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Abstract 
Oxidative stress can cause damage to lipids, protein and DNA and thereby contribute to 

functional decline and the development of a variety of diseases. Environmental pollutants and 

a range of other stressors, including nutritional stress may induce reactive oxygen species that 

if not counterbalanced by the cells antioxidant defense systems will lead to oxidative stress. 

Precise and robust biological markers for oxidative damage are therefore important for 

mapping out the exact causes of these conditions. A variety of such markers have been 

established, including lipid peroxidation generated malondialdehyde and DNA oxidation 

markers such as 8-OHdG (8-hydroxy-2’deoxyguanosine). However, several of these markers 

suffer from artefactually generated oxidative lesions during sample preparation, especially 

when using archival material.  

In this thesis several markers of lipid peroxidation and protein oxidation were established and 

applied to cell cultures and in a dietary-induced obesity mouse model. Goals were to establish 

HHE and HNE- (omega-3 and omega-6 derived lipid peroxidation products) protein adducts 

and the usage of a reporter molecule (C11-bodipy) for measuring lipid peroxidation. Protein 

carbonyl detection via the DNPH-labelling procedure was also investigated as a marker of 

protein oxidation. The effects on lipid peroxidation by supplementing cell lines with different 

concentrations of the fatty acids palmitic acid (PA, saturated), docosahexaenoic acid (DHA, 

omega-3) and arachidonic acid (AA, omega-6) were studied. Also, the subcellular localization 

of HHE- and HNE adducts was examined. Moreover, oxidative stress in a dietary obese 

mouse model which received 45% of its total calories from fat compared to normal diet (10% 

of its total calories from fat) over six weeks was investigated.   

 

We successfully established HNE protein adducts as a marker of lipid peroxidation both by 

immunocytochemistry and using slot blot analysis. Due to time limits, the development of 

HHE adducts procedure was not completed. HNE adduct analysis by a slot blot assay was 

sensitive enough to detect differences between young and adult mice and is therefore 

considered a suitable method to examine oxidative stress in archival tissues. The 

establishment of protein carbonyl measurement by using immunocyto- and histochemistry 

were found to have relatively poor sensitivity due to background labeling most likely from 

other cellular molecules. However, an ELISA-based method to measure protein carbonyls in 

plasma plasma and epididymal fluid was successful. The reporter assay using the C11-bodipy 

to measure lipid peroxidation in cultured cells also showed good performance.  

 

Our investigation showed that supplementing cultured cells with fatty acids (especially DHA) 

gives a protective effect from oxidative stress, possibly through acting as oxygen radical 

scavengers. Omega-3 and omega-6 fatty acids did not seem to give an increase in HNE and 

HHE protein adduct formation after cumene hydroperoxide induced lipid peroxidation in 

cells. Fluorescent microscope investigation of subcellular localization showed that HNE 

adducts are partly localized with mitochondria. Exposing mice to a high fat diet over six 

weeks seems to protect against the formation of HNE adducts in testis, contrary to our 

expectations. 
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1 Introduction 

1.1 General background on oxidative stress and oxidative damages 

All organisms are continuously being exposed to reactive oxygen species. Unbalanced 

reactive oxygen species are known to cause oxidative damage to cellular macromolecules, 

which may eventually lead to the development of diseases. Biological markers for oxidative 

damage are therefore important in order to detect such damages, and numerous detection 

methods of oxidative damage have been developed. Examples include the lipid peroxidation 

derived malondialdehyde and the quantification of protein carbonyls which have been 

extensively used. 

1.1.1 Reactive oxygen species and their toxicity 
Cells are continuously exposed to endogenous or exogenous sources of reactive oxygen and 

species (ROS), including the production of ROS by mitochondria and by ionizing radiation. 

Some ROS function as signaling molecules. For example, cells that are exposed to hypoxia 

(low concentrations of oxygen) lead to an increased mitochondrial production of ROS, 

including hydrogen peroxide (H2O2). H2O2 then acts as a messenger and regulates cellular 

responses to hypoxia (Chandel et al., 1998). However ROS may also inflict damage to cellular 

macromolecules (e.g. nucleic acids, proteins and lipids) by reacting with and thereby altering 

or destroying the macromolecule structure. This process can happen in a variety of ways, by 

breaking lipid chains, site-specific amino acid modification of proteins, enzyme inactivation, 

strand breakage and modifications of DNA to mention some examples. The hydroxyl radical 

(HO•) is the most potent radical and may attack cellular macromolecules by abstracting a 

hydrogen atom. The potential harmful effects of ROS are under normal conditions regulated 

by antioxidant systems in the cell. 

 

1.1.2 Antioxidants, oxidative stress and diseases 
Antioxidants are crucial for detoxifying ROS, and they are either enzymatic or non-

enzymatic. The enzymatic antioxidant defense includes superoxide dismutase (SOD) that 

converts O2
•- to H2O2 and glutathione peroxidase (GPx) and catalases which can detoxify 

H2O2. Non-enzymatic antioxidants include vitamin C and E, glutathione and melatonin, which 

reacts directly with ROS and thereby detoxifies them. If the concentrations of ROS 

overwhelm the antioxidant defense systems in a cell, this imbalance is called oxidative stress 

(Halliwell, 2007). This condition can occur due to an increase in ROS or as a decrease in the 

cellular defense, or a combination of the two. ROS may also initiate oxidation of lipids, a 

process called lipid peroxidation. If this process is not stopped, more ROS are produced as 

well as other reactive molecules (e.g. reactive aldehydes) which ultimately cause more 

oxidative damage to cellular macromolecules. Many types of oxidative damages are 

continuously repaired, but oxidative damages are still thought to be a major cause of cellular 

functional decline and aging (Hayflick, 2007).  

 

Oxidative stress is related to a number of medical conditions (figure 1.1) including obesity, 
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cancer and neurodegenerative diseases such as Alzheimer’s and Parkinson’s (Beal, 2002). A 

variety of stressors, including chemical exposures and nutritional stress, have been shown to 

induce oxidative stress; to explore the role of oxidative stress in toxicity and disease 

development robust markers are required.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Biological markers of oxidative stress 

A biological marker may be defined in various ways, and has been defined by the National 

Institutes of Health (NIH) working group as “A characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacological responses to therapeutic intervention.” (Atkinson A.J. et al., 2001). An ideal 

biological marker is specific, predictive, sensitive, accessible and robust. ROS have extremely 

short half-lives and are difficult to measure, and is therefore generally not suitable as 

biological markers (Kohen & Nyska, 2002). Many different biological markers of oxidative 

stress have been developed over the last years regarding oxidation of lipids, proteins and 

DNA, and some of them are shown in table 1.1. Examples include thiobarbituric acid reactive 

substances (TBARS) assay which measures malondialdehyde (MDA, a lipid peroxidation 

end-product), protein carbonyls (oxidative damage to proteins) and 

8-hydroxy-2’–deoxyguanosine (8-OHdG) (DNA damage). However, there are weaknesses 

concerning many of these markers. For example, the TBARS assay measures MDA, but as 

there are other sources of MDA than lipid peroxidation the test is not specific (Del Rio et al., 

2005). This assay also involves boiling the tissue and therefore potentially introduces false 

positives. 8-OHdG as a marker for DNA oxidation also has disadvantages. DNA is 

Oxidative 

stress 

Cancer 

Cardiovascular 
diseases 

Cataracts 

Stroke 

Diabetes 

Obesity 

Neuro-
degenerative 

diseases 

Figure 1.1 Conditions related to oxidative stress  
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susceptible to oxidation, and laboratory techniques tends to induce oxidation of DNA by 

ambient oxygen concentrations and transition metal ions which potentially causes false 

positives when applying 8-OHdG as a marker (Valavanidis et al., 2009). 

 

 

 

Using modifications of proteins as biological markers may be beneficial due to the fact that 

proteins are quite stable, and as a result, the risk of inducing oxidative artifacts is generally 

low. Moreover, the abundance of proteins found in plasma, cells and tissues is generally 

higher than DNA, RNA and lipids. Sensitive assays that can measure under which conditions 

oxidative damages to proteins (i.e. protein carbonyls) and lipid peroxidation are in demand, 

and establishing such assays was a part of this assignment, including 4-hydroxy-2-nonenal 

(HNE) and 4-hydroxy-2-hexenal (HHE) as markers of lipid peroxidation and protein 

carbonyls as markers of protein oxidation.   

1.3 Protein carbonyls 

Carbonyls are a functional group consisting of a carbon atom that has a double bound to an 

oxygen atom. This means that aldehydes, ketones, carboxylic acids, esters and amides are all 

carbonyl groups. Oxidation of certain amino acids within proteins can result in formation of 

protein carbonyls (PCs) which are disturbers of protein function (Dalle-Donne, Rossi, et al., 

2003), either by modifying their structural function or by causing loss of catalytic activity. 

Oxidation can arise from direct oxidation of most protein residues or with secondary 

oxidation products such as HNE or HHE (Beal, 2002). Protein carbonyls have been linked up 

Biomarker Advantages Disadvantages 

Isoprostanes (IsoPs) Can be detected in various samples (serum, 

urine). 

Current methods of quantification are 

impractical for large-scale screening 

(GC/MS) or require further validation 

(immunoassay kits). 

Malondiealdehyde (MDA) Technically easy to quantify 

spectrophotometrically using the TBARS 

assay. ELISA kits to detect MDA also have 

good performance. 

TBARS assay is non-specific and 

sample preparation can influence 

results. 

ROS-induced changers to 

gene expression 

The expression of several genes may be 

measured simultaneously using microarray 

technology.  

Microarray technology can be manually 

and computationally expensive. 

Serum antioxidant capacity Commercial kits available to measure 

antioxidant capacity. Can be utilized on 

frozen samples. 

Antioxidant activity in serum may not 

reflect microdomains important to the 

pathogenesis of relevance.  

Protein carbonyls Chemically stable and therefore easily 

detected. ELISA kits are available. 

Protein carbonyls are naturally 

abundant, which may lead to sensitivity 

issues  

8-hydroxy-2’-

deoxyguanosine (8-OHdG) 

Sensitive marker of DNA damage. Sample preparation can influence result 

by oxidation of DNA 

Table 1.1 Biological markers of oxidative stress. The table summarizes advantages and 

disadvantages of various biological markers of oxidative stress. Modified from Ho et al., (2013) 
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to as a marker of aging (Nyström, 2005) and it has been shown that protein carbonyl content 

increases drastically in the last third of the lifespan, reaching a level where averagely one out 

of every three protein molecules has a protein carbonyl modification (Stadtman, 1998). 

Protein carbonyls has also been shown to be involved in diseases such as Parkinson’s and 

Huntington’s disease (Beal, 2002). Due to their chemical stability they are also good markers 

of oxidative stress. Protein carbonyls can be marked with 2,4-dinitrophenylhydrazine (DNPH) 

which binds to carbonyls associated with aldehydes and ketones, but not with carbonyls such 

as esters, amides and carboxylic acids. Aldehydes and ketones are derivatized by DNPH, 

which leads to the formation of the stable 2,4-dinitrophenyl (DNP) hydrazone product 

(Alamdari et al., 2005). Antibodies have been developed to bind to DNP.  

1.4 Lipids and lipid peroxidation 

1.4.1 Fatty acids 
The intake of polyunsaturated fatty acids (PUFAs) plays an important role for human health. 

For instance, the intake among children is thought to be beneficial for brain development 

(Uauy et al., 2001). However, under conditions of oxidative stress PUFAs are particularly 

vulnerable towards lipid peroxidation, a process generating multiple reactive aldehydes, 

forming undesirable adducts on biomolecules such as proteins and nucleic acids (Pizzimenti 

et al., 2013). If the adducts are not repaired it may lead to protein dysfunction and DNA 

mutations.  

Fatty acids are molecules consisting of a carboxyl group and a long hydrocarbon chain. 

They may be saturated having zero double bonds in their hydrocarbon chain, or unsaturated 

with one (mono) or several double bonds (poly). PUFAs are important components of the 

cellular membrane. They are important for membrane fluidity, may act as hormone 

precursors, or be modified to make signaling molecules (Spector, 1999).  

In cellular systems, fatty acids are almost always bound to diglyceride, a phosphate group and 

an organic molecule such as ethanolamine or choline, in which they are called phospholipids. 

Phospholipids are incorporated into all cellular membranes, where they are formed as lipid 

bilayers. These phospholipids may also act as signaling molecules within the membrane. For 

example, phosphatidylinositol is concentrated on the cytosolic side of the membrane and can 

be phosphorylated by various lipid kinases, such as phosphoinositide 3-kinase. Moreover, 

fatty acids are important as an energy source because they can be broken down through a 

process called β-oxidation within the mitochondrial matrix. Reactive oxygen species can 

initiate lipid peroxidation which generates toxic secondary species that react with cellular 

macromolecules. The species formed depend on the type of lipid present in cellular 

membranes, but polyunsaturated fatty acids (PUFAs) are often affected due to the presence of 

multiple double bonds. Lipid peroxidation is split into three distinct phases (only two phases 

are shown in figure 1.2):  initiation, propagation and termination (Catalá, 2006). In the 

initiation phase a ROS abstracts a hydrogen atom from the fatty acid, creating a radical. The 

fatty acid radical is an unstable molecule, which may react with molecular oxygen to form a 

peroxyl radical. The peroxyl radical can abstract a hydrogen atom from a free fatty acid 

resulting in a fatty acid peroxide and a new fatty acid radical. This is a chain reaction, which 
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proceeds until the lipid peroxyl radical reacts with another radical, forming a non-radical. The 

mechanism described in figure 1.2 valid for any PUFA, including arachdonic acid (an omega-

6 fatty acid) and the fish oils docosahexaenoic acid and Eicosapentaenoic (both omega-3 fatty 

acids acid). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Lipid peroxidation of 

arachidonic acid, but the mechanism is 

applicable to any polyunsaturated fatty 

acid (PUFA) (Catalá, 2010). 
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The mechanism described in figure 1.2 is valid for any PUFA, including arachdonic acid (an 

omega-6 fatty acid) and the fish oils docosahexaenoic acid and Eicosapentaenoic (both 

omega-3 fatty acids acid). The lipid peroxidation of DHA and AA may lead to the formation 

of the products HHE (4-hydroxy-nonenal) and HNE (4-hydroxy-2-hexenal) (figure 1.3). 

