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Abstract

In this thesis, we propose a new method for finding Topologically Associating
Domains, which are contiguous segments of chromatin, ranging in size from
thousands to millions of base pairs. These domains, which are apparent throughout
most of the genome, have been postulated as being fundamental building blocks of
higher-order genome structure, and being linked to the biological function of the
DNA.

Our method uses Hi-C interaction matrices that describe the interaction frequency
between pairs of loci. The method produces a set of hierarchically nested domains,
and a set of non-overlapping consensus domains — both of which can be used
in further biological analyses. We made our method and domains accessible by
creating three tools in the Genomic HyperBrowser. These tools can be used to
create domain sets, to visualize domains with the Hi-C data, and to compare and
analyse domain sets. We analyse the association between the domains and CTCF
binding sites, and compare domains found in the human genome with those found
in the mouse genome. We discuss how these types of analysis have been performed
by others, and propose alternative ways of performing them.

Our domains are similar to those found by others, but they are more self-interacting
and interact less with their surroundings. Based on the strong self-interacting nature
of our domains, and their association with biological features, we argue that we find
a preferable set of domains.
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Glossary and abbreviations

A: The Hi-C interaction frequency matrix

Ai,j: The interaction frequency between bin i and bin j

Average intra-domain interaction frequency: Mean interaction frequency within
a domain

Area on the genome: Some closed interval of connected bins on the genome

Bin: A group of contiguous base pairs on the genome. Unless otherwise noted,
a bin will consist of 40 000 base pairs.

bp: base pair (of DNA)

Domain: The terms domain, topologically associating domain and topological
domain are used interchangeably.

Domain borders: The first and last bin in a domain

Domain boundary: Segment between two domains

Domain density: Mean interaction frequency within a domain

Domain edges: The same as domain borders

Downstream and upstream: Directions on the DNA. Related to the Hi-C data
matrix, downstream is to the right and upstream is to the left.

hES: Human embryonic stem cell

IMR90: A human cell line derived from lung tissue

Intra-domain interactions: Interactions between loci inside the same domain

Inter-domain interactions: Interactions that loci inside a domain have with loci
outside the domain
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mES: Mouse embryonic stem cell

Locus (pl. loci): A position on the genome

TAD: Topologically associating domain. The exact definition is discussed through-
out the thesis.
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Chapter 1

Introduction

Since Darwin proposed the theory of evolution by natural selection [1], there has
been an increasing interest in understanding how characteristics of living species
are encoded and expressed. In 1953, Watson and Crick discovered the double helix
structure of DNA, solving the mystery about how genetic information is stored in
living organisms. In the 1980s, techniques allowing automated genome sequencing
were developed, leading to a 90 % complete sequence of the human genome being
published in 2001 [2, 3]. With the genetic sequence of the human genome being
available online, and an increasing amount of computational power available, it
has has been possible for researchers to link characteristics and diseases to the
sequence.

In recent years, another aspect of DNA has achieved attention: how it is folded and
structured in three-dimensional space. New techniques have made it possible to
probe this structure, making it possible to investigate how biological features are
connected to the topology of the genome — not only to the genetic sequence. One
of the more recent methods is Hi-C [4], which produces a data matrix of interaction
frequencies between every part of the genome at a certain resolution.

From the data generated by Hi-C, it has been discovered that DNA groups together
in spatially compact clusters, termed Topologically Associating Domains (TADs).
These domains, ranging in size from thousands to millions of kilobase pairs, cover
most of the genome, and are related to biological features as well as being preserved
across cell types [5]. Interestingly, the same domains found in the human genome
are also found in the mouse genome, meaning that these domains have been
preserved throughout evolution and may be fundamental building blocks of the
genome.

1.1 Aims for the thesis

The main aim of this thesis is to provide an improved method for finding TADs
based on Hi-C data. For a method to be an improvement, it should:
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• given an understanding of what TADs are, discover a set of TADs that fits
better with these definitions than the sets found using existing methods.

• return TADs that, when using objective quantitative ways of comparing with
previous sets of TADs, generally score as well or higher than the TADs found
using existing methods.

• not be significantly slower or more complex than existing methods

The subgoals of this aim are to:

Provide a better model for understanding TADs. In order to provide an
improved method for finding TADs, one also needs to have a better understanding
of what a TAD really is. The term TAD is frequently used in the literature without
being fully explained, and no formal definition exists. The goal is to formalize and
conceptualize what TADs really are, through developing a method.

Analyse the set of TADs we find and compare it with previously found sets.
As part of evaluating a new method, several types of analyses can be performed.
Some inspiration can be drawn from previous attempts to find these domains, but
since this is a new and emerging field of research, efforts should be made to assess
what kinds of analysis are relevant and whether there are different and new types of
comparisons and analyses that can be used.

Visualize and share the results. An important part of providing a better
understanding of what TADs are, is to make the method, results and analyses
reproducible and accessible. Thus, we wish to utilize the power of the Genomic
HyperBrowser [6], and make a set of tools that present our results.

The tools should present the results through visualization of the data and domains,
and should make it possible to reproduce the results and compare sets of
TADs.

1.2 Overview of chapters

Chapter 2 contains background material relevant for the rest of the thesis. Emphasis
is placed on previous methods for finding TADs.

In Chapter 3 we propose methods to solve the main problem in this thesis, finding
a new set of TADs. We first briefly present some background work, e.g. how the
data are visualized, before presenting and discussing three different approaches for
finding TADs. They are presented in the order they were developed throughout the
work of this thesis. Since weaknesses and limitations of each approach motivate the
next approach, a brief discussion of each is also included. After presenting different
methods, we choose one of them, and create a consensus set of domains. At the
end of the chapter, we present the main methods we wish to use for analysing the
domains.
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In Chapter 4 we present the resulting set of domains, analyse the domain set, and
compare the domains to previously found domains. This chapter also includes a
discussion of the results.

In Chapter 5 we summarize and conclude.

The appendices contain further details. In Appendix A we explain hidden Markov
models. Appendix B provides details about the source code and how the analyses
in Chapter 4 were performed.

As part of this thesis, a galaxy page and some tools were created in the Genomic
HyperBrowser. Some of the Figures presented can also be found as interactive
figures on this page: https://hyperbrowser.uio.no/3dml/u/ivar/p/master under
the Figures history. If a Figure is available online, a HyperBrowser history element
number is given below the Figure in this thesis.
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Chapter 2

Background

2.1 DNA

All the genetic information of any living species is stored in deoxyribonucleic acid
(DNA). In humans, the DNA in each cell is about 2 meters long if stretched out, and
consists of approximately 6 billion bases. The basic building blocks of DNA are
called nucleotides — each consisting of two parts, a sugar and a nucleobase. There
are four different types of nucleobases: adenine (A), guanine (G), cytosine (C) and
thymine (T). These are often referred to as bases, and since DNA consists of two
strands of nucleotides, the units are often called base pairs (bp) [7].

A series of the abbreviations of the base molecules are commonly used to denote a
DNA sequence, e.g. ATCTGCAC. The DNA string is tightly packed into units called
chromosomes. In humans there are 46 of them (often referred to as 23 pairs). The
order of the base pairs in the DNA sequence differs between individuals of the same
species, and contains information that is used to encode proteins — influencing the
characteristics of the species it is in. Thus, this sequence is of great interest for
biologists trying to figure out how characteristics of an individual are expressed and
inherited.

Gene is a term used to describe some stretches of the DNA. These special stretches
each influence a particular characteristic of the individual, and are inherited from
parent to child.

2.2 The 3D organization of the genome

Since the time when chromosomes were discovered in the 19th century, biologists
have been investigating their three-dimensional structure, in order to understand
how this relates to gene expression and the transition of genes. For the first time,
in 2001, the human genome was sequenced [2, 3], and much of the focus shifted
to analysing the genomic sequence. However, during the last decade, advanced
methods that are able to probe the chromosome organization have given biologists
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a huge amount of new data describing the 3D organization of the genome, bringing
the focus back to studying the topology of the genome [8].

2.2.1 Chromosome conformation capture

Chromosome conformation capture (3C), invented by Dekker et al. in 2002 [9],
made it possible to map interactions between parts of the genome in three-
dimensional space. In the wake of this invention, improved versions were developed,
one of them being the Hi-C method, introduced by Lieberman-Aiden in 2009
[4].

2.2.2 Hi-C

Hi-C produces data matrices that describe the spatial relationship between parts of
the genome in three-dimensional space. It is performed by first cross-linking the
chromatin using formaldehyde, connecting parts of the DNA that are spatially close
together. Then, the DNA is cut into bins1 at the given resolution, e.g. 40 kb, and the
loose ends of the cross-linked DNA are ligated together. We now have a set of pairs
of connected DNA fragments, which are identified by pair-ended sequencing. See
Figure 2.1 for an illustration of the main steps of Hi-C. We refer to [4] for a more
detailed explanation of the technique.

Figure 2.1: The main steps of Hi-C. The DNA is first cross-linked, linking together bins
that are spatially close (a). Then, the DNA is cut with a restriction enzyme (b) and the
cross-linked parts are ligated (c).

A population of cells is used. The output of the Hi-C method is a matrix A, where
Ai,j is a count of how many times a part of bin i interacted with a part of bin j

1Bin is used to denote a contiguous segment of the genome, e.g. 40 kb.
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A =


a1,1 a1,2 · · · a1,n
a2,1 . . . . . . a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


(a)

(b)

Figure 2.2: Illustration of the mathematical notation of the data matrix (a) and a heat map
of a submatrix of a real data matrix (b)

in the sample of cells. The number does not explicitly say how close the bins are.
Since cross-linking occurs only between loci that are close together, two loci with
a low interaction frequency may be pretty close, but not close enough. Neither
do we know the variance of the interaction frequency, i.e. two bins with a high
interaction frequency may have been far away from each other in some cells, and
very close in other cells. Also, since a population of cells is used, underlying bigger
structures that are distinct in some cells may be smoothed out over a bigger sample,
so that they are not directly visible in the Hi-C data matrix. The matrix A, which is
symmetrical with respect to the diagonal, is illustrated in Figure 2.2.
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2.2.3 The topology of the genome is related to genomic features

Much work has been done in investigating the relationship between the topology of
the genome and genomic features. In the same paper from 2009 in which Lieberman-
Aiden et al. proposed Hi-C, they also showed that the genome is organized in large
compartments. By using principal component analysis (PCA) on the Hi-C data
matrix, they assigned every bin in every chromosome to one of two compartments,
A or B. They found that bins inside each compartment tended to interact more with
other bins inside the same compartment than with bins in the other compartment.
Further, they showed that these compartments were related to genetic and epigenetic
features, e.g. compartment A had a higher correlation with the presence of genes
than compartment B. These compartments have been extensively studied, see [8]
and [10] for detailed reviews.

2.2.4 Topologically associating domains (TADs)

Figure 2.3: Schematic illustration of two TADs and a
TAD boundary between them. Image credit: Dixon et
al. [5]

Using higher resolution Hi-C
data (1 bin = 40 kb), Dixon
et al. (2012) [5] found that
these compartments are built
up of smaller domains with
many intra-domain2 interac-
tions (average size ≈ 900 kb),
termed topologically associat-
ing domains (TADs) or sim-
ply topological domains. They
showed that pairs of loci within
such domains were closer than
pairs of loci that were in
different domains, concluding
that these domains are self-
interacting segments of the
genome.

Areas between TADs, termed
domain boundaries, also have important features, including a relation to transcrip-
tion start sites and CTCF binding sites. CTCF is a protein that plays an important
role in gene regulation3. Dixon et al. concluded that the domain boundaries they
found were enriched with CTCF binding sites, indicating that these areas might act
as insulators, blocking interactions between enhancers and promoters, i.e. linked to
activation of genes.

Nora et al. (2012) [12] performed an experiment in which they deleted one of the
domain boundaries in the X chromosome inactivation centre. The result was that the
two domains on each side started to interact with each other, and one of the TADs

2With intra-domain interactions, we mean interactions between loci inside the domain.
3See [11] for a detailed overview of the role of CTCF.
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got reconfigured. In the same article they showed that TADs play an important role
in the inactivation of the extra X chromosome in the female mouse.

2.3 Methods for finding TADs

Since TADs are of great interest for biologists, methods for automatically finding
these domains have been proposed. In this section we present the main methods
that are described in the literature. A schematic representation of the these methods
is given in Table 2.1 on page 13.

2.3.1 Dixon et al. (2012)

In 2012, Dixon et al. published a now widely cited method for finding TADs in the
genome. They aimed to find domains by first finding domain edges4 by calculating
a directionality index, which was fed into a hidden Markov model (HMM) (see
Section 2.4.1 for details about HMMs). The directionality index for a given bin is
based on the ratio between the number of upstream and downstream5 interactions
for that bin:

d(i) =
U(i)− D(i)
|U(i)− D(i)| ·

(
(U(i)− T(i))2

T(i)
+

(D(i)− T(i))2

T(i)

)
(2.1)

where

U(i) =
50

∑
j=1

Ai,i−j (2.2)

U(i) =
50

∑
j=1

Ai,i+j (2.3)

T(i) =
U(i) + D(i)

2
(2.4)

d(i) will typically be a low negative number when bin i is at the beginning of a
domain (compared to a random bin), because the bin at the start of a domain will
have many downstream interactions and fewer upstream interactions (assuming
the domain has many intra-domain interactions). At the end of the domain, the
directionality index will be higher than expected elsewhere. Dixon et al. treat this
directionality as an observation of the true directionality bias and feed it into a
HMM, assuming that it follows a mixture of Gaussians, returning one out of three

4The terms domain edges and domain borders are used interchangeably to denote the first and last
bin in a domain.

5Upstream and downstream are used to denote direction on the genome. In relation to the
visualization, downstream will be to the right and upstream will be to the left.
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different states for every bin: downstream biased state, upstream biased state or
non-biased state.

TADs are then defined as areas starting at a single downstream biased state,
continuing throughout any downstream biased or non-biased states, and ending
at the last bin in a series of upstream biased states.

2.3.2 Filippova et al. (2014)

In 2014, Filippova et al. [13] proposed an alternative method to that of Dixon et
al., using the same data, but with a different approach. In the paper Identification
of alternative topological domains in chromatin, they first argue that domains are
often nested inside other domains, something that is clearly visible in the interaction
matrix (for instance, see Figure 3.8 on page 30). This motivates a method that can
find domains on different scales6, since limiting oneself to one scale means omitting
a lot of domains.

The problem is formulated as an optimization problem, aiming to find the optimal
set of domains given a resolution parameter γ. A score function q(i, j, γ) is defined,
returning a score for a domain starting at bin i, ending at bin j when the desired
resolution is γ:

q(i, j, γ) = s(i, j, γ)− µs(i− j) (2.5)

where s(i, j, γ) is a weighted sum of the interactions within the domain:

s(i, j, γ) =
∑l

g=i ∑h=g+1 jAg,h

(i− j)γ
(2.6)

The nominator in Equation 2.6, which is proportional to the sum of the intra-
domain interactions, will typically grow exponentially when the domain grows.
The denominator will also grow exponentially as the domain grows, but the growth
can be limited by the choice of γ, so that either smaller or bigger domains are
favoured. µs(l) is simply the average of Equation 2.6 over all possible domains of
size l.

Using this score function, Filippova et al. found the optimal set of non-overlapping
domains by optimizing the sum of domain scores for all possible sets of
domains:

argmax
Dγ

∑
[i,j]∈Dγ

q(i, j, γ) (2.7)

where Dγ is a set of domains chosen from all possible sets of domains.

Filippova et al. also found a consensus set of domains. The consensus set contains
the domains that persist across sets, and is found by selecting the (non-overlapping)
domains that most often occur when varying γ.

6The term scale loosely denotes size. Two domains on different scales will typically be different
in size.
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2.3.3 Rao et al. (2014)

Later in 2014, as part of a Hi-C study done on new high resolution Hi-C data, Rao
et al. proposed their own method for finding TADs [14]. The new in situ Hi-C data
have a much higher resolution (1 bin = 1 kb) than those of Dixon et al. (1 bin =
40 kb).The authors aimed to discover domains by finding the squares along the
diagonal of the interaction matrix.

The paper points out that even though finding these easily visible squares may seem
straightforward, finding domains is tricky, partly because the interaction frequency
is declining as one moves away from the diagonal. The algorithm, which is called
Arrowhead, makes these squares easier to find by first performing an “arrowhead”
transformation of the initial interaction matrix:

Ti,i+d =
Ai,i−d − Ai,i+d

Ai,i−d + Ai,i+d
(2.8)

(a) (b)

Figure 2.4: Heat map of a submatrix of the raw data matrix A (a) and the same matrix
after an arrowhead transformation has been performed (b). Arrowhead-like shapes can be
spotted along the diagonal, indicating possible domains.

