ŵedian additional cost 

attributable to SSI was £5,239. 

 

Distribution  

As far as nosocomial infections go, surgical site infections (SSI) comprise a substantial part of 

these. In the United States, an estimated 20% of annual 2 million nosocomial infections are 

““I’s (Shepard et al., 2013). According to the British Health Protection Agency, iŶ ϮϬϭϭ ““I’s 

were the third most frequently occurring healthcare-associated infection (HCAI), causing 

15.7% of reported infections (HPA, 2012).  

 

In Norway, the prevalence of nosocomial infections has been estimated, including four 

common types of these infections, at 5,1 to 5,4 %, (n=12257 and 12736). SSI prevalence in 

this study was estimated at 5,3% to 6,1% of those operated (Eriksen, Iversen, & Aavitsland, 

2005). In 2013 the incidence proportion of SSI after five given surgical procedures (including 

THA and HA) was estimated at 4,6 % for deep and organ space infection (Kacelnik, 2014). 

 

Surgical site infection (SSI) 

According to the Norwegian Institute of Public Health (NIPH) and the Norwegian surveillance 

system for antibiotic consumption and healthcare associated infections module for SSI 

(NOIS-SSI), all SSI with the exception of superficial wound infections occurring after 
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discharge need to be diagnosed by a physician as in accordance to the CDC (Centers for 

Disease Control, USA) criteria. This requirement do not need to be met by patient diagnosed 

superficial infections (H. L. Lower, Eriksen, Aavitsland, & Skjeldestad, 2013).  

The CDC definition of SSI include three levels (figure 5) which each have specific criteria that 

need to be met for the status SSI to be given (CDC, 2015) : 

Superficial incisional SSI 

 Infection occurs within 30 days after any operative procedure (where day 1 = the 

procedure date) 

 involves only skin and subcutaneous tissue of the incision 

 patient has at least one of the following: 

o purulent drainage from the superficial incision. 

o organisms isolated from an aseptically-obtained culture from the superficial 

incision or subcutaneous tissue. 

o superficial incision that is deliberately opened by a surgeon, attending 

physician or other designee and is culture positive or not cultured 

 patient has at least one of the following signs or symptoms (a culture negative finding 

does not meet this criterion) 

o pain or tenderness 

o localized swelling 

o erythema 

o heat  

 diagnosis of a superficial incisional SSI by the surgeon or attending physician or other 

designee. 

 

Deep incisional SSI 

 Infection occurs within 30 or 90 days after the operative procedure (where day 1 = 

the procedure date) 

 involves deep soft tissues of the incision (e.g., fascial and muscle layers) 

 patient has at least one of the following: 

o purulent drainage from the deep incision. 

o a deep incision that spontaneously dehisces, or is deliberately opened or 

aspirated by a surgeon, attending physician or other designee and is culture 

positive or not cultured 

 patient has at least one of the following signs or symptoms (a culture negative finding 

does not meet this criterion) 

o fever (>38°C)  

o localized pain 

o tenderness 

 an abscess or other evidence of infection involving the deep incision that is detected on 

gross anatomical or histopathologic exam, or imaging test. 
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Organ/Space SSI 

 Infection occurs within 30 or 90 days after the operative procedure (where day 1 = the 

procedure date) 

 infection involves any part of the body deeper than the fascial/muscle layers, that is 

opened or manipulated during the operative procedure 

 patient has at least one of the following: 

o purulent drainage from a drain that is placed into the organ/space (e.g., closed 

suction drainage system, open drain, T-tube drain, CT guided drainage) 

o organisms isolated from an aseptically-obtained culture of fluid or tissue in the 

organ/space 

o an abscess or other evidence of infection involving the organ/space that is 

detected on gross anatomical or histopathologic exam, or imaging test 

The term attending physician for the purposes of application of the criteria may be 

interpreted to mean the surgeon(s), other physician on the case, emergency physician or 

physiĐiaŶ’s desigŶee ;Ŷuƌse pƌaĐtitioŶeƌ oƌ phǇsiĐiaŶ’s assistaŶtͿ (CDC, 2015). For the 

purposes of this thesis, in accordance with reporting in other studies (Dale et al., 2011; Hege 

Line Lower, Dale, Eriksen, Aavitsland, & Skjeldestad, 2015) and the NOIS (Kacelnik, 2014; H. 

L. Lower et al., 2013) deep aŶd oƌgaŶ spaĐe iŶfeĐtioŶs haǀe ďeeŶ ĐoŵďiŶed iŶ a ͞deep 

iŶfeĐtioŶ͟ ĐategoƌǇ. 

 

Figure 5: The Centers for Disease Control and Prevention National Healthcare Safety Network 

(CDC) classification for SSI. Figure in Horan et al (Horan, Gaynes, Martone, Jarvis, & Emori, 

1992). 
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Although the additional cost associated with SSI has not been fully elucidated due to 

inconsistencies in study design and variation in methods of cost calculation (Beyersmann, 

Kneib, Schumacher, & Gastmeier, 2009; Graves, 2004; Graves et al., 2010), from the scope of 

the problem it is arguably easy to see why health care providers and health care financers 

ŵight ǁaŶt to ƌeduĐe the iŶĐideŶĐe of ““I’s aŶd otheƌ HCAI’s. Treating these often 

preventable infections is both economically and manpower demanding work, occupying 

precious resources potentially spent towards providing high quality, life preserving services 

elsewhere. The next sections will discuss how to prevent HCAI, especially SSI, and whether or 

not it might be beneficial to the providers and financers of health care to do so.  

 

SSI prevention 

Many methods contribute to the goal of reducing incidence of SSI. This section will present 

the use of surveillance systems as a preventive measure, the evolution of such systems and 

go on to briefly present the Norwegian system of surveillance. Further, a bundle of 

prevention methods is introduced in the section about practical procedure related measures 

to be performed in relation to surgery itself. 

Prevention by surveillance 

“uƌǀeillaŶĐe sǇsteŵs aƌe a ĐoƌŶeƌstoŶe iŶ effoƌts to ƌeduĐe HCAI’s, aŶd suƌǀeillaŶĐe ǁith 

feedďaĐk to suƌgeoŶs ŵaǇ ƌeduĐe ƌates of ““I’s ďǇ aŶ estiŵated ϮϬ% (Sparling et al., 2007; A. 

P. Wilson et al., 2006). The Centres for Disease Control and prevention (CDC) initiated The 

NatioŶal NosoĐoŵial IŶfeĐtioŶ “uƌǀeillaŶĐe “Ǉsteŵ ;NNI“Ϳ iŶ the ϭ9ϳϬ’s aŶd the sǇsteŵ has 

evolved into the NHSN as it is today. Being the foundation for most current surveillance 

systems foƌ HCAI’s iŶteƌŶatioŶallǇ, the NHSN estimate the magnitude of the nosocomial 

infection problem in the United States and monitor trends in infections and risk factors. By 

2003 the Hospitals in Europe Link for Infection Control through Surveillance (HELICS), based 

on the NNIS, was operational with 16 official European surveillance networks integrated 

(Emori et al., 1991; J. Wilson, Ramboer, & Suetens, 2007). 
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The Norwegian surveillance system for antibiotic consumption and healthcare associated 

infections (NOIS)  

The NoƌǁegiaŶ effoƌts to ŵoŶitoƌ aŶtiďiotiĐ ĐoŶsuŵptioŶ aŶd HCAI’s has siŶĐe the Ǉeaƌ ϮϬϬϬ 

ďeeŶ diƌeĐted ďǇ ͞AĐtioŶ plaŶ to ĐouŶteƌ aŶtiďiotiĐ ƌesistaŶĐe ϮϬϬϬ-ϮϬϬϰ͟ aŶd ͞AĐtioŶ PlaŶ 

for preventing hospital infections 2004- ϮϬϬϲ͟. The latteƌ stƌategies ǁeƌe followed by 

͞NatioŶal stƌategǇ foƌ pƌeǀeŶtioŶ of iŶfeĐtioŶs iŶ the health seƌǀiĐe aŶd aŶtiďiotiĐ ƌesistaŶĐe 

2008-ϮϬϭϮ͟. The strategy contains relevant measures in many sectors and at different levels 

to still preserve a favorable situation in Norway (HoD, 2008).  

 

Following the action plans above the Norwegian surveillance system for antibiotic 

consumption and healthcare associated infections (NOIS) was founded in 2005. The first 

years a three month surveillance period for minimum one of the listed procedures was 

required and from the year 2012 all hospitals where, under NOIS, obligated to register and 

follow up for 30 days post-surgery all patients having undergone all five types of surgeries all 

year in order to identify and register data on the patients that go on to deǀelop ““I’s. The 

system follows protocols equivalent to those used in other European countries (HELICS) and 

in the United States (NNIS) and thus complies with international standards and contributes 

to the current trend toward public reporting and international comparisons (HoD, 2005; 

Kacelnik, 2014; H. L. Lower et al., 2013). 

 

The surgical procedures included in NOIS are: 

 Coronary artery bypass graft (CABG) surgery 

 Caesarian section 

 Hip arthroplasty 

 Total 

 Hemi 

 Cholecystectomy 

 Colon surgery 

 

Kacelnik, O. et al (Kacelnik, 2014) report rates of hospital response and a rate of completion 

of 30 day follow-up averaging on 93%, varying between surgeries and hospitals. Løwer H. L. 

et al (H. L. Lower et al., 2013) report a 90,7% completeness of 30 day follow-up and almost 

complete hospital participation during the first 5 years of NOIS operation. 
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Table 1: 30 day follow-up portions nationally and variation between hospitals per surgery 
(after Kacelnik, O. et al (Kacelnik, 2014))  

Surgery Percentage complete follow-up Variation in follow-up between hospitals 

Bypass (CABG) 91 % 83-100% 

Cesarean section 89 % 63-100% 

Hip arthroplasty (total) 97 % 78-100% 

Hip arthroplasty (hemi) 92 % 74-100% 

Colecystectomy 92 % 75-100% 

Colon 96 % 66-100% 

 

Prevention by practical measures 

Anderson (Anderson et al., 2014) highlight practical recommendations in a concise format 

designed to assist acute care hospitals to implement and prioritize their SSI prevention 

efforts, and present a list of measures coupled with a grade (high to low quality = 1, 2, 3) 

indicating quality of evidence to support the specific measure (for definitions of levels of 

quality of evidence, see Anderson (Anderson et al., 2014) table 1).  The practical 

recommendations are the product of a collaborative effort led by Society for Healthcare 

Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), the 

American Hospital Association (AHA), the Association for Professionals in Infection Control 

and Epidemiology (APIC), and The Joint Commission, with major contributions from 

representatives of a number of organizations and societies with content expertise. The 

procedure related measures discussed are the following (quality of evidence): 

o Hair removal (2) 

 Do not remove unless hair will interfere with the operation. If hair 

removal is necessary, remove outside the OR by clipping. Do not 

use razor.  

o Surgical scrub of suƌgiĐal teaŵ ŵeŵďeƌs’ hands and forearms (2) 

 Use appropriate antiseptic agent to perform preoperative surgical 

scrub. For most products, scrub the hands and forearms for 2–5 

minutes. 

o Skin preparation (1) 

 Wash and clean skin around incision site. Use a dual agent skin 

preparation containing alcohol, unless contraindications exist.  

o Antimicrobial prophylaxis 

 Administer only when indicated (1) 

 Administer within 1 hour before incision to maximize tissue 

concentration (1) 

 Vancomycin and fluoroquinolones can be given 2 hours 

prior to incision 

 Select appropriate agents on the basis of surgical procedure, most 

common pathogens causing SSI for a specific procedure (1) 

 Stop prophylaxis within 24 hours after the procedure for all 

procedures (2) 
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o Blood Transfusion (2) 

 Blood transfusions increase the risk of SSI by decreasing 

macrophage function. Reduce blood loss and need for blood 

transfusion to the greatest extent possible. 

o Surgeon skill/technique 

 Handle tissue carefully and eradicate dead space (3) 

 All members of the operative team should double glove and 

change gloves when perforation is noted (3) 

 Adhere to standard principles of operating room asepsis (3) 

 No formal recommendation for operating time in most recent 

guidelines; minimize as much as possible without sacrificing 

surgical technique and aseptic practice (1) 

o Operating room (OR) ventilation (3) 

 Follow recommendation of American institute of architects 

o OR traffic (3) 

 Minimize OR traffic 

o Environmental surfaces (3) 

 Use an EPA-approved hospital disinfectant to clean visibly soiled or 

contaminated surfaces and equipment  

o Sterilization of surgical equipment (2) 

 Sterilize all surgical equipment according to published guidelines. 

