
Error Analysis in Open-Domain
Question Answering Systems

Endre Aalrust Kristoffersen
Master’s Thesis Spring 2015

Error Analysis in Open-Domain Question
Answering Systems

Endre Aalrust Kristoffersen

15th May 2015

ii

Contents

I Introduction 1

1 Problem statement 3
1.1 Results . 4
1.2 Thesis outline . 4

2 Background 7
2.1 A brief history of question answering 7
2.2 Modern question answering systems 9
2.3 Information retrieval . 11
2.4 Typical linguistic methods in question answering 13
2.5 Data sets . 16
2.6 Evaluation . 17
2.7 Error analysis . 19

II Building a question answering system 21

3 Data set 23
3.1 Data set properties . 23
3.2 Statistical analysis . 26

4 System architecture and implementation 29
4.1 Data types . 29
4.2 Normalisation . 30
4.3 Majority baseline . 31
4.4 Simple baseline . 32
4.5 Question analysis . 33
4.6 Sentence retrieval . 34
4.7 Answer extraction . 35
4.8 Answer evaluation . 36

III Error analysis 39

5 Manual development cycle 41
5.1 Error taxonomy . 41
5.2 Error analysis . 44
5.3 Analysing our baseline system 45

iii

5.4 Improving sentence retrieval . 50
5.5 In-depth error analysis . 56
5.6 A new system version . 61

6 Automating error analysis 65
6.1 Methods for error analysis . 65
6.2 Automating error analysis methods 67
6.3 Implementation and categories in automatic error analysis . . 68
6.4 Comparison of results from manual and automatic error

analysis . 69
6.5 Analysis of results from the different error analyses 71
6.6 Data set annotation . 72
6.7 Expanding categories for automatic error analysis 77

7 Semi-automatic development cycle 79
7.1 Data set processing . 79
7.2 Falling back to nouns in case of lacking named entity tags . . 82
7.3 Improvements in sentence retriever 83
7.4 Improvements in answer extraction 89
7.5 Impact of automatic error analysis on development cycle . . . 94
7.6 A new system version . 94

8 Conclusion 97
8.1 Data set . 97
8.2 System results . 98
8.3 Error analysis . 99
8.4 Future work . 99

IV Appendices 101

A Detailed tables of categories of questions 103

B Question typer rules and categories 109

C List of stop words used in stop word removal 111

iv

List of Figures

2.1 A typical question answering system. 10
2.2 Example dependency graph, with words tagged. 14

4.1 A typical question answering system, repeated from Figure 2.1. 34

5.1 The workflow of our manual system development cycle. 45
5.2 Impact of retrieving n sentences on accuracy for the question

sets from 2008. 53
5.3 Impact of retrieving n sentences on accuracy for the question

sets from 2009. 54
5.4 Impact of retrieving n sentences on accuracy for the question

sets from 2010. 55

7.1 The workflow of our automatic system development cycle.
Yellow boxes are new or changed features in the sentence
retriever module, green boxes are new features in the answer
extraction module. 80

7.2 A person who makes or repairs violins is called a luthier , or
simply a violin maker . 92

v

vi

List of Tables

3.1 Summary of our data sets. 25
3.2 Number of yes/no questions compared to the total number

of questions across all sets. 26
3.3 Number of gold answers where the answer is a substring of

the document (disregarding yes/no questions) 27
3.4 Accuracy of a theoretical question answering system on our

data set. 28

4.1 Correctly answered questions by the majority baseline 31
4.2 Precision and recall of the question typer on yes/no questions. 32
4.3 Correctly answered questions with the simple baseline. 33
4.4 Answer types and word types . 36

5.1 Accuracy across all three years of dev1 sets. 46
5.2 Summary of the different expected answer types according

to our question typer, and performance of simple baseline
on these. 47

5.3 Types and number of errors according to manual error
analysis on development set 1 across all three years. 48

5.4 Impact of answering yes to all the yes/no questions 49
5.5 Summary of incorrect answer types over all dev1 sets. 50
5.6 Accuracy on dev1 sets across all years, with and without n-

gram sentence retriever . 55
5.7 Categories of errors we made when the correct sentence was

retrieved . 56
5.8 Number of gold answers that are only one word, across all

sets. The numbers in parentheses are for the sets with yes/no
questions removed. 60

5.9 Difference in accuracy on dev1 sets, before and after first
round of error analysis and fixing. 62

5.10 Errors, before and after manual development cycle. 62
5.11 Detailed errors, before and after manual development cycle. . 62

6.1 Error types found manually at the end of manual develop-
ment cycle. Categories in italics are subcategories of «Wrong
answer retrieved from sentences». 70

6.2 Error types found automatically, across dev1 sets. 71
6.3 Confusion matrix of question typer performance. 73

vii

6.4 Automatic error analysis of the six questions with incorrect
answer types. Categories with no occurrences in either run
have been removed. 74

6.5 Automatic error analysis of results from three runs on a
set of 29 question-answer pairs. «Normal» is with no
annotation, «Gold» is with the gold sentences replaced
with the annotated sentences and «Retrieved» is with the
retrieved sentences replaced with the annotated sentences. . . 76

7.1 Size of dev2 and dev3 sets, for all years, before and after
all unanswerable questions have been removed. Percentages
are of size of the full sets. 81

7.2 Accuracy for system version 2.0 on full and reduced data sets. 81
7.3 Total accuracy of our system, before and after fallback to

nouns have been added. 82
7.4 Automatic error analysis of system with and without fallback

to nouns. 83
7.5 Overall accuracy, before and after stop words have been

removed. 85
7.6 Automatic error analysis, before and after stop words have

been removed. 86
7.7 Overall accuracy, before and after mixed algorithms have

been implemented. 87
7.8 Automatic error analysis, before and after mixed methods

have been implemented. 88
7.9 Percentage of sentences that include a gold sentence, for 1

to 5 retrieved sentences, with different features added to
sentence retriever. 89

7.10 Mean position of first gold sentence in retrieved sentences,
ignoring positions greater than 10. 90

7.11 Overall accuracy, with and without phrase extraction. 93
7.12 Automatic error analysis of system, with and without phrase

extraction. 93
7.13 Comparison of accuracy from system version 2.0 and 3.0, for

reduced and full data sets. 95

8.1 Comparison of the overall accuracy of the different system
versions on the test set. 98

A.1 Categories and number of questions in 2008 data set. 104
A.2 Categories and number of questions in 2009 data set. 105
A.3 Categories and number of questions in 2010 data set. 106

viii

Part I

Introduction

1

Chapter 1

Problem statement

With the explosive growth of available information in recent years, espe-
cially on the Internet, humans need new tools to help them sift through
collections of information and find what they are looking for. The most
common way people find information is with search queries, which contain
some key words or phrases related to the information they want to find. For
example, if someone wanted to find the name of the capital of Sweden, the
search query would likely be «Sweden capital».

However, «Sweden capital» is a phrase meant only for the search
engine. A human talking to another human would never utter this phrase
if they wanted information. Rather, the query would be posed in natural
language, for example «What is the capital of Sweden?».

In addition, the result from a search engine is usually a collection of
documents, from which the user must find the answer themselves, whereas
an answer from a human would be concise and to the point. Question
answering systems attempt to provide an additional layer between the user
and the search engine which can search through a specialised document
collection or other type of semi-structured knowledge base. They are
capable of transforming a question into a search query but also of taking the
information from the search engine and narrow the collection of documents
down to a short answer, in order to allow users to ask questions in natural
language and receive an answer in natural language.

Modern question answering systems combine many different tech-
niques and algorithms, which interact with each other in an attempt to find
a short and concise answer. Because each technique only contributes a part
of the answer, getting an overview of how well suited each technique is to
help answering a question can be very hard.

The most common way of evaluating the performance of a question
answering system is by overall performance, meaning that we only evaluate
by the quality of the answer. This is the easiest evaluation metric to
understand, and the only metric an end user is likely to care about.

Another, more detailed evaluation method is error analysis. Rather
than evaluating only the end result – the answer – error analysis evaluates
each individual part of the system to gain a deeper understanding of
how each part of the system performs, and where each error first occurs.

3

Because modern question answering systems are so complicated, error
analysis is typically a process that takes a lot of time for developers creating
a question answering system.

In this thesis, we will construct a question answering system and
analyse it in great detail in order to better understand how errors are found.
We will then attempt to partially automate the error analysis, in order to
facilitate better and faster development for question answering systems.

We will also, as a part of the construction of the question answering
system, quantitatively analyse a question set that has, to the best of our
knowledge, not been used in previous research. This data set is free, easy
to obtain and contains questions that present a mix of different difficulties,
making it well suited for new question answering systems.

The aim of this thesis is to examine the error analysis process and
examine whether, for open-domain question answering systems, it is
possible to automate error analysis, and whether automating error analysis
is beneficial to developing the question answering systems, as evaluated
either by time spent or by how detailed our understanding becomes.

1.1 Results

The new contributions in this thesis are two-fold. First, we statistically
analyse a data set with question-answer pairs, and refine this data set to
remove multiple occurrences of identical questions. We also evaluate the
difficulty and diversity of the remainder of the questions.

Second, we perform a detailed error analysis on the techniques a
typical question answering system uses. We will show how the analysis is
performed and what data we can retrieve from these, and how the methods
used in the analysis can be automated for a more efficient development.
We will then validate these methods by going through a development cycle
with and without automated analysis methods and show that automatic
error analysis noticeably improves development time, and that the level of
details can be at least as good as what is feasible to obtain with manual error
analysis.

1.2 Thesis outline

Our thesis consists of three major parts, each containing two or more
chapters. The first part gives an introduction to the thesis and the research
question, as well as a background to the field of question answering. The
second part details how we constructed a question answering system, based
on standard current techniques and tools. This is also where we introduce
the data set we used in this thesis, and show the analysis and refinement
we did on this. The third part contains the remainder of the novel work
in the field, with an in-depth reflection on error analysis and how this is
performed, as well as the results we obtained from our work.

We will provide a background to the field of question answering, both
historical and contemporary, in Chapter 2. We will also use this chapter

4

to discuss the linguistic methods that are most commonly part of question
answering systems, different data sets used in question answering research
tasks and how output from question answering systems can be evaluated.
The chapter rounds off with an introduction to error analysis and how this
can be performed.

The data set used in this thesis has not been used in any other published
academic studies, to the best of our knowledge. Because of this, we have
spent some time looking at the properties of the data set, analysing the data
set statistically and refining the data set to be better suited to our needs.
Our analysis and refinement of this data set are presented in Chapter 3.

In order to facilitate an analysis of a question answering system, we
constructed a simple question answering system we could analyse and
improve on. We will describe the methods and algorithms used in the
system in Chapter 4, before we present the novel work in the field of error
analysis in Chapters 5, 6 and 7.

We begin Chapter 5 with a discussion of what makes an error an error,
and how to classify them. We then go into a detailed discussion of the
errors we found in an initial error analysis of our system, and the first
development cycle where we improved the system to reduce the number
of errors. Errors found in the error analysis have been categorised, and
each category will be described. We also examine the errors in one error
subcategory in more detail.

The methods used in the error analysis are presented in Chapter 6. We
also use this chapter to discuss how error analysis can be automated, the
specific implementation details that went into the automation of our error
analysis and compare the results of the automatic error analysis with the
error analysis from Chapter 5. Chapter 6 ends with a discussion of how data
sets can be annotated to improve error analysis, and how we can expand on
error categories for features that we have not yet introduced in our question
answering system.

Chapter 7 shows the second development cycle, where we further
improved our system assisted by the methods in Chapter 6. We begin
the chapter with a further refinement of the data set as a preparatory step
towards a more useful error analysis, before we introduce a handful of new
features into our system and evaluate their usefulness. Before we end the
chapter with a summary of which features to include in the final system
version, we reflect on the impact of the automatic error analysis on the
development cycle.

We will end the thesis with some conclusions on our work and outline
possible fields for further study in Chapter 8.

5

6

Chapter 2

Background

In this chapter, we consider the task and history of question answering.
We give an introduction to the current state of question answering and
the architecture of typical modern question answering systems. We
also briefly discuss linguistic methods, data sets and different ways of
evaluating performance in question answering. We end the chapter with an
introduction to error analysis and introduce the problem we will attempt to
solve in this thesis.

2.1 A brief history of question answering

For as long as humans have written information down we have also
needed efficient ways to find the information when we need it. With
the introduction of the Internet the amount of accessible information has
increased exponentially, and has long since grown past the point where
it is possible to read even a fraction of the available information, even
if you spent your entire lifetime. Organising and searching through this
information has become a large industry. Users interact with search
engines through keywords. If you wanted to find information on ducks,
you would go to your search engine of choice and simply type «ducks».
If you wanted to know something more specific, you would add keywords
– «ducks weight» – until you got the desired results. Even if our search
for «ducks weight» returns dozens of documents about how much ducks
weigh, we still need to look for the specific answer ourselves.

Interacting with search engines is different from how most people
interact with other people. Our search keywords «ducks weight» probably
stems from a question: «How much do ducks weigh?» With simple
questions like these we will likely get some good results from most search
engines, but the results are documents, and again we still have to find the
answer ourselves. Intuitively we would like to get the specific answer when
we ask a specific question, not a large set of documents.

Search engines seek to solve a problem called information retrieval
(IR). Our more natural approach to retrieving information – ask a normal
question and get an answer in return – is called question answering (QA).

A question answering system is a system which has the following task:

7

Given a question in natural language1, return a correct answer, usually also
in natural language. Question answering can be thought of as a specialised
extension of information retrieval, which has finding relevant documents
as its task, but leaves the problem of actually finding the answer in the
document to the user.

Both question answering systems and the more general information
retrieval systems operate against a collection of information. This can
be a set of documents, a book, a database, or something else. Getting
information from this collection is an information retrieval task. Question
answering systems expand on this task in two ways: First, they allow
questions to be posed in natural language instead of as a specialised query,
and second, they aim to find the exact answer or at least a relatively
short passage which contains the answer, instead of returning a whole,
potentially large, document.

Most question answering systems are constructed to answer factoid
questions. These are questions that ask for information that is known and
relatively simple to summarise, such as «Where was Benjamin Franklin
born?» or «What is the capital of Mongolia?». Non-factoid questions
usually ask for an opinion or a reason, such as for example «What caused
World War 1?» or «How do you change the oil filter of a car?».

Question answering systems can be either tailored to a specific subject,
called a domain, for example finding restaurants or providing information
from technical manuals, or they can be completely unrestricted and suited
to answer all kinds of questions. The former is called «closed-domain»
and the latter «open-domain». It is easier to get closed-domain systems to
function well because we, at least to a certain degree, can anticipate the kind
of questions users will want to ask, as well as the kind of information they
will want to access and thus the correct answers. Open domain systems, on
the other hand, need to be able to answer any kind of question, and we can
only assume that the user input is a question for which it is possible to find
an answer.

The earliest question answering systems were essentially a front end to
database systems, and very specific to the subjects for which they answered
questions – they were closed-domain systems. These were eventually
abandoned because they relied heavily on mapping user questions to
database queries, and these mappings had to be written manually, thus
quickly becoming time-consuming. In addition, ordinary people outside
of companies did not have access to large data sets, while people who did
have access to large data sets did not have sufficient interest in accessing
the data themselves (Webber and Webb, 2010).

In more recent days the Internet has provided access to vast data sets
for ordinary people, which has led to a renaissance in question answering
technology. Modern open-domain question answering systems require
relatively large data sets to train on and search for information in, because

1The term «natural language» is used to differentiate the languages used in human
communication – they have been formed naturally over time – from programming
languages and other constructed languages.

8

the questions that can be asked are usually picked from quite diverse sets.
Two important conferences have been central in improving and inno-

vating question answering systems since 1999. CLEF (Conference and Labs
of the Evaluation Forum)2 has run question answering problems in the
years 2003–2013 under the names Multiple Language QA Main Task, Re-
sPubliQA and QA4MRE (Question Answering for Machine Reading Eval-
uation). The «Machine Reading» in QA4MRE is a task of properly under-
standing a small number of texts, as opposed to getting evidence from many
texts at once.

TREC (Text REtrieval Conference)3 had a dedicated question answering
track in the years 1999–2007. This track was designed to move the focus
from the document retrieval part of question answering to the supporting
methods for getting information from the retrieved documents (Voorhees,
2001).

IBM got some attention in 2011 for their question answering system
named Watson, which performed better than top human contestants on the
game show Jeopardy! (Ferrucci et al., 2010). Watson incorporates «more
than 100 different techniques» throughout the pipeline.

Search engines have also begun to find answers to certain questions.
Google Search answers simple conversion questions such as «How many
miles are there in a kilometre?». Some also return a summary of facts
gathered from Wikipedia and other sources for subjects that are well-
known. A search for «Abraham Lincoln» will return such a summary, while
the question «When was Abraham Lincoln born?» is treated like a normal
query as of this writing.

2.2 Modern question answering systems

Most question answering system are abstractly similar to each other in the
way they treat queries and data. Figure 2.1 shows a simple diagram of the
work flow in a typical question answering system. First, it takes a question
and analyses it. We can analyse questions for semantic information to
be used for comparisons later, and we also tokenise and normalise the
question so we can use it in information retrieval. We typically assign a set
of answer types, and try and assign this question to an appropriate answer
type.

The types can be as fine-grained as we like. For example, we can
have a fairly general answer type like «location» or we can split it up
into several other subtypes, such as «city», «country» and so on. The
answer type is used later in the system, especially when we perform answer
extraction. Some systems keep semantic or grammatical information from
the question analysis as well.

With the exceptions of research tasks where the focus is not on the
whole task of question answering, but rather on a smaller part, we need
to perform information retrieval to find relevant documents. In the cases

2http://www.clef-initiative.eu/
3http://trec.nist.gov/

9

Question

Question analysis

Document retrieval Source

Passage/sentence
retrieval

Answer extraction

Answer selection
Possibly

secondary sources

Final answer

Figure 2.1: A typical question answering system.

where a document is not provided, the next step is to get one from our
collection, using the information we got from our question analysis. This
step is mostly like a traditional information retrieval problem, in that we
have formed a query about what we want to get information on.

When we have one or more documents ready we are ready to find
answers. The answer extraction step is probably the most complicated
one, and can differ wildly from system to system, but always incorporate
different techniques tailored to finding answer candidates. The thing they
have in common is that they take information from the question and
the answer type and attempt to find the pieces of information from the
document that seem most likely to answer the question.

These techniques are usually combined so that each contribute to
finding answer candidates. It is very common to create several answer
candidates even though ultimately we only want to return a single answer.
This is because we later might want to further evaluate and possibly discard
answer candidates if we judge them to be too unlikely. We might also want
to present more than one answer to the user and let them determine which

10

answer is most helpful.
The answer candidates are passed on to an answer selection step. In

this part of our system we consider more carefully our answer candidates
and select the one we think is best. For example, this is where we could
discard all answers that are outside of the scope of the potential answer –
if the question is «How many people live in Oslo?» we could program our
system to find a range for how many people live in cities and discard answer
candidates that are either not numeric or way too high or too low.

Another step that is sometimes performed during answer selection is
to get information from secondary sources. If we know that the answer is
present in one document we can consult other sources in order to validate
our answers. If two or more answer candidates seem equally likely this is a
good way to determine which is correct.

Depending on what kind of task we want to solve, we may return one
or more answer candidates as our final answer. If we have more than one
answer they can be presented with weights, in a particular order according
to which answer we think is more likely or, if we do not care about the order
of the answers, in a random order.

All these components and subtasks in question answering need to
interact with each other. In natural language processing, where the
problems are usually quite complex, the most common approach to solving
problems is breaking the problem into smaller pieces and having many
smaller programs that each solve a piece. In these cases we need a
«software manager», often called a middleware, that tells the different
programs when they should start working.

Middleware is responsible for keeping track of the different subsystems.
It makes sure that systems wait until they have all the data they need from
other systems earlier in the pipeline, and serves as an interface between
systems if their data is not directly compatible.

2.3 Information retrieval

Information retrieval is a very important part of all question answering
systems. Generally when we talk about information retrieval we talk about
the task of returning any kind of data, including video and audio, that
is relevant to a query. In question answering, however, we are mainly
interested in retrieving text, and from here on out we will only consider
the kinds of information retrieval that retrieve text. As used in question
answering systems, information retrieval is commonly thought of as two
subtasks: document retrieval and passage retrieval.

Information retrieval begins with a query. This is based on, but usually
not the same as the question the system was given, meaning that the
question needs to be processed in order to create the query. For example,
it is common to remove the question word («when», «where» etc.). We
might also want to remove stop words such as determiners, auxiliaries,
prepositions and so on. If the available collection is small, it might be
worthwhile to create several queries with different wordings, for example

11

by changing words with synonyms.
Document retrieval is the process of finding documents that contain

information about the query. Documents are retrieved from a collection of
documents. Different systems usually have access to different collections,
and there are also different kinds of collections:

• Some systems are allowed to access all information they are able to
find on the Internet.

• Some systems have a local and manually defined set of documents.

• Some systems are somewhere in between, so that they have a local set
of documents that is updated with new documents regularly.

Each approach has advantages and disadvantages. Systems that can
access everything on the Internet can answer any kind of question, but
the massive amount of data available can make the system slow and
inaccurate. A system like this also has the disadvantage that information
on the Internet can be wrong. Additionally, some systems have limited
network access and are therefore unable to use the Internet as a collection.
Having a local set of documents makes the system faster, and also allows the
developers to carefully choose which documents to preserve. On the other
hand, these systems are not able to find new information if they encounter a
question about something they do not have information on. Hybrid systems
have a local set of documents about subjects that have been judged to be
important, and are allowed to retrieve information from the Internet if they
encounter a new type of question.