 

 

 

 

 

 

 

 

 

 

 

1.4.2 4-hydroxynonenal and 4-hydroxy-2-hexenal (HNE and HHE) 
HNE has since its discovery decades ago been studied extensively and is today considered an 

important biological marker for lipid peroxidation. HNE is an α,β-unsaturated aldehyde and is 

the main oxidation product of the omega-6 polyunsaturated fatty acids AA, and was identified 

as a cytotoxic product in 1980 (Benedetti et al., 1980). Over the last years a significant 

correlation has been shown between increased HNE content and several diseases, including 

neurodegenerative diseases such as Alzheimer’s (Butterfield et al., 2013) and Parkinson’s 

(Yoritaka et al., 1996), metabolic syndromes (Singh et al., 2009) and cardiovascular diseases 

(Vindis et al., 2006). HNEs is also involved in cancer, but studies have shown both increased 

and decreased levels of HNE in cancer tissue compared to healthy tissue (Marquez-Quiñones 

et al., 2010; Oberley et al., 1999).  

HHE is also an α,β-unsaturated aldehyde and is the main oxidation product of the omega-3 

polyunsaturated fatty acids DHA (Van Kuijk et al., 1990) and EPA in some tissues 

(Nakagawa et al., 2014). It forms adducts in the same way as HNE, but has been far less 

studied. Even so, elevated levels of HHE has been found in Alzheimer’s disease (Bradley et 

al., 2012), impaired resistance to tuberculosis (Bonilla et al., 2010). Moreover, induced 

photooxidative retinal damage found a positive correlation between the level of the 

docosahexaaenoic acid, the extent of lipid peroxidation and generation of HHE, and the 

severity of the retinal damage (Tanito et al., 2009). HHE has also been shown to induce 

increased transcription rate of NF-κB (J. Y. Lee et al., 2004), which is a gene that is involved 

in stress-related responses. Combined, these studies show that intake of omega-3 may have 

Docosahexaenoic acid (DHA) 

4-hydroxy-2-nonenal (HNE) 4-hydroxy-2-hexenal (HHE) 

Arachidonic acid (AA) 

Figure 1.3 Docosahexaenoic acid (DHA) and arachidonic acid (AA) and their lipid 

peroxidation derived aldehydes HHE and HNE, respectively (Catalá, 2009) 
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some deleterious effects that in some cases may overcome the benficial effects usually 

attributed to omega-3.  

 

By increasing omega-3 and omega-6 intake, the PUFA-content of the cellular membranes also 

increase, at least in some organs and cell types (Baylin et al., 2002; Sun et al., 2007), thereby 

possibly making the cells more susceptible for lipid peroxidation and giving rise to products 

such as HNE and HHE.  

1.5 Dietary fatty acids and obesity 

There has been raised concern about the fatty acid diet in modern civilization. Humans 

evolved as hunters and gatherers on a diet with a ratio of omega-6 to omega-3 of 

approximately 1, but this has changed drastically since the agricultural revolution which 

started 10000 years ago. Due to this todays western diet consists of a ratio of around 15:1 

(omega-6:omega-3) (Simopoulos, 2002). Omega-3 and omega-6 are involved in many of the 

same inflammatory pathways, a change in this ratio can therefore have important implications 

since omega-6 is generally known to be pro-inflammatory and omega-3 anti-inflammatory 

(Calder, 2009). A high omega-6:omega-3 ratio may therefore increase pro-inflammatory 

pathways, which may lead to inflammatory diseases such as atherosclerosis (Russel, 1999). 

 

Obesity is an increasing problem in western societies. Approximately half of the adult 

population in the European Union is defined as overweight or obese. Obesity has been shown 

to associate with mild, chronic oxidative and inflammatory stress (Fernández-Sánchez et al., 

2011) and may thus predispose to oxidative stress related diseases. It is of interest to gain 

more mechanistic knowledge on how obesity may predispose to disease and the importance of 

interactions with other stressors, like environmental pollutants.  

1.6 Dietary obese mouse model 

In the dietary-induced obesity model a high fatty diet is applied to induce obesity in mice. 

During the period of high fat diet intake, they gain weight and eventually show higher serum 

levels of cholesterol and free fatty acids (Bakos et al., 2011). If they maintain the high fat diet 

effects on intracellular ROS and mitochondrial ROS as well as DNA damage in sperm are 

eventually observed (Bakos et al., 2011; Duale et al., 2014). The extent of disease 

development and negative effects depends on the time period of high fat diet intake (Palmer et 

al., 2012). After three to four weeks they start gaining more weight than the group that is on a 

standard diet. After eight to nine weeks they develop more serious symptoms of metabolic 

disturbance including insulin resistance (Palmer et al., 2012).  
 
Obese males and diet-induced animals show reduced testosterone levels and impaired sperm 

quality. The increased prevalence of obesity seems to correlate with a decline in in male 

reproductive health (Hammoud et al., 2012), and oxidative stress seems to be an important 

factor in this decline (Saleh & Agarwal, 2002; Tremellen, 2008).   
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1.7 Testis 

Concerns about a potential decline in the male reproductive health have been and has been 

termed the testicular dysgenesis syndrome (Skakkebæk et al., 2001). Reduced sperm count, 

reduced sperm mobility, genital abnormalities and increased prevalence of testicular cancer 

have been observed during the last decades and are believed to be caused by a combination of 

lifestyle and environmental factors (Boisen et al., 2006). The testis has high contents of 

PUFAs, making it susceptible to lipid peroxidation compared to other organs (except for the 

brain). The primary functions of the testis are to produce sperm via spermatogenesis and to 

produce hormones, including testosterone. They are therefore vital for the male reproductive 

system.  

 

 

 

 

The epididymis has three functional regions, the caput, corpus and cauda. The caput 

epididymis is connected to the efferent ducts of the testes, and reabsorption of the fluid 

secreted by rete testis occurs in the caput, and the caput also secretes epididymal fluid. The 

maturation of sperm is a gradual process starting from seminiferous tubes and ending at the 

cauda, in which it is ready to fertilize eggs. Throughout this process the sperm is situated in 

different kinds of organic fluids. The fluids are important for several reasons, including: One 

being that the fluid is important to facilitate movement of the sperm after mating, another 

being the abundance of antioxidants in this fluid. As sperm cells consist of a high content of 

PUFAs they are particularly susceptible to oxidative stress and lipid peroxidation. 

Spermatozoa are protected by various antioxidants and antioxidant enzymes in the seminal 

plasma or in spermatozoa itself to prevent oxidative damage (Oxidation and the spermatozoa). 

Glutathione peroxidase 1 (GPX1) is present in testis, prostate, seminal vesicles, vas deferens 

and epididymis and is important to protect sperm from lipid peroxidation (Vernet et al., 2004). 

Other members of GPX are also important, including GPX5 which is found in both caput and 

Figure 1.4: Anatomy of the human testis. Adapted from Silverthorn et al., (2009) 
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cauda epididymis (Rejraji et al., 2002). Furthermore, other non-enzymatic molecules such as 

α-tocopherol uric acid, glutathione (Halliwell, 2007) is also present in the epididymis. 

Following this, if ROS are abundant in the epididymis they may deplete the antioxidant 

capacity of the epididymal and seminal fluid and therefore make the sperm more vulnerable to 

oxidative stress. The presence of antioxidants is important for the protection of sperm, and it 

has been shown that the supplementation of antioxidants  can improve the sperm quality 

(Yousef et al., 2003).      

1.8 Aims and hypothesis 

Many different stressors, including nutritional stress and environmental pollutants may induce 

oxygen radicals which can lead to oxidative stress if not counterbalanced by antioxidant 

systems. Oxidative stress may cause damage to cellular macromolecules and thereby lead to 

the development of a variety of diseases. Precise and robust biological markers for oxidative 

damage are therefore important for mapping out the exact causes of these conditions.  

The general aims were to gain increased knowledge on: 

 The importance of fat (amount and lipid type) consumption for people's health.  

 If oxidative stress generated damages to proteins contribute to functional decline in 

disease. 

The specific aims were to: 

� Establish the CLPAA (cellular lipid peroxidation antioxidant activity) assay as an 

approach to study role of fatty acids on lipid peroxidation rates in cultured cells 

� Establish antibody-based methods to detect stable oxidative stress protein damage 

markers in cultured cells and tissue: 

� Protein carbonyls  

� HNE and HHE specific protein adducts in cultured cells and archival tissue 

� Apply these markers to study the effects of fatty acids and high fat diet on levels of 

oxidative stress in in vitro and in vivo models. 

The hypotheses were: 

� That supplementing PUFA (Ω-3 and Ω-6 separately) and saturated fatty acids to 

cultured cells would affect the lipid peroxidation (acting as accelerators or 

antioxidants) during induced lipid peroxidation, and that 

� That supplementation with Ω-3 and Ω-6 PUFAs to cultured cells would enhance the 

formation of HHE and HNE protein adducts, respectively. 

� That the levels of these oxidative stress markers would be higher mine on a in high fat 

diet (HFD) than in mice on a control diet.
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2 Material and methods 

 

Recipes for solutions and buffers can be found in A.4, and information about producers and 

products are listed in A.5.  

2.1 Cell cultures 

Ntera-2 cl.D1 (hereafter also referred to as Ntera; obtained from ATCC, USA) is a pluripotent 

human testicular embryonal carcinoma cell line and was used for the initial in vitro 

experiments. The cells originate from a malign carcinoma, and were obtained from a lung 

metastasis belonging to a 22 year old Caucasian male. The cells were grown in Dulbecco’s 

Modified Eagle’s medium (DMEM) (Lonza) with 4.5 g/L glucose, with L-glutamine and with 

sodium pyruvate. 10% fetal calf serum (FCS) (Lonza) along with 1% penicillin and 

streptomycin (Lonza) was added to the medium.  

Mouse embryonic fibroblasts (MEFs) cell lines derived from mid-gestation mouse embryos 

from wild-type mice were utilized for most of the in vitro experiments. The MEF cells were a 

generous gift from Klungland and co-workers at the Oslo University Hospital. These cells 

were grown in DMEM (Lonza) with 4.5 g/L glucose, 10% FCS, L-glutamine (Lonza) and 1% 

penicillin and streptomycin (Lonza).  

 

Preservation of both cell types was done by storage in liquid nitrogen, and they were cultured 

in 75 or 162 cm2 flasks (Corning) at 37°C with 5% CO2 at saturated humidity in a cell 

incubator. For a detailed protocol regarding cell culture management please see the appendix 

A.1 

 

2.2 Preparation of fatty acids and induction of oxidative damage  

2.2.1 Fatty acids 
The fatty acids palmitic acid, docosahexaenoic acid and arachidonic acid all from Sigma-

Aldrich, were diluted in dimethyl sulfoxide (DMSO) to 100 mM under argon gas to avoid 

introduction of oxygen into the tubes, which may lead to oxidation of the PUFAs. The 

solutions were divided into 10 and 20 µL aliquots and then immediately frozen at -80°C. 

They were further diluted when used in cell cultures, and never reached a DMSO 

concentration higher than 0.1%. 

 

2.2.2 Induction of oxidative damage 
Hydrogen peroxide (H2O2, Merck) was used to induce oxidation of proteins and formation of 

protein carbonyls. H2O2 can readily decompose into a hydroxyl radical via the fenton reaction 
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through transition metals, which may attack side chains on proteins leading to the formation 

of protein carbonyls (Stadtman, 1998) 

Cumene hydroperoxide (CumOOH, Sigma-Aldrich) was used to induce lipid peroxidation in 

vitro and it involves hemolytic cleavage of the -O-O-bond, catalyzed by cytochrome P-450, 

producing the cumyloxyl radical which initiates lipid peroxidation by abstracting a hydrogen 

atom from the lipid (Stefek et al., 1992). 

2.3 Mouse model of dietary induced obesity 

 

2.3.1 Animals 
Male mice used in this study were c57BL/bl6NTac (Taconic, USA). The mice were housed in 

air flow IVS racks (Innorack® IVC Mouse 3.5, Innovive) in 100% PET plastic disposable 

cages in a room with 12-hour light/dark cycle, and controlled humidity (55 ± 5%) and 

temperature (20-24°C). Water and diets were given ad libitum.  