Minimize the use of immediate use steam sterilization 

 

As is evident in the above, Anderson and colleges strongly recommend skin preparation and 

antimicrobial prophylaxis (read: pre-, peri- and postoperative antibiotics use) to prevent SSI. 

As will become clear in the next chapter (chapter 3) of this text, an important part of the 

intervention we were to examine was exactly antibiotic prophylaxis, implemented according 

to Norwegian national guidelines. For this reason we wanted to briefly illuminate the 

Norwegian national guidelines and compare them with the recommendations made by 

Anderson et al. 

 

The Norwegian Directorate of Health recommendations for antibiotic prophylaxis  

Norwegian national guidelines for antibiotic prophylaxis in the context of joint prosthesis 

surgery include a strong recommendation to administer 2 grams Cefalotin intravenously 30-

60 minutes preoperatively and every 90 minutes peroperatively, with a total duration of 24 

hours (4 doses). The guidelines emphasize the lack of documented effect of extending the 

prophylactic treatment after the procedure (Helsedirektoratet, 2013). 
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Anderson with colleges seemed to give the same recommendations as the Norwegian 

Directorate of Health (NDH) in regards to antibiotic (antimicrobial) prophylaxis. Regarding 

the judgment on whether or not prophylaxis is indicated required by Anderson, NDH claims 

that in relation to prosthesis procedures the risk of infection is high, indicating prophylaxis in 

all cases (Helsedirektoratet, 2013). 

 

Further examination into prevention measures discussed in the literature is possible, as the 

field is littered with interesting studies of effectiveness of such measures. For now, however, 

the recommendations made by Anderson et al, the NDH and the risk factors of SSI presented 

in the sections about THA and HA will do as a backdrop for discussion and analysis on the 

intervention which is the focus of this thesis.  

 

To add to the epidemiological and medical perspective presented this far, we wanted here 

to give a brief presentation of one economic issue arising in the context of cost-effectiveness 

studies of SSI prevention interventions in single center studies. A more thorough 

introduction to and discussion of methods of cost-effectiveness studies will be given as we 

progress in this paper. 

 

Cost effectiveness of prevention - Potential prevention disincentive 

 

͞The eĐoŶoŵiĐ ƌatioŶale foƌ pƌeǀeŶtiŶg hospital aĐƋuiƌed iŶfeĐtioŶs has ďeeŶ disĐussed, aŶd 

can be summarized as follows: hospital acquired infections take up scarce health sector 

resources bǇ pƌoloŶgiŶg patieŶts’ hospital staǇ; effeĐtiǀe iŶfeĐtioŶ-control strategies release 

these resources for alternative uses. If these resources have a value in an alternative use, 

then the infection control programs can be credited with generating cost-savings; these 

infection control programs are costly themselves, so the expense of infection control should 

be compared to the savings. For many hospital infections the costs of prevention are likely to 

ďe loǁeƌ thaŶ the ǀalue of the ƌesouƌĐes ƌeleased ;…Ϳ Under these circumstances, infection 

ĐoŶtƌol should ďe puƌsued, siŶĐe ŵoƌe staŶds to ďe gaiŶed thaŶ lost͟ 

((Graves, 2004), p. 1 (561)) 
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Many analyses of cost-effectiveness of prevention interventions indicate that infection 

reductions are beneficial in the sense that they save money and improve the post-operative 

health status of patients. An Australian cost-effectiveness analysis of a basic SSI prevention 

strategy related to total hip arthroplasty (THA) surgery, indicated that a combination of 

antibiotic prophylaxis and antibiotic impregnated cement saved AUD 3909 per QALY gained 

(Merollini et al., 2013). A study made in the UK into the cost-effectiveness of a hospital SSI 

audit system indicated that the average savings per averted case was 422 pounds (Reilly, 

Twaddle, McIntosh, & Kean, 2001). A US study analyzing the cost-effectiveness of a multi-

faceted intervention to reduce the incidence of central line-associated bloodstream infection 

and ventilator-associated pneumonia in intensive care units concluded that, given a cost-

effectiveness threshold of 85000 USD per QALY, the intervention was effective in all cases 

(Dick et al., 2015). 

However, by concretizing opportunity costs (defiŶed as ͞the ǀalue of the ďest alteƌŶatiǀe use 

of the fuŶds͟ ;Drummond, Sculpher, Torrance, O'Brien, & Stoddart, 2005)), Jenks (Jenks et 

al., 2014) indicate that there might be perverse incentives in not preventing at least some 

““I’s. The studǇ ǁas doŶe at a ϭϮϬϬ-bed university hospital in Derriford, England. The 

economic evaluation showed that for some procedures, elimiŶatiŶg all ““I’s ƌesulted iŶ a 

negative overall financial impact, a financial loss. The reason for this contra intuitive and 

paradoxical result, Jenks and colleges explain, was that for all procedures except bile, liver, 

pancreatic and cardiac surgery the hospital made a loss without SSI. This would accrue a 

negative opportunity cost of preventing SSI as the alternative use of the freed resources 

from not having to treat SSI (here: beds), would be more loss-generating procedures. In 

addition, the hospital received income for SSI episodes, which meant that the impact of 

having to treat infection on profitability was less than it would have been had they not been 

compensated. 

 

A similar result was found in a US study on occurrence of post-surgical complications 

associated with a higher contribution margin for certain patients, giving a potential for 

adverse financial effects of reducing post-surgical complications (Eappen et al., 2013). 
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To put the previous section in context with the thesis in general, the next section will briefly 

introduce the reader to basic theory of economic evaluation and decision analytical 

modeling. 

 

Economic evaluation and decision analytical modeling 

Economic evaluation in health care can be defined as the comparison of alternative options 

in terms of their costs and consequences (Drummond, Sculpher, Torrance, O'Brien, & 

Stoddart, 2005). In the context of health and health care, costs refer to the value of available 

resources, such as clinical and other staff time, medication and other materials, hospital 

beds and floor space. Consequences refer to all effects of the options of treatment but 

ŵaiŶlǇ foĐus oŶ the ĐhaŶges to iŶdiǀiduals’ health, positiǀe oƌ Ŷegatiǀe. Theƌe aƌe seǀeƌal 

disciplines of economic evaluation based on different normative theories of societal 

resource allocation, although some form of cost-effectiveness analysis (CEA) seem to be 

predominant in applied research within health. CEA would typically have a health related 

objective and be constrained by a narrow or broad health care budget. The health related 

objective may be disease or program specific or, as is increasingly applied, a generic measure 

of health. The type of CEA that use the QALY – the one of these generic measures of 

longevity and health related quality of life that is most widely adopted - as its effect measure 

is often called a cost-benefit analysis (CBA) (Briggs, Claxton, & Sculpher, 2006). 

 

Decision analytic modeling is used increasingly in health care systems to inform decisions 

about which alternative of medical devices, diagnostic technologies or treatment options to 

fund and reimburse, and has a strong rationale as a framework for economic evaluation. This 

rationale is based on the ability of decision models to incorporate several required features 

of economic evaluation seeking to inform decision making. A central requirement of 

economic evaluation is to use all relevant evidence on effectiveness of individual programs 

and the effectiveness of all relevant alternative programs. Further, an appropriate economic 

evaluation requires consideration of all costs and effects accruing within a relevant time 

horizon, which for many interventions effectively means a life-time follow-up period. 

Decision modeling provides a framework for structuring extrapolations based on shorter 

term costs and effects estimates. Finally, decision modeling provides a framework for 
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indicating uncertainty in available evidence, translating that uncertainty into decision 

uncertainty meaning a probability of a decision being correct under its criteria (Briggs et al., 

2006).  

 

3. Study site: Vestre Viken HF, Bærum Hospital 

 

As this study was based on data from Bærum hospital, and the SSI prevention intervention 

under analysis was implemented at the hospital, we wanted to briefly introduce the reader 

to the hospital and the setting under which it operates before we present the intervention 

itself. 

 

Bærum hospital is one of four somatic hospitals in Vestre Viken HF. It is a large acute and 

local hospital for Asker and Bærum, one of the most dens populated areas in Norway. The 

hospital has highly qualified specialists in surgical, medical, orthopedic, gynecologic, 

anaesthesialogic, intensive care and operational disciplines, as well as a large maternity 

ward. Bærum hospital provides acute care for 350 people having suffered hip fractures 

annually. Some of these are treated with hemi arthroplasty (HA), and the hospital performs 

some 133 HA procedures annually whereof 94% of these where uncemented in 2013 

(Figved, 2013). According to NOIS numbers from 2013 the HA treated patients at Bærum 

hospital had an incidence of superficial, deep and organ space SSI of 4,0 %, which is above 

the country wide average of 2,5 % in that year, and an incidence of 6,0 % for the years 2006-

2013 (Kacelnik, 2014). 

 

The intervention 

In 2010, a surgeon at the orthopedic department of Bærum hospital, in collaboration with 

the Boston Consulting Group (BCG) initiated a pilot project to reduce the incidence of SSI in 

relation to hip fracture treatment through introducing a suggested best practice and  
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strengthening awareness around the practice of a bundle of infection preventing measures 

(Figved, 2013; Figved, Mariero, Skarsgård, & Bjørnland, 2013). The measures included: 

 

1. Early surgery 

 Operate all hip fractures within 36 hours of admission 

2. Infection prophylaxis 

 Patient transport 

 Maintaining operating room sterility 

 Correct antibiotic prophylaxis, according to Norwegian national 

guidelines (Helsedirektoratet, 2013) 

 Hygiene measures in the ward 

3. Operation method 

 Change method for dislocated fractura colli femoris (FCF) from 

uncemented Corail prosthesis to Exeter prosthesis with antibiotic 

cement 

4. Numbers of and experience level of surgeons 

 No assistant surgeon to operate HA alone 

 Consultant surgeon or assistant surgeon as second operator on all HA 

procedures 

5. Involving a geriatrician 

 Define interaction between orthopedic dept. and geriatric dept. 

6. Secondary osteoporosis profylaxis  

 Prescribe bisfosfonat to all hip fracture patients on discharge 

 

Through these new measures, Figved estimate an annual absolute reduction in reoperations 

of 13 procedures, and savings to Bærum hospital of NOK 1,2 million.  

 

Points 2 (specifically correct antibiotic profylaxis), 3 and 4 would be assumed 100% 

implemented when our first observed  patient received their care at Bærum hospital in 

2010, and these points would make up the foundation for costing of the intervention (ref. 

Methods section: economic model). 

 

When compared to the recommendations of Anderson and colleges above, it seems the 

anti-infection measures at Bærum hospital are in accordance with these guidelines. Correct 

antibiotic prophylaxis according to national guidelines (Helsedirektoratet, 2013) are in line 

with Anderson (see discussion in prevention by practical measures section). 
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4. Study objectives and research questions 

 

The numbers presented by the NOIS indicate a substantial local and regional variation in the 

incidence of SSI (Kacelnik, 2014). This indicates a potential for improving practice towards a 

standard resulting in lower incidence of SSI. The implementation and effects of the pilot 

project described above is still ongoing. This present an opportunity to analyze the patient 

level data of all patients treated with hemi arthroplasty after hip fracture from September 

2010 to December 2014 at VVS Bærum hospital. The opportunity is interesting, as a similar 

study into the costs and effects of a local hospital intervention has not been conducted in 

Norway previously (to the best of our knowledge). The relationship between costs and 

effectiveness of the intervention might be interesting for the hospital in question in deciding 

whether or not to continue intervening in the same way, but also for other hospitals in 

relation to their decisions on how to tackle SSI. 

 

Research question and objectives 

The overall aim of this study was to examine risk factors for deep SSI and the clinical and 

economic consequences of such infections at VVS Bærum. Further, the study aimed to 

estimate the cost-effectiveness of an ongoing multi modal SSI prevention program in order 

to guide a decision on whether or not to maintain the multi modal infection prevention 

program. The study should address the following research questions: 

 

1. Determine risk factors for SSI after hemi arthroplasty treatment of hip fracture, and 

analyze their impact on the risk of SSI of the study population 

2. Determine clinical consequences of hemi arthroplasty treatment of hip fracture when 

SSI is present, and compare them with when it is not 

3. Determine costs when SSI is present, and compare them with costs when it is not 

4. Estimate the cost per quality adjusted life year (QALY) before and after 

implementation of the multi modal SSI prevention intervention at Bærum hospital 
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5. Material and methods 

Study design 

This was a retrospective cohort study including a cost effectiveness analysis, using patient 

level registry data and decision analytical modeling. 