Document retrieval can be done using many different methods, from
simple Boolean matching which finds documents that have all the terms
in the query) to more sophisticated approaches with term weights and
proximity of terms. One fairly simple system is the open-source Apache
Lucene4, which mainly uses Boolean queries and tf-idf (term frequency-
inverse document frequency) weighing.

Classic information retrieval is usually content with returning a set of
relevant documents, because the goal is to retrieve relevant information,
and not a specific, short answer. In question answering, however, we also
need to perform passage retrieval.

Passage retrieval is performed on the documents returned by document
retrieval, so these two processes are closely connected. The underlying
assumption in document retrieval is that some documents in a collection
are more relevant than others, and the same assumption lies beneath
passage retrieval – we assume that some passages in the document are
more relevant than others.

A passage can be defined as any part of the document, depending on the
needs of the system. It is often defined as a sentence, but can also be any
number of sentences, a whole paragraph or a specific number of words or
characters regardless of sentence structure.

4http://lucene.apache.org/

12

It is possible to use the same methods in passage retrieval as one
would do in document retrieval, but the best systems use other and more
specialised methods. Generally we divide passage retrieval methods in two
types: the first type comprises bag-of-words methods, such as tf-idf (Jones,
1972) and BM25 (Sparck Jones et al., 2000), that do not care about the
structure in the passages. In contrast, the other type cares about the order
of the words. N-gram matching is one example of this type (Buscaldi et al.,
2010; Soriano et al., 2005).

2.4 Typical linguistic methods in question an-
swering

Linguistic analysis as performed on a sentence can be broken into subtasks.
We chose a sentence from our data set as an example:

Example 1. Turtles lay eggs, like other reptiles, which are slightly soft
and leathery.

The words and punctuation marks in sentences are normally turned
into tokens, so that they can be more easily processed later. Each token
is usually normalised, for example by stemming or turning all characters
lower case. The rest of our examples assume that the sentence has been
tokenised. In this instance, this simply means that the combined word and
punctuation as in for example «eggs,» has been turned into two tokens,
«eggs» and «,», while words without punctuation attached to them are
turned into a token without processing.

The stemmed form of our example sentence is

Example 2. Turtl lay egg , like other reptil , which are slightli soft and
leatheri .

We sometimes want to remove common words – usually called stop
words – from sentences as well, so that it is easier to search through them
for information later. Stop words are words that are so common that we
can not use them for determining what a document is about.

With stop words removed, our original example sentence turns into

Example 3. Turtles lay eggs , like reptiles , slightly soft leathery .

Different processing layers in question answering need different forms
of the sentences. Information retrieval is commonly done with stemmed
word forms, while linguistic processing, such as part-of-speech tagging and
dependency parsing, need an unstemmed sentence in order to function.
The final answer should also be in natural, unstemmed text.

Dependency parsing maps the syntactic relations between words in a
sentence. Words must first be tagged with their word classes tell us what
kind of word it is. Figure 2.2 shows a dependency graph of our example
sentence, with these tags5.

5The word tags have been generated with the Stanford Tagger, the dependency graph
with MaltParser. We discuss these tools in Section 4.7.

13

D
T

N
N

S
IN

D
T

N
N

V
B

P
JJ

,
IN

R
B

R
B

R
P

R
V

B
D

IN
JJ

JJ
N

N
S

.
T

h
e

origin
s

of
th

e
koala

are
u

n
clear

,
alth

ou
gh

alm
ost

certain
ly

th
ey

d
escen

d
ed

from
terrestrial

w
om

bat-like
an

im
als

.

root

d
et

p
rep

p
obj

d
et

n
su

bj

cop
p

u
n

ct

ad
vcl

p
u

n
ct

ad
vm

od m
ark

ad
vm

odn
su

bj
p

rep

p
objam

od

am
od

F
igu

re
2.2:

E
xam

p
le

d
ep

en
d

en
cy

grap
h

,w
ith

w
ord

s
tagged

.

14

We will use the example question «From which species does the
koala descend?» to illustrate some common techniques for finding answer
candidates. We will assume that document and passage retrieval narrowed
our search down to this one sentence.6

One possibility is to look for words with tags that match the expected
question type. The process of finding the expected answer type is called
question typing, and can be implemented in many different ways. One
simple and efficient way is to create a set of hand-crafted rules, such as «If
the sentence starts with «what», assign answer type «noun»». More fine-
grained answer types can be created, depending on the need of the system.
Since our example question contains the question word «which» we assume
that it asks for an object, and that it is likely that the answer is a noun.
From looking at our tags, our answer candidates are «origins», «koala» and
«animals». If the question had asked for a person or organisation it would
be more appropriate to tag the words with a named entity tagger, which
tag words with word classes depending on whether it refers to a person,
organisation and so on, and look for words that have been tagged as names.

We could also create an answer prototype, by assuming that the answer
is to be found in the form «koala descends from *», where * means any
sequence of words, and see if we find this particular sequence of words
in the sentence. In this case it does not find an answer candidate. We
can however improve on this. We find the phrase «descended from» and
retrieve everything until the next noun we find, which would get us the
answer candidate «terrestrial wombat-like animals».

Answer validation, where we check the answer candidates to find the
most likely one, is another step that can be solved in different ways. One
way is to establish a key word – the most significant word in the question –
from the question and look for word proximity.

Proximity is the distance between two words in the sentence. For
example, the words «certainly» and «terrestrial» both have a proximity of
2 to the word «descended» in our example sentence.

In our example question the word «which» is a question word, and
«from», «does» and «the» are so common that they are unlikely to be the
most significant. We are left with «species» and «descend», and only the
latter occurs in the text (though the grammatical tense is different). Thus,
we are left with «descend» as the key word. When we simply looked for
word types we found «origins», «koala» and «animals» as possible answer
candidates, and rank them in order of proximity to the key word from our
question, and are left with «animals» as the most likely answer candidate.

Another method in answer validation is to search for documents that
support the answer, and use a cumulative formula to find which answer
is most supported. In our example, we would try to find documents
that supported that koalas descended from origins, koala and animals
respectively.

As in information retrieval it might be useful to use synonyms when
we search for answer candidates. A search for synonyms and words with

6In practise this is unlikely, but it makes visualising the example easier.

15

similar meaning, for example in WordNet (Fellbaum, 1998), would return
most of the possible alternative words, which we can use to get more answer
candidates.

Depending on how we defined passages in passage retrieval, it might
be necessary to resolve cross-sentence references. Consider the following
sentences:

Example 4. The scientific name of the koala’s genus, Phascolarctos, is
derived from Greek phaskolos "pouch" and arktos "bear". Its species
name, cinereus, is Latin and means "ash-coloured".

If we consider the second sentence alone, it is difficult to understand
exactly what the word «Its» refers to. It points back to the previous
sentence, to the word «koala». Resolving this reference is necessary if we
want to answer the question «Which species name means ash-coloured?»
– if we do not, we might end with the unsatisfactory answer «Its».

2.5 Data sets

After the Internet became popular the number and quality of data that
can be used for question answering has increased enormously. Some are
generated specifically for this task, such as TREC’s and CLEF’s data sets
for their question answering related tracks. Others, such as the J! Archive7

were created for another purpose but can be used for question answering
systems.

Several web sites offer a service where users can ask and answer
questions, such as for example Yahoo! Answers8 and answers.com9. Yahoo!
has released fairly large data sets based on Yahoo! Answers with questions,
corresponding answers, the best answer as marked by the asker and some
other metadata10. Stack Overflow11 has done the same thing with their
data12, which is specific to questions about programming.

For a data set to be usable in a question answering system, it strictly
speaking only needs to contain questions. However, due to the current
restrictions in what is possibly to do with question answering systems, it
is not possible to use the data set if the questions are too difficult to answer.
Stack Overflow questions, for example, are often long and include code
samples to illustrate the problem the asker wants a solution for. They are
also significantly harder than factoid questions because answers usually
need to be explained in detail in order to be accepted.

It is useful but not necessary for a data set to include one or more
suggested answers for each question. If suggested answers are not

7A fan-created archive of Jeopardy! games and players: http://www.j-archive.com/
8https://answers.yahoo.com/
9http://wiki.answers.com/

10http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
11http://stackexchange.com/
12http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-

dump/

16

provided, researchers need to either evaluate system answers manually,
which takes valuable time, or pay someone to do it, which becomes
expensive.

The set might also include a set of documents in which we know that
we should be able to find the answer. This is especially true for tasks
that want to move the focus away from the document retrieval parts of
question answering, for example the question answering tasks from TREC
and CLEF.

2.6 Evaluation

Evaluating question answering systems is largely a matter of determining
whether the system is capable of finding the correct answer. Of course,
exactly how one goes about defining whether the correct answer has been
found is up for debate. Question answering systems are built to answer
questions for humans, so the best metric we have for evaluating whether
an answer is correct is to ask a human whether they agree. In research and
development this often becomes impractical – we would have to ask again
every time the system came up with a different answer.

If we have the question

Example 5. «What is the capital of Sweden?»,

some possible answers are

Example 6. «Stockholm»

Example 7. «The capital of Sweden is Stockholm»

Example 8. «Stockholm is the capital of Sweden»

and so on. If we choose Example 6 as the gold answer – the suggested
correct answer – to this question, a simple and strict form of evaluation
that checked whether the answer exactly matched a suggested gold answer
would judge the other two answers to be incorrect, while most humans
would also accept the other two.

As we can see, how we evaluate our system answers can have a large
impact on how we perceive the accuracy of our system.

Intuitively we would prefer answers that are concise and do not contain
unnecessary information, particularly if that information is irrelevant to the
question. For example, if we have the question «How old is Bill Clinton?»
the answer «68 years» is usually considered better than «Bill Clinton is 68
years old» because it is shorter, and better than «Clinton, 68, has retired
from politics» because that contains information that is irrelevant to the
question.

Different methods for evaluation have been proposed. There is some
debate on which features should be present in a good answer, other than
that the answer should be correct. Some systems place a high value on
creating syntactic sentences, others allow systems to return short passages

17

and mainly care about the relevant information being present. There is also
some variation on how many answers a system should be allowed to return.
Some researchers place a high value on systems that are able to not answer
a question if they are uncertain, while others think it is equally bad to return
an incorrect answer and no answer.

Two organisations that have been central in providing an environment
in which systems can be compared to each other and get a measure of
how they perform objectively are CLEF and TREC. TREC had its last run
of question answering evaluations in 2007, and CLEF still has runs for
evaluating performance within question answering systems. Typically,
tests such as these provide a large volume of texts and quite a lot of
questions, and the task is to find the answer to the questions within the
texts. They are usually open-domain problems.

The main task of TREC’s question answering tracks allowed systems to
return up to either 50 or 250 characters and evaluated whether the answer
was located in those characters. Whether the question was answered
correctly was judged manually by a human.

CLEF’s QA4MRE tasks provide question candidates and ask systems to
choose one. This is called answer validation and is a variation or subtype of
question answering. QA4MRE also allows systems to not return an answer
to a question, judging that it is better to not return an answer than to return
an answer that is incorrect.

Breck et al. (2000) attempt to automate the process of evaluating
individual system answers by creating a list of potential gold answers
manually, normalising both the gold and system answers and find that
recall is a good way of evaluating whether they are similar.

Recall is the fraction of possible correct items we managed to get with
our system, or more formally:

r ecal l = T P

T P +F N
(2.1)

Where T P is the number of gold answers that we manage to retrieve and
F N is the number of gold answers that we do not manage to retrieve. In
this context it is used to see how many of the words in the system answer
are present in the gold answer.

If the recall is high enough they assume that the system answer is
similar enough (they suggest a threshold of 0.5 for recall). However, since
they worked on the TREC tasks and the gold answers could not be more
than 50 bytes (and their system answers were not allowed to be more than
50 bytes), they note that a more refined process is necessary for tasks where
the answers can have variable lengths.

In addition to this, there are also different metrics with which we can
rate the overall performance of a system, not just for each question. The
simplest is to look at each question and give it a score of 1 if it is judged as
correct and 0 otherwise, then calculate the mean value as the overall score.

If the system is allowed to return more than one answer to each
question, it is common to have the system rank the answers according to
likelihood, and adjust the score according to how high the correct answer

18

was ranked. TREC, as mentioned, allowed systems to return answers of
either 50 or 250 bytes, and used human assessors to decide whether the
returned answer actually contained correct information (Voorhees et al.,
1999). The systems were allowed to return up to 5 different answers, ranked
by how likely the system evaluated each answer to be. Each question got a
score depending on the rank of the highest ranked correct answer:

Reci pr ocal r ank = 1

n
(2.2)

were n is the rank of the correct answer. If no correct answers were
returned, the answer got a score of 0. More than one correct answer did
not have an impact on the score of the answer. They then measured the
overall system performance by Mean Reciprocal Rank (MRR).

Some argue that it is better not to answer than to answer incorrectly.
Watson, for example, is very focused on only answering questions when it
is very certain that it has the correct answer, since the rules of Jeopardy!
penalise incorrect answers.

Another example of a measure where incorrect answers are considered
worse than not returning an answer at all is QA4MRE’s c@1, defined as:

c@1 = 1

n
(nR +nU

nR

n
) (2.3)

where nR is the number of correctly answered questions, nU the number
of unanswered questions and n is the total number of questions (Penas and
Rodrigo, 2011). With this evaluation metric the score of each unanswered
question depends on how many correct answers the system returns. In
other words, systems that answer that they do not know the answer to any
questions will get the same score as a system that answers all questions
incorrectly.

We will return to a more detailed discussion of evaluation, both of
answers and of system performance, in Section 5.1.

2.7 Error analysis

Question answering is far from being a solved problem. This is because
of a combination of the wide variety of questions one might be expected
to solve, the difficult task of finding the necessary information in a large
collection, as well as how many questions can have more than a single
answer. Questions can be simple and request factual information, but we
would also like to answer more complex questions («Why did the Allies
win World War 2?»). Some questions are simple enough to answer, but
are context specific, such as «Who is the president of the United States?»,
where the answer changes depending on when we ask the question.

In order to be able to answer the great variety of questions, question
answering systems typically get fairly complex, incorporating a wide range
of natural language modules in addition to the modules used by normal
information retrieval systems. The combination of these two features –

19

a difficult problem and a complex system to solve the problem – means
that it can be difficult to properly understand which parts of the system are
responsible when a wrong answer is obtained.

It is important to understand not only which module fails but also
how that module interacts with the rest of our system. An error that
occurs in a module early in the pipeline, or in a module which many other
modules depend on, will have ramifications for the other modules in the
system. Errors causing errors in a chain reaction is often called «error
propagation».

When we have run a system on a set of data and not obtained the
answer we wanted, error analysis is the process in which we look through
all the modules that might have led to this error and attempt to pinpoint
exactly what went wrong, as well as how they may be fixed. In addition,
error analysis may also give us insight in which modules in the system
are responsible for the largest part of all errors. Error analysis is often
performed manually, and is often time consuming because the systems are
often complex.

Some attempts have been done at reducing the time needed for error
analysis: Brill et al. (2002) simply remove non-essential components from
their system and look at the impact of the removal. Ittycheriah et al.
(2001) look at how many errors each component in their system makes,
and perform a more detailed analysis of the document retrieval module.
Moldovan et al. (2003) go further into detail on their system and looks at
the kinds of errors each module can produce, as well as the quantity of each
kind.

Though all these (and more) have performed detailed error analysis,
none of them have tried to automate the process. Moldovan et al. (2003)
perform a statistical analysis on performance by question stems («Where»,
«What», etc.) and answer type but do not analyse their performance
further.

In this thesis, we will aim to create a simple question answering
system in order to illuminate some of the problematic issues with error
analysis. One of the largest issues with error analysis is that it is very time
consuming. We will attempt to analyse how error analysis is performed
manually, with the aim of aiding and possibly automating the process.

The performance of error analysis can be measured in several different
ways. Perhaps the most interesting is how much time researchers have to
spend in order to find where in the system the problem is located. We
are also interested in generating error reports that show the problem in
as much detail as possible, so it is easier to fix the error. For example, an
error report that tells us that there is a problem with the document retrieval
module is less useful than an error report that tells us that the document
retrieval module was unable to retrieve a relevant document, or that it was
able to retrieve a relevant document but did not rank it high enough to have
an impact on the answer.

20

Part II

Building a question
answering system

21

Chapter 3

Data set

In this chapter we will describe in detail the data set we chose for our
question answering system. We will perform some basic statistical analysis
on this data set in order to motivate some of the design choices we made
when we designed our system, and attempt to estimate how well it is
possible for a theoretical question answering system that always performs
perfectly to perform on this data set.

This data set has to our knowledge not been used in any previous
studies, so we will spend some time on detailing some problematic issues
with this data set, as well as how we dealt with these problems.

3.1 Data set properties

Our data set1 was made by students who took undergraduate natural
language processing courses taught by Noah Smith at Carnegie Mellon and
Rebecca Hwa at the University of Pittsburgh during Spring 2008, Spring
2009, and Spring 2010 (Smith et al., 2008). It had several properties that
make it especially attractive.

First, it was freely available and of a decent size. A suggested answer
was supplied with each question, as well as a WikiPedia article the question
was generated from, and in which the answer could be found. Both these
properties were good because they allowed us to focus on other parts of the
question answering problem, rather than on document retrieval.

Because we have suggested answers we did not need to manually create
a set of correct answers, and because the documents were provided we
could skip the document retrieval part of the system in favour of focusing
on everything else.

It also had the attractive feature of not being too hard – the answers
were to a large degree possible to find in the provided documents directly,
without a need for in-depth linguistic analysis. Most established question
sets, such as the sets from TREC and QA4MRE, are both licensed and
significantly harder than the set we chose.

The questions were generated automatically from Wikipedia articles by

1This data set can be found at http://www.ark.cs.cmu.edu/question answering-data/ .

23

computer systems the students made. The Wikipedia articles are diverse
enough that we can call the data set an open-domain data set2. Each system
was created independently by different groups of students. The questions
were evaluated manually by other students and marked with an answer and
a difficulty rating.

Each question came with the following information:

1. The name of the Wikipedia article from which the questions initially
came.

2. The question.

3. A proposed answer.

4. A difficulty rating for the question as given by the system writer.

5. A difficulty rating assigned by the individual who evaluated and
answered the question.

6. The location of the provided relevant document.

We did not use the difficulty ratings in our system, instead choosing to
answer all questions equally. We also did not use the name of the Wikipedia
article.

Since there were several systems which worked on the same files for
source material, quite a lot of the questions were identical. In most of these
cases all the provided answers were correct. In some cases one or more of
the answers are incorrect:

Question In what years did Avogadro stop teaching at Turin University?
Answer 1 1853
Answer 2 1823

In addition, the answers (provided by humans) were sometimes not
identical:

Question What does the word duck mean?
Answer 1 It is the common name for a number of species in the Anatidae

family of birds.
Answer 2 to bend down low as if to get under something

This would likely lead to skewed results according to the relative
difficulty of the questions, since our question answering system would
provide the same answer each time a question was repeated.

To resolve the problems with identical questions we decided that we
needed to remove duplicate questions. Due to the sheer size of the question
sets, rather than go through all the questions manually we opted to keep
the first instance of each question regardless of its answer, and remove all
further identical instances of the question. If the same question appeared
in more than one year, one instance of the question was kept for each year it

2Appendix A has an overview over all the categories.

24

was present. After most of these problematic questions had been removed,
the three data sets – one for each year – had been reduced as shown in
Table 3.1. The details for each set can be seen in Appendix A.

A small minority of questions were impossible to answer. Some of
them simply did not have the answer available in the source file, or it was
impossible to understand what the question asked for:

Question What do economy and law have in common?
Suggested answer (not sure how to answer this)

We accepted that it would be too time-consuming to manually go
through every single question to remove these, and simply note that they
exist in the data set.

Year Set Size
2008 Training 551

Dev1 90
Dev2 91
Dev3 96
Test 91
Total 919
Original total 1715

2009 Training 304
Dev1 49
Dev2 47
Dev3 48
Test 51
Total 499
Original total 826

2010 Training 475
Dev1 79
Dev2 79
Dev3 78
Test 81
Total 792
Original total 1459

Table 3.1: Summary of our data sets.

We then divided the data from each year by category into training,
development and test sets. The training sets consisted of roughly 60%
of all the questions. We had three different development sets from each
year, which held roughly 10% of the questions each. Finally, a test set from
each year was held aside for the final tests. This set also held roughly 10%.
Table 3.1 shows a summary of the number of question-answer pairs in the
different sets.

25

3.2 Statistical analysis

Without looking too much at specific individual questions, we wanted
to perform some statistical analysis on our data set before we started
designing our system. Our first observation was that a lot of questions
had either «yes» or «no» as the suggested answer. We counted the
number of questions that had either «yes» or «no» as the suggested answer,
removing punctuation but not counting answers that had more words, such
as for example «Yes, diglossia is a common feature in mainland China and
Taiwan.»

We can see in Table 3.2 that for some sets a majority of the questions
had either «yes» or «no» as an answer, and that this kind of question was
the most prevalent in all sets. This suggests that a system that performs
well on these kinds of questions, but not on any other kind, will still get a
high accuracy.

Year Set Questions Yes/No %
2008 Dev1 90 46 51.1%

Dev2 91 48 52.7%
Dev3 96 45 46.9%
Test 91 33 36.3%
Training 551 237 43.0%
Total 919 409 44.5%

2009 Dev1 49 25 51.0%
Dev2 47 26 55.3%
Dev3 48 23 47.9%
Test 51 26 51.0%
Training 304 150 49.3%
Total 499 250 50.1%

2010 Dev1 79 29 36.7%
Dev2 79 24 30.4%
Dev3 78 33 41.8%
Test 81 31 38.3%
Training 475 161 33.9%
Total 792 278 35.1%
Overall 2210 937 42.4%

Table 3.2: Number of yes/no questions compared to the total number of
questions across all sets.

