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Abstract

Loci involved in local adaptation may potentially be identified by the
correlation between population allele frequencies and environmental
variables. Several statistical methods for this purpose have been developed
and a relatively new method known as BAYENV has become a popular
and consequently receiving a lot of attention. By using a set of presumed
neutral SNPs as a null model, BAYENV attempts to control for the effects
of population structure when testing for correlation to environmental
variables. BAYENV has proven to perform well when compared to the
alternatives in studies evaluating differential based methods. However,
there are several challenges associated with the BAYENV method. The use
of Markov Chain Monte Carlo (MCMC) algorithms to evaluate complex
statistical models makes the method vulnerable to a high run-to-run
variability. Hence, it is recommendable to compare the results from
several independent runs of the algorithm before drawing conclusions.
Moreover, the method presents its results on the form of a Bayes Factor
whose interpretation is not as well known as its frequentistic counterpart,
the p-value - especially not in the context of multiple hypothesis testing.
Additionally, the extensive use of MCMC algorithms, as well as a multi-
step procedure for carrying out the analysis, makes BAYENV both time
intensive and cumbersome to use.

Here we address several of the issues regarding the use of BAYENV

and interpretation of its results. We propose an automated method to
assign a significance level for an empirical distribution Bayes factors. The
method, named the Second Difference Method (SDM), make use of the second
difference to detect where the distribution has a significant change in the
positive direction. By using SDM on the results from two SNP datasets,
we find the method to be more reliable than conventional methods such as
a percentage or static cutoff in terms of FDR. As a measure to reduce the
overall time consumption of BAYENV, we suggest a method where SNPs
with low allele frequency difference between populations are excluded
from the test phase of BAYENV. This method showed promising results
when tested on a dataset containing SNP data from Atlantic cod (Gadus
morhua L.). To make the BAYENV analysis more user friendly and to test
our hypotheses, we developed a wrapper program for BAYENV named
PYBAYENV. Among other features in PYBAYENV, we implemented a mode
where several instances of BAYENV were allowed to run in parallel. By
parallelizing the process we were able to greatly reduce the time spent
when performing multiple BAYENV analyses.
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Chapter 1

General introduction

1.1 Introduction

Understanding the process of how species adapt to diverging environ-
ments is fundamental in ecology and evolution. The process is known as
local adaptation and is an interplay between evolutionary forces such as se-
lection, gene flow, genetic drift and mutation, where selection plays a lead-
ing role. Local adaptation is likely to take place if selection is spatially het-
erogeneous and strong compared to other evolutionary forces (Blanquart
et al. 2013). By natural selection, some traits evolve to function better in a
given context and thereby provide a higher degree of fitness to the affected
population. Formally, a population is said to have been locally adapted if
it exhibits higher average fitness in its native habitat than any other pop-
ulation introduced to the same habitat (Kawecki and Ebert 2004). Local
adaptation is an important response to varying environmental conditions
and may promote subdivision of a species into ecotypes, which again can
potentially lead to the emergence of new biological species (e.g. Sobel et al.
2010). If the outcome of the process is a new species, the process is known
as speciation.

Knowledge of genetic differentiation between populations may provide
important functional information in the fields of agronomy and biomedical
science. Such research can potentially identify interesting loci that can
prove to be beneficial for the work on cultivated plants, livestock and
humans (e.g decease loci) in particular (Bonhomme et al. 2010). Genetic
shifts correlated with global warming have also been observed (e.g.
Bradshaw and Holzapfel 2001). Hence, knowledge of genetic variation
caused by local adaptation may prove crucial to ensure food security in a
world undergoing rapid climate change (Lobell et al. 2008, 2011; Westengen
et al. 2012).

The characterisation of genetic loci involved in local adaptation is
central to understand phenotypic variation along environmental and
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geographic gradients (known as clines - Huxley 1938) or between discrete
environments caused by genetic differentiation has been observed in many
animals (e.g. Nielsen et al. 2009) and plants (e.g. Alberto et al. 2013).
However, despite many studies showing evidence of local adaptation, the
genetic basis of local adaptation remains poorly understood (Savolainen,
Lascoux and Merila 2013; Schlötterer 2002).

A particular challenge when looking for evidence of local adaptation is
that it is hard to separate the complex effects of genetic drift (the random
factor) and gene flow between populations from selection. In populations
with low gene flow, genetic drift decrease local adaptation. However,
if the gene flow is high, genetic drift has no effect on local adaptation
(Blanquart, Gandon and Nuismer 2012). Hence, the balance between gene
flow and selection is decisive for the extent of local adaptation (Savolainen,
Pyhäjärvi and Knürr 2007). Another problem is that local adaptation
may often result in subtle shifts in allele (an alternative form of a DNA
segment at a specific locus) frequency at many loci where all make a
small contribution to one particular phenotype (Hancock et al. 2010a).
Identification of such loci (known as polygenic quantitative trait loci) that
controls these traits is a challenging task (Savolainen, Lascoux and Merila
2013). Third, adjacent neutral genomic loci may be linked (alleles that
are inherited together) and thus be hitchhiking to fixation along with loci
under selection. Distinguishing between such loci may prove difficult.

There are several methods available for detecting molecular evidence of
selection. (for a review see Nielsen 2005). In this thesis we will be focusing
on a method that uses genetic differentiation among population. Genetic
differentiation is the difference in allelic frequencies between populations
that are caused by evolutionary forces such as genetic drift or selection.
Currently there are three main differentiation based methods for detecting
molecular footprints of local adaptation (Savolainen, Lascoux and Merila
2013): 1) Detection of population differentiation through scans of Wright’s
fixation index (FST, see Section 2.1.18), 2) FST − QST comparison (QST
measures the amount of genetic variance among populations relative to the
total genetic variance in the trait. The FST−QST comparison is used to infer
the action of natural selection on complex phenotypic traits. See Leinonen
et al. 2013 for a review of this method) and 3) Correlation between allele
frequencies and environmental variables.

Lately, several correlation based methods that accounts for the covariance
of allele frequencies between populations have been developed (e.g.
Bonhomme et al. 2010; Coop et al. 2010; Duforet-Frebourg, Bazin and Blum
2014; Frichot et al. 2013; Guillot et al. 2014) By controlling for neutral
covariance it is easier to separate the effects of local adaptation from those
due to shared population history and gene flow. In a recent simulation
study, correlation based methods that accounted for underlying allele
frequency structure proved to be more powerful and resulted in less false
positive results than the methods based on FST (De Mita et al. 2013). In
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particular, the method implemented in the program BAYENV (Coop et al.
2010) showed the highest statistical power (sensitivity) in some of the tests.

The BAYENV method uses a large set of presumed neutral loci to
estimate the empirical pattern of covariance in allele frequencies between
populations that accounts for the shared population history and gene flow.
Given this neutral covariance as a null model, BAYENV test whether an
alternative model that assumes a linear correlation between the population
allele frequencies at a given locus and an environmental variable, is more
probable than expected. The program uses a Monte Carlo Markov Chain
(MCMC) scheme to estimate the null model (a covariance matrix) and to
perform the tests for environmental correlation. For each locus, a Bayes
factor (BF) is calculated as a measure of support for the alternative model.
A high BF indicates higher correlation between the allele frequencies and
the environmental variable than expected given the null model. BAYENV

uses population allele frequencies on biallelic SNP (single nucleotide
polymorphism, see Section 2.1.12) markers as input for the program.

BAYENV has since release in 2010 become a widely used and cited
software in studies investigating genomic loci under selection in the
context of local adaptation (e.g. Chen et al. 2012; Eckert et al. 2010; Evans
et al. 2014; Fumagalli et al. 2011; Hancock et al. 2010b; Hancock et al.
2008; Hancock et al. 2011a; Heerwaarden, Hufford and Ross-Ibarra 2012;
Westengen et al. 2014b). Moreover, the method has produced results that
agrees with other differentiation based methods such as BAYESCAN (Foll
and Gaggiotti 2008) and LFMM (Frichot et al. 2013) (see e.g. Berg et al.
2015, in review and Villemereuil et al. 2014). However, there are several
issues with the BAYENV method that need further discussion.

First, the method provides its results on the form of BF. Interpretation of
the BF is not as well known as its frequentistic counterpart, the p-value,
particularly not in the context of multiple hypothesis testing. A common
approach is to use a percentage or static cutoff on the empirical distribution
of BFs. However, a percentage cutoff may often lead to many false positive
results. Tables for different interpretation of BF values exist, but none of
these are making any adjustments for multiple comparison tests.

Second, in a recent study (Blair, Granka and Feldman 2014) the stability
of the BAYENV method was questioned. Data from an earlier study
(Hancock et al. 2011b) was reanalysed and the results showed that some
of the SNPs reported as highly significant in the original article showed no
signals when it was rerun by Blair, Granka and Feldman 2014. Moreover,
the study showed that there were in general a high variability between
independent runs of BAYENV and the authors warned against making
conclusion based on a single run alone.

The use of MCMC is known to be causing unstable results. MCMC
algorithms needs to converge to a stable state in order be functioning as
intended. How long the algorithm must run before this state is reach is
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debated and a field of ongoing research. A common approach is to run as
many iterations that is practically possible to be certain that the algorithm
reaches equilibrium space. However, this often makes programs using
MCMC algorithms particularly time consuming.

Some bioinformatics methods have developed a de facto standard for
how many MCMC iterations and replicate runs that are needed to get a
stable result. For example, for the program STRUCTURE (Falush, Stephens
and Pritchard 2003; Pritchard, Stephens and Donnelly 2000), which is
widely used to infer the population structure using allele frequencies, there
have been published independent guidelines (e.g. Porras-Hurtado et al.
2013) and there is now a consensus for how the program should be run. A
search in Google scholar shows that STRUCTURE is cited by about 14,000
studies (April 2015), a success caused by the quality of the method, but also
by the user-friendliness of the original program and several supporting
methods and programs (e.g. Earl and vonHoldt 2012; Evanno, Regnaut
and Goudet 2005; Jakobsson and Rosenberg 2007).

By looking in the literature on how BAYENV is used, the lack of a uniform
method for how the program should be run and how to interpret the results
is evident. Moreover, the program is run in a multi-step procedure which
makes it cumbersome and time consuming to use. The BAYENV specific file
format may also cause difficulties for users without programming skills.

In this thesis we aim to address three particular challenges with the
BAYENV program. First, given the challenge of interpreting the results, we
aim to provide an automated method for assigning dynamic significance
levels for distributions of BFs in the context of multiple hypothesis testing.
We make use of the property of second difference to detect where the BF
distribution makes a substantial jump in the positive direction and thereby
separate significant from non-significant results. Thus the method was
named the second difference method (SDM). Second, given the various
practises of BAYENV (e.g. Blair, Granka and Feldman 2014; Chen et al.
2012; Fumagalli et al. 2011), we want to find an ideal set of settings
for the BAYENV algorithm. We do this by examining the results from
using different run length for the MCMC algorithms and by comparing
different number of independent runs. Third, considering the fact that
a full BAYENV analysis is very time consuming (De Mita et al. 2013),
we propose a method of only including "interesting" SNPs as a time
saving measure when carrying out the test for environmental correlation.
By "interesting" we mean SNPs that exhibits a high difference in allele
frequencies across populations. SNPs with a uniform allele frequencies
are less interesting in this context since BAYENV is testing for a linear
relationship to an environmental variable. We use the measurement
maximum allele frequency difference (MAFD) between the populations to
select the SNPs that are more likely to be the target of selection.

To help accomplish this, we developed a wrapper program, PYBAYENV,
which in addition to streamlining the BAYENV procedures, serves as a
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tool for testing our hypotheses. PYBAYENV has four main functions: 1)
Conversion from a common file format (the GENEPOP format; Raymond
and Rousset 1995) to the program specific BAYENV format. 2) Save time
by running all the steps required by BAYENV in one go and parallelizing
multiple runs to take advantage of today’s multi-core CPUs. 3) Interpret
the results from one or more BAYENV analyses by implementing our
proposed second difference method (SDM). 4) Function for excluding SNPs
from testing based on the maximum allele frequency difference (MAFD)
between populations.

In this thesis we have used PYBAYENV to carry out BAYENV analyses
on two different datasets to explore the strength and weaknesses of the
BAYENV method and to test our hypotheses. The main data for the thesis
is a dataset consisting of 8809 SNPs genotyped from Atlantic Cod (Gadus
morhua L.). Parts of the results from these analyses were presented in the
article Adaptation to low salinity promotes genomic divergence in Atlantic cod
(Berg et al. 2015, in review). We also analysed a smaller dataset consisting
of 135 SNPs from African Maize (Zea mays L.). Results from this analysis
were published in the article Modern maize varieties going local in the semi-arid
zone in Tanzania (Westengen et al. 2014b).
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Chapter 2

Background theory

2.1 Basic biology

This section provides a brief introduction to the basics of biology necessary
to understand the biological and evolutionary part of this thesis. For
further details on the subject, the reader is referred to standard textbooks
such as Biology (Campbell et al. 2008).

2.1.1 DNA

The basic unit in every living organism is the cell. The cell contains
DNA (deoxyribonucleic acid), which is a chain of nucleotides that holds the
genetic information that makes the organism what it is. DNA is transcribed
into RNA, which again is translated into protein which are the building
blocks of all organisms. The DNA molecule is organized as two parallel
strands of nucleotides attached to each other by hydrogen bonds. This
structure is referred to as a double helix. In DNA there are four types of
nitrogenous bases: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C)).
The two strands in the double helix structure contain paired nucleotides
that are complementary to each other. The base A is always paired with T,
whereas G is paired with C. Such a pair is referred to as a base pair. This
property implies that each strand contain all information that are present
on the other strand. The DNA in the nucleus does not change and remains
the same throughout life.

2.1.2 Organization of genome

The genome is the genetic material of an organism. The DNA molecule
is curled and organized in chromosomes in the cell nucleus. The human
genome is divided into 46 chromosomes which again can be divided into
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23 pairs where one of each pair is inherited from each parent. Out of these
pairs there are 22 autosome pairs that are identical between sexes and two
sex chromosomes that differ between sexes and are sex determinant. The
ploidy level denotes how many sets of chromosomes that are in the cell:
Haploid has one set, diploid has two, triploid has three, etc. The somatic cells
in humans are diploid, whereas the gametes are haploid. The term polyploid
is used for cells with three or more chromosome sets.

2.1.3 The inheritance of the genome

The genetic material is passed on from one cell to another through cell
division. There are two kinds of cell division: mitosis and meiosis. Mitosis
occur in cells in somatic tissue where the genetic material is passed from the
parent cell to the daughter cell through a process called DNA replication.
Meiosis is a specialized division process that is used to produce gamete
cells that only contains half the diploid complement of the genetic material
making a haploid cell. The merging of two gametes in the fertilization
process restores the diploid complement in the zygote. After Mitosis, the
daughter cell is an exact replica of its parent cell (mutations do happen
e.g. in the case of cancer). The gametes produced by meiosis, however,
undergoes a process called recombination where paternal and maternal
chromosomal homologs align and exchange DNA segments. This process
is also known as crossing over.

2.1.4 Linkage Disequilibrium

Linkage Disequilibrium (LD) is the nonrandom correlation between spe-
cific alleles at different loci. It is a measure of recombination at the popula-
tion level. A high LD between two loci indicates that these are seen more
often together than would be expected by chance alone. There are several
statistical descriptors of LD, where the most commonly used summaries
are D, D’ and r2 (see Nordborg and Tavaré 2002 for a review).

2.1.5 Genotype and phenotype

The genotype of an organism is the genetic material (DNA) that is inherited
from the parents. The genotype is constant for the entire lifetime and
somatic mutations can (but not always) cause cancer or other diseases.

Phenotype is the set of traits of an individual. Examples of such traits
can be eye color, skin color, diseases, etc. In addition to be influenced by
the genotype, phenotype can also be affected by environmental factors like
temperature, nutrition and diseases. Unlike the genotype, the phenotype
may change throughout the lifetime of the organism. Furthermore,
different genotype can also result in the same phenotype.
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2.1.6 Genes

A gene is a subsequence of the DNA molecule, normally a couple of
thousand nucleotides long, which codes for a protein that is used by the
cell. In a human cell there are approximately 20000 genes. Sometimes
there is a simple connection between a gene and a trait, eg. people with
blue eyes lacks a protein that makes brown pigment, however, in most
cases the connection between genes and traits are more complex. External
conditions, the environment, can to a greater or lesser extent affect gene
expression and thereby the traits they contribute to. Despite having over
20000 genes in the human DNA, most of the DNA molecule is non-coding.
The non-coding DNA sequence is the components of the DNA that does
not encode protein sequences. Actually, more than 98% of the human DNA
mass does not code for any protein. These non-coding areas were earlier
often referred to as "junk DNA". However, this term is no longer regarded
as valid since we now know that gene’s regulation is far more complex
than previously thought. Recent research suggests that 80% of the human
genome serves some purpose (Pennisi 2012).

2.1.7 Polygenic traits

A polygenic trait is a phenotypic trait that is influenced by more than
one gene. Many traits in humans and other species are considered to
be controlled by a large number of small effect loci. Moreover, genome-
wide association study (GWAS) has shown that many quantitative traits
in humans are highly polygenic and recent research suggest that most
adaptive events are caused by polygenic adaptation and not by selective
sweeps alone (Pritchard and Di Rienzo 2010).

2.1.8 Loci and markers

A locus (plural: loci) is the specific location of a DNA segment. A
genetic marker is the specific gene or DNA sequence with a known
location that can be used to identify individuals or species. Examples of
such genetic markers are single nucleotide polymorphism (SNP), microsatellite
polymorphism (SSR) and restriction fragment length polymorphism (RFLP). The
nomenclature for a genetic locus is often given as numeric combination of
the chromosome number and physical location on the chromosome.

2.1.9 Alleles

An allele is one of several forms of a DNA segment at a given locus. Usually,
the term is used in conjunction with genes, but can also be use for variants
of non-coding areas in the DNA.
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The genotype is the set of alleles that are carried by an individual at a
given locus. If there are n alternative alleles there will be n(n+1)/2 possible
genotypes.

2.1.10 Homozygous and Heterozygous

Consider a diploid organism with two alleles A and B at a particular locus.
In this case there are three possible genotypes, namely: AA, AB and BB.
In the case of AA and BB, we say that the individual is homozygous for the
allele A and B respectively. However, if the alleles differ (e.g. the genotype
is AB) the individual is said to be heterozygous.

2.1.11 Mutations

A genetic mutation is when there is a change in the DNA sequence of an
organism. This happens when a base is replaced (substitution), removed
(deletion) or duplicated (duplication). There are two main types of mutations:
The ones that happen suddenly in somatic body cells and mutations
during meiosis in the gametes. Whereas sudden mutations in somatic
cells (replication errors) result in cell death or in worst case cancerous cell
growth, mutations in gametes (recombination) are necessary for evolution
to take place. Mutations in gametes ensure that new alleles are being
created. Mutations do also happen in non-coding areas and even though it
does not affect the protein structure directly, the expression of the protein
might change.

The term mutation rate refers to how often different kinds of mutations
(e.g. rate of substitutions) occur in an organism along a time scale.

2.1.12 Single Nucleotide Polymorphism

Small differences in the DNA sequence may have significant impact on
the phenotype. Point mutations where only one base is substituted with
another may cause faults (diseases or other defects), but in rare occasions
also beneficial effects for the organism. If the latter is the case, this new
allele may survive and even become dominant if it is more beneficial than
others. If a point mutation allele become a variation that is found in at
least 1% of the population, it is called a single nucleotide polymorphism 1

or SNP (pronounced snip)(see Figure 2.1) (Jobling et al. 2013). A variant
allele that is present in less than one percent of a populations, is named
a variant or sometime also referred to as a single nucleotide variant (SNV).
In humans, SNPs occur on average once in 100 to 300 base pairs, which

1Variations in DNA sequence are called polymorphism (from Greek for "many forms"
Campbell et al. 2008, Chapter 20.4)
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means that there are roughly 10 million SNPs in the human genome. SNPs
that are found in coding areas in the genome can be divided into two
main groups: synonymous and non-synonymous. A non-synonymous SNP
will affect the amino acid sequence produced by the gene, whereas the
protein will stay unchanged in the synonymous case. Non-synonymous
SNPs can cause differences in the gene expression and thereby give an
increased risk of getting a particular decease or affect the response to a
certain drug. SNPs found in genes and regulatory regions near genes may
be very useful markers that can aid scientists to identify loci associated
with different phenotypic traits. By identifying such SNPs it may be
possible to provide specialized treatments for a particular condition or
disease. For example, activated protein C resistance is an inherited condition
that causes an increased risk of blood clotting in humans (Stefano and
Leone 1995). Among the risk factors for the condition are SNPs in genes
coding for blood coagulation factors (e.g. SNP G1691A Factor V Leiden
- see Almawi et al. 2005). By knowing which SNPs that are causing
the condition it possible to take preventive measures for patients who
are known to have inherited these SNPs. For example, patients known
to be homozygous for the Factor V Leiden mutation (the G1691A SNP)
may be offered anticoagulants or alternative treatments when exposed to
associated risk factors (i.e. pregnancy, surgery or oral contraceptives).
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Figure 2.1: Illustration of a SNP. The base pair G/C is substituted by A/T
in the DNA sequence.
Source: http://commons.wikimedia.org/wiki/File:Dna-SNP.svg
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2.1.13 Dominant and recessive alleles

Assume two alleles, B and b at a locus. If the homozygous genotypes BB
and bb lead to different phenotypic traits and the heterozygous genotype
Bb cause the same traits as BB, then the allele B is said to be dominant.
Alleles that only lead to expression of traits in the homozygous case
are known as recessive. Many genetic diseases are recessive and thus
require both copies of the allele to be present in order to be expressed.
The individuals that are heterozygous and thus phenotypically normal is
considered carriers of the disease. When producing only half the gene
product is sufficient for normal or near-normal function, the situation is
referred to as haplosufficiency (i.e. a haploid dose is enough) Jobling et al.
2013, Chapter 3.1.

2.1.14 Natural selection, genetic drift and gene flow

Natural selection is the most fundamental mechanisms of evolution. It is
Charles Darwin’s most famous theory from On the Origin of Species and
states that individuals with characteristic traits that are beneficial for their
probability of survival will have more opportunities to reproduce, thus
their offspring will also benefit from these heritable, advantageous traits.
By constantly favouring some allele over others, natural selection can cause
adaptive evolution, i.e. changes that result in a better match between organ-
ism and their environment (Campbell et al. 2008, Chapter 23.3). Depend-
ing on the phenotype in the population that is favoured, natural selection
can alter the frequency of heritable traits in three different ways (Camp-
bell et al. 2008, Chapter 23.4): 1) Directional selection, where the frequency
curve is shifting towards one extreme phenotypic trait. 2) Disruptive selec-
tion, where individuals with extreme phenotypic traits in several directions
are favoured over individuals with intermediate phenotypic traits. 3) Sta-
bilizing selection, where individuals with intermediate phenotypic traits are
favoured over the extreme. In the latter case extreme variants are removed
from the population.

Whereas natural selection favours the most beneficial alleles, genetic drift
adds a random factor to the equation. Due to pure chance, some alleles can
happen to survive better than others and thus become dominant or even
fixed in the population. The effect of genetic drift tends to be more evident
in small populations.

An effect known as the Bottleneck effect may occur when there are
sudden changes in the environment (like natural disasters, draught, flood,
etc.). In this case some alleles will survive passing through a restrictive
"bottleneck", just by chance alone. In this way certain alleles may be
overrepresented among the survivors while others again might be lost.
However, if the population is large, chance events will have less effect on
the population allele frequency (Campbell et al. 2008, Chapter 23.3).
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The term Gene flow refers to migration between subpopulations. Transfer
of alleles in and out of populations may change the allele frequencies.

2.1.15 Speciation

For eukaryotic organisms, a species is defined as the largest population
group that can interbreed and produce fertile offspring. The term speciation
refer to the evolutionary process that leads to the emergence of a new
biological species. Ecotypes are variations or races within the same species
that can interbreed without loss of fertility. Typically, ecotypes exhibits
different phenotypic traits caused by spatial heterogeneity and may be the
first step towards Parapatric speciation.

2.1.16 Hardy-Weinberg Principle

The Hardy-Weinberg Principle is a mathematical theory that describes a
hypothetical population that is not evolving, i.e. the gene pool remains the
same from one generation to the next. It was developed in 1908 by G. H.
Hardy, a British mathematician and Wilhelm Weinberg, German physician
and is founded in the Hardy-Weinberg Equation (HWE). The equation
states that at a locus with two alleles, the three possible genotypes will be
appear in the following proportions:

(PA + PB)
2 = P2

A + 2PAPB + P2
B = 1

The HWE is used to test whether a population is evolving or not by
comparing the empirical distribution in the population to the theoretical
given by the HWE. However, in order to be valid, HWE assumes that
five conditions are met and several of these are often violated in real
populations (Campbell et al. 2008, Chapter 23.2). The conditions to be met
and associated problems are listed below:

1. No mutations.
Problem: By altering genes, mutations modify the gene pool.

2. Random mating.
Problem: Individuals usually mate preferentially with a subset of the
population, thus random mixing of gametes will not occur.

3. No natural selection.
Problem: Difference in survival and reproductive success can alter
allele frequencies.

4. Extremely large population size.
Problem: The smaller population, the more likely it is that the allele
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frequencies will be altered by chance over generations (genetic drift)

5. No gene flow.
Problem: Gene flow can alter the allele frequencies by moving alleles
in and out of the populations.

Even though it is hard to satisfy all the conditions of the HWE, the
equation is widely used to do estimations of population frequencies. For
example, HWE can be used to estimate the percentage of the populations
that carries the allele of an inherited decease. In this case it is assumed
that the mutation rate for the gene causing the decease is low, inbreeding
is uncommon, selection only occurs against the rare homozygotes and that
the population size is large. It is important to remember that HWE only
yields approximations to the real percentage of carriers of an allele.

The HWE can be generalized for n distinct alleles in m-ploid as
(P1 + · · ·+ Pn)m = 1.