 

Material 

Data source 

The hospital management at Bærum hospital provided a data file by means of the Nimes 

system (Nirvaco AS) for quality assurance, medical coding, procedure and diagnosis registry 

and analysis of activity data. We included patients admitted to Bærum hospital for hip 

fracture (ICD-10 code: S72.0/.1/.2) and subsequent treatment with a hemi prosthesis 

(NCMP/NCSP code: NFB.02/-.12, cemented and non-cemented). Patients were included from 

September 2010 through January 2014, and they needed to have completed at least one 

year follow up by December 2014. Admission for hip fracture treated with hemi arthroplasty, 

as described by the ICD-10 and NCMP/NCSP codes above, defines the index event. All 

included patients were followed for one year, and all hospital episodes of care during this 

period were recorded. All patients were grouped as no SSI, superficial SSI or deep SSI, 

according to instructions given in NOIS, in accordance with the CDC definitions (ref. section 

on SSI). 

 

Data structure 

The data set contains ͞long data͟ with episode of care (in-patient, out-patient, day-care) as 

the unit of observation, and 877 observations were recorded. Each patient had one or more 

episodes of care, and observations were clustered through a patient ID variable and sorted 

according to date and time of care. The dataset included variables on NMCP/NCSP 

procedures, ICD-10 diagnoses, background information about the patient like age and 

gender, where the patient was admitted from and where they were discharged to, the ASA 

(American Association of Anesthesiologists) score (a measure of comorbidity and frailty), 

infection status with severity of infection and whether or not the patient was alive upon 

discharge (table 2). 
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Table 2: Descriptive statistics of the data on all patients (n=239) having undergone the index 
event 

Variable N* 

Number of 

patients (%) 

Proportion/

mean  95 % CI Median 

1st 

quartile 

3rd 

quartile Range 

Type of infection 

        

  

Deep 877 6 (2,5) 0,044 0,029 0,060 0 0 0 1 

Superficial 877 3 (0,0) 0,010 0,003 0,018 0 0 0 1 

None 877 230 (96,2) 0,945 0,928 0,962 1 1 1 1 

Gender 

        

  

Female 877 155 (64,8) 0,588 0,551 0,626 1 0 1 1 

Age group  

        

  

45-66 877 16 (6,7) 0,096 0,073 0,118 0 0 0 1 

67-79 877 51 (21,3) 0,239 0,207 0,272 0 0 0 1 

80-89 877 115 (48,1) 0,517 0,479 0,554 1 0 1 1 

90+ 877 57 (23,9) 0,148 0,121 0,175 0 0 0 1 

ASA score 

        

  

1 877 4 (1,7) 0,005 -0,001 0,010 0 0 0 1 

2 877 97 (40,6) 0,114 0,090 0,138 0 0 0 1 

3 877 99 (41,4) 0,115 0,091 0,139 0 0 0 1 

4 877 15 (6,3) 0,017 0,007 0,027 0 0 0 1 

Missing value 877 24 (10,0) 0,749 0,716 0,782 1 0 1 1 

Number of comorbidities 

        

  

0 877 49 (20,5) 0,447 0,409 0,485 0 0 1 1 

1 877 53 (22,2) 0,204 0,174 0,235 0 0 0 1 

2 877 57 (23,9) 0,133 0,108 0,159 0 0 0 1 

3 877 35 (14,6) 0,083 0,062 0,104 0 0 0 1 

>3 877 45 (18,8) 0,132 0,107 0,158 0 0 0 1 

Surgery delay (hours)***   

       

  

Total** 239 239 (100,0) 19,960 16,295 23,625 16,483 7,283 24,600 210,820 

Negative (=missing)** 9 9 (3,8) -12,050 -13,828 -10,272 -11,916 -13,330 -11,000 7,166 

Admitted from 

        

  

Home 877 237 (99,2) 0,994 0,989 1,000 1 1 1 1 

Other institution 877 2 (0,8) 0,006 0,000 0,011 0 0 0 1 

Discharged to   

       

  

Home 877 30 (12,6) 0,586 0,549 0,623 1 0 1 1 

Nursing home 877 99 (41,4) 0,200 0,169 0,230 0 0 0 1 

Other institution 877 57 (23,9) 0,114 0,090 0,138 0 0 0 1 

Other 877 50 (20,9) 0,090 0,068 0,112 0 0 0 1 

Missing 877 3 (1,3) 0,007 0,001 0,013 0 0 0 1 

Hip fracture 877   0,295 0,261 0,330 0 0 1 1 

Primary hemi prosthesis 877   0,286 0,252 0,320 0 0 1 1 

Secondary hemi prosthesis 877   0,025 0,013 0,037 0 0 0 1 

Reposition of luxated hip 877   0,033 0,020 0,047 0 0 0 1 

Open exploration 877   0,001 -0,001 0,004 0 0 0 1 

Surgery due to infection 877   0,005 -0,001 0,010 0 0 0 1 
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Wound revision 877   0,017 0,007 0,027 0 0 0 1 

Removal of prosthesis 877   0,011 0,003 0,019 0 0 0 1 

Reoperation 877   0,006 0,000 0,011 0 0 0 1 

Rehabilitation in hospital 877   0,008 0,001 0,015 0 0 0 1 

Out-patient control 877   0,188 0,159 0,218 0 0 0 1 

Patient died 877 26 (10,9) 0,066 0,047 0,085 0 0 0 1 

Hospital days** 877   3,527 3,105 3,948 0 0 0 40 

DRG weight** 877   1,565 1,420 1,710 0,372 0,026 3,795 7,611 

Total cost according to DRG 

weight (NOK)** 877   63807 57897 69716 15167 1060 154765 310386 

*Observations of variable 
** Mean value instead of proportion 
***Unit of observation is index contact  

 

For coding of the infection variable the patient status was monitored at discharge and at 30 

days post-surgery as is in accordance with the standards of NOIS, described previously. Deep 

and organ space SSI was assumed equal as there are no distinction between them in the 

dataset, and because the practice has precedence in other studies (Dale et al., 2011; Hege 

Line Lower et al., 2015) and with the NOIS (Kacelnik, 2014; H. L. Lower et al., 2013). 

Our dataset allows for analysis of whether prolonged surgery waiting time influences the 

occurrence of SSI in our sample. However, in defining a variable for the delay between 

admission and surgery during the index stay, due to registry errors, 9 negative numbers were 

produced. As this indicates surgery before admission the negative values were dropped and 

replaced by missing values.  

 

We estimated cost per episode of care ;͞Total Đost aĐĐoƌdiŶg to DRG ǁeight͟Ϳ by multiplying 

the I“F Đost ǁeights ;͞DRG ǁeight͟Ϳ ďǇ the uŶit pƌize peƌ diagŶosis ƌelated gƌoup ;DRGͿ poiŶt 

for 2014, defined by the Directorate of Health at NOK40,772 (Helsedirektoratet, 2014) (ref. 

section on cost effectiveness of prevention). We used constant price weights and followed 

each patient for a maximum of one year, and thus did not adjust for inflation or discounting 

of costs or effects. 

 

Methods 

Data cleaning 

Patients admitted to Bærum hospital from September 2010 who had completed one year 

follow up in December 2014 after experiencing a hip fracture (ICD-10 code: S72.0) and 
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subsequent treatment with a hemi prosthesis (NCMP/NCSP code: NFB.02/-.12) where to be 

included in the analysis, making no distinction between the use or no-use of cemented 

prosthesis. Admission after hip fracture and consequent treatment with hemi arthroplasty, 

as defined here, defines the index event. All included patients were sought followed for 1 

year, and all hospital contacts in this period recorded. However, the data set contained 

information on several patients who had not had this type of index contact, including 

observations predating it. Additionally, some patients had recorded observations more than 

one year from the index contact.  

 

The data set was examined and corrected using Microsoft Excel, as well as Stata13. All 

patients who had not experienced the combination of hip fracture and subsequent 

treatment with HA (the index contact) were excluded. Observations of hospital contacts 

before such an event were deleted as well as observations of contacts more than one year 

later than the index event. We proceeded to search for illogical findings in the dataset. Per 

definition (ref. data structure and limitations) there can be no more first contacts than 

patients in the sample, there can be ŵoƌe fƌaĐtuƌes thaŶ HA’s aŶd there can be ŵoƌe HA’s 

than patients and therefore first contacts. Searches for illogical findings included looking for 

different numbers of first contacts and numbers of patients, fewer hip fractures than first 

ĐoŶtaĐts aŶd patieŶts, feǁeƌ HA’s thaŶ hip fƌaĐtuƌes aŶd so oŶ. With such findings the data 

set was subjected to further scrutiny and corrections. Foƌ the ǀaƌiaďles ͞A“A sĐoƌe͟, ͞“uƌgeƌǇ 

delaǇ͟ aŶd ͞DisĐhaƌged to͟ theƌe ǁeƌe missing information. In the work with the dataset, 

missing values were generally treated as no observation. While the initial dataset contained 

974 observations and 251 patients, the resulting dataset contained 877 observations and 

239 patients all having experienced a HA treated hip fracture (=index event), where the 

index event constituted the first observation for all patients.  

 

Descriptive analysis 

Variables were described by means of proportions, means, medians, standard deviations, 

95% confidence intervals, ranges, 1st and 3rd quartiles and the number of observations 

registered where applicable. We also presented numbers of missing values (Table 2). The 

data was further divided into two groups. One group consisted of characteristics of the index 
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contact which would be the basis for our risk factors or predictors of infection analysis (Table 

4). The other group consisted of accumulated consequences of the index event accruing over 

the year after the index stay, which would be the basis for our consequence analysis (Table 

5). We further grouped the data by infection status, such that distribution of risk factors and 

consequences within infection status subgroups could be analyzed. 

Univariate analysis 

The normality distribution plays an important role in statistics and many practical 

procedures rely for their validity on an assumption that the data is normally distributed. We 

subjected the variables described in tables 4 and 5 to a test of skewness and kurtosis, using 

the “tataϭϯ ͞sktest͟ (selection of results in table 6). Skewness is a measure of symmetry, and 

is known to be 0 for a normal distribution. Kurtosis is a measure of the weight of the tails or 

͞peakedŶess͟ of a probability density function, and is known to be 3 in a normal distribution 

(Newbold, Carlson, & Thorne, 2013). Foƌ eaĐh ǀaƌiaďle ͞sktest͟ pƌeseŶts a test foƌ ŶoƌŵalitǇ 

of data based on skewness and another based on kurtosis and then combines the two tests 

into an overall test statistic by which a null hypothesis of normality can be rejected or not 

(stata.com, 2015c). 

 

Bivariate analysis 

Comparisons of measures of central tendency were used broadly to describe the dataset. 

When the data are not normaly distributed, non-parametric tests are often appropriate 

(Newbold et al., 2013). Dependent on the distribution of data and statistical data type we 

performed either Wilcoxon rank-sum test (for ordinal or interval variables) of Fischer’s exact 

test (for categorical variables) to check for significant differences in distribution of the 

variables according to infection status. Wilcoxon rank-sum test tests the hypothesis that two 

independent samples (unmatched data) are from populations with the same distribution. 

The test indicates whether or not the median values of a variable are statistically different by 

group (stata.com, 2015b). FisĐheƌ’s eǆaĐt test ǁas used as an alternative to the Chi-square 

test, as one or more of the cells had an expected frequency of five or less in our data (UCLA, 

2015c). The dependent variable (infection status) for the risk factor analysis (characteristics 

of the index contact) is the same as the independent variable (also infection status) for the 
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analysis of consequences (events experienced in one year after the index contact), and was 

defined as has been described in the section on SSI. Infection status groups superficial and 

deep were individually and consistently tested against the no infection group. 

We obtained estimates of the unadjusted odds ratios and adjusted odds ratios related to 

having both a deep and superficial infection. To obtain unadjusted odds ratios we used 

bivariate logistic regression. The results of these analyses were presented in the section on 

multivariate. The rationale behind the choice of logistic regression and regression theory is 

presented in the next section. 

 

Multivariate analysis 

We aimed to identify risk factors of SSI after the initial surgery. Multiple linear regression 

could enable us to determine the simultaneous effect of several independent variables on a 

dependent variable using the least squares principle, estimated by coefficients (Bk). In 

multiple linear regression these coefficients depend on what other variables are included in 

the model. The coefficient Bk estimates the change in Y given a unit change in Xk, while 

controlling for the simultaneous effect of the other independent variables. The random error 

term, Ei, captures all the variation in Yi not explained by the X variables (Newbold et al., 

2013). A typical multiple regression equation is demonstrated below (equation 1): 

 

Yi=BϬ+BϭXϭ+BϮXϮ+ … +BkXki+Ei     (1) 

 

There are several standard assumptions to linear regression. Without verifying that our data 

had met these assumptions, the results could be misleading (UCLA, 2015a). The following 

paragraphs contain explanations on the nature of the assumptions and the methods we 

used to test whether or not they were met. 