We knew from looking at the data sets that some of the suggested gold
answers were impossible to find in the supplied documents. On the other
hand, the assumption that for each question it is possible to find an answer
in the text is very useful when we build our system. If this assumption does
not hold true we need to look for secondary sources in order to answer our
questions.

In order to justify this assumption we needed to know how many of the
suggested gold answers were present in the documents. We disregarded

26

all «yes/no» questions and looked at the remaining gold answers. For
each gold answer we looked for an exactly matching substring of the
corresponding document. If such a substring existed we knew that it was
possible to find the answer.

Our criteria for determining whether the gold answer is present is
obviously fairly strict. On the other hand, the results in Table 3.3 look
promising. In most of the sets at least half of the gold answers have exact
matches in the documents. Remember that these are only exact matches
for the suggested answer, and small deviations means that there will be no
match.

A more detailed analysis which could take small variations such as word
forms and word order into account would probably give more matches, but
would be outside of the scope of what we want to establish here.

Year Set Questions Answer is substring %
2008 Dev1 49 28 57.1%

Dev2 53 25 47.2%
Dev3 56 25 44.6%
Test 65 38 58.5%
Training 344 163 47.4%
Total 567 279 49.2%

2009 Dev1 28 15 53.6%
Dev2 21 12 57.1%
Dev3 36 10 27.8%
Test 25 15 60.0%
Training 170 87 51.2%
Total 280 139 49.6%

2010 Dev1 58 22 37.9%
Dev2 59 29 49.1%
Dev3 54 15 27.8%
Test 50 24 48.0%
Training 345 142 41.2%
Total 566 232 40.9%
overall 1413 650 46.0%

Table 3.3: Number of gold answers where the answer is a substring of the
document (disregarding yes/no questions)

We can now make some estimates about how well we should be able to
perform on our data set. We can imagine a theoretical question answering
system that does not support secondary sources, but can find all «yes/no»
answers and all answers that are directly present in the provided document.

If this theoretical question answering system was able to answer all
these questions correctly, we can summarise Tables 3.2 and 3.3 and get
the theoretical, perfect results in Table 3.4.

We will motivate the purpose of building a question answering system
for this thesis in the beginning of the next chapter. We need this system
to perform reasonably well if the results and analyses we perform are to

27

Year Set Questions Correct Accuracy
2008 Dev1 90 74 82.2%

Dev2 91 73 80.2%
Dev3 96 70 72.9%
Test 91 71 78.0%
Training 551 400 72.6%
Total 919 688 74.9%

2009 Dev1 49 40 81.6%
Dev2 47 38 80.8%
Dev3 48 33 68.6%
Test 51 41 80.4%
Training 304 237 78.0%
Total 499 389 78.0%

2010 Dev1 79 51 64.6%
Dev2 79 53 67.1%
Dev3 78 48 61.5%
Test 81 55 68.0%
Training 475 303 63.8%
Total 792 510 64.4%
Overall 2210 1587 71.8%

Table 3.4: Accuracy of a theoretical question answering system on our data
set.

be meaningful. Because our data set has not been used in any previous
studies we will need to establish an upper bound so we know what we can
reasonably aim for. The results in Table 3.4 will serve as this upper bound.

28

Chapter 4

System architecture and
implementation

In this chapter, we will describe the tools and design choices that went into
our question answering system. The purpose of this system was not to be
cutting-edge, state-of-the-art question answering technology, but rather to
construct a system that would aid us in understanding the errors question
answering systems make and how to detect and fix them.

The platform for our system was the Natural Language Toolkit (Bird
et al., 2009), commonly referred to as NLTK1. All the tools we use are either
implemented by us in Python or imported through an NLTK interface.

After a discussion of how we stored and normalised documents in our
system, we will establish two baselines: a majority baseline based on the
most common answer in our data set and a baseline constructed with a
very simple question answering system. We will then go on to describe the
system itself.

4.1 Data types

For both questions and documents we are mainly interested in sentences.
We store each sentence separately. Sentences are stored sorted in lists,
and each list represents a document. Each sentence is stored both as the
original text and as a normalised version. We also store versions of the
sentences that have been annotated in different ways, such as with part-of-
speech or named entity tags.

Questions are stored in the same way. Suggested gold answers are
not stored in this way, because we only use the text representation of the
answer, and mostly only at the end of the system when we check whether
the system answer corresponds to the gold answer.

1http://www.nltk.org/

29

4.2 Normalisation

All our questions, documents and to a certain degree answers were
normalised by our system. As we have mentioned in Section 2.4,
normalisation is commonly performed on text that we want to use in
passage retrieval, but we can not use normalised text for most of the other
linguistic methods we use in our system, because we lose information when
we normalise text. Therefore, for all natural language we process in our
system we kept both the original sentence and normalised version. The
original sentence was needed for linguistic analysis, and the normalised
version was used in passage retrieval.

Documents were split into sentences. Questions and documents were
tokenised using the tokeniser included in NLTK and stemmed using the
Porter stemmer (Porter, 1980). Hyphenated words were split into separate
tokens.

We chose not to remove any stop words in the initial system version
because we were worried about ranking relevant sentences too low if
words were removed from both the documents and the questions. We will
introduce removal of stop words as a feature in Section 7.3.2, and show that
this was an unfounded concern.

Another normalisation step was to turn numerals, such as «three», into
digits, such as «3». We performed this process on the documents and the
questions so that they would correspond more closely. We also performed
the process on the gold answers, so that the answer matcher would find
matches even if the gold answer was written as a numeral. We found the
basis for the actual code for converting at StackOverflow2, and modified it
to suit our needs.

The main reason for this conversion was that we observed that some of
the expected answer types were numbers, and that turning numerals into
digits would make the process of finding these easier. Of course, as in all
cases of normalisation, we lose information when we turn numerals into
digits. For example, in dates we almost always write numbers as digits,
while low numbers in other contexts are usually written out as a numeral.
Normalising the sentence «For December ten turkeys were bought» could
introduce an ambiguity that was not there before. Luckily, this kind of
sentence never occurred in our set of documents.

Sometimes the «and» between two numerals means that they are two
different numbers rather than parts of the same number – «one hundred
and ten» can mean either «110» or «100 and 10». This phenomenon also
never occurred in our set of documents.

It should be noted here that we could have opted for the reverse solution
– turning digits into numerals – but we elected not to for two reasons.
The first and main reason was that we found that turning numerals into
digits was simply easier to implement. The other, happily, was that date
information was preserved this way. Our named entity tagger which for

2http://stackoverflow.com/questions/493174/is-there-a-way-to-convert-number-
words-to-integers-python

30

a large part was responsible for recognising dates as well would have
problems identifying «one thousand seven hundred seventy six» as a year,
or «twenty six October» as a date.

4.3 Majority baseline

From looking at our data we know that the most common answer,
regardless of question, in all of our data sets, is simply «yes». From this
we can establish a very naive baseline system which only answers «yes» to
every question. This system would perform as shown in Table 4.1. We have
here assumed that we evaluate by the strict metric described in Section 4.8,
meaning that the gold answer would also have to be exactly «yes» if the
system answer is to be evaluated as correct.

Year Set No. of questions Correct answers Accuracy
2008 Training 551 169 30.6%

Dev1 90 36 40.0%
Dev2 91 31 34.0%
Dev3 96 36 37.5%
Average 32.9%

2009 Training 304 114 37.5%
Dev1 49 16 32.6%
Dev2 47 21 44.6%
Dev3 48 8 16.6%
Average 35.5%

2010 Training 475 107 22.5%
Dev1 79 17 21.5%
Dev2 79 15 19.0%
Dev3 78 21 27.0%
Average 22.5%

Overall Average 29.7%

Table 4.1: Correctly answered questions by the majority baseline

The purpose of this baseline is to understand what results we can get
without even trying simple methods. A system that performs worse than
this baseline can not be said to perform in a satisfactory manner.

We have a question analysis step in our system that assigns answer
types to questions. At this point it is natural to look at how well our system
classifies answer types for yes/no questions.

The data set does not provide a gold standard for answer types, but for
yes/no questions it is simple to construct one, since the yes/no questions
should presumably always have either «yes» or «no» as the answer. We
show the precision and recall of our answer type detector in Table 4.2.

In this table we have counted all answers that are either exactly «yes»
or «no» or have a qualifier, such as «Yes, Volta was born in Como, Italy and
was taught in the public schools there.», as «yes/no» gold answers. We did

31

not count answers that simply repeat the statement in the question, such
as:

Question Is Nairobi not the capital as well as largest city of Kenya?
Gold answer Nairobi is the capital and largest city of Kenya

Because we only want to get a feel of how well we classify yes/no
questions we do not need the exact numbers. Statistically, these kinds of
answers were uncommon and should have little impact on this analysis.

Year Set Gold System Precision Recall
2008 Training 241 243 97.1% 97.9%

Dev1 46 45 100.0% 97.8%
Dev2 48 50 94.0% 97.9%
Dev3 46 51 88.2% 97.8%
Total 381 396 95.9% 97.9%

2009 Training 150 145 98.6% 95.3%
Dev1 25 25 96.0% 96.0%
Dev2 27 25 92.0% 85.1%
Dev3 21 22 90.9% 95.2%
Total 223 217 97.7% 93.3%

2010 Training 189 202 85.6% 91.5%
Dev1 34 38 89.4% 100.0%
Dev2 29 28 89.2% 86.2%
Dev3 42 42 95.2% 95.2%
Total 294 310 87.7% 92.5%
Overall 898 923 93.3% 95.2%

Table 4.2: Precision and recall of the question typer on yes/no questions.

4.4 Simple baseline

A question answering system that answers «yes» to every question is
neither interesting nor useful. We constructed a small, simple question
answering system in order to create a baseline that was actually able to
answer other questions as well, which could be used for further analysis.

The details of the system will be described in the following sections,
but we will provide an overview here: The questions are analysed to
find expected answer types. We retrieve sentences with a frequency-
based approach, which weighs uncommon terms in the document higher
than common terms. Answer candidates are mostly found by word type
according to the expected answer type, and the answer candidates that
occurs most often in the retrieved sentences is chosen as the most likely
candidate. We use a very strict evaluation technique to produce the results
in Table 4.3.

The results are consistently worse than in the majority baseline, so we
already know that this system does not perform well enough to be deemed

32

Year Set Questions Correct answers %
2008 Training 551 110 20.0%

Dev1 90 26 28.9%
Dev2 91 19 20.9%
Dev3 96 17 17.7%
Average 20.1%

2009 Training 304 88 29.0%
Dev1 49 14 28.6%
Dev2 47 8 17.0%
Dev3 48 7 14.6%
Average 26.1%

2010 Training 475 84 17.7%
Dev1 79 11 13.9%
Dev2 79 15 19.0%
Dev3 78 17 21.8%
Average 17.9%

Overall Average 20.9%

Table 4.3: Correctly answered questions with the simple baseline.

acceptable. On the other hand, this approach at least has the chance of
correctly answering questions where the answer is not a single «yes». It is
also a system we can analyse for errors in a meaningful way.

4.5 Question analysis

In Figure 4.1, we repeat Figure 2.1 as a reminder of the pipeline of a
typical question answering system. We will walk through the design of our
question answering system, which will correspond closely to the question
answering system shown in this figure.

Questions are read from a text file, generated from the data set as
described in Chapter 3.

We extracted the expected answer type from each question with a
simple pattern matching algorithm with hand-written rules. The rules look
for matches in regular expressions, and return the first found match among
the rules. We have included the exact rules in Appendix B.

Our answer types correspond closely to what kind of question word is
used, and are named after the question words «when», «what», «who»,
«why», «where» and «how». In addition there are two extra answer types:
one for yes/no questions («Are large pythons potential prey for leopards?»)
and one for questions that ask for a number («How many counties is
Romania divided into?»).

33

Question

Question analysis

Document retrieval Source

Passage/sentence
retrieval

Answer extraction

Answer evaluation
Possibly

secondary sources

Final answer

Figure 4.1: A typical question answering system, repeated from Figure 2.1.

4.6 Sentence retrieval

Document retrieval was not necessary in our system, because we knew for
each question which document the answer should be located in.

In our system we decided to define a passage as a full sentence. Answers
rarely needed to include more than one sentence, and we decided that
full sentences made more sense than an arbitrary number of words or
characters.

Our initial attempt at sentence retrieval used a frequency-based algo-
rithm for retrieving relevant sentences. Each sentence received a score:

f r equenc y_scor e = ∑
t∈q

log
f (t , s)

f (t ,d)
(4.1)

Where t ∈ q is the terms in the query (the question), f (t , s) is how many
times the word occurred in the sentence and f (t ,d) is how often it occurred
in the document.

34

The sentences are returned with a score as defined in Equation 4.1,
and ranked according to the score. Sentences with a score of 0 are never
returned.

We will implement and discuss two new sentence retrieval algorithms
in Section 5.4.3, and experiment further with sentence retrieval in Section
7.3.

4.7 Answer extraction

We attempted several different strategies for retrieving answer candidates.
The simplest versions used word tags. We chose to use the Stanford Part-
Of-Speech tagger (Toutanova and Manning, 2000; Toutanova et al., 2003)
for tagging parts of speech and the Stanford Named Entity Recognizer
(Finkel et al., 2005) for named entity recognition. Both these taggers are
integrated with NLTK. The named entity recogniser has the added benefit
that it is able to recognise dates as well as named entities.

Recall that we have an expected answer type from analysing the
question, and a set of sentences from the sentence retrieval step. From the
expected answer type we can make an assumption about the expected word
type of the answer. The simplest algorithms we implemented for finding
answer candidates used this assumption. Table 4.4 shows the kinds of word
tags we looked for for each kind of answer type.

Nouns and verbs are located by part-of-speech tags from the Stanford
tagger. Location, name and time are tags from the Stanford Named Entity
Tagger. Numbers are located simply by the property of being represented
with digits in the document (remember that we transformed written words
into digits when we normalised our documents).

Words that occur in more than one sentence accumulate scores
depending on the score of the sentences they occur in. This is a naive
approach to evidence-based answer extraction, where the system attempts
to get evidence for each of the answer candidates in order to establish the
most likely.

«Why» answers usually ask for a reason. Because the answers to these
questions are usually complex we want to return a full phrase every time.
The naive approach to this is to use the relevance score from sentence
retrieval and return the most likely sentence.

«Yes/no» questions got special treatment – because the only possible
answers are «yes» and «no» there is no point in attempting to find answer
candidates. Instead we used a purely pattern-based approach and looked
for negations.

Example 9. Is the leopard smaller than the other members of Panthera?

For example, for Example 9 we want to find a sentence with patterns
similar to «the leopard is <not> smaller than the other members of
Panthera». If the «not» is present, we answer with a «no», if it is not
present we answer «yes». Statistically the most common answer to yes/no

35

Expected answer type Word type
What Noun
How Verb
Where Location
Who Person name
When Time
Number Number
Why Special case
Yes/No Special case

Table 4.4: Answer types and word types

questions in our data set is «yes», so we choose this as the default if we are
unable to find a matching pattern.

Though our first, simple system only returned one-word answers we
should ideally be able to return phrases. Phrases in this context means
any sequence of words that is longer than one word. Because question
answering ideally should return answers as natural language we need some
way to extract these phrases from sentences. We will use dependency
parser for this3.

Our chosen dependency parser was MaltParser (Nivre et al., 2007).
NLTK has an interface to this parser, and we were already familiar with
how it worked.

MaltParser requires part-of-speech tags to function. The part-of-speech
tags must conform to the Penn Treebank (Marcus et al., 1993) style of tags.
We obtained these from the Stanford Part-of-Speech tagger, trained on
the sections 0-18 of the Wall Street Journal section of the Penn Treebank.
MaltParser itself was trained on sections 2-21 of the same part of the Penn
Treebank extended with about 4000 questions from the QuestionBank
(Judge et al., 2006). It outputs Stanford typed dependencies (De Marneffe
and Manning, 2008).

One approach to getting phrases, which we will discuss in Section 7.4.2,
is to look for subtrees of dependency trees where the head word in the tree
had the required word type as specified by the answer type.

4.8 Answer evaluation

Already at our first look through the data it was obvious that looking
through each answer manually every time we performed a test would be too
time consuming to be practically feasible. Our first automatic evaluation
technique was to look for exact matches to the suggested gold answers.
Both the suggested answer and the gold answer were normalised by turning
words into numbers as described in Section 4.2.

3Dependency parsers can be used in many other parts of a question answering system as
well. Part of our motivation for implementing dependency parsing was that we wanted to
compare dependency parses of sentences to dependency parses of questions. However, we
did not have the time to do this.

36

This method was very good at evaluating yes/no answers, which is the
majority of our data set as shown in Table 3.2. It also performed reasonably
well on questions that asked for numbers or years.

We will present one alternative method for automatic evaluation in
Section 5.5.7, and another alternative method in Section 7.4.1.

37

38

Part III

Error analysis

39

Chapter 5

Manual development cycle

In this chapter, we will first discuss an error taxonomy in order to better
be able to discuss different kinds of errors, and what exactly an error is
as opposed to something that is correct. We will briefly discuss different
types of error analysis, before we go into the details of the error analysis we
performed on our simple baseline system from the previous chapter. This
chapter will show the results and findings that we obtained from our error
analysis, and we will discuss the specific methods we used in more detail in
the next chapter.

5.1 Error taxonomy

In order to talk about errors we need to establish more formally exactly
what we mean by the term «error». Most people probably have some notion
of what an error is, but because we spend so much time on discussing errors
in the following chapters we will need to define the term more formally.

We have used the term «module» to denote a subpart of our question
answering system. Each module takes one input and returns zero, one or
more outputs1. In the following discussion we will use the term «module
output» as whatever the module we discuss returns and passes on in the
pipeline. An important note is that the final answer is also a module output
– it is simply the output of the final module in the pipeline. Whether
a system output is incorrect is also, as we have discussed in Section
2.6, sometimes not entirely clear, and can depend on how the output is
evaluated.

Consider this seemingly simple example question:

Question How many people live in New York City?

If we wanted to be pedantic we could answer that it is impossible to give
an exact number because people move in and out of the city all the time.
We could also be obtuse on purpose and answer «a great many». Both
these answers are technically correct but do not provide the information
whoever asked the question wanted, and we can safely assume that if a

1Zero outputs is unfortunate, but possible.

41

question answering system returned these answers they would be perceived
as incorrect.

What is the correct answer? According to Wikipedia the number of
people living in New York City was 8 405 837 at March 27th, 2014, so
we will use this as the perfect, ideal answer in this example. Other
answers would probably also be acceptable. We could round the number
to the nearest million («about 8 million») or place it in a reasonable
interval («between 8 and 9 million»), and for some people these would be
acceptable answers while to others they would be too imprecise.

As we can tell, an answer can be either correct or incorrect, but it can
also be somewhere in between: partly correct, mostly correct, correct but
not expressed precisely enough for the asker, and so on. Additionally,
we must keep in mind that how the answer is evaluated depends on the
context. This is important to us because many question answering systems
are evaluated not by whether they answer the question perfectly, but by
how well the question was answered. In other words, a question answering
system does not have to answer a question perfectly, it just has to answer
the question well enough. We can imagine a threshold that needs to be met
– an answer that meets the threshold is marked as good enough or correct,
an answer that does not meet the threshold is marked as incorrect.

The same principle holds true for the individual modules in a question
answering system. Each module only has to perform well enough for the
next module to do its job. For example, the answer selection module
only needs to get one correct answer candidate from the answer extraction
module in order to do its job. Further incorrect answer candidates from the
answer extraction module detract from its output, but it will still be good
enough. If, on the other hand, no correct answer candidates were retrieved,
it would be impossible for the answer selection module to select the correct
answer.

Similarly the answer extraction module should need only one passage
containing the correct answer from the passage retrieval module. It is likely
that the passage retriever has retrieved passages that do not help us find
the answer, but the system should still be able to extract at least one correct
answer candidate if at least one passage is relevant to the correct answer.

Thus, we have the following, somewhat informally defined metric for
determining whether a module output is good enough: Is it possible for the
next module to produce good enough output? Or, in a broader perspective:
Will the output from this module be responsible for an overall failure in
the system? A big part of error analysis is to identify the earliest module
that caused the error. Because question answering systems can be fairly
complicated, this can be difficult.

Because each module depends on the previous modules it is necessary
that the input – the output from the previous module – is good enough.
However, there are usually several possible inputs that will allow the
current module to produce good enough output for the next module. This
means that it is practically not feasible to define a set of «correct» outputs
that we expect the module to produce if it performs well, simply because
there are too many of them.

42

Note that this does not mean that it is impossible to know something
about what we expect the output to contain. For some modules this is
trivial, for example for the question analysis module, which is responsible
for returning exactly one of a predefined set of possible expected answer
types. For document and passage retrieval we can sometimes define what
we want the modules to produce: if we know that there is a finite number
of relevant passages in our set of documents, we could define a correct
output from a passage retriever to be any output that contains at least one
of these passages. In most cases, however, we do not know when we start
the error analysis process how many, if any, passages contain the answer to
the question.

More generally, in order to determine whether something is incorrect
we need to have a notion of what properties the «perfect» answer is
supposed to have. Without the context of the correct answer we have no
metric with which to compare the output we want to evaluate. We do
not always have to know the exact answer to a question to know whether
a system answer is incorrect. Let us imagine that a question answering
system answered our example question incorrectly:

Question How many people live in New York City?
System answer 1

If we had a human assessor evaluate this answer they would not have to
know the exact answer in order to immediately dismiss the system answer
as incorrect. For the human the system answer is obviously wrong, because
most people know that New York City is a large city.

