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Summary

This thesis investigates weak identification when a forward looking Taylor rule is
estimated with GMM. Lagged values of the nominal interest rate, inflation and the
output gap are used as instruments. In the New Keynesian sticky price model,
the strength of identification is determined by the dynamic structure. Without any
backward looking terms in the inflation and output gap equations, serial correlation
in inflation and the output gap shocks is necessary for identification. The order of
the AR process in the shock terms determines the number of lags that are relevant
instruments. Simulation of a DSGE model shows that higher persistence in the
shocks increases the strength of identification. Increasing the degree of interest rate
smoothing weakens identification. Monetary policy that leads to an indeterminate
equilibrium increases identification, compared to a determinate equilibrium.

Identification robust inference methods show that the forward looking Taylor rule is
weakly identified for Norwegian data. Even though GMM estimates produce tight
confidence intervals, we observe large areas of disagreement between identification ro-
bust confidence sets and confidence sets based on standard GMM inference. Possible
explanations are suggested. The high degree of policy intertia observed for monetary
policy will likely lead to weaker identification. Inflation expectations seem to be well
anchored. This reduces the explained variation in the endogenous variables from
the instruments, and hence weakens identification. Inconsistency, or discretion, in
Norges Bank reaction pattern will also make identification more difficult.
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1 Introduction

In the last 15 years or so, the generalized method of moments (GMM) has become
a popular tool for estimating forward looking models with rational expectations. In
the linear IV regression, problems can arise when instruments are weak, i.e., they
are weakly correlated with the endogenous variables they serve as instruments for.
The conceptually same problem can arise in GMM estimation. In the context of
GMM, weak instruments correspond to weak identification of some or all of the
unknown parameters. Weak identification leads to non-normal distributions, leaving
coventional GMM inference invalid. For the linear IV regression many methods for
handling weak instruments are proposed and widely applied. However, as pointed out
in Stock, Wright and Yogo (2002), weak instruments is a much more difficult problem
in general nonlinear GMM than in linear IV regression. In the context of GMM, the
usual rank condition for identification is not sufficient to guarantee reliable inference
using GMM in finite samples. Some methods are however available. Papers such as
Mavroeidis (2010) and Krogh (2015) explore weak identifcation through obtaining
confidence sets that are fully robust to weak identification. The identification robust
confidence sets are then compared with conventional GMM inference.

A large number of papers argue that there might be problems with weak identification
when estimating forward looking models with rational expectations. Mavroeidis
(2004) shows that the usual “weak instruments” problem can arise naturally, when
the predictable variation in expected future values is small relative to unpredictable
future shocks.

In this thesis I will explore the possibility of weak identification when estimating
simple interest rate rules for Norway. This issue has received attention in the recent
literature, especially following the study by Mavroeidis (2010) on US data. In section
2 I will present the most famous interest rate rule, the Taylor rule. Section 3 provides
a short overview of monetary policy in Norway. In section 4 the Generalized method
of moments (GMM) is introduced. The moment conditions for GMM estimation of
the Taylor rule are presented in the end of this section. Section 5 tries to give an
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intuitive explanation of the necessary dynamics for the Taylor rule to be identified.
Section 6 illustrates the consequenses of strength of identifcation for GMM estimate
distributions on simulated data. Section 7 is divided into two parts. In the first part,
identification robust inference methods are presented. The second part reinvestigates
the simulated data by estimating an identification robust confidence set. In section 8
I turn to real data for the Norwegian economy. In the first subsection, the measures
of nominal interest rate, inflation and the output gap are presented. The second
subsection explores weak identification in the standard GMM estimation of the Taylor
rule. By the standard GMM I refer to the case where lagged values of the interest
rate, inflation and output gap are used as instruments. This was the setup used by
Clarida, Gali and Gertler (2000), which arguably serves as a benchmark for GMM
estimation of the Taylor rule. Subsection 3 explores adding additional instruments
to strengthen identification.
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2 Interest rate rules

When conducting monetary policy, simple interest rate rules are used as a check of
the robustness of the monetary policy. To my knowledge, no central bank claims to
strictly follow an interest rate rule when setting interest rates. Instead most central
banks minimize a loss function. A functional form of the loss function for Norges
Bank will be presented in section 3. Estimating simple interest rate rules is however
a popular exercise in monetary economics. This serves a dual purpose. On the one
hand, they often approximate optimal policy. This provides a benchmark for central
banks to compare their desired nominal interest rate against. On the other hand,
they have proved to be good empirical representations of monetary policy. The rules
estimated can be viewed as what rule would the central bank follow if we transform
the loss function into a simple interest rate rule. The most famous interest rate rule
is the Taylor rule proposed by John Taylor. The structure of the rule will be outlined
below.