 

The standard assumptions for linear regression analysis exclude cases of perfect correlation 

between independent variables. The term collinearity implies that two variables are near 

perfect linear combinations of one another. When more than two variables are involved it is 

often called multicollinearity, although the terms are often used interchangeably. It is 
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discouraged to select independent variables in developing a multiple regression model that 

are highly correlated, as the variance of the coefficient estimates increase as the correlation 

moves away from zero. In addition, the point estimate of a coefficient can be quite different 

from the actual mean value of the coefficient. The result could be not statistically significant 

or misleading coefficient estimates. This phenomenon is referred to as multicollinearity 

(UCLA, 2015a) (Newbold et al., 2013). 

There are several methods to check for the presence of multicollinearity. The Spearmans 

rank correlation coefficient (r subscript s or rho) is a nonparametric measure of correlation 

that is not susceptible to serious influence by extreme values. The factor describe correlation 

in terms of both direction (+/-) and strength (0 - 1) of the relationship. To reject the null 

hypothesis that there is no association, at the 5% level of significance, the Spearman rank 

correlation coefficient need to be within the range of -0,490 to 0,490 (Newbold et al., 2013). 

The variance inflation factor (VIF factor) and tolerance value (1/VIF) can be used to check for 

multicollinearity. A variable with VIF higher than 10 or tolerance lower than 0,1 can be 

considered a linear combination of other independent variables (UCLA, 2015a). For 

corrections in the case of multicollinearity, see Newbold (2013). We estimated the 

correlation coefficients between all the potential predictor variables to look for signs of 

linear relationships between individual variables. We also used the variance inflation factor 

and tolerance values to check for multicollinearity. 

In developing the linear model we assumed a linear relationship between the predictor 

variables and the dependent variable (infection status), and included in the analysis all 

variables assumed to markedly influence the dependent variable. The joint influence of 

variables with a strong influence on the independent variable omitted from the model is 

absorbed in the models error term. When significant predictor variables are excluded from 

the model, the coefficient estimates included are usually biased, and the estimated model 

error will be large (Newbold et al., 2013). 

There are several methods to control for such model specification errors. We used the link 

test, which is based on the idea that if a model is properly specified one should not be able 

to find any other significant predictor variables than the ones included in the model, except 

by chance. The test creates two new variables, one based on the prediction of the model 
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and the other is the prediction squared. If the squared prediction has explanatory power 

(p<=0,05), link test can reject the assumption of correct specification of the model (UCLA, 

2015a). As the availability of potential predictor variables in our dataset was restricted to 

those presented in table X, we included all of them in the analysis. 

It is assumed that the error terms are normally distributed random variables, with a mean of 

0 and uniform variance (Newbold et al., 2013). We will come back to the latter in the next 

paragraph. Normality of error terms, although a formal assumption of statistical inference 

(see part on bivariate analysis), can be relaxed under the central limit theorem if the sample 

size is large enough (Newbold et al., 2013).However, we conducted a Shapiro-Wilk test and 

produced a histogram and graphed both a standardized normal probability (P-P) plot and a Q 

normality plot of the quantiles of a variable against the quantiles of a normal distribution to 

check for normality.  The standardized normal probability (P-P) plots are sensitive to non-

normality in the middle range of data and Q normality plots are sensitive to non-normality 

near the tails (UCLA, 2015a). 

As mentioned, it is a standard assumption of multiple regression models that the variance of 

the error terms are equal. In other words, the standard multiple regression model assume 

homoscedasticity. We used the Breusch-Pagan/Cook-Weisberg test to test the null 

hypothesis that the variance of the residuals was homogenous. If the p-value was very small 

(<0,05), we would have to reject the null hypothesis and accept the alternative hypothesis 

that the variance was not homogenous, i.e. there was heteroscedasticity (UCLA, 2015a).  

 

Another way in which error terms can de dependent on each other is through 

autocorrelation. This is especially a problem when working with time-series data (Newbold 

et al., 2013). As our predictor variables are estimated at a single point in time, we did not 

consider autocorrelation to be a plausible problem. 

 

 

The outcome of interest of our risk factor analysis was infection status, a binary variable 

taking values of 0 or 1 according to infection status deep/superficial or no infection. Authors 

are not in agreement about how to model the relationship between an outcome and 

predictor variables when the outcome or dependent variable is binary. Juul and Frydenberg 
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(Juul & Frydenberg, 2010) claims the linear regression models are not valid in these cases, 

and suggest the use of a logistic model instead. UCLA suggest using logistic (Logit) or Probit 

regression in these cases. They agree with Jones (Jones, 2007) that using an ordinary least 

squares regression (as described by Newbold above), called a linear probability model (LPM) 

when used for predicting of a binary variable, can be used to describe conditional 

probabilities. However, the error terms will in this case violate the assumptions of 

homoscedasticity and normality of error terms, resulting in invalid standard errors and 

hypothesis tests (UCLA, 2015b).  

 

Jones claims a simple way to model such binary data is to use a linear function, and that the 

linear probability model is relatively straightforward to estimate, using a robust estimator of 

standard errors and a weighted least squares regression model to counter the by design 

heteroscedastic error terms in a binary outcomes model:  

 

E(y|x) = 0.P(y=0|x) + 1.P(y=1|x) = P(y=1|x) = F(x)    (2) 

 

He claims that in practice the LPM may provide a reasonable approximation for binary 

choice models, although a major drawback of the method is that predicted values of the 

regression function can lie outside of the range 0 to 1. This may lead to logical 

inconsistencies given that the model is supposed to estimate the likelihood of an outcome 

E(y|x) (equation 2) (Jones, 2007).  

 

By using non-linear functions for F(.) by choosing non-linear models using ͞“-Đuƌǀes͟, 

naturally bounded to 0-1, this problem can be avoided. The most common choices are Logit 

and Probit models. Assuming that the error term in these models has a standard normal 

distribution gives the Probit model. Assuming a standard logistic distribution gives the Logit 

model. Both models are estimated by the maximum likelihood estimation method (Jones, 

2007). Although there are assumptions about the distribution of error terms that differ 

between the models, Probit and Logit models produce similar results and the choice 

between them depend largely on individual preferences. In these models, the log odds of 

the outcome is modeled as a linear combination of the predictor variables. The coefficients 

give the change in log odds of the outcome for a one unit change in the predictor variable. 
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By exponentiating the coefficients they can be interpreted as odds-ratios. The same results 

can be obtained using the logistic regression command in Stata13 (UCLA, 2015b).  

 

We wanted to find the change in the likelihood of deep and superficial infection associated 

with changing the values of our predictor variables. Because y (1 or 0) is inherently 

unobservable, unlike the probabilities regarding its outcome, the coefficients of the Probit 

and Logit models should only be given a qualitative interpretation, translating to an 

increased likelihood of infection given a positive coefficient and vise versa. To interpret the 

quantitative implications of the coefficients we needed to compute partial effects, using 

marginal effects for continuous predictor variables and average partial effects for binary 

predictors. These partial effects are estimates of predicted probabilities. The marginal 

effects method produce predicted probabilities of having deep infection for a marginal 

change in a variable, holding all other variables in the model at their mean. As this approach 

might be problematic - in that an individual possessing the average value of a dummy 

variable indicating for example gender does not exist - average partial effects are used for 

categorical predictors. Here, the effect of each observation is computed using their specific 

x-values, before summary statistics such as the sample mean of effects are reported (Jones, 

2007).  

 

As the literature did not provide a conclusive suggestion as to which multivariate method to 

use for our risk analysis, we decided to implement several models, including OLS, LPM using 

weighted least squares (WLS), Probit, Logit (providing relative risks) and Logistic (providing 

adjusted odds ratios), and compare the goodness of fit, estimated coefficients and predicted 

probabilities of infection for the sample. 

 

Goodness of fit was assessed by comparing R-squared (coefficient of determination) of the 

LPM and pseudo R-squared of the Logit and Probit models. A high value would indicate a 

high degree of explanatory power (Newbold et al., 2013). Further, we performed Wald tests 

of the hypothesis that the squared model predicition is equal to zero. The hypothesis can be 

rejected given a p-value less than or equal to, which would indicate a poorly fitted model 

(stata.com, 2015d). We further obtained an estimate of the percentage correctly classified 

Đases ďǇ the Pƌoďit aŶd Logit ŵodels, usiŶg the ͞estat ĐlassifiĐatioŶ͟ ĐoŵŵaŶd iŶ “tata13 
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(stata.com, 2015a), and performed a link test on the squared prediction of our LPM as a 

confirmation of the Wald test result of this model. Linktest is described in more detail above. 

 

All data cleaning and subsequent analyses were performed using Microsoft Excel and 

Stata13. 

 

Economic Model 

We developed a decision analytical model who would host a probabilistic cohort cost-benefit 

analysis of the infection prevention intervention at Bærum hospital. We constructed a 

decision tree (figure 6) in which the expected outcomes of the intervention and the no 

intervention branches would be mediated primarily through the interventions effect on SSI 

incidence. We assumed infection status and mortality was dependent on the index stay, 

making four possible health states possible after the index event. Depending on whether or 

not the patients received the intervention program, the groups would consequently 

accumulate a different aŵouŶt of QALY’s and costs as the infection incidence changed. 

Expected costs would depend on the incremental cost of the intervention itself and the 

discrepancy in average yearly cost between the infection groups. AdditioŶallǇ, QALY’s aŶd 

costs would accrue for those who died during the index contact. Both outcomes and costs 

were weighted through the model by the probabilities of acquiring infections (the incidence) 

or dying or neither. 

 

 

Figure 6: Decision tree illustrating possible transitions between health states. 

 

Hip fracture 
Procedure 
pre/post 

intervention 

A. Superficial 
infection 

B. Deep infection 

C. No infection 

D. Died during 
index stay 
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Our parameters were (table 3): infection probabilities with or without intervention, one year 

QALY scores with superficial, deep or without infection, one year hospital costs for the same 

states in addition to the cost of an index contact for a patient dying during this period, and 

finally aŶ estiŵate of the iŶteƌǀeŶtioŶ’s iŶĐƌeŵeŶtal Đost peƌ pƌoĐeduƌe.  

 

Prior superficial and deep infection probability we found doing a search in the NOIS-

database revealing 5 superficial infections and 8 deep infections in 121 procedures. The 

estimate does not exclude HA procedures done for other reasons than hip fracture, and 

incorporates procedures done in the period 1.1.2006-31.12.2009. Deep and superficial 

infection probabilities after intervention implementation was calculated using our data, and 

was estimated at 2,5% and 1,3%. Mortality probabilities among patients prior to the 

intervention were based on the NOIS-database (5 deaths among 121 patients). Post 

intervention mortality was based on our own data. One year QALY estimates for deep and 

no infection were assumed to be equal to the estimates used by Merollini and colleges when 

they investigated a similar problem in a similar population (Merollini et al., 2013), and was 

assumed to be 0 for patients dying during the index stay. As no empirical estimates were 

found, one year QALY score for patients suffering superficial infection was based on a 

method described by Elliot and colleges (Elliott et al., 2010) (** in table 3). One year hospital 

costs were estimated from our cost according to ISF variable included in the data material 

we received from Bærum hospital (tables 3, 11 and 12). The incremental intervention cost 

ǁas ĐalĐulated as the Đost diffeƌeŶĐe ďetǁeeŶ the old pƌaĐtiĐe’s Corail uncemented 

pƌosthesis aŶd the Ŷeǁ stƌategǇ’s Exeter prosthesis with antibiotic cement, plus the cost of 

having an extra operator attending each procedure (= one average hourly wage for 

specialists in training or consultant surgeon), plus the cost of antibiotic profylaxis. To account 

for overheads, the surgery personnel time costs where weighted by a factor of 1,4 

(accumulating to NOK721). Hourly wage rates where attained from The Norwegian Medical 

Association, whereas the new cemented prosthesis (NOK7,625) and antibiotic profylaxis 

(NOK881) costs where derived through personal communication with the orthopaedic staff 

at Bærum hospital and from an Australian study (Merollini et al., 2013), respectively. After 

subtracting the cost savings of the Exeter cemented prosthesis (NOK3,952) from the 

additional antibiotic profylaxis and extra surgeon time costs (NOK1,602), the net cost saving 
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per procedure was NOK2,350 and the 20% standard deviation on this number was NOK470. 

All costs were expressed in 2014 Norwegian Kroner (NOK). 

 

Table 3: Parameters of our decision tree. 

Parameters Mean S.D. Distribution 

Superficial infection prob.       