This principle also holds true between individual modules in a question
answering system. For example, we could have a very simple pattern
matching algorithm for determining the expected answer type which only
looked at the first word of the example question. In the case of our current
example it would be the word «how», and we could reasonably expect that
this question asks for the manner of something, but if a human looked at
the question this expected answer type would immediately stand out as
incorrect.

If we do have knowledge of a suggested gold answer, however, we have
yet another approach to finding errors. Looking only at the suggested gold
answer, a number, we can see that an expected answer type asking for
manner is incorrect. For our data set we already have access to suggested
gold answers because they were part of the data set, and if we did not have
access to them it would be possible to construct them manually.

This property of the data set is very useful, not least because it allows
us to automatically evaluate the system answers, but also because it gives
us another angle from which we can evaluate the output of each module.
For example, we can look at the output from the passage retriever and see
if at least one passage contains the suggested gold answer, as we did when
we established the upper bound for this data set. If at least one passage
contains the suggested gold answer we know that it is possible for the
passage retriever to return an ideal output. This kind of evaluation would

43

be a lot more time consuming, if not outright impossible, if we only had
access to the questions.

5.2 Error analysis

With the above reflections in mind, let us turn to error analysis2. In order
to improve our system we need to know what kinds of errors the system
makes. Error analysis is the process of finding this information.

There are different approaches to error analysis, depending on how
much detail we want to have on each error. Broadly we can define the
different methods as either statistical or manual. Statistical error analysis
gives us a broad overview of subsets of questions and answers, and how
well the system performs on these. If we want an overview over what kind
of questions we want to focus on this is a good way of analysing errors.
For example, Table 5.2 shows a statistical analysis of errors categorised by
question type. When we perform statistical analysis we have to know the
categories we want to look for before we start analysing.

When we perform manual error analysis, on the other hand, we
construct the categories of errors as we perform the analysis. We perform
manual error analysis when we want to know the exact details of what
went wrong in our system. Manual error analysis is much more time
consuming than statistical error analysis, but absolutely necessary if we
want to understand what went wrong and how to fix the problems. In
manual error analysis we go through the output of each module in an
attempt to discover where the error originated.

Examples of categories when we perform statistical error analysis can
be, for example, «by expected answer type» and «by length of question»,
and must be determined before we start the analysis. When we analyse
errors manually the categories emerge more dynamically as we try to find
errors that have something in common. Examples of categories can be
«caused by passage retriever» or «unable to find relevant passage». It is up
to whoever performs the error analysis to determine what categories make
sense for this particular error analysis.

Error analysis in general is typically a combination of both statistical
and manual methods. We often start with statistical error analysis and
move to manual error analysis when we have a notion of what to look for.
Statistical error analysis is usually fairly fast, both in collecting the data we
want to get and in analysing it. Manual error analysis, on the other hand,
can take a very long time. We will discuss our attempts to reduce the time
spent on manual error analysis in Chapters 6 and 7.

2Error analysis is also called performance analysis. We prefer the term error analysis
in this thesis because we want to focus on how to find and remove errors, while improved
performance is a byproduct.

44

5.3 Analysing our baseline system

In this section we will go into detail on what error categories we found. We
started with an initial manual error analysis, described in this section, and
from this basis determined that we needed a more detailed error analysis
on some questions, which we will describe in Section 5.5.

Version 0.9

Initial bug fixes

Version 1.0

Sentence
retriever cutoff

Sentence retriever
algorithms

Correct weighing of
answer candidates

Return more
than one digit

Answer evaluation

Version 2.0

Figure 5.1: The workflow of our manual system development cycle.

Figure 5.1 shows a visual representation of the workflow in our
development cycle. After a short round of bug fixes, we had a version we
were happy with, and which we used for the remainder of our development
cycle. The last improvement on the system was a new method for evaluating
whether an answer was correct.

5.3.1 Initial bug fixes

In the following subsections we will assign categories to errors in the
baseline system, and attempt to improve on the baseline system.

In the first round of error analysis, we found a handful of errors that
were so obvious and easy to remove that we simply removed them and ran
the system again. The results from this version of the system, let us call it
version 0.9, are not interesting enough that we will use space on describing

45

them in detail, but because bugs are almost bound to happen in any kind of
system engineering we will broadly describe what they were.

First, in this version of our software we had a module responsible for
normalising numerals into digits. This part of the system also introduced
a small problem because it turned the word «and» into a «0» – which is
excellent when we want to translate «one hundred and twelve» into «112»
(not «100 and 12»), but not when the module translates «cats and dogs»
into «cats 0 dogs».

We also observed and fixed that the system originally would do part-
of-speech and named entity tagging on partly normalised sentences.
These methods assume that they will process normal natural language,
so normalised sentences made them perform badly. This in turn caused
problems when we extracted answer candidates by word types or named
entity tags.

The remainder of this chapter describes variations on the fixed baseline
system, without these errors, and we will call this version version 1.0.

5.3.2 Error analysis on the baseline system

Because we did not want to overfit our system to the data we could not
perform detailed error analysis on all the results from the simple baseline.
For our first error analysis we looked at only the dev1 sets from the three
years. For each question that we were unable to get the correct answer for,
we looked at the outputs of the different parts of the system and noted down
where the error first originated.

Out of a total of 218 questions over all three sets we had 164 incorrect
answers. An overview of the performance is shown in Table 5.1.

Year Questions Accuracy (%)
2008 90 21 (23.4%)
2009 49 14 (28.6%)
2010 79 19 (24.0%)
Total 218 54 (24.8%)

Table 5.1: Accuracy across all three years of dev1 sets.

Statistical analysis of results by expected answer types, shown in Table
5.2, suggests that our system performs comparatively well, though worse
than the majority baseline from Table 4.1, on yes/no questions but badly
on everything else. That the system performed better on yes/no questions
than the other question types is by itself not surprising, since we know that
yes/no questions are easier to answer due to the fact that they only have
two possible answers, but it is still a useful result to have because it tells us
that we do not have to look too closely at these kinds of questions but can
focus on the other, more complicated questions.

Manual error analysis on our system yielded six different categories, as
detailed in Table 5.3. To give a better understanding of how we came to
these categories we will give some examples of each kind of error. The

46

Year Question type Total Correct
2008 What 24 1

Who 4 0
When 2 0
Number 5 1
Yes/no 45 19
How 2 0
Where 6 0
Why 2 0

2009 What 8 0
Who 0 0
When 3 1
Number 7 0
Yes/no 25 13
How 1 0
Where 5 0
Why 0 0

2010 What 17 0
Who 4 0
When 7 0
Number 8 0
Yes/no 38 19
How 3 0
Where 2 0
Why 0 0

Table 5.2: Summary of the different expected answer types according to our
question typer, and performance of simple baseline on these.

sentence retriever error category has more than one cause, and we will
review sentence retriever errors in Section 5.4

All these errors, except the two categories «System answer different
from gold answer» and «Cross-sentence reference», are tightly connected
to a module. «Sentence retriever» errors are tied to our sentence retriever.
«Wrong answer retrieved from sentence» and «Negation detector» errors
are tied to answer extraction, and «Question typer» errors to our question
analysis module.

5.3.3 Wrong answer retrieved from sentence

Sometimes the correct sentence was returned, but the answer extraction
and answer selection modules were unable to determine the correct answer:

Question What may a leopard be mistaken for?
Sentence 1 Johns Hopkins University Press 1999 ISBN 0 8018 5789 9

One of many spotted cats, a leopard may be mistaken for a cheetah or
a jaguar.

47

Category Number of errors
Sentence retriever 92
Wrong answer retrieved from sentence 29
Negation detector 17
Question typer 15
System answer different from gold answer 8
Cross-sentence reference 3
Total 134

Table 5.3: Types and number of errors according to manual error analysis
on development set 1 across all three years.

Sentence 2 Males are considerably larger than females and weigh 37 to
90 kg compared to 28 to 60 kg for females.

Sentence 3 They are circular in East Africa but tend to be square in
southern Africa.

Sentence 4 In Antiquity, it was believed that a leopard was a hybrid be-
tween a lion and a panther, as is reflected in its name, a Greek com-
pound word derived from léon ("lion") and párdos ("male panther"),
the latter related to Sanskrit prdaku ("snake, tiger, panther").

Sentence 5 leopard The leopard (Panthera pardus) is an Old World
mammal of the Felidae family and the smallest of the four ’big cats’ of
the genus Panthera, along with the tiger, lion, and jaguar.

Sentence 6 The leopard consumes virtually any animal it can catch and
ranges from rainforest to desert.

Sentence 7 A panther can be any of several species of large felid; in North
America, the term refers to cougars, in South America, jaguars, and
elsewhere, leopards.

Sentence 8 The leopard is an agile and graceful predator.
Sentence 9 The leopard has rosettes rather than cheetah’s simple spots,

but they lack internal spots, unlike the jaguar.
System answer East
Gold answer A cheetah or a jaguar

In this particular instance the error is due to an error in the weighing
algorithm, which was supposed to give higher weights to answers that
occurred in more than one sentence, but was implemented in a way that
gave a penalty to answers that occurred multiple times. Another type of
error in the same category was when two or more answers were given the
same score, in which case we chose one at random. The randomly chosen
answer could equally likely be incorrect as correct. We will analyse this
category in closer detail in Section 5.5.

5.3.4 Negation detector

Our system detects negations simply by looking at whether any of the
retrieved sentences have the word «not» in them. This is obviously not the

48

best way of detecting negations, since it is very sensitive to false positives.
Recall that this analysis is performed on the performance of the system
version 1.0, which retrieves up to ten sentences and therefore is very likely
to introduce a false positive. As we already know the majority of questions
are yes/no type questions, so all improvements on these kinds of questions
are going to significantly affect the overall accuracy.

To have a measure of how many false positives the negation detector
caused we let the system run one more time with the same settings, but
answering only «yes» to all yes/no questions. Table 5.4 shows the impact.
The high number of answers that are «yes» (see Table 4.1) is obviously a
property of our particular data set and should not be seen as reflecting all
possible data sets. Answering «yes» to all the yes/no questions is obviously
not the way to solve this error, we only perform this statistical analysis to
show how important it is to solve it.

Set Baseline Answering yes to all yes/no questions
2008 28.9% 44.4%
2009 28.6% 38.8%
2010 13.9% 30.4%

Table 5.4: Impact of answering yes to all the yes/no questions

5.3.5 Question typer

The «question typer» category is not limited to errors that are directly
caused by the question typer. Assigning incorrect question types are not
always the cause of an error – for example, a location is often also a noun, so
a question that should be classified as a «where» question but is classified as
a «what» question can still be answered correctly by our system. Looking
only at the questions and expected answer types, we get the summary as
shown in Table 5.5. Note how there are 16 errors in this Table, but only 15
errors categorised as a «question typer» error in Table 5.3.

This category also includes errors caused by an incorrect assumption by
our part about the expected answer type, such as:

Question Where do leopards often hide their kills?
System answer Panthera
Gold answer in dense vegetation

Where-questions are assumed to have a geographical location as the
answer, and as we can see this is not correct in all cases. In this case,
the system mistook «Panthera» for a likely location (it is actually the Latin
name for leopards).

One question is classified as a yes/no question, but is in fact a question
that gives us two alternatives and asks us to choose one:

Question Did the golden age of xylophones come before or after the first
usage of the European-derived orchestral?

49

Set Questions Incorrect answer type
2008 90 2 (2.2%)
2009 49 6 (12.2%)
2010 79 8 (10.1%)
Overall 218 16 (7.3%)

Table 5.5: Summary of incorrect answer types over all dev1 sets.

System answer YES
Gold answer after

5.3.6 System answer different from gold answer

There are some questions where the system answer is correct, just different
from the gold answer:

Question Is Central Park adjacent to Uhuru Park?
System answer YES
Gold answer Central Park is adjacent to Uhuru Park.

In these cases it is also extremely difficult to get the exact same answer
as the gold answer. For all intents and purposes the system answer is
correct, but it is marked as wrong because of the way we judge correctness
in our questions. We will show a more refined approach to judging answers
in Section 5.5.7.

5.3.7 Cross-sentence reference

Cross-sentence references are errors where the system retrieved and
identifies the correct sentence but the answer itself needs to be extracted
from another sentence because the verbatim answer is not present. An
example of this is:

Question Who spent the next 10 years painting for Look magazine?
Relevant sentence He spent the next 10 years painting for Look maga-

zine, where his work depicted his interests in civil rights, poverty and
space exploration.

System answer NULL
Gold answer Norman Rockwell.

In this example we would not be able to extract the gold answer because
the the gold answer is not present – we would need information from
another sentence in order to figure out what the word «he» refers to.

5.4 Improving sentence retrieval

One module that stands out as particularly problematic is the sentence
retriever. This is mostly due to the fact that the sentence retriever has

50

many different outcomes. More simply put, we could argue that the
task of sentence retrieval in our system is more difficult than question
typing, which is the only task (other than normalisation) performed before
sentence retrieval. It is also due to the fact that the rest of the modules
depend on the output of the sentence retriever in order to do their job.

5.4.1 Sentence retriever unable to retrieve a relevant
sentence

Sometimes the sentence retriever was unable to return a relevant sentence,
for example for this question:

Question What is a hybrid animal resulting from a union between a
leopard and a puma?

Sentence 1 The leopard consumes virtually any animal it can catch and
ranges from rainforest to desert.

Sentence 2 Once distributed across southern Eurasia and Africa, from
Korea to South Africa and Spain, it has disappeared from much of
its former range and now chiefly occurs in subsaharan Africa.

Sentence 3 Johns Hopkins University Press 1999 ISBN 0 8018 5789 9
One of many spotted cats, a leopard may be mistaken for a cheetah or
a jaguar.

Sentence 4 leopard The leopard (Panthera pardus) is an Old World
mammal of the Felidae family and the smallest of the four ’big cats’ of
the genus Panthera, along with the tiger, lion, and jaguar.

Sentence 5 Physically, the spotted cat most closely resembles the jaguar,
although it is of lighter build.

Sentence 6 In Antiquity, it was believed that a leopard was a hybrid be-
tween a lion and a panther, as is reflected in its name, a Greek com-
pound word derived from léon ("lion") and párdos ("male panther"),
the latter related to Sanskrit prdaku ("snake, tiger, panther").

Sentence 7 The generic component of its modern scientific designation,
Panthera pardus, is derived from Latin via Greek

Sentence 8 However, it is believed instead to derive from an Indo-Iranian
word meaning "whitish-yellow, pale"; in Sanskrit, this word’s reflex
was pandara, from which was derived pundarika ("tiger", among
other things), then borrowed into Greek.

Sentence 9 The leopard is an agile and graceful predator.

As an error category this is perhaps not particularly interesting, but it
is very important. Our sentence retriever had two problems: first, it was
sometimes unable to retrieve a relevant sentence, as in this example. Our
solution was to experiment with different retrieval algorithms. Second, if it
was able to retrieve a relevant sentence it also retrieved many irrelevant
sentences. The next two sections describe our attempts to solve these
problems.

51

5.4.2 Sentence retriever cutoff

Passage retrieval is an important part of question answering systems. In
our question answering system passages were defined as a single sentence,
so passage retrieval is synonymous with sentence retrieval. If we are
unable to retrieve a relevant sentence the remainder of the system will
be completely unable to answer the question. In order to better evaluate
the other modules of the system, which are perhaps more interesting to
evaluate in the scope of this thesis, we need to make sure that the sentence
retriever performs as well as it can. The following two subsections will
detail some error analysis and analysis of the sentence retriever.

The baseline system ranks all the sentences in the documents according
to a frequency-based measure and tries to figure out the answer from the up
to 10 sentences with the highest scores3. During manual error analysis we
looked at the sentences that were retrieved for each question and realised
that for each question, there was usually only one sentence that actually
contained the answer to the question. The rest of the sentences had an
impact on performance, but they were merely noise and if they helped the
accuracy of the system it was an accidental property of the document set,
not something we had planned for.

On one hand we need to return enough sentences that we are certain
that the sentence that answers the question is present. On the other
hand, any sentence that we include when we search for answers that is not
relevant is actually noise.

The number 10 seems like a suboptimal choice. Ideally we would like to
only return the one sentence that is relevant, but this would be extremely
hard to do automatically. Thus we need to aim for the next best thing, to
return enough sentences that we can be reasonably certain that we return
the relevant sentence, and no more than that.

In order to make an informed decision on what number of sentences to
return as the default, we decided to allow the sentence retriever to retrieve
1 to 10 sentences, with the remainder of the system unchanged, and have a
look at how the number of relevant sentences we retrieved had an impact
on our results.

We can see a general trend in all the Figures 5.2, 5.3 and 5.4. Fetching
a single relevant sentence is not ideal, but neither is 10 – and as we add
more sentences the accuracy goes down. Intuitively this makes sense, since
adding more sentences slightly increases the chance that we introduce the
«relevant» sentence, but greatly increases the chance that the sentence we
introduce is simply noise that will not further support the correct answer.

The ideal number of relevant sentences to get, just from looking at the
data in the figures, is a matter of interpretation. It seems that for most
questions the ideal number is one. On the other hand, there is a small peak
for some sets at five sentences as well, though that peak is only in a few

3Sometimes, as in the example in the previous section, the sentence retriever returned
less than 10 sentences because it was unable to find that many sentences that it judged to be
relevant. The sentence retriever was strictly speaking allowed to return up to 10 sentences,
we did not force it to return exactly 10.

52

2 4 6 8 10

20

25

30

35

Number of sentences

A
cc

u
ra

cy
in

%
d = dev1
d = dev2
d = dev3

d = tr ai ni ng

Figure 5.2: Impact of retrieving n sentences on accuracy for the question
sets from 2008.

cases higher than the accuracy with one sentence.
We theorise that the questions that are answered correctly with one

retrieved sentence do not necessarily overlap with the questions that are
answered correctly with five retrieved sentences. We will return to this
subject in Chapter 7, and for now choose to return five sentences in order
to increase the chance of returning the correct sentence.

5.4.3 Sentence retrieval algorithms

We experimented with three different algorithms for sentence retrieval.
The first is the frequency-based algorithm from the baseline version of
the system as described in Section 4.6. The other two are based on
respectively tf-idf and n-gram matching, and we will briefly describe how
these work before we go on to analyse their performance. Because this
analysis is closely connected the the sentence retriever, which we made
some discoveries about in Section 5.4.2, the following subsection will
describe a system version that is identical to the system version 1.0, except
that we have built upon the work in the previous subsection and run the
experiments so that each algorithm returns five sentences, not ten. The
remainder of the error analysis is performed on the baseline system without
modifications.

The first new sentence retriever algorithm we experimented with was
based on tf-idf (Manning et al., 2008) with the question as the search term.
We usually define tf-idf is the product of two numbers, term frequency (tf)
and inverse document frequency (idf). It is a scoring algorithm that aims
to give a higher weight to rare terms in a document on the assumption that
rare terms are more meaningful.

It is possible to define tf in different ways, we chose to implement it
in a way that simply counted how often a word (the term) occurred in the

53

2 4 6 8 10
10

20

30

40

Number of sentences

A
cc

u
ra

cy
in

%

d = dev1
d = dev2
d = dev3

d = tr ai ni ng

Figure 5.3: Impact of retrieving n sentences on accuracy for the question
sets from 2009.

sentence. Because we used tf-idf for sentence retrieval instead of document
retrieval we defined idf as

i d f = ∑
t∈q

f (t , s)

log(N
f (t∈d)

) (5.1)

Where t ∈ q is the words in the question, f (t , s) is the number of times
the word occurs in the sentence, N is the number of sentences in the
document and f (t ∈ d) is the number of sentences the word occurs in.

The other sentence retrieval algorithm we implemented was based on
finding n-grams that were the same in the question and in the sentences.
An n-gram is a sequence of n words, so for example in this sentence:

Example 10. «This is a sentence»

there are two 3-grams: «This is a» and «is a sentence».
We extracted all n-grams for n ≥ 3 from the question and searched

through the document for exact matches.
If an n-gram in the question occurs many times in the sentences a

very large number of sentences will be returned. Handling additional
sentences is fairly expensive, runtime-wise, in our system, so we would like
to not return too many. We ignore n-grams where n is less than 3, on the
assumption that 2- and 1-grams are so common that they would render the
method useless.

This means that we want to return at least one sentence (without at least
one sentence we have nothing to find answer candidates from) but not too
many.

The n-gram approach in contrast with frequency count and tf-idf is less
sensitive to noise from common words, but is also more strict. We may
not be able to return any sentences if one of the words in the n-gram is
a synonym for the word we wanted to match, or simply misspelled. In

54

2 4 6 8 10
15

20

25

30

35

Number of sentences

A
cc

u
ra

cy
in

%
d = dev1
d = dev2
d = dev3

d = tr ai ni ng

Figure 5.4: Impact of retrieving n sentences on accuracy for the question
sets from 2010.

Year Frequency +n-grams tf-idf +n-grams
2008 35.5% 43.3% 40.0% 43.3%
2009 44.9% 42.9% 46.9% 46.9%
2010 25.3% 34.2% 32.9% 34.2%

Table 5.6: Accuracy on dev1 sets across all years, with and without n-gram
sentence retriever

addition, this algorithm returns way too many sentences for the result to
be useful if one n-gram in the question occurs many times in the text. On
the other hand, n-grams take word proximity – how close to each other the
words we are looking for are in the sentence – into account, while frequency
count and tf-idf completely ignore this feature.

We did some analysis on the methods in order to establish whether they
were beneficial to our system. Table 5.6 show the impact on accuracy for
this system. For the n-gram method, we allowed the system to fall back to
one of the other methods if the n-gram method returned zero or too many
(more than five) sentences. We will experiment on mixing these approaches
in Chapter 7.