2.1.17 Genotype frequencies and allele frequencies

The genotype frequency of a population is the number of individuals with
a particular genotype divided by the total number of individuals in the
population. Given two alleles, A and B, the genotype frequency for each
genotype can be denoted PAA, PAB and PBB. The allele frequency of a
population is the number of individuals with a given allele divided by the
total number of individuals in the population. Again consider the case of
two alleles A and B, then the relationship with genotype frequency is as
follows:

PA = 2PAA + PAB

PB = 2PBB + PAB

The empirical allele frequency of a population can be computed using
the following strategy:

Let xi and yi be the observed counts of respectively allele 1 and allele 2
on individual i, then the empirical allele frequency f in a population k can
be determined by the equation:

fk =

∑
∀i∈k

xi

∑
∀i∈k

(xi + yi)
(2.1)

This equation returns the frequency fk of allele 1 in population k.
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Moreover, the sum of the two allele frequencies is 1, thus it can also be seen
as a measure of the empirical probability for each allele in the population.
Consequently, f c

k is the empirical frequency of the second allele; which can
be calculated by the equation f c

k = 1− fk.

2.1.18 F-statistics

F-statistics (or Wright’s FST) is a statistical method for measuring the
proportion of genetic diversity due to allele frequency differences among
subpopulations. It was developed by Sewald Wright and Gustave Malecot
in the 1940s and 1950s and is a widely used statistic in population genetics.
The equation states that

FST =
(HT − HS)

HT

Where HT is the expected heterozygosity of the entire population and HS
is the mean expected heterozygosity across subpopulations. A guideline
for how to interpret the FST values was given by the authors (see Table
2.1)Jobling et al. 2013.

FST value Level of genetic differentiation
less than < 0.05 little

Between 0.05 and 0.15 moderate
Between 0.15 and 0.25 great

Greater than 0.25 very great

Table 2.1: Sewal Wright’s qualitative guidelines for interpreting FST
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2.2 Statistics and Mathematics background

2.2.1 About this chapter

Statistical and mathematical modelling plays a vital part in analysing and
assessing genetic data. In this chapter we will give a brief introduction to:
1) Bayesian inference, which makes it possible to combine both empirical
data and prior knowledge into the analysis, 2) Markov chain Monte
Carlo (MCMC) algorithms which can be used to simulate and explore the
resulting posterior distribution, 3) An introduction to finite difference, a
numeric approximation to analytical derivatives, which can be used to
identify change in growth rates for discrete data.

2.2.2 Bayesian inference

The Bayesian approach to statistical testing and method design is emerging
as an increasingly effective and practical alternative to its frequentistic
counterpart (Carlin and Louis 2011, Chapter 1.1). The computational
revolution witnessed the last two decades is an important factor for
this success. By using MCMC (see Section 2.3) algorithms and the
computational power of programming languages such as C, Python or R,
it is possible to explore and estimate probability distributions in higher
dimensions.

The main principle in Bayesian analysis is that, in addition to sampling
data, a prior distribution is required for all unknown quantities in the
model. The prior and the likelihood of the data to compute the conditional
distribution of the unknown quantities given the observed data. The
resulting distribution is referred to as the posterior distribution. The posterior
distribution is given by an equation known as the Bayes’ Theorem:

p(θ|y) = f (y|θ)π(θ)∫
Θ

f (y|θ)π(θ)dθ
(2.2)

where f (y|θ) is the likelihood function of the data y given the unknown
parameters θ and π(θ) is the prior distribution (or simply the prior). By
observing that the integral in the denominator is just a scaling constant, the
equation 2.2 may be expressed in the more convenient shorthand

p(θ|y) ∝ f (y|θ)π(θ) (2.3)

Notice that the posterior distribution is the joint distribution of the
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likelihood (of the data) and the prior. In order to be a valid probability
distribution, the posterior distribution is re-normalized so it integrates to 1.

The effect of the prior is that the posterior distribution will be "pulled"
from the likelihood towards this distribution (see Figure 2.2). How much
depends on how strong the prior is selected to be. The prior should
reflect the certainty of the prior knowledge the analyst possess prior to
the experiment. This prior knowledge is typically an "expert’s" opinion
or other available relevant information.
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Figure 2.2: Plots of the posterior (green) of a normal prior (blue) and the
likelihood (red).

2.2.3 Conjungate priors

The prior distribution π(θ) is called a conjugate prior of the likelihood
function f (y|θ) if it leads to a posterior distribution p(θ|y) belonging to
the same probability distribution family as the prior distribution. The prior
and the posterior distributions are in such case called conjugate distributions.
Conjugate priors is often chosen because it is computational convenient
(Carlin and Louis 2011).

2.2.4 The Bayesian approach to hypothesis testing

There has been, and still is, an ongoing philosophical dispute between
the two different approaches to hypothesis testing: the frequentistic
and the Bayesian. The frequentistic accuse the Bayesian methods for
being cumbersome and over-reliant of computationally convenient priors.
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Whereas the Bayesians are criticising the frequentists for being unable to
incorporate relevant prior knowledge into their models.

The traditional frequentistic approach to hypothesis testing is to have
a null hypothesis, H0 and an alternative hypothesis Ha. After finding a
suitable test statistic, the observed significance or p-value is computed. The
p-value is the evidence against H0, or put another way: the probability
of observing a more "extreme" value than the observed data. The null
hypothesis is rejected if the p-value is less than a specified Type I error rate
- typically α < 0.05.

The frequentistic approach has for a long time been the favoured method
for most researchers. However, it has also been the target of substantial
criticism: First, the two hypotheses are nested, meaning that the null
hypothesis must be a simplification of the alternative hypothesis. Second,
the test or the p-value only offers evidence against the null hypothesis. Thus
a significant p-value does not imply support for the null hypothesis, rather
is evidence for no support for the alternative hypothesis. Third, the p-
value cannot be directly interpreted as a "weight of evidence" for the two
hypotheses. Therefore, it is often misinterpreted as "the probability that H0
is true" (Carlin and Louis 2011, page 51).

The Bayesian approach to hypothesis testing was developed by Harold
Jeffreys in the last century and published in the book Theory of Probability,
1961. The intent was not to give a complete new framework for
hypothesis testing, but rather an addition to the existing tests. Not only
does Bayesian hypothesis testing avoid the difficulties mentioned for the
classical approach, but it also offers a simpler and more intuitive way
of interpreting the results. Bayesian hypothesis testing has no limit on
how many hypotheses that can be simultaneously considered and the
hypothesis is not required to be nested. Due to this fact the notation is
changed from "hypotheses" H0 and Ha to "models" Mi, i = 1, . . . , m.

Consider two candidate models M1 and M2 with data Y and parameter
vectors θ1 and θ2 respectively, then the marginal distribution under the prior
densities πi(θi), i = 1, 2 is found by integrating out the parameters,

p(y|Mi) =
∫

f (y|θi, Mi)πi(θi)dθi, i = 1, 2. (2.4)

To obtain the posterior probabilities P(M1|y) and P(M2|y) = 1 −
P(M1|y) Bayes’ Theorem is used (eq. 2.2). The Bayes factor, which is the
ratio of the posterior odds of M1 to the prior odds of M1, is given by Bayes’
Theorem as
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BF =
P (M1|y) /P (M2|y)

P (M1) /P (M2)
(2.5)

=

[
P(y|M1)P(M1)

p(y)

]
/
[

P(y|M2)P(M2)
p(y)

]
P (M1) /P (M2)

=

∫
f (y|θ1, M1)πi(θ1)dθ1∫
f (y|θ2, M2)πi(θ2)dθ2

=
p(y|M1)

p(y|M2)

which is the ratio of observed marginal densities for the two models. If
the two models have equal prior probability (P (M1) = P (M2) = 0.5),
BF = P (M1|y) /P (M2|y), which is the posterior odds of M1

If the models share the same parametrization and both hypotheses are
simple, the Bayes factor is the same as the likelihood ratio between the
two models. In this case the Bayes factor is the odds in favour of M1 over
M2 given the data alone. Normally the Bayes factor is interpreted as "the
evidence given by the data", however Levine and Schervish (1999) show that
it is more accurate to say that BF captures the change in the odds in favour
of M1 as we move from prior to posterior (Carlin and Louis 2011, page 53).

2.2.5 The interpretation of Bayes factor

The Bayes factor (BF), which can be seen as a summary of the data in
favour of one model against another, is given as a number between zero
and infinity. Harold Jeffrey’s gave in his book Theory of Probability an
interpretation of the strength of evidence for BF (See Table 2.2). Later
there has been several other alternative interpretations. Most notably is
the interpretation in (Kass and Raftery 1995, see Table 2.3). However, the
main principle is generally the same: A BF below one is a support for the
null model, and conversely a BF above one is a support for the alternative
model. The support for the alternative model increases as the Bayes factor
rises above one.

log10 (BF) (BF) Strength of evidence
< 0 < 1 Negative (supports H0)

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Table 2.2: Jeffrey’s interpretation of Bayes factors

19



2 ln (BF) (BF) Strength of evidence
< 0 < 1 Negative (supports H0)

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 2.3: Kass and Raftery’s interpretation of Bayes factors

2.3 Markov chain Monte Carlo methods

In probability theory it is often necessary to integrate out densities. How-
ever, in Bayesian analysis the probability functions are often too complex
to be integrated analytically. In such case, the solution is to use Markov
Chain Monte Carlo (MCMC) methods. MCMC is a range of computer sim-
ulation techniques where probability distributions in higher dimensions
can be explored by sampling from the posterior distribution using "ran-
dom walk" methods. Today, most Bayesian inference applications, such as
STRUCTURE (Falush, Stephens and Pritchard 2003; Pritchard, Stephens and
Donnelly 2000) and BAYENV (Coop et al. 2010), depend heavily on MCMC
algorithms. In the following subsections we will give a brief introduction
to two of the most frequently used MCMC procedures - namely the Gibbs
sampler and the Metropolis-Hastings algorithm. Both algorithms operate by
sequentially sampling parameter values from a Markov chain, where the
Markov chain’s stationary distribution is the target posterior distribution.

2.3.1 Introduction to MCMC

Consider a data set D and a set of parameters θ that we want to find the
most probable values of. Recall that Bayes theorem says that the posterior
distribution of θ given D is proportional to the joint distribution of the
likelihood function and the prior distribution (see Section 2.2.2), thus the
posterior can be written as

π(θ) = p(θ|D) ∝ p(D|θ)p(θ) (2.6)

where π(θ) is the unormalized probability of the data that can be
normalized by an unknown proportionality constant known as "the Bayes
denominator". Markov Chain Monte Carlo (MCMC) algorithms is a way
of drawing samples from the distribution π(θ) without knowing this
normalizing constant. By drawing many samples from this distribution
it is possible to compute any quantity of interest (i.e. the mean, standard
deviation, confidence regions, etc.).
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2.3.2 Metropolis-Hastings algorithm

The Metropolis algorithm was developed in 1953 by Metropolis et al. and
was generalized by Hastings in 1970. In the year 2000 the Metropolis-
Hastings algorithm was named as one of the top ten most influential
algorithms of the 20th century by the journal Computer in Science and
Engineering (CiSE). The Metropolis-Hastings algorithm works as follows:

Let π(θ) be a function that is proportional to the desired probability
distribution P(θ) and choose an arbitrary starting value θ1.

Pick a "proposal distribution" q(θ2|θ1) (e.g. a multivariate normal
centred on θ1). Then q is a transition function that tells us the probability
of moving from θ1 to a location θ2.

First, generate a candidate point for θ2 labelled θ2c by drawing from the
proposal distribution around θ1

Second, calculate an "acceptance" ratio by using the equation

α(θ1, θ2c) =
π(θ2c)q(θ1|θ2c)

π(θ1)q(θ2c|θ1)
(2.7)

notice that if q is symmetrical (i.e. multivariate normal) the q’s are
cancelled out, thus the equation can be simplified as

α(θ1, θ2c) =
π(θ2c)

π(θ1)
(2.8)

Because π(θ) is proportional to the true normalized distribution P(θ),
we have that the acceptance ratio α = π(θ2c)/π(θ1) = P(θ2c)/P(θ1).

In the third step, based on the acceptance ratio α, choose to keep or
discard the candidate point θ2c such that

if α ≥ 1, set θ2 = θ2c (2.9)

if α < 1, set θ2 =

{
θ2c with probability α
θ1 with probability 1− α

(2.10)

The Metropolis-Hastings algorithm can, slightly inaccurate, be expressed
in words as: Always accept a proposal that increases the probability, and
sometimes accept it if it does not (see e.g. Carlin and Louis 2011, Section
3.4.2 for details about the Metropolis-Hastings algorithm).
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2.3.3 Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm.
By holding all the coordinates except one fixed and let one coordinate
vary, the full conditional distribution of some distribution π(θ) is found.
Moreover, the theorem about full conditional distribution states if all the
full conditional distributions are known, there exists a unique multivariate
distribution that is consistent with them all (Carlin and Louis 2011).
Formally the Gibbs sampler works as follows:

Given a model featuring k parameters, θ = {θ1, . . . , θk}. Under the
assumption that samples can be generated from each of the conditional
posterior distributions p(θi|θj 6=i, y), the Gibbs sampler is carried out using

an arbitrary set of starting values
{

θ
(0)
1 , . . . , θ

(0)
k

}
for the parameters. The

algorithm proceeds as follows:

For t = 1 . . . , T, repeat:

• Step 1: Draw θ
(t)
1 from p

(
θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . θ

(t−1)
k , y

)
• Step 2: Draw θ

(t)
2 from p

(
θ2|θ(t)1 , θ

(t−1)
3 , . . . θ

(t−1)
k , y

)
...

• Step k: Draw θ
(t)
k from p

(
θk|θ

()
1 , θ

(t)
2 , . . . θ

(t)
k , y

)
The Gibbs sampler is ergodic (i.e. it theoretically will eventually over time

sample all possible values of θ from distribution we are interested in) and
therefore will sample the full joint (posterior) distribution. Figure 2.3 shows
how the Gibbs sampler is sampling from a bivariate normal distribution.

2.3.4 The concept of burn-in

It can be shown (Carlin and Louis 2011) that the k-tuple (the model
parameters, see Section 2.3.3) obtained after t iterations in the Gibbs
sampler converges to sample from the true posterior distribution. Provided
that t is large enough, a draw from the sample distribution is therefore
a (correlated) sample from the true posterior distribution. Any posterior
quantities of interest can be estimated using this sample distribution. To
avoid the instability due to inaccurate starting values, it is necessary to
discard the first t < t0 iterations of the algorithm. The time t = 0 to t = t0
is known as the burn-in period. It is important that t0 is sufficiently large
to ensure that the sampling starts after it has reached its equilibrium space.
Methods for assessing the sampler convergence exists, however, this is a
field of ongoing research and a recurring challenge for the users of MCMC
algorithms.
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Figure 2.3: Gibbs sampling from a bivariate normal distribution. The
purple staircase lines show how the sampling routine samples from
one direction at a time starting from B and approaching the center
of the distribution. Source: http://zoonek.free.fr/blosxom/R/2006-06-
22_useR2006.html

Figure 2.4 shows a visualization of an MCMC simulation of a 3-variate
probability density function (PDF). The flaming "star" in the top left corner
is the peak in the PDF. The different coloured threads show how the
algorithm converges from different starting positions (random seeds).

2.3.5 Random seed

The random seed is the starting point for the MCMC algorithm. In theory
the starting point should not matter since the algorithm will always reach
its target distribution after infinite iterations. However, in a finite world,
different starting point can impact the number of iterations needed before
the chain converges.

2.3.6 Disadvantages with MCMC

Although there are many advantages with MCMC, there are also disad-
vantages. One particular challenge is to know when to expect the algorithm
to reach equilibrium space. If sampling from the posterior distribution
starts before this stage, spurious samples may affect the end result. This
is why a proper burn-in is required. However, as described above (sec-
tion 2.3.4), the time before the posterior distribution reaches equilibrium
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Figure 2.4: Visualization of burn-in and convergence of a MCMC simu-
lation of a 3-variate PDF: the glowing spot in the top left corner shows
the peak in the PDF, whereas the thin threads to the right (red, yellow,
green and blue) shows how the Markov chain converges from differ-
ent starting points. We can see that the starting point for the red chain
is a more "lucky" one, starting closer to the center of the PDF. Source:
http://www.juergenwiki.de/work/wiki/doku.php?id=public:mcmc

space can vary a lot depending on the random seed and the complexity of
the model. Due to this problem users of MCMC algorithms often choose
a burn-in period that exceeds what really is necessary in order to be abso-
lutely certain that the estimation of the posterior distribution has reached
a stable state. Moreover, the number of iterations after burn-in is usually
chosen very high to ensure accurate parameter estimates from the posterior
distribution. Additionally, due to high variability caused by sampling dif-
ferences, it is often advisable to run the algorithm several times with differ-
ent random seeds and compare the results. Altogether, these factors make
the use of MCMC algorithms computationally slow compared to other
methods.
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2.4 Approximation of derivatives using finite differ-
ence

From calculus we know that the derivative can be used to detect various
properties of a function. The first derivative at a point on a graph can
be viewed as the slope of the line tangent at that point. The second
derivative measures the concavity of a function. If the second derivative
is positive, the function is convex. If the second derivative is negative, the
function is concave. However, if the second derivative is zero, the point
on the graph is an inflection point, meaning the point is a transition point
where the graph changes curvature (e.g. goes from concave to convex). In
computational mathematics, derivatives can be approximated using finite
difference equations. We will in this section provide an introduction to a
special case of finite difference, namely the second difference and provide
an example from one of its applications.

2.4.1 Second difference

There are three different approaches to the second difference: Forward
difference, Backward difference and Central difference. The main difference
between the three forms is the error term which can be determined using
Taylor series. By using Central difference, the error is an average of
the two other methods and is therefore often the preferred variant. The
approximation of second derivative using central difference can be derived
as follows:

Let ui = u(xi) and i = 0, 1, . . . , N, then

(
∂2u
∂2x

)
i
=

[
∂

∂x

(
∂

∂x

)]
i
= lim

∆x→0

(
∂

∂x

)
i+1/2

−
(

∂
∂x

)
i−1/2

∆x

≈
ui+1−ui

∆x − ui−ui−1
∆x

∆x
=

ui+1 − 2ui + ui−1

(∆x)2 (2.11)

In a discrete setting where the x difference is constant and set to 1 (i.e.
∆x = 1) the second difference approximation can be written as follows:

∆2ui = ui+1 − 2ui + ui−1, i = 0, 1, . . . , N (2.12)

One particular interesting application for the second difference is the
ability to detect the curvature of discrete data. For example, suppose the
task is to investigate where a distribution of sorted, increasing numbers
goes from a near linear to a more extreme type of growth (i.e. quadratic or
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exponential). Calculation of the second difference at each discrete point can
potentially identify where the distribution is approximately linear (∆2u ≈
0) and where there are major shifts in the positive direction (∆2u > 0):

Consider a list of length N with sorted and increasing values y. Let yi be
the value at position i, 1 < i < N, then the corresponding second difference
∆2

i y can be calculated as follows:

∆2yi = yi+1 − 2yi + yi−1, 1 < i < N, i ∈N (2.13)

At points where the distribution is linear, ∆2y will be approximately
zero. At points where ∆2y is positive, the distribution will have a convex
growth. If ∆2y is positive and increasing, the growth rate is exponential. To
identify the first critical point where the distribution changes from linear
to a quadratic growth, choose a threshold δ, δ > 0, iterate the data and
calculate the second difference for each point. Then let the first value yk
where ∆2yk > δ be the first critical point in the distribution of where to
expect the data to grow quadratic (convex growth). The use of second
difference to determine the growth rate of discrete data is best illustrated
by an example:

Example

First we redefine equation 2.13 so that yi = L(x), x = 1, 2 . . . , N, and the
second difference ∆2y = S(L(x)). Hence, the second difference for L(x) is
defined as

S(L(x)) = L(x + 1)− 2L(x) + L(x− 1) (2.14)

Then, consider the following list of sorted numbers:

L(x) = [1, 2, 3, 4, 5, 25, 36, 49, 64, 81, 100] , x = 1, 2, . . . , 11

The corresponding central second differences can be calculated by using
equation 2.14 and yields the values

S (L(x)) = [0, 0, 0, 19,−9, 2, 2, 2, 2] , x = 2, 3, . . . , 10

Notice that the first and last number in L does not have a corresponding
number in S. For x = 1, 2 . . . 5, L is clearly linear (i.e. L(x) = x).
The evidence for this can be found in S(x) which is 0 for x = 2, 3, 4.
However, for x = 5, S (L(5)) = 25 − 2 · 5 + 4 = 19 suggesting that
there is a substantial change in the growth rate from that point to the
next. Furthermore, for x = 6, S(x) is negative despite L(x) is increasing
indicating a decrease in the inflation. For x = 7, . . . 10, L(x) = x2 and
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thus have a positive and constant corresponding value in S(x) = 2 (i.e.
L′′(x) = 2) suggesting that the inflation in this region is quadratic. To
identify where L is changing from a linear to non-linear growth rate, we
can look at the first point in the list where S > 0. In this example this
corresponds to S(L(5)) = 19, indicating an increased growth rate from that
point to the next. Figure 2.5 graphically illustrates this example and it is
easy to see that there is a change in the growth rate between the data point
L(5) and L(6). However, it should be noted that this method only identifies
change in growth rate and do not guarantee that the growth continues in
the same fashion.

2.4.2 The use of second difference in applications

A widely cited application that employs second difference is a method
developed by Evanno, Regnaut and Goudet 2005 (cited over 6000 times
as of April 2015 according to Google scholar). The method uses second
difference to detect the true number of population clusters identified
by the program STRUCTURE (Pritchard, Stephens and Donnelly 2000,
Falush, Stephens and Pritchard 2003). STRUCTURE estimates the posterior
probability of the data X, given each cluster K (Pr(X|K) using MCMC.
For each MCMC step STRUCTURE calculates the log likelihood of the
data given a specific K. The output, LnP(D) = L(K), is calculated for
each K by averaging all these values and then subtracting half of the
variance from the this mean (see Pritchard, Stephens and Donnelly 2000
for details). The true numbers of clusters is often interpreted as the peak
of the L(K) distribution. However, The authors of the method found that
the true number of clusters K where more likely to be found at the point
where this distribution plateaued or continued to increase slightly. This
critical point can be determined by looking at the absolute value of second
difference |L(K)′′| = |L(K + 1)− 2L(K) + L(K − 1)| and identify the peak
in this distribution. To account for uncertainty in the MCMC algorithm
in STRUCTURE, |L(K)′′| is averaged over multiple runs of STRUCTURE and
∆K is calculated using both this mean and the standard deviation of L(K)
(i.e. ∆K = mean(|L(K)′′|)/sd(L(K))) (see Evanno, Regnaut and Goudet
2005 for details). Figure 2.6 shows the population structure of African
Sorghum (Westengen et al. 2014a) inferred by STRUCTURE evaluated by
the Evanno method and visualized by the Structure Harvester website (Earl
and vonHoldt 2012).
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Figure 2.5: Plots visualising the second difference of a discrete function.
A) The black and blue lines indicates the linear and quadratic nature
of the points x = 1, . . . , 5 and x = 6, . . . , 11 in L(x) respectively. B)
The corresponding second difference value S(L(x)). The green, blue and
red dots corresponds to a linear, concave and convex growth in L(x)
respectively.
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B

Figure 2.6: Population structure of African Sorghum inferred by multiple
runs of STRUCTURE evaluated by the Evanno method and visualized by
Structure Harvester (Westengen et al. 2014a). A) Mean Ln probability and
standard deviation for K = 1 − 9 and B) the corresponding ∆K-values
showing a peak at K = 5, thus five is the most probable number of
population clusters. Source: Westengen et al. 2014a.
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2.5 Empirical p-value

A statistical method known as "empirical p-value" (p̂) is often used as a
rank statistics when the results are given in terms of Bayes factors (BFs)
(eg. Blair, Granka and Feldman 2014; Hancock et al. 2011b). This method
yields a measure of how likely a result is compared to other results in
the analysis. The BFs are first ranked according to their value, where the
higher BF corresponds to lower ranks. Second, the empirical distribution
are normalized to have values between 0 and 1, with 0 and 1 corresponding
to the highest and lowest Bayes factor respectively. The most common
equation is p̂ = r/n, where n is the total number of results and r is the
number of tests that have produced a test statistic greater than or equal
to the result calculated for the actual data. However, it has been shown
(North, Curtis and Sham 2002) that this equation is anti-conservative and
the correct equation is given as

p̂ =
r + 1
n + 1

(2.15)

By using this equation the true p-value associated with rk = 5 and
n = 500 is .012 compared to .01 using the r/n equation. Thus the latter
may yield 20% more significant results at a level of .01. However, it should
be noted that in practice the choice of equation is negligible, in particular if
r is large (North, Curtis and Sham 2002).

In principle, the empirical p-value is nothing else than a ranking statistics
transforming the data to a format similar to p-values (e.g. lower value,
higher significance) . For example an α p̂ ≤ 0.05 cutoff is the same as finding
the 95 percentile of an empirical distribution of the results from multiple
hypothesis testing.

2.6 Determine a cutoff threshold for multiple hypo-
thesis testing

By using traditional p-value cutoffs like α =0.5 or 0.01 when performing
tests on thousands of features (e.g. SNPs), there is a chance of having an
abundance of false positive results (Storey and Tibshirani 2003). Therefore
it is necessary to find a cutoff threshold that best calibrates the balance
between the number of true and false positives. Several techniques have
been suggested, most of them intended for frequentistic hypothesis testing.
One of the simplest methods for controlling the family-wise error rate
(FWER; the probability of making one or more false discoveries when
performing multiple hypothesis testing) is the Bonferroni correction. This
method guarantee that the probability of having one or more false positives
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is less than or equal to α by calling all p-values ≤ α/m (where m
is the number of features tested) significant. However, controlling the
FWER using Bonferroni correction is considered to be conservative when
performing genome-wide studies (Storey and Tibshirani 2003).

Another widely used and less conservative method is the q-value (Storey
and Tibshirani 2003). The q-value is a transform of the p-value and is
an extension of the False Discovery Rate (FDR; the proportion of false
positives among all positives, see Benjamini and Hochberg 1995). While
the p-value is a measure of significance in terms of false positive rate
(FPR; the number of false positives divided by the sum of false positives
and true negatives), the q-value is a significant measure in terms of FDR.
For example, applying a traditional p-value cutoff αp ≤ 0.05 means that
on average 5% of the truly null features are called significant, whereas
a q-value cutoff αq ≤ 0.05 means that there is on average 5% truly null
features among the features called significant. One particular advantage
with the q-value is that it also can be applied to results given on the form
of BF. The algorithm calculates the q-value by transforming the BF to the
posterior probability of the alternative hypothesis (see Muller, Parmigiani
and Rice 2006). The q-value has been successfully applied in several studies
employing Bayesian statistics (e.g. Foll and Gaggiotti 2008) and provides a
good measure for comparing BF and traditional p-values in the context of
multiple hypothesis testing (e.g. Villemereuil et al. 2014).