2.1 The original Taylor Rule

Taylor (1993) proposes the following rule for interest rate setting in the US.

r = p+ 0.5y + 0.5(p− 2) + 2 (1)

where r is the federal funds rate, p is the rate of inflation over the previous four
quarters and y is the percent deviation of real GDP from a target. This rule was
proposed for the US economy and an equivalent rule for the Norwegian Economy
would likely have different coefficients. When interpreting the original Taylor rule it
is useful to start at the point where both inflation and output is at its respective target
levels. With an inflation target of 2, the interest rate that will prevail in equilibrium is
4. This can be seen as the equilibrium nominal interest rate. Equilibrium real interest
rate will hence be 2. Along with the Taylor rule came what has been known as the
Taylor principle. The Taylor principle states that the nominal interest rate should
move more than one-for-one with respect to changes in inflation. The specification
above suggests a 1.5-to-one ratio. The intuition is that the real interest rate drives
output, which in turn affects inflation. To counteract the rise in inflation the Taylor
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principle must be active to help decrease inflation. If the Taylor principle was not
active, an increase in inflation would be further strengthened because of the unability
to increase the real interest rate.

2.2 Forward-looking Taylor rule with interest rate smoothing

The original Taylor rule was backward looking. The interest rate was set based on
previous inflation and output gap. Many argued that central banks were looking
at expected inflation and output gap when setting interest rates. This led to the
introduction of a forward looking Taylor rule. The principle is still the same, but
instead of looking at previous inflation and output, the rule now uses expected future
values of these variables. The forward looking target rate seen in among others
Clarida, Gali and Gertler (2000) is defined as follows.

i∗t = i∗ + ψπ(E[πt+k|Ωt]− π∗) + ψxE[xt+q|Ωt] (2)

where

i∗t is the nominal interest according to the forward looking Taylor rule. I will call
this the target interest rate for reasons that will be clear when introducing interest
rate smoothing,

i∗ is the equilibrium nominal interest rate that will prevail when both inflation and
output is at its respective targets,

πt+k is the annual inflation rate between period t and period t+k,

π∗ is the inflation target,

xt+q is the average output gap between period t and period t+q,

Ωt is the information set containing all known information at time t,

ψπ and ψx are the weight coefficients for respectively inflation and the output gap

In addition to basing the interest rate on expected future outcomes of inflation and
output, it is widely recognised that central banks tend to smooth interest rates. One
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reason for this could be that the central bank wants to avoid large fluctuations in
asset prices. Introducing interest rate smoothing the central bank’s policy rule can
be written as

it = (1− ρ)i∗t + ρit−1 + εi,t (3)

where ρ is the smoothing coefficient,

it is the nominal interest rate prevailing at time t

εi,t is an exogenous interest rate shock at time t.

By including a shock term we recognize the fact that changes to other variables than
inflation and the output gap could affect nominal interest rates directly. We now
observe that the nominal interest rate is set as a weighted average of the nominal
interest rate last period and the target interest rate according to the forward looking
Taylor rule. Say the target interest rate is 100 basis points higher than the actual
nominal interest rate the previous period. Due to interest rate smoothing, the central
bank will not choose the target rate as their nominal interest rate. In fact, the gap
between the previous interest rate and the target rate will only be closed by the
proportion (1− ρ). Inserting for the target interest rate in (4) gives us the following
policy rule

it = (1− ρ)(α + ψπE[πt+k|Ωt] + ψxE[xt+q|Ωt]) + ρit−1 + εi,t (4)

where α = i∗ − ψππ∗ for ease of notation.

Clarida, Gali and Gertler (2000) estimate the Taylor rule in (4) on US time series
data. They use GMM as their estimation method, with lagged values of inflation,
the output gap and the nominal interest rate as instruments. They find inflation
coefficients below one up to 1980, and coefficients above one since then. They argue
that this is evidence of monetary policy leading to an indeterminate equilibrium
up until 1980, refered to as the pre-Volcker period. From 1980-1997, named the
Volcker-Greenspan period, they argue that monetary policy lead to a determinate
equilibrium.
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Mavroeidis (2010) reinspects the results of Clarida, Gali and Gertler using identifi-
cation robust inference. He finds that identification is weaker when monetary policy
leads to a determinate equilibrium.

Skumsnes (2013) estimates the Taylor rule in (4) for the Norwegian economy with
GMM. He finds that the inflation coefficient lies in the determinancy region for most
of his regression specifications. The findings of Mavroeidis (2010) suggest that the
estimated parameters from Skumsnes (2013) might suffer from weak identification.
Based on this, I will conduct an analysis similar to that of Mavroeidis (2010) for
Norwegian data later in this thesis.
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3 Monetary Policy in Norway

Norges Bank is responsible for conducting monetary policy in Norway. The central
banking law of 1985 regulates Norges Banks operations. The law states that Norges
Bank shall be an executive as well as advisory organ for monetary, credit and cur-
rency policy. The bank’s core objectives are to assist in keeping prices stabile through
monetary policy, encourage fincancial stability and create robust and effective finan-
cial structures and payment systems. In addition, they are to manage the portfolio of
The Government Pension Fund Global and handle the banks own currency reserves.
Since 2001 Norges Bank has been regulated by the monetary policy regulation issued
by the Ministry of Finance. The regulation states that the monetary policy objective
should be low and stable inflation, which over time should be near 2.5%. Further, the
long term objective of the monetary policy should be to provide a nominal anchor in
the economy. A nominal anchor is a necessary prerequisite for stability in financial
and housing markets. Norges Bank should also aim at stabilizing the Norwegian
currency and expectations in development of the currency. The existence of multiple
objectives is referred to as a flexible inflation targeting regime.