2.3.2 Experimental design 

At the age of 5 weeks, the mice were given either a normal diet with 10% fat (SDS 10% water 

fuel energy (AFE) fat 824050; 10% kcal from fat, 20% kcal from proteins, 70% from 

carbohydrate, 4.54 kcal AFE/g), or 45% fat (SDS 45% AFE Fat 824053; 45% kcal from fat, 

20% kcal from proteins, 35% from carbohydrate, 3.68 kcal AFE/g), both obtained from SDS 

Special Diets Services. There were four experimental groups with six individuals per group: 

 

Group 1: Followed a normal diet and exposed to PBS (vehicle) 1 week before sacrifice 

Group 2: Followed a normal diet, and exposed to 61 mg/kg bw glycidamide dissolved in PBS 

1 week before sacrifice 

Group 3: Followed a high fat diet, and exposed to PBS 1 week before sacrifice 

Group 4: Followed a high fat diet, and was exposed to 61 mg/kg bw glycidamide dissolved in 

PBS one week before sacrifice 

 

The animals were humanely sacrificed at an age of 11 weeks. The experiment was performed 

in conformity with the laws and regulations for animal experiments and was approwed by the 

National Experimental Animal Board. This was done prior to this thesis and in this 

assignment we focused on the effects of the high fat diet compared to a normal diet. The 

groups were therefore reduced from four to two, with animals on a high fat diet (group 3) and 

animals on a normal diet (group 1) for the purpose of this thesis, with six individuals from 

each group.  
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2.3.3 Tissue homogenization 
The frozen tissue had been stored at -80°C until use. The tissue samples were fragmented 

using a pestle or tweezers while still wrapped with the aluminum-foils. Approximately 15 mg 

of tissue transferred to the pre-filled tube containing lysis solution (RIPA-buffer). In 

homogenization run using the Tissue Lyser II (QIAGEN) four samples at a time were 

homogenized using a program at 20 hz for 2 minutes. The samples were turned 180 degrees, 

and then ran again at 20 hz for another two minutes. After homogenization the samples were 

transferred to new tubes and then spun down for 20 minutes at 13.4 *g at 4°C. The 

supernatant was transferred to a new 1.5 mL Eppendorf tube (VWR), and 30 µL was pipetted 

to a 1.5 mL Eppendorf tube for protein concentration measurement. The lysates were stored at 

-80°C.  

2.4 Cellular lipid peroxidation antioxidant activity (CLPAA) assay  

ROS may lead to lipid peroxidation as explained in the introduction (section 1.4). The 

CLPAA assay is based on a reporter molecule (C11-bodipy 581/591, Life Technologies) as a 

marker of lipid peroxidation. This is different from many other methods because in contrast to 

measuring lipid peroxidation derived products such as malondialdehyde and HNE it uses a 

reporter molecule. As C11-bodipy is highly lipophilic, it is not found in the cytosol or in the 

nucleus (Drummen et al., 2002). This makes it a specific marker for lipid peroxidation. 

This method indirectly measures the lipid peroxidation rate in live cells. The fluorescent 

probe C11-bodipy dissolves into cellular membranes and upon oxidation it shifts from red to 

green fluorescence (Drummen et al., 2002). The green fluorescence is measured by a plate 

reader at 485/520 nm.  

 

2.4.1 Test of the CLPAA Assay and procedures for induction of lipid peroxidation assay  
An initial experiment was performed in which different inducers of lipid peroxidation were 

tested out, namely the oxidants cumOOH alone or in combination with the iron-containing 

substances hemin (Sigma-Aldrich) and iron sulphide (Sigma-Aldrich). 

After splitting of Ntera-cells they were seeded (~80000) into a 96-well plate with transparent 

bottom (Corning) and were allowed to settle overnight at 37°C. Following this the cells were 

divided into six groups (table 2.1) 

 

 

 

 

 

 

 

Treatment 1 Control 
Treatment 2 50 µM cumOOH 
Treatment 3 50 µM cumOOH + 80 nM hemin 
Treatment 4 50 µM cumOOH + 400 nM hemin 
Treatment 5 50 µM cumOOH + 10 µM iron sulphide 
Treatment 6 50 µM cumOOH + 80 µM iron sulphide 

Table 2.1: Experimental setup for the CLPAA test. The experiment was not repeated (n=1) and had 8 

technical replicates. 
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Cells were washed once in PBS once before incubating for 1 hour with hemin or iron sulphide 

in treatment medium (DMEM without FCS), or only treatment medium at 37 °C. Cells were 

washed once in PBS and then incubated with 5 µM C11-bodipy (Life Technologies) in 

treatment medium for 30 minutes at 37ºC. Cells were washed in PBS once before adding 

Hanks’ saline solution without phenol red (Biochrom) containing 50 µM cumOOH or simply 

Hanks’ for the control. The plate was immediately inserted into a plate reader and read at 

485/520 from the bottom. The reading was stopped after 15 minutes and linear regression 

models were made for each treatment. The experiment was done once with 8 technical 

replicates.  

2.4.2 CLPAA assay – 2 experiments with PUFAs 

 

For the first experiment if preincubation with PUFAs could affect the cellular response to the 

oxidant cumOOH. For the second experiment we investigated if the PUFAs by themselves 

could lead to altered baseline lipid peroxidation without the presence of cumOOH, after 24 

and 48 hours. The second experiment was planned for the Ntera-cells, but due to high passage 

numbers a new batch of cells were needed for the subsequent experiments. However, due to 

problems with the viability and growth of new batches of Ntera cells, we were not able to get 

new cells up and going. We therefore switched to MEF-cells (see chapter 2.1) for the second 

part. 

After splitting the cells they were seeded in 96-well plates with transparent bottom. 80000 

Ntera-cells were seeded out in each well for the first experiment, whereas 20000 MEF-cells 

were seeded out in each well for the second experiment. MEF-cells were seeded out in a 

lower count due to their larger size. All cells were seeded out with supplementation of fatty 

acids (figure 2.1) and allowed to settle and grow for 24 hours. After 24 or 48 hours of 

incubating with fatty acids the CLPAA assay protocol followed as described below in 2.4.3  

 

The treatment locations in the plate were randomized for each experiment. The experiments 

were repeated 4 times each (n=4).  
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Treatment experiment 1 

 

Treatment experiment 2 

24 and 48 hours 

Medium only (control) Medium only (control) 
0.1% DMSO (control) 0.1% DMSO (control) 
0.1% DMSO                            + 50 µM cumOOH 0.1% DMSO + 50 µM cumOOH 
25   µM palmitic acid               + 50 µM cumOOH 25   µM palmitic acid 
50   µM palmitic acid               + 50 µM cumOOH 50   µM palmitic acid 
100 µM palmitic acid               + 50 µM cumOOH 100 µM palmitic acid 
25   µM docosahexaenoic acid + 50 µM cumOOH 25   µM docosahexaenoic acid 
50   µM docosahexaenoic acid + 50 µM cumOOH 50   µM docosahexaenoic acid 
100 µM docosahexaenoic acid + 50 µM cumOOH 100 µM docosahexaenoic acid 
25   µM arachidonic acid          + 50 µM cumOOH 25   µM arachidonic acid 
50   µM arachidonic acid          + 50 µM cumOOH 50   µM arachidonic acid 
100 µM arachidonic acid          + 50 µM cumOOH 100 µM arachidonic acid 

Figure 2.1: Shows the treatments and concentrations cell were exposed to, as well as the two different 

setups. Note that for the second experiment cumOOH was only used as a positive control in one of the 

treatments. 
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2.4.3 Assay protocol 

2.4.3.1Experiment 1 

After 24 hours of incubation with fatty acids the medium was removed by suction and the 

wells were washed with 100 µL PBS once. 5 µM C11-bodipy dissolved in 100 µL treatment 

medium was added to each well and incubated for 30 minutes at 37°C. All solution was 

removed and the cells were washed with 100 µL PBS once. 100 µL of Hanks saline solution 

without phenol red (Biochrom) was added to each well. For all the treatment groups in the 

first part, the Hanks solution contained 50 µM cumOOH, which induces lipid peroxidation. 

The 96-well plate was immediately after inserted into a plate reader (CLARIOstar, BMG 

Labtech) with a reading every three minutes for an hour. The incubator in the plate reader was 

set at 37°C in advance, and the monochromator was adjusted to read at 485/520 nm from the 

bottom. The data was analyzed, making linear regression models for each treatment. The 

slope was used as a marker for lipid peroxidation rate. 

 

2.4.3.2 Experiment 2 

After incubation with the various treatments for 24 hours both plates were incubated with 5 

µM C11-BODIPY in 100 µL treatment medium at 37°C. One plate was left for incubation for 

another 30 minutes, whereas the other one was incubated for 24 hours. After incubations, the 

plates were washed once in PBS and then incubated with 100 µL Hanks saline solution or 100 

µL Hanks saline solution containing 50 µM cumOOH for the positive control for 30 minutes 

at 37°C. The plates were inserted into the plate reader and read at 485/520 nm from the 

bottom. An endpoint measurement was applied for the second part.    

 

2.5 Protein carbonyl detection by immunocyto and histochemistry and 

ELISA 

Protein carbonyls are known markers of oxidative stress as described in the introduction (1.3). 

2,4-Dinitrophenylhydrazine (DNPH) has for several decades been used to mark protein 

carbonyls. DNPH binds to carbonyls of the aldehyde and ketone type, but not with carbonyls 

such as esters, amides and carboxylic acids. Aldehydes and ketones are derivatized by DNPH 

(Dalle-Donne, Rossi, et al., 2003), which leads to the formation of 2,4-dinitrophenyl (DNP) 

hydrazone product. The product is stable, and an anti-DNP antibody may then be applied to 

label DNP.  The objective was therefore to first establish methods for accurately detecting this 

biomarker, and then to use them in vitro and in vivo for detection of oxidative stress. 

 
2.5.1 Protein carbonyl immunocyto- and histochemistry 
Attempts were first done by exposing Ntera-cells to H2O2 by the following procdure: After 

splitting of cells, the remaining cell suspension was divided into 1.5 mL Eppendorf tubes 

containing different doses of H2O2, 50 µM, 100 µM and 500 µM plus a control containing 

only PBS. This was followed by incubation for 30 minutes at 37°C allowing formation of 

protein carbonyls. The cells were centrifuged at 400 * g for 4 minutes. The supernatant was 

pipetted out and an appropriate volume of PBS was added giving approximately 1.5 * 106 
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million cells/mL. 10 µL of the cell suspension (~ 15000 cells) was added to a slide. After 

dehydration on a heated plate, a hydrophobic ring was drawn around all samples with a 

hydrophobic PAP pen (Vector Laboratories). The slides were fixated by placing them in a 

methacarn (methanol, chloroform and acetic acid, 60/30/10) bath for 10 minutes at room 

temperature. Formaldehyde was not used as a fixative since formaldehyde itself is a carbonyl 

and would therefore introduce artificial carbonyls. After this rehydration and antibody 

procedure followed. 

After fixation, the cells were rinsed in deionized water before rehydration in TBS-buffer for 

10 minutes. Slides were then incubated in TBS for 5 minutes 3 times. 100 µL of 10 µM 

DNPH-solution was added to each sample, and slides were incubated for 30 minutes at room 

temperature in the dark, followed by washing of slides in TBS buffer for 5 minutes 3 times. 

100 µL of blocking buffer (Background punisher, Biocare Medical) was added to each sample 

and incubated for 10 minutes at room temperature. Slides were washed in TBS buffer 5 

minutes 3 times. 100 µL of the Anti-DNP (Life Technologies) antibody was added to each 

sample and left to incubate overnight in dark at 4 °C degrees. This antibody is conjugated to 

an Alexa Fluor 488. Samples were washed in TBS buffer for 5 minutes 3 times. Slides were 

rinsed in distilled water and 2 drops of fluorescent mounting media were added to each 

sample. A cover slip was added and the slides were investigated using a fluorescence 

microscope (Axio Observer Z1, Zeiss). 

 

Attempts on using the same principles for in vivo purposes were also done. Liver tissue from 

mice was used to test the method and exposed to different doses H2O2 and fixated in 

methacarn, Tissues were paraffin-embedded (Histo Comp,Vogel) by using Shandon Excelsior 

ES (Life Technologies). After paraffin-embedding the samples, a microtome (Microm HM 

355S, Life Technologies) was used to cut 4 µM thin sections, followed by rehydration and 

antibody procedure (all steps described in details in A.2) and then investigated under a 

microscope. 

 

2.5.2 Protein carbonyl ELISA 
ELISA is an alternative method for measurement of protein carbonyl content and most 

suitable for samples were nucleic acid content is low and was therefore applied in plasma and 

epididymal fluid. The presence of carbonyls in nucleic acids may result in false positive 

staining.  
 
The objective was to evaluate if a high fat diet in vivo could have an effect on protein 

carbonyl content. To investigate this we quantified protein carbonyl content in plasma 

samples as well as from caput epididymis and vas deferens fluid by using an ELISA kit 

(OxiSelectTM Protein Carbonyl ELISA Kit, Cell Biolabs) and following the procedures 

described in the kit. This kit determines the protein carbonyl content by measuring the 

absorbance of each sample and comparing it to a standard curve with known carbonyl content. 

 

Existing plasma, and fluid isolated from caput epididymis and vas deferens were thawed. 
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Protein quantification was done by applying a Lowry Protein assay kit (DC Protein Assay, 

Bio-Rad). For samples taken from the plasma the protein samples were diluted to 20 µg/ml 

PBS (total 100 µL). For samples taken from the vas deferens and caput epididmys the protein 

samples were diluted to 10 µg/ml PBS (total 100 µL). The standard curve was prepared by 

mixing oxidized and reduced BSA in proper ratios in accordance with kit description giving a 

standard ranging from 0 to 7.5 nmol/mg protein carbonyl. 

 

Protein samples or BSA standards were added to a well plate overnight at 4 °C, allowing 

adsorption of the proteins to the plate. DNPH was added that binds carbonyl groups on 

proteins, this allows for an anti-DNP antibody binding to the product, followed by a horse 

radish peroxidase (HRP) conjugated secondary antibody. Absorbance of the secondary 

antibody for each sample is measured and compared to the BSA standards (EL 808 

Aborbance Reader, Bio-Tek) 

2.6 Detection of HNE and HHE protein adducts: 

 

HNE and HHE are known lipid peroxidation derived aldehydes after oxidation of AA and 

DHA, respectively. As these aldehydes are quite reactive, they may rapidly bind and form 

adducts to biological macromolecules such as DNA, proteins and lipids. Our main objective 

was to use monoclonal antibodies towards HNE and HHE protein adducts to identify these 

adducts in vitro by using immunocytochemistry and the anti HNE in vitro and in vivo for a 

slot blot analysis. The monoclonal antibody clone HNEJ-2 was used to mark HNE adducts. It 

is highly specific for HNE histidine adducts, and show little cross-reactivity with HNE lysine 

and cysteine residues (Toyokuni et al., 1995). For HHE adducts the monoclonal antibody , 

clone HHE53 was applied, which is specific for HHE histidine adducts (Yamada et al., 2004). 