2.6.1 Interpretation of the q-value and the difference to p-value

Consider an experiment with 1000 tested features. A feature with a p-value
of 0.01 implies that there is a 1% risk of that feature being a false positive.
Choosing a p-value cutoff threshold of αp = 0.01 implies that there are
1000 · 0.01 = 10 false positives among features with p-value ≤ 0.01. If
this feature is ranked as number 50 in the distribution, this implies that
there are on average 10 false positives among the 50 top ranking features.
A q-value cutoff threshold of αq = 0.01 on the other hand is much more
conservative. If there are 50 features among the 1000 tests that have a q-
value≤ 0.01, there is on average 50 · 0.01 = 0.5 false positives among the
50 top ranking features. If a feature has a q-value of α̂q it can be interpreted
as the proportion of false positives among tested features with a q-value as
large or less than α̂q.

It should be noted that the q-value is only defined in the context of
multiple hypothesis testing, whereas the p-value (and BF) can be applied
to single tests.
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2.6.2 BF to q-value conversion algorithm

As mentioned above, the conversion algorithm by Muller, Parmigiani
and Rice 2006 uses the posterior probability of the alternative model M1
when calculating the q-value. By recalling Equation 2.5, we can write the
posterior odds of the two models given the data y as:

P(M1|y)
P(M0|y)

= BF
P(M1)

P(M0)
(2.16)

By using the fact that the prior probability P(M0) = 1− P(M1) and the
posterior probability P(M0|y) = 1 − P(M1|y), we can re-inject this into
equation 2.16 and have that the posterior probability of M1 is given as:

P(M1|y) =
1

1 + 1−P(M1)
BF·P(M1)

(2.17)

By assigning a prior probability for P(M1), 0 < P(M1) < 1, and writing
the posterior probability for M1 as PP, we can use the following pseudo
code (algorithm 1) to calculate the q-values for all features (e.g. SNPs) in
the dataset:

Algorithm 1 Algorithm for transforming BFs to q-values

for each feature i do
q-value← 0
number-of-significant← 0
for each feature j do

if PP(j) is greater than PP(i) then
q-value← q-value + (1− PP(j))
number-of-significant++

end if
end for
q-value← q-value/number-of-significant

end for
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Chapter 3

Review of BAYENV

In this chapter we will give an introduction to the BAYENV model (Coop et
al. 2010; Günther and Coop 2013) and how the program works. As already
mentioned, there are several challenges with the method. First, interpreting
the BAYENV results is challenging because it is provided in terms of
BFs which are not as well known as the frequentistic counterpart the p-
value. Second, the run-to-run variability of the program is also causing
complications for the user (Blair, Granka and Feldman 2014). To illustrate
these challenges, we will provide some examples from the literature where
BAYENV has been used. Furthermore, in a recent simulation study, the
BAYENV showed very good performance when it was compared to seven
other methods for detecting selection along environmental gradients (De
Mita et al. 2013). However, the performance gain is coming with a
considerable cost in terms of computing time (De Mita et al. 2013). Given
this, we will discuss the time consumption of BAYENV .

3.1 Introduction to BAYENV

Coop et al. 2010 introduces a Bayesian method that uses environmental
correlations to identify loci underlying local adaptation. The model
is embodied in the UNIX based software BAYENV which is written in
the C language. The binary of the program is distributed freely over
the internet. The basic idea is to identify loci where environmental
variables of interest have a linear effect on the allele frequencies across
populations. By using environmental variables such as water salinity,
precipitation or temperature, it may be possible to discover genotypes that
are correlated with population’s adaptation to divergent conditions. The
BAYENV model uses Bayesian inference and MCMC algorithms to infer
relationship between allele frequencies and environmental variables.

The method is carried out in a two-step procedure. First, a large set
of presumably neutral loci is used to estimate a covariance matrix that
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represents the empirical pattern of covariance in allele frequencies between
populations due to shared population history and gene flow. MCMC
(see Section 2.3 is used to explore the posterior of the covariance matrix
and the model parameters. Second, the allele frequencies at each SNP
are then tested for correlation to one or more environmental variables,
using the covariance matrix from the first step as a null model. A MCMC
scheme is use to explore the posteriori of the alternative model and a
Bayes factor (BF) is calculated as a measure of support for either of two
models. A high Bayes factor indicates a linear correlation between the
population allele frequencies and the environmental variable and thus the
locus (SNP) may potentially be the target of selection and local adaptation
due to diverging environmental conditions. Coop et al. 2010 tested BAYENV

and found that the program had higher statistical power than four other
methods to detect correlation between environmental variables and allele
frequencies. Furthermore, the simulation study performed by De Mita et al.
2013 confirmed this conclusion by showing that the BAYENV method had
good statistical power compared to seven other approaches.

In the following sections we describe the statistical models and the
implementation of BAYENV.

3.2 The BAYENV model

In the next section we give a brief summary of the BAYENV models and on
what basis the Bayes factor (BF) is calculated. For a thorough review of the
models, we refer to the article (Coop et al. 2010). The assumption of the
model are that the populations are reasonably large and that the loci are in
Hardy-Weinberg equilibrium (see Section 2.1.16).

3.2.1 The null model

To account for the shared history and gene flow between populations, a
covariance matrix is estimated based on the empirical pattern of covariance
in allele frequencies in a large set of putatively neutral control SNPs. The
covariance matrix is a measure of how allele frequencies naturally co-vary
across populations and is used as the null model in the method. The SNPs
that forms the basis for the null model should be a large representative
sample from the total population.

In the null model it is assumed that the population frequencies have
a multivariate normal distribution. Moreover, the model assumes L
unlinked SNPs in K populations. Then let nl = {n1l , · · · , nKl} and
ml = {m1l , · · · , mKl} be the observed count of allele 1 and 2 respectively.
Furthermore, the allele frequencies for locus l in population k is denoted
xkl . The model assumes that the observed counts of each allele (nkl , mkl)
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are the result of binomial draws from these frequencies. Moreover, it
is assumed that the allele frequency in a subpopulation, xkl , is normally
distributed around an ancestral allele frequency ε (0 < ε < 1). The
variance of this normal distribution is given as a factor that is constant
across loci multiplied by a locus-specific term, εl(1− εl). Thus if the allele
frequency in the current generation is ε, the allele frequency in the next
generation is approximated as ∼ N (εl , (1− εl)/2Ne), where Ne is the
effective population size. These assumptions were adopted from a pure
drift model suggested by Nicholson et al. 2002.

As opposed to the normal distribution, the population allele frequency
xkl is constrained to be between 1 and 0. This problem is solved by having
a transform function from a normally distributed surrogate allele frequency
θkl to the population allele frequency xkl . The transform function g is given
as:

xkl = g (θkl) =


0 if θkl < 0
θkl if 0 ≤ θkl ≤ 1
1 if θkl > 1

(3.1)

The densities θkl ≥ 1 and θkl ≤ 0 represents the probability that the allele
has been fixed or lost in the population respectively. For each locus l, θkl
has a marginal distribution ∼ N (εl , εl(1− εl)Ck), where Ck = τ/(2Ne) is
a constant specified after τ generations of genetic drift.

To explicitly estimate the variance-covariance of allele frequencies across
populations it is assumed that the surrogate allele frequency θl has a
multivariate normal distribution:

P (θl |Ω, ε) ∼ MVN (εl , εl(1− εl)Ω) (3.2)

where Ω is variance-covariance matrix of allele frequencies between
populations. The joint posterior of the parameters (θl , Ω, εl) is written as

P(θlΩ, εl , |nl , ml) ∝ P(nl , ml |xl = g(θl))P(θl |Ω, εl)P(Ω)P(εl) (3.3)

As prior for the variance-covariance matrix Ω, P(Ω), inverse Wishart is
chosen due to its property of being the conjugate prior of a multivariate
normal distribution. The joint posterior for all loci L is given as

P(Ω, θ1, . . . , θL, εl , . . . εL|n1, m1, . . . , nL, mL) ∝ (3.4){
l=L

∏
l=1

P(nl , ml |xl = g(θl))P(θl |Ω, εl)P(Ω)P(εl)

}
P(Ω)
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3.2.2 The alternative model

In the alternative model, a SNP of interest is examined for correlation to a
standardized environmental variable Y. In the model, the allele frequency
θl is allowed to be linearly dependent on Y. Moreover, θl has a deviation
from εl that is linearly proportional to Y with coefficient β. The linear
relationship between θ and Y can be predicted by the following model:

P(θl |Ω, εl β) ∼ MVN (εl + βY, εl(1− εl)Ω) (3.5)

However, due to the boundaries at 0 and 1 the same linear relationship
does not necessarily apply between the population frequency xl and the
environmental variable Y.

By defining a prior uniformly distributed P(β) on β, the joint posterior
can be estimated by

P(θlΩ, εl , β|nl , ml) ∝ P(nl , ml |xl = g(θl))P(θl |Ω, εl , β)P(Ω)P(εl)P(β)
(3.6)

As prior for the covariance matrix for a single locus, the posterior of the
covariance matrix estimated from the neutral control SNPs is being used.
The prior for the coefficient β is a uniform distribution between βmin and
βmax.

3.2.3 Calculation of Bayes factor

To provide a measure of how likely it is that a SNP is correlated to the
specified environmental variable, a Bayes factor is calculated based on
the posterior of odds of the two models. If M1 is the alternative model
(βmin ≤ β ≤ βmax), and M0 is the null model (β = 0), then the posterior
probabilities P(M0|nl , ml) and P(M1|nl , ml) can be found by integrating
the right-hand side of the equations 1.7 and 1.8 respectively. Thus the Bayes
factor for the locus l is given by

P(M1|nl , ml)

P(M0|nl , ml)
=

∫
P(nl , ml |θl)P(θl |β, εl , Ω)P(Ω)P(εl)P(β)dβθldεldΩ∫

P(nl , ml |θl)P(θl |εl , Ω)P(Ω)P(εl)dθldεldΩ
(3.7)
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3.2.4 The use of MCMC

Due to its high complexity, BAYENV uses MCMC to explore the posterior of
the two models. On each MCMC iteration the parameters are sequentially
updated using a Metropolis updating scheme. A Gibbs sampling scheme
is used to update the covariance matrix by sampling from the posterior
distribution of the null model. The Bayes factor is calculated using a single
run of the MCMC algorithm under the null distribution and by using a
technique known as importance sampling. Interested readers are referred
to the article appendix A and B (Coop et al. 2010) for further details about
the MCMC implementation in BAYENV.

3.3 How the BAYENV analysis is performed

The BAYENV program is run as a two step procedure. First, a covariance
matrix is estimated based on a large number of presumed neutral SNPs.
The user must specify a random seed for the MCMC algorithm and for how
many iterations the program should run. A covariance matrix is drawn
from the posterior distribution every 500 MCMC cycle and written to file.
One of these covariance matrices serves as a input parameter for the next
step in the procedure. Including SNPs in the null model that later should
be the subject of testing is unproblematic as long as the number of SNPs
used is large (Coop et al. 2010). BAYENV supports a maximum of 10,000
SNPs as basis for the covariance matrix.

Second, in the test phase, each SNP (provided to the program as a single
locus frequency file) of interest is tested individually for correlation to one
or more environmental variables using the previously estimated covariance
matrix as a null model to correct for the neutral allele frequency variation
across populations. Similarly to the first step of the procedure, the user
must specify the random seed and the number of MCMC iterations for each
test SNP. Additionally, the user must provide a file with the environmental
variables that are standardised across populations (i.e. subtract the mean
and divide by the standard deviation) as an input parameter to the test
phase of the program. For each SNP tested, BAYENV writes the file name of
the single SNP-file and the resulting BFs calculated for each environmental
variable to disk. If more than one SNP is tested, the program appends
the results to the already existing result-file (program default). In order to
simplify the analysis of the result file it is convenient to name the SNP file
in accordance with the name of the SNP.

The number of MCMC iterations needed for the two steps in the
procedure is a debated subject (Blair, Granka and Feldman 2014). Coop et
al. 2010 found that the MCMC algorithm estimating the covariance matrix
converged relative quickly and stated that 5000 iteration was sufficient
as a burn-in. However, the authors do not state how many iterations
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that was used when testing SNPs in the article, nor do they provide any
recommendations on the subject. By looking at articles where BAYENV has
been used, the number of MCMC iterations used ranges from a couple of
thousand to 1,000,000.

3.3.1 The BAYENV file format

The BAYENV file format is program specific, in accordance with most other
bio-analysis programs. The SNPs are organized row-wise, where each
SNP occupies two rows; one for each allele. Individuals are grouped in
populations and organized column-wise in the matrix.

Formally the BAYENV file format is organized in the following way:
By having L SNPs genotyped in K populations, the row vector nl =
{n1l . . . nKl} is the observed counts for allele 1 at locus l and ml =
{m1l . . . nKl} is the observed counts for allele 2 at locus l (table 3.1).

Locus Pop1 Pop2 · · · PopK
n1 n11 n21 · · · nK1
m1 m11 m21 · · · mK1
...

...
...

. . .
...

nL n1L n2L · · · nKL
mL m1L m2L · · · mKL

Table 3.1: Schematic overview the BAYENV file format. The row vectors n j
and mj are the observed counts for allele 1 and 2 respectively in population
j. The first row and column are headers and not included in the file.

Table 3.2 shows an example of the BAYENV format taken from the first
five SNPs from a dataset containing SNPs from Atlantic cod (Gadus Morhua)
genotyped by Berg et al. 2015, in review.

3.4 Evaluation of the BAYENV method by De Mita et
al.

In 2013, De Mita et al. (De Mita et al. 2013) performed a study
where the power and robustness of eight different methods to detect
selection along environmental gradients were benchmarked. Three of the
methods were based on environmental correlation, whereas five methods
were differentiation (FST) based. In this study, 100 populations were
simulated along a selective gradient using the software QUANTINEMO
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SNP Pop1 Pop2 Pop3 Pop4
SNP1 allele1 6 0 7 2
SNP1 allele2 90 112 77 94
SNP2 allele1 96 112 83 94
SNP2 allele2 0 0 1 2
SNP3 allele1 0 1 2 1
SNP3 allele2 96 111 80 95
SNP4 allele1 8 7 7 5
SNP4 allele2 88 105 77 91
SNP5 allele1 32 56 30 34
SNP5 allele2 64 56 54 62

Table 3.2: Example of the BAYENV file format taken from a data set
containing SNPs from Atlantic cod (Berg et al. 2015, in review). The first
row and first column is for illustration purpose only and are not included
in the actual file.

(Neuenschwander et al. 2008). After simulation the data sets contained
1000 neutral loci and 100 loci under selection. Several different samplings
schemes, migration models and rates of self-fertilization were explored (see
De Mita et al. 2013 for details).

Among the correlation-based methods was BAYENV by Coop et al.
2010. Several BAYENV analyses were carried out using loci from different
sampling schemes. The loci were tested for correlation along three artificial
environmental gradients. Only neutral loci were used as a basis for the
covariance matrix. The study concluded that correlation based methods
were more powerful than differentiation based methods, especially with
the lowest level of simulated selection. In particular, the BAYENV method
was found to have the best power when using discriminant selection
intensities. However, as noted by the authors, the performance gained by
BAYENV comes with a significant cost in computing time.

3.5 BAYENV 2.0

In September 2013 BAYENV 2.0 was released in conjunction with the article
Robust identification of Local Adaptation from allele frequencies (Günther and
Coop 2013). As the title indicates, the authors argue that there is a need for
a more robust method for analysing allele frequencies and loci underlying
local adaptation. The main problem with linear models such as BAYENV

is that they are less robust with regard to outlier results. To correct for
this, the authors extend BAYENV 2.0 with a method for "standardised
allele frequencies" which can be used to conduct additional tests of the
user’s own choice. To show how the standardized frequencies can be
used, a rank-based non-parametric statistics to detect correlation with
environmental variables is implemented in the program. As an addition
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to the Bayesian test for linear correlation (the BF), BAYENV 2.0 is now able
to calculate Pearson’s and Spearman’s correlation between a standardized
allele frequency and an environmental variable (transformed to be in the
same frame of reference). These tests are not intended as a replacement for
the Bayes factor, but rather as a supplement. Having both the Bayes factor
and the Spearman’s ρ for a loci and an environmental variable, enables the
analysts to be more confident in their conclusions.

The original BAYENV method is unchanged except for more frequent
output of the covariance estimate (output every 500 instead of every 5,000
MCMC cycle). We will in the remaining chapters be using BAYENV 2.0 but
refer to it as the BAYENV method.

3.6 Challenges using BAYENV

There are several challenges regarding both the use of BAYENV and the
interpretation of the results. First of all, the multi-step procedures of
the program are not very user friendly and may pose challenges to non-
technical researchers. In addition to a particular file format, the program
supports testing of only one SNP at the time. Thus, testing of more than a
few SNPs requires that the process is automated in some way. This could
be challenging if the user does not possess programming skills.

Second, BAYENV employs MCMC simulations both for estimating the
null model and for the tests at each locus. The number of iterations
needed in order to have convergence is not known in advance. The
covariance matrix and the BFs are computed using single draws from the
posterior distributions after a certain number of user specified MCMC
iterations. This implies that even though the MCMC algorithm has reach
its "equilibrium space", every draw using the MCMC sampler is likely to
be different. The random seed may also have an impact on the result.

Changing the number of MCMC iteration for both steps in the procedure
will most probably lead to different results in terms of BF for each SNP. For
example, running a test using 10,000 MCMC iterations and a covariance
matrix estimated after 20,000 MCMC iterations will likely provide a
different result than a run using 20,000 and 10,000 MCMC iterations for the
test and covariance matrix respectively. Changing the random seed will
provide yet another result. By different results, we do not necessarily mean
qualitatively different results. A high ranking SNP in one run will probably
be high ranking in another, however, the signal strength and the order may
vary quite a lot depending on the environmental variable. This variability
makes it particularly important to check the results with multiple runs of
the algorithm (Blair, Granka and Feldman 2014).
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3.6.1 Assessment of the results

BAYENV provides the results in terms of BFs (see Section 2.2.4). Several
different approaches exist to determine a significance level for BFs, where
a percentage cutoff on the empirical distribution or thresholds set by
Jefferey’s scale of evidence table (see Table 2.2) are among the most popular.
However, there are several disadvantages to using these approaches.
For example, if there are only three true significant SNPs among 10,000
tested SNPs, a 95% cutoff will lead to 497 false positive results. Another
problem may be that a percentage cutoff could potentially include results
that actually supports the null model (BF<1) if the overall BF signal is
low enough. Using one of the predefined thresholds from one of the
significance tables (table 2.2 or 2.3) may also pose challenges. For example
deciding on a threshold of BF>100 ("Decisive" according to Jefferey’s table)
may in some cases lead to a large number of positive results (e.g. if it
was used on the results in Coop et al. 2010). For example if 15% of the
SNPs shows a BF> 1000, may a "decisive" BF of 100 then be regarded
as significant? The problem of using a lookup table is that the choice of
cutoff are easily being "customized" to the distribution according to the
analyst’s prior suppositions. In the subsequent chapters we will refer to
cutoffs based on Jeffrey’s (or Kass’) table (Table 2.2 and Table 2.3) as a static
cutoff.

3.6.2 Time consumption

As with most programs that employs MCMC simulation algorithms,
BAYENV is quite time consuming. First, a covariance matrix needs to
be calculated using at least 10,000 MCMC iteration steps. The time
consumption for this, increase with the size of the data (i.e. the number
of SNPs and populations). Second, the test for correlation to the
environmental variable at each SNP needs to run for at least 10,000 MCMC
iterations each. The time consumption for the test phase increases linearly
with the number of SNPs tested.

Due to the uncertainty associated with convergence of MCMC al-
gorithms , the BAYENV results should be checked with multiple runs of
the program using different random seeds (Coop et al. 2010). To illustrate
how time consuming the process can be, consider the following example:

These time estimates are based on the assumption that the BAYENV

analysis is carried out sequentially on an up-to-date desktop computer (e.g.
Intel i5 CPU). By using 10,000 control SNPs as a basis, a covariance matrix
is estimated using 100,000 MCMC iterations. A rough estimate of the time
spent creating this matrix is four hours. Next, 50,000 SNPs are tested ten
times (using different random seeds) using 100,000 iterations each. If we
assume an approximate estimate of five seconds spent at each test, we have
the following total time consumption for a full BAYENV analysis:
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1 covariance matrix = 4 hours
5 seconds · 50000 SNPs · 10 runs = 2500000 seconds = 694.4 hours
In total: covariance matrix + tests = 4 + 694.4 = 698.4 hours = 29 days

It is easy to see that the most time consuming part of the analysis is
the test at each SNP. Consequently a parallelization of this part could
dramatically reduce the total time spent on the analysis. Parallelization
and other methods to reduce the time consumption will be discussed in
chapter four, five and six.

3.7 Use of BAYENV in research

Since the release in 2010, BAYENV Coop et al. 2010 has become a popular
tool among scientists conducting research on population allele frequencies
and adaptation to local environments (e.g. Chen et al. 2012; Fang et al. 2012;
Fumagalli et al. 2011; Hancock et al. 2010a; Hancock et al. 2011b; Westengen
et al. 2014b; Ye et al. 2013, etc). The article is cited 192 times as of April 2015
(according to Google Scholar). However, the guidelines for how BAYENV

should be run an how to interpret the results are vague in both the article
and the accompanying manual. This fact is reflected in the articles where
the method is used.

In Hancock et al. Hancock et al. 2011b, the BAYENV method was
applied to genome-wide SNP data containing 61 human populations to
search for evidence of adaptation to 11 climatic variables. The study
was successful and evidence of adaptation was found to several variables,
latitude, summer relative humidity and summer solar radiation being
among the most significant.

The BAYENV analysis performed by Hancock et al. 2011b was re-analysed
by Blair, Granka and Feldman 2014. The result showed that BAYENV had a
high variability between runs (for details see Blair, Granka and Feldman
2014). Among the more significant findings in the original article were
three SNPs in the CORIN gene, rs4558846, rs6447571 and rs17601068,
reported by Hancock et al. to have an association with minimum winter
temperature. They all gave very strong signals, log10BF = 21.9, 28.7 and
20.8 respectively. However, when the same analysis was rerun by Blair
et al., the same SNPs showed no significance with log10BF = -0.32, -0.50,
and -0.48 respectively. Increasing the number of MCMC iterations from
100,000 to 500,000 did only increase the stability of the method marginally.
Based on these findings, Blair, Granka and Feldman 2014 warned against
making conclusion based on one single run of the program. The authors
also recommend caution in interpreting previous studies that have used
only one run.
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3.7.1 Examples from the literature

There are three particular aspects with BAYENV that are causing difficulties
for the analysts and leads to a host of different approaches. First, the
number of iterations that are needed for the procedure in order get a stable
and accurate result. Second, the number of independent runs needed
to verify the results. Third, how to define a proper cutoff threshold for
significance. To illustrate the problem of inconsistent and varying use of
the method, we here provide a couple of examples from the literature.

Example 1
In the article Imprints of Natural Selection Along Environmental Gradients
in Phenology-Related Genes of Quercus petraea, Alberto et al. 2013 use
BAYENV to investigate correlation between population allele frequencies
in Quercus petraea and latitudinal and longitudinal gradients. A total of
175 polymorphic SNPs were tested. Here the authors chose to perform
100 analyses for each variable to account for the run-to-run variability.
However, the authors do not state the number of iterations per run nor how
the covariance matrix was created. Only SNPs among top 10 in each run
was considered each time. For each SNP the mean and variance among
runs were calculated. Only SNPs which exhibited stable position in the
top 10 BF values were considered candidates. Three SNPs showed a stable
average BF above 2 and the highest reported BF was 5.02. For a summary
of the BAYENV usage in this example see Table 3.3.

Comments on Example 1
Not stating the number of MCMC iterations used in both BAYENV steps is
problematic since this may have an impact on the stability of the results
(Blair, Granka and Feldman 2014). The authors make use of a high
number independent runs (100). Whether this can compensate for fewer
iterations is a subject for further research. Furthermore, the authors do not
comment on the choice of cutoff threshold, however, according to Jeffery’s
interpretation a BF>2 is "Not worth more than a bare mention" (see Table
2.2). One question would be: is a BF>2 high compared to the other SNPs
tested? We would argue that the full distribution of test results must be
taken into account when deciding a threshold for significance.

Example 2
In the article Genome-wide single-generation signatures of local selection in the
panmictic European eel (Pujolar et al. 2014), a total of 50,354 SNPs with
a minor allele frequency >0.05 from European eel were analysed using
BAYENV. The SNPs were tested for correlation to the environmental
variables degrees north latitude, degrees east/west longitude and sea-
surface temperature. Five independent test runs were carried out to
ensure consistency, however, the number of iterations is not mentioned.
Furthermore, a BF > 3 was chosen as a cutoff for significant correlation. A
total of 87 candidate SNPs representing 74 unique loci were identified. For
a summary of the BAYENV usage in this study, see Table 3.3.
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Comments on example 2 As mentioned for example 1, the lack of
information on the number of MCMC iterations used may be problematic
as it may impact the stability of the method (Blair, Granka and Feldman
2014). The authors does not use any descriptive statistics to summarize
the results from five runs but only to verify the results from one run. This
might be okay, but why not use the average or median BF? The choice of
cutoff threshold (BF > 3) is not justified and seems a bit random. Moreover,
there is no information on how the BFs are distributed for the entire dataset.
We would argue that the choice of cutoff threshold must be in accordance
with the full distribution of results and to lesser extent be a "convenient"
threshold that may reflect the analyst’s prior suppositions.

Example 3
In the article Complex Patterns of Local Adaptation in Teosinte (Pyhäjärvi et al.
2013), the authors aim to describe the genetic basis of local adaptation in 21
populations of Teosint (the wild ancestor of Maize) by using total of 36,719
genotyped SNPs. The study used 76 environmental variables where the
dimensionality of the data was reduced using PCA. The BAYENV analysis
was carried out by first estimating three different covariance matrices
based on three different random subsets, each contained 10,000 SNPs. The
covariance matrices were estimated using 50,000 MCMC iterations. These
were examined and found to have low pairwise difference (less than 10%
at most). Five independent BAYENV runs were carried out using 1,000,000
iterations on each SNP to test for association with the environmental
variables (the PC’s that captured 95% of the variation). As a cutoff for
significance, SNPs that showed an average BF across runs in the 99th
percentile and were consistently in the 95th percentile of the empirical
distribution of Bayes factors from each run, were considered candidates.
A total of 1,598 SNPs were identified to be associated with one or more
principle components. For a summary of the BAYENV usage in this example
see Table 3.3.