Ti,i+d will be positive if locus i − d is inside a dense domain and locus i + d is
outside, and negative in the opposite situation. This leads to arrowhead-like shapes
occurring along the diagonal of T, hence the name Arrowhead (Figure 2.4). For a
dense domain starting at bin a and ending at bin b, T will take on negative values
inside a triangle U with corners [a, a], [(a + b)/2, b] and [b, b], and positive values
inside a triangle L with corners [(a + b)/2, b], [b, b] and [b, 2b− a]. Further, Rao
et al. reasoned that if a domain starts at bin a and ends at bin b, then:

• Triangle U will mostly contain negative values and triangle L will mostly
contain positive values

• Subtracting the sum of the values in U from the sum of the values in L will
result in a high number (relative to doing the same for a non-domain).
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• The variance of the values in U and the variance of the values in L are both
small (relative to the same for a non-domain).

Domains are then found by looking for pairs of bins a and b that satisfy these three
criteria. Based on the three heuristics, a corner score matrix S is calculated. A large
value for Sa,b means that [a, b] probably is a domain. Domains are chosen by first
setting values in S below a threshold to zero, as well as those values representing
domains with variance above a certain threshold. This selection is done in two
steps: first using thresholds that favour small domains, and second using thresholds
that favour bigger domains. In the second step, only domains that do not cover
small domains from the first step are selected. After these steps are performed, S
is a sparse matrix, with areas of connected non-zero values (representing possible
domains). S is then again filtered so that only the highest values in a connected set
are kept, representing the domain in the set with the highest score.

2.3.4 Other methods

A few other methods, similar to the ones already listed, are also worth mentioning.
Naumova et al. (2013) [15] used a directionality index, similar to the one used by
Dixon et al., to find domain edges that demarcate domains. Mizuguchi et al. (Dec
2014) [16] used an insulation score in a similar way. The insulation score measures
how many interactions there are between bins upstream and downstream of a single
bin. A low insulation score indicates that the given bin is likely to be a domain
edge. Sexton et al. (2012) [17] defined a distance-scaling factor score, smoothed
the score and assigned domain edges to the 5 % bins with highest score. The study
was done on the fruit fly (Drosophila) genome, and small domains (average size ≈
100 kb) were found.

2.4 Tools and technology

2.4.1 Hidden Markov models

A hidden Markov model (HMM) is a model describing some underlying hidden
process that goes through a chain of states at discrete time steps t, and at each
state creates output that we are able to observe. HMMs are widely used to model
processes in speech recognition and other pattern recognition tasks, but have also
been used extensively in the field of bioinformatics [18]. The known parameters are
often only some observations at every time step, and the goal is typically to try to
find out what states the process has gone through given the observations that have
been made.

HMMs play an important role in some of the methods described in this thesis,
and understanding HMMs helps us to understand these methods better. Thus, we
have devoted Appendix A to describe the mathematics behind HMMs in more
detail.
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Dixon et al. Filippova et al. Rao et al.
Input Hi-C data,

resolution
1 bin = 40kb

Hi-C data,
resolution
1 bin = 40kb

Hi-C data,
resolution
1 bin = 1kb

Assump-
tions and
model

A TAD begins with
a bias of
downstream
interactions,
contains bins with
non-biased or
downstream biased
states, and ends on
an upstream biased
state.

TADs are areas
with many
intra-domain
interactions. They
can be nested
inside each other
and appear at
different scales.

TADs are visible as
squares in the
interaction matrix,
and consist of
many intra-domain
interactions.

Algorithm The true
directionality bias
is found by feeding
the directionality
index into a HMM,
which assigns a
state (upstream,
downstream or
non-biased state) to
every bin. TADs
are inferred from
these states.

A score function
rates each possible
domain (given a
scale preference,
chosen through a
parameter γ), and
the optimal set of
domains is the set
that maximises the
sum of the score
for every domain in
the set. A
consensus set is
chosen to contain
the domains that
occur the most
when γ is varied.

The squares in the
interaction matrix
are first made
easier to find by
doing an
arrowhead
transformation,
emphasizing the
corners of the
squares. A
threshold criterion
is used to select the
most intense
corners, suggesting
the optimal
domains.

Output A consensus set of
domains with
median size 800kb
covering
approximately 90%
of the genome.

Domains at a
chosen scale, as
well as a consensus
set of domains with
median size of
120kb covering
approximately 65%
of the genome.

Domains with a
median size of
180kb.

Key
features

The first proposed
method.

Finds domains at
different scales.

Using data with
higher resolution.

Table 2.1: A schematic representation of different methods for finding TADs.
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2.4.2 Machine learning with Python and Scikit-learn

Machine learning is the technique of teaching the machine to find patterns in
data or to predict an outcome based on observations. When talking about machine
learning, the following notation is commonly used:

• Outcome variables, often denoted as Yi. These variables are what one wants
the machine to predict.

• Predictors or explanatory variables, also called features. Every outcome
variable Yi has an associated explanatory variable Xi, a vector that is said
to explain Yi.

Machine learning can be supervised or unsupervised. In supervised machine
learning, a set of Yi with associated explanatory variables is known, constituting a
training set. Based on these known samples, an unknown Yi can be predicted from
a new explanatory variable7. In unsupervised machine learning, there is no training
set or known outcome variables. Instead of learning from known samples, the goal
is to discover patterns in the data or to separate the data only based on the predictor
variables. A common way of finding patterns in the data is clustering, grouping the
data into a set of clusters where the data in each cluster have similar features.

Python is a general-purpose high-level programming language, widely used for
scientific computing and machine learning. Its simple syntax usually means that
programs written in Python contain fewer lines than equivalent programs written in
other widely used programming languages, such as Java and C++.

Scikit-learn [19] is a machine learning library for Python, containing tools for
performing many common machine learning tasks. A great benefit of using Scikit-
learn is that one very quickly can test and play around with different machine
learning algorithms, which is often necessary when solving a machine learning
problem, since it is not always obvious which algorithm to use. Implementing
all algorithms from scratch is time-consuming and error prone. Algorithms
implemented in Scikit-learn are used by thousands of scientist every day, well tested
and optimized for speed.

2.4.3 The Genomic HyperBrowser

The Genomic HyperBrowser [6] is a web server for analysing genomic data, built
on the Galaxy system [20, 21, 22], and freely available at http://hyperbrowser.uio.
no.

The Genomic Hyperbrowser consists of several easy-to-use tools, available through
a web interface, making it easy for users to perform statistical analyses on the
genome without the need for programming skills. The whole project is open source,

7The most simple machine learning algorithm, a nearest neighbour classifier, classifies Yi to be
the same as Yj where Yj is the outcome variable from the training set where Xj is most similar to Xi
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and the source code is freely available for download, making it easy to extend
the HyperBrowser with custom tools. With access, it is also straightforward to
implement new tools in one of the existing installations of the HyperBrowser, that
run on the Abel Computer Cluster at the University of Oslo.

Custom tools in the Genomic HyperBrowser are implemented in Python, and can
print HTML8 that is sent to the browser and displayed as a web page to the user.
This makes it possible to create user-friendly figures and graphical and textual
representations of the results.

2.4.4 Visualizing data with Javascript and the HighCharts
library

A web browser is not only capable of displaying static text and images, but also
interactive content with the use of Javascript. Javascript is a programming language
that is interpreted by all major web browsers, making it possible to change the
content of a web page without needing to refresh the whole page. This makes the
language ideal for generating interactive charts and figures.

An ideal Javascript library for generating interactive charts is HighCharts9. The
library is capable of producing a wide range of charts, including heat maps and
histograms. The advantage of using HighCharts instead of producing charts server-
side as static images and then feeding them to the browser, is that HighCharts makes
it possible for the user to interact with the chart, e.g. zooming and panning.

8HTML is a mark-up language used to create web pages
9http://www.highcharts.com/
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Chapter 3

Methods

In this chapter, we develop a new method for finding a set of TADs in a genome,
based on the Hi-C data. After presenting different approaches, we choose one and
create a consensus set of domains. At the end of the chapter, we present methods
for analysing this domain set.

This chapter also includes a brief discussion of the methods as they are proposed.
The discussion is focused around how the methods fit with the principles about
TADs, and is necessary in order to develop and improve the methods.

When referring to the data, we refer to the Hi-C data generated by Ren Lab1, which
is in the form of an interaction matrix A where Ai,j is the interaction frequency
between bin i and bin j. Most of the examples are based on the human IMR902 cell
line, but mES (mouse embryonic stem cell) and hES (human embryonic stem cell)
are also used. The notation [i, j] is used to denote a domain that begins at bin i and
ends at bin j.

We begin this chapter by presenting some background work, such as how the data
are visualized and how we can select features from the data.

3.1 Visualizing the Hi-C data

We need to visualize the data matrix A. The visualization should:

1. make us able to visually spot possible TADs

2. include as much interesting and relevant information as possible

3. make us able to evaluate easily whether a bin has a bias towards upstream or
downstream interactions, the strength of these interactions, and approximately
which bins it is interacting with

The data matrix A is square, and since bins generally interact most with bins closer
than a fraction of the length of a chromosome, most of the interesting information

1http://chromosome.sdsc.edu/mouse/hi-c/download.html
2IMR90 is derived from a lung tissue cell in the human body
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Figure 3.1: Illustration of the visualization technique used by Dixon et al., Filippova et
al. and others. To the left: a part of the original data matrix A. In the middle: a sliced
part of the upper diagonal. To the right: a rotation of the sliced part, which is the actual
visualization used. The area visualized is chromosome 18, bin 1560 to 1830.

Figure 3.2: Approximately the same area as in Figure 3.1 visualized by the method we
propose

in A is situated close to the diagonal. Thus, somehow extracting and visualizing
the diagonal is a good way to start. The general way of doing this3 is to extract
the diagonal of A and to visualize it as a heat map. Since A is symmetrical around
its diagonal, often only the upper triangle of the matrix is used. The result is a 45
degree rotated segment of the upper (or lower) triangle of A (Figure 3.1).

This method of visualizing the data satisfies the first two criteria listed above, but not
the third. Which bins a certain bin is interacting with, and whether it has upstream
or downstream interactions are not presented intuitively, and have to be read by
following the diagonal from the bin in question.

We propose an improved version of this technique, where we generate a
visualization matrix V ∈ R2n+1,m where m is the number of bins in the area being
visualized and n is the range of interactions we are interested in (maximum distance
in the data matrix). Each column of V is an interaction vector, where the element
in the centre of the vector represents the interaction frequency between the bin and
itself4, the first part of the vector contains upstream interaction frequencies and the
last part contains downstream interaction frequencies (Figure 3.2). Mathematically
we have Vi,j = Ai−n+2,j.

3We refer here to how Dixon et al., Filippova et al, and Rao et al., among others, visualize the
data.

4The interaction frequency between a bin and itself is not of interest (see Section B.4 for an
explanation). We set this frequency to 0 when visualizing.
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To accentuate low interaction frequencies, we also do a histogram transformation
of the visualization matrix. Every value is raised to α (where 0 < α < 1).We use
α = 0.4 since this gives nice plots, as in Figure 3.2. This transformation increases
low values more than high values. Outliers, defined as values higher than the mean
plus 4 standard deviations, are removed before the histogram transformation.

Our proposed method of visualizing the data is the one used throughout this thesis.
When the area of interest is not too large, we often simply visualize the data matrix
as a heat map instead. Because of the normalization, colorbars next to figures should
not be interpreted directly as the interaction frequency, but should only be used to
compare interaction frequencies in a figure.

3.2 Reducing the dimensionality of the data: choosing
features

For some of our proposed methods, we need features for bins. Recall matrix A
where Ai,j is the interaction frequency between bin i and j. There is a huge amount
of data in matrix A, and we wish to extract the most interesting data. There are
mainly two types of interaction we are interested in:

• Relative interactions are interactions measured in relative distance to a bin.
For instance, bin i and j will have the same relative interactions if they both
only interact with one bin each that is positioned 50 bins upstream of them.
The position of the bins they interact with is measured in relative distance.

• Exact interactions are interactions with bins measured in exact position. Bin
i and bin j will have the same exact interactions if they only interact with
bin k. Bin k may be closer to bin i than to bin j. The relative distance is not
important.

Exact interactions are interesting to study when we want to find bins that interact
with the same areas somewhere else in the genome. Relative interactions are
interesting when we want to find bins that have the same interaction patterns, for
instance bins that only interact with bins nearby. We will mainly consider relative
interactions.

When continuing to analyse the data, we would like to not have too many features,
but still have representative features that give us relevant information. A key point
here is that few features are wanted if we later want to use a HMM to find patterns
or cluster bins with similar features5. A look at the heat map of A shows that a lot of
the information is located close to the diagonal. Since we are interested in relative
interactions, that most frequently occur close to the diagonal at the matrix, we do
not need a very high level of detail for the interactions far away from the diagonal.
We can group some of them together without loosing too much information. The
same can be done close to the diagonal, but a grouping here will result in a greater
loss of information.

5Few features are generally wanted when using machine learning techniques.
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With this argument in mind, we create a new matrix B ∈ RNxM, where M is the
number of bins, and N is the number of intervals we want to group interactions into.
For instance, we can create three intervals, the first being the sum of all interactions
up to 50 bins upstream, the second being the sum of interactions between 50 bins
downstream and 50 bins upstream, and the third being the sum of interactions with
all the bins more than 50 bins downstream.

To keep more information (and get more features), even more intervals may be used.
Let al:h,i denote the sum of interaction frequencies in A between bin i and all the
bins that are between l and h bins away from bin i, so al:h,i = ∑h

j=l Ai+j,i
6. Using

this notation, we can represent B as in Figure 3.3.

B =



a−50:−30,1 a−50:−30,2 . . . a−50:−30,M
a−30:−15,1 a−30:−15,2 . . . a−30:−15,M
a−15:−5,1 a−15:−5,2 . . . a−15:−5,M
a−5:0,1 a−5:0,2 . . . a−5:−0,M
a0:5,1 a0:5,2 . . . a0:5,M
a5:15,1 a5:15,2 . . . a5:15,M
a15:30,1 a15:30,2 . . . a15:30,M
a30:50,1 a30:50,2 . . . a30:50,M



Figure 3.3: Notation of an example of a feature matrix.

3.3 Developing new methods for finding TADs

We begin by discussing different perspectives that can be used to examine the
problem.

Much of the knowledge about TADs concerns the role these domains play in the
genome, e.g. their relationship to CTCF and histone modifications, that they are
consistent across different cells, and that they appear as a plaid pattern in the Hi-C
data matrix. We emphasize that this knowledge does not explicitly define TADs,
it only implicitly does so7. These results are based on the analyses done on TADs
after they are found, and should not be used to find TADs. Other characteristics
define TADs more explicitly, e.g. that they are self-interacting areas.

Figure 3.4 illustrates the general problem as a flow chart. We know the input and
the output, and need to develop the method. In order to develop the method, rules
and knowledge about the domains have to be used.

From here, having input and some knowledge about TADs, we see two possible
approaches:

6This equation will give negative indices and indices greater than the number of bins, something
that should be kept in mind when implementing the algorithm using a programming language.

7This important distinction between explicit and implicit TAD features has been discussed by
Lajoie et al. [23].

20



Input: Hi-C
data matrix

Method

Output:
One or more
domain sets

Rules and
knowledge

about TADs

Known facts about TADs
Inferred rules from

the data matrix

Training set of
TADs selected

by a human

Figure 3.4: Diagram illustrating the problem of finding TADs. Dotted lines represent paths
we decided not to follow.

1. Use the knowledge directly to create a rule-based method. This is what
previous methods have done (see Section 2.3).

2. Use the knowledge to manually pick TADs in order to create a training set.
Use supervised machine learning to let the machine infer rules about what
TADs are, and pick TADs from these rules.

Supervised machine learning is a common way of solving data science problems,
more specifically problems where one wishes to classify instances, and the true
class labels of a set of instances (a training set) are known. For instance, assume
we are interested in solving a simplified version of the problem: for every bin in a
chromosome, decide whether it is a domain edge or not. Based on knowledge about
domain edges, we could select a representative set of bins that are believed to be
domain edges and a set of bins that are believed not to be domain edges. These two
sets together would constitute a training set. Based on some predefined features for
each bin and a training set, a machine learning algorithm could classify bins with
unknown class labels to one of the two classes: edge or non-edge.

The strength of this approach is that we can let the machine choose the optimal
set of rules that fit with the training set, instead of trying to decide these rules
ourselves. For this to work in practice, the training set needs to be reasonably large
and sufficient features need to be picked.
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However, there are a couple of reasons why supervised machine learning may not
be appropriate in this case:

• The few rules we know about TADs are very simple. Using these simple
rules to manually create a training set can seem to be a detour if the machine
learning algorithm ends up choosing very similar rules.

• If we already have a set of simple rules about TADs, it should be possible to
create an algorithm that finds these TADs directly instead of choosing them
manually.

• We have more knowledge about the basic rules about TADs than about what
TADs really look like in the data matrix. Visually selecting TADs from the
data matrix is prone to error, and there might be interesting patterns and
partly hidden TADs in the data matrix that follow the basic rules, and that at
the same time are not easily visible. How TADs appear in a visualized data
matrix is dependent on the visualization, e.g. the choice of colours and the
visualization technique.