The following protocol was based on (Majima et al., 2002), but was modified. The primary 

antibodies (anti-HNE and anti-HHE), secondary antibody, mitotracker and blocking-buffer 

concentration were adjusted in order to achieve high sensitivity and low background staining.    

2.6.1 Induction of HNE and HHE adducts: detection by immunocytochemistry 

After splitting of cells, 15000 cells were seeded out in 1 mL medium in chamber slides and 

incubated overnight at 37°C. Subsequently, the cells were incubated with either 50 µM AA or 

50 µM DHA or without extra fatty acid supplementation. Medium was removed and replaced 

with Hanks solution containing 50 µM cumOOH (the stressor) or simply medium. This was 

left to incubate for 30 minutes at 37°C. Slides were rinsed in PBS buffer, followed by 

incubation with 500 nm of Mitotracker® Red CMH2kROS (Life Technologies) in medium 

for 40 minutes at 37°C to label mitochondria. Cells were fixed in 4% paraformaldehyde 

(Sigma-Aldrich) for 10 minutes by adding 1 mL to each chamber. Slides were rinsed in PBS 

buffer twice. Cells were postfixed with ethanol/acetic acid (95/5,v/v) for 2 minutes by adding 

1 ml to each chamber. Slides were rinsed in PBS buffer twice. 300 µL of 1% BSA containing 

PBS with anti HNE monoclonal antibody (1:100, HNEJ-2, JaICA) or anti HHE monoclonal 

antibody (1:100,HHE53,JaICA) was added and incubated overnight in darkness at 4°C 

degrees. Slides were rinsed twice for 5 minutes with PBS, and then rinsed in PBS once before 

adding 300 µL of 1% BSA containing PBS with the secondary antibody (1:1000, 488-labelled 
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donkey anti-mouse IgG, Life Technologies) and incubated for 30 minutes at room 

temperature in the dark.  

 

Slides were rinsed twice in PBS for 10 minutes. 300 µL of 1 µg/ml Hoechst 33342 (in PBS), 

to label DNA, was added to each slide and incubated for 5 minutes at room temperature in the 

dark. Slides were washed twice in PBS for 5 minutes, and then rinsed once in distilled water 

before adding fluorescent mounting media (S3023 Mounting Medium, Dako). 

2.6.2 HNE adduct detection by slot blot analysis 
The slot blot analysis is a simple method for detection of HNE adducts in plasma and tissue. It 

is quite similar to western blot, but proteins are not separated based on size in a gel 

electrophoresis. Adjusted protein samples are loaded onto a nitrocellulose membrane and 

followed by a blocking step and then an incubation of the primary antibody. After this, the 

membrane is incubated with a horseradish peroxidase conjugated secondary antibody before 

incubation with a HRP substrate which allows signal amplification. 

 

The final protocol used was modified from that in Jørgensen et al., (2014). Different blocking 

buffer concentration and incubation time, as well as different protein and primary antibody 

concentrations was tested out in establishing this method. Directly pipetting samples versus 

using vacuum-assisted filtration was also tested out. A final protocol is presented in the next 

chapter. 

2.6.2.1Slot blot protocol 

Protein concentrations in samples were measured using a Lowry protein assay (DC Protein 

Assay, Bio-Rad). For cellular lysates the protein concentration was adjusted to 0.05 µg/µL, 

and for in vivo lysates it was adjusted to 0.2 µg/µL.  The membrane was pre-vetted in distilled 

water and assembled in the 72-well Bio-dot apparatus (Schleicher & Schull). 100 µL of each 

sample or standard was loaded to the nitrocellulose membrane and drained by vacuum-

assisted filtration. Every following incubation or washing step was done on an orbital shaker. 

The membrane was removed from the apparatus and blocked in 2 % non-fat dry milk in PBS 

for 30 minutes at room temperature. The membrane was rinsed in PBS and then incubated 

overnight with mouse monoclonal antibody (HNEJ-53) directed against HNE-histidine 

epitope diluted 1:500 at 4°C. The membrane was washed in PBS 4 x 5 minutes, and then 

incubated with horseradish peroxidase conjugated secondary antibody 1:2000 for 90 minutes 

at room temperature followed by a second washing of 4 x 5 minutes in PBS. Immune 

complexes were visualized by Supersignal West Dura extended duration substrate (Life 

Technologies) and scanned in Chemidoc™ XRS+ (Bio-Rad) for signal detection. 

 

Band intensity values were obtained using the software Image Lab 3.0.1 (Bio-RAD). 

2.6.2.2 Standard curve and establishment of method 
The standard curve was based on using a 1 µg/µL HNE-BSA (HNE-BSA Control, Cell 

Biolabs) in PBS. 5 µL of this solution was mixed with 9.5 µL 10 µg/uL BSA in PBS plus 

485.5 µL PBS, giving a total amount of 500 µL solution containing 95 µg BSA and 5 µg 

HNE-BSA (5% HNE-BSA), meaning that 5% of the total BSA was HNE-modified BSA. A 
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standard curve was based on this and was further diluted in PBS containing 0.05 µg/µL BSA 

to obtain the standard curve (table 2.2). 

 

Standard HNE-BSA 

(µg/mL)  

1 5 

2 2.5 

3 1.25 

4 0.625 

5 0.3125 

 

 

For establishment of method we wanted to first test the method out on in vivo material in 

which we expected a dose-response relationship. Based on literature research it is known that 

HNE adduct content increase in older individuals: We therefore took brain- and testis samples 

from young (2-3 months) and adult (24-27 months) mice from a previously performed study. 

Due to limitations on sufficient sample sizes, we included mice that had a knockout at the 8-

oxoguanine glycosylase gene which encodes for a DNA repair enzyme and will not be 

mentioned further. Four groups with three individuals for each group (n=3) with total sample 

size of 12 (n=12) was therefore the setup and is summarized in table 2.3 

Age Genotype Number of animals 

Young WT 3 

 KO 3 

Adult WT 3 

 KO 3 

 

 

Samples were homogenized according to the protocol in 2.2.3 and stored at -80°C until 

analysis.  

 

 

 

 

 

Table 2.2: HNE-BSA standard curve. A standard curve ranging from 5 µg/mL HNE-BSA (of 

total BSA) to 0.3125 µg/mL HNE-BSA  

Table 2.3: Number of animals per treatment group. Total number of mice in the 

experimental design was 12, and the sample size was 12 for both testis and brain.  
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2.6.2.3 HNE slot blot on MEF-cells and in testis tissue from the obese mouse model 

Mouse embryonic fibroblast (MEF)-cells were used in the slot blot analysis. After reaching 

confluence (~80%), the cells were split and followed by seeding out 500000 cells to 10 mm 

cell culturing dishes. The following setup was applied: 
 

 

 

 

 

 

 

After seeding out cells in the cell culturing dishes they were allowed to settle and grow for 24 

hours. Medium was withdrawn from the dishes and washed with PBS once. 8 mL with 

Hanks’ solution without phenol red containing 50 µM cumOOH was added to all dishes 

except the control dish, which only received PBS. After 30 minutes of incubation the cells 

were washed with PBS once, and then the dishes were immediately placed one an ice cold 

metal plate. 600 µL of PBS containing a protease inhibitor (cOmplete, Mini, EDTA-free, 

Roche) was added to the dishes, followed by scraping of cells and then pipetting the 

suspension to 1.5 mL Eppendorf tubes.  Cells were lysated by a cycle of freezing the cells in 

liquid nitrogen and then thawing them in a water bath at 37°C. This was done four times. 

Following this the samples were centrifuged at 16000 * g for ten minutes, and the supernatant 

was transferred to a new 1.5 mL Eppendorf tube, frozen in liquid nitrogen and then stored at -

80 °C degrees. 

A HNE slot blot analysis was also applied on testis protein lysates from the dietary obese 

mice model (The mice model is described in 2.2). Due limited availability and followingly 

very low concentration in some of the samples the sample size was reduced from 12 to 8, with 

4samples from the ND-group and 4 samples from the HFD-group. The protein lysates were 

thawed and the slot blot protocol followed. 

 

2.7 Fluorescence measurements and pictures 

 

All pictures were taken by the Axio Observer Z1 microscope (Zeiss). When taking pictures 

from an experiment the same exposure time was applied for every picture, so that pictures 

could be compared. When processing the pictures it was set a cutoff value based on the 

immunochemical controls, a control without primary antibody (but with secondary antibody), 

and a control without secondary antibody (but with primary antibody). For example, if either 

of the controls showed fluorescence intensity up to 700 of the tissue, 700 was set as a cutoff. 

Dish 1 Control 

Dish 2 Control + cumOOH 

Dish 3 50 µM arachidonic acid + cumOOH 

Dish 4 75 µM   arachidonic acid + cumOOH 

Dish 5 100 µM arachidonic acid + cumOOH 

Table 2.4: Experimental setup for the slot blot analysis. The experiment was repeated three 

times (n=3).  
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For Hoechst 33342 (staining of nuclear DNA) and mitotracker (staining of mitochondria), 

exposure time was adjusted for each picture take, and a cutoff value was based on non-

specific staining and auto fluorescence. 300 and 400 were set as cutoff values for Hoechst 

33342 and mitotracker, respectively. All immunocyto- and histochemical controls are found 

in appendix A.3 

 

The fluorescence intensity measurement on protein carbonyls were obtained by circling in 

five random cells and measure the mean intensity of each circle. This was done on four 

pictures for each treatment, giving a total of 20 mean intensities for each treatment. 

 

All pictures were analyzed by the software ZEN 2011. 

2.8 Statistics  

All boxplots shown in this thesis the band inside the box represents the median, the bottom 

and top box are the first and third quartiles, respectively. Dots are outliers outside the 

interquartile range. The interquartile range is defined as the difference between the third and 

the first quartile. The whiskers extend to the most extreme data point unless it exceeds over 

1.5 times the interquartile range. 

 

All statistical analysis was done in R 3.0.2 and p-values below 0.05 were accepted as 

statistically significant.  

 

Homogeneity of variance among the residuals between the different groups were controlled 

by plotting the residuals of the model and a normal distribution was checked by plotting a Q-

Q plot, which plots the quantile data from the model against theoretical quantiles that are 

normal distributed. Linearity between the two quantiles suggests normal distribution. Log- or 

square root transforming was applied if the data was not normal distributed or if there was 

significant heterogeneity of variance in order to achieve normal distribution and homogeneity 

of variance. If data was normally distributed Bartlett’s test was applied to check for 

homogeneity of variance. If data was not normally distributed a Levene test was performed to 

check for homogeneity of variance. The package car in R was used to apply the Levene test. 

 

For the CLPAA assay a generalized linear mixed model was applied, setting the treatments as 

a fixed factor, whereas the experiment day was set as random factor in order to minimize the 

effect of the variation seen between different runs. The package nlme in R was used.  

 

For the protein carbonyl content in plasma a one-way ANOVA was performed. For caput 

epididmys and vas deferens, a Kruskal-Wallis test was performed to compare the difference 

between the groups. Differences between HNE adduct leveles was performed with a one-way 

ANOVA 

 

For the slot blot analysis regarding differences between young and old individuals a two-way 
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ANOVA was performed for both testis and brain. If there were significant differences, it was 

followed up by a post-hoc TukeyHSD test. 
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Figure 3.1: Lipid peroxidation rates after various treatments. Cells were treated with either 50 µM 

cumOOH, 50 µM cumOOH + 80 nM hemin, 50 µM cumOOH + 400 nM hemin, 50 µM cumOOH + 10 µM 

iron sulphide , 50 µM cumOOH +80 µM iron sulphide or nothing (control).  The graph on the left side 

shows linear regression models for the six different treatments. Amount of green fluorescence is on the y-

axis and time is on the x-axis. The barplot on the right side shows the slope for each treatment. This 

experiment was done once (n=1) with 8 technical replicates. 
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3.1 Establishment of detection methology 

The methods to be used had not been applied in the MIKS laboratory before. This includes the 

protein carbonyl detection, the HNE and HHE detection and the cellular lipid peroxidation 

antioxidant (CLPAA) assay. They therefore had to be established and optimized first. The 

first chapter focuses on the establishment, before showing the results of oxidative stress 

relevant experiments in 3.2. 

3.1.1 Cellular lipid peroxidation antioxidant activity (CLPAA) assay 
In this first experiment we wanted to test out different inducers of lipid peroxidation, namely 

the oxidants cumOOH alone or in combination with the iron-containing substances hemin and 

iron sulphide.  

 

After splitting of Ntera-cells they were seeded into a 96-well plate and were allowed to settle 

overnight at 37°C. Cells were incubated for 1 hour with hemin or iron sulphide in treatment 

medium at 37 °C, or just treatment medium followed by a wash in PBS before adding Hanks’ 

containing 50 µM cumOOH or simply Hanks’ for the control. The plate was immediately 

inserted into a plate reader and read at 485/520 from the bottom. The reading was stopped 

after 15 minutes and linear regression models were made for each treatment. 
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There were apparent differences between the treatments shown in figure 3.1 (left). CumOOH 

+ 80 µM Iron sulphide giving the highest lipid peroxidation rate (LPR). The barplot in figure 

3.1 (right) shows that cumOOH + 400 nM hemin gave a higher LPR than cumOOH + 10 µM 

iron sulphide, indicating that hemin is a more potent stressor than iron sulphide. This 

experiment was only done once, so no statistics were applied. We concluded that we did not 

need additional stressors than cumOOH for the CLPAA assay, which we would later on use 

as an inducer to investigate the effects of fatty acids on lipid peroxidation. 