Comments on example 3 The use of BAYENV in this article is very well
documented. Verifying the convergence by comparing different covariance
matrices is a reassuring measure. Perhaps it would have been even better to
use an average of the covariance estimates as long as the difference was up
to 10%? Using as much as 1,000,000 MCMC iterations provides credibility
to the results. However, is this high number of iterations really necessary to
ensure convergence? The time consumption of BAYENV increases linearly
with the number of MCMC iterations and thus is one of the drawbacks of
the BAYENV algorithm (De Mita et al. 2013). The authors make use of a
percentage cutoff to decide significance. As mentioned in Section 3.6 this
method does not account for the actual BF signals in the distribution of
results and may potentially lead to many false positive results. Moreover,
the use of average BF as summary statistics for only five runs may be
affected by extreme outlier results (i.e. the differences found by Blair,
Granka and Feldman 2014, Section 3.7). Maybe the median statistics would
have been a more robust way of summarising the results from five runs?
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Example 1 Example 2 Example 3
Number SNPs for the covariance matrix 175 N/A 10,000
Number of iterations for the covariance matrix N/A N/A 50,000
Number of SNPs tested 175 50,354 36,719
Number of iterations for the test phase N/A N/A 1,000,000
Number of independent BAYENV runs 100 5 5
Statistics for multiple runs Average BF N/A Average BF
Cutoff for significance BF > 2 BF > 3 99 percentile
Cutoff for variability Top 10 N/A 95 percentile
Results available online No No No

Table 3.3: Summary statistics for the BAYENV usage in Example 1, 2 and 3.
N/A = no information available.

3.7.2 Comments to all examples

The examples in Section 3.7.1 illustrates the prevailing uncertainties about
how BAYENV should be run and how to interpret the results. We do not
suggest that any of these methods are necessarily wrong, however, the lack
of a uniform method for how to carry out the analysis is evident. We know
that the run-to-run variability may be high and comparing independent
runs is necessary to detect outlier results. Furthermore, the number of
MCMC iterations used for both steps in the BAYENV procedure is likely
to affect the stability of the end result (Blair, Granka and Feldman 2014).
Considering the fact that the MCMC algorithms is quite time consuming
it is crucial to find a set of settings for BAYENV that balance the number of
MCMC iterations and the number of independent runs with stability and
time usage.

The absence of a common strategy for how to define a significant level for
the distribution of BFs is also apparent. As pointed out by Coop et al. 2010,
an empirical approach (i.e. the "empirical p-value", see section 2.5) has
some serious drawbacks, with deciding what cutoff to use being the most
obvious as the choice of cutoff often reflects one’s prior beliefs of selection.
The use of a static cutoff such as Jeffrey’s scale of evidence for BF (see Table
2.2) is also unsatisfactory (see Section 3.6.1).

It is crucial to be aware of these facts when using BAYENV to assay
the genome-wide pattern of local adaptation. There are three main
questions that need further discussion. First, how can we ensure consistent
results from a BAYENV analysis? Second, how can we assign a proper
significant level for the results? Third, how can we reduce the overall time
consumption of BAYENV?
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Chapter 4

Methods and materials

In this chapter we first present the datasets and materials used in this thesis.
Second, we describe a method named the Second Difference Method (SDM)
that uses the properties of second difference to assign a dynamic cutoff
level to an empirical distribution of BF results. The method is intended to
act as an alternative to conventional cutoff methods such as a percentage
or static (table) cutoffs in the context of multiple hypothesis testing. Third,
considering the high run-to-run variability observed, we define how the
SDM can be used to interpret the results across multiple runs of BAYENV.
Fourth, as a time saving measure, we propose a method of reducing the
BAYENV test set by excluding SNPs with low maximum allele frequency
difference (MAFD) between populations. Fifth, we describe the methods
used for testing the stability of BAYENV. Finally, we describe the functional
specifications for PYBAYENV, a BAYENV wrapper, which we used to carry
out the experiments required to test our hypotheses and to reduce the
overall time consumption of BAYENV.

4.1 Materials

In this section we describe the two SNP datasets, populations and the
associated environmental variables we used to demonstrate our methods.

4.1.1 The cod dataset

To test our hypotheses and the overall capability of BAYENV we used
a dataset consisting of 8809 polymorphic SNPs from the genome of
Scandinavian Cod, most of them genotyped by Berg et al. 2015, in review.
Of the 8809 SNPs, 262 had previously been published (Hemmer-Hansen
et al. 2011; Hubert et al. 2010; Moen et al. 2008), 648 were selected from
candidate genes, 1554 were non-synonymous coding (see Section 2.1.12),
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whereas the remaining 6345 SNPs were randomly distributed throughout
23 linkage groups (a linkage group is a set of two or more loci that have
been shown to be physically close but have not yet been assigned to specific
chromosome) on the cod genome. The two latter groups are considered
to be evolutionarily neutral SNPs. The SNP dataset was made available
in GENEPOP format (Raymond and Rousset 1995) where the populations
were defined. We will refer to this as the Cod dataset.

Populations

The basis for the 8809 SNPs were 194 individuals of adult Atlantic cod
collected from 7 locations outside the coast of Scandinavia. The sampling
places were: eastern North Sea, Kattegat, Öresund area, the Bornholm
basin (2 collections), the Öland area and the Gotland area. Four population
clusters were defined based on results from STRUCTURE (Falush, Stephens
and Pritchard 2003; Pritchard, Stephens and Donnelly 2000) and used in
the subsequent BAYENV analyses. The Baltic population is a merging of the
individuals from the four collections from the Baltic Sea.

Environmental variables

Six different environmental variables were available for BAYENV analysis
of the Cod dataset: Water salinity (psu), Temperature (◦C) and Oxygen
level - all respectively on surface (5-10 meters) and at spawning depth.
In the case of the Baltic population where individuals from four different
sampling sites were grouped, the environmental variables were averaged
across these collections sites. We will refer to these variables as follows:
salinity at surface as sal1, salinity at spawning depth as sal2, temperature
at surface as temp1, temperature at spawning depth as temp2, oxygen at
surface as ox1 and oxygen at spawning depth as ox2. All environmental
variables were obtained from the study by Berg et al. 2015, in review.

4.1.2 Maize dataset

In addition to the Cod dataset, we used a relatively small dataset containing
135 polymorphic SNPs from African Maize used in a study by Westengen
et al. 2014b. These SNPs are a subset of a panel of African maize containing
43963 SNPs (Westengen et al. 2012), done with the MaizeSNP50 array
(Ganal et al. 2011). Out of the 135 chosen SNPs nine were candidate SNPs
earlier suggested to be associated with maximum temperature during the
growing season, 35 SNPs suggested to be under positive selection based on
FST values and the remaining 100 SNPs were randomly selected from the
SNP array. The random SNPs were evenly distributed throughout the ten
maize chromosomes. Furthermore, 109 of the SNPs are located in known
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or putative genes identified by marker search databases (www.panzea.org
and gramene.org). The reader is referred to the article for further details.
The dataset was available in GENEPOP format. We refer to these SNPs as
the Maize dataset.

Populations

Three "populations" were defined based on samples from three different
stages in the local seeds systems of Mangae, a village in the Morogoro
district in Tanzania. The three populations were: 1) A formal seed
population consisting of seeds from the formal sector. 2) Seeds reportedly
used for one generation (one year). 3) Seeds recycled over 10 years. Seeds
from all populations were of, or were originating from the improved maize
variety Staha.

Environmental variable

An ordinal environmental variable based on the stages in the local seed
system was defined in a similar manner as Heerwaarden, Hufford and
Ross-Ibarra 2012 used breeding era. The three stages were "translated" into
quantitative variables such that "original"=1, "used one year"=2, "used 10
years"=3.

4.2 The Second Difference Method (SDM)

In this Section we construct the SDM whose objective is to define a set of
significant SNPs from a distribution of BF results obtained from a BAYENV

analysis. We also define how it can be used on multiple runs of the program
to ensure more reliable results.

4.2.1 The definition of SDM

We here propose a method, named the SDM, which aims to define a dy-
namic significance threshold for the BF results gained from a BAYENV ana-
lysis. Our hypothesis is that the true significant results can be separated
from the non-significant results by looking at the sorted empirical distri-
bution of BFs as a gradually increasing function where the true significant
results are found after a critical break in the slope. Such a critical point
can be found where the second derivative of the function has a sudden
and substantial jump in the positive direction. Further, we assume that the
insignificant results are found in regions where the same function has a lin-
ear growth and the true significant results are found in regions where the
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function has a convex growth (see Section 2.4). Thus, by setting the cutoff
threshold where the function has an accelerating growth rate, we expect to
be able to access the significant results without including non-significant
results.

Since we are dealing with discrete data, the second derivative must be
approximated using second difference. By sequentially calculating the
second difference for each BF value, we can detect where the distribution
has an approximately linear growth (i.e. ∆2y ≈ 0, see Section 2.4.1) and
where the distribution enters a more extreme growth rate (e.g. ∆2y > 1).

Consider a list of increasingly sorted BF results yi, i = 1, 2, . . . N. Let yn
be the BF value at position n, 1 < n < N, n ∈ N then the corresponding
second difference is calculated as follows

∆2yn = yn+1 − 2yn + yn−1, y ∈ R, n ∈N (4.1)

To identify the regions with convex growth, choose a threshold δ > 0
and let the first value yk where ∆2yk > δ be the starting point of where to
expect the distribution of BF values to grow quadratically or exponentially
(convex growth). We are interested in the values after the initial change
in the growth rate has been made, thus the set of significant SNP’s with
associated BF value y can be written ω = {yk+1, yk+2, . . . , yN}. We will in
the subsequent chapters refer to ω as the significance set from the BAYENV

analysis.

4.2.2 Selecting the threshold δ

In regions where the distribution of BFs is approximately linear, ∆2 will be
fluctuating around zero. Therefore, the key factor for successfully detecting
the critical point is to choose the correct δ. A simple solution would be to
choose a constant δ (e.g. 0.5 or 2). However, we want δ to be more in
agreement with the shape of the empirical distribution. In other words, if
there are many SNPs with a very high BF (e.g. BF > 150), we can allow δ be
less sensitive by allowing a greater deviation from zero. In an opposite case
where the general BF level is low, we can choose a δ that is more sensitive
(closer to zero).

There are several ways we can scale δ such that the cutoff is better
adjusted to the shape of a specific distribution. We here suggest one
variant where δ is scaled according to two important measures from the
distribution: 1) The maximum BF value and 2) The number of BF values
above a certain level (e.g. a level from Jeffrey’s table). We define the scaled
and dynamic cutoff threshold for the second difference ∆2 as follows.

Let α be the lower limit for a "strong" support from Jeffrey’s "scale of
evidence" table (i.e. log(BF)=2, see Table 2.2). Then let Nα be the number
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of elements in the empirical distribution that has a BF > α. Finally let A
be the maximum BF value in the same distribution. Thus, a dynamic cutoff
level δ̂ for ∆2y can be obtained using the following equation:

δ̂ =

{
ε + log10 Nα log10 A if Nα ≥ 1

ε if Nα = 0
, 0 < ε ≤ 1, ε, α, A ∈ R, Nα ∈N

(4.2)

Where ε is a small real valued constant, 0 < ε ≤ 1. The main purpose
of ε is to ensure that the algorithm works even if there are no SNPs with
BF > α (Nα = 0). Additionally, ε can be used to "fine tune" the sensitivity
of the algorithm. However, for the subsequent analyses a default value of
ε = 0.5 is used unless otherwise stated.

The pseudo code in algorithm 2 summarises how the SDM pipeline is
carried out:

Algorithm 2 The Second Difference Method Algorithm

y← sort(BF results, increasing=True)
N← length(y)
δ̂← ε + log10 (Nα(y))× log10 (A(y))
k← 0
for each BF value yi, i = 2, . . . , N − 1 do

∆yi ← yi+1 − 2yi + yn−1
if ∆yi is greater than δ̂ then

k← i
break for loop

end if
end for
ω ← [yk+1, yk+2, . . . , yN ]

4.2.3 Defining the set of significant SNPs across multiple runs of
BAYENV

The proposed SDM provides a dynamic cutoff threshold for the distribu-
tion from one single run of BAYENV. However, to address the problem of
run-to-run variability (Blair, Granka and Feldman 2014) we need to verify
the stability of the results across multiple runs of BAYENV (i.e. all SNPs in
the dataset are tested for association to the environmental variable once in
each run). We can ensure that the results are more reliable by: 1) computing
the union of the significance sets (ω) calculated using the SDM algorithm
(see Algorithm 2) for each run. 2) Count the number of times each SNP in
the union set has been defined as significant. A final set of significant SNPs
can be defined as the SNPs that appear more frequently than a specified
cutoff threshold. We first define the union set as follows.
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Consider that T runs has been carried out using BAYENV. Let ωi be the
identified set of significant results from test run τi, i = 1, 2, . . . , T. Then the
complete set of significant results Ω is defined as:

Ω =
T⋃

i=1

ωi (4.3)

We expect that each ωi will contain different number of SNPs and
consequently not always the same SNPs. In order to define a final set of
significant results we count the number of times each SNP appears in Ω
and use a cutoff for maximum variability to remove outlier results (i.e. the
least consistent SNPs).

Let S be the total number of unique SNPs y in Ω, ki the number of times
the specific SNP yi has been defined in Ω and κ be a predefined cutoff value,
then the final set of significant SNPs Ω̂ can be written as follows:

Ω̂ =
S⋃

i=1

{
yi if ki

T ≥ κ

∅ if ki
T < κ

, i ∈N (4.4)

We suggest that κ ≥ 0.7 in order to retain only the SNPs that are
consistently included in more than 70 percent of the ω’s. We will refer
to Ω and Ω̂ as the "union set" and "total significance set" (TSS) of a BAYENV

analysis respectively, carried out using T independent runs.

For the subsequent experiments, we will be using the same strategy for
defining union sets and TSS for other cutoff methods such as percentage or
static cutoffs. The only difference is that instead of the SDM we use one of
the other cutoff methods when we define the significance sets (ω).

4.2.4 Stability score

To measure the between-run variability as well as the variability between
complete BAYENV analyses we introduce a stability score s. The idea is
to have a standardised measure for the discrepancy within and between
significant sets.

Let x̄ be the mean number of times SNPs have been identified in a union
set (Ω, see Equation 4.3). Then we normalize this mean such that 0 reflects
that no SNPs have been identified more than once (i.e. s(x̄ = 1)) and 1 if all
SNPs have been identified in all runs. For T independent runs of BAYENV,
we write the stability score s as
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s(x̄) =
x̄− 1
T − 1

, T > 1 (4.5)

By using this score we have a robust and easy measure of the run-to-run
variability between union sets.

4.3 Reducing the time consumption by reducing the
test set

Running BAYENV tests on many loci is a very time consuming task
due to its extensive use of MCMC algorithms (see Section 3.6.2). A
dataset may potentially contain several million SNPs and many of these
may not be worthwhile testing in this context because the difference in
allele frequencies are marginal between populations. For example, if all
populations have an allele frequency of 0.5 at a particular locus, this
must be considered to be a neutral for selection (in this context) and may
therefore be excluded from testing. Considering that the time consumption
in the test phase of BAYENV increases linearly with the number of SNPs
tested, it can be well worth trying to reduce the number of test SNPs to a
minimum.

First, loci that are monomorphic (loci where all populations exhibit only
one and the same allele) across all populations can obviously be removed
from the tests set as these contain little information in this context. In
order to further reduce the amount of test SNPs, we suggest using the
measure maximum allele frequency difference (MAFD) across populations
as a cutoff. The MAFD is an indicator of the maximum deviance in allele
frequencies between the populations being assayed. The MAFD can be
computed in the following way:

Let N be the number of loci in the test set L = l1 . . . lN , K be the number
of populations and xl

k be the allele frequency for population k in locus l,
then the maximum allele frequency difference ∆l for locus l can be defined
as

∆l = max
1≤i≤K−1,i<j≤K

∣∣∣xl
i − xl

j

∣∣∣ i, j ∈N (4.6)

We can use this equation to extract SNPs with high maximum allele
frequency difference, ∆l , by applying an appropriate cutoff threshold κ.

Let N be the number of loci in the original data set and ∆l be the
maximum allele frequency difference for locus l as described in equation
4.6. Furthermore, let κ, 0 < κ < 1, be an appropriate cutoff value for ∆.
Thus the reduced test set Ψ is defined as
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Ψ =
N⋃

i=1

{
li if ∆i ≥ κ
∅ if ∆i < κ

, i ∈N, ∆, κ ∈ R (4.7)

Note that this method also will exclude loci that are monomorphic across
all populations as these will have ∆ = 0.

4.4 General methods for the tests performed

In this Section we describe the methods and experiments used to explore
and test the previously derived hypotheses and questions.

Significance sets

We compared the significance sets obtained using the SDM (see Section 4.2)
to corresponding sets obtained by using percentage and static BF cutoff
thresholds on the empirical distribution of BF results. As a rank statistics
for the BF results, we calculated the empirical p-value (see Section 2.5)
by employing equation 2.15. Hence, we used the cutoff α p̂ ≤ 0.01 and
α p̂ ≤ 0.05 to refer to the top 1% and 5% SNPs in the empirical distribution
of BFs respectively. We refer to these cutoff thresholds as alpha1 and alpha5
respectively. Second, we employed two static cutoff thresholds based on
Jefferey’s scale of evidence for BF (table 2.2): 1) "Substantial" (BF ≥ 3.2). 2)
"Strong" (BF ≥ 10). We refer to these cutoff thresholds as jeff3.2 and jeff10
respectively.

Conversion of BFs to q-values

As a measure to control for FDR in the significance sets, we followed the
algorithm by Muller, Parmigiani and Rice 2006 as employed in Villemereuil
et al. 2014 (see Section 2.6.2) to convert the BFs to q-values by using
algorithm 1 (page 32). As the prior probability for the alternative model
needs to be specified, we followed Villemereuil et al. 2014 and defined
P(M1) = 0.01 (the prior odds of alternative model, see equation 2.16). From
the q-values we computed the expected number of FPs (as elaborated in
Section 2.6.1) in each significance set and compared these values.

Naming conventions

We use the term "BAYENV run" (or just "run") when we perform the test for
environmental correlation on all or a subset of the SNPs in the dataset. We
will also use this term when a predefined subset of a full dataset is used.
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For a set of multiple runs of BAYENV we use the term "BAYENV analysis" or
a "full analysis".

General BAYENV MCMC parameters

For the covariance matrix, we used an average of all covariance matrices
estimated by BAYENV after the same number of MCMC iterations as
were specified for the corresponding tests (unless otherwise stated). For
example if the tests in a run were carried out using 10,000 iterations,
the covariance matrix was calculated as an average from 10,000/500=20
estimations performed by BAYENV. The starting points (random seeds) for
the MCMC algorithm were drawn randomly both for the calculation of the
covariance matrix and each independent test run.

4.4.1 Testing for correlation to environmental variables

For all subsequent BAYENV analyses on the Cod data set (see Section 4.1.1),
tests for correlation to all available environmental variables (sal1, sal2,
temp1, temp2, ox1 and ox2; see Section 4.1.1) were carried out for each
SNP. Likewise, for the Maize data set, tests for correlation to the ordinal
"environmental" variable (see Section 4.1.2) were carried out for each SNP.

4.4.2 Manhattan plots

To visualize how the BF results are distributed over the entire genome,
we use Manhattan plots. A Manhattan plot is a type of scatter plot often
used to display data when there are many data points (i.e. genome wide
tests). On the x-axis we displayed the SNPs according to its position in each
Linkage group/chromosome. The associated log10(BF)/BF are displayed
on the y-axis. The linkage groups/chromosomes are plotted with different
colours for easier inspection of the data.

4.4.3 Plotting of the union sets

As a way to visualize the variability within each union set, we sort the SNPs
in Ω (see Section 4.2.3) according to the number of times, k, it has been
identified as significant. This vector is then plotted as a histogram with the
value of k on the y-axis. The cutoff value κ is plotted as a horizontal line.
Thus, SNPs that are included in Ω̂ (TSS) are the SNPs above this line. We
will be referring to this as a significance-plot.
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4.5 Methods for testing the convergence of the covari-
ance matrix

To investigate the consistency and convergence of the covariance matrix
used by BAYENV as the null model (see Section 3.2), we ran the first step
(the estimation of the covariance matrix) of the algorithm using all (8809)
SNPs in the Cod dataset as basis. Three test runs were performed using
10,000, 100,000 and 500,000 MCMC iterations respectively. To serve as a
reference for the tests, we ran a second covariance estimation using 500,000
MCMC iterations and calculated an average matrix based on all estimates
outputted from BAYENV (single draws from the posterior is output every
500 MCMC iteration). The random seed was chosen randomly for all
runs. As test matrices, we used the last covariance estimate (a single
draw from the posterior) from each test run. Additionally, for all test runs
we calculated an average matrix based on all covariance matrix estimates
output by BAYENV. As a measure of deviation between the different
covariance estimates, we subtract each test matrix from the reference matrix
and plot the absolute value of the difference as heatmaps. The heatmaps
are plotted using MATLAB (MATLAB 2012).

4.6 Methods for testing the SDM

4.6.1 Testing the SDM on simulated BF values

To verify that the SDM works as intended and to demonstrate the
capabilities of the method, we simulated three sets of artificial results
designed to represent three different outcome scenarios from a BAYENV

analysis. We used R to draw random samples from the uniform
distribution (runif ) in specific intervals according to what scenario we
wanted to simulate. The sample intervals were divided into three different
groups representing neutral SNPs supporting the null model (neSNPs),
"non-significant" SNPs supporting the alternative hypothesis (noSNPs) and
"significant" SNPs (noSNPs) respectively. Between the isSNPS and the
siSNPs groups we deliberately made a gap between the sampling intervals
to act as a trigger point for the SDM algorithm (i.e. the SDM should be able
to separate the distribution at this point).

In the first set we simulated a scenario where the BF signal was low in
general with only a few high ranking "SNPs". In this set we drew 9,900
samples in the interval [0.01, 1] (neSNPs), 95 samples in the interval [1, 10]
(noSNPs) and five samples in the interval [20, 1000] (siSNPs). In total the set
consisted of 10,000 "SNPs". We will refer to this set as Sim-weak.

In the second set, we simulated a scenario where there were in general
a strong BF signal with relatively many high ranking "SNPs". In this set
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we drew 8,500 samples in the interval [0.01, 1] (neSNPs), 1350 samples in
the interval [1, 300] (noSNPs) and 150 samples in the interval [500, 10000]
(siSNPs) - in total 10,000 "SNPs". We will refer to this set as Sim-strong.

In the third set, we increased the total number of simulated values to
100,000 and added a second interval of noSNPs. The rationale for this
was to test how the SDM algorithm reacted on a large dataset as well
as a different distribution of the simulated BF values (different sampling
intervals). Out of the 100,000 samples, 85,000 were drawn in the interval
[0.01, 1] (neSNPs), 13,000 in the interval [1, 10] (noSNPs), 1,980 in the interval
[10, 1000] (also noSNPs) and 20 in the interval [10000, 10000000] (siSNPs).
We refer to this set as Sim-large.

We used standard settings for the SDM algorithm (see Section 4.2.2), i.e.
α = 10 and ε = 0.5.

To visualise how the second difference (∆2, see equation 4.1) is distrib-
uted according to the simulated and sorted BF values, we plot log10 trans-
formed value of ∆2 as scatter plots in R. To improve the readability of the
plots, all values ∆2 < 10−5 are set to 10−5. For comparison the we plot the
log10 transformed sorted simulated BFs.

4.6.2 Testing the SDM on a single BAYENV run on the Cod dataset

As an initial test on the real BAYENV results, we tested the SDM on a single
run of BAYENV on the Cod dataset and compared it to three other cutoff
methods. The tests for correlation to the environmental variables were
carried out using 500,000 MCMC iterations for each SNP. In this experiment
we compared the significance sets (one set for each variable) from SDM
to the corresponding significance sets obtained using the cutoff thresholds
jeff3.2, alpha1 and alpha5. The BFs for each SNP were converted to q-values
as a measure of FDR (see Section 4.4). The lowest q-value in each set was
used to obtain information on the expected proportion of FPs and compute
the expected number of FPs in each significance set.

To visualise how the second difference (∆2) is distributed according to
the sorted BF results (see equation 4.1) and where the cutoffs is made, we
plot the log10 transformed second difference value (∆2) as scatter plots in
R. To improve the readability of the plots, all values ∆2 < 10−5 are set to
10−5. Two scatter plots of the corresponding log10 transformed BF values
are made to be compared to the second difference distribution.

Plots of the FDR

To visualise the FDR within the significance sets found using different
cutoff methods, we plot the expected number of FPs and TPs for each cutoff
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method and environmental variable in R as a stacked barplot. We use the
significance sets obtained in the experiment described in Section 4.6.2. The
number of FP is obtained by multiplying the number significant SNPs with
the maximum q-value in each set (see Section 2.6.1). The number of TPs is
found by subtracting the number of FPs from the total number of SNPs in
the same set. We use a logarithmic scale (log10) to improve the readability
of the plot. Due to the logarithmic scale, all values (number of FP/TP)
below one are plotted as zero. The stacked barplot is plotted in R using the
package ggplot2.

4.6.3 Testing the SDM on multiple BAYENV runs on the Cod
dataset

To test how the variability of BAYENV affect the different cutoff methods,
32 independent runs of BAYENV on the Cod dataset were carried out using
500,000 MCMC iterations for each SNP. For this experiment we used five
different cutoff methods: SDM, alpha1, alpha5, jeff3.2 and jeff10. For each
run we found the significance sets and calculated the union set across all
runs for each cutoff method individually. For all union sets we employed a
threshold, κ = 0.7, for maximum variability across runs (equation 4.4). We
refer to these final sets of significant SNPs as total significance sets (TSS).

For each environmental variable and cutoff method we calculate a
maximum q-value for the TSS’s based on the median BF obtained from
the 32 runs. We also use the median statistics to summarize the maximum
and minimum BF for each TSS.

Venn diagrams

We plotted Venn diagrams to visualise how the significant SNPs are
distributed among the different union sets and TSS’s. A Venn diagram
is used in set theory to visualise the union, intersection and difference
between two or more sets. By using Venn diagram, we have a tool to
show how SDM performed compared with the cutoff methods alpha1,
alpha5 and jeff10. The Venn diagrams are plotted using R and the package
VennDiagram. As input we use the union sets and TSS’s obtained from the
experiment described in Section 4.6.3.