As stated in the monetary policy report (Norges Bank, 2012a), Norges Bank conducts
monetary policy in order to minimize a loss function of the form

L = (πt − π∗)2 + λ(yt − y∗)2 + γ(it − it−1)2 + τ(it − i∗)2 (5)

where π is inflation, y is output and i is the nominal interest rate. Subscripts
represent the time period of the variable, and * denotes target values. The loss
function is a weighted sum of inflation deviation from its target, output deviation
from its target, the change in the interest rate and deviation from the interest target.
The quadratic form of the loss function suggests that Norges Bank puts equal weight
on deviations above and beyond target. The size of the coefficents indicates how
much weight Norges Bank puts on the different deviations. Strict inflation targeting
would suggest λ = γ = τ = 0. Higher coefficients would suggest more flexible
inflation targeting.

The main instrument for Norges Bank is the key policy rate. This is the rate com-
mercial banks get from deposits in the central bank. Hence the key policy rate can
be viewed as the floor of the interest rate corridor. No banks would be willing to
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lend out money at a lower interest rate than what it would get from a deposit in the
central bank. Accordingly, the ceiling is the interest rate on banks overnight loans
from the central bank.
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4 GMM-estimation of the forward looking Taylor

Rule

The original Taylor rule was based on predetermined values of inflation and the
output gap and didn’t include interest rate smoothing. When the Taylor rule is
without interest rate smoothing, it will be linear in the parameters. This suggests
the original Taylor rule could be estimated with linear methods such as ordinary least
squares or two-stage least-squares (TSLS), depending on our assumptions between
the explanatory variables and the error term. When including a smoothing parameter
in the Taylor rule, it becomes non-linear in the parameters. This is a violation of the
OLS- and TSLS assumptions that ensure unbiased and consistent estimators. Hence
non-linear estimation methods should be used when facing interest rate smoothing.

In addition to the issue of interest rate smoothing, the Taylor rule in (4) is forward
looking. The central bank uses expected future inflation to determine interest rates
rather than current inflation. When using a forward looking-specification, the ex-
planatory variables will be endogenous. The generalized method of moments (GMM)
can handle non-linear equations with endogenous explanatory variables. Hence GMM
would be a natural method for estimating a forward-looking Taylor rule.

When estimating the Taylor rule by GMM we make use of the rational expectations
assumption. By replacing expectations with realizations and including the forecast
errors, (Etxt+q−xt+q) and (Etπt+k−πt+k), with the correct weights in the disturbance,
the Taylor rule can be rewritten as.

it = (1− ρ)(α + ψππt+k + ψxxt+q) + ρit−1 + εt (6)

where the error term consists of the original disturbance in addition to the forecast
errors

εt = −(1− ρ)(ψπ(πt+k − E[πt+k|Ωt]) + ψx(xt+q − E[xt+q|Ωt])) + εi,t (7)

GMM makes use of a set of moment conditions. The moment conditions are then
used to solve for the parameters of our model. To be able to solve the system we
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need at least as many moment conditions as parameters we want to estimate. When
the vector of moment conditions equals the number of parameters, we have exact
identification. If we have more moment conditions than parameters, we have over-
identification.

The moment conditions can be written in the form (Drukker, 2010)

E [m(yt,xt, zt,θ) = 0] (8)

where m is a q × 1 vector of functions whose expected values are zero in the pop-
ulation, yt is the left hand side variable, xt is the explanatory variable vector, zt

is the the instrument vector with dimension q × 1 and θ is the parameter vector
with dimension k × 1, where k ≤ q. The sample moments that correspond to the
population moments are

m̄(θ) =
1

T
ΣT
t=1m(yt,xt, zt,θ) (9)

When k < q, GMM minimizes the following objective function with respect to the
vector, θ, of parameters

θ̂GMM ≡ΣT
t=1argminθm̄(θ)′Wm̄(θ) (10)

where W is an estimation weighting matrix. The estimation weighting matrix can
take on different forms, depending on the type of GMM estimator we want. In
general, it’s not possible to derive an explicit formula for the GMM estimator when
the system is overidentified. Hence, minimizing the objective function makes us of
numerical optimization methods.