These arguments are related to what we discussed at the beginning of this section.
How TADs visually appear in the data matrix does not explicitly define them, and
should not be used as a basis for finding new domains. Instead, the problem is about
using the basic principles of TADs in a direct and correct way. Thus, we choose (as
others before us) not to use machine learning, and instead to develop a rule-based
method.

3.3.1 Model

Before discussing new methods for finding TADs, a model and a better understand-
ing of TADs is required. Section 2.3 briefly presents what already is known about
TADs, which mainly is that they are areas in the genome where bins:

1. interact frequently with other bins in the same area (many intra-domain
interactions)

2. interact less frequently with bins outside the area (few inter-domain
interactions)

These two criteria are easily justified from a biological point of view. We know
that TADs are spatially compact clusters of chromatin. However, this is not a very
precise definition of what TADs are. In order to develop methods and algorithms
to find TADs, one would like a definition that is as precise as possible. Note that
the terms interact frequently and interact less frequently are relative terms. They
cannot directly be used to assess whether an area on the genome is a TAD or not.
However, these measures can be used to rank TADs, i.e. determine to what degree
an area is a TAD. Also, we are not specifically interested in evaluating whether a
certain domain is a TAD or not. Instead, given an area, we would like to find the
optimal set of TADs within it.

Seen from this perspective, it seems that a TAD is defined by being in the optimal
set of TADs. So what is the optimal set of TADs? Previous attempts to find TADs
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have tried to answer this question. Dixon et al. [5] were the first to discuss this,
however they never explicitly defined the most optimal set, they only implicitly did
so through the algorithm they used to find the set. A more to-the-point definition
is the one proposed by Filippova et al. [13], in which they define a function for
scoring a TAD, and optimize the sum of all TAD scores over all possible sets of
TADs.

One aspect of these attempts, is that they implicitly define a minimum criterion for
a domain to be regarded as being a TAD. Every bin in the genome is assigned either
to be in a TAD or not:

• In the method of Dixon et al., a bin needs to be between a downstream biased
and an upstream biased state to be regarded as a TAD.

• In the method of Filippoca et al., a bin needs to be in an area that has a higher
score than the average score for all possible areas of the same size to be
regarded as a TAD.

Having these constraints, huge parts of the genome are left out. In the consensus
domains of Filippova et al., large self-interacting areas are classified as being non-
TADs because the average interaction count within the area is less than the average
interaction count within areas of the same size.

The idea seems to be that some areas of the genome are not of interest, because
there are simply too few interactions between bins in these areas. This argument
requires some kind of threshold, some minimum criterion for accepting an area as
being a TAD. The threshold used by Filippova et al. is the average score for all
possible domains of the same size, i.e. a TAD is required to have a higher score
than the average. Does it make sense to have such a minimum criterion? If we want
to find self-interacting domains, why discard the ones that have fewer interactions
than the average?

We believe it is of greater interest not to limit our scope at this point, and not
to discard any potentially interesting areas without having a good reason. Thus,
instead of classifying bins into the classes TAD or non-TAD, we would wish to
assign every bin a domain, so that the whole genome is divided into domains. Some
of the domains will have many intra-domain interactions, and will be similar to what
Dixon and Filippova define as TADs. Others will have fewer interactions, typically
fill up the space between TADs, but may still be of interest. Note that this approach
does not stop us from filtering out TADs later by using a threshold criterion in a
similar way as Filippova et al.

Thus, the problem becomes: Given an area on the genome (e.g. a chromosome),
assign a domain to every bin. These domains should:

1. contain bins that interact frequently with other bins in the same area (many
intra-domain interactions)

2. contain bins that interact less frequently with bins outside the area (few inter-
domain interactions)

This not-very-strict model gives us the opportunity to explore many different
approaches, not limiting the scope of potential algorithms.
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Even though these principles are simple, it is not obvious how the Hi-C data can
be operationalized in order to find these domains. The following sections are about
this.

3.3.2 Approach I: using a hidden Markov model

Motivation

This first method was developed before the work of Filippova et al. (2014) was
published. It does not directly seek to solve the problem we have defined, but is
included as a preliminary method, partly to see how a HMM could be used, and
because it motivates later methods. While mainly being inspired by the work done
by Dixon et al., it tries to do things slightly differently in the following ways:

• Find different types of domain. Instead of only classifying every bin into the
category TAD or non-TAD, we wish to find different types of domain, e.g.
domains with many or few intra-domain interactions.

• Utilize the use of a feature vector for every bin. Adjusting the feature vector
makes us able to decide which interactions are most interesting, thus giving
us an easy way to focus on finding small domains, big domains or domains
with a certain type of interaction.

• Classify every bin into one domain, not omitting any bins. This way, non-
TADs are also kept as separate domains, so that further analysis can be done
on them.

Method

We begin by assuming a set of features, i.e. a feature vector, for every bin, as
presented in Section 3.2. If we define the feature vectors to be symmetrical, i.e each
feature consists of interactions in the same interval range upstream and downstream,
feature vectors for bins that are inside the same domain will be similar (because
they interact with the same other bins). Further, assume that the whole area we are
looking at consists of a given number of different types of domain (e.g. three types:
domains with many intra-domain interactions, domains with fewer intra-domain
interactions and domains with few intra-domain interactions), and that we know
the probability distribution type that features within each of these domain types
follow. These assumptions fit with those of a hidden Markov model (see Section
2.4.1).

To test the method, a simple Python script was created that uses a HMM library
from Scikit-learn [19], which uses the Baum-Welch method and the features defined
in Section 3.2. Different choices for number of states and intervals were used.
Examples of results when applied to chromosome 3 are shown in Figures 3.5 and
3.6. In Figure 3.5, two states are shown, which can be interpreted as areas with
many interactions (marked with a blue line at the bottom), and areas with weaker
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interactions (marked with a green line at the bottom). In Figure 3.6, more states are
shown.

Figure 3.5: Illustration of states/domains found by using a HMM at the beginning of
chromosome 3 (IMR90). Heat map of feature vectors on the top. The feature vector is
as follows: The top row (first feature) represents interactions with bins less than 10 bins
downstream, the middle row (second feature) interactions with bins more than 10 and less
than 40 bins downstream, and the third row (third feature) interactions with bins more than
40 bins and less than 100 bins downstream. The data is visualized in the middle, and the
states are shown on the bottom.

Limitations of Approach I

Using a HMM to define states along the genome is useful, because the HMM takes
into account the relationship between bins next to each other. This has enabled us
to cluster bins close to each other with similar features into a domain. However, this
method does not take into account the important fact that the domains we seek to
find are usually separated by distinct edges. For now, let us loosely define a distinct
edge as a bin where the interaction vector for the bin next to it to some degree
differs from itself.

Since we defined our features to be symmetrical, these edges will not be seen in
these features. For instance, take two domains of the same type next to each other,
with a distinct edge between them. These two bins will have feature vectors that are
similar. Thus, the HMM we trained will classify each bin in both domains to the
same domain, resulting in one domain that actually consists of two.

25



Figure 3.6: Similar illustration as in Figure 3.5, but more states have been found

3.3.3 Approach II: edge-based approach

Motivation

The problems with Method I motivate a new approach, where we first attempt to find
the edges in order to make sure that separate TADs are not merged. This method is
based on the following concept:

• Domains start and end with an edge.

• Finding these edges divides the area of interest into domains.

• After finding domains, they can be clustered into different types of domain,
which gives us a set of domain types as in the first method.

Method

To find domain edges, we start with a very simple idea: A domain edge should
have a feature vector that is significantly different from the feature vector next to it.
Note that this requires non-symmetrical feature vectors, since the last symmetrical
feature vector in one domain can be similar to the first symmetrical feature vector
in the next domain.
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The simplest rule that can be formulated from this idea is: Bin i is an edge if the
sum of the squared pointwise difference between its feature vector and the next
feature vector is larger than some threshold, i.e.:

d(i) ≥ t⇔ Bin i is an edge (3.1)

where t is some predefined threshold constant and

d(i) = ∑
j
(Bj,i − Bj,i+1)

2 (3.2)

is the euclidean distance between the feature vector of bin i and the next.

Choosing a suitable t will give us a set of edges. These edges will be the "sharpest"
edges, in terms of being the bins with features that differ most from their respective
neighbour bins. However, we might also be interested in finding domain edges in
parts of the genome where edges in general are not that sharp (d < t). These are
typically parts of the genome with bigger and less dense domains that are not as
clearly separated as in other parts of the genome. To discover these edges, we can
look for local maxima of d. Let us define the threshold t as a function:

t(i) = max(τ, max(d(i−m), · · · , d(i), · · · , d(i + m))) (3.3)

Here the threshold value for a bin i, t(i), is the largest number of some constant
τ and all values of d in some window with size 2m + 1 around bin i. Thus, by
defining the rule

d(i) ≥ t(i)⇔ Bin i is an edge (3.4)

bin i is an edge if and only if:

• d(i) is greater than some threshold τ

• d(i) is a local maximum, i.e. the greatest value of d in some window with
size m + 1 around bin i

Having these two constraints, we make sure that an edge will never be next to
another edge. Also, in areas with lots of potential edges, only the most distinct ones
are chosen. In areas with few and weak edges, some edges are still chosen, as long
as they satisfy the first criterion.

There are several variations of the method that might give better results. Some of
them are:

• The distance between two vectors can be defined in different ways (e.g. cosine
distance, correlation distance etc.). We tested cosine distance without noticing
any huge difference.

• We also made a small adjustment to the threshold function t(i). Normal
distribution of edge scores was assumed, and the threshold was set so that an
edge needed to be significant in its local surroundings in order to be selected,
i.e. have a small enough p-value. We did not observe any big differences to
the results with this change.
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Figure 3.7: Plot of the difference index d(i) and threshold function t(i) at the beginning of
chromosome 3 (IMR90). Where the threshold function meets the difference index, there is
an edge of a domain.

Clustering domains

Now that edges have been defined, we implicitly have TADs between the edges.
Some have many intra-domain interactions, others few. It is now possible to label
each TAD with a class. For instance, we could choose two classes: one representing
dense domains (like the set of Filippova et al.) and one representing less dense
domains (similar to the boundary areas of Dixon et al.). Other classes could also be
of interest, e.g. bigger domains with weak interactions. Grouping into such classes
can be done by calculating one feature vector for every domain, and clustering these
feature vectors. The feature vector for each domain should represent the domain
by information we are interested in. One choice is to let it be the average of all the
feature vectors inside the domain.

Limitations of the method

There are a few obvious shortcomings with this method:

• The threshold function t tries to adjust itself according to the surroundings
of the bin it evaluates. However, this does not always work very well. Areas
consisting of bins with low edge scores next to areas with high edge scores
will be ignored.

28



• The method is dependent on some crucial parameters — window size and
a minimum threshold value. There is no general rule about what these
parameters should be set to. TADs smaller than the window size will not
be detected.

• The edge score is measured between neighbouring bins. However, the edge
of a TAD might not appear as one single bin, e.g. the amount of intra-domain
interactions increases over multiple bins. Edges that are not very “sharp” are
sometimes not discovered by the method, and a very dense domain does not
necessarily have sharp edges. A domain should not alone be judged by how
sharp its edges are.

Finding domains by first finding edges is an intuitive and simple approach. However,
it is clear that domains are more than edges. What lies between the edges is just as
important. This motivates the next approach.

3.3.4 Domain size and hierarchy of domains

Method II improved on Method I by looking for edges and avoiding that domains
that should be separated were merged. But Method II also had its problems. Instead
of trying to solve these problems by adjusting the method, let us continue by
discussing an important feature of domains, which should be considered when
developing an improved method:

Domains seem to be nested hierarchically. It is obvious that domains come in
different sizes, typically ranging from a few to several hundred bins, but visual
inspection of the data matrix A also shows that smaller domains are nested inside
bigger domains (Figure 3.8).

This fact raises the fundamental question: In which size range are we interested
in finding domains? We have previously been searching for “the optimal” set of
domains, but it is hard to define optimality when not considering a certain size
range.

Filippova et al. were the first to propose a TAD-finding algorithm that considered
this question. The algorithm takes a parameter that will affect the size of the returned
domains.

Let us return to the somewhat loose description of an optimal set of domains. An
optimal set of domains should consist of domains where bins in each domain
frequently interact with other bins inside the same domain, and less frequently
interact with bins outside the domain. Does this definition limit the size of optimal
domains in any way? Certainly not. A whole chromosome as one single domain
satisfies the definition, as does having a single bin alone in its own domain.

From this it follows that every domain found can possibly consist of smaller
domains, or can be a part of a bigger domain. This points towards the fact that what
the optimal domain set is, depends on the domain size that is preferred. It leaves us
with a few possibilities when searching for an optimal set of domains:
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Figure 3.8: Heat map of a part of the data matrix with some visually spotted TADs marked,
showing that smaller TADs are positioned inside bigger TADs.

1. Implement a size parameter into the method, like Filippova et al. did. Let the
user decide which size is preferred, and return domains close to that size.

2. Try to choose an optimal set of domains across sizes. This is what Filippova
et al. did with their consensus domains.

3. Return a hierarchy of domains, where smaller domains can be nested inside
bigger domains, i.e. return a set of domains where domains may overlap.
Filippova et al. also made a hierarchy of domains from the first solution. The
goal would be to assign every bin to multiple domains that are nested in a
hierarchical way.

Note that the third solution does not exclude the first and second solutions, i.e. one
can first find a hierarchy of domains of different sizes and later filter out domains
in a certain size range, or choose a consensus set of domains. We still do not
want to exclude any possibilities or limit the method. Thus, we aim for solution 3,
developing a method that returns domains nested hierarchically.
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3.3.5 Approach III: hierarchical domains

Motivation

We now have a slightly different view of domains: Because domains may be nested
in other domains, there is no way to define an optimal set of domains within an
area when optimal size is not defined. We do not (yet) want to define optimal size,
instead we will find domains of different sizes, nested in a hierarchy.

In order to describe a hierarchy of domains, let us first list some terms and definitions
that will be useful:

• Subdomain: A domain that is a part of (nested inside) a bigger domain.
Domain A ∈ [a, b] is a subdomain of domain B ∈ [c, d] if a ≥ c and
b ≤ d and either a > c or b < d.

• Mother domain: If domain A is a subdomain of domain B, then domain B is
a mother domain of domain A.

• Direct subdomain of a mother domain: Let A be a subdomain of B. Then A
is a direct subdomain of B if and only if there is no mother domain of A that
is also a subdomain of B.

• Brother domain: Domain A is a brother domain of domain B if A and B share
the same direct mother domain.

We assume that every subdomain has only one direct mother domain. This can be
argued for through the following contradiction: Assume a domain is in two direct
mother domains. Let us denote the two parts placed in each direct mother domain
as a and b. Part a will be in one mother domain with some other domain (or a part
of it), as will part b. Since a is with other bins in a different domain than b, it means
that a interacts more with these bins than with other parts of the genome, which
contradicts the fact that a originally was in a domain with b.

For simplicity, for now we will assume that domains consist of contiguous bins, i.e.
bins that are connected on the genomic line. See Section 3.3.8 for a more detailed
discussion of this.

The goal is to find a hierarchy of domains within an area, i.e. for every bin inside the
area, assign it to a set of domains so that all the domains are direct subdomains of
each other, except the biggest domain, which is the whole area we are considering
(e.g. a chromosome).

Method

The above assumptions form a model. To fit a genomic area into this model, we
propose that we first can find the direct subdomains of the area, since all other
subdomains will be subdomains of these direct subdomains. There are two problems
to solve:

1. How can we find all the direct subdomains inside a mother domain?
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2. How do we know whether there are any subdomains at all in the mother
domain? Always assuming there is implies that every bin is its own domain.

We will begin by proposing a solution to the first problem. Assuming that there
are one or more direct subdomains of a mother domain, how do we find them? We
will need to divide the mother domain into subdomains. If we know how many
direct subdomains there are in the domain, we can find the optimal set of that
number of domains inside the mother domain8. Not knowing the exact number of
subdomains, we could assume an amount, but assuming more than there is will
result in direct subdomains not being discovered. The simple solution is to divide
the mother domain into no more than two new domains. If we divide it into three
domains, two of the domains together may be a direct mother domain to themselves
and are thus not direct subdomains of the one we are dividing. Thus, for every bin in
the mother domain, assign it to one of two domains, such that each of the domains
consists of that interact frequently inside the domain and less frequently outside the
domain.

There is a consequence of dividing in two. The argument was that by dividing in
two at every level, we make sure that direct subdomains will be found (at some
point) and not omitted. However, by doing this, we might find domains that by
previous definitions we would not actually call domains. Imagine a mother domain
consisting of three direct subdomains. By dividing in two, we will first find one of
them as a separate domain, and two of them grouped together in a separate domain.
Dividing this last domain in two again gives us the two remaining direct subdomains.
However, we have now included a domain in our results, which is the grouping of
two of the direct subdomains. In the origin of the argument, we did not think of this
as a domain. Since our aim at this stage is to process these domains further, e.g. to
filter out some of them or group them into different domain types, we do not need
to worry about these extra domains now.