4.6.4 Testing the SDM on the Maize dataset

To test our second difference method (SDM) on a different dataset, we
ran a full BAYENV analysis on the Maize data (see Section 4.1.2). Since
this dataset is small, a high percentage of SNPs under positive selection
will likely affect the neutralness of the covariance matrix. Therefore, we
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used only the random SNPs as a basis for the null model (100 SNPs). The
covariance matrix used was an average of 200 draws from the posterior
distribution obtained after 100,000 MCMC iterations. We ran 32 replicate
runs of BAYENV where we tested all SNPs in the dataset (135 SNPs) for
correlation to the stage variable. The test runs were carried out using
100,000 MCMC iterations for each SNP. The BFs were averaged over the
32 runs and are plotted as Manhattan plot in R (see Section 4.4.2).

To assign a cutoff threshold for significance, we applied SDM to all runs
individually and calculated the union set. The TSS was obtained after
applying a cutoff threshold of κ = 0.7 for maximum variability between
runs. Because we expected a generally low BF signal in this test, the
sensitivity constant ε was adjusted from 0.5 to 0.2 in the δ̂-equation (see
equation 4.2). The resulting union set is plotted as a significance-plot (see
Section 4.4.3).

As a measure of FDR, we converted the average BF from the 32 runs to
q-values (section 4.4) in the same manner as for the analysis on the Cod
dataset (section 4.6.3).

4.7 Methods for testing the stability of the BAYENV

method

4.7.1 Testing the stability of BAYENV by comparing analyses
carried out using different number of MCMC iterations

To investigate whether a high run-to-run variability is a function of the
number of iterations for the BAYENV algorithm, we carried out several
analyses on the Cod dataset where we gradually increased the number of
iterations. Thirty-two runs using different random seeds were carried out
in eight independent BAYENV analyses using 10,000, 25,000, 50,000, 75,000,
100,000, 500,000 and 1,000,000 MCMC iterations respectively. A second
analysis using 500,000 iterations was performed to serve as a reference set.
For each analysis we calculated a union set based on cutoffs using the SDM
and alpha1. For all union sets we calculated the stability score (Equation 4.5
on page 53 ) as a measure of the run-to-run variability.

4.7.2 Testing the relationship between run-to-run variability and
the number of independent BAYENV runs

To explore how many independent runs that are needed in order to get
a stable result, we used the results from two different BAYENV analyses
each consisted of 32 independent runs carried out using 500,000 MCMC
iterations each. The first analysis was used as a test set and the second

59



served as a reference set. We divided the first test set into six different
subsets where we doubled the number of runs for each subset starting with
one run and ending with 32 (i.e. same as the reference set). For the subsets
containing 2 to 32 runs and the reference set, we calculated the median BF
for all six variables. For the six environmental variables we calculated the
set difference between the test sets and the reference set for an alpha1 cutoff.
The differences were plotted as the percentage of equal SNPs.

4.8 Testing the method of reducing the test set by ex-
cluding SNPs with low maximum allele frequency
difference

To test our method of excluding SNPs with small allele frequency difference
between populations (see Section 4.3), we carried out four BAYENV

analyses on the Cod dataset. For each analysis we included only SNPs that
had a maximum allele frequency difference (MAFD) in the top 90, 95, 97.5
and 0.99 percentile of the empirical distribution of the MAFD respectively.
As null model for these BAYENV analyses, a covariance matrix from a
previously performed analysis carried out using 500,000 MCMC iterations
was used (all 8809 SNPs were used as basis). The four analyses consisted of
32 replicate runs of BAYENV using 100,000 iterations and different random
seeds for the MCMC algorithm. The median statistics were calculated
for all six environmental variables. As a reference we used the median
statistics from the experiment in Section 4.6.3. For the six environmental
variables we calculated the set difference between SNPs ranking among top
88 SNPs (alpha1 cutoff) in the test and in the reference analysis respectively.
Additionally, we compared the 20 top ranking SNPs of the test sets and the
reference set. The differences are plotted as the percentage of equal SNPs.
We also compute the union set and TSS using the SDM for each analysis.
As a reference for the SDM results, we use the TSS’s obtained from the
experiment in Section 4.6.3.

To calculate the time savings of reducing the test set, we employed the
time estimates provided by PYBAYENV (see Section 4.9.8 and 5.1.4). The
time estimates from testing the reduced sets are compared to the time
estimates for the full dataset.

4.8.1 Plots of the correlation between allele frequency difference
and BAYENV results

To visualise the correlation between the maximum allele frequency
between populations and the BAYENV results (BFs), we plot these two units
as scatter plot in R. The BFs are logarithmic transformed for better readab-
ility. A spline regression is performed to show the trend in the data and to
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pinpoint the significance. We use the R method smooth.spline() to visualize
the spline and the R library mgcv to determine the significance. Significant
SNPs found using the SDM method on the full dataset (from experiment
in Section 4.6.3) are plotted in red to show where these are located in the
distribution. Four vertical lines are plotted indicating the 90, 95, 97.5 and
0.99 percentile cutoffs for the maximum allele frequency difference.

4.9 Functional specifications for PYBAYENV

To address the challenges described in chapter 3.6 we constructed a
program, PYBAYENV. There were three main purposes for developing
PYBAYENV: 1) Simplify the BAYENV analysis by implementing a file format
converter and by streamlining of the process in general (i.e. estimating the
covariance matrix and carry out all tests in one single run). 2) Reduce the
time usage when performing multiple BAYENV analyses by parallelizing
the process. 3) Implement our suggested methods (section 4.2 and 4.3).
In the subsequent sections we outline the functional specifications for
PYBAYENV.

4.9.1 The main purpose of PYBAYENV

PYBAYENV should provide a user friendly way to perform multiple
BAYENV analyses on a large set of SNP data. In a one-step procedure
PYBAYENV should be able to convert data from a common file format,
estimate the covariance matrix, run multiple tests on selected SNPs,
exclude SNPs from testing based on the maximum allele frequency
difference (MAFD) between populations (section 4.3) and interpret the
results using SDM (section 4.2).

4.9.2 The conversion between formats

PYBAYENV should be able to read in SNP data from the GENEPOP format
(Raymond and Rousset 1995) and output the data in the BAYENV file format
(see Table 3.1 and 3.2). The GENEPOP format was chosen because it contains
population information and thus is particularly suitable in this context.
Additionally, the GENEPOP format is widely used. The reader is referred
to the manual for details about the GENEPOP format (http://kimura.univ-
montp2.fr/~rousset/Genepop.pdf).

4.9.3 Standardising environmental variables

PYBAYENV should provide a function for standardisation of the environ-
mental variables (BAYENV require that the environmental variables are
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standardised to have mean zero and standard deviation of one). The stand-
ardisation should be performed by subtracting the mean and dividing by
the standard deviation.

4.9.4 Estimation of the covariance matrix

PYBAYENV should estimate the covariance matrix based on a set of user
selected SNPs. Furthermore, the covariance matrix used in the test phase
should be an average of all covariance matrices output by BAYENV (output
every 500 iterations).

4.9.5 The test for environmental correlation

PYBAYENV should be able to sequentially test all SNPs of interest. (recall
that BAYENV only supports testing one SNP without restarting the program
- see Section 3.3)).

4.9.6 Random seed

The random seed for BAYENV should be chosen randomly by PYBAYENV

for each run of the algorithm. This applies both to the estimation of the
covariance matrix and test phase.

4.9.7 Parallelization

The user should be able to run multiple BAYENV analyses using a single
run of PYBAYENV, thus taking advantage of today’s multi core CPUs.

4.9.8 Timekeeping and time estimates

PYBAYENV should provide the user with information about the time
consumption of the tests at each SNP. Moreover, PYBAYENV should
continuously update the user with an estimate of how long it will take for
the analysis to complete.

4.9.9 Documentation of the BAYENV analyses

PYBAYENV should document all steps in the procedure in accordance with
Sandve et al. 2013. This includes random seeds used and the number of
MCMC iterations for each run.
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4.9.10 Defining a set of significant SNPs based on SDM

PYBAYENV should implement the second difference algorithm described in
Section 4.2 to assign a significance threshold for the results from for each
run. Furthermore, if multiple runs are carried out, the program should
calculate the set of significant SNPs using equation 4.3 (page 52) and write
the results to file.

4.9.11 Reducing the test set based on maximum allele frequency
difference

PYBAYENV should implement the method for reducing the set of test SNPs
based on a maximum allele frequency difference between populations
(MAFD) (described in Section 4.3).

4.9.12 The user interface

PYBAYENV should have a command line interface that is available from the
UNIX platform.

4.10 Testing the time consumption using PYBAYENV

in parallel mode

As previously discussed, the variability of BAYENV requires that the results
are verified by comparing two or more replicate runs of the program (see
Blair, Granka and Feldman 2014). As potential time saving measure, a
multi-processing feature was implemented in PYBAYENV (see Section 4.9.8
and 5.1.4). To test the time saved using this feature, we first ran a BAYENV

analysis on the cod dataset using PYBAYENV in single-processing mode as
a reference for the time consumption. Next, we ran three BAYENV analyses
where respectively 8, 16 and 32 replicate runs were carried out in parallel.
The estimated time consumption for the reference run was compared to
the estimated time consumption for the parallel runs. All analyses were
carried out using 100,000 MCMC iterations for each SNP and was executed
on a desktop computer running Redhat Linux with an Intel i7 CPU having
8 cores.
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Chapter 5

Results

5.1 Implementation of PYBAYENV

To address the challenges described in chapter 3.6 we constructed a pro-
gram, PYBAYENV, whose main purpose was to facilitate the use of BAY-
ENV and extend it with functions for testing our hypotheses. PYBAY-
ENV was constructed in accordance with the specifications described in
Section 4.9. As the name indicates, the program was written in the Py-
thon programming language (http://python.org/). In the subsequent
sections we summarize how PYBAYENV was constructed. The architec-
ture of PYBAYENV package and classes is visualized in the UML dia-
grams in Figure 5.2 and 5.3 respectively. A snapshot of the PYBAYENV

man page (help menu), describing the parameter options for the pro-
gram, is shown in Figure 5.6. The PYBAYENV package is available online
at http://folk.uio.no/kristori/thesis/pybayenv/ (username: sdm, pass-
word: PyBayenv). Example files are supplied, please see the README
file for instructions.

5.1.1 The conversion between formats

We followed the requirements in Section 4.9.2 and implemented a format
converter in the PYBAYENV application. Hence, the default input for
PYBAYENV is the GENEPOP format. When converted, the BAYENV format
is written to file in two versions: one in the standard BAYENV format (see
Table 3.1 and 3.2) intended for the estimation of the covariance matrix, and
one for the test phase containing additional SNP information. Figure 5.4
shows a snapshot of the GENEPOP format before conversion and the two
BAYENV formats when processing the Cod dataset.
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 NAME

             PyBayenv - A wrapper for BAYENV

    

    SYNOPSIS

             PyBayenv [OPTION]... 

    DESCRIPTION

            PyBayenv is a program that enables the user to run a full BAYENV 2.0 analysis of 

            a SNP data set. The input !le must be in GENEPOP format. The user can take advantage

            of multi-core CPUs by carrying out several independent runs of BAYENV 2.0 in parallel.

            Additionally, the user may reduce the test set by excluding SNPs based on the maximum

            allele frequency di"erence (MAFD) between populations.

            PyBayenv also calculates a signi!cance level for the results based on the Second 

            Di"erence Method (SDM). 

    OPTIONS

               --covsize  the number of loci in the null model

               -c         same as --covsize

               --debug    run program in debug mode.

               -d         same as --debug

               --env!le  environment variables to be used

               -e         same as --env!le

               --!le     Input !le

               -f         same as --!le

               --help     display this help and exit

               -h         same as --help

               --iterations    number of iterations for the null model

               -i         same as --iterations

               --reduce   reduce a percentage of the SNPs based on MAFD

               -r         same as --reduce

               --numpop   number of populations in the dataset

               -n         same as --numpop

               --skipcov  skip building covariance matrices

               -s         same as --skipcov

               --testsize number of loci to test

               -t         same as --testsize

               --numenv   number of environment variables to test

               -z         same as --num_env

               --null!le !le for the null model

               -l         same as --null!le

               --numtests   number of tests to perform

               -p         same as --numtests

               --skiptest skip the test part

               -b         same as --skiptest

               --epsilon  the sensitivity of SDM

               -E         same as --epsilon

               

Figure 5.1: The man page for PYBAYENV describing the user options for the
program.
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pybayenv

pybayenv. run_bayenv

pybayenv.create_bin_dist

pybayenv.s tandardize pybayenv.locus

pybayenv.pybayenv

pybayenv.sec_diff

Figure 5.2: UML of the modules in the PYBAYENV package
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num_runs  :  in t
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get_in_run()
get_bf_list()
get_num_runs()
set_in_run()
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Env_var

env_list : list
env_da ta
std_env_list : list
n a m e
s td_env_da ta

get_std_env()
print_env_data()
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n a m e
is_consensus : bool
freqs
pop
is_monomorphic : bool
freq_diff : int

get_freqs()
update_freqs()
set_freqs()
freqs_to_lines2()
freqs_to_lines()
equal_freqs_among_pops()
is_monomorphic_locus()
ge t_name()
to_string()
set_max_freq_diff()
get_max_freq_diff()
is_consensus_locus()

Figure 5.3: UML of classes in PYBAYENV

5.1.2 Standardizing environmental variables

In accordance with the specifications in Section 4.9.3 a function for stand-
ardising the environmental variable(s) was implemented in PYBAYENV.
Thus the input variable(s) for PYBAYENV are unstandardised and are
standardised using the pybayenv.standardize module. PYBAYENV standard-
ises the variable(s) to have mean zero and a standard deviation of one. The
standardised environmental variable(s) are written to file. Figure 5.5 shows
the unstandardised input variables and the standardised output variables
(see Section 4.1.1) used by PYBAYENV to analyse the Cod dataset.

5.1.3 Estimation of the covariance matrix

We followed the requirements in Section 4.9.4 and implemented a wrap-
per function for running the first step of a BAYENV analysis - the estim-
ation of the covariance matrix - within PYBAYENV . The function com-
mands.getstatusoutput() is used to run BAYENV from Python. The file con-
taining the original BAYENV format (see Section 5.1.1 ) serves as input for
BAYENV in this step. A random seed in the interval 1-99999 is drawn

67



#Header information

CAN-rs119055103,CAN-rs119055173,CAN-rs119055284,CAN-rs119055307,CAN-rs119055454,CAN-rs119055470,CAN

Pop

ST_1001,  0202 0101 0202 0202 0202 0102 0101 0101 0102 0202 0202 0202 0102 0101 0102 0202 0102 0202

ST_1002,  0102 0101 0202 0102 0102 0101 0102 0101 0101 0202 0202 0101 0101 0101 0102 0202 0101 0202

ST_1003,  0202 0101 0202 0202 0102 0101 0101 0101 0101 0202 0202 0202 0101 0101 0102 0202 0101 0202

ST_1004,  0202 0101 0202 0202 0101 0101 0101 0303 0101 0202 0202 0102 0101 0101 0202 0202 0101 0202

ST_1006,  0202 0101 0202 0202 0102 0102 0101 0101 0101 0202 0202 0202 0101 0101 0202 0202 0101 0202

ST_1009,  0202 0101 0202 0202 0202 0101 0101 0103 0101 0202 0202 0202 0101 0101 0202 0102 0102 0202

ST_1010,  0102 0101 0202 0202 0102 0101 0101 0101 0101 0202 0202 0101 0101 0101 0102 0202 0101 0202

ST_1012,  0102 0101 0202 0202 0202 0102 0101 0101 0101 0202 0202 0102 0102 0101 0102 0102 0102 0202

ST_1014,  0102 0101 0202 0102 0102 0101 0101 0103 0101 0102 0202 0102 0101 0101 0102 0202 0102 0202

6 0 7 2 

90 112 77 94 

96 112 83 94 

0 0 1 2 

0 1 2 1 

96 111 80 95 

8 7 7 5 

88 105 77 91 

32 56 30 34 

64 56 54 62 

86 105 71 81 

10 7 13 15 

84 111 76 85 

12 1 8 11 

67 72 60 65 

29 40 24 31 

69 92 69 67 

27 20 15 29 

3 8 1 3 

93 104 83 93 

CAN-rs119055103 6 0 7 2 

90 112 77 94 

CAN-rs119055173 96 112 83 94 

0 0 1 2 

CAN-rs119055284 0 1 2 1 

96 111 80 95 

CAN-rs119055307 8 7 7 5 

88 105 77 91 

CAN-rs119055454 32 56 30 34 

64 56 54 62 

CAN-rs119055470 86 105 71 81 

10 7 13 15 

CAN-rs119055496 84 111 76 85 

12 1 8 11 

CAN-rs119055497 67 72 60 65 

29 40 24 31 

CAN-rs119055505 69 92 69 67 

27 20 15 29 

CAN-rs119055519 3 8 1 3 

93 104 83 93 

A

B C

Figure 5.4: Snapshots of the input and output formats of PYBAYENV when
analysing the cod dataset. A) The GENEPOP format where the genotype
information is organized as one line per individual with one column
for each SNP. B) The original BAYENV format (see Table 3.1) and C) the
alternative BAYENV format intended for the test phase displaying allele
counts for the four populations (see Section 4.1.1) on the first 10 SNPs in
the dataset.
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"Salinity surface"  24,2 7,4 34,7 16,4

"Salinity deep"  34,1 13,6 34,8 30,9

"Temperature surface" 3,5 13,6 6,0 3,4

"Temperature deep"  6,3 5,7 6,1 6,4

"Oxygen surface"  8,0 7,4 6,8 8,5

"Oxygen deep"  6,5 4,5 6,7 6,2

0.35091242269518724 -1.3215212514265584 1.3961834690212787  -0.4255746402899091 

0.66536265418746388 -1.706799852046103  0.74636332513202419 0.29507387272661406 

-0.75128278357813705 1.6768631729464019  -0.1502565567156274 -0.77532383265263738 

0.65275336576821896 -1.5852581740085327 -0.0932504808240327 1.0257552890643464 

0.50951017108525365 -0.43112399091829051 -1.3717581529218361 1.2933719727548743 

0.60345824189498243 -1.69543029865733  0.83334709595021383 0.25862496081213576 

A

B

Figure 5.5: Snapshot of the environment variables before and after the
standardisation performed by PYBAYENV . A) The environmental variable
input format (unstandardised). B) The environmental output format
(after standardisation). The variables are for the Cod dataset (see Section
4.1.1). The output has been slightly modified with extra tabs for better
visualisation.

randomly by PYBAYENV according specifications in 4.9.6 using the Python
function random.uniform(). The time consumption for creating the covari-
ance matrix is traced using the time.time() function in Python and the time
usage is written to file in accordance with the requirements in Section 4.9.8
and 4.9.9. The output from BAYENV , which is a file containing a total of
(number of iterations/200) covariance matrix estimates, is read by PYBAY-
ENV , converted to a NumPy array and averaged using the NumPy function
average() (Jones, Oliphant, Peterson et al. 2001–).

5.1.4 The test for environmental correlation

A wrapper for the test phase of BAYENV was implemented in PYBAYENV

in accordance with the specifications in Section 4.9.5. As for the first step
(estimating the covariance matrix), the function commands.getstatusoutput()
is used to run BAYENV within Python. The alternative BAYENV format
file (see Section 5.1.1 and Figure 5.4) is used to sequentially create
individual files for each SNP, with file names corresponding to the SNP
name specified in the file. The individual SNP file is written to disc
before it is passed on as an argument to BAYENV through the Python
method commands.getstatusoutput(). After the BAYENV test is completed,
the individual SNP file is deleted. This process is repeated for all SNPs
given as input to PYBAYENV . The resulting BF for each SNP is appended
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to a result file. The Python function time.time() is used to trace the time
spent on testing each SNP in accordance with the specification in Section
4.9.8. This information is used by PYBAYENV to estimate a finish time for
the complete analysis. We note that tests showed that the process of writing
and deleting files on disc had a negligible effect on the time spent on testing
each SNP (result not shown).

5.1.5 Parallelization

As a time saving measure, we implemented support for carrying out
multiple runs of BAYENV in parallel using PYBAYENV (in accordance with
the specification in Section 4.9.7). PYBAYENV uses the library Python
Multiprocess and the function RunInProcess() to run a user specified number
of parallel instances of the test function (described in Section 5.1.4). For
each process one individual SNP file is written to disc with the process
id in the file name to avoid problems with concurrent access. For
each process, the process id, the SNP name, the SNP number, the time
consumption of testing a SNP and a time estimate for the complete analysis
are continuously written to stdout (the terminal) when tests are being
performed by PYBAYENV (see Figure 5.6). The BAYENV test command
for each process is written to file in order to document the analysis in
accordance with specification in Section 4.9.9 (see Figure 5.7).

PyBayenv: process 2 is processing MOEN-rs119054541-2 (7042)... done. 10.771186 sec to complete. Es�mated �me remaining: 317.211424 minutes 

PyBayenv: process 24 is processing MOEN-rs119054544-24 (7043)... done. 10.784945 sec to complete. Es�mated �me remaining: 317.616631 minutes 

PyBayenv: process 15 is processing MOEN-rs119054544-15 (7043)... done. 10.787612 sec to complete. Es�mated �me remaining: 317.695172 minutes 

PyBayenv: process 0 is processing MOEN-rs119054544-0 (7043)... done. 10.775060 sec to complete. Es�mated �me remaining: 317.325515 minutes 

PyBayenv: process 10 is processing MOEN-rs119054544-10 (7043)... done. 10.781394 sec to complete. Es�mated �me remaining: 317.512053 minutes 

PyBayenv: process 8 is processing MOEN-rs119054544-8 (7043)... done. 10.808893 sec to complete. Es�mated �me remaining: 318.321898 minutes 

PyBayenv: process 4 is processing MOEN-rs119054544-4 (7043)... done. 10.754733 sec to complete. Es�mated �me remaining: 316.726889 minutes 

PyBayenv: process 27 is processing MOEN-rs119054544-27 (7043)... done. 10.803982 sec to complete. Es�mated �me remaining: 318.177263 minutes 

PyBayenv: process 22 is processing MOEN-rs119054544-22 (7043)... done. 10.777980 sec to complete. Es�mated �me remaining: 317.411507 minutes 

PyBayenv: process 25 is processing MOEN-rs119054544-25 (7043)... done. 10.771366 sec to complete. Es�mated �me remaining: 317.216725 minutes 

PyBayenv: process 21 is processing MOEN-rs119054544-21 (7043)... done. 10.785242 sec to complete. Es�mated �me remaining: 317.625372 minutes 

PyBayenv: process 19 is processing MOEN-rs119054544-19 (7043)... done. 10.741812 sec to complete. Es�mated �me remaining: 316.346363 minutes 

PyBayenv: process 23 is processing MOEN-rs119054544-23 (7043)... done. 10.776150 sec to complete. Es�mated �me remaining: 317.357617 minutes 

PyBayenv: process 3 is processing MOEN-rs119054544-3 (7043)... done. 10.762810 sec to complete. Es�mated �me remaining: 316.964754 minutes 

PyBayenv: process 18 is processing MOEN-rs119054544-18 (7043)... done. 10.767147 sec to complete. Es�mated �me remaining: 317.092481 minutes 

PyBayenv: process 12 is processing MOEN-rs119054544-12 (7043)... done. 10.778491 sec to complete. Es�mated �me remaining: 317.426561 minutes 

Figure 5.6: A terminal snapshot from the progress of PYBAYENV when
carrying out 32 BAYENV analyses in parallel on the Cod dataset. Every line
contains information about the process number, the SNP being processed,
the SNP number, the time it took to test the SNP and a time estimate for
how long it would take to test the remaining SNPs.

5.1.6 Reducing the test set based on maximum allele frequency
difference

As an additional measure for further reducing the time spent in the test
phase of the BAYENV analysis, we implemented the method described
in Section 4.3 in PYBAYENV (see Section 4.3). The hypothesis was that
we could exclude SNPs with low maximum allele frequency difference
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Test 1:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 98201 -o %s

Test 2:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 45320 -o %s

Test 3:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 39267 -o %s

Test 4:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 95820 -o %s

Test 5:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 17573 -o %s

Test 6:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 85471 -o %s

Test 7:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 97294 -o %s

Test 8:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 31567 -o %s

Test 9:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 2079 -o %s

Test 10:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 96237 -o %s

Test 11:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 84656 -o %s

Test 12:

bayenv2 -i %s -m mean_covar.txt -e std_environ_cod2_4group.env -p 4 -k 500000 -n 6 -t -r 39234 -o %s

Figure 5.7: Documentation of the BAYENV commands used in the test
phase for the first 12 processes in PYBAYENV . The arguments "-i %s" and
"-o %s" is replaced by the SNP name and the result (output) file respect-
ively. For the other arguments, the user is referred to the BAYENV manual
http://www.eve.ucdavis.edu/gmcoop/Software/Bayenv/bayenv_manual.pdf

(MAFD) across population from testing. To accomplish this, PYBAYENV

calculates the MAFD for each SNP using equation 4.6 (page 53). PYBAYENV

uses the Python package stats from the SciPy library (Jones, Oliphant,
Peterson et al. 2001–) to compute the user specified empirical tails of SNPs
with largest MAFD.

5.1.7 Defining a set of significant SNPs based on SDM

According to the specifications in Section 4.9.10 the SDM algorithm for
interpreting the BAYENV results (see Section 4.2) was implemented in
PYBAYENV. After the test phase is finished (see Section 5.1.4), the result
files are read in by PYBAYENV and parsed according to equation 4.1 (page
50). The function diff() in the NumPy library (Jones, Oliphant, Peterson et al.
2001–) is used to determine the second order central difference (see Section
2.4.1) for the distribution of BFs. Moreover, the union sets are obtained
by employing equation 4.3 (page 52). PYBAYENV writes the results from
SDM to the terminal window (see Figure 5.8). Additionally, PYBAYENV

writes the following statistics to disc as separate files for further analysis:
1) SNP name and BF for all significance sets determined by SDM for all
runs and variables. 2) SNP name and average/median BF across runs for
the significance sets determined by SDM for all variables. 3) The second
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difference for all runs and variables. 4) The union sets for each variable
containing SNP name, a binary indicator for which run the SNP has been
identified and the total number of runs the SNP has been identified in.

5.2 Results from testing the time consumption using
PYBAYENV in parallel mode

To investigate whether we could save time by parallelizing the BAYENV

process, we ran four analyses on the Cod dataset using PYBAYENV as
described in Section 4.10. The first analysis was carried out using a
single run where its time consumption served as a benchmark. The three
other analyses consisted of 8, 16, 32 replicate runs of BAYENV carried
out in parallel by PYBAYENV. Figure 5.9 show the total estimated time
consumption for the four analyses and indicate the trend for the same
number of runs carried out in serial.