When k = q the GMM estimator solves m̄(θ) exactly so that m̄(θ)′Wm̄(θ) = 0

The moment conditions in our Taylor regression will be of the form

E[εt|Zt] = E[it − (1− ρ)(α + ψππt+k + ψxxt+q)− ρit−1|Zt] = 0 (11)
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where [εt|Zt] is l× q matrix of the l moment conditions and Zt is the vector contain-
ing the q variables the moments are conditioned on. We are estimating three (four
including the constant) parameters and hence need at least three moment conditions
in addition to E[εt] = 0. Because of rational expectations and Et−1εr,t = 0, any pre-
determined variable will be orthogonal to the disturbance term. In addition, current
variables that are uncorrelated with the error term could be used as instruments.
We suspect current values of inflation and the output gap to be correlated with the
error term. Thus the list of possible instruments includes, but is not restricted to,
all lags of inflation, interest rate and the output gap.
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5 Identification

In the last section I showed that GMM fits parameter values that brings the moment
conditions, often called orthogonality conditions, as close to their assumed value of
0 as possible. In addition to the orthogonality conditions, we need the instruments
to be relevant for the parameters to be identified. An instrument will be relevant
when the instrument can explain at least some of the variation in the endogenous
variables. it−1 is in the instrument set, and is clearly a relevant instrument with
respect to it−1. Lagged values of πt and xt are however not necessarily relevant
instruments for πt+k and xt+q without imposing additional assumptions. Cochrane
(2011) proposes two assumptions that are needed for identification in a three equation
New Keynesian sticky price model. The FED’s reaction to deviations from the
target values for inflation and output has to be the same as the relation between
equilibrium interest rates and equilibrium inflation and output. Furthermore, the
FED’s choice of equilibrium must be such that the equlibrium quantities can be
expressed in the autoregressive representation, with “equilibrium” parameters in the
zone of determinancy. Below I try to give an intuitive explanation of the dynamics
needed in a New Keynesian Sticky price model for the parameters to be identified.

5.1 Dynamics needed for the Taylor rule to be theoretically

identified

For the purpose of simplicity, I will in this part set the smoothing parameter to 0. As
long as the smoothing coefficient is within the unit circle it will not affect whether
inflation or output is theoretically identified. Without smoothing the Taylor rule will
look the following. Inflation horizon is set to 1 and the output gap considered is the
current.

it = ψπEtπt+1 + ψxxt + εi,t (12)

To discuss identification we need a closing model for the endogenous regressors. To
close out the model, I will use a New Keynesian sticky price model in the line of
Clarida, Gali and Gertler (2000). The model consists of a forward-looking Phillips
curve, allowing for an exogenous inflation shock, and an output gap relation, allowing
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for an exogenous demand shock. The equilibrium conditions are log linearized around
a steady state.

πt = βEtπt+1 + λxt + zt (13)

xt = Etxt+1 − (it − Etπt+1) + gt (14)

where gt and zt are the exogenous shocks and they could follow an AR(1) process

zt = ρπzt−1 + επ,t (15)

gt = ρxgt−1 + εx,t (16)

where ρπ and ρx are the AR-coefficients of the inflation shock and output gap shock
respectively. εi,t , επ,t and εx,t are assumed to be innovations with respect to time
t− 1.

Furthermore I will assume that there is a determinate equilibrium. Formally, the fol-
lowing condition ensures a determinate equilibrium in the above model specification.

ψπ +
1− β
λ

ψx − 1 ≥ 0 (17)

Clarida, Gali and Gertler (2000) set β = 0.99 and λ = 0.3. Accepting those pa-
rameter values and looking at condition (17), we can observe that the condition for
a determinate equilibrium largely coincides with the Taylor principle (ψπ > 1). If
the Taylor principle is satisfied and the output gap coefficient has the expected sign,
there will always be a determinate equilibrium.

In a determinate equilibrium we know that the solution for inflation and the output
gap can be written in the form:

πt = D1(zt, vt) (18)
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and

xt = D2(zt, vt) (19)

where vt = gt − εi,t, and will be linear in the error terms.

πt = a11zt + a12gt + a13εi,t (20)

xt = a21zt + a22gt + a23εi,t (21)

By using the method of undetermined coefficients, the closed form solution becomes.
See appendix B for calculations.

(
πt

xt

)
=

(
ρπ ρx

ρπ ρx

)
D

Ddet

(
d22πt−1 − d12xt−1
−d21πt−1 + d11xt−1

)
+D

(
επ,t

εx,t − εi,t

)
(22)

Looking at closed form solution we need ρπ 6= 0 and ρx 6= 0 to make both 1-lagged
values of inflation and the output gap possible instruments. If only one of shock
processes were autoregressive of order 1, we would only have one instrument for two
parameters, and hence the parameters would be underidentified. Adding additional
dynamics will make more lagged values relevant instruments. In the case of the
inflation and output gap shocks being AR(1), adding inflation smoothing and output
smoothing would make the two-lagged values of inflation and output gap possible
instruments. In general the sum of q and k will be the number of relevant instruments
when the shock processes are AR(q) and inflation and output gap is an AR(k) process.
It is important to note that these conclusion rely heavily on the interest rate shock
having no autocorrelation. Krogh (2015) notes that the GMM estimator in the
New Keynesian Phillips curve will be biased for any instrument in Zt−1 when the
cost shock is autocorrelated. This leaves the parameters unidentified no matter the
dynamics of the rest of the system. This also applies to the Taylor rule estimation in
the sense that the interest rate shock can not be autocorrelated. This point is also
made in Cochrane (2011).
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6 Illustrating identification

Above we have seen that if the exogenous shocks to inflation and output gap are
AR(1)-processes, πt−1 and xt−1 can be used as instruments for πt+1 and xt. In
theory this is of course true as long as both the lag coefficients are within the unit
circle. In practice however, we often encounter the problem of weak identification.
Weak identification arises when the predictable variation in the endogenous variables
are weakly correlated with the variation in the instruments, relative to variation in
the endogenous variables the instruments can not predict.