Figure 3.10: By only looking at the data matrix, it is
not always obvious how far one should divide.

Thus, the solution to the first
problem is: Start with the
whole area of interest as one
domain. Divide recursively
in two subdomains, following
some rule about where the op-
timal place to divide is. The
question then obviously be-
comes, when should we stop
dividing? This question is re-
lated to the second question
stated above: How do we know
whether there are any subdo-
mains at all in the mother do-
main? There is obviously no
point in continuing to divide if
there are no more subdomains to find.

8There are several ways this can be done. A general approach is to define a score function for a
given domain, and the set of domains within the area that maximizes the sum of scores.
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Figure 3.9: Illustration of Approach III. Visualization of Hi-C data at the top, and score
functions below (Equation 3.5). Each line of figures represents a level in the recursion, e.g.
the first division is done at the maximum of the score function plotted on the top. A given
area gets divided where the score function has its maximum. The two new areas are further
divided in the same way. The area visualized is bin 4273 to bin 4490 on chromosome 3
(IMR90).

Assume that we value a domain by a score function, e.g. the average intra-domain
interaction frequency minus the average intra-domain interaction frequency in the
domain’s direct mother domain. Other score functions are also possible, as will be
discussed in the next section. Areas that are actual TADs should have a significantly
high score compared to a random area of the same size within a similarly sized
mother domain. Thus, we reckon an area to be a TAD if its score is significantly
high compared to all possible scores of pairs of subdomains and direct mother
domains of the same sizes across the genome.

We assume that the scores are normally distributed, thus we can perform a simple
t-test to evaluate whether a domain is significant. We decide to stop dividing when
there is no significant subdomain anywhere in the domain we are evaluating, using
the definition of significance just stated.

This method produces a hierarchy of domains, where each domain is one of the
following:

• a mother domain that is a grouping of two direct subdomains
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• a subdomain with no more subdomains, but which is significant by definition

• a subdomain that is not significant by definition, but that shares a direct
mother domain with a significant brother domain

There is one more issue that should be briefly discussed. Originally, before
introducing the idea of dividing in two, we assume an unknown number of direct
subdomains of a domain. Are we guaranteed to find all these domains at some point
by recursively dividing into two domains? Imagine again a domain consisting of
three subdomains. We find them by first dividing in two, then dividing one of the two
new domains again. For the three domains not to be found, the first division has to
divide one of the three domains into two parts, which means that we have a domain
with two direct mother domains. This contradicts what we have shown earlier, that
every domain is only part of one direct mother domain. Thus, we conclude that we
will find all domains by recursively dividing in two.

An important part of the algorithm is of course what the rule for dividing should
be, i.e. given a domain, at what bin inside the domain should one divide. The rule
has to follow the basic principle: The two new domains should consist of bins that
interact frequently with other bins inside their own domain and less frequently with
the other domain. We suggest the following rule that follows this principle: Divide
where the average interaction frequency within the two domains minus the average
interaction frequency between the two domains is maximized, i.e. divide at the bin
î inside the domain [a, b] that maximizes the following score function:

S(î) =
∑î−1

i=a ∑î−1
j=a Ai,j + ∑b

i=î ∑b
j=î Ai,j

e(a, î− 1) + e(î, b)
−

∑b
i=a ∑b

j=a Ai,j

(î− a)(b− î + 1)
(3.5)

where e(a, b) is the number of bins that we count interactions for inside domain
[a, b]. Since we set the diagonal to be zero, we do not count the elements on the
diagonal (see Section B.4):

e(a, b) = (a− b + 1)2 − (a− b + 1) (3.6)

A visualization of how this score function behaves with the data is shown in
Figure 3.9. A further discussion of possible score functions is given in the next
section.

Algorithm

The algorithm was implemented using Python. We will briefly present the main part
of the algorithm using Python-like pseudocode. Code for the score function from
Equation 3.5 is shown in Listing 3.1 together with code for two simple helper
functions that compute the sum of intra-domain and inter-domain interactions.

Using these functions, a simple recursive function is used to divide the genome,
shown in Figure 3.2. The implementation of the stopping criterion is not
shown.

34



Listing 3.1: Score function

import numpy as np

# Returns the sum of intra-domain interactions
def intra(start, end):

return np.sum(A[start:end, start:end])

# Returns the sum of inter-domain interactions
# between two consecutive domains
def inter(domain1_start, domain2_start, domain2_end):

return np.sum(A[domain1_start:domain2_start, \
domain2_start, domain2_end])

def score(start, divide, end):
size_a = divide - start
size_b = end - divide

# Compute number of interactions
# (Subtract number of bins on diagonal in intra,
# since these are always zero)
int_a = size_a**2 - size_a
int_b = size_b**2 - size_b
int_inter = size_a * size_b

# Compute the score
avg_intra = (intra(start, divide) \

+ intra(divide, end)) / (int_a + int_b)
avg_inter = inter(start, divide, end) / int_inter
score = avg_intra - avg_inter

return score

Reducing the complexity by using dynamic programming

The algorithm as presented in Listing 3.2 is complex. For every domain, the score
is calculated for every bin inside that domain, which means that every interaction
frequency is iterated over several times.

Since the score function is based on sums of rectangular submatrices of the
interaction matrix, we can reuse these sums to reduce computation time. The most
obvious way of reusing these sums is to reuse them when the score is calculated for
every bin inside a given domain. For instance, when the score for a bin i is calculated
inside some domain [a, b], the sum of the inter-domain interactions is the sum of
the submatrix Aa:i,i:b. When the next score is calculated, for i + 1, the sum of the
submatrix Aa:i+1,i+1:b is calculated. These submatrices overlap, so when the score
for bin i + 1 is calculated, we only need to compute the parts not already contained
in the previous submatrix. See Figure 3.11 for a more detailed explanation.
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Listing 3.2: Code that divides the genome

domains = []

# Return the optimal bin in some area
def optimal_bin(start, end):

optimal_bin = -1
optimal_score = -1000

for i in range(start, end):
s = score(start, i, end)

if s > optimal_score:
optimal_bin = i
optimal_score = s

return optimal_bin

def divide_genome(start, end, level = 0):
if level == max_level:

return

divide = optimal_bin(start, end)

# Store two new domains, and continue recursion
domains.append([start, divide])
divide_genome(start, divide, level + 1)
domains.append([divide, end])
divide_genome(divide, end, level + 1)
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Figure 3.11: Illustration of the score calculation for bin i inside some domain. The two parts
on each side of bin i are coloured blue. The sum of the inter-domain interaction frequencies
is the sum of all the frequencies inside the rectangle marked by a solid black line. When the
equivalent sum is calculated for the next bin i + 1, we can reuse the last sum. All we need
to do in order to get the new sum, is to subtract the interactions in the light grey area and
add the interactions in the dark blue area.

3.3.6 Improvements to Approach III

We believe that Approach III solves the original problem we formulated at the
beginning of this chapter. It uses the basic known principles of TADs and deals with
the problem of hierarchically nested domains.

So far, the method has been presented without discussing important details further,
such as the score function and stopping criteria. In this section, we give a more
thorough discussion of these aspects.

Score function

The score function (Equation 3.5) does a trade-off between high intra-domain
interactions within and weak inter-domain interactions between the two new parts it
aims to divide between, tending to divide at a bin where the two new parts have many
intra-domain interactions and few interactions between each other. This approach
assumes that the two new parts on each side behave like individual TADs. However,
as previously stated, these areas may not be TADs in the sense that instead they can
be areas containing many smaller domains, having few intra-domain interactions
on average as individual domains. Also, as previously stated, the approach aimed
first to divide the genome into “interesting” areas, then to choose TADs from this
set by favouring the most dense areas. Thus, it might be incorrect to give weight
to intra-domain interactions, i.e. density, when dividing the genome, since a lot of
interesting areas may have weak intra-domain interactions.

We propose an alternative score function. Since the intra-domain interaction
frequency within interesting parts may vary, and is not a key characteristic of an
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interesting part, the only characteristic we have left is that the parts of interest
have few interactions with each other. Thus, a score function only measuring inter-
domain interactions seems reasonable. The simplest one returns the average inter-
domain interaction frequency between two parts:

Si,j(k) = −
∑k−1

m=i ∑
j
n=k Am,n

(k− i) · (j− k)
(3.7)

This is the same as the negative of the mean of the interaction frequencies between
the two domains [i, k− 1] and [k, j]. A division will be done at bin k that maximizes
this function, i.e. where the average interaction frequency between the two new
domains is minimized.

This score function makes sense, because we actually want to divide the genome
into parts that interact as little as possible with each other, and avoid dividing
domains unless they contain smaller domains inside. By dividing where the average
inter-domain interaction frequency is at its lowest, we lower the risk of dividing a
valid domain. Note that the intra-domain interactions within the two areas implicitly
affect which bin to divide at, since minimizing the interactions between the two
areas is connected to maximizing the interactions within the areas.

(a) (b) (c)

Figure 3.12: Simulated data matrices (on top) and line plots of the two score functions
(bottom): The original score function (green) (Equation 3.5), taking intra-domain
interactions into account, and the new alternative (blue) (Equation 3.7), only considering
inter-domain interactions.

Figure 3.12 shows the two score functions over three simulated data matrices. Both
score functions behave as wanted over the two simple cases, shown in Figure 3.12
a and b. A more complicated example is shown in subfigure c. The data matrix
contains three domains, one small domain to the left and one big domain that
contains a smaller dense domain. We would expect any valid method to first divide
at the bin between the first small domain and the big domain, since the big domain
contains the last small domain. The original score function (green line plot) fails to
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do this. It has a local maximum between the small domain and big domain, where
we would expect it to have a global maximum, and increases to a global maximum
somewhere inside the big domain. At the point where it reaches its maximum,
the average intra-domain interaction frequency is bigger than between the small
domain and the big domain, because a greater portion of the right part is filled
by the dense subdomain inside the big domain. However, when getting closer to
this subdomain, the score function decreases because the inter-domain interaction
frequency increases.

This example illustrates the problem of making a trade-off between intra-domain
and inter-domain interaction frequencies, which here leads to the selected bin being
a “trade-off” between two candidates:

• The correct bin, between the left small domain and the big domain, which
separates two parts having on average medium intra-domain frequency and
low inter-domain frequency

• The other potential bin, inside the big domain, at the beginning of the smaller
dense domain, which separates two parts having on average high intra-domain
frequency and medium inter-domain frequency.

The result is that the optimal score occurs somewhere between these two candidates.
The new score function (blue line plot) correctly reaches its maximum between the
small domain and the big domain, separating the two parts that interact the least
with each other.

We conclude that it is better to use the new score function, only giving weight to
inter-domain interactions frequencies.

Selection criterion

Using this new score function, we aim to uncover all possible domains by recursive
division. Some of the areas after this process will be groups of domains, and we
will also find areas that are the “leftover” parts of small domains inside bigger
domains.

The plan is to pick dense domains from this set to create a consensus set. This
consensus set is supposed to contain domains with many intra-domain interactions
and few inter-domain interactions. However, this set will also contain non-domains
in that sense. The reason is that the hierarchical set will contain “leftover” parts, as
illustrated in Figure 3.13. If a “leftover” part is in a dense area, it will be included
in the consensus set, even though it is only a part of a bigger domain and has many
interactions with the rest of the domain it is a part of.

We also used a stopping criterion, to avoid dividing too far and introducing non-
domains. Division ended when the score at the optimal bin was not significantly
high compared to a random score. It came to our attention that an even simpler
stopping criterion could be used, not relying on doing a statistical hypothesis test.
This new stopping criterion was derived from our original definition of domains. If
a domain interacts more with some other neighbour domain than it does with itself,
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Figure 3.13: Heat map of simulated data matrix. One big domain (A) having one subdomain
inside itself (B). The first version of Approach III will find the area (C) as a separate domain
in the hierarchical set, and it may be chosen to be in the consensus set.

it is probably a part of that domain, and is not itself a domain. Thus, we changed
the criterion to be: Do not include a domain if it has higher average interactions
with the other domain in the same mother domain than it has to itself. This criterion
could not be used as a stopping criterion, since domains that do not fit with the rule
might have subdomains that fit with the rule. Thus, instead we used it as selection
criterion: After domain candidates were found, each domain candidate was either
removed or kept depending on whether it interacted more with itself than with its
brother domain.

To measure whether a domain interacts more with itself than with its brother domain,
we normalized the interaction matrix so that interactions between bins far away were
given more weight. See Section B.5 for details about how this normalization was
performed and a discussion about global vs. local normalization.

Using this selection criterion, we ensure that all selected domains have higher
average intra-domain interactions than average inter-domain interactions. Thus, also
“leftover” parts that interact more with their brother domains than with themselves
will be filtered out.

Bias in the score function

While developing the second score function, we were aware that the first score
function had a bias towards giving higher scores in the middle of a domain. When
dividing in the middle of a domain, the bins inside the two new domains (upstream
and downstream of the bin we are dividing at) are on average closer to the diagonal
than they would be when dividing further away from the middle. The expected value
is higher closer to the diagonal, leading to higher expected average intra-domain
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interaction frequency when dividing close to the centre of a domain. For the same
reason, the average inter-domain interaction frequency is biased towards a lower
value when dividing close to the centre of a domain.

Even though this may seem to be a serious problem, it is debatable whether it is
more a natural consequence of the score function. Let us first go a bit further into
understanding this bias, using the second score function as an example.

Imagine the average inter-domain interaction frequency between two consecutive
domains (a and b) of the same size. We now move the bin inside b that lies closest
to a over to a, increasing the size of a and decreasing the size of b. On average,
this bin will interact more with the domain it was in, b, than with domain a, since
on average it is closer to bins in b than it is to bins in a. Thus, the inter-domain
interaction between the two domains is expected to increase when we move the
bin.

The question becomes whether this is a weakness of the score function or a feature
of the data. Recall that on every level in the recursion, we wish to find the two
parts where the average inter-domain interaction is as small as possible. It turns out
that these two parts naturally tend to be of equal size, because bins inside equally
sized domains are on average closer to each other. Since we also do not observe
any problems with the score functions in practice, we do not consider this to be a
problem.

3.3.7 Missing data

We will briefly discuss how we handle missing data in the Hi-C data we use.

We have identified three types of missing data:

• A contiguous set of bins that have no interactions with any other bins,
appearing as columns and rows with only values of zero in the data matrix
(Figure 3.14)

• Bins that have no interactions with many, but not all, other bins (Figure 3.15)

• Pairs of bins that have no interactions (zeroes in the data matrix)

The first type includes the centromere in every chromosome, a long series of bins
(typically 100 to 200 bins in the human genome) that have no interactions with any
other bins. To avoid these areas appearing as domains, we exclude any domains
found inside these areas. However, we do not prohibit such bins from being in
domains, since that would lead to domains being split whenever a single bin with
no interactions appears.

Both the first and second type of missing data will affect statistics for the domains
they appear in. Since we assume these are missing data, domains covering such bins
will have a lower measured intra-domain interaction frequency than they actually
have. This could be adjusted for by replacing the columns and rows that sum to zero
in the data matrix with numbers that are more likely to have been there, for instance
by interpolating the interaction numbers from bins nearby. Another alternative
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would be to ignore these columns and rows when statistics are calculated, e.g. when
calculating the mean intra-domain interaction frequency, exclude bins that have no
interactions with any other bins. This correction would be most important in cases
where several contiguous bins have zero interactions, since a single bin does not
affect the score a lot. However, several contiguous bins of that kind are not very
common in the data, except for in the centromere. Thus, we choose to not use any
of the proposed solutions and to avoid changing the data.

However, we see that when calculating statistics for a chromosome, it is important
to not include big parts of the data matrix that represent missing data, e.g. the
centromere. In our method, we normalize every interaction in the data matrix based
on the average interaction with the same distance from the diagonal. If we include
huge parts of the matrix containing only zeroes when calculating these averages,
it will lead to a bias in the normalized version of the data. Thus, we make sure
that columns and rows that sum to zero are not included when calculating average
interaction frequencies used for normalizing the data.

The third type of missing data is harder to deal with. First, it is difficult to
know whether single zeroes in the data matrix really represent bins that have
no interactions, or whether they are missing data. Thus, we do not address this
problem.

Figure 3.14: An example of missing data on chromosome 3. A set of contiguous bins have
zero interactions with all other bins.

3.3.8 Contiguous or non-contiguous domains?

Until now we have treated domains as sets of contiguous bins in the genome, i.e.
bins that are connected in the genomic sequence. This assumption has made it
easier to develop suitable algorithms for discovering these domains. This is also
how previous methods have treated TADs.

However, from our basic definition of a domain, that it consists of bins that interact
frequently with each other and less frequently with bins outside the domain, a
domain does not necessarily need to consist of contiguous bins on the genomic
sequence. An example of two non-contiguous domains that interact more with each
other than with their surroundings is shown in Figure 3.16. If we wish to separate
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Figure 3.15: An example of possibly missing data on chromosome 3. Some bins have zero
interactions with many, but not all, other bins.

the genome into self-interacting parts, not requiring that these parts have to consist
of contiguous bins, the two domains shown in Figure 3.16 would preferably be
together.