*Pre intervention 0,041 0,200 
Dirichlet 

****Post intervention 0,013 0,112 

Deep infection probability       

*Pre intervention 0,089 0,030 
Dirichlet 

****Post intervention 0,025 0,157 

Probability of dying during index stay       

*Pre intervention 0,041 0,200 
Dirichlet 

****Post intervention 0,042 0,201 

One year QALY       

**Superficial infection 0,854 0,012 

Beta ***Deep infection 0,400 0,051 

***No infection 0,858 0,012 

Hospital costs (NOK)       

****Superficial infection 275.466 89.095 

Gamma 
****Deep infection 414.975 198.742 

****No infection 228.879 137.725 

****Died during index stay 178.708 47.854 

Incremental intervention cost (NOK) -2.350 470 Gamma 

 * NOIS data 2006-2009 including 121 HA procedures 

** (days without infection*no infection HRQoL)+(mean hospital days with superficial infection*superficial infection HRQoL) = 

(351*0,858)+(14*0,758). SD assumed equivalent to No infection. 

***(Merollini et al., 2013) 

****Present study 

 

To account for second order uncertainty (parameter uncertainty) in the parameter estimates 

we undertook probabilistic sensitivity analyses. Here we specified input distributions, or 

probability density functions, for input parameters in which random draws would be made in 

1000 Monte Carlo simulations. This was done to propagate internal (=parameter) 

uncertainty through the model resulting in a distribution of the outcome parameters. The 

mean of the outcome distributions would then become the point estimates for the 

outcomes and costs. We followed standard procedures for distributional assumptions to 

enhance the quality and credibility of the analysis (Briggs et al., 2006). The distributions we 

chose are presented in table 3. 

 

Assumptions 

For the analysis and economic evaluation it was assumed that points 2 (specifically correct 

antibiotic profylaxis), 3 and 4 of the intervention regime as described in chapter 3 (section 

on the intervention) was fully implemented and adhered to 100% from the time the first 

patient was admitted in 2010. To repeat, it was assumed that all HA procedures use 
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cemented Exeter prosthesis, that there were two operators whereof a consultant surgeon or 

assistant surgeon was the second operator on all HA procedures and that the use of 

antibiotic prophylaxis was in accordance with the guidelines of the Norwegian Directorate of 

Health (ref. section on the intervention).  

 

As we used constant price weights and a one year perspective, we did not adjust for inflation 

and we did not discount costs or effects (Glick, Doshi, Sonnad, & Polsky, 2007).  

 

Decision analytical modeling was performed using the modeling software TreeAgePro. 

Ethical considerations 

The data protection authority at Bærum hospital was involved in the study. The data set was 

anonymized before we received it. To maintain patient anonymity age in years was replaced 

with an age variable consisting of 4 groups. The data set did not contain the 11 digit social 

security number, but a 10 digit generic ID number that allowed us to distinguish between 

patients. 
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6. Results 

In this chapter the results obtained through implementation of the methods discussed in the 

previous chapter will be presented in text, tables and figures. Texts will summarize briefly 

the information given in the tables and figures, while the latter two will provide a full picture 

of the findings. We present descriptive statistics before moving on to results of the uni-, bi-, 

and multivariate analysis. Finally, we present the results of our economic evaluation. This 

chapter will contain limited or no discussions or interpretations of the results as this will be 

the topic of the next chapter. Conclusions of the discussion will follow suit. 

 

Descriptive statistics 

Study population and material 

 

The study population comprised predominantly of women (65%) in the age range of 80-

89(48%), admitted from their homes (99%) and discharged to another place than home 

(87%). 91% had an ASA score of 2 or 3. Most (96%) of the population was alive at discharge, 

and their index stay (first contact) accrued an average cost of NOK160,000 per patient, 

NOK172,589 for patients with superficial infection and NOK163,519 for patients with deep 

infection. Table 4 describes the distribution of variables of interest for the analysis of 

differences in patient characteristics and other descriptors of the index stay.  
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Table 4: Characteristics of the index contact according to infection status at 30 days. 

Variable Total (%) Infection  (%) 
Superficial infection  

(%) 
Deep infection (%) 

Patients         

Male 84 (35,2) 5 (5,6) 1 (1,2) 4 (4,8) 

Female 155 (64,8) 4 (2,6) 2 (1,3) 2 (1,3) 

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Age         

45-66 16 (6,7)       

67-79 51 (21,3) 2 (3,9)   2 (3,9) 

80-89 115 (48,1) 4 (3,5) 1 (0,9) 3 (2,6) 

90+ 57 (23,9) 3 (5,3) 2 (3,5) 1 (1,8) 

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Length of stay (LOS)         

Mean per patient 7,7 8,6 14,0 5,8 

Total 1829 77 (4,2) 42 (2,3) 35 (1,9) 

ASA score         

1 4 (1,9)       

2 97 (45,1)       

3 99 (46,0) 7 (7,1) 3 (3,0) 4 (4,1) 

4 15 (7,0) 1 (6,7)   1 (6,7) 

Missing 24 1   1 

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Number of comorbidities         

Mean per patient 2,2 2,1 1,7 2,3 

Total 519 19 (3,7) 5 (2,1) 14 (5,9) 

Surgery delay         

Mean per patient (n=230) 21,2 14,2 8,8 16,9 

Total 4878,9 127,7 (2,6) 26,5 (0,5) 101,2 (2,1) 

Admitted from         

Home 237 (99,2) 9 (3,8) 3 (1,3) 6 (2,5) 

Other institution 2 (0,8)       

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Discharged to         

Home 30 (12,7) 1 (3,3)   1 (3,3) 

Nursing home 99 (42,0) 6 (6,1) 2 (2,0) 4 (4,1) 

Other institution 57 (24,2) 1 (1,8)   1 (1,8) 

Other 50 (21,2) 1 (2,0) 1 (2,0)   

Missing 3       

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Status at discharge         

Alive 229 (95,8) 9 (3,9) 3 (1,3) 6 (2,6) 

Dead 10 (4,2)       

Total 239 9 (4,9) 3 (1,3) 6 (2,5) 

Cost by ISF (NOK)         

Mean per patient 160,419 166,542 172,589 163,519 

Total 38,340,027 1,498,880 517,766 981,114 

 *standard deviation 

 

Further, events experienced through the year-long follow up period include (NMCP-/NCSP-

code in parenthesis) new primary hip prosthesis (NFB), secondary hip prosthesis 

implantation (NFW), repositioning of hip luxation (NFH), removal of implant (NFU), 

reoperation due to deep infection (NFW), revision due to infection, open exploration of soft 

tissue of the hip, out-patient controls, rehabilitation in hospital and death. Numbers in table 

5 are the total experienced of an event, hospital days or accrued costs according to group. 
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Due to discrepancies in coding practice, two surgeries for hip infection were recorded for 

patients not coded with infection. There was considerable variation in the events 

experienced by patients in the year following the index contact. Some of the events 

experienced were excluded from the tables describing consequences and the analysis of 

these, but they were included in the estimates of costs and hospital days. Such events 

include percutaneous puncture of the bladder, gastroscopy, excision of lesion of skin of 

upper limb, colonoscopy, endoscopic polypectomy of the colon, cystoscopy and dialysis. 

 

During the first year after the index contact, 8 prosthesis were removed, 15 wound revisions 

were undertaken, 5 reoperations  were done and 16 people died. When we included all 

services consumed at Bærum hospital by this patient sample, the estimated hospital costs 

according to the DRG weight system amounted to NOK 17,618,370, whereof NOK 

1,508,735(9%) was spent treating those with deep infection and NOK 308,632(2%) was spent 

treating those with superficial infection. The cost of treating those without infection 

amounted to NOK15,501,003. Per patient mean treatment costs excluding the index stay 

amounted to NOK251,334 for deep infection, NOK10,877 for superficial infection and 

NOK71,823 for those without infection. 

 

Table 5: N events experienced by 229 patients during one year after the index contact. 
According to infection status. 

Type of event N No infection (%)* Superficial infection (%)* Deep infection (%)* 

New primary hemi prosthesis 12 7 (58,3) 1 (8,3) 4 (33,3) 

New hip fracture 20 18 (90,0) 1 (5,0) 1 (5,0) 

Secondary hemi prosthesis 19 16 (84,2) 0 (0,0) 3 (15,8) 

Reposition of luxated hip 25 22 (88,0) 0 (0,0) 3 (12,0) 

Removal of prosthesis 8 7 (87,5) 0 (0,0) 1 (12,5) 

Reoperation 5 3 (60,0) 0 (0,0) 2 (40,0) 

Wound revision 15 15 (100,0) 0 (0,0) 0 (0,0) 

Open exploration 1 1 (100,0) 0 (0,0) 0 (0,0) 

Rehabilitation in hospital 5 5 (100,0) 0 (0,0) 0 (0,0) 

Poli clinical control 165 147 (89,1) 3 (1,8) 15 (9,1) 

Surgery for hip infection 4 2 (50,0) 0 (0,0) 2 (50,0) 

Hospital days 1264 1140 (90,2) 8 (0,6) 116 (9,2) 

Patient died 16 14 (87,5) 1 (6,25) 1 (6,25) 

Total cost according to  

DRG weight (NOK) 
17.618.370 15.801.003 (89,7) 308.632 (1,8) 1.508.735 (8,6) 

 *Percent of total. N=229. 
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Analysis 

Univariate analysis 

A skewness and kurtosis test of normality of data indicated all variables except ASA score 

deviated strongly from the normal distribution. The p-values for the individual tests of 

skewness and kurtosis normality below 0,05 indicated they differed significantly from the 

normal distribution. We saw that based on skewness alone, age was not different from 

normal at the 5% level, but the kurtosis was. 

 

Table 6: Skewness and kurtosis test of assumption of normality of data distribution. 
Variable n Skewness Kurtosis adjusted X2 Significance (p=0,05) 

Gender 239 0,0002 . . . 

Age 239 0,0037 0,3514 8,51 0,0142 

LOS 239 0,0000 0,0000 . 0,0000 

ASA 215 0,1138 0,2495 3,86 0,1449 

Comorbidity 239 0,0000 0,0000 50,84 0,0000 

Surgery delay 230 0,0000 0,0000 . 0,0000 

Status in discharge 239 0,0000 0,0000 . 0,0000 

Admitted from 239 0,0000 0,0000 . 0,0000 

Discharged to 236 0,0000 0,0013 21,95 0,0000 

Remuneration ISF 239 0,0000 0,0000 . 0,0000 

*HϬ: distriďutioŶ is Ŷorŵal. ͞.͟ iŶdiĐate aŶ ͞absurdly large number͟ meaning the distribution is almost certainly not normal (stata.com, 
2015c). 

 

An sktest of normality of the consequences variables (table X) was also provided strong 

evidence of the non-normality of all variables. 

 

Bivariate analysis 

Based on the findings in the univariate analysis and the statistical data type of the variables 

to be tested, we used Wilcoxon rank-sum and Fischer’s exact tests for bivariate analysis of 

differences in central location of variables according to infection status superficial, deep or 

no infection.  

 

For the risk factor analysis of superficial infection, we found that the amount of hospital days 

(p=0,051) and hospital costs (p=0,069) were both borderline significant at the 5% level. 

Although they arguably are consequences of the index event, they also describe the index 

stay and are included here pending further discussion (ref. Discussion). A more liberal 20% 

level of alpha would have given results indicating statistically significant differences between 
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the groups in distribution of 90+ year olds (p=0,144), ASA score (p=0,125) and surgery delay 

(p=0,160). Tests were done for the other three age groups, returning P values of 1. 

 

Table 7: Characteristics of the index contact according to infection status superficial or none.  
Variable Superficial infection (n=3) No infection (n=230) Total P-value 

Gender (female=1) 2 151 153 1* 

Mean 0,667 0,657 
 

  

Standard deviation 0,577 0,476 

 

  

Min 0 0 

 

  

Max 1 1     

Age 90+ 2 54 56 0,144* 

Mean 0,667 0,235 
 

  

Standard deviation 0,577 0,425 

 

  

Min 0 0 

 

  

Max 1 1     

ASA score       0,125** 

Mean 3,000 2,304 
 

  

Standard deviation 0,000 0,986 

 

  

Min 3 0 

 

  

Max 3 4     

Comorbidites       0,799** 

Mean 1,666 2,174 
 

  

Standard deviation 1,155 2,008 

 

  

Min 1 0 

 

  

Max 3 11     

Hospital days 42 1752 1794 0,051** 

Mean 14,000 7,617 
 

  

Standard deviation 8,185 6,254 

 

  

Min 7 1 

 

  

Max 23 40     

Surgery delay (n=224) (n=3) (n=221)   0,160** 

Mean 8,8 21,5 
 

  

Standard deviation 3,9 25,4 

 

  

Min 4,4 0,3 

 

  

Max 12,1 195,1     

Admitted from home       1* 

Mean 1 (100%) 0,991 (99%) 
 

  

Standard deviation 0 0,093 

 

  

Min 1 0 

 

  

Max 1 1     

Costs according to 

DRG weight (NOK) 
517.766 36.841.147 

37.358.913 
0,069** 

Mean 172.589 160.179 
 

  

Standard deviation 0 27.674 

 

  

Min 172.589 126.666 

 

  

Max 172.589 311.038     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

 

Of the predictors of deep infection, none demonstrated a distribution statistically 

significantly different from the no infection group (table 8). However, an alpha value of 20% 

would indicate significant differences in gender (p=0,188) and ASA score (p=0,143). 
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Of the age groups, the distribution of 67-79 year olds demonstrated strongest evidence 

(p=0,613) of not being equal between the deep and no infection groups. A FisĐheƌ’s eǆaĐt 

test of the other age groups indicated no significant difference and a P value of 1. 