6.1 Investigating strength of identification through simula-

tion

6.1.1 Higher AR-coefficients in the inflation and output gap shocks make
identification stronger

In a determinate equilibrium, the expected future path of all endogenous variables are
unique at time t−2.At time t−1 the i.i.d. portion of our exogenous shocks are realized
and alters the expected future path of the endogenous variables. In all periods going
forwards this happens. Because of no lagged endogenous variables in our model
specification (still no smoothing), all expected variation in the endogenous variables
comes from the AR(1)-process in the shock terms. πt−1 and xt−1 are instruments for
πt+1. The realizations of the i.i.d. disturbances at time t−1 will impact the realization
of πt+1. By the time πt+1 is realized, i.i.d disturbances from both time t and t+1 are
realized, which also affects the realization of πt+1. The strength of identification will
in this case be how much the realization of i.i.d disturbances from time t−1 changes
πt+1 relative to the realization of i.i.d disturbances from time t and t + 1. Higher
values of ρπ and ρx should make the variation coming from time t− 1 higher relative
to that coming from t and t+ 1. I will investigate this by simulating the model from
part 3 in Matlab with an extension called Dynare. Dynare handles simulation of
DSGE-models with rational expectations. I will simulate three cases, one with low
values on the AR(1) coefficients, one with medium valued AR-coefficients and a case
with high valued AR-coefficients.
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Model simulated:

it = ρit−1 + (1− ρ)(ψπEtπt+1 + ψxxt) + εi,t (23)

πt = βEtπt+1 + λxt + zt (24)

xt = Etxt+1 − (it − Etπt+1) + gt (25)

zt = ρπzt−1 + επ,t (26)

gt = ρxgt−1 + εx,t (27)

Table 1: Simulation. Parameters being equal in all specifications
ψx β λ

Parameter values 0.4 0.99 0.3

I start the simulation from the steady state for the model. For simplicity, the above
model is constructed so that all steady state values are 0. In each period values for
the i.i.d shock terms are drawn from a standard normal distribution. The values of
the endogenous variables are then determined. Expectations are calculated using an
end condition and applying rational expectations. Each DGP is simulated 500 times
producing sample sizes of 1000 or 50. The parameters are then estimated using GMM
in Stata. The distribution of the parameter estimates is “plotted” using a gaussian
kernel.
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ψ̂π ψ̂x

a) (1)
ψπ ρ ρπ ρx
1.5 0 0.2 0.2

b) (2)
ψπ ρ ρπ ρx
1.5 0 0.5 0.5

c) (3)
ψπ ρ ρπ ρx
1.5 0 0.9 0.9

Figure 1: GMM parameter distributions on simulated data. Persistence in shocks
and strength of identification.
a) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 1.
b) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 2.
c) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 3.
Solid line represents sample size of 1000. Dotted line represents sample size of 50.
Vertical line represents true parameter value.

Figure (1) gives the distribution of GMM estimates for different AR(1) coefficients
in the inflation and output gap shocks. Simulation shows that the distribution gets
narrower and more dense the higher the lag coefficients are. For the case of very
weak identification, the inflation coefficient is very poorly estimated. The variation
in our endogenous variables are in this case weakly correlated with instruments, and
hence leads to weak identification. Our estimates get gradually better as identifica-
tion becomes stronger, represented through the lag coefficients in the shock terms.
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Worth noting is that the distribution does not get “dense” regardless of strength of
identification for the sample size of 50. It gets better as identification strengthens,
but even in specification (3) the variance of the GMM estimates are high.

6.1.2 Indeterminancy. Sunspot fluctuations improve identification.

I will now investigate what happens to identification when the model equilibrium is
indeterminate. The model will be indeterminate when the Taylor principle is not
satsified (ψπ < 1). In theory an indeterminate equilibrium will increase strength of
identifcation of the Taylor rule. The sunspot shock will add additional exogenous
dynamics to the path of inflation and the output gap. This will strengthen the
covariance between lagged and future realisations of inflation and the output gap.
Mavroeidis (2010) finds that the parameter estimates for the pre-Volcker period are
well identified. The parameter estimates for the Volcker-Greenspan period, however,
do not seem to be well identified. According to Mavroeidis one possible explanation
for this is that a determinate monetary policy removes the possibility of sunspot
fluctuations, and mitigates the effect of shocks on future inflation and output. As a
result, the expectations of these variables becomes less variable than they would be
under an indeterminate monetary policy.