Testing one SNP in the single run case took on average 3.1 second to
complete using 100,000 MCMC iterations. An estimate of the total time
consumption testing all 8809 SNPs in the dataset is therefore 455.1 minutes.

By testing each SNP eight times in parallel, the total time consumption
was on average 3.7 seconds. An estimate for the completed dataset tested
eight times is 543.2 minutes. Thus, the overhead of running eight processes
instead of one is approximately 19.3%. Increasing the number of parallel
runs to 16, lead to a doubling of the time consumption (estimated 1067.4
minutes in total) compared to eight runs. By increasing the parallel runs
to 32 we saw another doubling (2099.5 minutes in total) compared to 16
parallel runs. The doubling of the time consumption seen going from eight
to 16 and 16 to 32 parallel runs is a consequence of limited number of cores
in the CPU (the CPU had eight cores).
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*** var 1 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 24

A: 359.64

delta_hat: 4.02763773074

Second di�erence = 6.109

Lowest sign BF: 43.136

Highest not sign BF: 35.181

Excluded SNPs = 8803

Total signi�cant snps for var 1 test 1 is 6

________________________________

*** var 2 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 445

A: 100400.0

delta_hat: 13.7463915506

Second di�erence = 17.22

Lowest sign BF: 311.69

Highest not sign BF: 288.99

Excluded SNPs = 8726

Total signi�cant snps for var 2 test 1 is 83

________________________________

*** var 3 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 166

A: 57285.0

delta_hat: 11.063365124

Second di�erence = 12.63

Lowest sign BF: 182.44

Highest not sign BF: 164.76

Excluded SNPs = 8798

Total signi�cant snps for var 3 test 1 is 11

________________________________

*** var 4 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 55

A: 4148.6

delta_hat: 6.79646089453

Second di�erence = 7.389

Lowest sign BF: 41.203

Highest not sign BF: 33.431

Excluded SNPs = 8804

Total signi�cant snps for var 4 test 1 is 5

________________________________

*** var 5 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 4

A: 153.51

delta_hat: 1.8161854256

Second di�erence = 3.4141

Lowest sign BF: 12.565

Highest not sign BF: 8.8762

Excluded SNPs = 8805

Total signi�cant snps for var 5 test 1 is 4

________________________________

*** var 6 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 470

A: 93918.0

delta_hat: 13.7876715117

Second di�erence = 15.32

Lowest sign BF: 273.4

Highest not sign BF: 252.49

Excluded SNPs = 8720

Total signi�cant snps for var 6 test 1 is 89

________________________________

Total signi�cant SNPs for var 1 is 6

Total signi�cant SNPs for var 2 is 83

Total signi�cant SNPs for var 3 is 11

Total signi�cant SNPs for var 4 is 5

Total signi�cant SNPs for var 5 is 4

Total signi�cant SNPs for var 6 is 89

A

B

C

D

E

F

G

Figure 5.8: PYBAYENV output after parsing the results from a single run of
BAYENV using SDM on the Cod dataset. For each environmental variable
PYBAYENV prints the constants and variables involved in equation 4.2
(page 51), the second difference used as cutoff, lowest significant and
highest non-significant BF value, number of non-significant SNPs and the
number of significant SNPs. Finally, PYBAYENV writes the number of SNPs
in the union sets for each variable. Summary statistics for A) sal1, B) sal2,
C) temp1, D) temp2, E) ox1, F) ox2. G) The number of SNPs in the union sets
for all tested variables. Notice that the statistics is from a single run, the
union sets are equal to the significance sets.
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Figure 5.9: Total estimated time consumption of PYBAYENV testing 8809
SNPs for environmental correlation. The red line indicates the time
consumption used when each run is carried out in serial. The green line
indicates the time consumption when the runs are carried out in parallel
using a computer with eight cores.

5.3 Results from testing the convergence of the covari-
ance matrix

To investigate whether a higher number of MCMC iterations and calcula-
tion of an average matrix would lead to improved consistency of the cov-
ariance matrix, we calculated the absolute value of the difference between
six test matrices and a reference matrix according to the method in Section
4.5.

The heatmaps in Figure 5.10 shows that the difference is highest for the
covariance matrices obtained after 10,000 MCMC iterations than for the
other estimates. The average difference for these were 2.1 × 10−4 and
3.5 × 10−4 for the single draw and the average matrix respectively. The
matrix estimates based on 100,000 MCMC iterations showed an average
difference of 1.1× 10−4 and 3.8× 10−5 for the single draw and the average
matrix respectively. The smallest difference was found between the
average matrix obtained after 500,000 MCMC iterations and the reference
(1.3 × 10−5). The single draw found after 500,000 MCMC iterations did,
however, have an higher average difference (9.4× 10−5) than the average
matrix obtained after 100,000 MCMC iterations (3.8× 10−5).
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Figure 5.10: Heatmaps of the absolute value of the difference between test
covariance matrix estimates and the reference (average matrix calculated
after 500,000 MCMC iterations). A) Single estimate after 10,000 MCMC
iterations. B) Average matrix after 10,000 MCMC iterations. C) Single
estimate after 100,000 MCMC iterations. D) Average matrix after 100,000
MCMC iterations. E) Single estimate after 500,000 MCMC iterations. F)
Average matrix after 500,000 MCMC iterations.
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5.4 Results from the tests of the SDM

When using BAYENV to perform a genome-wide scan for correlation
between population allele frequencies and environmental variables, there
is a need to define a significance threshold for the results (BFs). As we have
seen in Section 3.6, conventional cutoff thresholds such as a static (Jefferey’s
table, see Table 2.2) or percentage cutoff does not take the distribution of
the results into account and hence may potentially lead to many FPs. To
address this problem, we proposed a method named the second difference
method (SDM). The idea behind the SDM was to use second difference to
automatically define a significance threshold base on the shape of the BF
distribution. The method use the second difference of a sorted distribution
of BAYENV results (BFs) to determine the cutoff (see Section 4.2.1). In the
subsequent sections we present the results from the experiments on the
SDM described in Section 4.4.

5.4.1 Example on how the SDM algorithm works

The key factor for the SDM to work as intended, is to define a suitable
cutoff for the second difference (see Section 4.2). We suggested an equation
where the cutoff, δ̂, was determined by two important measures from the
distribution: the largest BF (A) value and the number of SNPs displaying a
BF above 10 (Nα). Additionally, the equation consisted of a small constant
factor ε (0 < ε ≤ 1), which purpose was to make sure that δ̂ < 0 and to
"fine tune" the SDM algorithm (see Section 4.2.2). To clarify how the SDM
works, we here provide an hypothetical example:

Consider that 10,000 SNPs are tested, 100 SNPs achieve a BF>10 (Nα) and
the largest BF in the distribution is 1,000 (A). The constant factor ε is defined
to be 0.5 (default value). Then δ̂ is calculated as follows:

δ̂ = ε + log10 Nα log10 A
= 0.5 + log10 (100) log10 (1, 000)
= 6.5

Thus the cutoff on the second difference distribution is 6.5. Next,
consider that the last 29 to 20 values in the increasingly sorted dis-
tribution of BFs (y9972, . . . , y9981, see Section 4.2.1) are as follows:
[44, 45, 46, 47, 48, 49, 50, 65, 68, 74]. Then the corresponding second differ-
ence (central difference, see Section 2.4.1) is: [0, 0, 0, 0, 0, 14,−12, 3]. The
three consecutive BF values [y9977, y9978, y9979] = [49, 50, 65] have a central
difference ∆y9978 = 14 which is greater than δ̂ = 6.5. Hence, this is used by
the SDM as the cutoff. It follows from the definition in Section 4.2.1 that the
SNPs with a BF value greater or equal to 65 are included in the significance
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set (ω). Thus a total of 22 SNPs is declared significant for this distribution
of results. Note that in this example it is assumed that the 9971 SNPs with
a BF < 44 have an associated second difference ∆y ≤ 6.5 and hence will
not trigger an earlier cutoff.

5.4.2 Results from testing the SDM on simulated BF values

In order to demonstrate and verify the SDM algorithm, we simulated three
sets of artificial BF results simulating three different and possible outcome
scenarios from a BAYENV analysis. The sets, Sim-weak, Sim-strong and
Sim-large, were simulated according to the method in Section 4.6.1. The
SDM part of PYBAYENV (see Section 4.9.10 and 5.1.7) was used to apply
the algorithm on the three simulated sets. Figure 5.11 visualize how the
simulated sets and the corresponding second difference are distributed.
The PYBAYENV output in Figure 5.12, summarises the results after using
the SDM function in PYBAYENV on the three sets.

On the basis of the data in Sim-weak, SDM defined δ̂ to be 2.3. The second
difference in the data that triggered the cutoff was 48.7. The lowest BF
value declared as significant was 58.4 and the highest non-significant BF
value was 9.8. The total number of significant "SNPs" was five. Moreover,
all the "SNPs" in the siSNPs group were declared significant, whereas none
were declared significant from the neSNPs or the noSNPs group (see Figure
5.12 A for details).

On the basis of the data in Sim-strong, SDM defined δ̂ to be 13.1. The
second difference in the data that triggered the cutoff was 365.0 The lowest
BF value declared as significant was 665.5 and the highest non-significant
BF value was 299.9. The total number of significant "SNPs" was 150.
Moreover, all the "SNPs" in the siSNPs group were declared significant,
whereas none were declared significant from the neSNPs or the noSNPs
group (see Figure 5.12 B for details).

On the basis of the data in Sim-large, SDM defined δ̂ to be 23.6. The
second difference in the data that triggered the cutoff was 190,955.6 The
lowest BF value declared as significant was 191,955.2 and the highest non-
significant BF value was 999.5. The total number of significant "SNPs" was
20. Moreover, all the "SNPs" in the siSNPs group were declared significant,
whereas none were declared significant from the neSNPs or the noSNPs
group (see Figure 5.12 C for details).

5.4.3 Results from the tests on the Cod dataset

In the two subsequent sections we present the results from using the SDM
to interpret the BAYENV analyses on the Cod dataset. Manhattan plots (see
Section 4.4.2) of the log10 (median BF after 32 independent runs of BAYENV)
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Figure 5.11: BF values and corresponding second difference (∆2) for the
three simulated datasets. A) and B) Logarithmic transformed BF and
second differences values for the Sim-weak dataset C) and D) Logarithmic
transformed BF and second differences values for the Sim-strong dataset.
E) and F) Logarithmic transformed BF and second differences values for
the Sim-large dataset. The red vertical lines indicate where the cutoff is
being made by SDM. The red dotted horizontal lines (B and D) indicate the
second difference threshold δ̂. The green dotted horizontal lines (B and D)
indicate a second difference of 0.5 (the default value of ε).
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*** var 1 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 5

A: 354.144290551

delta_hat: 2.2818005266

Second di!erence = 48.5690498815

Lowest sign BF: 58.3991160337

Highest not sign BF: 9.81214514654

Excluded SNPs = 9995

Total signi"cant snps for var 1 test 1 is 5

________________________________

Total signi"cant SNPs for var 1 is 5

*** var 1 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 1456

A: 9977.04333067

delta_hat: 13.1494882169

Second di!erence = 365.088171532

Lowest sign BF: 665.476977942

Highest not sign BF: 299.898631754

Excluded SNPs = 9850

Total signi"cant snps for var 1 test 1 is 150

________________________________

Total signi"cant SNPs for var 1 is 150

*** var 1 test 1 ***

alpha = 10

epsilon = 0.5

N_alpha: 2000

A: 9718892.45935

delta_hat: 23.5663325779

Second di!erence = 190955.644349

Lowest sign BF: 191955.240183

Highest not sign BF: 999.486349975

Excluded SNPs = 99980

Total signi"cant snps for var 1 test 1 is 20

________________________________

Total signi"cant SNPs for var 1 is 20

A

B

C

Figure 5.12: PYBAYENV output summarising the results from and the
factors used by the SDM algorithm. A) The results on the Sim-weak dataset.
B) The results on the Sim-strong dataset. C) The results on the Sim-large
dataset.
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were plotted to illustrate how the results are distributed across the Cod
genome (see Figure 5.13). Among the SNPs reported by BAYENV to have a
log10 BF > 2 were SNPs found within or closely located to genes associated
with osmoregulation, as well as genes known to play important roles in the
hydration and development of oocytes (see Berg et al. 2015, in review for a
complete analysis of these BAYENV results from a biological perspective).

5.4.4 Testing the SDM on a single BAYENV run on the Cod dataset

To explore how the SDM performed on real data, we applied the method
to the results from a single run of BAYENV on the Cod dataset (see
Methods Section 4.6.2). We used PYBAYENV to carry out the BAYENV

analysis and the SDM implementation in PYBAYENV was used to parse the
results and compute the significance sets (figure 5.8 in Section 5.1.7 shows
the PYBAYENV output from this particular BAYENV analysis). q-values
were calculated for the distribution of BFs for all environmental variables
(ox1, ox2 sal1, sal2, temp1 and temp2) in accordance with the method in
Section 4.4. The proportion of FPs in each SDM set was compared to the
significance sets found using the cutoff thresholds alpha1, alpha5 and jeff3.2.
Summary statistics for all environmental variables and cutoff methods are
given as in table 5.1. Figure 5.14 illustrates the number of FPs and TPs in
each set graphically.

In accordance with the method in Section 4.6.2, we plotted the second
differences (∆2, see equation 4.1) for the ordered list of BFs. Figure 5.15
visualize the distribution of ∆2 and corresponding logarithmic transformed
BF values for the environmental variables sal1 and sal2.

For sal1, SDM defined the cutoff threshold, δ̂, to be 4.0. The second
difference in the data that triggered the cutoff was 6.1. The lowest BF value
declared as significant was 43.1 and the highest non-significant BF value
was 35.2. The total number in the significance set (ω, see Section 4.2.1)
were six (see Figure 5.8 A for details).

For sal2, SDM defined δ̂ to be 13.7. The second difference in the data that
triggered the cutoff was 17.2. The lowest BF value declared as significant
was 311.7 and the highest non-significant BF value was 289.0. The total
number in the significance set were 83 (see Figure 5.8 B for details).

For corresponding statistics the other variables (temp1 temp2, ox1 and
ox2), please see Figure 5.8 C, D, E, F.
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Figure 5.14: Expected number of TP/FP in the significance sets defined
by the cutoffs alpha1, alpha5, jeff3.2 and SDM. Expected proportions of FPs
below one percent are plotted as zero.

The significance sets obtained using the four different cutoff methods
for the variable sal1 shows that SDM appears to be more conservative
than its cutoff level counterparts (see Table 5.1 A). Six SNPs are included
in the SDM significance set, whereas for alpha1, alpha5 and jeff3.2 the
corresponding numbers are 88, 440 and 78, respectively (note that alpha1
and alpha2 will always contain 88 and 440 SNPs respectively). The
maximum q-value for SDM is 0.089, implying that we can expect 0.53 FPs
in this set on average. The maximum q-value for alpha1, alpha5 and jeff3.2 is
in the interval 0.52-0.79 indicating a higher proportion of FPs in these sets.
The minimum BF value in the SDM set is 43.14, whereas the same numbers
for the other sets are between 1.10 and 3.25.

The pattern seen for the variable sal1 is repeated for the variables temp1,
temp2 and ox2: There are few SNPs in the SDM set compared to the sets
obtained from the other methods. A common feature for these variables
is that the overall signal strength in terms of BF is relatively low. The
maximum BF in the distribution might be high, but there are relatively few
SNPs showing a BF value above 10.

For the variables sal2 and ox2, SDM shows highly similar results to
that of alpha1 by defining 83 and 89 significant SNPs respectively. The
expected proportion of FPs in these sets is considerably lower than what
we have seen for the other variables. For example, for the variable sal2
the maximum q-value for SDM is 0.009. With 83 SNPs in this set, we can
expect 0.76 FPs among these results. As opposed to sal1, the overall signal
strength given for sal2 is much stronger. The minimum BF value for the
83 SNPs is as high as 311.69 indicating that many SNPs in the dataset are
strongly correlated to this variable. A similar pattern is seen for the variable
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ox2 using SDM: a low maximum q-value of 0.011 and a high minimum BF
of 273.4 in the significance set.

All q-values for this experiment is available in SI table A.

0 2000 4000 6000 8000

−
2

0
2

4
6

SNP

0 2000 4000 6000 8000

−
4

−
2

0
2

4
6

SNP

0 2000 4000 6000 8000

−
4

−
2

0
2

4
6

SNP

0 2000 4000 6000 8000

−
2

0
2

4
6

SNP

L
o
g
1
0
(B
F
)

L
o
g
1
0
(B
F
)

L
o
g
1
0
(∆

2
)

L
o
g
1
0
(∆

2
)

A B

C D

Figure 5.15: BF values and corresponding second difference (∆2) for
the variables sal1 and sal2 on the Cod dataset. A) and B) Logarithmic
transformed BF and second differences values for sal1. C) and D)
Logarithmic transformed BF and second differences values for sal2. The
vertical red line shows where the cutoff is being made in the distribution.
The red vertical lines indicates where the cutoff is being made by SDM.
The red dotted horizontal lines (B and D) indicates the second difference
threshold δ̂. The green dotted horizontal lines (B and D) indicates a second
difference of 0.5 (the default value of ε).

5.4.5 Testing the SDM on multiple BAYENV runs on the Cod
dataset

One particular issue with BAYENV is the potential run-to-run variability
(Blair, Granka and Feldman 2014). To explore how the SDM handles
this problem, we examined the results from 32 independent runs of the
Cod dataset carried out in parallel by PYBAYENV. Correlation between
allele frequency and the environmental variables, salinity (sal1 and sal2),
temperature (temp1 and temp2), and oxygen (ox1 and ox2), all at surface
and spawning depth were tested. The SDM function in PYBAYENV was
used to interpret and summarise the results across the independent runs.
The Manhattan plot in Figure 5.13 visualise how the results (median
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Statistics for Salinity surface (sal1)
Method Max BF Min BF Max q-value Expected # FP

SDM 359.64 43.136 0.089 6 0.534

alpha1 359.64 2.942 0.548 88 48.246

alpha5 359.64 1.096 0.786 440 345.936

jeff3.2 359.64 3.248 0.523 78 40.967

Statistics for Salinity deep (sal2)
Method Max BF Min BF Max q-value Expected # FP

SDM 100400 311.690 0.009 83 0.764

alpha1 100400 248.920 0.010 88 0.905

alpha5 100400 10.209 0.208 440 91.539

jeff3.2 100400 3.203 0.456 1078 491.832

Statistics for Temperature surface (temp1)
Method Max BF Min BF Max q-value Expected # FP

SDM 57285 182.44 0.023 11 0.254

alpha1 57285 24.460 0.124 88 10,890

alpha5 57285 3.009 0,488 440 214.799

jeff3.2 57285 3.200 0.475 418 198.695

Statistics for Temperature deep (temp2)
Method Max BF Min BF Max q-value Expected # FP

SDM 4148.6 41.203 0.057 5 0.285

alpha1 4148.6 7.038 0.384 88 33.826

alpha5 4148.6 1.164 0.706 440 310.769

jeff3.2 4148.6 3.205 0.529 183 96.835

Statistics for Oxygen surface (ox1)
Method Max BF Min BF Max q-value Expected # FP

SDM 153.51 12.565 0.147 4 0.586

alpha1 153.51 1.879 0.681 88 59.887

alpha5 153.51 0.399 0,878 440 386.396

jeff3.2 153.51 3.300 0.570 43 24.523

Statistics for Oxygen deep (ox2)
Method Max BF Min BF Max q-value Expected # FP

SDM 93918 273.400 0.0107 89 0.952

alpha1 93918 274.820 0.0104 88 0.899

alpha5 93918 10.981 0.204 440 89.575

jeff3.2 93918 3.202 0.454 1088 493.902

Sign. SNPs

Sign. SNPs

Sign. SNPs

Sign. SNPs

Sign. SNPs

Sign. SNPs

A

B

C

D

E

F

Table 5.1: Statistics from using the cutoff methods SDM, alpha1, alpha5
and jeff3.2 on the results from a single BAYENV run carried out on the
Cod dataset. For each environmental variable and cutoff method, the
following statistics is provided: The maximum BF (Max BF). The minimum
BF using the specified cutoff method (Min BF). The maximum q-value in
the significance set (Max q-value). The number of SNPs in the specified
significance set (Sign. SNPs). The expected number of FPs in the specified
significance set (Expected # FP).
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log10BF) from this experiment are distributed across the Cod genome.
In this experiment we compared the SDM to the cutoff methods alpha1,
alpha5, jeff3.2 and jeff10 (see Section 4.4). We tested the methods on all
environmental variables and counted how many times each SNP was
identified as significant. In order to be included in the Total Significance
Set TSS (see Section 4.2.3), an SNP needed to be present in at least 70% of
the runs (κ = 0.7; see equation 4.4). Result statistics for the six variables
are summarized in Table 5.2. To visualise how the significant SNPs are
distributed among the different cutoff methods, we plotted Venn diagrams
of the union sets and TSS’s for the variables sal1 and sal2 (see Figure 5.16).
The Venn diagrams were produced according to the methods in Section
4.6.3.

The results for sal1 show that there is a high variability between runs for
this variable using all cutoff methods. Out of a total of 84 SNPs identified
using SDM, only 4.8% were identified as significant in 22 (70%) or more
runs. This variability is also evident using the other cutoff methods. For
example jeff10 resulted in a total of 773 SNPs identified in one or more of
the 32 runs, but only 2.2% of the SNPs were identified in 22 or more runs.
The highest percentage of consistent SNPs (TSS SNPs) was obtained using
alpha5 with 11.1% of 2072 SNPs identified. However, we note that almost
one fourth of all (8809) SNPs were identified as significant once or more
using this cutoff method.

In terms of FDR for sal1, SDM shows the lowest maximum q-value. The
q-value of 0.056 indicates that there is on average 0.22 FPs among the five
significant SNPs identified by SDM. On the other end of the scale we find
alpha5 with a FDR of 0.747, indicating that 171.7 out of 230 SNPs are false
discoveries.

Like in the previous experiment where we examined one single run of
BAYENV, the pattern seen for sal1 is reflected in the variables temp1, temp2
and ox2. All these variables exhibits relatively few SNPs with a high
BF signal as indicated by the minimum median BF statistics (figure 5.2).
The overall run-to-run variability for these variables was also high: The
percentage SNPs identified in more than 70% of the runs was in the interval
0.95% (jeff10 on ox1) and 23.8% (alpha5 on temp1).

The five SNPs identified for sal1 using SDM were all included in the
corresponding set of eight SNPs identified in previous experiment (figure
5.1). The same statistics for temp1, temp2 and ox2 did however not show the
same consistency: here the similarities was 5 out of 13, 2 out of 7 and 2 out
of 6, respectively.

The variables sal2 and ox2 show more consistency in general. The
percentage of SNPs that are identified in more than 70% of the runs are
in the interval 55.1% (jeff10 on sal2) and 76.8% (alpha1 on ox2). The number
of SNPs identified by SDM is also significantly higher for these variables.
A total of 86 SNPs were identified in 22 or more runs for sal2, whereas the
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same number for ox2 was 77. As for the previous experiment, the results
from the SDM on these variables are highly similar to that obtained using
alpha1.

In terms of FDR, the maximum q-value for sal2 and ox2 (both approxim-
ately 0.01) indicates that there is a relatively low number of false discoveries
among the SNPs that are deemed significant using SDM.

The TSS from SDM on sal2 and ox2 is highly similar to the corresponding
significance set obtained using SDM on a single run of BAYENV. For sal2
the intersect of the two sets were 83, whereas the two sets had 77 SNPs in
common for ox2.
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Results for Salinity surface (sal1)
Method Max med. BF Min med. BF Exp. # FP

SDM 413.96 57.48 0.056 4 0.224 84

Alpha1 413.96 4.90 0.431 46 19.809 557

Alpha5 413.96 1.39 0.747 230 171.708 2072

Jeff10 413.96 17.69 0.212 17 3.601 773

Jeff3.2 413.96 4.23 0.459 54 24.772 2226

Results for Salinity spawning depth (sal2)
Method Max med. BF Min med. BF Exp. # FP

SDM 121480 262.58 0.011 86 0.937 127

Alpha1 121480 268.47 0.011 85 0.907 121

Alpha5 121480 10.49 0.199 399 79.545 647

Jeff10 121480 10.6 0.197 405 79.696 734

jeff3.2 121480 3.34 0.448 983 440.752 1626

Results for Temperature surface (temp1)
Method Max med. BF Min med. BF Exp. # FP

SDM 5535.35 149.52 0.021 9 0.192 234

Alpha1 5535.35 22.62 0.151 43 6.488 381

Alpha5 5535.35 2.98 0.508 339 172.095 1427

Jeff10 5535.35 12.28 0.264 86 22.672 1478

Jeff3.2 5535.35 3.65 0.474 319 151.161 2937

Results for Temperature spawning depth (temp2)
Method Max med. BF Min med. BF Exp. # FP

SDM 1336.4 422.31 0.007 3 0.022 160

Alpha1 1336.4 9.38 0.354 33 11.683 382

Alpha5 1336.4 1.39 0.676 305 206.210 1892

Jeff10 1336.4 13.19 0.292 17 4.968 764

Jeff3.2 1336.4 3.88 0.538 163 87.753 1862

Results for Oxygen surface (ox1)
Method Max med. BF Min med. BF Exp. # FP

SDM 190.07 31.81 0.059 3 0.178 106

Alpha1 190.07 2.39 0.715 37 26.439 401

Alpha5 190.07 0.5 0.847 230 194.699 2617

Jeff10 190.07 31.81 0.059 3 0.178 315

Jeff3.2 190.07 4.52 0.396 7 2.771 955

Results for Oxygen spawning depth (ox2)
Method Max med. BF Min med. BF Exp. # FP

SDM 105945 321.35 0.008 77 0.645 123

Alpha1 105945 260.63 0.011 86 0.959 112

Alpha5 105945 10.77 0.209 415 86.786 584

Jeff10 105945 10.35 0.217 444 96.563 629

Jeff3.2 105945 3.3 0.443 1002 443.588 1401

SNPs in TSSMax q-value TSS

Max q-value TSS

Max q-value TSS

Max q-value TSS

Max q-value TSS

Max q-value TSS

SNPs in TSS

SNPs in TSS

SNPs in TSS

SNPs in TSS

SNPs in TSS

Union SNPs

Union SNPs

Union SNPs

Union SNPs

Union SNPs

Union SNPs

Table 5.2: Summary statistics from using the cutoff methods SDM, alpha1,
alpha5 jeff10 and jeff3.2 on the results from 32 BAYENV runs on the Cod
dataset. A cutoff κ = 0.7 is used to obtain the TSS’s. For each
environmental variable and cutoff method, we provide the following
statistics: The maximum median BF (Max med. BF). The minimum median
BF (Min med. BF). The maximum q-value in the specific TSS (Max q-value
TSS). The number of SNPs in the specific TSS (SNPs in TSS). The expected
number of FPs in the specified TSS (Expected # FP). The number of SNPs
found in the specified union sets (Union SNPs)
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Figure 5.16: Venn diagrams of the distribution of significant SNPs using
four different cutoff methods: SDM, alpha1, alpha5 and jeff10. A) All SNPs
identified as significantly associated with the variable sal1 in any of the
thirty-two runs. B) SNPs significantly associated with sal1 in at least 70
percent of the runs (κ = 0.7). C) All SNPs identified as significantly
associated with the variable sal2 in any of the thirty-two runs. D) SNPs
significantly associated with sal2 in at least 70 percent of the runs (κ = 0.7).
The SDM subset values are drawn in red and bold

5.4.6 Testing the SDM on the Maize dataset

We explored the abilities of the SDM by applying it to the results
from a BAYENV analysis on the Maize dataset (see Section 4.1.2). In
this experiment, 135 SNPs were tested for correlation to an ordinal
environmental variable - the three stages in the local seed system of Staha
(see Section 4.1.2). The 32 independent runs of BAYENV were carried out
in parallel by PYBAYENV. Only presumed neutral SNPs were used for the
null model (see Methods Section 4.6.4). The resulting average BF for each
SNP was plotted as a Manhattan plot (see Figure 5.17 A)

Due to the low signal strength in terms of BF received from this dataset,
we adjusted the ε component in the δ̂ equation (see equation 4.2) from
0.5 (default) to 0.2. In 28 out of the 32 runs, the cutoff threshold δ̂ was
computed to be equal to ε (i.e. Nα ≤ 1). In the four other cases δ̂ was in the
interval 0.85 and 1.36. For runs using δ̂ = ε as cutoff threshold, the average
number of SNPs in the significance set was 9.3, whereas for the runs where
δ̂ were adjusted upwards the corresponding number was 5.0.
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A total of 36 SNPs were declared as significant in one ore more runs using
the SDM. The SNPs included in the union set were plotted in a significance-
plot (see Figure 5.17B). Only three SNPs were consistent in more than 70%
of the runs. However, these three showed the highest average BF and were
all among the candidates for positive selection (based on FST values)

We converted the average BF for each SNP to q-values as a measure of
FDR. The maximum q-value for the SNPs declared as significant by SDM
was 0.56 indicating a high proportion of FPs among these results.