Across all sets, n-gram matching with tf-idf as the fallback algorithm
performed best. Additionally, we observed that using n-gram matching
improved run times, because we did not need to calculate how common
each word in the search term (the question) is in the document before we
started searching for relevant sentences.

If tf-idf was used, the score is the tf-idf score. If an appropriate number
of n-gram matches were found so this method was what returned sentences,
each score is equal to the size of the n-gram squared. Sentences with a score
of 0 were never returned.

55

Category Size
Word incorrectly penalised 7
Only first number retrieved 6
Wrong word chosen at random 4
Retrieving correct answer is too hard 4
Tagger makes a mistake 3
Correct sentence ranked too low 3
Only one word of gold answer retrieved 2
Total 29

Table 5.7: Categories of errors we made when the correct sentence was
retrieved

5.5 In-depth error analysis

The most interesting error category in several ways was the one where we
managed to retrieve the correct sentence with our sentence retriever, but
still got an incorrect answer. First, they are the errors that are closest to
an actual, correct answer, and second, they are diverse and highlight some
further problems both earlier and later in the pipeline. Therefore we look
particularly closely at these errors.

We performed another manual error analysis on the questions that
produced these errors, and broke them down into subcategories. We have
summarised these subcategories of errors in Table 5.7. Except for the two
largest subcategories, which are implementation errors in the code rather
than design choices, the subcategories are rather similar in size. All of
the errors seem like they can be removed, except the category where the
answers were simply too hard to get. In the following paragraphs, we will
walk through all sub-categories in turn, give examples, and discuss possible
system improvements.

5.5.1 Word incorrectly penalised

Words that occurred in more than one retrieved sentence were incorrectly
penalised in the first iteration of our system, instead of ranked higher as we
intended. Our example in the previous section was this:

Question What may a leopard be mistaken for?
Sentence 1 Johns Hopkins University Press 1999 ISBN 0 8018 5789 9

One of many spotted cats, a leopard may be mistaken for a cheetah or
a jaguar.

Sentence 2 Males are considerably larger than females and weigh 37 to
90 kg compared to 28 to 60 kg for females.

Sentence 3 They are circular in East Africa but tend to be square in
southern Africa.

Sentence 4 In Antiquity, it was believed that a leopard was a hybrid be-
tween a lion and a panther, as is reflected in its name, a Greek com-
pound word derived from léon ("lion") and párdos ("male panther"),

56

the latter related to Sanskrit prdaku ("snake, tiger, panther").
Sentence 5 leopard The leopard (Panthera pardus) is an Old World

mammal of the Felidae family and the smallest of the four ’big cats’ of
the genus Panthera, along with the tiger, lion, and jaguar.

Sentence 6 The leopard consumes virtually any animal it can catch and
ranges from rainforest to desert.

Sentence 7 A panther can be any of several species of large felid; in North
America, the term refers to cougars, in South America, jaguars, and
elsewhere, leopards.

Sentence 8 The leopard is an agile and graceful predator.
Sentence 9 The leopard has rosettes rather than cheetah’s simple spots,

but they lack internal spots, unlike the jaguar.
System answer East
Gold answer A cheetah or a jaguar

Both «cheetah» and «jaguar» occurred in more than one sentence and
were therefore (incorrectly) penalised. «East», on the other hand, occurred
in only one sentence and was therefore ranked highest. Because this was
an implementation error, it was fairly simple to solve by implementing the
correct ranking algorithm.

5.5.2 Only first number retrieved

The «only first number retrieved» error subcategory applies to a certain
type of questions, in the subcategory where the expected answer type is a
number. An error in the answer retrieval module made the system only
return the first digit in these answers, so any number that had more than
one digit was automatically returned incorrectly. This error was simple to
remove once we were aware of it. An example is:

Question How many letters are in the basic Latin alphabet?
System answer 2
Gold answer 26.

5.5.3 Wrong word chosen at random

We have already discussed the error subcategory where the wrong word
was chosen at random in Section 5.3.3. In these cases we returned several
answer candidates, and the answer validation module ranked both the
correct and some incorrect answer candidates equally. In these cases we
did not have any way of finding the best candidate, and we were forced to
return one at random. An example of this is the following:

Question Where is the leopard distributed?
Most relevant sentence Once distributed across southern Eurasia and

Africa, from Korea to South Africa and Spain, it has disappeared from
much of its former range and now chiefly occurs in subsaharan Africa.

System answer Korea

57

Gold answer southern Eurasia and Africa

Here the system correctly tries to find a location, assigns each item
that occurs the same number of times in the sentence an equal weight
and picks «Korea» at random. It is very difficult to deal with this kind of
error. One approach, if the different answer candidates are close enough
to each other, is to return a longer passage with all the different answer
candidates, so that we could be certain that the returned answer actually
answers the question. We will explore phrase retrieval in Section 7.4.2.
On the other hand, this approach would make the system answer longer
and contain more irrelevant information, which is hardly ideal. In this
particular instance we would have to return more or less the whole sentence
because the different answer candidates are so far from each other. Another
approach, which we described in Section 2.4, is to use proximity to a key
word to find the most likely candidate.

5.5.4 Retrieving correct answer is too hard

For some questions, retrieving the correct answer was simply too hard for
our system. Even if all our modules did their jobs perfectly the system
would not be able to return the correct answer. Some questions require
a level of analysis that our system will probably never be able to achieve.

Question When did Yuan Shikai die?
Relevant sentence Yuan gradually consolidated power and became by

1915 the new emperor but died less than a year into his reign.
System answer 1915
Gold answer 1916

Getting the system to add one to the year because of the phrase «less
than a year into» would require a level of engineering that is outside the
scope of this project.

This is also the case in the following example:

Question Was the xylophone associated with the folk music of the United
States by the 19th century?

Relevant sentence The xylophone, which had been known in Europe
since the Middle Ages, was by the 19th Century associated largely
with the folk music of Eastern Europe, notably Poland and Eastern
Germany.

System answer YES
Gold answer No.

Resolving this would require the system to know whether «Eastern Europe,
notably Poland and Eastern Germany» are parts of «the United States»,
which is a trivial task for humans but significantly harder for computers.

58

5.5.5 Tagger makes a mistake

Sentences were tagged with a part-of-speech tagger and with a named entity
recogniser. In same cases, these were not able to correctly tag the sentence,
which could lead to errors when we performed answer candidate extraction.
For example, for this question we found a sentence containing the correct
answer, but the named entity recogniser did not tag «Beiping» as a location:

Question In 1949, where did Communist forces enter without a fight?
Relevant sentence Mao Zedong proclaiming the establishment of the

People Republic of China in 1949 A man stands before a column
of tanks which were sent to Tiananmen Square earlier to suppress
the Tiananmen Square protests of 1989 On 31 January 1949, during
the Chinese Civil War, Communist forces entered Beiping without a
fight.4

System answer China
Gold answer Beiping

5.5.6 Correct sentence ranked too low

The subcategory labelled «correct sentence ranked too low» is hopefully
self-explanatory. The system returned up to 10 sentences, and if the
system answer was selected from a sentence ranked higher than the correct
sentence we counted it as an error in this subcategory.

5.5.7 Only one word of gold answer retrieved

For some questions, we managed to return one word of the suggested gold
answer, but not all. An example of an error in this subcategory is:

Question Who wrote the first novel in Finnish?
System answer Aleksis
Gold answer Aleksis Kivi

Here we have returned the first name of the author, but not the whole
name. Whether this answer should be accepted as correct is up for debate.
Ideally, though, we would like to return the whole answer and not just one
word.

This subcategory highlights two different problems with this version of
our system. The first problem was the fact that for most answer types we
retrieved only one-word answers, but the suggested answers were more
than one word. The exception was «why», which accounted for only two
out of all the questions we tested on in our error analysis. If we had been

4As an aside, this sentence looks strange because it consists of three sentences. The first
two sentences are apparently attached to an image in the Wikipedia article and have nothing
to do with the answer, while the last («On 31 January 1949 ...») is the actual sentence.
This happened because the source file was formatted in a way that made our sentence
segmentation algorithms make errors. We could have attempted to fix this problem, but
it turned out to be quite difficult. We will simply have to accept it as one of the problems
with this data set.

59

able to retrieve the correct sentences more often this type of error would
probably grow to be a lot larger. Table 5.8 shows how many of the gold
answers we could potentially answer correctly with the current approach.
We will return to returning more than one word in Section 7.4.2.

Year Set Questions One-word gold answers
2008 Training 551 (237) 318 (81)

Dev1 90 (46) 57 (11)
Dev2 91 (48) 57 (9)
Dev3 96 (45) 57 (12)

2009 Training 304 (149) 200 (51)
Dev1 49 (25) 36 (11)
Dev2 47 (26) 38 (12)
Dev3 48 (21) 26 (5)

2010 Training 475 (161) 209 (48)
Dev1 79 (29) 41 (12)
Dev2 79 (24) 36 (12)
Dev3 78 (33) 41 (8)

Table 5.8: Number of gold answers that are only one word, across all
sets. The numbers in parentheses are for the sets with yes/no questions
removed.

The second problem was that the way we evaluated system answers
was very strict, requiring the system to return answers that were exactly
identical to the suggested gold answers.

As our system started performing better we realised that we needed
a better way to evaluate answers. Breck et al. (2000) use an automatic
evaluation method that allows them to do manual evaluation only once,
when they construct suggested gold answers. They compare their system
answers to the gold answers and calculate the recall based on word
similarity, but their gold answers have a fixed length, and they specifically
note that a different approach must be used when gold answers have
variable lengths. With this in mind, we noted which answers we as humans
would mark as correct and recorded precision, recall and F-scores.

We analysed the 218 questions in the dev1 sets across all years and
observed that the system answers we judged to be correct had some
common properties, and they all met at least one of these criteria:

1. They match exactly with the gold answers

2. The recall was greater than or equal to 0.5

3. The precision was exactly 1

4. The system answer is «yes» or «no» and the gold answer begins with
the same, but has a qualifying statement.

The latter criterion is met 55 times across all sets (not just the dev1 sets).
An example of an answer that has this latter property is:

60

Question Is the octopus a cephalopod?
Gold answer Yes, the octopus is a cephalopod.

Based on this, we made our system first evaluate questions based on
exact matches, as in criterion 1, and then give us a list of answers that met
criteria 2-4 so we could evaluate these answers manually.

Compared to the two evaluation methods we have considered so far –
fully automatic and fully manual – this semi-automatic evaluation method
is a decent middle-way. Manual evaluation would be too time-consuming,
and as we have seen fully-automatic evaluation is not suitable for our set
of gold answers. Out of the 218 question-answer pairs in the dev1 sets, 18
answers had to be evaluated manually with this method. This is a significant
improvement time-wise from manual evaluation, and a fair improvement
accuracy-wise from the automatic evaluation method.

5.6 A new system version

After we found and to a large degree removed the errors we have discussed
in this chapter, we considered the first development set to be largely
exhausted. At this point we incorporated all the improvements we
discovered in this chapter into out question answering system, and in
Chapter 7 we will use this new version of the system, version 2.0, as a basis
for further improvements and analysis.

The differences between version 1.0 and 2.0 are as follows:

1. We retrieve up to 5 sentences we believe are relevant instead of 10.

2. We use an n-gram-based method for sentence retrieval, falling back
to tf-idf. instead of using the frequency-based method described in
Section 4.6.

3. We convert numerals to digits in the normalisation step.

4. We return numbers with more than one digit.

5. Sentences are ranked correctly.

6. Answer candidates occurring in more than one sentence are no longer
penalised.

We have so far not done anything to improve the system handling of
negations, but as we will see this category has been reduced as a result of
the sentence retriever retrieving fewer sentences. We have also not handled
cross-sentence references, but this category is small and likely not worth
the work it would take to improve upon.

Before we move on to discussing the methods we used in error analysis,
we will finish this chapter with a summary of the improvement in accuracy
on the first development set.

We can observe the impact of our problem fixes in Tables 5.9. There is
a significant improvement! While we still get more than half our answers

61

Year Questions Version 1.0 Version 2.0
2008 90 21 (23.3%) 44 (48.8%)
2009 49 14 (28.6%) 24 (48.9%)
2010 79 19 (24.0%) 33 (41.7%)
Average 218 54 (24.8%) 101 (46.3%)

Table 5.9: Difference in accuracy on dev1 sets, before and after first round
of error analysis and fixing.

incorrect, an improvement of almost 25 percent is encouraging. We have
also beaten our majority baseline from Table 4.1.

Category Before After
Sentence retriever 92 33
Wrong answer retrieved from sentences 29 48
Negation detector 17 4
Question typer 15 11
System answer different from gold answer 8 16
Cross-sentence reference 3 5
Total 164 117

Table 5.10: Errors, before and after manual development cycle.

In Table 5.10 we can see that the improvements we introduced to the
sentence retriever have helped quite a lot. Some of these have been moved
to the category under, «Wrong answer retrieved from sentence». The
detailed analysis of this category can be seen in Table 5.11, where the largest
subcategory is «Wrong word chosen at random». This suggests that in
addition to improving the accuracy of the system, we have also improved
the system in that we have moved the errors closer to the end of the
pipeline. This in turn means that the number of potential errors caused
by these question-answer pairs have been reduced, and we are thus closer
to a solution for the answers that are incorrect.

Category Before After
Word incorrectly penalised 7 0
Only first number retrieved 6 0
Wrong word chosen at random 4 20
Retrieving correct answer is too hard 4 8
Tagger makes a mistake 3 6
Correct sentence ranked too low 3 6
Only one word of gold answer retrieved 2 8
Total 29 48

Table 5.11: Detailed errors, before and after manual development cycle.

We also see a shift in the kinds of errors the system makes. Words that
are incorrectly penalised and bugs where only the first number is retrieved
are gone, and the number of sentences from which we get one correct word

62

increases. The same happens to the subcategory of errors where we get a
wrong word by random. These errors are in a way better than the errors
we had before we fixed our system, because they are at least closer to the
correct answer.

63

64

Chapter 6

Automating error analysis

In this chapter we will discuss error analysis methods and how they can be
automated. In the previous chapter, we detailed the results of a manual
error analysis, without much reflection on the methods themselves. This
chapter will begin with a description of how a manual error analysis is
performed and what kinds of results we wish to obtain with it, before we
move on to investigate how the methods used in error analysis can be
automated.

We will also compare the results from a manual error analysis with an
automatic error analysis on the data set and final system version from the
previous chapter.

Finally, we will draw some conclusions on where our system can be
further improved, based on the two error analyses.

6.1 Methods for error analysis

Error analysis has several requirements that must be met in order to be
useful to researchers and system developers:

1. The error analysis must reveal new information about how the system
functions and where the errors occur.

2. The information revealed must be correct, so that we do not base new
improvements on false information.

3. The error analysis must not take too long.

The first and second requirements overlap a lot. The first requirement
says that for each analysis of an error we would like to get a better
understanding of that error, not just confirm the information that we
already have. The second requirement is usually assumed to be met, but
most error analysis, particularly manual error analysis, is vulnerable to
human errors and misunderstanding of what the data shows, and we need
to be aware of this requirement.

We intuitively assume that spending more time on error analysis will
help us meet both the first and the second requirements. However, we

65

can usually not spend too much time on each kind of error, because
time spent on error analysis is time that we can not spend on system
improvement, experiments and so on. This is where the third requirement
comes in. Spending more time means that we find better and more accurate
information, and therefore helps us meet the first and second requirement,
while removing us from the third requirement.

A balance must be found between all the requirements, and what the
best balance is will vary between systems and who performs the error
analysis.

As an example, let us consider a case from our own system. For a word
to be retrieved as the most likely answer candidate for a «what» question
with a one-word gold answer, it must be the word that has the highest score
among words that are marked as nouns, across all retrieved sentences. We
would like the system to be able to retrieve that word, and not any other
words. If the system does not retrieve the correct word, we need to perform
error analysis.

In order to get a full understanding of why a word is chosen, we need
to make a list of all the words that are tagged as nouns in all the retrieved
sentences, sum up the score for each word, sort the list by score and then
choose the highest ranked words, and check if the chosen word is the gold
answer. If the chosen word is not the gold answer, we then need to locate
the gold answer in the list of answer candidates and determine why it was
not ranked higher.

All of this is certainly possible to do for a human, but if it has to be done
more than once it is not practically feasible. This means that when error
analysis is performed manually, the error analysis in our example meets
the first requirement very well, but if we have to perform the analysis many
times we fail to meet the third requirement.

If we wanted to meet the third requirement better, we could do so at the
cost of not meeting the first requirement to the same degree. For example,
a human could say «I see that the answer is present in this set of sentences,
but is not retrieved», which would take a significantly shorter time than the
full analysis and still provide useful information.

An automatic analysis of the same error, on the other hand, can quickly
determine whether the answer has the expected tag, and if so where in
the ranked list of answer candidates it is located. This means that the
automatic error analysis (in this instance) can find the same errors, with
a high degree of detail, but significantly faster than we could reasonably
expect from manual error analysis.

As we can see, how much detail we can expect to retrieve from error
analysis differs between manual and automatic error analysis. Manual
error analysis has the advantage that humans are better at seeing subtle
differences, as well as the advantage that analysers can come up with new
categories when necessary. Automatic analysis, on the other hand, can be
better at analysing and counting different but similar instances of errors
quickly.

66

6.2 Automating error analysis methods

As we mentioned in Section 5.2, there are, broadly speaking, two kinds of
error analysis: Manual and statistical. If we want to automate our manual
error analysis methods, we need to convert them to statistical methods.

Statistical error analysis methods count the number of occurrences of
something. This «something» needs to be known before we begin the
automatic error analysis. This is a very different approach from manual
error analysis, where we start with a set of uncategorised errors and
categorise them as we perform the analysis.

In other words: in manual error analysis we start with no pre-defined
categories, and make categories as we perform the analysis. In statistical
error analysis, we start with a full set of categories and assign each error
to one category (or several, depending on how we choose to perform
the analysis), but we are unable to make new categories as the analysis
proceeds.

Let us return to our definition of an error. In Section 5.1 we discussed
that in order to judge an output as incorrect, we often do not strictly
speaking need to know exactly what the expected output is. Rather, we can
say something about the expected properties of the output and see whether
it conforms to these expectations.

In the example in the previous section, we had the expectation that the
answer to a «what» question should be a noun. If the question is a «who»
question, we have the expectation that the answer should be a person. If
the output from a module does not meet this expectation – for example, if
no sentences from the sentence retriever contain a word tagged as a person
– we can assume that we have found an error.

At this point we have enough information to construct a statistical error
analysis method: For each «who» question, we check each sentence we
retrieve from the sentence retriever. If no sentences contain a set of words
marked as a person, we can count this as an error in the category «retrieved
sentences do not contain a person».

Because some errors are similar, and are caused by the same module
in our system, we can either generalise or specialise the categories before
we perform an analysis. For example, the category we just constructed
likely has counterparts in sentences that do not contain a date for «when»
questions, sentences that do not contain a location for «where» questions
and so on. We can either create a specialised category for each of these
errors, or we can create a more general category that collects all these
errors.

Either way, these categories need to be defined beforehand, and how
much detail we get from automatic error analysis depends on how detailed
the error categories are.

67

6.3 Implementation and categories in auto-
matic error analysis

We attempted to automatically perform an error analysis that could
be compared with the error analysis in the previous chapter. The
implementation of the automatic error analysis was fairly straightforward.
For each module, we decided which properties of the expected output we
could expect to be able to find automatically. We then implemented some
helper methods to our system which compared the actual output to the
properties of the expected output, and raised an alarm if they did not
correspond.

For each question-answer pair only one alarm could be raised, meaning
that a pair that generated an error in all modules would still only count
as one error. We chose this approach mainly because an error in an
early module usually means that the following modules will also cause an
error, so counting several errors for each pair would likely misrepresent
the performance of the later modules in our system. For each category we
retrieve some information based on the gold answer, make an assumption
about the expected properties of the module we evaluate and compare the
output from a system module with the expected properties.

An overview of the different error categories can be found in Table
6.2, but we would like to begin with an overview of the thought process
that went into the construction and implementation of detecting each error
category.

For the question typer, we expected that for number questions the gold
answer should be a number (and nothing else), and for yes/no questions
the gold answer should start with either yes or no. We could have checked
for word tags for the other expected answer types, but knew from the
manual error analysis that these errors were rare and more often caused
by a mistake in the tagging process than by an incorrect assumption about
the word tag.

Errors in the sentence retriever were easier to find. Because the answer
extraction is performed on the retrieved sentences, we know that the gold
answer has to be present in at least one of the retrieved sentences. The set of
sentences with the gold answer present were called the «gold sentences».
Because the retrieved answer is in most cases retrieved from the highest
ranked sentence, we also included another error category for when the
highest ranked sentence was not one of the gold sentences.

For question types that were not «number» or «yes/no», we expected
the gold answer to have either a part of speech tag or a named entity tag
depending on the question type. If the retrieved sentences did not include
the gold answer tagged (by the system) with the corresponding tag, we
assume that it is an error caused by an incorrect tag. If the gold answer
consists of more than one word, it is sufficient that one word in the gold
answer has the expected tag.

Note that for some question-answer pairs the error is caused by an
incorrect assumption on our part, for example when we expected the gold

68

answer to be tagged as a person in this example:

Question Who did Wilson win in 1917?
Gold answer Irish Americans

We will address this subset of errors in the next chapter, in Section 7.2.
In the version of the system we finished with in the previous chapter,

only one word is returned from the answer extraction module. In order
to be judged as at least partially correct, the returned word has to be a
substring of the gold answer. The answer extraction module returns a set of
answer candidates ranked by score (determined by number of occurrences
and the score of the sentences the occur in) and chooses the candidate with
the highest score. We created three different error categories for the answer
extraction module:

1. None of the answer candidates are substrings of the gold answer.

2. At least one of the answer candidates is a substring of the gold answer,
but is not one of the most likely answer candidates.