3.1.2 Protein carbonyl detection: Immunocyto- and histochemistry  

In this part we attempted to establish protein carbonyls as a marker of oxidative stress. The 

goal was to establish the procedure in cultured cells and subsequently in liver sections.  

 

After splitting of Ntera-cells the cells received 4 different treatments and were incubated for 

30 minutes at 37°C: Control, 50 µM H2O2, 100 µM H2O2 and 500 µM H2O2. After treatment 

approximately 15000 cells were seeded out to four different slides. Fixation and antibody 

procedure followed until cells were investigated under the microscope.  

 

 

 

 

 

 

 

 

 

 

 

 

The pictures (Figure 3.2, left) shows that the location of protein carbonyls is uniformly 

distributed in the cells.We can also see that the fluorescence intensity increases with the 

H2O2-exposure. This is also shown by the barplot in figure 3.2 (right). However, The lowest 

dose of H2O2 gives a slightly lower fluorescence than the control, and the highest dose 

displays an increase in fluorescence compared to second highest dose. The barplot was based 

on 4 different pictures from each treatment, and picking out 5 random cells from each picture 

Figure 3.2: Protein carbonyls in H2O2-exposed cells. After treatment of H2O2 (50 µM, 100 µM and 500 µM) 

and a control, cells were incubated with 10 µM DNPH followed by labeling with Anti-DNP Alexa Fluor 488.      

A) Control B) Exposed with 50 µM H2O2. C) Exposed with 100 µM H2O2. D) Exposed with 500 µM H2O2.  The 

pictures were taken with a 40x objective. The barplot shows the mean fluorescence intensity values for the 

H2O2-treatments. 
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(pseudoreplicates=20). No statistics has been done on this since this is only taken from a 

single experiment. The background staining in the control limits the sensitivity assay at lower 

H2O2 concentrations.  

 

Attempts of establishing this method was also done on in vivo samples, and is shown in figure 

3.3. Liver tissue from a sacrificed mouse was divided into 4 equal parts followed by 

incubation with 2 different concentrations of H2O2 (5 mM and 10 mM) in PBS plus a control 

containing only PBS at 37°C at room temperature for 30 minutes. An immunohistochemical 

procedure followed before investigation under microscope. 

 

There seems to grain-like structures in pictures B, C and D. However, the fluorescence 

intensity does not reflect the various treatments of these grain-like structures. The control 

(figure 3.3A) was exposed for a longer period compared to the pictures and therefore shows 

higher background fluorescence, but does not display the grains.     

Several attempts of changing antibody and DNPH-concentration and blocking buffer 

concentration were made both in vitro and in vivo. However, we were not able to improve the 

sensitivty of the method and we therefore decided to move on using an ELISA-kit for 

detecting protein carbonyls in vivo. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Pictures showing two controls and H2O2-exposed liver tissue and stained with Anti-DNP 

Alexa Fluor 488.  A control without primary antibody, B) control with antibody (not exposed to H2O2), C) 

exposed to 5 mM H2O2, D) exposed to 10 mM H2O2. The pictures show no real clear trends, and the control 

without antibody show autofluorescence. The control (A) was taken with a longer exposure time and 

therefore shows increased background fluorescence. 

A B 

C D 
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3.1.3 HNE detection 

In this part we wanted to establish HNE detection in a slot blot assay.  

A standard curve was made (figure 3.3) with concentrations ranging from 0.3125 µg/mL to  

5 µg/mL HNE-BSA. The standard curve shows clear linearity with concentrations ranging 

from the lowest to the highest concentration (R2=0.996). The standard curve was made to 

display a linear relationship and limits of detection and not to calculate exact values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, we wanted to see if this method was applicable in in vivo tissue. Based on 

literature search, markers of oxidative stress are expected to increase in older individuals in 

testis and brain. Existing material that had been stored at -80°C from an aging project with 

wild-type and transgenic (ogg knockout) mice were therefore applied. Individuals were 

divided into two age classes, young (2-3 months) and old (24-27 groups), and two models 

(WT and KO). For each group tissue lysates from three individuals were used (n=3) with a 

total sample size of 12 (n=12).  

 

Controls without secondary antibody in order to exclude endogenous peroxidase were also 

included in this test, it is not shown in the figure but can be found in the appendix A.3.2. 

For both testis and brain, there seemed to be an increase in HNE adducts in brain and testis 

(3.5). For the testis the age and the interaction between age and the mice model was 

significant (p=0.04) and gave the best model for explaining the observed data. The mice 

model in itself however (p=0.23, two-way ANOVA), was not an explaining factor. Both adult 

Figure 3.4: HNE-BSA standard curve. The band intensity is on the y-axis, and the concentrations are 

shown as % HNE-BSA of total BSA. It displays a linear relationship between band intensity and 

concentrations. 

1
e

+
0

5
2
e

+
0

5
3

e
+

0
5

4
e

+
0

5

HNE-BSA standard curve

B
a

n
d

 i
n

te
n

s
it
y
 [

a
rb

it
ra

ry
 u

n
it
]

0
.3

1
2

5
 %

0
.6

2
5
 %

1
.2

5
 %

2
.5

%

5
%

HNE-BSA (% of total BSA)

R
2
 = 0.996



27 
 

WT and adult KO was significantly different versus the young WT and KO (p<0.01, Post-hoc 

Tukey’s test). For the brain adult individuals seems to be different compared to young 

individuals, but due to large variation this is not statistically significant (p=0.08, two-way 

ANOVA), but it seems that the trend is according to what was seen in testis. The interaction 

between age and model was not statistically significant (p=0.18), and the model was not 

statistically significant either (p=0.36). 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Levels of oxidized proteins in fatty acid-exposed cells and in obese mice 

3.2.1 Oxidative stress in cultured cells and the effects of different types of fatty acids 

3.2.1.1Effects of fatty acids on lipid peroxidation in cultured cells  

The objective for this experiment was to see if fatty acids had effects on lipid peroxidation 

rates (LPR) by using the CLPAA assay. The effects of preincubation with different fatty acids 

on the susceptibility of the cells to cumOOH-induced lipid peroxidation was measured. Cells 

were treated with different concentrations of palmitic acid (saturated), docosahexaenoic acid 

(omega-3) and arachidonic acid (omega-6) in a 96-well plate and incubated for 24 hours. 

Following this, cells were incubated with c11-bodipy for 30 minutes, treated with cumOOH 

and the plate was then immediately inserted into a plate reader and read at 485/520 from the 

bottom.  

Figure 3.5:  slot-blot analysis for both young (2-3 months) and adult (24-27 months) mice for KO and 

WT in testis (left) and brain (right). There were three individuals per group (n=3) with zero technical 

replicates. **p < 0.01 statistically significant vs young WT and young KO. 
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The fatty acid treatments had a clear influence on LPR in response to cumOOH exposure. The 

LPR was highest in the cells not treated with any fatty acids (but with cumOOH), and lowest 

in 50 µM DHA- treatment.  

 

Both DHA and AA treated cells significantly reduces the oxidation of the probe at all 

concentrations for omega-3 (p<0.05, p<0.01, p<0.001 for 25, 50 and 100 µM, respectively, 

one-way ANOVA) and at 100 µM for omega-6 (p<0.001, one-way ANOVA). The highest 

concentration of palmitic acid was also statistically significant different compared to the 

cumOOH (p<0.05, one-way ANOVA). Since we are measuring the oxidation of the probe and 

not the fatty acids themselves, it may be that the PUFAs were oxidized and thus acting as 

scavengers.  

 

Although the cells treated without fatty acids (cumOOH) had the highest LPR, the value for 

green fluorescence at time zero was one of the lowest (figure 3.6) suggesting that incubation 

with PUFAs may introduce a low level of oxidative stress. This was further explored in the 

next part. 

 

For the second part of the experiment cumOOH was only used as a positive control (figure 

3.7). The cells were into two separated plates, and incubated with the fatty acids for 24 hours, 

Figure 3.6: Lipid peroxidation of Ntera-cells after 24 hours incubation with fatty acids. After incubation 

with fatty acids, the Ntera-cells were incubated with c11-bodipy for 30 minutes, cumOOH for 30 minutes and 

lipid peroxidation rates was measured by fluorescence every three minutes until some measurements reached 

maximum fluorescence intensities (30 minutes). The graphs on the left side show linear regression models for 

nine different treatments. Amount of green fluorescence is on the y-axis and time is on the x-axis. Every 

treatment had cumOOH added (except for the control), and the cumOOH control did not have any fatty acids 

added to the medium. The boxplots on the right side shows increase in green fluorescence per minute. The 

control without cumOOH is not shown in the graphs, but is shown in the boxplots. The experiment was 

repeated 4 times (n=4). *p < 0.05, **p < 0.01, ***p < 0.001: Statistically significant versus CumOOH.  
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followed by 30 minutes of incubation with C11-bodpy. One of the plates was left for another 

24 hours of incubation. Both plates were incubated with 50 µM cumOOH for the positive 

control, and simply Hanks’ saline solution for the other groups before reading at 485/520 

from the bottom. 

 

The 25 µM AA-treatment of cells were statistically significant versus control (p<0.05, one-

way ANOVA). The trend seems to be that the fatty acids compared to the control show higher 

intensities after both 24 and 48 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.2: HNE and HHE adducts by immunocytochemistry 

HNE and HHE are both known adducts that form under lipid peroxidation of Ω-6 and  

Ω-3, respectively. The aim was to investigate the localization of HNE and HHE adducts, and 

this was done by labeling the nucleus with a Hoechst dye and mitochondria with a mitotracker 

dye.  

HNE adducts: 

In figure 3.8 displays that treating the cells with cumOOH gives an increase in fluorescence 

intensity. Treating with cumOOH and hemin seemed to give an higher induction of HNE 

adducts. Incubation with 50 µM aracidonic acid (AA) did not seem to give an increase in 

fluorescense intensity based on the immunocytochemistry (figure 3.8) compared to the 

Figure 3.7: Lipid peroxidation with an endpoint measurement after 24 hours (left) and 48 hours (right). 

Cells were incubated with fatty acids for 24 hours, and then either incubated with C11-bodipy for 30 minutes or 

24 hours, and then incubated with cumOOH for the positive control. Amount of green fluorescence as 

percentage of the positive control is on the y-axis, and the different treatments on the x-axis. CumOOH is the 

positive control. Both experiments were repeated 4 times (n=4) with six technical replicates. 

*p < 0.05: Statistically significant versus control. 
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control. However, by also treating the cells with cumOOH it seems to be a difference 

compared to the cells only treated with cumOOH.   

The HNE adducts are located throughout the cells, but to a higher degree outside the nucleus. 

The anti HNE staining seems to overlap somwhat with the mitochondria. Yellow color (mix 

of red and green) in the overlap photos (figure 3.8 5D) indicates colocalization, meaning that 

the HNE adducts are in and around the mitochondria. In picture 5a, 5c and 5d (marked with 

an arrow) it is observed that the HNE adducts are located within the mitochondria. The 

adducts are also found outside the mitochondria, and there are also mitochondria unaffected 

by the HNE adducts. 

 

The staining process was done several times and it was difficult to assess the results in figure 

3.8 due to large variation between cells that received the same treatment making 

quantification of adduct levels in each treatment demanding.  

 

HHE adducts 
The HHE-staining was not fully esablished, this was due to time pressure so the results shown 

are prelimenary, and the staining is based on 2 experiments. 

The HHE staining does not give a staining in a dose-dependant manner (figure 3.9). The 

control (1) shows background staining, and the cumOOH (2) does not seem to affect the HHE 

adduct levels. However, in the hemin-treated cells (3) the fluorescence intensity values 

exceeded the quantification limit and the cells seems to have rounded up. Although the 

majority of the cells resulted in extremely high values and rounding up, some of the cells were 

observed to merely affected, displaying quite low intensity values and normal cellular shape 

(not shown). DHA (4) in itself did not induce any effects, and might even seem to protect the 

cells, as only a few weak green dots are present. The DHA + cumOOH-treated cells (5) gives 

similar result as the cumOOH-treated cells. 
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HNE adducts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) HNE B) Hoechst C) Mitotracker D) Combined channels 

2) CumOOH 

1) Control 

3) CumOOH + hemin 

4) AA 

5) AA + CumOOH 

Figure 3.8: Immunocytochemical staining for histidine-HNE protein modifications with different 

treatments. Cells were allowed to grow for 24 hours with or without 50 µM AA,and then treated with either 

nothing or 1 hour incubation with 80 nM hemin, followed  by 30 minutes of incubation with or without 50 µM 

cumOOH.  1) Control without any treatments. 2) Treated with 50 µM cumOOH. 3) Treated with 50 µM 

cumOOH + 80 nM hemin, 4) Cells treated with 50 µM AA, 5) Cells treated with 50 µM AA +50 µM cumOOH. 

A) 4-HNE antibody. B) Hoechst 33342 staining, C) Mitotracker staining, D) A, B and C are laid on top of each 

other, showing DNA, mitochondria and 4-HNE adducts. The photos were taken with a 63x objective. 
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HHE adducts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Control 

2) CumOOH 

3) CumOOH +  hemin 

A) HHE D) Combined channels B) Hoechst 33352 C) Mitotracker 

4) DHA 

5) DHA + cumOOH 

Figure 3.9:  A figure showing immunocytochemical staining for HHE protein modifications with 

different treatments. Cells were allowed to grow for 24 hours with or without 50 µM AA,and then treated 

with either nothing or 1 hour incubation with 80 nM hemin, followed  by 30 minutes of incubation with or 

without 50 µM cumOOH.  1) Control without any treatments. 2) Treated with 50 µM cumOOH. 3) Treated 

with 50 µM cumOOH + 80 nM hemin., 4) Cells treated with 50 µM DHA, 5) Cells treated with 50 µM DHA 

+50 µM cumOOH. A) HHE antibody. B) Hoechst 33342 staining, C) Mitotracker staining, D) A, B and C 

are laid on top of each other, showing DNA, mitochondria and HHE adducts. The photos were taken with a 

63x objective. 
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3.2.1.3 HNE content in MEF-cells 

In this part the aim was to quantify HNE adducts with AA + cumOOH-treated cells.  