We will still search for contiguous domains, since that is the original problem, but we
keep in mind that dense domains might be non-contiguous. For future study, it would
be interesting to develop efficient algorithms for finding non-contiguous domains
and investigating possible biological features related to such domains.

3.3.9 Summary of methods

Method I treats the genome as a sequence of bins belonging to different
states/domains, defines a feature for every bin and feeds this into a HMM to find
the states/domains. The method does not directly aim to find topological domains,
rather it discovers different states along the genome.

Method II is based on the simple idea that a topological domain starts or ends
where there is an abrupt change in the interaction vector for that bin to the next bin.
Instead of the interaction vector, a simplified version of it is used where interactions
over an interval are grouped together, into features. The difference between one bin
and the next is calculated as the sum of the squared pointwise differences between
two feature vectors. Edges of domains are then decided to be at bins where this
function has local maxima. A minimum threshold is used to avoid too many edges
in areas with small change in the feature vectors. After the edges are chosen, every
sequence of bins between two edges is chosen to be a topological domain. One
feature vector is chosen to represent each domain (e.g. the average or pointwise
median of all feature vectors in that domain), and the domains can then be clustered
into a predefined number of domain types.

Method III tries to capture the hierarchical nature of domains, by treating the
whole chromosome as a potential domain and then recursively dividing it into
hierarchically nested domains. A score function is used to find the optimal bin to
divide at in every step in the recursion, and a selection criterion is used to select
valid TADs from all domain candidates.
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Figure 3.16: Heat map of the data matrix, showing two domains that are not connected on
the genomic line, but they still interact more with each other than with their surroundings.

3.4 Deciding on a method and creating domain sets

We have presented three different approaches. As pointed out at the beginning of
this chapter, we wish to decide on a method based on how it fits with the initial
basic rules about TADs, not selecting a method by measuring implicit features, like
how the domains relate to genomic features. As has been clear in the discussion
done throughout this chapter, the third method with the improved score function
and selection criteria fits with all the criteria we have discussed, whereas the first
and second methods only partially solve the problem of finding TADs.

3.4.1 Consensus set of domains

The proposed method maps every bin into one or more hierarchically nested
domains. However, it is useful to provide a set of non-overlapping domains, for
several reasons:

• A set of non-overlapping domains can easily be compared with the domains
found by Dixon et al, Filippova et al. and others.

• When analysing domain borders, the non-filtered hierarchical set is not very
suitable, since there are very many domain borders representing domains on
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several different scales.

• A set of non-overlapping domains is a genomic track than can easily be used
in further analysis.

The consensus set should consist of domains that are the most interesting. We
already have a hierarchical set, consisting of overlapping domains. For instance,
a consensus set could be selected by choosing all domains found at a certain
level9 in the recursion, or by selecting all the smallest domains above a certain
size threshold. However, as we have seen, interesting domains appear in different
sizes at different levels, so only restricting according to either size or level does not
make sense. Instead, we should choose domains that are interesting across scales
and levels.

In order to measure how interesting a domain is, independently of its size or level,
we calculate a score for every domain. We let the score be the density of the domain
relative to its size, i.e. the average intra-domain interaction frequency calculated
from the normalized data set10,11.

Based on these domain scores, we want to select a set of non-overlapping domains
with as high scores as possible. One greedy approach is as follows: Sort all domains
in descending order based on score, and select domains from the top of the list
iteratively. Do not select domains that overlap with an already selected domain. This
approach is greedy in the sense that it includes the domain with the highest score at
every step. If we define the most interesting set as the set where the average domain
score is maximized, this approach will not find the most interesting set. For instance,
assume a mother domain with a high score, containing only two subdomains — one
of them with a higher score than the mother domain and one with a very low score.
The subdomain with the high score will be selected first. The consequence is that
the mother domain cannot be selected because it overlaps with its own subdomain.
The other subdomain with a very low score will also be selected, since it does not
overlap with any other selected domain. So even though the mother domain has a
higher score than the average score of its subdomains, it will not be selected.

A less greedy approach finds the set with the highest possible average domain score
among all sets of non-overlapping domains: Select domains so that no domains
overlap and every selected domain has a higher score than the average for all
possible sets of non-overlapping subdomains12. This will generate the set with
the highest average domain score, since no selected domain has any alternative

9Level is used to denote the step or depth at which the domain is found in the recursion. Deep
level means far down in the recursion, i.e. where small domains are nested inside bigger domains.

10See Section B.4.1 for details about the normalized data set.
11We choose density relative to size as a criterion, since density is one of the main features of a

TAD. There are obviously other criteria that could be used, e.g. how dense the domain is compared
to its surroundings. We choose density relative to size since this is a simple criterion and bears
a resemblance to the way Filippova et al. do the selection. Note that even though inter-domain
interactions are not directly a factor in the criterion, they are so implicitly. This is because if a domain
has high inter-domain interaction frequency, a mother domain of the domain is more likely to have
high intra-domain interaction frequency, making it more likely that the mother domain is chosen
instead.

12Note that possible sets of non-overlapping subdomains also need to fit with the definition, and
domains cannot be omitted from a set unless they do not fit with the definition.
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set of subdomains with an average score higher than the domain’s score. Also, no
selected domain is part of a set with an average score lower than a mother domain
of the set. Details about the algorithm and a proof showing why this set has the
maximum average domain score is included in Section B.2.

A consensus set will always be a trade-off between different goals, since not all
domains can be included. With the chosen approach, some domains with very high
score might be omitted because they have a mother domain with higher score than
the average of the subdomains that the domain is a part of.

3.4.2 Simplified set of hierarchically nested domains

We also provide a simplified set containing overlapping domains on different
levels that are hierarchically nested. The original hierarchical set contains domains
on many levels, covering the whole of the genome. We wish to make a smaller
hierarchical set, covering fewer levels. To do this, we use a simple approach: All
domains are sorted descending based on score, and domains are iteratively included
from the beginning of the list. A domain is not included if it overlaps with more than
three other domains (i.e. on three levels). The result is a set of partially overlapping
domains at three levels.

3.5 Methods for analysing domains

In this section, we briefly present how some of the domain analyses will be
performed. We use the analyses performed by others as a starting point, and propose
improved ways of performing them.

We will often use the term domain size being adjusted for. By this, we mean that
the statistic is calculated on the normalized interaction matrix13, meaning that the
statistic is somewhat invariant of domain size. We use the terms average and mean
interchangeably, always referring to the arithmetic mean.

3.5.1 Intra- and inter-domain interactions

An important analysis to do is measuring to what degree domains are self-
interacting and interact less with their surroundings, since this is a feature directly
connected with the principles about TADs.

Filippova et al. measure the mean intra-domain interaction frequency within
domains. We propose that mean interaction frequencies normalized for domain
size should also be measured, since we are interested in how dense domains are
compared to their size.

If domains are selected based on having high density, a smaller domain set with
more dense14 domains will on average have higher density than a bigger set. Thus,

13Normalized for distance from the diagonal, as explained in Section B.4.1.
14With density of a domain, we refer to the average interaction frequency within the domain.
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we believe it is interesting to analyse domain sets that cover the same portion of the
genome, to exclude the possibility that a set contains denser domains only because
it covers a smaller and denser portion of the genome. Also, it is interesting to see
how average domain density changes as a function of genome coverage. This can
be evaluated by plotting the average domain density as the domain set is shrunk
by iteratively removing the least dense domain. This should be analysed when
removing the domain with the lowest average intra-domain interaction frequency,
both calculated on the raw and the normalized interaction matrix.

We also propose that the inter-domain interaction frequencies should be evaluated,
since a key feature of TADs is that they have few interactions with their
surroundings. This can be done by calculating the average frequency that domains
have to their close surroundings, e.g. to all bins that are less than 50 bins away.
This calculation should also be performed on the normalized interaction matrix,
so that the numbers are not affected by domain size. Also, the difference between
average intra-domain and average inter-domain interaction frequencies should be
computed.

3.5.2 Agreement in position of domains

When proposing an alternative set of domains, it is of interest to see how different it
is from existing sets. This can be done by counting the number of matches between
two domain sets. We defined a match between set S1 and S2 to be when a domain
[i, j] in set S1 also exist as a domain [k, l] in set S2 where |k− i| ≤ 2 and |l− j| ≤ 2,
i.e. when a domain exists in the other set with domain boundaries not further than
two bins away. In this way, we get a number of approximately how many domains
that exist in one set also exist in the other set.

We also propose another way of measuring the similarity between two methods.
As described in Section 3.4.1, consensus set selection can be a trade-off between
preferring different domain features, and a consensus set does not necessarily reflect
the method completely. For instance, two methods can behave similarly, but choose
domains on different scales to be in the consensus set. To provide a similarity
measure that somewhat takes this into account, one can calculate the ratio of
domains from one set that overlap a domain border in the other set. Two methods
can have a similar “nature”, but find domains that are on different scales, meaning
that if many domains from one set overlap a domain border in another set, the sets,
seen from this perspective, are not very similar.

3.5.3 CTCF analysis

Dixon et al. and Filippova et al. investigated the association between domain
boundary15 segments and CTCF and different histone modifications, concluding
much the same for both. Instead of analysing both CTCF and histone modifications,
we choose to do a more thorough analysis of CTCF. This requires a quick review
of how it has been done previously, before discussing how we wish to do it.

15Domain boundaries are the segments between domains.
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Figure 3.17: Aggregation plot of the position of CTCF binding sites relative to domain
boundaries in IMR90 for CTCF data set 1 from Table 4.2. The intervals used in the
histogram have length 10 kb.

Dixon et al. and Filippova et al. generate aggregation plots16 of CTCF binding
sites over domain boundaries, showing where CTCF binding sites are positioned
relative to the centre of each domain boundary (Figure 3.17). Based on these plots,
Filippova et al. point out in [13] that the CTCF binding signals peak more sharply
in the boundaries between the domains we (Filippova et al.) discover than in the
boundaries between the domains of Dixon et al. This is correct, but it is more
interesting that the aggregation plot for the domain boundaries of Dixon et. al have
a broader peak and seem to have two local maxima (not only one) — indicating that
enrichment of CTCF binding sites is higher in the edges of the domain boundaries,
or, equivalently, in the edges of the domains. Also, if the assumption is that CTCF
binding sites are positioned in domain boundaries, the aggregation plots over the
boundaries of Dixon et al., which on average are 50 kb, will have a broader peak
than the aggregation plot over the narrower boundaries of Filippova et al. (average
size 29 kb). In the supplementary material of [5], Dixon et al. show that the highest
enrichment of CTCF binding sites is not in general in the domain boundaries, but
more specifically in the domain edges. This has also been pointed out in recent
studies [24].

The more distinct peak in Figure 3.17 for the boundaries of Filippova et al. may
also be due to the fact that most of these boundaries (3766 of 4789) are actually
zero bins in length, positioned between domains directly following each other.
These domain boundaries are actually domain edges. We generated the same plots,
omitting boundaries with zero length. These new plots, shown in Figure 3.18, show
no distinct peak for the boundaries of Filippova et al. For the boundaries of Dixon

16Aggregation plots are histograms where the x-axis is the relative distance to one or more elements
(e.g domain edges). The y-axis represents the frequency at which a second type of element (e.g. CTCF
binding sites) are positioned within the intervals on the x-axis.
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et al., we see two peaks at each side of zero — indicating CTCF binding site
enrichment towards the edge of domain boundaries, i.e. near domain edges.

Figure 3.18: Same as Figure 3.17, but only boundaries with length > 0 bins are included.

All this indicates that the interesting area for analysis is around domain edges, not
around the centre of domain boundary segments. Also, when generating aggregation
plots over domains or boundaries, the size of the areas should be normalized, since
we are interested in spotting peaks relative to areas that vary in size.

Taking all this into account, we propose that CTCF association can be visualized
best by creating aggregation plots over segments that each represent a domain and
an area outside the domain. All domains should be normalized, e.g. by dividing
them into 100 equally sized parts. Flanks on each side of the domains with lengths
50 % of domain sizes can be included, so that one can compare the CTCF frequency
outside domains against the frequency inside domains.

3.5.4 Similarities between TADs in the mouse genome and the human
genome

Dixon et al. made an interesting discovery, finding that a significant portion of
domain boundaries in the human genome exist in the mouse17genome and vice
versa, further implying that a lot of TAD boundaries have been preserved throughout
evolution.

17When talking about human and mouse in this section, we refer to the human ES and the mouse
ES cell.
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This made us interested in doing the same kind of analysis. There are few details
in [5] about exactly how the analysis was done. However, we contacted the first
author, Jesse R. Dixon, and obtained the details. Here is a brief summary:

• Domain boundaries get defined as every area between domains. Domain
boundaries less than 400 kb in size were omitted.

• All domains are lifted from genome A to genome B (either hES to mES or
vice versa), using the UCSC liftover tool [25]. The parameter Minimum ratio
of bases that must remap was set to 0.1. Usually, for different reasons, not all
domain boundaries will get lifted, but in this case most of them got lifted.

• Domain boundaries originally found in genome B were compared to those
lifted from genome A to B. The requirement for a match between two domain
boundaries was that the two areas either overlapped, or were less than 40 kb
away from each other.

• The number of matches was counted and compared to the number of domain
boundaries that got lifted. Dixon et al. found that 53.8 % of the boundaries
lifted from hES to mES had a match, and 75.9 % of the boundaries lifted
from mES to hES had a match.

These match percentages seem high, but the criterion for a match is not very strict.
Since many of these domain boundaries are large areas (up to 400 kb), getting an
overlap with any of the lifted areas is quite likely. Even though Dixon et al. showed
the results to be statistically significant, we believe that the match percentage, using
their definition of match, does not really reflect to what degree there is a similarity
between domains in the mouse and human genome. It would be more interesting
to know whether there are exact domains that have survived evolution. A slight
overlap between two large areas does not really indicate that the area has survived
evolution.

Since whole domains are likely to not get lifted over (because a too large portion
of the domain does not exist in the other genome), or change the start or end
position (because a portion of the domain does not get lifted), we believe it is
better to investigate match between borders (not boundary segments). We propose
the following analysis:

• Define the starting bin of every domain to be a domain border. We only
include the start bin because also including the end bin would result in many
borders being close to each other.

• Before lifting the borders, we represent them as genomic intervals. Lifting
the whole domains first, and then creating border intervals, would lead to
inaccurate positions of the borders, for the following reason. When an interval
is lifted from one genome to another, some part of the interval might not
exist in the other genome, resulting in only a part of the interval being lifted.
The user can choose a minimum ratio of the interval that has to exist in the
other genome for the interval to be lifted. A minimum ratio of 0.1 (which
is the default) could lead to only a portion of 0.1 of the interval being lifted,
resulting in the border being moved 0.9 of the interval length away from what
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we would expect18.

• We chose the intervals to be 40 kb before being lifted over. It makes sense
to make the intervals as small as possible, as explained in the previous point.
However, making them them too small leads to very few intervals complying
with the minimum ratio of bases that must map. For instance, if the intervals
are one base pair long, only about 50 % of the intervals get lifted.

• We define a match between genome A and genome B to be when a border
lifted from A to B was close to a border already found in B. With being close,
we assumed being closer than 20 kb away, since if two elements are inside
the same bin of size 40 kb, they could be a maximum of 20 kb away from
each other.

• We compute the percentage match between the two genomes as the ratio
between the number of matches and the number of borders that got lifted 19.

This method indicates to what degree there is a similarity between domains in two
genomes.

18A higher mean ratio could of course be chosen to avoid this problem, but then another problem
would occur: very few domains would get lifted. For instance, when the minimum ratio of bases that
must remap is set to 0.5, only 269 out of 3127 of the domains of Dixon et al. get successfully lifted.

19It can be debated whether this is the correct way of doing it, since there will be some borders that
cannot be mapped, and the reason for failed mapping could be that the borders are not really a part of
a topological domain. However, we will simplify things by not addressing this problem any further.
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Chapter 4

Results and discussion

In Chapter 3 we developed a method for finding topologically associating domains
(TADs), and created a consensus set of domains. In this chapter we analyse our
domain set and those found by others, and compare the results. We do this partly
by using the types of analyses presented in Section 3.5.

4.1 The model and method we have developed

As part of the results, we summarize the model and the method we have developed
for finding TADs. We refer to Section 3.3 for details about the method, and an
explanation of the terminology used here.

Model. TADs consist of contiguous bins on the genome, and contain loci that
frequently interact with each other and less frequently interact with loci outside
the TAD. They occur in different sizes, and can be nested inside each other. Areas
that interact less with themselves than with their surroundings, after interaction
frequencies are normalized1, are not TADs.

Method. We find all TADs within a chromosome by recursively dividing the
chromosome into areas that have few interactions with each other. At each step in
the recursion, a division is made so that the two new parts have the lowest possible
mean inter-domain interaction frequency (Equation 3.7). This procedure creates
TAD candidates. TADs are chosen by selecting only those domains that interact
more with themselves than with their brother domain, measured on the locally
normalized interaction matrix. A consensus set is selected by first calculating a
score for every domain. The score is the mean intra-domain interaction frequency
measured on the normalized interaction matrix. The consensus set is found by
choosing the set of non-overlapping domains that have maximum average domain
score (Section 3.4.1). A hierarchical set is created by selecting the domains with
highest score, allowing overlap at a maximum of three levels.