3. At least one of the answer candidates is among the highest ranked
sentences, but a different answer candidate is chosen at random.

All these errors are variations of problems in the answer extraction module.
The second to last error category collects answers that are substrings

of (but not completely identical to) the gold answer, and the final error
category collects questions that have not been found in any of the previous
steps but still do not produce the correct answer.

It is important to remember that the system has an inherent robustness
– each module only has to perform well enough, not perfectly – so it is
possible to automatically find an expected error that turns out to not be
significant enough to produce an incorrect answer. For example, as we will
see in Section 6.6, for some questions there are many sentences that contain
the gold answer, and it is sufficient to choose any one of them even though a
human would possibly say that that sentence does not answer the question.

Despite the robustness of our system, we would still like it to perform as
well as possible. In Section 6.6 we will perform some manual annotation of
our data set in order to analyse how well certain modules perform.

6.4 Comparison of results from manual and
automatic error analysis

In order to explore the usefulness of automatic error analysis, we performed
automatic error analysis on the dev1 sets from the previous chapter.

We repeat the results from the manual error analysis, which we
performed in the previous chapter, in Table 6.1, and show the results from
the corresponding automatic error analysis in Table 6.2.

The categories chosen for our automatic error analysis are based on
the findings in the manual error analysis, so it is not surprising that the

69

Error type Size
Sentence retriever 33
Negation detector 4
Question typer 11
System answer different from gold answer 16
Cross-sentence reference 5
Wrong answer retrieved from sentences 48
- Wrong word chosen at random 20
- Retrieving correct answer is too hard 8
- Tagger makes a mistake 6
- Correct sentence ranked too low 6
- Only one word of gold answer retrieved 8
Total 117

Table 6.1: Error types found manually at the end of manual development
cycle. Categories in italics are subcategories of «Wrong answer retrieved
from sentences».

categories to a certain degree overlap. For most of the error categories in
both analyses there is an underlying assumption that it is connected to one
specific module, and that that module is where the error originates.

Many categories in the manual error analysis overlap with categories in
the automatic analysis. The manual error category «Sentence retriever»
is for example very similar both in intention and size to «No retrieved
sentences ...» and «Highest ranked sentence ...». Similarly, two categories
in the automatic error analysis, «Question type is number ...» and
«Question type is yes/no ...» have to do with the question typer, and
correspond closely to the «question typer» errors in the manual error
analysis.

The error categories «Negation detector» and «System answer different
from gold answer» overlap with the general error category «Answer marked
as incorrect» in the automatic analysis. The same holds true for the
questions that we marked manually as «Retrieving correct answer is too
hard», but this also overlaps to a certain degree with the automatic category
«No sentences in the document ...». Cross-sentence references is another
example of a category that we were not able to search for and count
automatically.

«Wrong answer retrieved from sentence» overlaps with «Gold answer
must be chosen at random», «Gold answer was not scored highest» and
«No answer candidates were found». In these cases the automatic error
analysis is more detailed than the manual analysis.

The category for errors that stem from a lack of gold answers in the
source document overlaps with several of the categories in the manual
error analysis: some of them are placed in the category for questions that
are too hard, and others are manually categorised as a sentence retriever
error, because if no sentences contain the correct answer it is impossible to
retrieve a correct sentence.

70

Error type Size
No sentences in the document with an exact match to gold answer 26
Question type is number, gold answer is not 7
Question type is yes/no, gold answer is not 3
No retrieved sentences contain gold answer 26
Highest ranked sentence does not contain gold answer 6
No relevant sentences were found 0
No retrieved sentence contains gold answer with expected NER tag 0
No retrieved sentence contains gold answer with expected POS tag 4
Gold answer must be chosen at random 7
Gold answer was not scored highest 6
No answer candidates were found 9
System answer is substring of gold answer 15
Answer marked as incorrect 17
Total 126

Table 6.2: Error types found automatically, across dev1 sets.

We might say that the two different error analyses show us the same
errors from different angles, but since the error categories do not overlap
completely it can be difficult to compare them directly. Rather, we can
consider both to be useful in different ways. Manual error analysis can show
details that automatic error analysis can not, and automatic error analysis
can count details that a human analyser could not reasonably be expected
to do.

6.5 Analysis of results from the different error
analyses

With two different error analyses of the same system on the same data
set, it is probably safe to begin to draw some conclusions on how we
might improve the system. Aside from the category of answers that we
consider impossible to find, we find that the largest error categories in both
the manual and the automatic error analysis are caused by the sentence
retriever and the answer extraction module.

Both «No retrieved sentences contain gold answer» and «Highest
ranked sentence does not contain gold answer» from the automatic analysis
are caused by the sentence retriever. The manual analysis shows the
same tendency – though the category named «Sentence retriever» likely
contains some errors caused by a lack of gold answers in the document, the
sentence retriever also causes errors in the «Correct sentence ranked too
low» category.

For the answer extraction module we have more detailed information
on what went wrong. First off, we know that the difference in total errors
between the two analyses are caused by answers that are automatically
marked as incorrect, but are actually correct when judged manually. In
addition, the sum of errors in the categories «Gold answer must be chosen

71

at random», «Gold answer was not scored highest» and «No answer
candidates were found» adds up to a relatively large number of errors
caused by the answer extraction module. At the same time, they suggest
that the reasons for the errors in this module can be varied, since we do
not see that all the errors are due to, for example, that the correct answer
candidate receives a score that is too low.

The category for systems answers that are substrings of gold answers is
also connected to the answer extraction module and fairly large, and should
not be too hard to improve on if we can make the system return more than
one word.

6.6 Data set annotation

Automatic error analysis needs information about what we expect the
output from each module to conform to in order to function. The properties
that the output needs to conform to can often to a certain degree be
generated automatically.

For example, we expect that the sentences from the sentence retriever
should contain the gold answer, so if we have the gold answer we can, after
the sentence retriever has retrieved sentences, automatically check whether
the sentences contain the gold answer. However, it is often the case that
the gold answer is present in more than one sentence. For example, 52
sentences in the document connected to this question-answer pair contain
the phrase «Nikola Tesla»:

Question Who was born precisely at midnight during an electrical storm
in the present-day Croatia?

Answer Nikola Tesla

In this document there is only one sentence that a human would retrieve
if they were asked to find the sentence that answered the question, but
because we only expect the sentence retriever to perform well enough and
not perfectly, we can choose to not mark it down as an error if the answer
extraction module is able to return the correct answer. This robustness in
the system is a nice property that we could not have if we expected each
module to perform perfectly.

On the other hand, we want each module to perform as well as possible
in order to reduce the chances of an error in the system. Therefore, we
could analyse each module individually and see how well they perform. If
we know what the perfect answer is we could mark it down as a partial error,
in order to keep track of how often the system performs perfectly.

In addition to automatically retrieving sentences that contain the gold
answer and assume that the sentence retriever must return at least one of
these sentences in order to perform well enough, we can manually annotate
the data set with the perfect output1. In that case, we would need to go
through the sentences that contain the gold answer and find the one that

1This use for annotated output is commonly called an oracle.

72

is related to the question. This means that we get even more accurate
information on how well a module in our system performs.

Again, we need to consider the time aspect. If finding the «perfect»
sentence takes much time and gives us little to no new information, the
requirements to economic error analysis are not met.

This data can be used for two purposes. First, it can be used for
evaluation: instead of making an assumption about what properties the
module output should have, we can check the module output against the
data we have found manually. What this means is that we can get the
accuracy of manual error analysis, but perform automatic error analysis,
though only for the question-answer sets we have annotated.

The second purpose of annotated data sets is to simulate system
performance when one system module performs perfectly. In these cases
we run the system as normal, but instead of running a module we replace
the output from the module with the annotated data. For example, we
can manually find the «best» sentence the sentence retriever can find
and instead of running the sentence retriever simulate that it returns the
sentence we have actually found manually.

To examine the usefulness of this method we will annotate the output of
two modules in our system: the question typer and the sentence retriever.

6.6.1 Question typer

One module for which we can manually annotate our data set in order to
make the system behave as though the module performed perfectly is the
question typer. A manual error analysis on only the question typer reveals
that the question typer performs quite well, with only six errors across all
three dev1 sets. We show the errors in Table 6.3.

System
What Who When Number Yes/no How Where Why

G
ol

d

What 41 0 0 0 0 0 0 0
Who 0 7 0 0 0 0 0 0

When 2 0 12 0 0 0 0 0
Number 2 0 0 20 0 0 0 0

Yes/no 1 1 0 0 108 0 0 0
How 0 0 0 0 0 6 0 0

Where 0 0 0 0 0 0 18 0
Why 0 0 0 0 0 0 0 2

Table 6.3: Confusion matrix of question typer performance.

One observation we can make is that our question typer performs quite
well. The greatest number of miscategorised questions end up as «what»
questions. This is because our question typer defaults to «what» when it is
unable to properly categorise the question.

Another observation is that the question typer is incorrect only 6 times
across these sets. Compare this with the results we got in Table 6.2, where
we got 10 question typer errors. The question typer errors in the automatic

73

error analysis are also connected to two specific question types, «number»
and «yes/no», while in the manual error analysis they are slightly more
spread out. This means that the question type errors in our automatic error
analysis are not always caused by the question typer itself, but rather by the
assumptions we make when we detect some question types.

The combination of Tables 6.2 and 6.3 show a more detailed represen-
tation of what errors are caused by the question typer – either directly be-
cause the question type is incorrect or because we make an assumption that
is not 100% correct – than the manual error analysis could show by itself.

Error type Normal Annotated
No sentences in the document ... 2 2
Question type is number, gold answer is not 0 1
No retrieved sentences contain gold answer 1 1
No retrieved sentence ... with expected POS tag 2 0
No answer candidates were found 1 0
Total 6 4

Table 6.4: Automatic error analysis of the six questions with incorrect
answer types. Categories with no occurrences in either run have been
removed.

The automatic error analysis of the system performance on the six
questions that get an incorrect question type is shown in Table 6.4. A
manual annotation of the data set shows that improving the question typer
does improve the overall performance of the system. As expected, the
improvement is found in the category connected to an unexpected part of
speech tag. This is because the question typer and the expected tag are
closely connected. However, the data set is perhaps too small for these
results to be of significant value going forwards – a consequence of the fact
that our question typer performs quite well.

6.6.2 Sentence retriever

One module that we know is important is the sentence retriever. The reason
for this is that while the sentence retriever performs the same operation
regardless of the previous modules in the system (except if the question type
is yes/no), the rest of the system is very dependant on how well the sentence
retriever performs. Therefore, improving the system in the modules before
the sentence retriever might not improve the final output of the system if
the sentence retriever does not perform well enough.

At this point we have two sets of sentences that are going to be retrieved:
one for the system and one for the error analysis. The first is the set of
sentences from the system. These are the sentences the system retrieved,
based on the information from the question.

The second set is the set of sentences where we know that the gold
answer is present. These are the sentences we compare the system
sentences with in our automatic error analysis. The usefulness of these

74

lie mainly in the fact that we know that if we do not retrieve any of these
sentences, the system will not be able to answer the question correctly.
These sentences are retrieved according to the answer, and are therefore
only available for error analysis, not to the system itself.

A gold standard for either of these sets can be constructed manually.
Further, the gold standard for either set is going to be the same. The ideal
set is going to consist of the one sentence that we think is most likely to
answer the question. If the gold sentences are replaced by this, we have a
gold standard we can automatically compare the output from the sentence
retriever to, and if we replace the output from the sentence retriever with
this sentence we can simulate that the sentence retriever has performed as
well as possible.

Annotating sentence retriever output turned out to be more difficult
than question typer output. First off, as we have already mentioned, for
some questions there were over 100 sentences that contained the gold
answer, which made the process lengthy. Second, for some questions the
gold answer was present in some sentences, but not in any sentences that
directly answered the question. One example is cross-sentence references,
which we made a separate category for in the manual error analysis and
decided that would be too hard to solve in the scope of this project. Another
example is questions that are too hard, such as this:

Question How many territories joined to form Romania?
Sentence As a nation-state, the country was formed by the merging of

Moldavia and Wallachia in 1859 and it gained recognition of its
independence in 1878.

Gold answer 2

112 sentences contained the number «2» without having anything
to do with the question, and the correct sentence does not contain the
number, the system would have to count «Moldavia and Wallachia» as two
territories if it was to get the correct answer from the sentence.

For some questions more than one sentence contained the gold answer,
and could also be chosen by a human as the correct sentence:

Question When did Beijing host the Olympic Games ?
Relevant sentence 1 The city hosted the 2008 Olympic Games.
Relevant sentence 2 On 13 July 2001, the International Olympic Com-

mittee selected Beijing as the host for the 2008 Summer Olympics.
Relevant sentence 3 Beijing hosted the 2008 Summer Olympics and the

2008 Summer Paralympics.
Gold answer 2008

With this in mind, we collected the 36 question-answer pairs from the
dev1 sets where the gold answer was present in more than one sentence
in the document. For each question, we found the sentence we thought
was most appropriate when seen in context of the question. If no sentence
was appropriate (for example if the question was too hard) we removed

75

the pair from the set. When more than one sentence was appropriate,
we chose the shortest sentence on the assumption that shorter sentences
would introduce less noise than long sentences. After these steps had been
performed, we were left with 29 question-answer pairs where we knew what
the «most» correct sentence was, as judged by us.

Error type Normal Gold Retrieved
No sentences in the document with ... 0 0 0
Question type is number, gold answer is not 0 0 0
Question type is yes/no, gold answer is not 0 0 0
No retrieved sentences contain gold answer 8 12 0
Highest ranked sentence does not ... 1 0 0
No relevant sentences were found 0 0 0
No retrieved sentence ... w/ expected NER tag 0 0 0
No retrieved sentence ... w/ expected POS tag 1 1 2
Gold answer must be chosen at random 3 2 5
Gold answer was not scored highest 3 2 3
No answer candidates were found 3 3 4
System answer is substring of gold answer 3 3 3
Answer marked as incorrect 2 1 2
Total 24 24 19

Table 6.5: Automatic error analysis of results from three runs on a set of
29 question-answer pairs. «Normal» is with no annotation, «Gold» is with
the gold sentences replaced with the annotated sentences and «Retrieved»
is with the retrieved sentences replaced with the annotated sentences.

The results in Table 6.5 show that annotation is indeed helpful. (The
error types here are shorter versions of the full descriptions in Table 6.2,
shortened so the table would fit on the page.)

For the column labelled «Gold» we replaced the set of all gold sentences
with the one sentence we judged to be the correct sentence, meaning that
instead of a potentially large number of sentences that could match the
retrieved sentences we had only one. Not surprisingly, this caused the
evaluation to show more sentences that did not match the gold sentences,
because the gold sentences was only this one sentence.

In the column labelled «Retrieved» we replaced the output from the
sentence retriever with the one sentence we judged to be correct, meaning
that we have simulated a system run where the sentence retriever always
performs perfectly.

The point of annotating the most correct sentences and comparing the
output from the sentence retriever to these was to see how well the sentence
retriever performs. The slight increase in errors in the sentence retriever
categories shows that the sentence retriever performs quite well on these
sentences, with only two additional occurrences when the size of the set of
correct sentences are decreased. That it has increased at all suggests that
the system, as we have already mentioned, has an inherent robustness that
allows it to return correct answers even if the sentence retriever does not
perform optimally.

76

In the second run we have substituted the retrieved sentences with the
annotated sentences, meaning that the system always «retrieves» exactly
one correct sentence. We first of all see that the number of overall errors
have been decreased by 5, and we also see that the errors shift to later error
categories. These results are not surprising, and show that annotation of
the data set can indeed shift the focus of the automatic error analysis away
from a certain module and onto the following modules.

6.7 Expanding categories for automatic error
analysis

When we improve and add new features to our system, we can assume that
we will also introduce new errors as well. Because we need to know the
error categories before we can perform automatic error analysis, we would
ideally like to consider what they can be before we observe the new errors.

There are several ways to handle this: we can either compare the results
of automatic error analysis before and after the new feature has been added,
or we can anticipate what kinds of errors the new feature will introduce
and attempt to count them. Another solution is to perform a manual error
analysis on a small subset of the errors that are produced with the new
version of the system and attempt to use the error types found in this
analysis as a basis for categories for a new automatic error analysis.

In the next chapter we will introduce some new features to our system.
Before we introduce each feature we will consider what kinds of errors the
feature might introduce, and how we can detect these errors automatically.

77

78

Chapter 7

Semi-automatic
development cycle

In this chapter, we will discuss a second development cycle, assisted by the
automated methods we introduced in the previous chapter. Again, rather
than constructing a cutting-edge question answering system the point of
further development is to evaluate whether the techniques introduced in
the previous chapter are useful in system development.

Rather than use full data sets, the data sets used in this development
cycle were reduced to minimise the number of errors we could not do
anything about, and the chapter will begin with a description of how this
reduction was performed.

We will then introduce some new features to our system, based on
the observations we have from the error analyses from the previous two
chapters, and for each new feature analyse the system with automatic error
analysis as well as its impact on overall accuracy.

Figure 7.1 shows the order in which we introduced which new features to
our system. Each new feature will be described in detail in its own section.
The modules we add the new features to are the sentence retriever, marked
with yellow in the figure, and the answer extraction module, marked with
green. For a reminder on which modules are present in our question
answering system, please refer to Chapter 4 or Figure 2.1.

Because we are going to introduce phrase extraction to our answer
extraction module, we need to reconfigure how we detect answers that are
potentially but not necessarily correct. This reconfiguration will also be
discussed.

We will reflect on how the automatic error analysis helped us in
introducing these new features, before we finally will show the overall
improvement on our system.

7.1 Data set processing

In the previous chapter we showed that the data set contains a large number
of errors caused by a lack of gold answers in the documents. We classify
these questions as impossible to answer, and performing error analysis on

79

Version 2.0

Fallback for
missing NER tags

Removing stop words

Choosing how many
sentences to retrieve

Version 3.0

Mixing retriever
algorithms Answer evaluation

Phrase extraction

Figure 7.1: The workflow of our automatic system development cycle.
Yellow boxes are new or changed features in the sentence retriever module,
green boxes are new features in the answer extraction module.

the system when it attempts to answer these questions would probably not
be particularly interesting. In addition, more question-answer pairs means
that the system itself needs more time before a run is finished, which in
turn means that our development takes longer because we have to wait for
the system to finish. For these reasons, for the second development cycle
we decided to remove question-answer pairs where the document did not
include the gold answer.

Because we reduced the data sets, we used both the dev2 and dev3 sets
from all years in the second development cycle so that the total number of
question-answer pairs did not grow too small. When we only wanted to
evaluate the impact a new feature had on the system performance we used
the reduced data sets.

We could have gone through the data sets and manually removed
pairs, but decided that since the goal was to reduce noise introduced by
impossible questions, not removing them completely, removing question-
answer pairs automatically would be good enough for our purposes. The
removed question-answer pairs had to fit both of the following criteria:

1. The question should not be a yes/no question, as judged by the
question typer in the system.

2. The suggested gold answer, exactly as written, should not be present
in the provided document.

The rationale behind this reduction of our data set is that question-
answer pairs that are impossible to answer for our system do not yield any

80

Set Full size Unanswerable Reduced size
2008, dev2 91 10 (11.0%) 81 (89.0%)
2008, dev3 96 15 (15.6%) 81 (84.4%)
2009, dev2 47 7 (14.9%) 40 (85.1%)
2009, dev3 48 11 (22.9%) 37 (77.1%)
2010, dev2 79 17 (21.5%) 62 (78.5%)
2010, dev3 78 11 (14.1%) 67 (85.9%)
Total 439 71 (16.2%) 368 (83.8%)

Table 7.1: Size of dev2 and dev3 sets, for all years, before and after all
unanswerable questions have been removed. Percentages are of size of the
full sets.

useful information in error analysis, especially compared to all the other
questions. We would rather focus our efforts on question-answer pairs that
have the potential to produce useful information than pairs that do not.

Set Full Reduced
2008, dev2 44.0% 49.4%
2008, dev3 44.8% 51.6%
2009, dev2 44.7% 52.5%
2009, dev3 35.4% 43.2%
2010, dev2 32.9% 43.5%
2010, dev3 44.9% 55.2%
Total 41.5% 49.7%

Table 7.2: Accuracy for system version 2.0 on full and reduced data sets.

We see the reduction of the data set in Table 7.1. It is important to
remember that removing impossible question-answer pairs is without a
doubt going to improve the perceived accuracy of our system. We need to
know the initial accuracy of the system so we have something to compare
our system to when we introduce new features. For our system version 2.0,
Table 7.2 shows the overall system accuracy before and after we reduced
the data sets. New features have to be compared to the rightmost column
in this table, not the results we obtained when we ran the system on the full
sets.

It should be noted at this point that even though we have removed all the
questions we judge to be impossible to answer, the corresponding category
in the automatic error analysis is not reduced to 0, as we are going to see
in the following sections. This is because we skipped yes/no questions as
judged by the system when we reduced the data set, but for some yes/no
questions the suggested answer does not contain either «yes» or «no», and
is therefore assumed by the automatic error analysis to be impossible to
answer. While we could have removed these questions as well, as long as
we are aware of them and what properties they have, and because all the
question-answer pairs have the same properties, we judged that the extra
work needed was not worth it.