To be able to simulate an indeterminate equilibrium I have to modify the model to
allow for sunspot fluctuations. I follow the modifications suggested by Farmer and
Khramov (2013). Etπt+1 is replaced with pit in equations (23), (24) and (25). The
realization of inflation at time t is then modeled as a fundemental shock.

πt = pit−1 + σs ∗ sunspott (28)

where σs is a parameter sunspott is an iid. disturbance term and pit−1 should be
interpreted as Et−1πt. The dynamics of the model can now seem somewhat strange.
The added equation (28) determines current inflation as the expectation from last
period, plus a sunspot shock. Equations (23)-(27) now determine pit instead of πt,
in addition to the other endogenous variables. Expected inflation, pit, will thus be
driven by the sunspot shock in addition to the persistence in the inflation and output
gap shocks.
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ψ̂π ψ̂x

a) (2)
ψπ ρ ρπ ρx
1.5 0 0.5 0.5

b) (4)
ψπ ρ ρπ ρx
0.5 0 0.5 0.5

Figure 2: GMM parameter distributions on simulated data. Indeterminacy and
strength of identification.
a) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 2.
b) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 4.
Solid line represents sample size of 1000. Dotted line represents sample size of 50.
Vertical line represents true parameter value.

We see that the distribution of the parameter estimates are narrower and more dense
for the indeterminate equilibrium. The key difference from the determinate equilib-
rium is that the endogenous variables πt and xt now also depend on the additional
state variable pit. Since pit is autocorrelated, pit−1 provides an additional relevant
forcing variable for lagged values of inflation and the output gap. The sunspot shock
associated with the indeterminate equilibrium produces more predictable variation
on the endogenous variables from our instruments, and hence strengthens identifica-
tion.

6.1.3 A high smoothing parameter makes it harder to identify the Taylor
rule

By looking at the interest rate equation the potential problem of high smoothing
becomes quite clear. If there is a high smoothing parameter, the interest rate will
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move less to changes in expected inflation and the output gap. The data could
therefore support the claim of lower parameters for inflation and output gap even
though this is not the case. Mavroeidis (2010) finds a higher smoothing parameter
for the weakly identified period (1979-1997) than the well identified period (1961-
1979). This suggests that policy has become more gradual over time, and provides
an additional explanation for why the parameters have become weakly identified in
the period 1979-1997.

ψ̂π ψ̂x

a) (5)
ψπ ρ ρπ ρx
1.5 0.8 0.9 0.9

b) (2)
ψπ ρ ρπ ρx
1.5 0 0.9 0.9

Figure 3: GMM parameter distributions on simulated data. Interest rate smoothing
and strength of identification.
a) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 5 for a sample size of 1000.
b) Distribution of GMM estimates for ψπ and ψx based on 500 simulations of speci-
fication 2.
Solid line represents sample size of 1000. Dotted line represents sample size of 50.
Vertical line represents true parameter value.

Introducing interest rate smoothing makes the distribution of the estimated param-
eters less dense. The smoothing parameter reduces the variation in the interest rate
from changes in our endogenous variables. The result is that identification becomes
weaker.
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7 Investigating strength of identification with identification-

robust inference

To investigate identification we first have to make the assumption that the true
parameter vector is unique at θo. In GMM, the parameter vector θ is identified by
the conditional mean restrictions E[h(Yt,θo)|Zt] = 0, where θo is the true value of θ
and Zt is the vector of instruments. This implies that the numerator components of
the GMM objective function has expectation zero under the true parameter value,
E[φt(θ0)] = 0. A necessary condition for θ to be identified is E[φt(θ)] 6= 0 for all
θ 6= θ0. The conditional moment restrictions are only satisfied when θ is at its true
parameter value θ0. Weak instruments can be seen as the case where E[φt(θ)] is
nearly 0 for some or many values of θ 6= θ0.

Stock, Wright and Yogo (2002) provide an overview on the theory of weak instru-
ments in linear instrumental variables (IV) regression, and weak identification in
generalized method of moments (GMM) estimation. Weak instruments in IV esti-
mation arise when the instruments are weakly correlated with included endogenous
variables. In GMM estimation weak instruments correspond to weak identification
of some or all of the unknown parameters. If instruments are weak, the sampling
distribution of GMM statistics are in general nonnormal, and standard GMM point
estimates, hypothesis tests, and confidence intervals are unreliable. The authors sug-
gest one formal test for weak identification in nonlinear GMM proposed by Wright
(2003). The conventional asymptotic theory of GMM requires the gradient of the
moment conditions φt(θo) to have full column rank. The test for weak identification
formulates a null hypothesis of complete failure of this rank condition. Formally,
this makes the test proposed by Wright (2003), a test for nonidentification or under-
identification, not for weak identification. In simulations the proposed test has very
little power in a sample size of 100. Hence, it will not be very useful to use this test
on our empirical data, consisting of sample sizes of 100 or less.