1See Section B.4.1
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4.2 Selection of domain sets to compare with

The domain set produced by Dixon et al. is one of the sets we compare our set with,
since their method is the most cited. We also include the method of Filippova et al.,
since they find hierarchical domains and argue that their method is better than the
method of Dixon et al. Since the method of Rao et al. was published at the end of
the period of this thesis, and since they use a different data set and find much smaller
domains, we do not include their method. We choose not to include the method by
Naumova et al., since their method is very similar to the method of Dixon et al. We
also omit the method of Sexton et al., since they find domains in the fruit fly genome.
Therefore, their analyses are not easily comparable to the analyses performed by
Dixon et al. and Filippova et al. We do not include the method of Mizuguchi et al.,
which is based on an insulator score, because their study was published when our
work was nearly finished. We believe that since this method finds domains by first
finding domain edges, it is not very different from the method of Dixon et al.

Thus, we compare our domains to the domains found by Dixon et al. and Filippova
et al. When we talk about our domains, we refer to the consensus set (Section
3.4.1).

4.3 Tools in the Genomic HyperBrowser

We developed three tools in the Genomic Hyperbrowser [6]. These tools are on a
separate installation from the main HyperBrowser, and can be found by following
the url https://hyperbrowser.uio.no/3dml/. The tools are available from the main
menu under 3DML tools:

• Find TADs: The tool finds TADs in a chosen genome. The output is a simple
web page with links that, when clicked on, will generate history elements
that contain the consensus sets. A few other choices can be made that affect
the algorithm. If no input parameters are changed, the tool will find TADs
according to our selected method.

• Visualize TADs: The tool takes a history element that contains domains
represented in the bed-format, e.g. a history element returned by the previous
tool. It then visualizes the domains in a chosen part of a chromosome with
the domains found by Dixon et al. and Filippova et al.

• Analyse TADs: The tool takes a history element that contains domains, and
analyses these domains with the domains of Dixon et al. and Filippova et al.
The analyses that are performed are mainly the same as those presented and
discussed in this chapter.
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Figure 4.1: Screen shot of the tool in the Genomic HyperBrowser.

4.4 Comparing and analysing domain sets

A page in the Genomic Hyperbrowser lists history elements that show the analyses
that are performed in this section (url: https://hyperbrowser.uio.no/3dml/u/ivar/
p/master). The history elements on the page can be exported and one can easily
re-run the analyses from these history elements, choosing different domain sets if
wanted. Some of the figures in this chapter can be found as history elements on this
galaxy page. When a figure is available online, the text “HyperBrowser history: X”
is added in the Figure caption, where X is the number of the history element under
the Figures history on the galaxy page.

The following table lists key characteristics of the three domain sets from
IMR90.

Our Filippova et al. Dixon et al.
Part of genome covered2 86.4 % 61.5 % 87.3 %
Number of domains 3875 5408 2349
Median domain size 240 kb 160 kb 840 kb

2Number of bins covered by domains divided by number of bins in the genome
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Size standard deviation 1154 kb 482 kb 892 kb
Mean density3 35.4 35.2 19.3
Mean density (normalized data4) 4.94 4.39 -0.708
Mean inter-domain int. freq.5 3.57 4.00 2.34
Mean inter-domain int. freq.
(normalized data)

-9.85 -8.76 -9.96

Mean of mean density minus
mean inter-domain int. freq.6

31.8 31.2 17.0

Mean of mean density minus
mean inter-domain int. freq. (nor-
malized data)

14.8 13.1 9.25

4.4.1 Domain size

On average, the domains of Dixon et al. are notably larger than the domains from
the two other sets. The directionality index used by Dixon et al. includes interactions
50 bins upstream/downstream, meaning that when measuring interactions for a bin
at the edge of a domain containing less than 50 bins, bins outside the domain will
affect the score. For many small domains, the score can be affected so that the
domain edge will not be marked as an edge by the algorithm. This is probably one
of the reasons why few small domains are found by the method of Dixon et al.
Also, since the method does not use domain density as a criterion for domains to be
selected, domains with low densities are found. These are generally large and will
increase the average domain size.

We find bigger domains than Filippova et al. One reason might be that Filippova
et al. omit all domains that have lower intra-domain interaction frequency than
the average for domains of the same size. This results in a smaller set with dense
domains, which are usually small. Also, the method of Filippova et al. seems to
split domains into several smaller domains. We will discuss the reason for this at
the end of this chapter.

When selecting our consensus set, we chose to maximize the average domain score
over all domains, as discussed in Section 3.4.1. We also presented a more greedy
algorithm, where the domains with the highest scores were chosen first. This greedy
selection results in a median domain size of 120 kb7, half of the median size of
domains in our consensus set. This seems to be because the most dense domains,
independent of size, are small domains. These are selected first, making room for

3Mean density is the mean of the mean intra-domain interaction frequencies for all domains.
4See Section B.4.1 for details about the normalized data.
5The mean interaction frequency that bins in selected domains have with bins that are outside the

domains and closer than 50 bins away, averaged over all domains.
6This is calculated by first calculating the mean density of every domain and subtracting the mean

inter-domain interaction frequency, limiting interactions to 50 bins away. Then the mean of these
numbers is calculated over all domains.

7See history element 12 under the history Analysis presented in Chapter 4 in the Genomic
HyperBrowser.
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selection of other small domains that do not overlap with the first selected domains
(big domains are more likely to overlap with already selected domains).

4.4.2 Agreement in position of domains

We were interested to know how much the three sets agree, i.e. to what degree
domains in one set appear at approximately the same position in the other sets. We
use the definition of match proposed in Section 3.5.2, and count the number of times
that domains from one set are found in the other sets. The result is illustrated as
a Venn-diagram in Figure 4.2, indicating that a higher proportion of our domains
match the domains of Filippova et al. than the domains of Dixon et al.

Differences and similarities can also be studied visually. Figure 4.3 shows an
example of a part of the genome where the three sets mostly agree, and Figure
4.4 shows an example where the three sets agree less. This figure is also an example
of how we and Filippova et al. find more small domains, whereas Dixon et al. find
fewer bigger domains.

Further, we measure the number of domains in one set that overlap a domain border
in another set, as presented in Section 3.5.2. We find that 34 % of our domains
overlap a domain border of Dixon et al. and 47 % overlap a domain border of
Filippova et al. Among the domains of Filippova et al., 27 % overlap borders of
Dixon et al. and 55 % overlap our domain borders. For the domains of Dixon et al.,
55 % overlap our borders and as many as 65 % overlap borders of Filippova et al.
This may indicate that our method in some way is more similar to the method of
Dixon et al. than the method of Filippova et al. The reason can also be that Dixon
et al. find larger domains, making it less likely for our domains to overlap their
domain borders than the borders of the smaller domains of Filippova et al.

4.4.3 Density of domains

We compute the average of the mean intra-domain interaction frequencies, both
using the raw interaction matrix and the normalized interaction matrix, as proposed
in Section 3.5.1. Our domains have approximately the same average interaction
frequencies as the domains of Filippova et al (≈ 35), when calculated on the raw
interaction matrix. The domains of Dixon et al. have lower average interaction
frequency (≈ 19). Calculated on the normalized data matrix, our domains are denser
than those of Filippova et al. (4.9 vs. 4.4).

We also do the calculations on a smaller domain set that covers the same portion of
the genome as the set of Filippova et al. (where we have removed the least dense
domains from our set). The mean density of this smaller set is 39.4 calculated on
the raw data and 7.19 calculated on the normalized data matrix — both noticeably
larger than the numbers for the domains of Filippova et al.

As proposed in Section 3.5.1, we measure the average density while shrinking the
domain sets by removing the least dense domains, to see how the mean density
changes according to how much of the genome is covered. Figure 4.6 shows the
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Figure 4.2: Match between us, Dixon et al. and Filippova et al. 543 domains are found by
all three.

Figure 4.3: An example of agreement between us, Dixon et al. and Filippova et al. Most
of the domains visualized here appear in all three sets, which may be because the area
consists of what visually seems to be well-defined TADs. The area visualized is a part of
chromosome 18 (IMR90). HyperBrowser history: 8
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Figure 4.4: An example of disagreement between us, Dixon et al. and Filippova et al. The
area visualized contains what visually seem to be TADs nested inside TADs. Some domain
edges are selected by all three methods, but few domains appear in all three sets. The area
visualized is a part of chromosome 18 (IMR90). HyperBrowser history: 6

(a) (b)

Figure 4.5: Histograms of domain density calculated over the raw data matrix (a) and the
normalized data matrix (b) for the three domain sets. The most visible trend is that our
domains and the domains of Filippova et al. are denser than those of Dixon et al.

result of this process, indicating that our domains are generally denser than those
of Filippova et al. when covering the same portion of the genome.

These results show that our domains are generally denser than the domains of
Filippova et al. and Dixon et al.

4.4.4 Inter-domain interaction frequency

We have described TADs as areas with many intra-domain interactions and fewer
interactions with their surroundings. Of the three sets, the domains of Dixon et al.
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(a) (b)

Figure 4.6: Average domain density plotted against the portion of the genome that the
domains cover, calculated on raw data matrix (a) and normalized data matrix (b). The
curve for the domains of Dixon et al., which is much lower than the plotted curves, is not
included in the plots.

have lowest average inter-domain interaction frequency, i.e. on average interacting
the least with their surroundings. This is probably due to the fact that the domains
themselves are not very dense and are often positioned in parts of the genome where
there are generally fewer interactions between bins. However, when calculated on
the normalized data matrix, our domains have approximately the same average
inter-domain interaction frequency as the domains of Dixon et al. Our domains
interact less with their surroundings than the domains of Filippova et al, also when
calculations are done on the normalized data matrix.

We also calculate the mean of mean density minus mean intra-domain interaction
frequency, as suggested in Section 3.5.1. This measures the average of how dense
the domains are compared to their surroundings, and further illustrates to what
degree the domains interact more with themselves than with their surroundings.
Our domains come out better than the domains of Filippova et al. and Dixon et
al., both when calculated on the raw and the normalized interaction matrix (see the
table at the beginning of this section).

4.4.5 CTCF analysis

Dixon et al. showed that the areas between TADs are enriched with the insulator
protein CTCF (see Section 2.2.4). We were interested in whether this is also true
for our domains, and whether there are any remarkable differences in the degree of
association with CTCF binding sites.

The CTCF data set that Dixon et al. and Filippova et al. used in their analyses is
the one of Kim et al. (2007) [26]. There are many publicly available CTCF data
sets from the same cell-line, and we wanted to include more than one set in our
analysis, to make it more robust, and so that we could identify potential differences
between the sets. Also, the set of Kim et al. (2007) is relatively old, and contains
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fewer CTCF binding sites than there are in other data sets. Thus, we collected four
additional CTCF data sets from the ENCODE Project [27], one from each of the
four labs represented in the database. We also generated a random CTCF data set,
containing sites at random positions. To ease notation, we assign a number to each
dataset, shown in the table below.

# Lab / origin Number of sites8 GEO accession number9

1 Kim et al. (2007) [26] 13 720 GSE5559
2 Bradley Bernstein, Broad 50 031 GSM1003558
3 Richard Myers, HAIB 40 557 GSM803333
4 Vishwanath Iyer, UTA 55 295 GSM822307
5 John Stamatoyannopoulos, UW 45 697 GSM945243
6 Randomly generated set 50 000 -

Table 4.2: CTCF data sets

We create the normalized aggregation plots, proposed in Section 3.5.3, showing
where CTCF binding sites frequently occur relative to the domains. Figure 4.7 a
shows the results, with the ratio of domains on the y-axis, leading to a higher count
for the domains of Dixon et al. that are generally larger — thus containing more
domain bins for every histogram bin. In the second plot (Figure 4.7 b), the count
is normalized so that the histogram sums to one. Both figures clearly show that the
enrichment of CTCF binding sites greatly peaks near domain edges and decreases
inside domains and outside domains. The histogram representing the domains of
Dixon et al. shows a slightly higher ratio within domains, compared to the curve
for the other domain sets. This may be because these domains are larger, and may
contain smaller domains. Another interesting observation is that CTCF generally
appears less often inside domains compared to outside domains, for all domain sets.
It is clear that CTCF is more associated with domain edges than with the domain
boundary segments.

We also performed the same analyses for all other CTCF data files. The result is
shown in Figure 4.8. All data sets indicate the same. An interesting trend is that the
domains of Dixon et al. seem to peak slightly more at the beginning of domains
compared to the other sets, whereas all three domain sets seem to peak about the
same at the edges of domains.

Even though CTCF is positioned more often close to domain boundaries than
elsewhere, only 10 to 20 % of domain boundaries are located less than 10 kb
away from a CTCF binding site. We conclude, as Dixon et al., that domain edges
and boundaries are enriched with CTCF binding sites, but CTCF binding alone
is insufficient to demarcate domain boundaries [5]. Figure 4.9 shows the position
of CTCF binding sites from CTCF data set 1 together with the data. The figure
supports this conclusion — CTCF binding sites are spread across the genome, not
only positioned near domain edges.

8If the intervals were originally referenced on hg19, this is the number of CTCF sites after intervals
are lifted to hg18

9Data sets can be found by using the GEO accession number in the search tool on http:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi.
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(a)

(b)

Figure 4.7: (a): Aggregation plots of the position of CTCF binding sites (data set 1) relative
to the starting position of normalized domains. (b): The same as in (a), but the ratios are
normalized so that they sum to one.

4.4.6 Similarities between TADs in the mouse genome and the human
genome

We performed the analysis proposed in Section 3.5.4, counting how many domains
that are found in the human genome also exist in the mouse genome (and vice versa).
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Figure 4.8: Same as Figure 4.7 (b), one plot for each CTCF data set from Table 4.2. Domains
of Filippova et al. (red), Dixon et al. (green) and our domains (blue).

Figure 4.9: Position of CTCF binding sites with heat map of the data matrix (chromosome
3, IMR90), illustrated here with a point at the centre of the interval of the binding site.

We compared our domains with the domains of Dixon et al., making the comparison
between the mES and hES cell lines. Since Filippova et al. have not published
domains from the hES cell line, we carried out an analysis between IMR90 and
mES with their domains. We summarize the results by calculating the ratio between
the number of matches and the number of domain borders that were lifted, which

63



are listed in Table 4.3 and Table 4.4. See Section B.3 for more details.

From mES to hES From hES to mES
Domains of Dixon et al. 17.4 % 14.4 %
Our domains 21.7% 18.8 %

Table 4.3

From mES to IMR90 From IMR90 to mES
Domains of Filippova et al. 16.4 % 23.7 %
Our domains 15.2 % 19.7 %

Table 4.4

The analyses were performed in the Genomic HyperBrowser. A hypothesis test was
run, concluding that the match was significant for all domain sets with p-value 0.0.
Based on the numbers listed in Table 4.3 and Table 4.4, the domains of Filippova et
al. seem to be the most consistent between the mouse and the human genome.

4.4.7 Consistency between human cells

An algorithm for finding TADs should be stable, i.e. not perform differently or
give very different output if the input changes slightly. One way of measuring the
consistency of an algorithm, is to see how the results differ between two cell types
of the same species. Thus, we compared the domains found in hES with those found
in IMR90.

We define a match to be when a domain is found at the same position in the other
cell line, only allowing one bin change in domain boundaries. The results for the
human genome are shown in Figure 4.10, which indicates that our method is slightly
more consistent than the method of Dixon et al.

4.4.8 Summary

Our domains are similar to those found by Dixon et al. and Filippova et al. Based on
median size and average domain density, our domains are most similar to those of
Filippova et al. We argue that our domains fit better with the fundamental principles
about TADs. They are generally more self-interacting and interact less with their
surroundings than the domains of Dixon et al. and Filippova et al. Our smaller set,
covering the same portion of the genome as the set of Filippova et al., has even
denser domains.

We see a significant consistency between the mouse and the human genome for all
three sets. The domains of Filippova et al. seem to be slightly more consistent than
our domains. We see a distinct enrichment of CTCF binding sites near the domain
borders for all three sets. CTCF binding sites seem to be less associated with the
domain boundary segments than with the domain borders, and occur even less often
inside domains. We note that even though CTCF binding sites commonly occur near
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(a) (b)

Figure 4.10: Consistency between cell replicates (hES and IMR90) in the human genome.
Our domains (b) seem to be more consistent than those of Dixon et al.

domain borders, domain borders are not dependent on or cannot be demarcated from
these.

Our domains are more consistent between the IMR90 and hES cell line than the
domains of Dixon et al., possibly indicating that our method is more robust and less
affected by small changes in the input data.