 

Cells were treated with three concentrations of AA (50, 75 and 100 µM) plus 2 controls (both 

without supplementation of AA, but one with 50 µM cumOOH) for 24 hours followed by 

incubation with 50 µM cumOOH for 30 minutes except for the negative control. The 

experimented was completed and protein lysates were prepared and protein concentration was 

adjusted to 0.05 µg/µL. The experiment was repeated three times. A control without 

secondary antibody in order to exclude endogenous peroxidase were also included in this test, 

it is not shown in the figure but can be found in the appendix A.3.2. 

There were no statistical significant differences between the different treatment groups when 

compared with cumOOH (figure 3.10). A slight tendency was that AA gave lead to a decrease 

in HNE adduct formation. The data displayed a high run to run variation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: slot blot analysis for HNE adducts for MEF-cells after 24 hours of incubation with different 

concentrations of AA and two control. Every treatment received 50 µM cumOOH except the control. 

The band intensity is on the y-axis and shown as % of control. The different treatments are on the x-axis. The 

experiment was done three times (n=3) with one technical replicate (zero parallels).  
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3.2.2 In vivo: Oxidative stress in obese animals 
 

3.2.2 Oxidative stress in a high fat induced obesity mouse model 
In this last part we investigated the effects of a high fatty diet profile in mice, with protein 

carbonyls and HNE adducts as markers of oxidative stress. One group was fed with a diet 

consisting of 45 % fat, whereas the other was with a “normal” diet consisting of 10% fat. The 

mice were on a high fat diet for six weeks and are described more in section 2.3. 

 

Obesity in humans and in experimental animals is associated with increased oxidative stress 

and the aim in this last part was to investigate the effects of oxidative stress markers of high 

fat diet induced obesity in mice.  

 

We investigated protein carbonyl content in plasma, and in the fluid from caput epididymis 

and vas deferens. Plasma and epididymal fluids were chosen to avoid interference of naturally 

occurring carbonyls in nucleic acids. Epididymal fluid was included as spermatozoa are 

especially susceptible to damage by oxidative stress and the seminal fluid is rich in 

antioxidants.  

 

Due to loss of three samples we only obtained 3 protein lysates from the control group in vas 

deferens (normal diet, n=3). For all other groups the sample size was 6 (n=6). 
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Figure 3.11: Protein carbonyl content in plasma, caput and vas deferens (A) and relative HNE adduct 

levels in testicular tissue (B) between mice on a high fatty diet, and mice on a normal diet. A: The 

boxplots compares two groups of mice gone on either a high fat or a normal diet in plasma (n=6), caput 

(n=6) and vas deferens (n=3 and n=6 for normal diet and high fat diet, respectively). B: The boxplots shows 

lower values for the HFD-group (n=4) compared to the ND-group (n=4). *p < 0.05 statistically significant 

versus ND. 
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We also examined HNE adducts in mice gone on a high fatty diet with mice gone on a normal 

diet. Due to a restricted availability of testicular tissue, the protein concentration were too low 

in some of the samples the sample size was thus reduced from 12 to 8, with 4 samples from 

the ND-group (n=4) and 4 samples from the HFD-group (n=4). 

No differences were seen in protein carbonyl content between the two groups in plasma (p-

value=0.11, Kruskal-Wallis test) and in the fluids from the vas deferens (p-value=0.20, 

Kruskal-Wallis test) and the caput epididmys (p-value=0.38, oneway-ANOVA) (figure 3.11 

A).  

Figure 3.11 B shows that mice on a high fatty diet has lower HNE adduct content compared to 

mice on a normal diet (oneway-ANOVA, p<0.05).  
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4 Discussion 

ROS are present in all cells and are continuously introduced via endogenous or exogenous 

processes. ROS may act as messengers within a cell, but under environmental, chemical or 

nutritional stress the content of ROS can increase and eventually lead to a condition of 

oxidative stress by overwhelming the antioxidant defence in cells. Markers for detecting 

oxidative stress is important, as oxidative stress is known to be involved in a variety of 

medical conditions, including diabetes, cardiovascular diseases and obesity. The 

establishment of relevant, specific and robust biological markers for oxidative stress is 

important in order to detect damages before they develop into diseases. 

4.1 Establishment of the methods 

A main aim of this thesis was to establish methods to detect protein markers of oxidative 

stress that are applicable in archival tissues. In this first part of the discussion the focus is on 

the establishment of the methods. The establishment itself, as well as advantages and 

disadvantages regarding the methods are discussed.  

 
4.1.1 CLPAA assay 
The CLPAA assay was successfully established at the laboratory for both MEF-cells and 

Ntera-cells. The CLPAA assay was recently established (Hofer & Olsen, 2010), and has also 

been applied for testing out efficiency of antioxidants (Hofer et al., 2014). The method was 

easily established and we only did a single experiment to test it out. Moreover, it is cheap, 

time-efficient and allows a large number of different treatments. It is only applicable to live 

cells and was included to study effects of FA supplementation in cultured cells. 

 

4.1.2 Detection of oxidized proteins with immunocyto- and histochemistry 

In this thesis immunocyto- and histochemical methods were applied using primary antibodies 

toward protein modifications followed by fluorescent labelled secondary antibodies and 

attempts were made to quantify fluorescence intensity values. We were able to quantify 

fluorescence intensity values of Ntera-cells as they were rounded up, making it easy to circle 

them in using the ZEN software. However, when cells are in their natural conformation the 

quantification of fluorescence intensity values can be more challenging. We also observed 

that neighbouring cells may respond differently to the same treatment. This result in high 

variance and cells must be sampled to point out differences between treatment groups if they 

are to be treated statistically. Effective software and image analysis is therefore needed, which 

over the years has been developed.  

 

Immunocyto- and histochemistry is extremely useful to localize specific antigens, which 

cannot be done by other methods such as western blotting and ELISA. By staining for several 

epitopes and/or cellular organelles subcellular localisation may be useful. For example, by 

staining a protein and a cellular organelle one can determine in which organelles the cells are 

localized (or where it is not localized). Subcellular localisation can be assessed subjectively 
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by simply looking at the mix of colors from the different fluorescent probes, as was done in 

this thesis. However, with the development of image analysis several approaches of these 

assessments can be done objectively (Dunn et al., 2011; Glynn & McAllister, 2006).  

 

Protein carbonyls has for a long time been used as a marker of oxidative stress (Dalle-Donne, 

Rossi, et al., 2003). However, we experienced problems both in vitro and in vivo regarding 

detection of protein carbonyls by immunocyto- and histochemistry, respectively. We had high 

background issues, and were unable to distinguish between controls and H2O2-treated 

samples, although we were able to achieve somewhat of a dose-response curve in vitro in one 

of the experiments (3.1.2). It can possibly be explained by insufficient blocking of nonspecific 

staining. Insufficient blocking may allow binding of the mono or polyclonal antibody to bind 

to nonspecific sites, which may result in false positives. Alternatively, high background 

staining may be caused by interference from other carbonyl species in the cell.  

 

When marking protein carbonyls with DNPH, it is important that the sample under 

investigation contains low concentrations of nucleic acids. Nucleic acids contain carbonyl 

groups and will react with DNPH, thereby possibly causing false positives. 

 

4.1.3 Detection with ELISA and slot blot 
We successfully developed the detection of HNE adducts by a slot blot analysis  We had 

negligible background issues when applying samples without primary or secondary 

antibodies, which confirm that the anti HNE adduct antibody is specific, and that endogenous 

peroxidase was not a problem in our samples. We observed large differences between 

different runs in the in vitro experiments, and it is unknown if this is simply natural 

differences between cells. Several other papers have used dot blot (same method as slot blot) 

as a way to measure HNE adducts between various groups (Bradley et al., 2012; Jørgensen et 

al., 2014) and seemingly does not have the same problem. However, run-to-run variation is 

not a problem since it can be handled statistically by either normalizing the response variable 

for each run, or by using a general mixed model which takes run-to-run variation into account. 

 

For the aging model it was expected from the literature that adult individuals had more HNE-

adducts compared to young individuals. Increased concentrations of HNE adducts in older 

individuals has been shown in brain (Papaioannod et al., 2001), kidneys in rats (J. H. Lee et 

al., 2004), as well as in vitro in senescent fibroblasts (passage number=61) which had 

elevated HNE-concentrations (Jørgensen et al., 2014). Samples from young and aged animals 

were thus included to provide a control for the in vivo performance of the HNE slot blot 

assay. Although increased levels of HNE with age was observed, it was not statistical 

significant in the brain (p-value=0.08), this might be due to low sample size in the groups 

(n=3). A possible explanation for the variability observed in HNE adducts (figure 3.5) in brain 

was that a random part of the brain was taken out. Selection of a specific brain part was not 

possible as the whole brain was flattened, and a random part was therefore taken out. As the 

brain is a heterogeneous organ three replicates is probably not a sufficient sample size to 

overcome this variability.  
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For testis it was observed a statistical significant increase of HNE adduct in adult mice 

compared to young mice. Our results therefore suggest that HNE-adduct levels increases in 

testicular tissue with ageing. Previously it has been shown that testicular ageing involves 

mitochondrial dysfunction (Amaral et al., 2008). As oxidative stress is involved in the 

pathogenesis of testicular disorders and HNE-modified proteins as a marker of such has been 

shown to have elevated levels in testicular diseases, for example in varicocele (Shiraishi & 

Naito, 2005).  

 

A weakness with the slot blot analysis in our lab was the difficulty of obtaining technical 

replicates because of the limited physical space on the nitrocellulose membrane when 

incubating with primary and secondary antibodies. It was difficult to acquire more than 24 

spots for samples. If three technical replicates are wanted, then it follows that there are only 

room for 8 samples, and even less if establishing a standard curve is necessary. However, a 

better slot blot apparatus would allow more samples in the same run, and thereby improving 

the efficiency of the method.  

4.2 Markers of Oxidative stress 

In this thesis detection of several biological markers of oxidative stress was detected; C11-

bodipy, protein carbonyls, HHE and HNE adducts. An aim was to establish methods that 

could detect oxidative damage in vitro and in archival tissue.  

 

Although protein carbonyl, HHE and HNE are known to be relevant in disease, we were able 

to detect differences in a physiological model of dietary, in which no pathological picture had 

yet taken place. This allows the study of not only overt oxidative stress in disease states, but 

also adaptive responses to ROS and involvement of oxidative stress in disease progression. 

C11-bodipy as a marker of lipid peroxidation can be beneficial because it can measure lipid 

peroxidation while cells are alive. This is advantageous in in vitro experiments as it provides a 

highly efficient possibility of examining effects of different toxicants, stressors and stress 

modifiers on lipid peroxidation. C11-bodipy is an effective reporter molecule to measure the 

cells anti-lipidperoxdation capacity and a substance’s ability to induce lipid peroxidation, and 

the reporter molecule was successfully applied in the assay to measure effects of fatty acid 

supplementation in this thesis. The peroxidation of the lipids themselves is not measured and 

requires other methods. A potential downside is that C11-bodipy  has been shown to 

overestimate the lipid peroxidation and also that it inhibits oxidative lipid damage 

(MacDonald et al., 2007). That it inhibits oxidative lipid damage is not surprising since the 

probe itself is being oxidized.  

Protein carbonyls are a diverse group of oxidative protein damage, and are the most widely 

used biomarker for oxidative damage to proteins (Aldini et al., 2006). Protein carbonyls have 

been linked up to a variety of diseases including Alzheimer’s, Parkinson’s , diabetes, chronic 

renal failure and chronic lung disease (Dalle-Donne et al., 2003).  However, the severity of 

the damage depends on the protein in question as some proteins are more critical for cellular 
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function. Also, some proteins are more susceptible than others for carbonyl formation. The 

degree of susceptibility depends on a variety of factors, including location, the presence of 

metals, sequences prone to carbonylation and nucleotide-binding proteins (Cabiscol et al., 

2013). For example, in Alzheimer’s disease superoxide dismutases (SOD1) are major targets 

of oxidative damage. However, only one of the four human brain SOD1 isoforms is heavily 

carbonylated (Choi et al., 2005). Moreover, which proteins that are susceptible to 

carbonylation is species dependent: Plasma in mice show an increase in carbonylation in 

transferrin and albumin, whereas plasma in rats show an increase in albumin and α1-

macroglobulin (Jana et al., 2002).  

The method for detecting protein carbonyls through labeling with DNPH is not specific as 

DNPH labels all ketones and aldehydes. This is the reason why nucleic acid content has to be 

low as DNA and RNA contains natural aldehydes. Protein carbonyls are not specific markers 

since it can affect nearly all proteins (Berlett & Stadtman, 1997). Moreover, determining the 

exact cause of formation of protein carbonyls is difficult as they can be formed either through 

the attack of ROS, or through attacks from secondary generated aldehydes such as HNE and 

HHE (Berlett & Stadtman, 1997). 

 

Both HNE and HHE adducts are more specific markers compared to protein carbonyls, and 

reflect more of what type of stress the cells have been exposed to. HHE and especially HNE 

have been linked up to numerous diseases as explained in the introduction (section 1.4.2). 