Procedures that are fully robust to weak identification includes, the Nonlinear Anderson-
Rubin statistic and Kleibergen’s Statistic. Both procedures test θ = θ0 in the non-
linear GMM setting. The tests are based on the continous-updating GMM objective
function (Hansen et. al 1996), in which the weight matrix is evaluated at the same
parameter value as the numerator.
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Stock and Wright point out some symptoms of weak identification in empirical data.
These include the objective function being clearly nonquadratic and has plateaus or
ridges that in terms of LR statistics are not far from its minimum value. Another
symptom is that the confidence sets computed by one of the two methods men-
tioned above will differ substantially from the conventional GMM confidence sets. In
addition, one could look for asymptotically equivalent GMM estimators producing
substantially different results.

The simplest method for obtaining identification-robust confidence sets is based on
the S statistic proposed by Stock and Wright(2000). This is a generalization to
GMM for the identification robust method due to Anderson and Rubin (1949). The
Anderson-Rubin approach fixes the values of the parameters that may suffer from
weak identification. In the Taylor rule setting, again without smoothing for ease of
notation, this involves fixing the parameters ψπ and ψx , to some values ψ0

π and ψ0
x.

Then running the regression

it − ψ0
ππt+1 − ψ0

xxt = QVt + ut (29)

where Vt is the vector of instruments, and Q is the vector of associated parameters.
Testing the null hypothesis (ψπ, ψx) = (ψ0

π, ψ
0
x) is equivalent to test the null hypoth-

esis of Q = 0 because the instruments should be irrelevant when (ψ0
π, ψ

0
x) coincides

with the true parameter values. The 95% confidence set is obtained by keeping all
parameter pairs (ψ0

π, ψ
0
x) for which the null hypothesis is not rejected at the 5% level.

Outlined above is the Anderson Rubin approach in the linear IV setting. The GMM
version of the test proposed by Stock and Wright does not include regressing the
residuals from the restricted model on the instruments. First ψπ and ψx are fixed
to some values ψ0

π and ψ0
x. Thereafter the restricted parameter estimates (α̂(ψ0

π, ψ
0
x)

and ρ̂(ψ0
π, ψ

0
x) in case of smoothing) are obtained through GMM estimation on the

restricted model. The S-statistic is then constructed by evaluating the CUE objective
function at the fixed and restricted parameter estimates.

SCUT (θ̂) =

[√
1

T

∑
φt(θ̂)

]′

Ŵ
(
θ̂
)−1 [√ 1

T

∑
φt(θ̂)

]
(30)

where θ̂ = ψ0
π, ψ

0
x, α̂(ψ0

π, ψ
0
x), ρ̂(ψ0

π, ψ
0
x). Since φt(θ̂) is serially correlated Ŵ

(
θ̂
)
is re-
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placed by an estimator of the spectral density of φt(θ̂) at frequency 0. In my tests this
estimator will be the HAC Bartlett with number of lags decided by the Newey West
method. The number of lags will be decided by the formula, lags = int

(
4( T

100
)
2
9

)
.

At this point I feel it is important to note that the number of lags included in the
HAC Bartlett estimator can impact the value of the S-statistic significantly. In my
tests, increasing the number of lags lead to substantial reduction in the S statistic
for a given set of fixed and restricted parameters. To avoid “cheating” from adjust-
ing the number of lags, I will in all constructed statistics use the number of lags
decided by the above formula. The statistic obtained in (31) is evaluated against its
critical value from the chi-square distribution. SCUT (θ) will be χ2 distributed with
degrees of freedom equal the number of instruments minus the number restricted
estimated parameters. If SCUT (θ̂) is beneath the critical value, (ψ0

π, ψ
0
x) is included in

the identification robust inference confidence set.

Mavroeidis(2010) refers to the S-statistic based on the Anderson and Rubin approach
as the AR-S statistic. Instead of using the AR-S statistic, he uses the conditional
score statistic proposed by Kleibergen(2005), denoted K-LM. He argues that AR-S
statistic is less powerful than the Wald test when identification is strong. In his
words, “K-LM, which can be thought of as a version of the AR-S statistic that uses
only an optimal combination of instruments”. The KL-M confidence sets are based
on the K statistic which is computed using the formula

K (β0) =
1

4T

(
∂Q(θ)

∂θ′
| θ̂0
)[

D̂T (θ̂0, r)
′V̂ff (θ̂0)

−1D̂T (θ̂0, r)
] 1

4T

(
∂Q(θ)

∂θ′
| θ̂0
)

(31)

I now want to revisit the simulation data from the previous part, using identification
robust inference. Based on the GMM results I will construct a confidence ellipse for
the possibly weakly identified parameters. I will use the K-LM statistic to construct
an identification robust confidence set for the same parameters. In addition I will
plot all the actual GMM estimates to check whether the confidence set based on the
GMM-estimates or KL-M statistic does the best job of reflecting the true distribution
of the estimated parameters. To construct the expected confidence ellipse of the
GMM-estimators, I will use the median values of the GMM estimates (ψπ, ψx) and
median value of the elements of the covariance matrix. By the same line of argument
I will use the median values for the KL-M statistic associated with each parameter

23



pair. The median values are chosen to represent a typical realization of the simulated
data.