In this section, we have analysed our consensus set in IMR90. Using our tool in
the Genomic HyperBrowser, analyses on other cell lines with other domain sets
can be performed. We also performed similar analyses in the mouse cell line mES.
The results can be found under the history Analyses of mES on the galaxy page.
The results for mES indicate the same as for IMR90, that our domains are more
self-interacting and interact less with their surroundings.

4.5 Understanding weaknesses of the methods

The previous section presented analyses of the domains that are produced by the
different methods. We now discuss possible weaknesses of the methods. Some of
these weaknesses are reflected in the analyses from the previous section, and some
are inherent in the methods.

4.5.1 Dixon et al.

To understand what really happens in the algorithm created by Dixon et al., we
need to briefly describe what the Baum-Welch algorithm does (see Appendix A
for details). Given a predefined number of states, three in this case, it finds the
suboptimal underlying model (transaction probabilities, a priori state probabilities,
and the probability distribution for the observation for every state) given the
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observations that are made. In this case, this is the directionality index (DI) for
every bin. An interpretation of this process is that all bins are classified into one out
of three possible states, where the state chosen for a bin is dependent on the state for
the previous bin and the observation at the current bin. Simply put, the method aims
to discover domain edges in a rather complicated way by using a HMM.

The method does not take into account that TADs are nested hierarchically, and can
fail in cases like the following: Assume that a small domain is nested somewhere in
the middle of a larger domain. A downward biased state marks the beginning of the
big domain. Non-biased states will be dominant until the small domain begins. The
problem occurs at the end of the small domain, before the large domain has ended.
If the small domain is dense enough, the end of it will consist of an upstream biased
state, and the method will fail to capture any of the domains as a single domain. An
example of this behaviour is seen in Figure 4.11. The domain marked in the figure
is split into two domains by Dixon et al. These two domains do not seem visually
to be TADs.

Figure 4.11: Visualization of domains on chromosome 8 (IMR90). What visually looks like
a big domain is marked with a bracket. Dixon et al. do not find this domain. HyperBrowser
history: 5

A point is that the DI is always computed from interactions that are 50 bins
upstream and downstream10. When the DI is computed inside the domain marked in
Figure 4.11 (the size of the domain is approximately 150 bins), it does not include
information from the beginning or end of the domain. The choice of starting a new
domain in the middle of the marked domain, is not based on the information from
all bins in the domain.

Limiting the range of bins included in computing the DI is a problem, since this will
10Dixon et al. say that they choose 50 bins because these parameters maximize the reproducibility

of the DI and the domain calls while retaining a sufficiently high resolution to identify domains and
boundary regions [5].
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favour domains of a certain size, and behave differently for domains of different
sizes. The decision of the state on a domain edge will always be made based on
50 bins upstream/downstream. This means that domains bigger than 50 bins will
have only a part of their domain included in the calculations, whereas the DI for the
edge of a domain smaller than 50 bins will be affected by the whole domain as well
as a part outside it. This problem, deciding the range of interactions to include, is
a general problem of edge based approaches, as we saw when proposing our first
approach (Section 3.3.2).

4.5.2 Filippova et al.

Filippova et al. avoid the pitfall of only looking at domain edges, and instead find
domains by looking at the intra-domain interaction frequency. They handle the
problem of nested hierarchical domains by discovering domains on different scales.
Thus, they do not limit the method or define TADs to be on only one scale, the way
Dixon et al. implicitly do. Filippova et al. also have a much more direct way of
defining the optimal set of TADs. They actually solve an optimization problem —
thus finding the optimal set from their definition of optimal.

Let us recall how Filippova et al. rank domains, in order to discuss a possible
problem. The score for a domain is the sum of interactions within the domain
divided by the size of the domain to the power of γ, minus the average score of all
domains of the same size. The definition makes sense in some way, because a TAD
is characterized by having many intra-domain interactions.

But what about inter-domain interactions? The number of inter-domain interactions
is not directly included in the score function. This means that a dense domain
A placed inside a bigger domain B with the same density will have exactly the
same score as an independent isolated domain with the same density and size
as A somewhere else on the genome. The fact that A interacts frequently with
its surrounding bins and is indeed just a part of a bigger TAD, will not affect its
score. Will domain A be preferred in favour of domain B using this method? Not
necessarily, because the method maximizes the sum of domain scores. If domain
B has a higher score than A, it will be correctly chosen. But if γ is set to favour
smaller domains, can the smaller domain A be wrongly selected as a TAD?

Figure 4.12: Heat map of the interaction matrix for a test scenario. Coloured pixels indicate
interactions with frequency 1 and white pixels indicate interactions with frequency 0.

It is difficult to provide an answer to this question directly without having all the
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necessary information: interaction frequencies within the domains, and the average
score of domains of different sizes across the genome. However, we can generate a
test scenario to check whether the method fails in a similar case: Assume our area of
interest consists only of TADs of size r separated by an area with few interactions,
of size r/2 (Figure 4.12). The interesting question is whether there is a choice of γ
that will divide these TADs of size r into two separate TADs of size r/2. We can
check this by calculating the score functions qA and qB (Equation 2.5, page 10) for
the small domains and big domains respectively. For simplicity, we assume that all
interactions between bins within the domains are 1, and all other interactions are
0 (in reality, interactions far from the diagonal will be weaker, however that will
favour smaller domains, so we are not favouring a division of the domains when
assuming these interaction counts).

First, we calculate µA and µB, the averages of all possible domains of size r/2 and
r:

µA =
( r

2 )
2 · 2 + 0

3
=

r2

6

µB =
r2 + 2 · ( r

2 )
2

3
=

r2

2

We then calculate the score for the small domains (A) and big domains (B):

qA =
( r

2 )
2 − r2

6( r
2

)γ =
2γ−2 · r2−γ

3
(4.1)

qB =
r2 − r2

2
rγ

=
r2−γ

2
(4.2)

The question is whether a γ exists so that two domains of size r/2 will be preferred
instead of one domain of size r. For this to happen, the inequality 2qA > qB has to
hold:

2qA > qB (4.3)

=⇒ 2γ > 3 =⇒ γ > log2 3 ≈ 1.58 (4.4)

It turns out that choosing γ & 1.58 will result in non-TADs being classified as
TADs in this case. One can argue that γ > 1.58 is not used in practice, but the
example illustrates an important problem with the method: By not including inter-
domain interactions in the formula, large domains that should not be divided can
be broken into pieces. By considering only intra-domain interactions, TADs are
not valued by their ability to be independent pieces of DNA that less frequently
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interact with other parts of the genome. This fault seems to be visible, see Figure
4.14.

In general, it is problematic that inter-domain interactions are not directly included
in the algorithm, resulting in domains being selected that interact as much with their
surroundings as with themselves.

Figure 4.13: Visualization of interactions for bin 984 to 1367 on chromosome 20 with the
domains of Filippova et al. Two visible big domains that could be interesting are not chosen
by the algorithm to be TADs. HyperBrowser history: 7

Figure 4.14: Bin 900 to 1000 on chromosome 3 with the domains of Filippova et al. In the
centre of the area visualized, what seems like a TAD has been divided into four smaller
domains. HyperBrowser history: 3

Domain density. Another questionable part of the method is the minimum density
criterion: An area needs to have more interactions than the expected amount of
interactions for areas of the same size, in order to be included in the domain set.
There is no obvious answer to the question of how dense a domain should be in
order to be regarded as a TAD, but the criterion used by Filippova et al. is not rooted
in any definition or general agreement about TADs. A lot of potential domains are
left out because of this criterion (Figure 4.13).
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It is interesting that our domains are denser, when the algorithm of Filippova et al.
directly aims to find domains that are dense compared to domains of the same size,
whereas our algorithm in a less greedy manner first divides the genome into parts
that have few interaction with each other, and then filters out dense domains from
that set, without having any minimum density criteria. We believe the reason must
have to do with how the consensus set is selected from multiple sets of domains on
different scales. If γ in the score function they use (Equation 2.6) is set so that the
denominator in the equation is proportional to the expected sum of intra-domain
interactions for domains of the given size, then the set chosen by maximizing
Equation 2.7 will have the maximum possible size-adjusted mean density. This
would require γ > 1 (a simulation shows γ ≈ 1.5). However, the consensus set of
Filippova et al. is chosen by selecting the most consistent (most frequently occuring)
domains when γ is varied stepwise between 0 and 1. Even though Filippova et al.
point out that they seek dense domains, γ is not chosen so that the most dense
domains are found. As shown, a γ around 1.6 will result in homogeneous domains
being split into several domains. Paradoxically, the algorithm that initially tries to
find the set of the most dense domains (adjusted for size) fails to do this if γ is
set accordingly, and instead ends up using a set of γs that do not fulfil the original
purpose. Thus, the consensus set of Filippova et al. will not contain the most dense
domains, which is reflected in the analysis done in Section 4.4.3.

4.5.3 Our method

We have criticized the minimum criterion used by Filippova et al. Finding a suitable
criterion roots in the more general problem of considering what a TAD really is.
This is a question we need to ask when we choose the selection criterion in our
method, deciding whether an area really is a domain or not.

We decide to call an area a TAD as long as it interacts more with itself than with
the other area inside the same mother domain, after normalizing the interactions,
as explained in Section 3.3.6. We already assume it interacts more with itself than
with any domain outside the same mother domain, since the mother domain has
been selected by minimizing inter-domain interactions.

We see that this selection criterion sometimes results in domains being found that
we visually do not spot by looking at the visualization of the data. These domains
have slightly higher average intra-domain interaction frequency than the average
interaction frequency with their brother domain. It can be debated whether our
criterion is too “slack”, allowing the division and shrinking of domains to go too
far. The challenge is the lack of a definite answer of what a TAD really is. Maybe
future knowledge and research will result in a stricter criterion.

We also notice that our method might fail in cases where non-contiguous domains
have frequent interactions. In Figure 4.15 we have marked three domains — A, B
and C — with the data matrix from a part of chromosome 3. The three domains we
have marked are what we believe to be all the direct subdomains of this area. Thus,
we would assume our method to first divide either between A and B or between B
and C. However, since A seems to interact more with C than with B, there might
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Figure 4.15: Three domains in a part of chromosome 3 (IMR90). Domain A interacts more
with domain C than with B.

be a bin somewhere inside B where the score function (the minus of the average
inter-domain interaction frequency) is larger, resulting in domain B being split. Our
method does not actually end up splitting the middle domain in this case. This is
only an example to illustrate the problem. We have not come up with any solution
to this problem, which is rooted in the more general problem of non-contiguous
domains (Section 3.3.8).

4.6 Algorithm and method complexity

When finding domains from a Hi-C matrix of size m×m, our method (in the first
step of the recursion) iterates over m bins. For every bin, it counts at maximum m
interaction frequencies (assuming dynamic programming is used, see Section 3.3.5).
At the next step in the recursion, m/2 bins are iterated over for every bin m, and
there is a maximum of log2(m) recursions. At step k in the recursion, m/k bins
are iterated over for every bin m. Thus, the worst case complexity is of the order
O(log2(m) ·m2).
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The complexity of the algorithm of Filippova et al. is of the order O(m2) as stated
in [13].

The complexity of the Baum-Welch algorithm on each iteration is a linear function
of the length of the sequence, which is m. We assume a finite number of iterations,
independently of m. Thus, the complexity of the method of Dixon et al. is of the
order O(m).

Our method is the most complex in terms of computations required, but it is only
slightly more complex than the method of Filippova et al. Run on an ordinary
desktop machine, it only takes a few seconds to find domains in a chromosome
using our method.

We argue that the method of Dixon et al. is most complex in terms of the model it
uses, by relying on the somewhat complicated hidden Markov model to find domain
edges. The method of Filippova et al. and our method use simpler techniques that
are easier to understand.
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Chapter 5

Conclusion

Finding topologically associating domains (TADs) is only one way of exploring
interaction patterns in the vast amount of data generated by Hi-C. While TADs
seem to be fundamental building blocks of the three-dimensional structure of the
genome, identifying a set of TADs is also a way of extracting features from the
Hi-C data, and processing it into a format that easily can be analysed further.

We have presented a new method for finding TADs, which takes Hi-C data as input
and returns a consensus set of domains and a set of hierarchically nested domains.
The method is based on the principle that a TAD is a spatially compact cluster of
chromatin, where loci inside the area frequently interact with each other and less
frequently interact with loci outside the area.

As pointed out by Filippova et al. [13], it is apparent that domains occur in different
sizes and are nested inside each other. Thus, we conclude that pure edge based
methods, like the one created by Dixon et al. and the one created in our first
approach, are not appropriate for identifying these domains.

Compared to the domains found by Dixon et al. and Filippova et al., our method
returns domains that on average have a higher amount of intra-domain interactions
and fewer inter-domain interactions. We also investigated how CTCF binding sites
are associated with these domains. We conclude that our domain borders are about
as much associated with CTCF binding sites as the domain borders of Dixon et al.
and Filippova et al. By creating aggregation plots over domains that are normalized
in size, we see that CTCF binding sites most often occur at the domain borders,
occur less often outside domains and even less often inside domains. We propose
that comparison between domains in the mouse and the human genome should be
done by comparing domain borders, not domain boundary segments, like Dixon et
al. did. Our domain borders are more consistent between the mouse and the human
genome than the borders of Dixon et al. However, the borders of Filippova et al.
seem slightly more consistent than our borders. Based on the fact that our method
finds domains that are more self-interacting, and because of the weaknesses of the
methods of Dixon et al. and Filippova et al., we argue that our method is a preferable
method.

For future work, it would be interesting to use our method on even higher resolution
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Hi-C data, like the recently published data by Rao et al. [14]. It would also be
interesting to look at genome topology “the other way around”: Instead of finding
TADs and investigating biological features linked to them, it would be interesting to
see how the genome topology relates to predefined biological features. For instance,
it would be interesting first to find areas that are consistent between the mouse and
the human genome, and to see how these are related to the topology of the genome.
This kind of analysis could discover new potentially interesting interaction patterns,
not necessarily TADs. It would also be interesting to investigate further another
interaction pattern, which is similar to TADs, that is non-contiguous domains.
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Appendix A

Hidden Markov Models: details
and the mathematics behind

A hidden Markov model (HMM) is a model describing a process that goes through
a set of states at discrete time steps.

The following notation is used:

• A HMM has N states, which we will denote s1, s2, . . . , sN .

• The model goes through discrete time steps, t0, t1, t2, . . ., tT. At each time
step, the model is in one of the possible states.

• Between each time step, the model may change state with a given probability.
The probability depends on the current state only. We will denote the
probability of going from state i to state j as aij, which for 1 ≤ i, j ≤ N
can be represented in the matrix A.

• The current state at time step t is qt. The probability of being in state si at
time t only depends on the state at time t− 1.

• At time step t, we make the observation ot. We will denote the set of all
observations made as O. The notation bi(k) = P(ot = k|qt = si) will be
used to denote the probability that an observation ot is k when the process is
in state si. B will be used to denote the set of all these probabilities. Note that
this probability is independent of the time t.

• πi is the probability of beginning the whole process at state si .

• We will denote the set of all the parameters as λ = (A, B, π).

There are three main questions to answer:

1. Given all the model parameters λ, what is the probability of a given sequence
of observations occurring?

2. Given the observations and the model parameters λ, what is the most probable
sequence of states that has produced these observations?
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3. Given none of the model parameters λ, only the observations O, what are the
most probable model parameters and the most probable sequence of states?

s0 s1

s2

p=0.05

p=0.05

p=0.05 p=0.1

p=0.05

p=0.15

p=0.9

p=0.8

p=0.85

Output at state 0
p(blue)=0.7
p(red)=0.2
p(yellow)=0.1

Output at state 1
p(blue)=0.35
p(red)=0.6
p(yellow)=0.05

Output at state 2
p(blue)=0.1
p(red)=0.4
p(yellow)=0.5

Figure A.1: An illustration of a hidden Markov model with three states, each state producing
a colour. At each time step, there is a probability of changing state or staying at the same
state. At each time step, an "output", which we can observe, is produced. In this case, we
observe one of the colors blue, red or green.

Problem 1 The first problem concerns finding the probability that a series of
observations, o1, o2, . . . , oT, occurs. Remember that the true sequence of states is
unknown, so one approach we can use to find this probability is to look at all the
different possible state sequences that produce the set of observations. Since the
probabilities of different state sequences occurring are independent, we can sum all
these probabilities:

P(o1, o2, ..., oT|λ) = ∑
Q∈all possible state sequences

p(o1, o2, ..., oT|Q, λ) (A.1)

As T grows, the number of possible paths (NT) grows exponentially, making the
computations impossible for big T. A more efficient method is obviously necessary
to solve this problem. To find such a method, the following notation is useful,
given in Rabiner’s tutorial on HMMs [31]. Let us denote αt(i) as the probability of
having made the observations o1, o2, ..., ot (a set of observations up to time step t)
and ending up in state i at time t.