HHE and HNE are lipid peroxidation derived aldehydes of omega-3 and omega-6 

respectively. It is thus not surprising that these markers have been found in PUFA rich tissues 

such as the brain and testis. As with protein carbonyls, the cellular consequences of the 

damage depend on the protein being modified. In this thesis slot blot was used for detecting 

HNE adducts and this method gives a measure of the cellular amount of HNE-modified 

protein but does not allow detection of which proteins that were modified. A gel-

electrophoreses/western blot includes protein separation and ultimately allows identification 

HNE- and HHE modified proteins according to size. Proteomic tools such as mass 

spectrometry and protein microassays that allows for more precise detection of modified 

proteins have recently been applied for studies of oxidized proteins in ageing and disease 

(Fritz et al., 2012).  

 

HHE as biological marker of lipid peroxidation has over the last year received more attention 

and as monoclonal antibodies have been developed (Yamada et al., 2004), their involvement 

in diseases are arising (section 1.4.2). They might be of greater importance in omega-3 rich 

tissues such as the retina and brain compared to HNE. 

 

An alternative to HNE as markers of lipid peroxidation are F2-isoprostanes, which are 

prostaglandin-like substances formed from peroxidation of arachidonic acid and have been 

shown to be promising markers of endogenous lipid peroxidation. They have been suggested 

to increase in normal mice and humans with age (Milne et al., 2005), obesity (Vincent & 

Taylor, 2006) and a variety of diseases including cancer (Rossner et al., 2006), Alzheimer’s 
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(Montine et al., 1998), Parkinson’s (Seet et al., 2010) and diabetes (Gopaul et al., 2001).  

They are distributed throughout the body and they are chemically stable in archival tissue if 

stored at -80°C. However, only gas chromatography-mass chromatography and liquid 

chromatography-mass spectrometry have been proven to viable for measurement of F2-

isoprostanes, as immunoassays can be confounded with other similar molecules such as 

cyxooxygenase-derived prostaglandins (Milne et al., 2015; Soffler et al., 2010).  

4.3 Cell culture study: Oxidative stress and effects of different types of fatty 

acids 

Due to the simplicity of cellular cancer lines compared to in vivo models, they cannot 

reproduce the complex interactions that take place within an intact organism, and 

extrapolation of in vitro is therefore difficult, and should be done carefully.  However, cell 

line studies can provide valuable mechanistic information of what happens when a substance 

is introduced into a biological system. Moreover, the search for better in vitro models (e.g 3D 

culture models) is on-going, as it is important to attempt to reduce the use of experimental 

animals.   

4.3.1 Lipid peroxidation rates  
The aim was to see if supplementing cell cultures with fatty acids would have an effect on  

lipid peroxidation. The CLPAA assay is an indirect method for measuring lipid peroxidation, 

and what we are measuring is the probe itself, it does not provide evidence that the cellular 

membranes themselves are being oxidized. 

 

In the first part we investigated if fatty acids could act as scavengers when cells were also 

treated with an inducer of lipid peroxidation, namely cumene hydroperoxide (cumOOH). The 

PUFAs arachidonic acid (AA) and docosahexaenoic acid (DHA) proved to effective 

scavengers by reducing the lipid peroxidation of C11-bodipy. DHA was effective at all 

concentrations, whereas AA was effective at 50 µM and 100 µM. These results are consistent 

of what have been shown before.  Richard et al., (2008) showed that eicasapentaenoic acid 

(EPA) and DHA had the ability to scavenge O2•-, but they did not test if AA could do the 

same, and concluded that EPA and DHA acts as antioxidants. It is not farfetched to believe 

that AA also has the ability to scavenge radicals, as they are readily attacked by radicals. 

However, uncontrolled lipid peroxidation produces even more radicals and also reactive 

aldehydes, so even if they have the ability to scavenge ROS it may ultimately increase the 

oxidative stress. More surprisingly was that palmitic acid (PA) appeared to have an 

antioxidant effect at 100 µM. Even though PUFAs are more susceptible to lipid peroxidation 

than saturated fatty acids, saturated fatty acids such as PA may be oxidized forming 

hydroxylated PAs (Truan & Peterson, 1998).   

In the second part we investigated if fatty acids could have an effect on lipid peroxidation 

without the presence of a stressor. We wanted to measure whether the baseline lipid 

peroxidation would change when cells had been pre-treated with fatty acids. The CLPAA 

assay showed that the lowest concentration of 25 µM AA after 24 hours had a significant 

increase in oxidation of C11-bodipy compared to the control. Although not significant for the 
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other treatments, the oxidation of C11-bodipy in the control (not treated with fatty acids) was 

slightly lower than all the other treatments. Based on the first lipid peroxidation rate 

experiment (part 1) we expected that the higher amounts of polyunsaturated fatty acids in the 

treatments groups would decrease the lipid peroxidation of the C11-bodipy. This is because 

the PUFAs would be oxidized rather than the probe.  

4.3.2 HNE and HHE adducts 
It must be emphasized that we did not quantify fluorescence intensity values for HNE and 

HHE adducts. It was difficult to assess the results since the cells in these studies showed large 

differences in response to the same treatment.  

 

4.3.2.1 HNE and HHE adducts 

The HNE adducts did seem to give a stronger signal for the cumooh and cumooh + hemin 

treated cells compared to the control. The AA-treated cells seem to give an increase in 

fluorescence intensity, however, treating it with both AA and cumOOH gave an apparent 

increase compared to the cells only treated with cumOOH. This is consistent in what was 

shown by the CLPAA assay and that AA in the cells is being oxidized when treated with a 

stressor. As with HHE, HNE can diffuse across cellular membranes, forming adducts 

throughout the cells. Based on our investigation, the HNE adducts was found to a higher 

extent outside the cell nucleus, and at least for some of the pictures showed subcellular 

localization with mitochondria, which has been shown before (Usatyuk et al., 2006). Usatyuk 

et al., (2008) also shows that HNE adducts are mostly located outside the cell nucleus. 

 

In the slot blot analysis it was observed no differences between the different groups. We 

expected increased levels of HNE adducts when cells were treated with AA + cumOOH 

compared to cells being only treated with cumOOH. One reason being that omega-6 in itself 

is prone to oxidation, another reason is because AA induces pro-inflammatary pathways such 

as interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-α) (Rizzo & Carlo-Stella, 1996), 

which may ultimately result in oxidative stress and therefore also higher concentrations of 

HNE.  

 

Based on the in vitro CLPAA assay we expected there to be differences in the slot blot 

analysis when cells were treated with either omega-6 or cumOOH, only cumOOH or simply 

no treatment. Why it was not observed more differences is difficult to explain. A possible 

explanation is that different cell types were used on the first part of the CLPAA assay and the 

slot blot analysis. MEF-cells might be more robust to lipid peroxidation compared to Ntera-

cells, so that fewer aldehydes are produced under stress. However, the MEF-cells did show a 

significant increase in cumOOH induced oxidation of the C11-probe. Another possible 

explanation might be that even though the fatty acids were oxidized, other aldehydes than 

HNE was formed, forming other adducts on cellular macromolecules. All of these adducts are 

not detected by the HNEJ-2 monoclonal antibody as it is highly specific for HNE-histidine 

Michael adducts (Toyokuni et al., 1995).  Moreover, HNE does not only form Michael 

histidine adducts, but also Michael lysine and cysteine adducts, as well as reacting with the ε-

amino group of lysine forming a Schiff base (Dalleau et al., 2013). 
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Overall the HHE adducts seemed to be more concentrated within the cell nucleus compared to 

the HNE adducts. Moreover, our pictures indicate that colocalization with mitochondria was 

more valid for HNE adducts compared to HHE adducts. Both these observations can possibly 

be explained by that HNE is more reactive than HHE (Bacot et al., 2003), which would allow 

HNE to react more rapidly and not diffuse throughout the cell. It has been shown in vivo that 

ischemia induces HNE adducts along with a decrease in GSH in mitochondria (Chen et al., 

2001) 

 

4.3.2.2 HHE-adducts 

An objective was to localize the adducts and determine whether they were inside or outside 

the nucleus or if they are co-localized with the mitochondria. The adducts were mostly in the 

cytosol, and to some degree they were found within the mitochondria. Because of the natural 

production of ROS in mitochondria (Andreyev et al., 2005; Balaban et al., 2005), it is 

expected that the adducts to some extent is located around the mitochondria. However, the 

adducts have the ability to diffuse through cellular compartments and form adducts with DNA 

(Winter et al., 1986), Ethanolamine phospholipids (Bacot et al., 2007) and proteins (Long et 

al., 2008).   

4.4 High fat diet over six weeks, a danger free zone? 

This last study was part of a larger study examining the possible relationship between high fat 

diet induced obesity and impaired sperm quality. Oxidative damages is involved in reduced 

fertility seen in men (Gharagozloo & Aitken, 2011). Our hypothesis was that levels of 

oxidative stress is higher in obese than in control mice. 

Our results show that no differences between protein carbonyl content between groups on a 

high fat diet and group on a normal diet. The slot blot analysis revealed that the testis had 

fewer HNE adducts in the mice fed on a high fat diet compared to mice fed on a normal diet. 

This was the opposite of what we hypothesized. It has previously been shown that a high fat 

diet over nine weeks induces the generation of ROS in motile spermatozoa, increased DNA 

damage in sperm, reduced sperm motility as well as a reduction of testosterone levels (Bakos 

et al., 2011). Spermatozoa and the testis itself has high contents of polyunsaturated fatty acids 

(Alvarez & Storey, 1995), and Alvarez & Story hypothesized that elevated levels of ROS 

induces lipid peroxidation in spermatozoa, which in turn impairs sperm quality. A high fat 

diet in mice generally induces oxidative stress and impairs sperm quality in obese mice 

(Bakos et al., 2011; Duale et al., 2014). However, mice in these two studies were on a high fat 

diet over 9-11 weeks, which is a period that is known to induce insulin-resistance, diabetes, 

lower levels of testosterone and obesity. Obesity leads to increased content of adipose tissue. 

Aromatase cytochrome P450 enzyme is located in adipose tissue and the enzyme is 

responsible for converting testosterone to estrogen (Meinhardt & Mullis, 2002) and adipose 

tissue can also decrease testosterone production from Leydig cells (Caprio et al., 1999). 

Finally, adipose tissue can cause elevated temperature of the testicles which causes reduced 

sperm quality (Paul et al., 2008; Shiraishi et al., 2010). It is therefore suggested that the 



43 
 

lowered testosterone level is caused by an increase in adipose tissue in mice. Mice used in this 

experiment was on a high fat diet for six weeks, and during this period they did not develop 

diseases such as diabetes and insulin resistance. Even though the mice in this study gained 

weight, it is possible that six weeks on a high fat diet is not a sufficient time to increase the 

adipose tissue content to a level in which a decrease of reproductive function is seen. In this 

study it is also shown an increased expression of anti-oxidant genes (B. Lindeman, Norwegian 

Institute of Public Health, personal communication March 2015), which may be an adaptive 

response. Taken together this may explain the reduced oxidative damage seen in mice which 

was on a high fat diet for six weeks. 

4.5 Conclusions 

In this thesis we have successfully developed promising methods for detecting biomarkers of 

oxidative stress. The usage of the monoclonal antibodies directed against 4-HNE and 4-HHE 

histidine adducts are promising, both in fluorescence microscopy and for 4-HNE in a slot blot 

analysis. The CLPAA assay with C11-bodipy as a reporter molecule seems promising for 

measuring lipid peroxidation, even though the method is indicative. We were not able to 

optimize protein carbonyls as markers when applying fluorescence microscopy due to 

sensitivity and background problems, but this might be further optimized in future research. 

However, background problems with protein carbonyls might not be possible to resolve due 

to their natural presence in cells.    

 

We found that PUFA supplemented cells possibility has the ability to act as scavengers when 

ROS are present. However, cells supplemented with omega-6 and treated with a stressor did 

not seem to induce the formation of HNE in vitro. A high fat diet over six weeks in mice 

seems to protect against the formation of HNE in testis. 

4.6 Methodological considerations  

During this thesis we switched from Ntera-cells to MEF-cells for the in vitro studies. Due to 

high passage numbers of the Ntera-cells a new batch of cells was needed for the subsequent 

experiments. However, due to problems with the viability and growth of new batches of 

Ntera-cells, we were not able to get new cells up and going and therefore switched to MEF-

cells. Ideally all the experiments should have been performed using one of the cell lines 

exclusively, unless the aim was to compare effects on different cell lines. Due to time pressure 

it was impossible to repeat all the experiments performed using the Ntera-cells using MEF-

cells. Moreover, an apoptosis assay could have been applied to the cells to see if the fatty acid 

themselves have a toxic effect. Although cells were controlled by investigating them under a 

microscope, this is not a sufficient way to determine toxic effects of FAs, and it has been 

shown that some cell types are more prone to the toxicity of supplement of fatty acids than 

other types (Nøding et al., 1998).   

 

A problem with the experimental design is that we assumed that the cultured cells would take 

up the fatty acids without actually doing a lipid content analysis of the cellular membranes. A 
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fatty acid analysis of the lipids could have been done performed with a capillary gas liquid 

chromatography (Brand et al., 2010). Unfortunately, we did not have the resources to do this, 

but cultured cells have been shown to take up fatty acids when added to the medium, 

including EA hy 926 (Tardivel et al., 2009), oligodendroglial OLN-93 cells (Brand et al., 

2010) and five other cell types (Nøding et al., 1998). Moreover, our cultured cells were grown 

in 10% FCS which contains fatty acids, meaning that we added fatty acids to a system that 

already had fatty acids in its system. The exact composition of lipids in FCS is unknown and 

differs depending on the batch. However, saturated fatty acids are generally high and DHA 

and AA is generally low (Lagarde et al., 1984) compared to what is found in plasma in 

humans (Hodson et al., 2008).  