 

Table 8: Characteristics of the index contact according to infection status deep or none.  
Variable Deep infection (n=6) No infection (n=230) Total P-value 

Gender (female=1) 77 151 228 0,188* 

Mean 0,333 0,657 
 

  

Standard deviation 0,516 0,476 

 

  

Min 0 0 

 

  

Max 1 1     

Age 67-79 77 49 126 0,613* 

Mean 0,333 0,213 
 

  

Standard deviation 0,516 0,410 

 

  

Min 0 0 

 

  

Max 1 1     

ASA score       0,143** 

Mean 2,667 2,304 
 

  

Standard deviation 1,366 0,986 

 

  

Min 0 0 

 

  

Max 4 4     

Comorbidites       0,725** 

Mean 2,333 2,174 
 

  

Standard deviation 1,862 2,008 

 

  

Min 0 0 

 

  

Max 5 11     

Hospital days 1342 1752 3094 0,593** 

Mean 5,833 7,617 
 

  

Standard deviation 2,858 6,254 

 

  

Min 3 1 

 

  

Max 11 40     

Surgery delay (n=227) (n=6) (n=221)   0,950** 

Mean 16,9 21,5 
 

  

Standard deviation 8,1 25,4 

 

  

Min 1,4 0,3 

 

  

Max 24,6 195,1     

Admitted from home       1* 

Mean 1 (100%) 0,9913 (99%) 
 

  

Standard deviation 0 0,09305 

 

  

Min 1 0 

 

  

Max 1 1     

Costs according to 

DRG weight (NOK) 
981.114 36.841.170 

37.822.284 
0,625** 

Mean 163.519 160.179 
 

  

Standard deviation 14.575 27.674 

 

  

Min 154.765 126.666 

 

  

Max 189.468 311.038     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

 

Several of the consequence variables were indicated by the statistical tests to have 

significant differences in distribution according to infection status groups (tables 9 and 10). 

For the difference between deep and no infection these variables included (p) numbers of  
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Ŷeǁ heŵi pƌosthesis’ ;Ϭ,ϬϬϮͿ, ƌeopeƌatioŶs ;Ϭ,ϬϮϰͿ, out-patient controls (0,013) and 

surgeries for hip infection (0,015) (in spite of the coding error already mentioned). In 

addition, the difference in Ŷuŵďeƌs of seĐoŶdaƌǇ heŵi pƌosthesis’ ǁas sigŶifiĐaŶt at the 7% 

level. Had a 20% level of significance been applied, reposition of luxated hip (0,136) and 

hospital costs (0,192) would also have been considered significantly different. 

 

Table 9: Events experienced during one year after the index event according to infection 
status deep or no infection.  

Type of event Deep infection No infection Total P-value 

New primary hemi prosthesis 4 7 11 0,002* 

New hip fracture 1 18 19 1* 

Secondary hemi prosthesis 3 16 19 0,071* 

Reposition of luxated hip 3 22 25 0,136* 

Removal of prosthesis 1 7 8 0,35* 

Reoperation 2 3 5 0,024* 

Wound revision 0 15 15 1* 

Open exploration 0 1 1 1* 

Rehabilitation in hospital 0 5 5 1* 

Out patient control 15 147 162 0,013* 

Surgery for hip infection 2 2 4 0,015* 

Patient died 1 14 15 0,577* 

Hospital days 116 1140 1256 0,436** 

Mean 3,515 1,903     

Standard deviation 6,615 4,248   

 Min 0 0   

 Max 25 31     

Cost according to DRG  

weight (NOK) 1.508.735 15.801.003 17.309.738 0,192** 

Mean 45.719 26.379     

Standard deviation 90.529 54.795   

 Min 652 652   

 Max 311.038 311.038     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

 

For the corresponding analysis of the differences between the groups superficial and no 

infection, none of the variables examined were indicated statistically significant at the 5% 

level of confidence. However, applying a 20% level of alpha would have left us with  
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significant differences in the following procedures (p value): new primary hemi prosthesis 

(0,077), new hip fracture (0,175) out-patient controls (0,165) and patient deaths (0,140). 

 

Table 10: Events experienced during one year after the index event according to infection 
status superficial or no infection.  

Type of event Superficial infection No infection Total P-value 

New primary hemi prosthesis 1 7 8 0,077* 

New hip fracture 1 18 19 0,175* 

Secondary hemi prosthesis 0 16 16 1* 

Reposition of luxated hip 0 22 22 1* 

Removal of prosthesis 0 7 7 1* 

Reoperation 0 3 3 1* 

Wound revision 0 15 15 1* 

Open exploration 0 1 1 1* 

Rehabilitation in hospital 0 5 5 1* 

Out patient control 3 147 150 0,165* 

Surgery for hip infection 0 2 2 1* 

Patient died 1 14 15 0,140* 

Hospital days 8 1140 1148 0,479** 

Mean 1,333 1,903     

Standard deviation 1,506 4,248   

 Min 0 0   

 Max 3 31     

Cost according to  

DRG weight (NOK) 308.632 15.801.003 16.109.635 0,957** 

Mean 51.439 26.379     

Standard deviation 69.493 54.795   

 Min 693 652   

 Max 154.765 311.038     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

 

For the analysis of the difference in total number of deaths, hospital costs and hospital days 

according to infection status, the results for deep infection indicated a statistically significant 

difference both for hospital days (p=0,0371) and hospital costs (p=0,0038) (table 11). For the 

analysis of difference between those having had a superficial infection and those having had 

no infection, only total hospital costs was indicated significantly different between the 

groups (p=0,004) at the 5% level. Hospital days were indicated significant at the 20% level in 

this comparison (table X).  

 

The estimated total hospital costs of treating the 239 patients for the whole period was 

approximately NOK 56 million divided by a total number of episodes of care of 877, giving an 

average episode of care cost of approximately NOK 63.854 and an estimated average patient 

cost of NOK 234.136, disregarding infection status. 
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The deep infection group had statistically significantly more total hospital days (p=0,04) and 

total hospital costs (p=0,004) than the no infection group. 

 

Table 11: Total hospital days, hospital costs and deaths according to infection status deep or 
no infection.  

Type of event Deep infection No infection Total P-value 

Hospital days 151 2892 3043 0,037** 

Mean 25,167 12,574 

  Standard deviation 15,316 13,631 

  Min 4 1 

  Max 46 131 

  Cost according to DRG 

weight (NOK) 2.489.850 52.642.170 55.132.020 0,004** 

Mean 414.975 228.879 

  Standard deviation 198.742 137.725 

  Min 203.332 126.666 

  Max 714.906 1.153.685 

  Deaths 1 24 25  0,493* 

Mean 0,167 0,104     

Standard deviation 0,408 0,306 

  Min 0 0 

  Max 1 1     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

Those with superficial infection had statistically significantly higher total hospital costs than 

the no infection group (p=0,004). 

Table 12: Total hospital days, hospital costs and deaths according to infection status 
superficial or no infection. 

Type of event 

Superficial 

infection No infection Total P-value 

Hospital days 50 2892 2942 0,154** 

Mean 16,666 12,574 

  Standard deviation 7,095 13,631 

  Min 9 1 

  Max 23 131 

  Cost according to DRG 

weight (NOK) 826.397 52.642.170 53.468.567 0,004** 

Mean 275.466 228.879 

  Standard deviation 89.095 137.725 

  Min 172.589 126.666 

  Max 327.353 1.153.685 

  Deaths 1 24 25  0,290* 

Mean 0,333 0,104     

Standard deviation 0,577 0,306   

 Min 0 0   

 Max 1 1     

Wilcoxon rank-suŵ test;**Ϳ aŶd FisĐher’s eǆaĐt test;*Ϳ of the Ŷull hǇpothesis that tǁo iŶdepeŶdeŶt saŵples are froŵ populatioŶs ǁith the 
same distribution (stata.com, 2015b) (UCLA, 2015c). (Significance judged at the 5% level). 

We conducted univariate logistic regression analysis (Logit) on deep infection, using all 

predictor variables, but found no significant (p>0,05) coefficients and low (<0,1) pseudo R-

squared values. Gender exhibited an average of mean marginal partial effect estimate of -
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0,027 with a significance level of p=0,075, which was by far the closest to a statistically 

significant result found across all of our predictor variables during this analysis. 

 

Multivariate  

We wanted to find the influence of each of the predictor variables on the subsequent 

infection status of the patient sample and attempted first to fit an ordinary least squares 

model. 

 

In a correlation matrix Spearmans rank correlation coefficient estimates were all between 

0,4 and -1,0 indicating presence of linear relationships between several of the predictor 

variables. Such relationships cannot be described as strong for most of the variables, 

although a perfect correlation (Spearmans rank coefficient equal to -1,0) was (expectedly) 

found between the dummy variables describing where a patient was admitted from. 

Additionally, a significant association was found between age groups 67-79 and 80-89 and 

between age groups 80-89 and 90+ (both coefficients equal to -0,5) (Newbold et al., 2013). 

For all other variable combinations correlation coefficients were less than the critical limit. 

The results were supported by the VIF factor and tolerance value estimates, all well outside 

the range to suspect multicollinearity. The by far most extreme VIF factor and tolerance 

value found was 6,05 and 0,17, respectively. 

 

A link test of model specification returned a p value of 0,001 relating to the explanatory 

power of the squared prediction of our model. Link test thus rejected the hypothesis of 

correct specification of the model at a 99,9% level of confidence. 

 

A Shapiro-Wilk test on the normality of the error terms returned a p-value of <0,000, 

rejecting the hypothesis of normality. 

 

A Breusch-Pagan/Cook-Weisberg test of homogeneity of the residuals of the error terms 

gave a p value of 0,000, indicating the presence of heteroscedasticity at above a 99,9% level 

of confidence. 
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Based on the results from the link test, the Shapiro-Wilk test and the Breusch-Pagan/Cook-

Weisberg test in addition to an R-squared of 0,020 we concluded the OLS-model was a poor 

choice to model our outcome variable, and moved on to the LPM, Probit and Logit 

regression models. However, none of these models resulted in goodness-of-fit values 

indicating satisfactory levels of outcome explanation. The R-squared estimate of the LPM 

was 0,037 and pseudo R-squares for the Logit and Probit models were 0,153 and 0,155, 

respectively. For the LPM a link test returned a p-value of 0,415, which served to reject the 

hypothesis of correct specification of this model. Furthermore, none of the models returned 

statistically significant coefficient estimates for any of the predictor variables (for the OR 

coefficient estimates of the logistic regression, see tables 13 and 14). For this reason the 

results of these and the OLS model are not presented. 

 

However, we present estimates of the unadjusted odds ratios (ref. Methods section: 

Bivariate analysis) and adjusted odds ratios related to having a deep infection for our 

predictor variables. We did bivariate and multivariate logistic regression to attain point 

estimates and adjusted point estimates, respectively. We found that the estimates had wide 

95% confidence intervals and where insignificant at the 5% level and the model had poor 

explanatory power (table 13). Gender would have been significant at the 20% level of 

significance for both estimates (OR = 0,26, adjusted OR = 0,27). 
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Table 13: Predictors of deep infection by characteristics of the index stay. 