81

7.2 Falling back to nouns in case of lacking
named entity tags

As we mentioned in the previous chapter, our system assumes that if the
question type is «who», «where» or «when» we need to retrieve a word that
is tagged with a corresponding named entity tag. As we have shown, this is
not always a correct assumption, as for example in this example which we
have shown before:

Question Who did Wilson win in 1917?
Gold answer Irish Americans

«Irish Americans» is not a person name and therefore will not be tagged
as a person by our named entity tagger. Therefore, in the system version
we had at the end of Chapter 5 – system version 2.0 – we would never be
able to answer this question. For some question-answer pairs this faulty
assumption caused our system to return no answer.

Therefore, the first improvement we introduced to our system was
simply that the system was allowed to return a noun for «who», «where»
and «when» questions if it was unable to retrieve a word with the expected
named entity tag. Note that even though both this feature and phrase
extraction, which we discuss later in this chapter, are features in the
answer extraction module, they are not directly connected. In fact, the only
question-answer pairs this feature does something for are questions that we
did not retrieve any answers for in the previous system version, meaning
that there is no way for this feature to lower the accuracy of the system.1

Because this feature was so obviously needed, could not adversely
impact the system and was at the same time easy to implement, we
implemented this feature before we added the other features in this chapter
(refer to Figure 7.1), and use the results from the system including this
feature as the baseline for further improvements.

Set Baseline With fallback
2008, dev2 49.4% 50.6%
2008, dev3 51.6% 51.6%
2009, dev2 52.5% 52.5%
2009, dev3 43.2% 43.2%
2010, dev2 43.5% 43.5%
2010, dev3 55.2% 55.2%
Total 49.7% 49.9%

Table 7.3: Total accuracy of our system, before and after fallback to nouns
have been added.

We must mention at this point that for this and the following sections,
the total count of errors differ slightly between the table showing accuracy

1This statement holds true because of the way we evaluate our answers – as we discussed
in Chapter 2, for some systems no answer is considered a better outcome than an incorrect
answer, but this is not the case for us.

82

and the table showing the results of the automatic error analysis. The table
showing overall accuracy has been judged semi-manually by us after the
criteria in Section 5.5.7. The table showing the results of the automatic
error analysis shows all possible errors found, meaning that some errors in
the table for automatic error analysis are not present in the table for overall
accuracy. This has been done to keep the tables for accuracy comparable to
previous, similar tables.

As expected, the impact on overall accuracy is minimal but positive, as
we can see in Table 7.3. Perhaps more interesting is to see how many times
this feature improved the output from the answer extraction module. This
can be seen in Table 7.4, which shows the results from the automatic error
analysis on the system after this feature had been added, and we can see
that the category «No answer candidates were found» has been reduced
slightly, pushing the errors down to the other subcategories of the answer
extraction module.

Error type Baseline Fallback
No sentences in the document with ... 10 10
Question type is number, gold answer is not 6 6
Question type is yes/no, gold answer is not 7 7
No retrieved sentences contain gold answer 43 43
Highest ranked sentence does not ... 19 19
No relevant sentences were found 0 0
No retrieved sentence ... with expected NER tag 0 0
No retrieved sentence ... with expected POS tag 10 10
Gold answer must be chosen at random 13 13
Gold answer was not scored highest 16 16
No answer candidates were found 13 7
System answer is substring of gold answer 19 20
Gold answer is substring of system answer 2 2
Answer marked as incorrect 48 52
Total 206 205

Table 7.4: Automatic error analysis of system with and without fallback to
nouns.

Note that in this automatic error analysis we have introduced a new
error category, «Gold answer is substring of system answer», that was not
present in the previous chapter. This is in preparation of a feature we are
going to discuss in Section 7.4.2, when we find phrases instead of just single
words. Until then, this category is going to contain a few instances of «why»
questions, where we retrieve full sentences instead of words.

7.3 Improvements in sentence retriever

From the analysis in the previous chapter, we know that one of the modules
that cause the largest number of errors is the sentence retriever. Therefore,

83

we decided to implement some additional features in order to improve on
the performance of this module.

The features we considered were removal of stop words, combination
of retrieval methods and finally a better approximation of how many
sentences we want the sentence retriever to return, in order to minimise
the noise we introduce for the answer extraction module. First, we will
discuss some new evaluation methods for the sentence retriever.

7.3.1 Evaluation of sentence retriever

With the introduction of gold sentences – the set of sentences that contain
the gold answer to a question – and automatic error analysis in the previous
chapter, we have more than one way of evaluating our sentence retriever.

The metric we have used so far is how much impact a change has on the
total number of correct answers. We can introduce two additional possible
metrics:

1. We can see how many errors are detected to originate in the sentence
retriever.

2. We can see for each question-answer pair how many sentences we
have to retrieve in order to retrieve a gold sentence.

The first new metric is based on the automatic error analysis. It
simply counts how many errors are detected in the error categories «No
retrieved sentences contain gold answer», «Highest ranked sentence does
not contain gold answer» and «No relevant sentences were found». These
are the errors that are found to be directly caused by the sentence retriever.

This evaluation metric has the weakness that, because we only report
the first error that occurs, it will not be able to detect problems in the
sentence retriever if the question-answer pair we analyse has already been
marked with an error.

The second metric is perhaps more accurate. What it tells us is how
many sentences we need to retrieve in order to theoretically be able to
answer the question. We can then collect these values and find how many
sentences we have to retrieve to be theoretically able to answer a certain
percentage of our questions. For example, if we say that we have to be able
to find the answer to all questions, we need to take the worst case – the
question where we have to retrieve the highest number of sentences before
we find one that contains the gold answer – and apply that number to all the
questions. This metric will be explained further and used in Section 7.3.4.

«Perfect» performance by the sentence retriever in this case is when the
first sentence the sentence retriever gets is in the gold sentences, meaning
that we only have to return one sentence.

7.3.2 Removing stop words

In Section 4.2 we mentioned that we did not remove stop words from the
normalised sentences, because we feared that this would remove important

84

information from the sentences. However, because we at this point know
that the sentence retriever is one of the largest contributors to the errors in
our system, it is necessary to actually evaluate the effects of removal of stop
words.

Rather than creating our own list of stop words we chose the list
provided by the NLTK package. This list, compiled by Martin Porter in
connection with his work on the Porter stemmer (Porter, 1980) includes
127 stemmed words, and can be seen in Appendix C.

Stop words were removed from the stemmed versions of the sentences,
meaning that the only system module which should be directly affected
by this change is the sentence retriever. For example, this change should
not reduce the number of potential answer candidates directly, since the
answer extraction works on unstemmed sentences. Of course, it is always
possible that the performance of other modules are affected as a result of
the new output from the sentence retriever.

Set Baseline Without stop words
2008, dev2 50.6% 50.6%
2008, dev3 51.6% 49.4%
2009, dev2 52.5% 47.5%
2009, dev3 43.2% 48.6%
2010, dev2 43.5% 43.5%
2010, dev3 55.2% 56.7%
Total 49.9% 49.7%

Table 7.5: Overall accuracy, before and after stop words have been
removed.

We see the impact on overall accuracy in Table 7.5. Somewhat surpris-
ingly, we can not immediately conclude from this table that removing stop
words have a positive impact on our system. Luckily, we have two further
evaluation metrics with which we can evaluate the performance. Let us look
at the automatic error analysis of the system performance.

Table 7.6 shows the results of the automatic error analysis. This analysis
shows that introducing removal of stop words has been beneficial for our
sentence retriever, even though the system as a whole performs about as
well as it has done before. The error category «No retrieved sentences
contain gold answer» has been reduced significantly, but the errors have
mostly just been moved to later parts in the system pipeline, especially to
the other categories connected to the sentence retriever («Highest ranked
sentence does not contain gold answer» and «No relevant sentences were
found»).

This represents an improvement within the sentence retriever, because
where we earlier had 43 cases where we had no chance of finding the
correct answer («No retrieved sentences contain gold answer»), we now
have 31. That the highest sentence does not contain the gold answer is a
much smaller problem, and in many cases does not mean that the system
is unable to find the answer.

85

Error type Baseline No stop words
No sentences in the document with ... 10 10
Question type is number, gold answer is not 6 6
Question type is yes/no, gold answer is not 7 7
No retrieved sentences contain gold answer 43 31
Highest ranked sentence does not ... 19 26
No relevant sentences were found 0 2
No retrieved sentence ... w/ expected NER tag 0 0
No retrieved sentence ... w/ expected POS tag 10 12
Gold answer must be chosen at random 13 15
Gold answer was not scored highest 16 14
No answer candidates were found 7 6
System answer is substring of gold answer 20 21
Gold answer is substring of system answer 2 1
Answer marked as incorrect 52 57
Total 205 208

Table 7.6: Automatic error analysis, before and after stop words have been
removed.

7.3.3 Combining sentence retrieval methods

So far, only one sentence retriever algorithm has been used for retrieving
each sentence. In some cases, if one sentence retriever algorithm is unable
to produce a satisfactory output we can fall back to a more sturdy algorithm,
but in these cases the output from the first sentence retriever is completely
discarded (see Section 4.6 for the details).

Our n-gram based sentence retriever has been shown to improve
the overall accuracy of our system, but has the weakness that for some
questions, it will return many sentences with the same score, simply
because they all have the same number and length of n-grams present in
the retrieved sentences. For example, the smallest n-gram we expect to
be meaningful is a 3-gram. For some questions, n-gram sentence retrieval
finds many sentences with a 3-gram, and which subset of these sentences
is retrieved is mostly random (recall that we ultimately retrieve up to a set
number of sentences, not all sentences that match).

One solution to making the decision for which sentences to return in
n-gram sentence retrieval less random is to give the sentences to one of
the other retrieval algorithms and ranking the sentences by that measure
as well. That way, the sentences are ranked instead of in a random order
before we cut off the excess sentences and return what is left.

For example, if we have a document containing 300 sentences and the
n-gram sentence retriever finds 50 sentences containing a 3-gram matching
the question, the system at this point will return 5 of these 50 sentences at
random. The feature we are about to implement will allow the system to
give these 50 sentences as the input to one of the other retrieval algorithms,
and allow the other retrieval algorithm to choose which 5 sentences to
return, instead of picking 5 at random.

86

We have assumed that this combination of retrieval algorithms – first
retrieving sentences with n-gram retrieval and then sorting them with
another algorithm – is the ideal way of combining methods. This is mostly
founded on our analysis in Section 5.4.3. Another possibility is to imagine
that our primary algorithm, n-gram retrieval, performs badly, or at least
significantly worse than another algorithm, on a certain question type and
have the other retrieval algorithm handle all the questions of this type.
Detecting this question type (or another property of each question) could
then be treated as a machine learning problem, and determining which
combination of sentence retrieval algorithms to use for a question would
depend on which properties that question has.

While using machine learning to find how to combine algorithms
could certainly be interesting, we found that we were limited by time and
resources. Implementing the machine learning algorithm could potentially
turn out to take a long time, and we judged that it would be outside the
scope of this thesis.

As in the previous section we will evaluate the impact of this feature by
overall accuracy and the output of automatic error analysis.

Set Baseline Mixed algorithms
2008, dev2 50.6% 48.1%
2008, dev3 51.6% 50.6%
2009, dev2 52.5% 50.0%
2009, dev3 43.2% 40.5%
2010, dev2 43.5% 45.2%
2010, dev3 55.2% 58.2%
Total 49.9% 49.1%%

Table 7.7: Overall accuracy, before and after mixed algorithms have been
implemented.

The overall accuracy is seen in Table 7.7. For the 2008 and 2009 sets,
the accuracy is reduced, while the accuracy on the 2010 sets has been
improved. The overall accuracy has also been reduced.

The automatic error analysis shows more or less the same thing.
The distribution of errors have shifted slightly to later in the system
pipeline, but the difference is small. There is some evidence that the
ranking of sentences has changed, since there is a difference in how the
answer extraction module has retrieved answers, but other than that the
introduction of this feature has apparently not changed the performance of
our system in a major way.

The reduction in overall accuracy made us evaluate the addition of this
feature to be detrimental to our system, and it is not part of the final system
version.

87

Error type Baseline Mixed
No sentences in the document with ... 10 10
Question type is number, gold answer is not 6 6
Question type is yes/no, gold answer is not 7 7
No retrieved sentences contain gold answer 43 40
Highest ranked sentence does not ... 19 20
No relevant sentences were found 0 0
No retrieved sentence ... w/ expected NER tag 0 0
No retrieved sentence ... w/ expected POS tag 10 10
Gold answer must be chosen at random 13 14
Gold answer was not scored highest 16 16
No answer candidates were found 7 7
System answer is substring of gold answer 20 22
Gold answer is substring of system answer 2 2
Answer marked as incorrect 52 55
Total 205 209

Table 7.8: Automatic error analysis, before and after mixed methods have
been implemented.

7.3.4 Number of relevant sentences

As we mentioned in the beginning of this section, we have a new way
of evaluating the performance of sentence retrieval, which is directly
connected to how many sentences we should retrieve.

In Section 5.4.2 we evaluated the impact of retrieving a different
number of sentences on the overall accuracy. With the introduction of
gold sentences in the previous chapter, we now can evaluate how many
sentences we have to retrieve in order to retrieve at least one gold sentence.
If we retrieve fewer than that many sentences, we will not be able to answer
the question, and if we retrieve more sentences we increase the probability
that we introduce noise to our system. Thus, the optimal number of
sentences to retrieve is in most cases just enough to retrieve the first gold
sentence, and no more.

When we look at Tables 7.9 and 7.10, we should keep in mind that the
differences in the system features mean that a slightly different number of
total sentences are retrieved. When we remove stop words the accuracy
improves, but we also retrieve a slightly smaller number of sentences
overall. However, the sentences that we do not retrieve are sentences
that are would not help the system, being for example ranked as sentence
number 130 and therefore scored too low to impact the choice of answer
candidate.

Table 7.9 shows how certain we can be that we retrieved at least one
sentence containing the gold answer when we retrieve 1 to 5 sentences.
Recall that the point is not by itself to increase the percentage to the highest
possible number – if that was what we wanted we would just retrieve all
sentences – but rather to to find the point where we retrieve just enough
sentences that we are able to answer most questions, which is a balance

88

Method Set 1 2 3 4 5
Baseline 2008, dev2 50.0% 71.4% 71.4% 78.6% 82.1%

2008, dev3 57.7% 73.1% 96.1% 96.1% 96.1%
2009, dev2 66.7% 91.7% 91.7% 91.7% 91.7%
2009, dev3 76.9% 84.6% 100.0% 100.0% 100.0%
2010, dev2 44.4% 59.3% 66.7% 70.4% 70.4%
2010, dev3 81.8% 90.9% 95.5% 95.5% 95.5%
Overall 60.2% 77.2% 88.2% 90.2% 91.2%

Stop words 2008, dev2 68.0% 84.0% 88.0% 92.0% 96.0%
2008, dev3 68.0% 80.0% 96.0% 100.0% 100.0%
2009, dev2 81.8% 90.9% 90.9% 90.9% 90.9%
2009, dev3 61.5% 92.3% 92.3% 92.3% 100.0%
2010, dev2 44.4% 66.7% 85.2% 92.6% 92.6%
2010, dev3 69.6% 73.9% 91.3% 91.3% 95.7%
Overall 63.7% 79.0% 91.2% 95.2% 97.2%

Table 7.9: Percentage of sentences that include a gold sentence, for 1 to 5
retrieved sentences, with different features added to sentence retriever.

between retrieving enough sentences (increasing the percentages in Table
7.9) and not retrieving too many, because that would introduce noise for
our answer extraction.

Table 7.10 shows, for the set of sentences that contain at least one
sentence with a gold answer, the mean position of the highest ranked
sentence containing the gold answer. For this table we removed all
question-answer pairs where the highest gold sentence was ranked higher
than 10 (with 1 being best), on the assumption that if we retrieve more than
10 sentences we would not be able to retrieve the answer from the set of
retrieved sentences. This assumption is partially supported by our analysis
in Section 5.4.2.

Because the mean position for the first gold sentence is between 1 and
2 for all sets of question-answer pairs, we choose 2 as the number of
sentences to be retrieved in the final system version. This also means that
we should be able to potentially answer at least 2/3 of all questions with
question type other than yes/no.

By all metrics, removing stop words improves accuracy in sentence
retrieval. We did find that we lost information, and that we were able to
return sentences for slightly fewer question-answer pairs when stop words
were removed, but we also found that we in those cases without exception
were unable to rank the correct sentence high enough to impact our choice
of answer candidate.

7.4 Improvements in answer extraction

The other module into which we introduced new features was the answer
extraction module. The first feature, falling back to nouns when we miss
an answer candidate with an expected named entity tag, has already been

89

Method Set Mean
Baseline 2008, dev2 1.69

2008, dev3 1.84
2009, dev2 1.27
2009, dev3 1.38
2010, dev2 1.85
2010, dev3 1.19
Overall 1.59

Stop words 2008, dev2 1.54
2008, dev3 1.56
2009, dev2 1.10
2009, dev3 1.62
2010, dev2 1.88
2010, dev3 1.59
Overall 1.60

Table 7.10: Mean position of first gold sentence in retrieved sentences,
ignoring positions greater than 10.

discussed in Section 7.2. The other feature is to retrieve longer phrases, in
the sense of «more than one word», instead of single words. In preparation
of this feature, though, we need to have another look at how we find
potentially correct answers. As we mentioned in Section 6.7, we also needed
to introduce a new error category, which we already did in Section 7.2.

7.4.1 Evaluation

In the previous versions of the system described in this chapter we have
used the method for finding potentially correct answers as described in
Section 5.5.7. Initial attempts at introducing phrase extraction to our
system showed that this method was not as well suited any longer, because
retrieving more words means that while recall can go up, precision is in
many cases going to fall significantly.

The previous method required recall to be at least 0.5 or precision to be
exactly 1. In practise, this meant that if the word we retrieved was present
in the gold answer the system answer could potentially be correct. When
we attempted to introduce phrase extraction, however, we found that the
criteria needed to change.

In the next section and the final system version, which we are going
to call version 3.0, the criterion for being manually evaluated is going to
be that the system answer must at least partially overlap with the gold
answer. This means a slight increase in the number of answers we have
to evaluate manually, while automatically evaluating all answers that are
either definitely correct or definitely incorrect.

90

7.4.2 Phrase extraction

Our phrase extraction method builds upon the previous answer extraction
method. The previous answer extraction module retrieved a single word
that was deemed to be the most likely answer candidate.

In our phrase extraction method, we take the retrieved sentences from
the sentence retriever and the word we found in answer extraction. We
then find the most likely sentence that also contained that word. From that
sentence, we find the longest phrase (as measured by number of words) that
has that word as its head. We chose to return the longest phrase because we
care less about returning short answers than we do about returning correct
answers. Our system is already unable to return answers that are longer
than one sentence.

Let us consider an example to show how the method works:

Question What is a person that makes or repairs violins called ?
Relevant sentence A person who makes or repairs violins is called a

luthier, or simply a violin maker.

The parse tree for the relevant sentence can be seen in Figure 7.2.
The answer extraction module finds that the word «luthier», marked

with a green box in Figure 7.2, is the most likely answer candidate. This
word is the head of several phrases, the longest of which is marked with a
yellow box (the other phrases are subphrases of this phrase). The longest
phrase is the phrase we return, meaning that where the previous answer
extraction module would return only the word in the green box, we now
return the whole phrase in the yellow box.

For some questions the answer was previously correct, but could be
improved on. One example is when we are asked for a person and the
system is able to find the correct name, but could previously return only
one of the names:

Question Who wrote the first novel in Finnish?
One word Aleksis
Phrase Aleksis Kivi

For many questions the answer was previously incorrect or not accurate
enough, but with the introduction of phrase retrieval the answer was
expanded enough to be judged as correct:

Question James Watt’s improvements of what were fundamental to the
changes wrought by the Industrial Revolution?

One word engine
Phrase The steam engine

In this example the single word «engine» is part of the correct answer,
but not precise enough to be judged as correct. Finally, we had some
questions where the answer was either expanded so that it became too long
to be precise enough, or simply added information that made the answer
ungrammatical or otherwise impossible to understand:

91

D
T

N
N

W
P

V
B

Z
C

C
N

N
S

N
N

S
V

B
Z

V
B

N
D

T
N

N
,

C
C

R
B

D
T

N
N

N
N

.
A

p
erson

w
h

o
m

akes
or

rep
airs

violin
s

is
called

a
lu

th
ier

,
or

sim
p

ly
a

violin
m

aker
.

root

d
et

rcm
odn

su
bj

cc

con
j

n
n

n
su

bjp
ass

au
xp

ass

xcom
p

p
u

n
ct

d
et

p
u

n
ct cc

con
j

ad
vm

odd
et

n
n

F
igu

re
7.2:

A
p

erson
w

h
o

m
akes

or
rep

airs
violin

s
is

called
a

lu
th

ier
,or

sim
p

ly
a

violin
m

aker
.

92

Question Who died at his house at Hampton Court on August 25, 1867?
One word Faraday
Phrase accessed June 2006 Faraday

Set Baseline With phrase extraction
2008, dev2 50.6% 48.1%
2008, dev3 51.6% 51.9%
2009, dev2 52.5% 52.5%
2009, dev3 43.2% 40.5%
2010, dev2 43.5% 46.8%
2010, dev3 55.2% 59.7%
Overall 49.9% 50.5%

Table 7.11: Overall accuracy, with and without phrase extraction.

As we can see from Table 7.11, phrase extraction does improve the
overall accuracy of our system. It is interesting to note that accuracy for
some sets decreases slightly, but the increase in the accuracy for the 2010
sets is large enough to positively impact the overall accuracy, showing that
the introduction of phrase extraction is positive for our system.