αt(i) = P(o1, o2, ..., ot ∧ qt = si|λ) (A.2)

α can easily be found for t = 1:

α1(i) = πi · P(o1|s1 = i) (A.3)
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We can now define α2(j) by using α1(i). All we need to do is to sum over the
possible states when t = 1 and multiplying by the probability of changing to state
j:

α2(i) =
N

∑
j=1

α1(j) · aji · p(o2|q2 = si) (A.4)

By now, we see that α can be defined recursively, because to be in state j after time
t, the process needs to be in some state i at the previous step, and go to state j with
probability aij. Being in state i at the previous step is αt−1(i) and the probability of
going from state i to j is aij. Thus, the recursive formula is:

αt(j) =
N

∑
i=1

αt−1(i) · aij · p(ot|qt = sj) (A.5)

With α defined, we can now proceed and find a more efficient solution to the first
question. Remember that, at time step t, we want to find the probability that a given
set of observations has occurred. We also know that the probabilities of being in
some state at time step t are all independent of each other. Thus, the probability of
having made the observations o1, o2, ..., ot is simply a sum over αt for all possible
values of i (all different states we can be in at time step t):

P(o1, o2, ..., ot|λ) =
N

∑
i=1

αt(i) (A.6)

Problem 2 This problem requires us to define an optimality criterion. A simple
criterion is that each state in the sequence has to be the one with the highest
probability of occurring given the observation, but we will see that this criterion
does not make perfect sense.

First, let us define function β, in a similar way as α, as the probability of the
observations ot+1, ...oT occurring and being in state i at time t.

βt(i) = P(qt = i ∧ ot+1, ..., oT|λ) (A.7)

Let us also define γt(i) as the probability of being in state si at time step t ≤ T
given a set of observations o1, o2, ..., oT and the model parameters:

γt(i) = P(qt = i|o1, o2, ..., oT, λ) (A.8)

We can express γ in terms of α and β:

γt(i) = P(Being in state si at time t given o1, o2, ..., oT)

=
P(Being in state si at time t and having observed o1, o2, ..., ot, ot+1, ..., oT)

P(Having observed o1, o2, ..., oT)
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=
αt(i)βt(i)

P(o1, o2, ..., oT)
=

αt(i)βt(i)

∑N
i=1 αt(i)βt(i)

(A.9)

Thus, we can find the most probable state at time t by finding the i that gives the
highest γt(i). The most probable path can be found by doing this for every t.

However, this method makes the mistake of forgetting that we are dealing with a
sequence of states. Finding the most optimal state at each time step individually
does not make sense, since there is a probability of going from one state to another
at a given time step. A better criterion is to find the single best state sequence
Q by maximizing P(Q|o1, o2, ..., oT, λ). A method that does this is the Viterbi
algorithm.

To explain the Viterbi algorithm, we need one more definition:

δt(i) = max
q1,q2,...,qt

P(q1, q2, ..., qt = i ∧ o1, o2, ..., ot|λ) (A.10)

δt(i) is the state sequence q1, q2, ... that ends in state qt = i that has the highest
probability of occurring when taking a series of observations into account. In the
same way as when defining α, it is easy to find δ1(i):

δ1(i) = max πiP(o1|q1 = i) (A.11)

By recursion, we find

δt(i) = max
j

[
δt−1(j)aij

]
P(qt = i|ot, λ) (A.12)

We now have a formula that gives us the probability of the most likely path up to
some time step t. The formula is recursive, i.e. to calculate for some t, we need the
calculations done at time t− 1. The Viterbi algorithm simply starts at t = 1, finds
the state i that maximizes the expression, then continues to t = 2, 3, .... At each
step, it keeps track of the states found. At termination, when t = T, it has the most
optimal path. More precisely:

1. Init: Find i that maximizes δ1(i). Store the i as q1.

2. For t = 2, ..., T, find the i that maximizes δt(i). Store the i as qt.

3. When t = T the algorithm terminates, and the most probable state sequence
is stored in q1, q2, ..., qT.

This solves problem 2.

Problem 3 This is the most difficult problem to solve. Now, none of the
parameters of the HMM are known, all we know is o1, o2, ..., oT, and we want to
find the parameters that make the set of observations most probable. I.e., we want
to find λ = (A, B, π) that maximizes P(O|λ).

There is no exact analytical solution to this problem, only numerical solutions, and
they tend to get stuck at local optima [31]. Thus, finding a method that converges to
a local optima is our best chance. Several methods have been developed, some using
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gradient techniques to iteratively find a local optimum. The Baum-Welch method
is an iterative algorithm that uses the Expectation−Maximization (EM) algorithm
to iteratively find a local optimum. This method will be described here.

First, we define ξt(i, j), which is the probability of being in state si at time t and
state sj at time t + 1:

ξt(i, j) = P(qt = si ∧ qt+1 = sj|O, λ) (A.13)

This probability can also be expressed in terms of the α and β functions defined
earlier. Recall that αt(i) gave us the probability of having a series of observations
up to time t and then ending in state si at time t, while βt(i) gave us the
probability of starting in state si at time t, then having a series of observations.
Thus αt(i)aijβt+1(i)bj(ot+1) will be the probability of having a set of observations
o1, . . . , ot, being at state si at time t, going to state sj at time t + 1 and then having a
set of observations the rest of the time left. If we divide by the probability of having
the whole set of observations, we get the probability of only being in state si at time
t and being in state sj at time t + 1:

ξt(i, j) =
αt(i)aijβt+1(i)bj(ot+1)

p(O, α)
(A.14)

Remember that we defined γt(i) as the probability of being in state si at time t. We
can now define γt(i) in terms of ξt(i, j) by summing over all the possible cases
where we are in state si at time t and then go to state sj:

γt(i) =
N

∑
j=1

ξt(i, j) (A.15)

This might seem to be an unnecessary and complicated definition, but it will turn
out to be useful. What we would like to do is to estimate the probability of going
from state si to state sj for all possible i and j (these are the aijs). The definition of ξ
is useful for this, all we really need to do is to sum all values of t to get an estimate
of the number of times we go from state si to sj. If we divide by the expected total
number of times we are in state si, we get the probability of going from si to sj.
This can simply be found by summing γt(i) for all values of t. Thus an estimation
of aij is:

āij =
expected number of transitions from si to sj

expected number of times in state si
=

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

(A.16)

We would also like to know the expected number of times we are in state si for any
given i, as this will be an estimation of πi. This is simply γ1(i), so:

π̄i = γ1(i) (A.17)

In a similar way, we find an estimation for bi(k):

¯bi(k) =
expected number of times in state si when observing the observation k

expected number of times in state si
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=
∑t∈{1,...,T|ot=k]} γt(i)

∑T
t=1 γt(i)

(A.18)

We now have a formula for estimating the parameters, but they all require that we
already know the parameters, which seems very counter-intuitive. However, Baum
et al. [32] showed that when guessing some parameters λ = (A, B, π) and using
them to estimate new parameters λ̄ = (Ā, B̄, π̄) by using the above formulas,
the new set of estimated parameters will either give the same or a higher value of
P(O|λ). Thus, by doing this iteratively, we will converge to an estimated λ̄ that
gives a local optimum of P(O|λ). The proof for this is beyond the scope of this
text.
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Appendix B

Source code and analysis
details

B.1 Source code

All the scripts used in this thesis and the source code for the tools created in the
Genomic HyperBrowser can be downloaded from the galaxy page found at https:
//hyperbrowser.uio.no/3dml/u/ivar/p/master. This galaxy page also contains our
domain sets and the history elements for most of the analyses that have been
performed.

The following is an overview of the main files in the source code:

• FindTads.py is the main file for the Find TADs tool.

• VisualizeTads.py is the main file for the Visualize TADs tool.

• AnalyzeTads.py is the main file for the Analyse TADs tool.

• FindTadsInChr.py contains the class FindTadsInChr that can be used to load
Hi-C data, find TADs, visualize TADs and save TADs to a bed-file. This class
is used by the Find TADs tool.

• html_visualization.py contains methods for printing the html that shows the
plots in the Visualize TADs tool.

• Analysis.py contains the class Analysis that performs most of the TAD
analyses.

• ctcf_analysis.py is the script used for performing the CTCF analysis.

• generate_domain_borders.py is a small script that generates domain borders
as segments from the beginning of domains.

• domain_consistency.py performs the consistency analysis (Section 4.4.7).

• simulate_data_matrix.py simulates the Hi-C data matrices shown in Section
3.3.6.
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B.2 Algorithm for choosing a consensus set with optimal
average domain score

In Section 3.4.1 we select the non-overlapping set of domains from the hierarchical
set that has the maximum average domain score among all sets of non-overlapping
domains1.

The following algorithm finds this set:

1. Begin the removal process at the second deepest level that contains domains.

2. For every domain on this level: compute the average score for all non-deleted
subdomains.

(a) If this average score is higher than the domain score: delete the domain.

(b) If not: delete all the subdomains and keep the domain.

3. Carry out step 2 and 3 again at the next (less deep) level until there are no
more levels.

Proof. It can be shown through induction that the process above removes domains
so that the remaining domains are non-overlapping and have the optimal average
score among all sets of non-overlapping domains. First, we show that the kept
domains at the highest and second highest levels are the optimal set after the first
iteration of the algorithm. This is true since there are only two possible choices
for every domain at the second highest level — either the domain is kept or its
subdomains are kept. After the choice has been made, the average domain score
is increased among the domains at the two highest levels. Also, no domains in the
two highest levels will overlap, since the only possibility for overlap is between
domains on the second highest level and their respective subdomains. The next step
of the proof is to show that if the criterion holds at a given level n, then it must
hold for one level less deep, n− 1, after step 2 has been run on this level. After
the process at level n− 1, no domains at that level will overlap with domains at
higher levels, since the domain can only overlap with subdomains, and either all
subdomains of the domain are removed or the domain itself is removed. Also, the
average domain score will increase as much as possible after the process, since if
subdomains of a domain at the level have a lower average score than the domain
itself, they will be removed in favour of the domain (increasing the score as much
as possible). If not, the domain will not be included (the score stays the same). It
follows from induction that the set of maximum average score will be obtained after
running step 2 on all levels, from second highest to lowest.

1An implied criterion is that as many domains as possible are chosen for a set to be valid, i.e. a
set consisting of one domain is not valid, since more domains can be included.

8



B.3 Liftover analysis

To create domain borders, the following script (generate_domain_borders.py) was
run. The script writes domain borders to a bed-file, by taking the beginning position
of domains from a bed file containing domains.

for filename in [’somefile’]:
f = open(filename + ’.bed’)
f2 = open(filename + ’_borders.bed’, ’w’)
for line in f.readlines():

d = line.split()
end = str(int(d[1]) + 40000)
f2.write(d[0] + " " + d[1] + " " + end + "\n")

f.close()
f2.close()

These bed files containing border segments were then lifted using the UCSC liftover
tool2 [25]. Genomes mm9 and hg18 were used and minimum ratio of bases that
must remap was set to 0.1.

The resulting files were all uploaded to the Genomic HyperBrowser, and can be
found in the history Liftover analysis on the galaxy page for this thesis.

B.4 Hi-C data used

The Hi-C data used in this project are from Ren Lab. The data are available for
download from the websites of Ren Lab: http://chromosome.sdsc.edu/mouse/
hi-c/download.html, and are the same data used by Dixon et al. and Filippova et
al.

We used the normalized data matrices, which have gone through a bias correction
process described by Yaffe et al. (2011) [35]. We chose to remove the diagonal, i.e.
set all numbers on the diagonal to zero, since we believe that these numbers have
high variance and mostly represent one-dimensional interactions as a result of the
spatial closeness of loci inside the same bin.

B.4.1 Normalizing Hi-C data

We created a version of the Hi-C data where interactions in the Hi-C data matrix
were normalized by the distance from the diagonal. In this normalized interaction
matrix, the mean interaction frequency between pairs of bins with the same distance
from the diagonal is 0.

The normalization was performed by subtracting µd from every interaction and
then dividing by sd, where µd is the mean and sd is the standard deviation of the

2https://genome.ucsc.edu/cgi-bin/hgLiftOver
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interaction frequency between pairs of bins with distance d, i.e. bins that are d bins
away from each other on the genomic sequence:

Āi,j =
Ai,j − µj−i+1

sj−i+1
(B.1)

As discussed in Section 3.3.7, we do not include rows/columns that sum to zero,
since these most likely represent missing data. The following Python function takes
an interaction matrix and normalizes it according to the formula above:

def normalize_data_matrix(data_matrix):

d = data_matrix.copy()
M = len(d)

# Compute the average and standard error of
# interactions between pairs of same distance
avgs = np.zeros(M)
stds = np.zeros(M)

# Do not include colums/rows in the matrix that
# sum to 0 when computing the mean/standard error
# Matrix is symmetrical around
# diagonal, so row_i = col_i
nz = np.sum(d, 0) > 0 # will contain 1 where

# columns/rows are non-zero

for i in range(1, M):
sub_diagonal = np.diag(d, i)

# Remove the elements from the
# columns that are zero
# (A zero row hits at the row number)
# (A zero column hits at the column
# number minus the diagonal offset)
nz_column = nz[i:]
nz_row = nz[0:len(sub_diagonal)]
# nz_tot contains 1 for bins that represent
# non-zero cols/rows
nz_tot = nz_column + nz_row

avgs[i] = np.mean(sub_diagonal[nz_tot])
stds[i] = np.std(sub_diagonal[nz_tot]) \

/ np.sqrt(len(sub_diagonal[nz_tot]))

# Normalize data based on these avgs and stds
for i in range(0, M):

for j in range(0, M):
if j != i:

# Hack if std is zero (shouldnt happen)
if stds[abs(i-j)] < 10e-10:

d[i, j] = (d[i, j] - avgs[abs(i-j)])
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else:
d[i, j] = (d[i, j] - avgs[abs(i-j)])\

/ stds[abs(i-j)]

# Round to four decimals to save RAM/disk space,
# this is the precision of the original data
return np.round(d, 4)

B.5 Normalizing for selection criterion — globally vs.
locally

An important part of the selection criterion discussed in Section 3.3.6 is how
interactions between two pairs of bins with different linear distance3 are compared.
Most areas will interact more with themselves than with neighbouring areas, simply
because bins naturally interact more with bins that are closer on the linear genome.
Thus, we reasoned that some kind of normalization should be done. What we
want to know is whether a given domain interacts more with itself than with
its brother domain, and whether this is only because the bins in the domain are
closer to each on the linear genome than to the bins in the brother domain. To
do this, it seems reasonable to measure the sum of intra-domain and inter-domain
from the normalized interaction matrix (Section B.4.1). This would be a global
normalization, since data across the whole chromosome (or possible genome) are
used.

We performed some tests of the selection criterion using this normalized data matrix
when computing the sum of intra- and inter-domain interactions. We will use an
example from the real data matrix to illustrate one of the problems that occurred
when using global normalization. Figure B.1 shows the data matrix of a mother
domain selected by the method. One would expect the area from bin 1370 to
bin 1415 (or to the end of the matrix) to be a domain that will be selected, since
that area seems to interact more with itself than with the other part of the mother
domain. However, when normalizing interactions globally, this area has higher
average interaction frequency to the other part of the mother domain than it has
with itself, and is not selected as a domain. Note from the globally normalized
matrix in Figure B.1 (b) that interactions close to the diagonal are weak. This is
probably because many small and dense domains are found as dense submatrices
close to the diagonal globally. Since this domain does not contain such small and
dense domains, the globally normalized intra-domain interaction frequency gets
lower, even though lacking such subdomains has nothing to do with the recognition
of the domain as an independent domain.

Another problem is that the global average interaction frequency decreases
approximately like a negative exponential function of the distance from the diagonal
of the data matrix, whereas the average interaction frequency within a domain does

3The distance between the bins positions on the genomic sequence
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(a)

(b) (c)

Figure B.1: Heat map of a part of the data matrix: Raw matrix (a), globally normalized
matrix (b) and locally normalized matrix (c).

not decrease as quickly4. The negative exponential nature of the global average
is a result of averaging over many domains, some dense and some less dense. If

4Visual inspection of the data for domains shows that the interaction frequency does not decrease
much towards the end of domains. This is also seen in the globally normalized matrix in Figure B.1
(b), where the outer part of the domains have higher interactions than elsewhere.
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a domain has a homogeneous set of interactions with itself, then lowering these
interactions would exponentially increase the difference to what is globally expected.
Thus, when lowering all interactions in an area, the new inter-domain interactions
would deviate less from what is globally expected than intra-domain, since these
are closer to the diagonal. The result can be that in a less dense area of the genome,
intra-domain interactions are given too small weight when compared to what is
expected globally.

All this indicate that some other kind of normalization should be done when
comparing intra-domain interactions with inter-domain interactions in the selection
criterion. Another approach is to assume nothing about what is expected globally
— instead we only look at the local interactions. Given a mother domain, we
want to see if one part of it interacts more with itself than with the other part,
only based on the known interactions within the mother domain, i.e. doing local
normalization. With this approach, every interaction is measured according to all
other interactions between pairs of bins having the same distance. The important
effect is that interactions far away from the diagonal are given the same weight as
interactions close to the diagonal.

We conclude that local normalization is better than global normalization when
evaluating whether a domain interacts more with itself than with its brother domain,
taking spatial closeness on the genomic line into account.
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