Variable 

Point estimate of OR 

(n=239) 95% conf. int. p 

Point estimate of 

adjusted OR (n=125) 95% conf. int. p 

Gender (0=male, 

1=female) 
0,261 0,047 1,458 0,126 0,270 0,042 1,715 0,165 

Age group                 

45-66 1 (ref.) . . . 1**       

67-79 1,878 0,334 10,552 0,474 5,039 0,373 68,133 0,224 

80-89 1,080 0,214 5,464 0,926 2,208 0,204 23,913 0,515 

90+ 0,632 0,072 5,525 0,678 1*       

Not admitted from 

home (n=237) 
1 . . . 1*,**       

ASA score   
  

    
  

  

1 1 . . . 1**       

2 1 . . . 1**       

3 2,905 0,522 16,182 0,224 0,489 0,039 6,123 0,579 

4 3,129 0,342 28,633 0,313 1**    

Comorbidites 1,041 0,707 1,532 0,840 0,890 0,524 1,513 0,667 

Surgery delay (hours) 

(n=230) 
0,988 0,934 1,044 0,665 0,981 0,915 1,051 0,580 

Hospital days 0,922 0,739 1,151 0,474 0,912 0,740 1,125 0,391 

The Pseudo R-squared of the multivariate logistic model was 0,114. 
* omitted due to collinearity 
**complete separation, 130 observations not used 

 

We did the same comparison of predictors according to infection status superficial or none, 

and found similar results (table 14). No predictors were statistically significant at the 5 % 

level, although several would have been so at the 20 % level. Hospital days and the 

comorbidity count both displayed borderline significant results after adjustment, with 

adjusted odds ratios of 1,8 and 0,05 and p-values of 0,056 and 0,078, respectively. 

 

Table 14: Predictors of superficial infection by characteristics of the index stay.  

Variable 

Point estimate of 

OR (n=239) 95% conf. int. p 

Point estimate of 

adjusted OR (n=76) 95% conf. int. p 

Gender (0=male, 

1=female) 
1,085 0,097 12,144 0,947 771,873 0,142 4202857,0 0,130 

Age group                 

45-66 1 (ref.)       1*       

67-79 1 . . . 1*       

80-89 0,535 0,048 5,981 0,612 0,086 0,002 3,376 0,190 

90+ 6,582 0,586 73,970 0,127 1*       

Not admitted from 

home 
1 . . . 1*       

ASA score   
  

    
  

  

1 1 . . . 1**       

2 1 . . . 1**       

3 1 . . . 1*       

4 1 . . . 1**       

Comorbidites 0,854 0,426 1,716 0,658 0,238 0,048 1,176 0,078 

Surgery delay (hours) 

(n=230) 
0,887 0,738 1,067 0,203 0,784 0,496 1,238 0,296 

Hospital days 1,086 0,982 1,201 0,109 1,771 0,000 8,905 0,056 

The Pseudo R-squared of the multivariate logistic model was 0,516. 
* omitted due to collinearity 
**complete separation, 154 observations not used 
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Economic Model 

The incremental cost/effectiveness ratio (ICER) reports the trade-off between cost and effect 

for the therapy with the larger effect estimate in the denominator, here the SSI prevention 

intervention (Glick et al., 2007). The intervention was a dominant strategy with cost savings 

of NOK11,060 per patient and QALY gains of 0.02. The model predicted the strategies to 

pƌoduĐe the saŵe aŵouŶt of QALY’s iŶ seǀeƌal of the iteƌatioŶs. This left us ǁith a 

considerable amount of zero values for incremental cost/effectiveness ratio estimates. The 

associated credible interval estimate had a wide range between its lower and upper limit, 

and did contain 0.  

 

Table 15: Incremental cost/effectiveness ratio (ICER) of the new intervention compared to the 

old (no intervention) with 95% confidence interval. 

Strategy Total cost Incremental cost Total QALY Incremental QALY ICER 95 % CI 

No intervention 243,096   0.79         

Intervention 232,035 -11,060 0.81 0.02 -587,105 -2,436,478 1,346,262 
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In the cost-effectiveness plane (figure 7), each of the 1000 plots represent a possible 

combination of incremental costs and effects given the uncertainty in the economic model 

parameters. The red line indicates the Norwegian Directorate of Health stated willingness-

to-pay (WTP) for a QALY, in 2012 equal to NOK588.000 (Helsedirektoratet, 2012). There was 

considerable variation across iterations of the Monte Carlo simulation with outcomes in all 

four quadrants of the cost-effectiveness plane, however primarily in the south-east and -

west quadrants, indicating dominance of the new strategy over the old. The lines indicating 

the 95% confidence interval upper and lower bounds indicate that the difference in cost was 

not significant, and the difference in effect was significant. 

 

Figure 7: Cost-effectiveness plane of joint incremental cost/effectiveness points of 1000 

Monte Carlo simulations, according to mode of SSI prevention with the ICER point estimate 

(black line), the threshold value of willingness-to-pay (WTP) at NOK588.000 (red line), and 

upper and lower bounds of the ICER estimate confidence interval (dashed lines). 
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The cost-effectiveness acceptability curve (CEAC) includes indicators of the ranges of the 

point estimates standard errors. As the curves of the strategies hardly differ for levels of 

WTP above NOK0 (table 16), oŶlǇ the ͞Ŷo iŶteƌǀeŶtioŶ͟ strategy is visible in figure 8. 

 

 

Figure 8: Cost-effectiveness acceptability curve (CEAC). Probability of each of the strategies 

being cost effective according to levels of willingsness-to-pay. 95% confidence interval 

upper(0,975) and lower(0,025) bounds in dashed lines. 

 

Table 16: Probabilities of strategies being cost-effective according to willingness-to-pay 

(thousands). 

Strategy 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 800 850 900 

Intervention 0,000 0,009 0,072 0,187 0,335 0,495 0,618 0,723 0,801 0,857 0,898 0,928 0,950 0,963 0,973 0,987 0,993 0,996 

No 

intervention 0,000 0,008 0,071 0,186 0,334 0,494 0,617 0,722 0,800 0,856 0,897 0,927 0,949 0,962 0,972 0,986 0,992 0,995 
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The cost-effectiveness acceptability frontier (CEAF) indicate that the new intervention was 

more likely to be cost-effective than the old strategy even at a threshold value of WTP for a 

QALY of NOK0, and certainly so at the Norwegian Directorate of Health defined threshold 

value of NOK588.000 (Helsedirektoratet, 2012) (figure 9). However, the probability 

increment at which it was, was small (table 16). 

 

 

Figure 9: Cost effectiveness acceptability frontier (CEAF).  
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The expected value of perfect information (EVPI) can be interpreted as the expected cost of 

uncertainty, or expected opportunity loss, as perfect information can eliminate the 

possibility of making the wrong decision. The EVPI through this logic places a bound on the 

value of conducting further research. The EVPI curve is generally at its highest where we are 

most uncertain about whether to adopt or reject the intervention strategy based on current 

existing evidence (Briggs et al., 2006). At a threshold WTP of NOK 588.000 the incremental 

EVPI was NOK849. 

  

Figure 10: Incremental expected value of perfect information (EVPI) at different levels of 
willingness-to-pay (WTP). The Norwegian cost-effectiveness threshold of NOK588.000 is 
indicated with a red line. 
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7. Discussion 

Principal findings 

We found no significant differences in predictor variable distribution between the deep and 

superficial groups as opposed to in the no intervention group. For the comparison of the 

deep infection and no infection groups, the significantly differently distributed clinical events 

were getting a new primary HA, having a reoperation, out-patient control and having surgery 

for hip infection. Similar results were not found in the comparison of the clinical 

consequences in the superficial and no infection group. We found significant differences 

between the groups in total hospital costs, and between the deep and no infection group in 

total hospital days. In the economic model, the new intervention strategy dominated the 

old, although the results were not statistically significant after incorporating second order 

uncertainty. 

Strengths of the study 

In the present study, we were able to use detailed information through patient level data to 

assess both risk factors and clinical and economic consequences of SSI in a local hospital 

setting in Norway. To the (limited) extent of our knowledge this has not been done by others 

before us, and the study results may thus provide the foundation for future exploration into 

this area of SSI research in Norway. 

 

The present study used the potential to analyze all events one year post the index stay as 

consequences of the index stay, as contrasted by the methodology of the NOIS (H. L. Lower 

et al., 2013). This allowed us to look at the various infection statuses as risk factors of future 

clinical and economic consequences and find that there were more of certain events in a 

group of infected people than in a group of none infected. 

 

We were able to use QALY weights as an outcome measure. Although estimates were based 

on previous foreign research, the QALY weights gave us the opportunity to investigate 

cost/effectiveness within the cost-benefit analysis framework, thus facilitating comparison 

of our results across a number of domains and therapeutic areas, and additionally to be able 

to consider our results in the light of generally understood ranges of WTP for a unit of 

outcome, strengthening the generalizability of our results. 
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A probabilistic sensitivity analysis of our economic model was performed to account for 

second order uncertainty, and the results were presented in a cost effectiveness plane 

(figure 7). We also presented results in a CEAC (figure 8) and a CEAF (figure 9). The input 

parameter point estimates with standard deviations and choice of probability distribution 

functions to represent them were presented in table 3. These measures served to present 

uncertainty and improve transparency. 

Weaknesses of the study 

We used hospital costs as estimated through the DRG system for our analysis. This can be 

considered a weakness of the study as using financial costs to represent the costs may lead 

to erroneous conclusions (Graves, 2004).  In Norway in 2008, main diagnosis was miscoded 

in 36% of the stays surveyed, against 38% in 2003. As a result of the revision, DRG payout 

sums for all stays totally declined by 5,24% against 5,14% in 2003. Much of the reduction in 

2008 was due to regrouping of complicated to uncomplicated DRGs. A complicated DRG 

provide higher payments to the health providers. Weak code quality thus contribute to 

reduce confidence that patient statistics can be used as a basis for planning, management 

and evaluation of health services locally and nationally, and restricts the ability to use 

patient statistics for medical research (Riksrevisjonen, 2008). We did not consider and 

thereby did not control for coding practice in the present study. This implies that cost 

estimates in our results may be upward biased. Whether or not such a bias would influence 

the significance of differences in costs between groups is questionable, as the same bias can 

be assumed to have influenced all estimates. 

 

A valid concern that could be raised in the context of the current economic model is the lack 

of comparison of the new intervention strategy to all potential alternative strategies, as is 

good practice in health economic evaluation (Glick et al., 2007). We could have adopted a 

third strategy, known cost/effective in other comparisons, to the comparison to contrast the 

findings we made during our study, and indirectly position the current strategy in relation to 

those in the other comparison (Glick et al., 2007). Such course of action might have 

improved the generalizability of our results. 
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When treatment benefits are large, all else equal, it is easier to demonstrate 

cost/effectiveness, and vice versa (Glick et al., 2007). Thus, the magnitude of the observed 

benefits plays a role in decision advice to be concluded upon given the economic model 

results. Ideally we would like all our input data to be collected from at least a country 

specific setting. As we were unable to find national QALY estimates for our infection statuses 

and as we did not have time to conduct a survey, we had to look elsewhere. Our QALY 

estimates where attained from studies done in what seemed like similar settings as the 

present study. This might have impaired the generalizability of our results. 

 

A potential critique of our study design is the adoption and modelling of a one year follow-

up of our sample. It is often presumed that because of the presumption that 

cost/effectiveness ratios are either always improving or worsening, life-time projections of 

therapies are necessary to understand the impact of medical therapies. This is, however, not 

necessarily the case, as by the end of a one year trial, the ratio may already be 

asymptotically approaching a long term cost/effectiveness ratio (Glick et al., 2007). 

 

As there were ambiguities as to the nature of the content and levels of implication of the 

multimodal SSI intervention strategy over the period of data gathering and analysis, we 

chose to assume full implementation and adherence to the three pillars of the intervention 

strategy outliŶed iŶ the seĐtioŶ ͞The iŶteƌǀeŶtioŶ͟, fƌoŵ “epteŵďeƌ ϮϬϭϬ uŶtil DeĐeŵďeƌ 

2014. An incremental cost of such an intervention was defined and QALY and one year 

hospital cost estimates attached to the endpoints (ref. Methods: Economic model). This 

assumption contributed towards increasing the parameter and structural uncertainties of 

our economic model, and is likely to have contributed to underestimation of the 

intervention costs. 

 

Results in relation to other studies 

From previous research (ref. section on theoretical background) we have seen that the 

duration of surgery might be an important predictor of SSI in the patient group in question. 

No variable indicating surgery duration was available in this dataset. Previous research also 

indicates obesity is a predictor of SSI in this patient group, but again we had no information. 
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Previous research indicates increased risk of SSI with age less than 60 and a surgery waiting 

time of above 24 hours (Dale et al., 2011; Westberg et al., 2013). We did not find any 

correlations between surgery waiting times and presence of infection. In fact, we found that 

the mean waiting times were lower in the two infection groups than overall (=21,2 hours) 

and in the no infection group. We further found that none of our SSI patients where below 

the age of 67. 

 

We could verify the presence of more revision surgeries and reoperations in the infected 

patient sample than in the one without infection, as stated in previous research (NHBR, 

2013).  

 

Plowman et al (Plowman et al., 2001) claims SSI cause 2,5 times longer hospital stay as 

opposed to no infection. We found that for the totality of one year, those with deep 

infection had 2 times the hospital days of none infected, and that those with superficial 

infection had 2 times longer index stays than those without.  