Error type Normal
No sentences in the document with ... 10 10
Question type is number, gold answer is not 6 6
Question type is yes/no, gold answer is not 7 7
No retrieved sentences contain gold answer 43 40
Highest ranked sentence does not ... 19 20
No relevant sentences were found 0 0
No retrieved sentence ... with expected NER tag 0 0
No retrieved sentence ... with expected POS tag 10 10
Gold answer must be chosen at random 13 13
Gold answer was not scored highest 16 18
No answer candidates were found 7 7
System answer is substring of gold answer 20 16
Gold answer is substring of system answer 2 8
Answer marked as incorrect 52 58
Total 205 213

Table 7.12: Automatic error analysis of system, with and without phrase
extraction.

The results from the automatic error analysis, in Table 7.12, show what
we would expect: The category for gold answers that are substrings of
system answers grown larger. The error category for when system answers
are substrings of the gold answer has decreased in size and some errors
have moved to «answer marked as incorrect», likely because the one word
that was a substring has been expanded to a phrase that does not exactly
match the gold answer.

93

We conclude that the addition of phrase extraction is useful. Though the
overall number of errors that were found by the automatic error analysis
has been increased, the increase in accuracy is good.

7.5 Impact of automatic error analysis on devel-
opment cycle

Although we have no way of quantifying exactly the effects of automatic
error analysis on the cost of system development and refinement, we
definitely felt that the addition of automatic error analysis helped us
evaluate and develop the system. The development cycle that was assisted
by automatic error analysis was faster both in terms of how much time
we had to spend developing, because development could target isolated,
known problems in the system, and in particular in terms of how quickly
we could evaluate whether a new feature was beneficial to our system.

It also allowed us to quickly evaluate which modules a feature had an
impact on. For example, when we introduced removal of stop words in
Section 7.3.2, the overall accuracy, which was the only evaluation metric
we could extract automatically in our previous development cycle, did not
show that the system improved significantly. Automatic error analysis,
on the other hand, showed us without a doubt that removing stop words
helped the sentence retriever module, which in turn opened up new
possibilities for refinements in modules later in the system.

We could naturally have found the same numbers previously with
repeated manual error analysis, but manually analysing all retrieved
sentences for each question to see whether the gold answer was present,
for example, would take a long time, much longer than for other modules.
In this regard, automatic error analysis helped us more with analysing
the sentence retriever than it would have done for the question typer, for
example.

7.6 A new system version

The final system version included most of the features from this chapter,
but not mixing of retrieval algorithms. This means that the difference from
the system version 2.0 was:

1. The system could fall back to retrieving nouns if it did not find a
word with the appropriate named entity tag for «who», «where» and
«when» questions.

2. Stop words were removed in the normalisation step in order to help
the sentence retriever module.

3. We retrieved only 2 sentences for each question, not 5

4. The way we evaluated system answers differed slightly, but not in a
way that would give different results for the system version 2.0.

94

For comparison we repeat the numbers from Table 7.2, which showed
the accuracy of the system version 2.0, and expand with the accuracy of the
system version 3.0.

Table 7.13 shows the overall accuracy. We can safely claim that this
is a substantial improvement. We will compare the results of this system
version with the previous system versions on a held-out test set in the next
chapter, to ascertain that we have not over-fitted our system to the data set
we have worked with.

Set v2.0, full v3.0, full v2.0, reduced v3.0, reduced
2008, dev2 44.0% 49.5% 49.4% 54.3%
2008, dev3 44.8% 47.9% 51.6% 53.0%
2009, dev2 44.7% 46.8% 52.5% 55.0%
2009, dev3 35.4% 43.8% 43.2% 51.4%
2010, dev2 32.9% 39.2% 43.5% 45.1%
2010, dev3 44.9% 52.6% 55.2% 58.2%
Total 41.5% 46.9% 49.7% 53.0%

Table 7.13: Comparison of accuracy from system version 2.0 and 3.0, for
reduced and full data sets.

95

96

Chapter 8

Conclusion

In this chapter, we will summarise and conclude on the results we have
found in this thesis. These results consist of findings on the data set we
used, which we hope can be used in other studies as well, the system results
from our system as a way of showing that the system development was
successful, and of a reflection on how useful the automation of the error
analysis was.

We will end the chapter with some suggestions on fields that can provide
interesting opportunities for future work.

8.1 Data set

We have examined a data set that has, to the best of our knowledge, not
been used in other published academic studies. We have analysed the
set both statistically and in detail. Our analysis of this set shows that the
question set is fairly diverse in terms of different topics and difficulty.

The data set was fairly difficult for our simple question answering
system. On the other hand, compared to many other data sets, some of
which we discussed in Chapter 2, the answers were mainly actually quite
easy. For the most part we are guaranteed to be able to find the suggested
answer to the question in the provided document, and generally speaking a
large proportion of the answers can be found without deep natural language
processing or reasoning.

We believe that the data set is well suited for new and experimental
question answering systems, such as ours. The relatively large number
of yes/no questions lend themselves well to a system that could focus
specifically on detecting negation in sentences or lack of evidence for a fact.

On the other hand, the data set does contain question-answer pairs that
are problematic, either because they are not grammatically well-formed or
because they are sometimes impossible to answer given the data in the
document. We have outlined our methods for improving the quality of
the data set, mainly by removing duplicate questions, but note that a more
thorough refinement of the data set would without a doubt improve the
quality further. We note the data set as a potential field of further research
in Section 8.4.

97

8.2 System results

We have so far withheld a test set from our data set. In order to fairly
evaluate whether our system actually has improved between versions, and
that we have not simply trained our system to perform well on the specific
portions of the data set that we have used in system development, we
present the results from the three different system versions as well as from
the majority baseline from Section 4.3 in Table 8.1 and the upper bound
from Table 3.4.

Set Majority 1.0 2.0 3.0 Upper bound
2008 23.3% 18.9% 33.3% 43.3% 78.0%
2009 37.3% 41.1% 37.3% 43.1% 80.4%
2010 30.0% 15.0% 37.5% 46.3% 68.0%
Overall 29.0% 22.6% 35.7% 44.3% 74.9%

Table 8.1: Comparison of the overall accuracy of the different system
versions on the test set.

We can definitely see that the system improved as a result of our work.
Much of that work consisted of seeing what the system does and does not
do correctly, which is the main portion of the error analysis.

The 2009 set turned out to be somewhat atypical for our data set, with
a larger portion (over 50%) of the questions being yes/no questions, which
explains the comparatively small improvements on this set.

We see an increase from the majority baseline of almost 15% overall, or
almost one and a half times as high accuracy. For the 2008 set we almost
double the overall accuracy of our system compared with the majority
baseline. The fact that the majority baseline is so high means that it was
quite difficult to improve on, and we are happy with these results.

The overall accuracy also improves between the different system
versions, with about a doubling in accuracy between version 1.0 and 2.0,
not counting the 2009 set. Similarly, an increase in about 10% between
version 2.0 and 3.0 means that the second development cycle was also
beneficial to our system.

As we have already stated, the goal of developing the question answer-
ing system was not to attempt to meet the upper bound, but rather to im-
prove on the system and gain a further understanding on how development
and error analysis is performed. As such, we are not disappointed in the
results compared to the upper bound.

The fact that the improvement is smaller was simply caused by the
inevitable effect that the most obvious errors had been removed and the
most obviously beneficial features added between the first and second
system versions. At the same time, the development time needed was
shorter due to the error analysis, but we also felt that we could allocate our
time more to actual development and less to going through the output of
the different modules to find different errors. As such, we can conclude that
automating error analysis is beneficial and that improving methods used in

98

error analysis is going to be a useful contribution to question answering
systems in general.

8.3 Error analysis

The methods used in error analysis have been discussed at length in
Chapter 6. In automatic error analysis, we need to know what kinds of
errors – the error categories – to consider before we start the analysis. We
also need to know some properties of the expected output of each module,
so we have a way of detecting errors. This means that we usually need to
perform at least one manual error analysis first if we want the categories
to be precise. Of course, if we only want an overview of which modules
produce an error we can simply make assumptions about the properties
of the output of each module and compare the system output to what we
expected. In these cases the error categories are simply the same as the
modules.

One problem with the automatic error analysis we have discussed is
that because all the expected error categories need to be found before the
analysis starts, the groundwork needs to be laid by by performing manual
error analysis first, which constrains the usefulness of automatic error
analysis if repeated testing is not needed.

We have also discussed annotation of the data set and expected output
of each module. This annotation can take a long time for some modules,
but improve the accuracy with which we can evaluate the output of that
module. We can also use annotated output to run simulated versions of the
system to see whether further errors occur later in the system pipeline.

We expect that the vast majority of systems go through several cycles
of development. For these systems, we conjecture that automating error
analysis without a doubt saves time for developers in the long run. How
much time is spent developing and refining the methods for error analysis
should in most cases be offset by only a single run with automatic error
analysis, and all further test runs with the same error categories have a
trivial time requirement for error analysis, because the time spent is spent
analysing the results of the error analysis instead of on the analysis itself.

In our experience, automating the error analysis process was tremen-
dously helpful in system development. A further refinement of the cate-
gories and how to find errors in each category would probably help devel-
opment even more.

8.4 Future work

The data set used in this thesis has been analysed to a certain extent by
us, but we definitely feel that it could be refined further. Many questions
appear multiple times, sometimes with different answers. Our solution to
this problem was to remove all but the first occurrence of each question,
without regard for whether that question-answer pair was the best out

99

of the set. Spending more time on the refinement of the data set would
probably help remove the question-answer pairs where the suggested
answer is not neither supported by nor present in the document, as is the
case for some answers.

As regards the error analysis part of the thesis, we feel that an
interesting and natural next step could be to combine automatic and
manual error analysis further. We could manually analyse the system
performance on question-answer pairs that cause a certain type of error
detected by automatic error analysis in an attempt to gain a deeper
understanding of what caused the error. This could in turn be used to
further improve the categories and methods for automatic error analysis.

For example, we found a quite large category of errors called «Answer
marked as incorrect» that would probably be useful to take a closer look at.
The less specific the category in the automatic error analysis is, the greater
the potential for the category to be large, and the probability of manually
finding further subcategories is going to rise.

100

Part IV

Appendices

101

Appendix A

Detailed tables of categories
of questions

This appendix contains a full list of all categories in the data set we used
in this thesis, as well as their size. Each category name corresponds to
the name of a WikiPedia article from which the question-answer pair was
generated. The data set itself is discussed in Chapter 3.

Capitalisation and underscores in category names have been preserved.

103

Category Number of questions % of full size
Canada 34 3.7%
turtle 38 4.1%
Qatar 25 2.7%
beetle 30 3.4%
Grover_Cleveland 25 2.7%
polar_bear 31 3.5%
duck 26 2.8%
Theodore_Roosevelt 18 2.1%
Anders_Celsius 16 1.7%
Ghana 17 1.8%
Ulysses_S._Grant 23 2.5%
Singapore 38 4.1%
elephant 27 2.9%
otter 38 4.1%
Indonesia 24 2.6%
Calvin_Coolidge 27 2.9%
John_Adams 29 3.2%
Gray_Wolf 18 2.0%
kangaroo 37 4.0%
Finland 27 2.9%
Nikola_Tesla 3 0.3%
Training 551 60.0%
leopard 32 3.5%
Romania 29 3.2%
Woodrow_Wilson 29 3.2%
Development 1 90 9.9%
James_Watt 7 0.8%
Abraham_Lincoln 27 2.9%
Gerald_Ford 28 3.0%
Millard_Fillmore 29 3.2%
Development 2 91 9.9%
Uruguay 37 4.0%
penguin 32 3.5%
Henri_Becquerel 13 1.4%
Amedeo_Avogadro 14 1.5%
Development 3 96 10.4%
Egypt 18 2.0%
Liechtenstein 34 3.7%
James_Monroe 38 4.1%
Test 90 9.8%
Total 918 100.0%

Table A.1: Categories and number of questions in 2008 data set.

104

Category Number % of full size
Alessandro_Volta 27 5.5%
Swan 18 3.6%
Fox 9 1.8%
Xylophone 9 1.8%
Charles-Augustin_de_Coulomb 28 5.7%
Anders_Celsius 19 3.8%
Tiger 9 1.8%
Santiago 12 2.4%
Swahili_language 4 0.8%
Flute 9 1.8%
Japanese_language 3 0.6%
Cymbal 17 3.4%
Giraffe 9 1.8%
French_language 10 2.0%
Nassau 8 1.6%
Otter 9 1.8%
Dhaka 8 1.6%
Isaac_Newton 9 1.8%
Ottawa 19 3.8%
Bee 9 1.8%
Nikola_Tesla 9 1.8%
Cello 18 3.6%
Chinese_language 5 1.0%
Amedeo_Avogadro 27 5.4%
Training 304 61.0%
Turtle 17 3.4%
Beijing 11 2.2%
German_language 13 2.6%
James_Watt 8 1.6%
Development 1 49 9.8%
Blaise_Pascal 9 1.8%
Henri_Becquerel 26 5.2%
English_language 12 2.4%
Development 2 47 9.4%
Arabic_language 8 1.6%
London 8 1.6%
Violin 9 1.8%
Copenhagen 8 1.6%
Lima 15 3.0%
Development 3 48 9.6%
Trumpet 9 1.8%
Lyre 7 1.4%
Michael_Faraday 34 6.8%
Test 50 10.0%
Total 498 100.0%

Table A.2: Categories and number of questions in 2009 data set.

105

Table A.3: Categories and number of questions in 2010 data set.

Category Number %
Vincent_van_Gogh 7 1.0%
Alessandro_Volta 27 3.4%
San_Francisco 27 3.4%
Jackson_Pollock 9 1.1%
Antwerp 9 1.1%
Lyre 9 1.1%
Cougar 9 1.1%
Koala 8 1.0%
Vietnamese_language 17 2.1%
Charles-Augustin_de_Coulomb 20 2.5%
James_Watt 9 1.1%
Piano 17 2.1%
Butterfly 9 1.1%
Guitar 18 2.8%
Michelangelo 7 0.9%
Swahili_language 9 1.1%
Saint_Petersburg 17 2.1%
Flute 17 2.1%
Cymbal 9 1.1%
Giant_Panda 18 2.3%
Berlin 18 2.3%
Taipei 9 1.1%
Jakarta 26 3.3%
Zebra 9 1.1%
Drum 23 2.9%
Dragonfly 3 0.4%
Isaac_Newton 17 2.1%
Malay_language 24 3.0%
Melbourne 9 1.1%
Eel 9 1.1%
Korean_language 23 2.9%
Chinese_language 18 2.3%
Portuguese_language 15 1.9%
Training 475 60.0%
Norman_Rockwell 10 1.3%
Pablo_Picasso 10 1.3%
Xylophone 9 1.1%
Swedish_language 8 1.0%
Octopus 16 2.0%
Nairobi 17 2.1%
Finnish_language 9 1.1%
Development 1 79 9.9%
Montreal 9 1.1%
Turkish_language 17 2.1%

TableA.3– Continued on next page

106

TableA.3– Continued from previous page
Category Number % of full size
Leonardo_da_Vinci 10 1.3%
Blaise_Pascal 16 2.0%
Kuala_Lumpur 18 2.3%
Henri_Becquerel 9 1.1%
Development 2 79 9.9%
Ant 26 3.3%
Arabic_language 16 2.0%
Lobster 9 1.1%
Pierre-Auguste_Renoir 8 1.0%
Violin 19 2.4%
Development 3 78 9.8%
Nikola_Tesla 18 2.3%
Trumpet 27 3.4%
Amedeo_Avogadro 18 2.3%
Michael_Faraday 17 2.1%
Test 80 10.1%
Total 791 100.0%

107

108

Appendix B

Question typer rules and
categories

import re

def question_type(qtext):
"""Accept a question as qtext, return an answer type for

this question"""
qtext = " ".join(qtext)

if
re.search(r’\b\A(can|could|will|would|have|has|do|does|’+\

’did|is|are|was|may|might)\s’, qtext, re.I):
return "YES/NO"

elif re.search(r’\b\A(what|which)\s+(\w+)’, qtext, re.I):
nextword = re.search(r’\b\A(what|which)\s+(\w+)’, qtext,

re.I).group(2)
if nextword == "year" or nextword == "date" or nextword

== "day":
return "WHEN"

else:
return "WHAT"

elif re.search(r’\bwho\s’, qtext, re.I):
return "WHO"

elif re.search(r’\bwhy\s’, qtext, re.I):
return "WHY"

elif re.search(r’\bwhere\s’, qtext, re.I):
return "WHERE"

elif re.search(r’\bhow\s’, qtext, re.I):
nextword = re.search(r’\b(how)\s(\w+)’, qtext,

re.I).group(2)
if nextword == "many" or nextword == "much" or nextword

== "long":
return "NUMBER"

else:
return "HOW"

elif re.search(r’\bwhen\s’, qtext, re.I):
return "WHEN"

elif "in what year" in qtext or "in which year" in qtext:
return "WHEN"

else:
return "WHAT"

109

110

Appendix C

List of stop words used in
stop word removal

a, about, above, after, again, against, all, am, an, and, any, are, as, at, be,
because, been, before, being, below, between, both, but, by, can, did, do,
does, doing, don, down, during, each, few, for, from, further, had, has, have,
having, he, her, here, hers, herself, him, himself, his, how, i, if, in, into, is,
it, its, itself, just, me, more, most, my, myself, no, nor, not, now, of, off,
on, once, only, or, other, our, ours, ourselves, out, over, own, s, same, she,
should, so, some, such, t, than, that, the, their, theirs, them, themselves,
then, there, these, they, this, those, through, to, too, under, until, up, very,
was, we, were, what, when, where, which, while, who, whom, why, will,
with, you, your, yours, yourself, yourselves

111

112

Bibliography

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Process-
ing with Python. O’Reilly Media, Inc., 2009.

Eric Breck, John D Burger, Lisa Ferro, Lynette Hirschman, David House,
Marc Light, and Inderjeet Mani. How to evaluate your question
answering system every day and still get real work done. Proceedings
2nd International Conference on Language Resources and Evaluation
LREC-2000, pages 1495–1500, 2000.

Eric Brill, Susan Dumais, and Michele Banko. An analysis of the AskMSR
question-answering system. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages
257–264. Association for Computational Linguistics, 2002.

Davide Buscaldi, Paolo Rosso, José Manuel Gómez-Soriano, and Emilio
Sanchis. Answering questions with an n-gram based passage retrieval
engine. Journal of Intelligent Information Systems, 34(2):113–134,
2010.

Marie-Catherine De Marneffe and Christopher D Manning. Stanford typed
dependencies manual. URL http://nlp. stanford. edu/software/depen-
dencies manual. pdf, 2008.

Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric
Nyberg, John Prager, et al. Building Watson: An overview of the DeepQA
project. AI magazine, 31(3):59–79, 2010.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incor-
porating non-local information into information extraction systems by
Gibbs sampling. In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 363–370. Association for
Computational Linguistics, 2005.

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu, Adwait Ratnaparkhi,
and Richard J Mammone. Question answering using maximum entropy
components. In Proceedings of the second meeting of the North
American Chapter of the Association for Computational Linguistics

113

on Language technologies, pages 1–7. Association for Computational
Linguistics, 2001.

Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28(1):11–21, 1972.

John Judge, Aoife Cahill, and Josef Van Genabith. Questionbank: Creating
a corpus of parse-annotated questions. In Proceedings of the 21st
International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages
497–504. Association for Computational Linguistics, 2006.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to information retrieval. Cambridge University Press,
Cambridge, 2008.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of English: The Penn Treebank.
Computational linguistics, 19(2):313–330, 1993.

Dan Moldovan, Marius Paşca, Sanda Harabagiu, and Mihai Surdeanu.
Performance issues and error analysis in an open-domain question
answering system. ACM Transactions on Information Systems (TOIS),
21(2):133–154, 2003.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit,
Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. MaltParser:
A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(02):95–135, 2007.

Anselmo Penas and Alvaro Rodrigo. A simple measure to assess non-
response. In Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technologies-
Volume 1, pages 1415–1424. Association for Computational Linguistics,
2011.

Martin F Porter. An algorithm for suffix stripping. Program: electronic
library and information systems, 14(3):130–137, 1980.

Noah A Smith, Michael Heilman, and Rebecca Hwa. Question generation
as a competitive undergraduate course project. In Proceedings of the
NSF Workshop on the Question Generation Shared Task and Evaluation
Challenge, 2008.

José Manuel Gómez Soriano, Manuel Montes y Gómez, Emilio Sanchis
Arnal, and Paolo Rosso. A passage retrieval system for multilingual
question answering. In Text, Speech and Dialogue, pages 443–450.
Springer, 2005.

Karen Sparck Jones, Steve Walker, and Stephen E. Robertson. A probabilis-
tic model of information retrieval: development and comparative experi-
ments: Part 1. Information Processing & Management, 36(6):779–808,
2000.

114

Kristina Toutanova and Christopher D Manning. Enriching the knowl-
edge sources used in a maximum entropy part-of-speech tagger. In Pro-
ceedings of the 2000 Joint SIGDAT conference on Empirical methods in
natural language processing and very large corpora: held in conjunc-
tion with the 38th Annual Meeting of the Association for Computational
Linguistics-Volume 13, pages 63–70. Association for Computational Lin-
guistics, 2000.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pages 173–180. Association for Computational
Linguistics, 2003.

Ellen M Voorhees. The TREC question answering track. Natural Language
Engineering, 7(04):361–378, 2001.

Ellen M Voorhees et al. The TREC-8 question answering track report. In
TREC, volume 99, pages 77–82, 1999.

Bonnie Webber and Nick Webb. Question answering. In Alexander Clark,
Chris Fox, and Shalom Lappin, editors, The Handbook of Computational
Linguistics and Natural Language Processing, chapter 22, pages 630–
654. Blackwell Publishing Ltd, 2010.

115