Applying an alpha1, alpha5 or jeff3.2 cutoff threshold on the average BF
distribution yields one, seven and three significant SNPs respectively.
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Figure 5.17: A) Manhattan plot of SNP association with seed system stage
based on the average BF. The SNPs are plotted according to chromosome
and position at chromosome along the X-axis. Chromosomes alter between
black and red color. The red dotted line at 3 indicates a positive Bayes
factor according to Kass and Raftery 1995 (table 2.3). Source: Westengen
et al. 2014b B) Significance plot of the union set obtained by applying the
SDM to the results from 32 independent runs of BAYENV. The red dotted
line indicates significance with κ=0.7 (eq. 4.4)

5.5 Results from the tests on the stability of the
BAYENV method

In this section we present the results from the tests on the stability of the
BAYENV method. All test in this section are carried out using the Cod
dataset.

5.5.1 The impact of increasing the number of MCMC iterations
in the test phase of BAYENV

To assess whether the number of MCMC affected the run-to-run variability
of BAYENV, we examined the results from eight different analyses of
the Cod data set. Each analysis encompassed 32 independent runs of
BAYENV using different number of MCMC iterations (see Section 4.7.1). We
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calculated the stability score (see Section 4.2.4) for the union sets based on
a alpha1 cutoff and the SDM (see Figure 5.18).

The variables sal2 and ox2, shows a clear upward trend as the number
of MCMC iterations are increased for both cutoff methods. However, for
the remaining four variables, the trend is negative meaning the variability
increases with the number of MCMC iterations. Whereas the SDM shows
a consistent upward trend for the variable ox2, the same variable seems to
be peaking at 500,000 iterations by using a alpha1 cutoff. The variable sal2
shows a peak at 500,000 iterations in both methods. The second analysis of
500,000 iterations (500kb in Figure 5.18) shows very similar stability score
to its 500,000 run counterpart and slightly more similar using the SDM. The
discrepancy between the variables is more evident when the SDM is used.

5.5.2 Testing the relationship between run-to-run variability and
the number of independent BAYENV runs

To investigate whether multiple independent runs of BAYENV would lead
to more certainty about the result, we evaluated five subsets (1, 2, 4, 8, 16
independent runs) and the full set from a 32 run analysis and compared
them to the median statistics from a second control analysis consisting of
32 independent runs (see Methods Section 4.7.2). The percentage of equal
SNPs in the 99 percentile tail (88 SNPs) for each variable and subset is
plotted in Figure 5.19.

Two of the variables, sal2 and ox2, showed very high consistency by
having almost identical empirical 99 percentile tails (alpha1 cutoff) to the
reference data set in all test sets. The four other variables (sal1, temp1, temp2
and ox1) however, showed increasing agreement with the reference set as
the number of runs increased. The variable temp1 had the most significant
gain by showing an increase in similarity to the reference set from 52.8
percent after one test run to 86.5 percent after 16 runs (same after 32 runs).

Not all variables displayed a steady increase in similarity to the reference
set. For example, the variable ox2 dropped almost 7 percent after increasing
the number of runs from 8 to 16, and sal1 dropped a couple of percent after
4 runs. The trend was however clear: all variables show the best or equal
to best similarity to the reference set after 32 independent runs.

5.6 Reducing the test set based on the maximum allele
frequency difference between populations

Testing many SNPs using BAYENV is a very time consuming task (see
Section 3.6.2). In order to reduce the total time spent on the test phase
of BAYENV, we proposed a method where only a subset of the available
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Figure 5.18: Barplots of the stability scores obtained from BAYENV analyses
carried out using different number of MCMC iterations. The results were
calculated based on 32 replicate runs for each test. A) Stability scores for
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Figure 5.19: Plot of set difference between significance set based on a 99
percentile cutoff. The plot shows the similarity in percent between the
median BF from the test sets and the reference set.

SNPs are tested (see Section 4.3). The method uses the maximum allele
frequency difference (MAFD) between population to exclude SNPs that
are less "interesting" from the test set. For this experiment we followed
the method described in Section 4.8. We used PYBAYENV to calculate the
MAFD and to carry out the tests on the reduced sets (see Section 5.1.6).

To make salient the relationship between the results (log10(BF)) and
the MAFD between populations, these quantities were plotted for each
environmental variable (see Figure 5.20). The significance for the spline
regressions were p < 0.001 for all environmental variables. All SNPs except
one (for sal2) that were declared significant using the SDM on the full
dataset (see Section 5.4.5) were found among SNPs with MAFD among
the top 90 percentile. We found that the four cutoffs, 90, 95, 97.5 and 99,
resulted in MAFD cutoffs of 0.32, 0.39, 0.44 and 0.55 respectively. Figure
(see Figure 5.21) shows the similarity in percent between the tests and
reference sets.

The comparison of the TSS’s obtained from SDM shows that the variables
temp2 and ox1 has a 100% similarity to the reference on all cutoff levels.
The variables sal2 and ox2 decreases from ca. 90% to ca. 60% as the cutoff
becomes stricter, whereas the variables temp1 and sal1 shows an opposite
trend going from ca. 50% to 75%. The comparison of the top 88 ranked
SNPs (alpha1 cutoff) shows that by excluding SNPs with MAFD outside
the 90 percentile, almost 100% from the reference set is retained in the test
set for the variables sal2 and ox2. All variables show a similarity of 76.4%
or more to the reference results using a 90 percentile cutoff. Whereas the
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variables sal2 and ox2 shows a steady but modest decline moving from 90
percentile to 99 percentile cutoff, the drop is more dramatic for the other
variables. The variable ox1 show the most extreme drop moving from
79.7% similarity using a 90 percentile cutoff to 8.9% and 4.4% using a 97.5
and 99 percentile cutoff respectively.

By comparing the top 20 ranked SNPs, the result is very similar to what
we found comparing the top 88 SNPs. The variables sal2, ox2 and sal1 show
even more consistency with the reference by only failing to detect 10% (two
SNPs) after excluding 99% of the SNPs from testing. Except for the 90
percentile cutoff, the other variable does also show a higher similarity to
the reference when comparing the top 20 ranked SNPs.

Time saving

The main goal of reducing the test set was to save time on the test phase of
the BAYENV analysis. Since the time consumption is linear to the number
of SNPs tested, we were able to reduce the time spent on the test phase
by 90% by excluding 90% of SNPs. A full BAYENV analysis (32 runs and
100,000 iterations using PYBAYENV in parallel mode) on all SNPs (8809) in
the data set took approximately 543.2 minutes. By excluding 90% of the
SNPs, we were able to reduce this to 54.3 minutes. By further reducing the
test set to 95, 97.5 and 99, we were able to reduce the time consumption to
27.2, 13.6 and 5.4 minutes respectively.
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Figure 5.20: Plots showing the correlation between median log10(BF)
and the maximum allele frequency difference (MAFD) for the variables:
A) Salinity surface (sal1) B) Salinity depth (sal2) C) Temperature surface
(temp1) D) Temperature depth (temp2) E) Oxygen surface (ox2) and F)
Oxygen depth (ox2). SNPs identified as significant using SDM are coloured
in red. The vertical lines indicate the MAFD cutoffs, where blue, blue
dotted, green dotted and red dotted represents a 90, 95, 97.5 and 99
percentile cutoff respectively. The red smoothed spline indicates the trend
in the data.
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Chapter 6

Discussion

In this chapter, we discuss and evaluate the methods used and results
obtained in this thesis.

6.1 Evaluation of PYBAYENV

We developed a wrapper program for BAYENV named PYBAYENV as a tool
to help us carry out the tests and experiments in this thesis (see Section 4.9
and 5.1). PYBAYENV had two main objectives: facilitating and streamlining
the BAYENV analysis and providing functions for testing our hypotheses.

The first challenge was to convert the SNP data to the distinctive BAYENV

format (see Section 5.1.1 and Figure 5.4). We chose the GENEPOP file format
(Raymond and Rousset 1995) as input format for PYBAYENV because this
contains population information. In the future, we hope to add support
for other file formats such as the STRUCTURE format (Falush, Stephens and
Pritchard 2003; Pritchard, Stephens and Donnelly 2000). Meanwhile, the
user is referred to a third party conversion tool such as PGDSpider (Lischer
and Excoffier 2012) in order to convert the SNP data to the GENEPOP

format.

In PYBAYENV we implemented a feature for standardising the environ-
mental variables (see Section 5.1.2). The user provides the environmental
variables in conventional form and PYBAYENV serves to standardise these
before they are given to BAYENV as input arguments. By adding this feature
we minimize the possibility of user made errors by ensuring that the envir-
onmental variables are indeed standardised while simultaneously stream-
lining the BAYENV analysis.

The BAYENV analysis is rather complicated and cumbersome due to its
multi-step procedure (see Section 3.6). To simplify the BAYENV analysis,
we implemented a wrapper function in PYBAYENV (see Section 5.1.3 and

97



5.1.4). The most challenging part of this function was to find a good
solution for the test phase of BAYENV. In this phase BAYENV needs to be
started and stopped for every SNP in the dataset. Additionally, the BAYENV

requires that a single SNP file, already on the disk, is provided as input.
We solved this by sequentially writing each SNP to disk before calling
BAYENV as an external program from PYBAYENV. This is a cumbersome
way of carrying out this procedure, however, the program was only
available as a compiled binary file, hence we had no access to modify the
program directly. Moreover, modifying BAYENV would also have required
permission and involvement from the authors of the program (Coop et al.
2010; Günther and Coop 2013). However, that said, we found that the time
consumption of writing to disk on every test cycle was marginal compared
to the MCMC algorithm in BAYENV.

The wrapper functionality of the test phase of BAYENV is by far the
most time saving measure in PYBAYENV. Testing more than a few SNPs
"by hand" is unrealistic. A skilled UNIX user might be able to write a
bash script that can automate the process in a similar way, however, this
would require a lot of work and preparations (i.e. the single SNP files in
a large dataset). By developing PYBAYENV we think we have provided an
easy and time saving solution for all researchers that want to perform the
somewhat complicated BAYENV analysis.

The PYBAYENV functionalities for testing our hypothesis will be dis-
cussed and evaluated in the subsequent sections.

6.1.1 Parallelization

In order to save time, we implemented a feature in PYBAYENV where
several BAYENV runs could be carried out in parallel (see Section 5.1.5 and
5.2). The time estimates from the test runs suggest that there is a time
overhead of only 19.3% by running eight runs in parallel compared to one
single run. This overhead is negligible compared to the time consumption
of eight runs carried out in serial. An estimate of the time consumption for
eight sequential runs would be 3560.8 minutes (59.3 hours). Compared to
the 543.2 minutes used by running the eight analyses in parallel implies a
time saving of 84.7%.

The results from running 16 or 32 analyses in parallel show that there
were no further time savings due to the limited number of cores on the
lab computer (8 cores). However, running more processes than cores
did not slow down the overall time consumption either. Doubling the
number of processes compared to cores only lead to a doubling of the time
consumption. So, in conclusion: Even if the number of runs exceeds the
number of cores, PYBAYENV provides a time saving feature running the
processes in parallel mode.
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6.2 Evaluation of the convergence of the covariance
matrix

An accurate and consistent covariance matrix estimate is important for the
test phase of BAYENV where this is used as the null model. Hence, we
examined the convergence of both single draws and average covariance
matrices calculated from BAYENV runs using different MCMC chain
lengths (see Section 5.3). We plotted heatmaps (figure 5.10) to visualize
the difference (absolute values) between the test sets and the reference
set. By examining the single draw estimates (figure 5.10: A, C and E),
it is evident that the covariance estimate is converging towards some
kind of consensus: The difference decreases as the MCMC iterations are
increased. The covariance matrices based on the average of all estimates
output by BAYENV (figure 5.10: B, D and F), show the same trend: better
match with the reference as the number of MCMC are increased. Most
interestingly, the single draw after 10,000 MCMC iterations perform better
than the matrix averaged over the same number of iterations. This is
probably due to the fact that a large proportion of the average matrix
consists of very early outputs from BAYENV where the estimates are highly
unstable. However, the matrix averaged over 100,000 MCMC iterations
did outperform the single estimates from both 100,000 and 500,000 MCMC
iterations. The consistency of this matrix was only exceeded by the average
matrix produced after 500,000 MCMC iterations.

If only few iterations (typically 10,000) is used, it might be better to use
the last single draw from the posterior than an average that includes a
large proportion of unstable estimates. However, this experiment shows
that an average of the estimates produced after 100,000 or 500,000 MCMC
iterations is more consistent and thus recommendable. An even better
strategy would be to run BAYENV using 500,000 MCMC iterations and
declare the output from the first 100,000 MCMC iterations as burn-in and
exclude them when calculating the average matrix and hence get rid of the
unstable estimates from the beginning of the chain.

6.3 Evaluation of the SDM

As pointed out earlier, the problem with conventional methods such as
a percentage or static (i.e. Jefferey’s table; see Table 2.2) cutoff is that it
does not sufficiently take into account the overall distribution of BFs. For
example an alpha5 cutoff (top 95 percentile) on the results for association
to the variable ox1 (oxygen at surface) yields 283 (out of 440) "significant"
results that actually supports the null model by having a BF < 1. Or, using
a static cutoff such as jeff3.2 (BF > 3.2) on the results for association to the
variable ox2 (oxygen at spawning depth) yield as many as 1088 significant
SNPs (12% of all SNPs in the Cod dataset). By converting the BFs to q-
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values, we were able to show that these cutoffs yield an abundance of false
positive results (see Table 5.1 and SI table A).

One of the primary goals of this thesis was to provide an alternative
method for defining a significance threshold for an empirical distribution
of BFs obtained from a BAYENV analysis. We proposed a method we called
the Second Difference Method (SDM) whose purpose was to determine
where an increasingly sorted distribution of BF values had an approximate
linear growth and where it was convex (or exponential). The rationale
behind the SDM was to calculate a significance threshold based on the
shape of the sorted distribution of BFs for every run and environmental
variable individually instead of making a cutoff based on a percentage
or static cutoff that does not take the actual distribution of BF values
into account. The growth rate was approximated using second difference
(central difference, see Section 2.4.1). The hypothesis was that the non-
significant results follows a linear trend, whereas the truly significant
results stand out by having non-linear growth. The break in the slope
where the second difference distribution has a sudden and substantial
jump in the positive direction, was made an indicator of a change in the
growth rate and used to separate putatively non-significant from putatively
significant results (see Method Section 4.2).

The results from testing the SDM on simulated as well as real data, show
that the method is able to make an intelligent cutoff that adjusts to the
shape of the distribution of the results: when the overall BF signal is low,
SDM defines few significant SNPs, whereas in the case of a stronger signal,
more SNPs are defined as significant. In terms of FDR, the SDM was found
to be more conservative and yielded fewer FPs than conventional methods
based on a percentage or static cutoff.

6.3.1 Evaluation of testing the SDM on the simulated data

As an initial experiment before running our proposed SDM on real
datasets, we simulated three sets of artificial BAYENV results (BFs) and used
the SDM implementation in PYBAYENV to parse the data (see Section 5.4.2).
The results show without exception, that the SDM was able to separate
all "SNPs" defined in the significant group (siSNPs) from "SNPs" in the
groups containing neutral (neSNPs) and non-significant (noSNPs) "SNPs"
(see Methods Section 4.6.1 for details about the simulated BF values). In
other words, the SDM works as intended on the simulated datasets. It
may be argued that the gaps defined between the noSNPs and the siSNPs
"SNPs" were unrealistically large, however, these simulated sets were only
intended to demonstrate how SDM uses a sudden and substantial change
in the second difference distribution to define the cutoff. Additionally, if
we look at the distribution of the second difference for the simulated sets
(see Figure 5.11) and the second difference value that triggered the cutoff,
it is apparent that the gap could have been considerably less and SDM still
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would have been able to separate the two groups. For example, the δ̂ for the
Sim-weak dataset was 2.3, whereas the cutoff was made where the second
difference was 48.7. This was 21.2 times higher than necessary to trigger
this cutoff. Actually, only one "SNP" outside the siSNPs group had a second
difference greater than 0.5. This was found in the noSNPs group and had
a second difference of 0.55 and corresponded to the 62 largest BF value.
Hence, a cutoff threshold based purely on ε = 0.5 would have resulted in
inclusion of 57 additional "SNPs" from the noSNPs group in the significance
set.

The difference between δ̂ and the value that triggered the cutoff was even
higher for Sim-strong and Sim-large (27.8 and 8,091.3 times as large as δ̂
respectively). A cutoff threshold δ̂ = 0.5 on these datasets would have
resulted in inclusion of almost all "SNPs" in noSNPs group, however, none
of the "SNPs" from the neSNPs group would have been included (see Figure
5.11).

6.3.2 Evaluation of the SDM on a single BAYENV run

As an initial test on real data, we carried out a single run of BAYENV on the
Cod dataset (Berg et al. 2015, in review, see materials Section 4.1.1) using
PYBAYENV and interpreted the results using the built in SDM module (see
Section 5.4.4). By looking at the distributions of BFs it is evident that some
variables exhibit a stronger signal than others. For example, the number
of SNPs with a BF greater than 10 (Nα, see equation 4.2) for sal1 (salinity
at surface) was 24, whereas the corresponding number for sal2 (salinity at
spawning depth) was 445. The maximum BF (A) for sal1 and sal2 was 359.6
and 100,400.0 respectively. This difference in signal strength was reflected
in cutoff threshold δ̂ defined by the SDM. For sal1 and sal2 the second
difference cutoff δ̂ was 4.0 and 17.2 respectively. Despite the fact that sal1
had a less stringent cutoff, the number of SNPs in the significance set was
considerably less than for sal2 (six versus 83 SNPs).

We compared the significance sets obtained using SDM to significance
sets obtained using the cutoff thresholds alpha1, alpha5 (top 99 and 95
percentile) and jeff3.2 (BF>3.2). FDR in each set was evaluated by
transforming the BF values to q-values. Most interestingly, SDM appears
generally to be much more conservative than its counterparts (see Figure
5.1 and 5.14). For the variables sal1, temp1, temp2 and ox1, the number of
significant results is approximately one tenth of the results obtained from
the other cutoff methods. However, if we look at the corresponding q-
values, the expected proportion of FPs using SDM is in a more "reasonable"
range than what is obtained using the other cutoff methods. For example,
for the variable sal1, all alternative cutoff methods yield at least 52.3%
expected false discoveries, whereas the same number is only 8.9% for SDM.
In terms of the variables sal2 and ox2, the significance sets obtained from
SDM is highly similar to that of alpha1. While this is a coincidence it
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demonstrates that SDM is able to dynamically adjust to the distribution
of BF values. By looking at the maximum q-values for these variables, the
expected proportion of FPs in the SDM sets is ≈ 0.01, which we believe to
be a conservative q-value cutoff.

This initial experiment on real data indicates that the dynamic cutoff
provided by SDM may offer a more flexible way of interpreting the
empirical distribution of BFs obtained from a BAYENV analysis than
methods based on either a static (jeff3.2) or percentage (alpha1 and alpha5)
cutoffs. For variables where there are relatively few high ranking SNPs (e.g.
sal1), SDM is more conservative than the other methods. For variables, such
as sal2 and ox2 where the overall BF signal is higher, SDM show flexibility
by allowing more SNPs to be included in the set of significant results.

6.3.3 Evaluation of the SDM on multiple BAYENV runs

We investigated how different cutoff methods dealt with the run-to-run
variability of BAYENV by carrying out 32 independent runs of the program
on the Cod dataset. We compared the Total Significance Sets (TSS: SNPs
defined as significant in more than 70% of the runs) (see method Section
4.6.3) obtained by SDM to corresponding sets using the cutoff methods
alpha1, alpha5 jeff3.2 and jeff10. As for the experiment on one single BAYENV

run, SDM appears to be much more conservative than the other cutoff
methods. For the variables sal1, temp1, temp2 and ox2, the TSS only
contained between 3 and 9 SNPs (see Table 5.2). The maximum q-values
for these sets however, show that despite few and top ranking SNPs, the
FDR is not very low. The FDR for the other cutoff methods is much higher
(with the exception of jeff10 for ox1). This fact may indicate that the true
number of significant SNPs is small (or even zero) for these variables and
that SDM provides a more acceptable cutoff threshold in terms of FDR. The
high run-to-run variability seen reflects the uncertainty in the results and
underpins this thought.

In contrast to sal1, temp1, temp2 and ox2, the variables sal2 and ox2 showed
in general more consistency. As for the previous experiment on a single run
of BAYENV (see Results Section 5.4.5), the final set of significant SNPs (TSS),
contained approximately the same number of SNPs as the corresponding
set using alpha1 cutoff. The high number of significant SNPs and the
low FDR in combination with low run-to-run variability, indicates that the
variables sal2 and ox2 have a strong linear effect on the population allele
frequencies and thus more SNPs are likely to be under selection.

We plotted Venn diagrams of the union sets and the TSS’s obtained from
the cutoff methods described above to visualise how these sets relates to
each other (see Figure 5.16). By examining the Venn diagrams of the union
sets from sal1 and sal2 (Figure 5.16 A and C) and comparing these to the
corresponding TSS’s (Figure 5.16 B and D) it is evident that sal1 has a
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much higher run-to-run variability than sal2 for all cutoff methods. For
example, only 2% of the SNPs identified as significant in one or more runs
(union set) is consistent in more than 70% of the runs (TSS) using jeff3.2
and jeff10 on the results from sal1, whereas the corresponding percentage
for the variable sal2 is 60% and 55% respectively. Moreover, the Venn
diagrams also help to clarify the efficiency of the SDM and to make salient
the disadvantages of the other methods. For example, the Venn diagram
for the TSS’s of sal1 (Figure 5.16 B) shows that jeff10 yields relatively few
significant SNPs compared to alpha1 (17 versus 46). Consequently, the
FDR is more "satisfactory" for jeff10 than for alpha1 (0.2 versus 0.4) for this
variable. However, if we look at the corresponding sets for sal2 (Figure 5.16
C), the scenario is turned around: now jeff10 yields almost five times as
many significant SNPs (405 versus 85) as an alpha1 cutoff. The maximum
q-values indicates that jeff10 yields 20% FPs versus 1% FPs using alpha1.
This tells us that in terms of FDR, the percentage and static cutoffs produce
somewhat arbitrarily TSS’s that does not adjust to the actual distribution
of BFs. The SDM, on the other hand, shows that it is capable of adjusting
to the distribution of BFs by defining few SNPs when the overall BF signal
is low and the variability is high (sal1) and defining more SNPs under the
opposite scenario. The q-values calculated for the SDM sets support this
supposition (see Table 5.2).

6.3.4 Evaluation of the SDM applied to the Maize dataset

To explore how the SDM would work with smaller datasets, we applied
it to the results from a BAYENV analysis on 135 SNPs from African maize
(Westengen et al. 2014b). We used PYBAYENV to carry out a full BAYENV

analysis (32 runs) and to interpret the results (see Results Section 5.4.6).
Due to the low expected signal strength in terms of BF from the data,
the constant ε was adjusted from 0.5 (default) to 0.2. In 87.5% of the
runs (28 of 32 runs), δ̂ was computed to be equal to ε. A δ̂ = ε implies
that there is at maximum one SNP in the distribution that has a BF value
greater than 10 (Nα, see equation 4.2). We saw that there were on average
more SNPs defined to be significant when δ̂ was defined to be equal to
ε. This may indicate that by adjusting down the ε value we made δ̂
more tolerant - maybe too tolerant. However, if we look at the median
instead of the average statistics, the difference in significance set size is
not as obvious (eight versus five), indicating that the average statistics is
somewhat skewed due to some outlier results.