 

Our cost estimates should be compared to estimates found in other studies. Hektoen 

(Hektoen, 2014) estimated an average one year societal cost of one hip fracture in an elderly 

population at NOK542.000, disregarding infection status. Our estimate of hospital costs was 

NOK234.000. Merollini and colleges (Merollini et al., 2013) estimate AUD3.909 

(=NOK24.000) in health sector costs per QALY could be saved by preventing SSI, and Jenks 

and colleges (Jenks et al., 2014) estimated equivalent savings over a two year period at 

GBP3.214 (=NOK38.000). We estimated a cost saving of NOK11,060 per patient and a gain of 

0.02 QALY per patient using the intervention, equivalent to savings of NOK587.105 per QALY, 

although the ICER in the context of such dominance is formally irrelevant as a decision 

criteria (Glick et al., 2007). In any case our results indicated dominance of the intervention 

over the old strategy. This is similar to what Merollini and colleges discovered in their study 

on SSI prevention in relation to THA (Merollini et al., 2013). Plowman and colleges (Plowman 

et al., 2001) estiŵated hospital seĐtoƌ Đosts of HAI’s at ϯ tiŵes that of Ŷo iŶfeĐtioŶ. The 

additional costs of SSI in our estimates where far from the estimates made by Plowman and 
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colleges, at a 1,8 times increase in the case of deep infection, whereas the superficial 

infection group had a 1,2 times higher average cost than the no infection group.  

Generalizability 

It is the opinion of the researchers that the study sample represents the population in 

distribution of demographics and it can thus be argued to be a representative sample of the 

patient population most likely to use the therapies evaluated. However, under conditions 

such as differing population demographics, practice patterns and prizes of medical services 

and supplies, limitations as to the extent of applicability of the results might be present. 

Implications for decision-makers 

We estimated the expected value of perfect information (EVPI) at different thresholds of 

WTP for a QALY (figure 10). At the guiding threshold defined by the Norwegian Directorate 

of Health in 2012 of NOK588.000, the EVPI was NOK849 per patient. A conservative estimate 

of 100 annual cases at Bærum hospital would thus suggest an EVPI of 84.900 per year, and 

this value is to be interpreted as an upper bound on the value of conducting further research 

at this institution, given these assumptions. 

We have further shown and thereby confirmed statements in previous research about the 

statistically significant increase in one year hospital costs and number of hospital days of 

patients attaining SSI. The fact that there seem to be increased costs and various clinical 

consequences associated with SSI, and thus an economic argument for SSI incidence 

reduction, should prompt decision-makers to further pursue intervention strategies to 

reduce the incidence of such infections.  

 

Several tests and variables included in the regression models were indicated borderline 

significant and significant within a 20% level of alpha. When we reject the null hypothesis 

(usually that a value or difference is equal to 0) we usually conclude there is strong evidence 

to support our conclusion. Choosing a higher level of alpha for our significance level would 

increase the probability of rejecting a true null hypothesis, or committing a type 1 error, and 

at the same time decrease the probability of rejecting a false null hypothesis when the 

alternative is true, or a type 2 error.  When we fail to reject the null hypothesis we know that 

either the null hypothesis is true or that we have committed a type 2 error. If the alternative 
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hypothesis is true, the probability that a test result or a regression coefficient lie in the non-

rejection zone of the null hypothesis (equal to the type 2 error) is 

B=P(z<(x-�ሻ/ሺ �√�ሻሻ     (3) 

and 

    Power = 1-B     (4) 

When testing for the true statue of reality we usually want a small probability of type 2 

error, and conversely a large power. From equations 3 and 4, three things are clear: all else 

being equal, the farther the true mean is from the hypothesized mean; the smaller the 

population variance; and the larger the sample size, the larger is the power (Newbold et al., 

2013). The sample size (N=239), and the unbalanced distribution of patients in the groups 

(deep infection=6, superficial infection=3 and no infection=230) might have been inadequate 

in terms of providing a high enough power to give us results within the 5% level of alpha, 

and can thus be argued to be a weakness of our study. Had we employed a 20% level of 

alpha for our decision rule, many more predictors would have been identified given the 

dataset.  

 

The economic model results fell into a category of findings characterized by the confidence 

interval upper and lower bounds excluding the cost-effectiveness plane Y-axis, and 

equivalently when the CEAC intersects horizontal lines drawn at both 0,025 and 0,975 on the 

CEAC Y-axis.  This pattern of findings includes three ranges of WTP, each pointing towards a 

different conclusion about the underlying strategies. Increasing from negative infinity is the 

range of WTP where we can be confident the more effective therapy is not good value, 

decreasing from positive infinity is the range of WTP where we can be confident the more 

effective strategy is good value, and the range in between where we cannot be certain the 

two therapies differ. The boundaries of these ranges are given by the 95% confidence 

interval of the ICER. Thus, for any WTP above our identified upper bound, we can be 

confident the new strategy is good value, but for the range of WTP below it, we cannot. Had 

the confidence interval contained only negative values, we could be certain the strategy with 

the higher effect estimate dominated the other strategy. As our interval contains 0, we 
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cannot. Finally, had we wanted to explore other levels of confidence we would have 

calculated new confidence intervals. This could have been applicable in settings where 

decision makers where interested in other levels of confidence when making decisions (ref. 

discussion of power above) (Glick et al., 2007). However, as we were confident the new 

strategy yielded a higher QALY score and the point estimate of the incremental costs of the 

intervention represented a cost saving, we would still recommend the new strategy as 

opposed to the old. 

 

Limitations 

This study has a number of limitations that should be addressed.  

 

Results of model based economic evaluations are based on a simplification of reality thought 

to represent true patient pathways. As the results are highly dependent on the structure of 

the model and its input variables, misspecification of the model could bias the results. 

 

In this dataset the timing of infection detection was not registered. Thus the infection status 

can only be used to group patients according to those who have had an infection and those 

who have not, and according to severity of infection. As a consequence of this, the risk 

factor, consequences and economic analysis would be based on the first occurrence of hip 

fracture with subsequent treatment with HA the patients experienced (denominated the 

index event) within the period the data were extracted. This implies that although a patient 

might experience two primary HA procedures resulting from hip fractures within the one 

year follow up, and both secondary HA and reoperation during this period, all subsequent 

events after the index event where considered consequences of the index event, i.e. not 

imposing risk of SSI in themselves. It also implies that it is impossible to know whether or not 

length of stay (=hospital days) and hospital costs of the index stay are to be considered 

consequences or risk factors of infection, given this data. 

 

Additionally, we were limited by the lack of variables informing factors indicated by future 

research to be significant predictors of SSI in this patient group, as discussed above. 
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Consequences of increased spread of antibiotic resistant organisms as a consequence of 

increased antibiotics use was not considered in the present study. The issue is interesting, 

and should be the focus of future research. With a backdrop of increasing incidences of 

antibiotic resistant infections internationally (ECDC, 2014), we believe risk factor targeting 

ŵeasuƌes is the ǁaǇ to go foƌ the futuƌe ƌatheƌ thaŶ aŶ ͞all foƌ oŶe͟ pƌophǇlaĐtiĐ appƌoaĐh. 

 

We did not define opportunity costs and we did not micro cost procedures in the present 

study. Depending on the design of the remuneration system and the profitability of the 

procedure performed, individual institutions may or may not be financially better off from 

pƌeǀeŶtiŶg ““I iŶ the shoƌt teƌŵ. With the ͞IŶŶsatsstǇƌt fiŶaŶsieƌiŶg͟ ;I“FͿ sǇsteŵ of fuŶdiŶg 

in Norway (activity based funding), which is based on classifying patient treatments in 

diagnosis related groups (DRG) - where the level of remuneration is defined as the 

population wide average cost of treating a certain DRG - on the institution level there will 

inherently be a wide span in actual resource use in either direction of the mean 

(Helsedirektoratet, 2014), leaving potential for both profits and losses related to specific 

procedures. A further discussion into the incentive structures created by the remuneration 

systems faced by health care institutions is beyond the scope of this thesis. It is worth 

noting, however, that the societal benefits of improved HAI prevention in the hospital 

include not only the immediate health benefits and cost reductions of infection prevention 

examined by this study, but also the long-term benefits of improved survival and the value of 

future health care expenditures (Dick et al., 2015). When adopting a narrow perspective as 

has been done in the present study, economic analysis may very well underestimate the 

social benefits of infection-control programs (Graves, 2004).  

 

Costs of the intervention were based on expert opinion and the study was a cohort study, 

not a randomized controlled trial, which limits the strength of the results. Scenario analysis 

of cases with different cost estimates could illuminate this uncertainty but was not 

conducted due to time restrictions. 

 

As the study is written as a master thesis, rather sturdy limits on duration of the work period 

needed to be met, limiting the depth of analysis, economic model development and 
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parameter specification and the ability to further explore uncertainties surrounding the 

coding practice and intervention content. 

Future research 

As the incremental EVPI indicated at a threshold WTP of NOK588.000 was NOK849 there 

might be considerable potential for harvesting the value of future research into this field, 

considering the relatively large amount of HA treated hip fractures in Norway. 

 

An alternative approach to our poorly powered regression analyses and hypothesis testing is 

the case-control method. Here, infected and non-infected patients can be matched on the 

basis of factors thought to influence the outcome variable of interest, and attributing the 

difference in the outcome to infection status. The approach is attractive in light of the failure 

of this and other regression based cohort studies to consistently identify risk factors of SSI. 

 

The DRG approximations to costs may be flawed (ref. discussion above). We would therefore 

recommend future research to attain procedure specific cost estimates based on resource 

use. Coupled with actual patient QALY scores for the various infection statuses, although the 

present study did demonstrate significant differences between the strategies in their 

effectiveness, this would further the accuracy of the cost and effect estimates. 

 

Anderson with colleges seemed to give the same recommendations as the Norwegian 

Directorate of Health (NDH) in regards to antibiotic (antimicrobial) prophylaxis (Anderson et 

al., 2014; Helsedirektoratet, 2013).Regarding the judgment required by Anderson on 

whether or not prophylaxis is indicated, NDH claims that in relation to prosthesis procedures 

the risk of infection is high, indicating prophylaxis in all cases (Helsedirektoratet, 2013). As 

was mentioned in the theoretical background, the observed trend of transferring from 

ĐeŵeŶted to uŶĐeŵeŶted THA’“ ǁas ďased oŶ the assuŵptioŶ that this ǁould decrease the 

embolization incidence (NHBR, 2013). As the intervention at Bærum hospital turned the 

otheƌ ǁaǇ iŶ theiƌ HA pƌoĐeduƌes, toǁaƌds usiŶg ĐeŵeŶted HA’s oŶlǇ, aŶ aŶalǇsis iŶto the 

effects in terms of changes in embolization incidence would have been interesting. We did 

not have such information available, neither did we have time to pursue such adverse 

effects measures of the intervention. Further examination into costs, effectiveness and 
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adverse events for prevention measures discussed in the literature is possible, as the field is 

littered with interesting studies of effectiveness of such measures. An overview of the 

present status of the field is provided by Anderson and colleges (Anderson et al., 2014). 

 

A major drawback of the present study was the fact that at the time of analysis and during 

the time of data gathering, a varying degree of the intervention measures (previously 

discussed and presented) had already been implemented. Some were being implemented 

and some were not implemented. The assumption of full compliance with all the measures 

disĐussed iŶ the ͞The iŶteƌǀeŶtioŶ͟ seĐtioŶ, staƌtiŶg “epteŵďeƌ ϮϬϭϬ is thus ƋuestioŶaďle. 

Future research would benefit from attaining a clearly defined list of intervention measures 

implemented and at what time, in order to strengthen the accuracy and applicability of the 

results. 
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8. Conclusion 

This study is to our knowledge the first study to use patient level data to investigate the 

cost-effectiveness of an SSI intervention strategy in a local hospital setting in Norway. 

Through this studǇ ǁe added ŵoƌe ǁeight to the Đlaiŵ that ““I’s aĐĐuŵulate ŵoƌe hospital 

costs than infection free patieŶt pathǁaǇs, aŶd that ““I’s ŵaǇ lead to adǀeƌse clinical 

consequences. An intervention strategy to prevent SSI in this patient population does not 

have to be costly to be effective. We found that a cost saving intervention generated more 

QALY’s thaŶ the alteƌŶatiǀe. Theƌefoƌe it would be our perception that Bærum hospital, and 

other local hospitals like it, will be better off financially and will provide better quality 

services if their HA procedures include an intervention strategy like the one discussed in the 

present study. With a backdrop of increasing incidence of antibiotic resistant organisms and 

antibiotics use, however, more work into illuminating risk factors of SSI is warranted as the 

facilitating mechanisms of such infections can only be said to be poorly understood today.  
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