 

4.7 Future work 

 

A natural follow-up from this study is to finish the establishment of anti HHE antibody in 

immunocytochemistry, and also applying and establishing HHE and anti HNE antibodies for 

immunohistochemistry.  
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Appendix 

 

Appendix A.1 Cell maintenance 

A.1.1 Thawing and freezing for MEFs and Ntera-cl.d2 cells.  

Thawing:  

i. A 15 ml tube with cell suspension was taken up from a nitrogen tank and thawed in a 

37°C water bath for 2-3 minutes. 

ii. The cell suspension was gently transferred to a new tube containing 13 mL culture 

medium.  

iii. Cells were centrifuged at 400 g for five minutes. The supernatant was removed and 7 

mL culture medium was added. 

iv. The cells were resuspended carefully and the suspension was pipetted to a 25 cm2 

flask. 

Freezing: 

i. Confluent cells (~75%) were trypsinated according to the procedure described in steps 

in iv (A.1.2: Growth and passaging). 

ii. Cells were transferred to 1.8 mL cryotubes and centrifuged at 400 * g for 5 minutes at 

8 °C. Cells were resuspended in growth medium containing 10% dimethyl sulfoxide 

(DMSO).  

iii. The cell suspension was transferred to cryotubes (1.8 mL) and kept at 4°C for 5 

minutes. 

iv. The tubes were placed half way down the nitrogen tank for 3-4 hours, and were then 

immersed to liquid nitrogen. 

 

A.1.2 Growth and passaging: MEFs and Ntera-cl.d2 

After seeding approximately 2*106 cells for the Ntera-cl.D2 line and 5*105 for the MEF line 

in a 75 cm2 flask the cells entered a lag period for about 24 hours, followed by exponential 

growth for the next 48 hours reaching confluence approximately 3-4 days after being seeded. 

When cells reached confluence they were split by the following procedure. Every step was 

done in a sterile way by spraying equipment with 70% ethanol and using a sterile bench. 

i The growth medium was removed from the flask followed by two PBS washes. The PBS 

volume used was equal to the medium volume for each wash.  

ii To detach the cells from each other, 3 ml trypsin was added to the flask, quickly 

distributed and then immediately withdrawing 2 ml, leaving 1 ml trypsin left in the flask. 

This was followed by incubation for 4 minutes at 37°C degrees. The cells were released 
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from the bottom of the flask by tapping carefully on the sides of the flask. Cell detachment 

was controlled by looking at them under a microscope 

iii The trypsin was inactivated by adding 4 + 5 ml growth medium. Thorough pipetting was 

necessary in order to separate the cells. 

iv Cells were counted either by: 

a) A hemocytometer (a Bürker chamber): 100 µL cell suspension was mixed with 100 

µL tryphan blue, and then 10 µL of this mix was added to each side of the bürker 

chamber (total of 20 µL). Living cells were counted across ten squares followed by 

multiplication of the mean with 2*104, giving the number of cells per milliliter, or  

b) A cell counter (CASY Model TT): 50 µL of the cell suspension was added to 10 mL 

of filtered CasyTon buffer, and then measured by the cell counter. The viability and 

the cell concentration were noted. 

v The appropriate cell suspension cell volume plus culture medium giving a total of 20 mL 

was pipetted to a new 75 cm2 flask. The name of the cell line, passage number and date 

was noted on the flask and in a cell protocol book. 

A.2 Protein carbonyls: immunohistochemistry, detailed protocol 

Liver tissue from a sacrificed mouse was divided into 4 equal parts followed by incubation 

with 2 different concentrations of H2O2 (5 mM and 10 mM) in PBS plus a control containing 

only PBS at 37°C at room temperature for 30 minutes. The tissues were washed in PBS 

followed by fixation in methacarn for 24 hours at 4 °C. Tissues were paraffin-embedded 

(Histo Comp,Vogel) by using Shandon Excelsior ES (Life Technologies). The following 

program was used: 

 

 

 

 

 

 

 

 

 

 

 

 

Step 

Solution Incubation 

time 

Temperature 

1 Alcohol 75% 60 minutes 30°C 
2 Alcohol 90% 60 minutes 30°C 
3 Alcohol 96% 60 minutes 30°C 
4 Absolute 

Alcohol 
60 minutes 30°C 

5 Absolute 
Alcohol 

60 minutes 30°C 

6 Absolute 
Alcohol 

60 minutes 30°C 

7 Xylene 60 minutes 30°C 
8 Xylene 90 minutes 30°C 
9 Xylene 90 minutes 30°C 
10 Wax 80 minutes 58°C 
11 Wax 80 minutes 58°C 
12 Wax 140 minutes 58°C 



56 
 

 

After paraffin-embedding the samples, a microtome (Microm HM 355S, Life Technologies) 
was used to cut 4 µM thin sections, followed by rehydration: 

i. Immerse the slides in 100% ethanol 2 times for 10 minutes each.  

ii. Immerse the slides in 95% ethanol for 5 minutes.  

iii. Immerse the slides in 70% ethanol for 5 minutes.  

iv. Immerse the slides in 50% ethanol for 5 minutes.  

v. Rinse the slides with deionized H2O.  
vi. Rehydrate the slides with PBS buffer for 10 minutes. Drain the excess wash buffer. 

100 µL of antigen retrieval buffer (Biocare Medical) was to each slide. A glass coverslip was 

placed on top of the slide and incubated in a steamer for 20 minutes. Slides were allowed to 

cool down for 15 minutes at room temperature. Tissue was washed by incubating it in 100 µL 

a TBS buffer 3 times for 5 minutes. Tissue was surrounded with a hydrophobic barrier using a 

barrier pen and dried for 2 minutes. 100 µL of the DNPH solution (10 µM) was added to each 

slide and then incubated for 30 minutes at room temperature. Slides were washed in PBS 

buffer 3 times for 5 minutes. For blocking 100 µL of the background punisher (Biocare 

medical) was added to each slide and incubated at room temperature for 10 minutes. Slides 

were incubated with 100 µL of freshly prepared anti-DNP primary antibody (1:200 in TBS 

buffer) and incubated in a humidified chamber overnight at 4°C, followed by washing in TBS 

buffer 3 times for five minutes. Slides were immersed dH2O and mounting media 

(dakocytomation, Dako) to the sample and cover the slide with a plastic slip. 
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A.3 Antibody controls regarding protein carbonyls, HNE and HHE adducts 

A.3.1 Protein carbonyls 

 

 

 

 

 

 

 

A.3.2: HHE and HNE adducts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3.2: Immunocytochemistry controls for the HHE and HNEantibodies: 1) A MEF not stained 

with primary antibody anti HHE, but with secondary antibody, 2) MEF stained with primary antibody, but  

without secondary antibody, 3) MEF not stained with primary antibody anti HNE, but with secondary 

antibody,  4) MEF stained with the primary antibody anti 4-HNE,  but without secondary antibody. A) 4-HNE 

antibody. B) Hoechst 33342 staining, C) Mitotracker staining, D) A, B and C are laid on top of each other, 

showing DNA, mitochondria and HNE adducts. The photos were taken with a 63x objective. 

 

A)  B)  C) D) 

1)  

2)  

3)  

4)  

Figure A.3.1: Control for Anti-dinitrophenyl antibody and DNPH-control. A) Without primary 

antibody (with DNPH), B) Without DNPH (with primary antibody). They show no background. The 

photos were taken with a 40x objective (400x magnification) on a Zeiss Axio Observer Z1 microscope. 

 

A)  B)  
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Figure A.3.3 Controls for the slot blot analysis for MEF-cells (A), testis (B) and brain (C). The left side of line shows the 

samples from each experiment, and the right show two controls: One with primary antibody anti HNE, but without 

secondary antibody and one without primary antibody anti HNE, but with secondary antibodies. The x-axis labels were 

removed with intent. The controls show low background intensities.  
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A.4 Solutions and buffers 

Cumene hydroperoxide:  
A stock solution of cumene hydroperoxide was prepared by adding 20 µL to PBS (gives 1.2 

mL of 0.1 M). The working solution was made by adding 5 µL from this solution to 9995 µL 

of Hanks’ solution. This was made immediately before use. 

Growth medium for MEF-cells: 
500 mL Dulbecco’s Modified Eagle’s Medium, with 4.5 g/L Glucose, without L-glutamine 

55 mL (10%) Foetal Calf Serum 

5.5 mL (1%) Penicillin-Streptomycin 

5.5 mL (1%) L-Glutamine (200mM) 

Growth medium for Ntera-2 cl.D1 

500 mL Dulbecco’s Modified Eagle’s Medium, with 4.5 g/L Glucose, with L-glutamine, with 

Sodium Pyruvate 

55 mL (10%) Foetal Calf Serum 

5.5 mL (1%) Penicillin-Streptomycin 

Treatment medium 

500 mL Dulbecco’s Modified Eagle’s Medium, with 4.5 g/L Glucose, without L-glutamine 

5.5 mL (1%) Penicillin-Streptomycin 

5.5 mL (1%) L-Glutamine (200mM) 

 

DNPH-solution 

The solution was first prepared by making 50 mM stocks in phosphoric acid, which was 

stored at -20°C On the day of use, the stock was mixed with 40 mL of water. In order to make 

it more alkaline, NaOH was added until the pH was 6.2. This gives about 50 mL of a DNPH 

solution which can be used. 

 

RIPA-buffer: 

150 mM sodium chloride 

1.0% Triton X-100 

0.5% sodium deoxycholate 

0.1% SDS (sodium docecyl sulphate) 

50 mM Tris 

Dissolved in dH2O and pH adjusted to 8.0 

 

TBS-buffer 
50 mM Tris 

0.15 mM NacL 

Dissolved in dH2O and pH adjusted to 7.6  
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A.5: Products and producers 

Product     Producer   Country 

 

2,4-Dinitrophenylhydrazine   Sigma-Aldrich  USA 

Absolutt alcohol prima (100% (absolute) Kementyl    Norway 

ethanol) 

Acetic acid (glacial)    Merck    USA 

Anti HHE monoclonal antibody  JaICA    Japan 

Anti HNE monoclonal antibody  JaICA    Japan  

(HNEJ-2) 

Anti-dinitrophenyl-KLH Alexa fluor  Life Technologies  USA   

488 

Axio observer Z1    Carl Zeizz   Germany 

Background punisher    Biocare Medical  USA 

BioWhittaker® Dulbecco’s Modified Lonza    Belgium 

Eagle’s Medium, with 4.5 g/L glucose, 

without L-glutamine 

BioWhittaker® Dulbecco’s Modified Lonza    Belgium 

Eagle’s medium with 4,5 g/L glucose, 

with L-glutamine and with 

Sodium Pyruvate 

BioWhittaker® L-glutamine 200mM Lonza    Belgium 

BioWhittaker® PEN-STREP   Lonza    Belgium  

(penicillin-streptomycin) 

BioWhittaker® Trypan Blue 0.4%  Lonza    Belgium 

BioWhittaker® Trypsin EDTA  Lonza    Belgium 

Bovine Serum Albumin, Fraction V  Sigma-Aldrich  USA  

Bodipy® 581/591 C11   Life Technologies  USA 

CASY Model TT – Cell Counter and Roche    Germany 

Analzyzer 

CLARIOstar     Labtech   Germany  
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Centrifuge tubes 15 mL   Corning   USA 

Centrifuge tubes 50 mL   Corning   USA 

ChemiDoc™ XRS+    Bio-Rad   USA 

Chloroform     Merck    USA 

cOmplete, Mini, EDTA-free   Roche  

Corning flasks (75 cm2, 162 cm2)  Corning   USA 

Costar Assay Plate 96 well Black  Corning   USA 

with clear bottom 

Cumene hydroperoxide    Sigma-Aldrich  USA  

Distilled water (dH2O)   Locally produced, NIPH Norway 

Diva decloaker 10x    Biocare Medical  USA 

Dimethyl sulfoxide    Merck    USA 

Docosahexaenoic acid   Sigma-Aldrich  USA 

Dinitrophenylhydrazine    

Eicosapentaenoic acid   Sigma-Aldrich  USA 

El 808 Absorbance Reader   Biotek    USA 

Eppendorf tubes 1.5 mL   VWR    USA 

Excelsior ES     Life Technologies  USA 

Formalin solution, neutral buffered,  Sigma-Aldrich  USA 

10% 

Hanks Saline Solution   Biochrom   Germany 

Hemin      Sigma-Aldrich  USA 

HNE-BSA Control    Cell Biolabs   USA 

Hoechst 33342    Life Technologies  USA 

Hydrogen peroxide 30%   Merck    USA 

Image Lab 3.01    Bio-Rad   USA 

Iron (II) sulfate heptahydrate   Sigma-Aldrich  USA 

Methanol     Merck    USA 
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Microm HM 355S    Life Technologies  USA 

Minifold® II SRC 072/0   Schleicher & Schuell  Germany  

Mitotracker® Red CMH2kROS  Life Technologies  USA 

Palmitic Acid     Sigma-Aldrich  USA 

PAP-pen     VECTOR   USA 

Phosphate buffered saline (PBS)  Locally produced, NIPH Norway 

Polysine slides    Life Technologies  USA 

O-xylene     Sigma-Aldrich  USA 

OxiSelectTM Protein Carbonyl  Cell Biolabs   USA 

ELISA Kit 

S3023 Mounting Medium   Dako    USA 

Sodium Chloride (NaCl)   Merck    USA 

Sodium deoxycholate    Sigma-Aldrich  USA 

SuperSignal™ West Dura Extended  Life Technologies  USA 

Duration Substrate 

Tissue lyser II     QIAGEN   Germany 

Trizma Hydrochloride   Sigma-Aldrich  USA  

Tween 20     Bio-Rad   USA 

 

 

 

 

 

 

 

 

   