When the results from this analysis were published, SNPs showing
an average BF> 3 were regarded as significant. As the basis for this
decision, Kass’ table (see Table 2.3) for interpretation of BF was used. This
cutoff resulted in three significant SNPs, all being identified as candidates
for positive selection using the software LOSITAN (Antao et al. 2008).
Moreover, two of these SNPs were located in known putative protein
coding genes with known orthologs in rice and sorghum (Westengen et
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al. 2014b). Most interestingly the SDM method detected the same three
SNPs (see Figure 5.17. The fact that SDM supports the same cutoff, makes
the choice of cutoff even more convincing as it is automated and thus is
completely objective.

We saw that the results varied considerably between runs. Only 8.3%
(three out of 36) SNPs were consistently (κ = 0.7) among the "significant"
SNPs using the SDM method (see Figure 5.17). This shows the necessity of
checking the BAYENV results with multiple runs of the algorithm.

By converting the BFs to q-values, we saw that there may be a high
proportion of FPs among the top ranking SNPs indicating some uncertainty
of the results. This is probably a consequence of few SNPs forming the basis
for the covariance matrix and a low BF signal in general. However, in this
experiment we have showed that the SDM could be successfully applied to
smaller datasets and our strategy of running multiple runs of the BAYENV

algorithm is essential to ensure a stable result.

6.3.5 Evaluation of the δ̂ equation

The equation that SDM uses for defining the cutoff threshold for the
second difference (δ̂, see Section 4.2.2), was designed to reflect the shape
and overall distribution of BFs from a BAYENV analysis. In addition
to a small constant factor (ε), the equation consisted of two important
measures from the distribution: the largest BF (A) value and the number of
SNPs displaying a BF above 10 (Nα). By applying the SDM to simulated
as well as real data, we have shown that δ̂ makes smart cutoffs on the
second difference distribution. However, we do see that there is room for
improvement. For example, when using SDM on the Maize dataset, we
saw that δ̂ was more than four times as large if the runs had a Nα > 1. This
fact was reflected in the number of significant SNPs in the corresponding
significance sets (see Discussion Section 6.3.4). Perhaps this could have
been avoided if ε had been determined by statistics from the BF distribution
and not by the user. When analysing the Cod dataset we used the same ε
value for all environmental variables (the default value 0.5). Considering
that the variables showed very different BF signal strength, perhaps the ε
should have been differentiated accordingly. An automation of the choice
of ε would also have made the SDM more user friendly. Moreover, the
Nα component may be criticised for affecting the δ̂ equation in the "wrong"
direction if adjusted (i.e. a lower α value would lead to a more stringent
δ̂). We find δ̂ to be working adequately on the datasets used in this thesis,
however, in order to be more confident on the choice of δ (see Section 4.2),
we encourage more research on this topic.
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6.3.6 Conclusions on SDM

We have in this thesis applied the SDM to the BAYENV results from
analysing two different datasets as well as simulated results and shown
that it could provide a versatile alternative to other cutoff methods. As we
have seen (figure 5.1 and 5.2), a percentage and static cutoff often result
in an abundance of false discoveries. Furthermore, by using one of these
methods, the choice of cutoff could very easily be misled by the analyst’s
prior beliefs of selection (Coop et al. 2010). One of the real advantages of
the SDM is that it is automated and hence provides an unbiased measure
of significance. Moreover, using second difference to detect a change in
the growth rate of an empirical distribution of BFs has proven to provide
a successful cutoff in terms of FDR. By examining the q-values, we see a
trend that using a static cutoff might be better when the BF signal is low
(i.e. ox1 in Figure 5.2), whereas a percentage cutoff may be better when the
signal is high (i.e. ox2 in Figure 5.2). The SDM however, provides cutoff
that yields an acceptable proportion of FPs both when the signal from the
variable is strong and weak.

Our strategy of running multiple replicate runs of BAYENV seems to
work well in partnership with the SDM. The total number of significant
SNPs is approximately the same as applying the method to a single run
(Figure 5.1) and multiple runs (Figure 5.2). The proportion of FPs in the
significance sets also stays approximately constant. The high variability
however, indicates that multiple runs are necessary to ensure a stable set of
results.

By converting the BFs to q-values we had a measure of FDR in the TSS.
We used this to show that the SDM provides a cutoff threshold that was
more stringent and thus yielded fewer expected FPs. However, we want
to point out that a more stringent cutoff also leads to more FNs. Hence,
the choice of cutoff threshold must reflect the proportion FPs that can be
tolerated and there is no right or wrong answer to this question. However,
a significance level must be defined and we think that the SDM provides
an elegant and intuitive way of handling the problem.

6.4 Evaluation of the stability of BAYENV

In this section, we discuss the results from testing the stability of the
BAYENV method (see Section 5.5).
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6.4.1 The impact of increasing the number of MCMC iterations
in the test phase of BAYENV

The variability of MCMC algorithms in general and the BAYENV method in
particular is already known (Blair, Granka and Feldman 2014; Coop et al.
2010). To assess how the MCMC chain length affects the stability of the
results, we calculated a stability score (see Methods Section 4.2.4) for eight
BAYENV analyses carried out using different number of MCMC iterations
(see Methods Section 4.7.1). In this experiment we compared the SDM to
the alpha1 cutoff threshold.

The results show that the stability differs dramatically between environ-
mental variables. Whereas two variables exhibit a steady increase in stabil-
ity (sal2 and ox2) this trend was negative for the four other variables (sal1,
temp1, temp2 and ox1) (see Figure 5.18).

The development of SDM and alpha1 on sal2 and ox2 (see Figure 5.18)
is strikingly similar and most probably due to the fact that these methods
produce significance sets with approximately the same number of SNPs
(ca. 88). The stability gained going from 10,000 to 500,000 MCMC iteration
is substantial (≈66% increase). The stability gained going from 100,000 to
500,000 MCMC iterations is less notable (≈15%), however it supports the
findings of Blair, Granka and Feldman 2014 (see Section 3.7) suggesting
that 500,000 iterations produce slightly more stable results than 100,000
iterations. The increasing stability shown may indicate that there is a
strong correlation between the allele frequencies and these variables for
a substantial number of SNPs in the dataset.

The low stability score obtained for the variables sal1, temp1, temp2 and
ox1, indicates that these have a high run-to-run variability. The reason
for why the stability is decreasing as the number of MCMC iterations is
increased is not clear. However, we know from the previous experiments
(see Section 5.4.4 and 5.4.5) that only very few SNPs show a persistent high
BF for these variables (see Tables 5.1 and 5.2). This may indicate that only
a few SNPs truly correlate to these variables.

From Figure 5.18 it is apparent that the stability score is lower in general
when using the SDM cutoff. This is even more evident for the variables
showing the lowest stability score (i.e. sal1 and ox1). This is probably due
to the fact that the significance sets produced by SDM can vary in size and
the variation is more noticeable for the most unstable variable.

This experiment shows that a higher number of iterations would lead to
more certainty about the results for variables which exhibit a strong signal
in terms of BF (sal2 and ox2). For variables not showing this steady increase,
there may be none or just a very few SNPs that are really under selection
for these variables.
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6.4.2 Testing the relationship between run-to-run variability and
the number of independent BAYENV runs

To determine whether an increased number of replicate runs would
provide a more stable set of significant SNPs, we compared the median
statistic from test sets containing 1, 2, 4, 16 and 32 independent runs to
the median statistics from a reference analysis consisting of 32 runs (see
Section 5.5.2). As for the previous experiments the variables sal2 and ox2
displayed the highest agreement with the reference. We saw that the top 88
results from on single run on these variables were practically identical to
the median from the reference carried out using 32 independent runs (see
Figure 5.19). This suggests that for the most persistent variables, it might be
enough to verify one test run with another. For less persistent variables (i.e.
sal1 and ox1) however, there is a need for more runs to ensure a stable result.
Figure 5.19 shows that the less persistent variables exhibit an increasing
agreement with the reference as the number of runs were increased.

This experiment shows that for some variables a couple of runs are
enough to verify the results from a BAYENV analysis. For other variables
showing less persistence, there is a need to run a substantial number of
runs to ensure a stable result. Currently there are (to our knowledge) no
method to detect whether a variable is persistent or not prior to the test,
thus the solution must be to carry out several independent runs to achieve
an acceptable degree of certainty about the results.

6.5 Evaluation of the method of reducing the test set
based on maximum allele frequency difference
between populations

Since the test phase is by far the most time consuming part of a BAYENV

analysis (see Section 3.6.2), we proposed a method were we excluded
SNPs based on a maximum allele frequency difference (MAFD) between
populations to save time (see Section 4.3). We ran four BAYENV analyses
on the Cod dataset where we excluded SNPs based on a 90, 95, 97.5 and
99 percentile cutoff on the MAFD distribution. These percentage cutoffs
corresponded to a MAFD of 0.32, 0.39, 0.44 and 0.55 respectively.

Figure 5.20 and the spline regression showed that MAFD is highly
correlated to the BF results from the BAYENV analysis. With only one
exception in sal2, all SNPs defined as significant using SDM on the full
dataset were found within SNPs with a MAFD greater than 0.32. For
the variables with less than 10 significant results (sal1, temp2 and ox1) all
significant SNPs exhibit a MAFD greater than 0.55 (top 99 percentile). By
examining the plots in Figure 5.20 it is evident that most of the interesting
results fall within a MAFD interval of [0.3,1]. However, for the variables
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sal2 and ox2 there are SNPs with a MAFD less than 0.2 that achieves a BF
greater than 100 (in the top 98 percentile of the distribution). This tells us
that caution must be taken when choosing the MAFD cutoff. That said, 54%
of the SNPs have a MAFD of less than 0.15, thus removing these from the
test set would still offer considerably time savings - especially if the dataset
is large.

After running PYBAYENV on the reduced sets, we calculated the SDM
significance sets and compared it to the corresponding SDM significance
sets obtained from the experiment where we ran 32 runs on the entire
dataset (see Section 5.4.5). We also computed the median statistics for
the reduced datasets and compared the top 88 (alpha1) and the top 20
SNPs to the median statistics from the same run on the full dataset. The
comparison of the median statistics of top 88 SNPs show a similar trend
from what we have seen in the previous experiments: sal2 and ox2 show
the highest consistency, whereas the other variables show less (see Figure
5.21 B). The corresponding comparison of the top 20 SNPs shows much the
same trend, however, without exception all variables exhibit a considerably
gain in similarity to the reference (see Figure 5.21 C). This fact indicates
that the absolute top ranking SNPs is most likely to be found among SNPs
with highest MAFD. The poor performance seen for some variables can be
explained by the visualisation in Figure 5.20. For example, the variable ox1
shows the worst performance both when comparing top 88 and top 20. By
examining Figure 5.20 E, we can see that only five of the SNPs with a MAFD
greater than 0.5 has a BF above 1. The majority of SNPs with a BF greater
than 1 is found in the MAFD interval [0.3, 0.5]. This fact is reflected when
the top 88 and 20 was compared to the reference that had no constraints on
the MAFD.

The comparison of the SDM significance sets (Figure 5.21 A) shows a
different pattern. The two variables (temp2 and ox1) that exhibited the
worst performance comparing the median statistics (figure 5.21 B and C)
now shows a perfect (100%) similarity to the reference for all MAFD cutoffs.
Again, this can be explained by the correlations in Figure 5.20 (D and E).
The three SNPs defined as significant by the SDM for these variables when
testing all SNPs in the dataset, are all found among SNPs with a MAFD
greater than 0.55 (99 percentile). Hence, the SDM defined the same three
SNPs when the test set was reduced. The pattern seen for variables sal2 and
ox2 is more similar to what we obtained using a static cutoff on the median
statistics: the similarity to the reference is gradually reduced as the MAFD
cutoff is made more stringent. However, the similarity is somewhat poorer
using the SDM and there are mainly two factors that are causing this. First,
since the SDM defines the cutoff threshold dynamically according to the
overall distribution of BFs, the size of the significance sets may differ if
these conditions are changed (recall that δ̂ is dependent on statistics from
the distribution of the results. See Section 4.2.2 for details). For example
the SDM significance set obtained using a 0.32 (90 percentile) cutoff on the
MAFD for sal2, contains 79 SNPs, whereas the reference set contains 86
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SNPs. All the 79 SNPs in the reduced set were included in the reference set,
however the set difference is still an issue and becomes evident in the plot
(figure 5.21 A). Second, which is most evident when comparing the 88 SNPs
with a MAFD greater than 0.55 (99 percentile), is that the significance sets
obtained using SDM never contain the two lowest ranking SNPs. Hence,
the significance sets contains N-2 SNPs (where N is the number of tested
SNPs) at maximum. Just this fact may cause a difference between the test
and reference sets - especially if the test sets are small.

The pattern seen for the variables sal1 and temp1 when comparing the
SDM sets is more unexpected: the similarity increases along with the
reduction of the test sets (figure 5.21 A). This pattern can only be explained
by the variability already observed on these variables (see Section 5.4.5 and
5.5). By examining the data underlying the results, we can understand
why the differences are so extreme. For example, the SDM reference set
for sal1 contains four SNPs, whereas the corresponding SDM significance
set obtained after a 0.32 MAFD cutoff (90 percentile) contains two SNPs.
The two SNPs missing in the test set were identified in 15 and 13 runs (out
of 32) respectively and they were both among the top five ranking SNPs,
however they failed to make the cut on variability (κ = 0.7). The outcome
is a 50% difference to the reference. When testing the sets based on a 0.44
and 0.55 MAFD cutoff, one additional SNP made the cutoff for variability
and hence increased the similarity to 75%. The lesson from this is that
comparing significance sets with few SNPs could have major impacts on
the similarity in percent.

The method of reducing the test set based on MAFD has both positive
and negative aspects. The main purpose of the method was to reduce the
time consumption in the test phase of BAYENV. Since this increases linearly
with the number of SNPs tested, we were able to reduce the time usage by
up to 99% using this method. However, the time savings comes with some
drawbacks that need to be paid attention to. As we have seen (e.g. on sal2,
Figure 5.20) there is a chance of excluding significant SNPs if the MAFD
cutoff is made too strict. Moreover, the lack of a "null" distribution of BFs
(the distribution of results from neutral SNPs) could be a disadvantage,
especially for the SDM which uses statistics from the full distribution to
determine the cutoff (δ̂). A strategy that could work is to use a MAFD cutoff
of 0.2, which would have reduced the Cod dataset by 72%, and additionally
draw 1-5% random samples from the excluded SNPs with low MAFD to
get a representative sample to serve as "null" SNPs. A time saving of
approximately 70% would be very advantageous - especially if the dataset
is large. We find the method of reducing the test set based on MAFD to be
very promising, however we refrain from drawing any conclusion before
more research has been performed on the subject.

Despite the uncertainties regarding the procedures, we still see some
very useful applications for the method. For instance if the researcher
wants a quick, initial overview over the most significant results. These
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preliminary results can provide useful information by allowing a quick
comparison of results from other analysis tools such as LFMM (Frichot et
al. 2013), PCADAPT (Duforet-Frebourg, Bazin and Blum 2014) or GINLAND

(Guillot 2012). Villemereuil et al. 2014 found that it was possible to greatly
reduce the error rates by considering the results from several methods. The
method can also provide information on which variables that is consistent
or have a high variability between runs (see Section 5.5)).

Another meaningful application would be when the test set is extremely
large such as the HGDP data (Foster 2001). This dataset contains 660,918
SNPs and is therefore virtually impossible to analyse using BAYENV on a
desktop computer - even on a supercomputer this would take considerable
time. By reducing the test set by removing the least "interesting" SNPs,
analysing the data immediately becomes more manageable.

In conclusion, before more research has been conducted, the method of
excluding SNPs from testing based on the MAFD between populations
may serve as a convenient tool for an initial examination of the results
from a BAYENV analysis. The method also makes extremely large datasets
manageable. The method is included as a feature in the PYBAYENV

package.

6.6 Our guidelines for BAYENV

Based on the tests and experiments we have performed on the BAYENV

method, we provide a set of general advice as a guideline for how the
program could be run to ensure a stable result.

6.6.1 Preparing the covariance matrix

We tested the consistency and convergence of the covariance matrix
estimate (see Results Section 5.3 and discussion Section 6.2) and based
on these findings we recommend that the covariance matrix is averaged
across all single draw estimates output by BAYENV using at least 100,000
MCMC iterations. Considering that the time consumption of estimating
the covariance matrix is normally just a fraction of the overall time
consumption when performing a complete BAYENV analysis (see Section
3.6.2), we recommend that the covariance matrix is averaged across the
outputs from a 500,000 MCMC iterations run.

We refrain from having an opinion on how to choose the SNPs for the
covariance matrix estimation, however, it is implicit in the BAYENV model
that as many SNPs as possible are used in this phase. If the dataset contains
considerably more SNPs than 10,000 (the maximum input for BAYENV),
we suggest that the average of the average matrices from several different
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subsets are used. Moreover, if a large proportion of the SNPs available are
known to be candidates for selection, it may be advantageous to exclude
these from the set of SNPs that forms the basis for the covariance matrix.
This is a measure to ensure the neutrality of the estimate (as we did on the
Maize dataset, see Section 4.6.4).

6.6.2 The test phase of BAYENV

Based on the findings from the experiments performed on the stability
of the BAYENV method (see Section 5.5), we recommend that the tests
for correlation to an environmental variable are carried out using at least
100,000 and preferably 500,000 MCMC iterations for each SNP. Using
500,000 instead of 100,000 MCMC iterations will produce a slightly more
stable result, however, the performance gain comes with a fivefold increase
of the time consumption (see Section 3.6.2). Furthermore, to account for
the run-to-run variability we recommend that a minimum of eight and
preferably 32 independent runs are used to ensure a stable outcome of the
analysis. The number of runs will also greatly affect the time consumption:
if PYBAYENV is used on a desktop computer with eight cores, an increase
in the number of runs from 8 to 32 would lead to a quadrupling of the
time consumption (see Section 5.1.5). If the dataset is large (i.e. more
than 50,000 SNPs) we suggest that the dataset is made more manageable
by excluding SNPs based on the maximum allele frequency difference
(MAFD) between populations (see Section 4.3, 4.8 and 5.6). We stress that
this method is still under development, however, a moderate cutoff of 0.2
on the MAFD distribution is most likely quite "safe" and may reduce the
time consumption considerably (by ca. 70% in our experiment - see Section
5.6 and 6.5).

6.6.3 Interpretation the BAYENV results

For the interpretation of the BAYENV results we recommend that the SDM
is employed and that the TSS (see Section 4.2.3) is computed to account
for the run-to-run variability. We found that the SDM provides a flexible
and smart cutoff that produces fewer FPs than conventional methods (see
Section 5.4.4 and 5.4.5). However, the user should keep in mind that a
more stringent cutoff also comes with the possibility of having more FN
results. As the method still is under development and testing, we currently
recommend that the results are confirmed by other statistics such as the q-
value (Storey and Tibshirani 2003). Bayes factors (BFs) could be converted
to q-values using the algorithm from Muller, Parmigiani and Rice 2006 as
employed in Villemereuil et al. 2014 (see Section 2.6.2).
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6.7 Interpreting BAYENV results

The BAYENV model attempts to control for various effects of populations
structure, however, it does not claim to fully control the population
structure. A high BF indicating that a SNP is linearly correlated to an
environmental variable should therefore not be taken at face value for
selection (Coop et al. 2010). The alternative model in BAYENV assumes
a linear relationship between the population allele frequencies and the
environmental variable (see Section 3.2). In theory, there could be various
forms of non-linear relationship between these quantities that remain
undetected using this method. Thus, a non-significant BF is not a proof
for the SNP not being a target of selection for this variable, but only a lack
of a linear correlation.

Another fact that needs to be taken into consideration is that the
environmental variables tend to co-vary. For example, the significance
sets obtained using SDM on the results from the variables sal2 and ox2
contained 86 and 77 SNPs respectively. The intersect of these sets is
as high as 74 SNPs. In other words, 96% of the SNPs found to be
significantly correlated with ox2 is also significantly correlated with sal2.
Knowing which variable that actually exerts the selection pressure is
therefore difficult: it could be either of the variables, both, or none. Thus
drawing a bombastic conclusion about a SNPs (or gene’s) association with
an environmental variable based on the BAYENV analysis alone is not
recommendable.

Linkage Disequilibrium (LD) between SNPs might also complicate the
analysis. When a SNP is a (recent) target of selection, the process of
recombination could result in high LD in the surrounding regions of the
genome. Thus neighbouring SNPs can be hitchhiking along with the
SNP really under selection and therefore also be correlated to the same
environmental variable. Distinguishing between such SNPs may prove
difficult. Berg et al. 2015, in review found that most of the SNPs that were
highly associated with one or more of the six environmental variables (sal1,
sal2, temp1, temp2, ox1, ox2), were found in regions of the Cod genome with
high LD.

In conclusion, it is important to be aware of all these facts when assessing
the results from a BAYENV analysis. As earlier mentioned, Villemereuil et
al. 2014 found that it was possible to significantly reduce the error rates by
considering more than one method when assaying SNPs for environmental
correlation.
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6.8 Future work

We have in this thesis created the SDM (section 4.2) and evaluated it on
simulated results (section 5.4.2) and the results from analysing real data
(the Cod and Maize dataset) and found it to be a good alternative to other
cutoff methods. However, to be even more confident of the importance of
the method, we would suggest that SDM is tested on a simulated dataset
where the neutral loci (SNPs) under selection are known in advance. By
using simulated data it is easier to evaluate the statistical significance of
our methods.

Moreover, we would like to see the SDM as well as the method of
reducing the test set based on the maximum allele frequency difference
(MAFD, see Section 4.3) further tested on a large dataset that is already
thoroughly analysed. For example, the SNPs data from the Human
Genome Diversity Project (Foster 2001) would be interesting since this
allows comparison of the results to a range of already performed studies
(e.g. Blair, Granka and Feldman 2014; Coop et al. 2010; Hancock et al.
2010b; Hancock et al. 2008).

To save time in the test phase of BAYENV, we developed a method of
using the measurement maximum allele frequency difference (MAFD) to
exclude less interesting SNPs form testing. We showed that the MAFD
was significantly correlated to the outcome of a BAYENV analysis and the
method showed promising results in our experiments. However, we also
saw that a too strict cutoff of the MAFD could potentially exclude SNPs
under selection from testing. Hence, in order to be more confident on the
MAFD cutoff, more research on the topic is needed.

By developing PYBAYENV , we have not only made BAYENV available for
researchers without skills in programming, but we also made a complete
framework for streamlining the BAYENV analysis and interpreting the
results. However, there are still features that could make PYBAYENV

even more efficient and user friendly. For example, a graphical user
interface could make PYBAYENV more available for non-technical users.
Furthermore, there are a number of features that could be interesting to
add to the program. For example, a feature for plotting the BF results
as Manhattan plots (see Section 4.4.2), where the significant SNPs defined
by SDM are highlighted, would enable the user to inspect how the results
are distributed across the genome. Plots of the distribution of the second
difference would enable inspection of the SDM cutoff. Venn diagrams
(see Section 4.6.3) such as in Figure 5.16 would enable the user to inspect
the distribution of the significant results using different cutoff methods.
Moreover, to provide the user with information on FDR in the distribution
of results, a feature for converting the BFs to q-values could have be
implemented in PYBAYENV. Lotterhos and Whitlock 2014 have developed
a method for adjusting the empirical p-values in accordance with the
results (BFs) from a set of putatively neutral SNPs (determined a priori)

113



which also could have been calculated by PYBAYENV. By having additional
statistical measurements such as the q-value and the adjusted p-value, the
user can draw conclusion on significance with more confidence.

Furthermore, one could envision a web interface for interpreting the BAY-
ENV results using the SDM in a similar manner as the Evanno method
(Evanno, Regnaut and Goudet 2005) for interpreting the STRUCTURE res-
ults has been made available by Earl and vonHoldt 2012 on the STRUCTURE

Harvester web page (http://taylor0.biology.ucla.edu/structureHarvester/).
The user could upload the BAYENV results to a server that interprets these
and returns relevant plots and data.

To make PYBAYENV even more efficient, one could envision an imple-
mentation of the program on a Galaxy platform (Goecks, Nekrutenko and
Taylor 2010) that has access to high performance computing resources such
as the lifeportal.uio.no (Lifeportal 2015). By implementing PYBAYENV on life-
portal.uio.no, the user is not limited by the number of cores on a desktop
computer thus more parallel runs could have been performed simultan-
eously. Another great advantage with the Galaxy platform is that all steps
in the analysis are automatically documented and hence easier to repro-
duce (Sandve et al. 2013).

6.9 Conclusion

To meet the demand for multiple independent runs of BAYENV, we
developed the software package PYBAYENV. By parallelizing the BAYENV

test phase we were able to drastically reduce the time spent when carrying
out multiple analyses. In addition, PYBAYENV provides an easy entrance
to a quite complicated analysis process by offering features such as format
conversion, wrapper functions for the BAYENV steps, interpretation of the
results using SDM and reducing the test set based on the maximum allele
frequency difference (MAFD) between populations.

In this thesis we developed the SDM, a method for defining a significance
threshold for multiple hypothesis testing where the results are given on the
form of Bayes factor (BF). The main goal for the method was to assign a
cutoff that reflected the shape of the BF distribution instead of employing a
conventional cutoff such as a static (Jeffrey’s table 2.2) or percentage cutoff.
The results from running BAYENV analyses on two SNP datasets show that
SDM provides a versatile alternative to the conventional approaches. The
results are somewhat similar to what is obtained by converting the BF to q-
values (Muller, Parmigiani and Rice 2006) and applying a cutoff threshold
of αq = 0.01, with SDM being slightly less conservative for some variables.

We also confirm the findings from Blair, Granka and Feldman 2014 that
BAYENV has a high run-to-run variability. However, the results from our
datasets suggest that some variables are significantly more unstable than
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others. Increasing the number of MCMC iterations did not change this
fact. To address this problem, we developed a strategy where the results
from several independent runs were examined and only SNPs showing a
high consistency between runs were included in the final set of significant
results (TSS).

We proposed a method of reducing the overall time consumption of
BAYENV by excluding SNPs with low maximum allele frequency difference
(MAFD) between populations from testing. When testing the method on
real data (the Cod dataset), we found that there was a significant correlation
between the maximum allele frequency difference and the resulting BF
from a BAYENV analysis. These findings suggests that the majority of
SNPs may be excluded from testing based on this measurement and thus
make a considerable contribution in terms of time savings - especially if the
dataset is large. We find the method very promising, however due to the
uncertainties regarding the choice of cutoff, we encourage more research
on this topic.
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Chapter 7

Appendix I

Supporting information can be found on the following webpage by provid-
ing the username sdm and password PyBayenv:

http://folk.uio.no/kristori/thesis/SI/

The python package PYBAYENV can be downloaded from the following
address (same username and password as above):

http://folk.uio.no/kristori/thesis/pybayenv/
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