7.1 The KL-M confidence set converges towards the GMM

confidence ellipse when identification is stronger

Since the AR-S and KL-M confidence sets take into consideration the non normality
of the distribution when identification is weak, we expect these sets to be bigger than
those from conventional GMM when identification is weak. In my model simulation
strength of identification is represented by the size of the lag coefficient in the inflation
shock and output gap shock. First, I want to show that the identification robust
inference confidence set closes in on the GMM Wald ellipse when identification is
stronger. As identification gets stronger the distribution will become more similar
to the distributions assumed by conventional GMM inference. Hence the rejection
regions, and when inverted the acceptance regions, will become more similar under
stronger identificaiton.

a) (2) ψπ ρ ρπ ρx
1.5 0 0.5 0.5 b) (3) ψπ ρ ρπ ρx

1.5 0 0.9 0.9

Figure 4: Simulation results. Strength of identification and the GMM Wald ellipse
vs. KL-M confidence set.
a) Wald ellipse from GMM estimation and the KL-M confidence set for specification
2.
b) Wald ellipse from GMM estimation and the KL-M confidence set for specification
3.
In both figures actual GMM estimates are plotted with small black dots from 500
simulations. Sample size is set to 1000. Both ellipses and confidence sets are at the
95% level.

24



Figure 4a shows that there is quite a large region of disagreement between the Wald
ellipse and the KL-M confidence set when the lag coefficients are set to 0.5 for both
the inflation shock and the output gap shock. In figure 4b, the region of disagreement
has become much smaller in absolute terms when the lag coefficients are set to 0.9.
In absolute terms, the increase in the KL-M confidence set region is much bigger
than the increased region of the Wald ellipse when identification becomes weaker,
as we move from figure 4b to 4a. This is well in line with what theory on weak
identifcation suggests. Large areas of disagreement between the Wald ellipse and
identification robust inference confidence sets is a symptom of weak identification.

7.2 Indeterminancy makes identification stronger

As shown in Mavroeidis (2010) an indeterminate equilibrium leads to the endogenous
variables πt and xt also depending on an additional state variable ut that is driven by
the sunspots. Since ut is autocorrelated, ut−1 strengthens the correlation between the
lagged values of πt and xt with future realizations. Identification robust confidence
sets for the determinate and indeterminate equilibrium is reported below, when all
other parameters are kept the same.
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a) (2) ψπ ρ ρπ ρx
1.5 0 0.5 0.5 b) (4) ψπ ρ ρπ ρx

0.5 0 0.5 0.5

Figure 5: Simulation results. Indeterminacy and strength of identification. GMM
Wald ellipse vs KL-M confidence set.
a) Wald ellipse from GMM estimation and the KL-M confidence set for specification
2.
b) Wald ellipse from GMM estimation and the KL-M confidence set for specification
4.
In both figures actual GMM estimates are plotted with small black dots from 500
simulations. Sample size is set to 1000. Both ellipses and confidence sets are at the
95% level.

When the equlilibrium is indeterminate, represented by ψπ = 0.5, the KL-M confi-
dence set becomes more similar to the Wald ellipse. This is the same as happened
when identification got stronger in the last section. Hence, the simulation shows
that sunspot fluctuation increases identification when all other parameters are kept
equal. As noted above this is due to the fact that the sunspot fluctuations are rep-
resented by an additional state variable that produces increased correlation between
the instruments and the endogenous variables.
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8 Exploring weak identification in GMM estimation

on Norwegian data

In this section I will explore whether GMM estimation of a Taylor rule for the
Norwegian economy suffers from weak identification. To my knowledge this has not
been done before.

8.1 Data

I will use the same data as in Skumsnes (2013), while also looking at a longer time
span in certain situations. The longest sample period will be from 1985 to 2012. A
longer time span is chosen to avoid small sample problems as far as possible. When
including additional instruments, the sample period is restricted by the length of the
time series for the additional instruments.

8.1.1 The interest rate

The three month Norwegian Interbank Offered rate (NIBOR) will be used as the
measure for the interest rate. NIBOR is calculated by taking the trimmed mean
interest rate from six panel banks that operate in Norway, leaving out the highest
and lowest value. The panel banks for NIBOR are DNB Bank ASA, Danske Bank,
Handelsbanken, Nordea Bank Norge ASA, SEB AB and Swedbank. NIBOR is calcu-
lated for different maturities. The time horizon of three months is chosen to match
with our quarterly data. The NIBOR rate is often used as a reference for the money
market rates between the different banks. Hence the NIBOR rate is supposed to
reflect what rates the banks require to lend to other banks. I want to use the money
market rates as a proxy for the short term nominal interest rate. Because of the
close correlation between money market rates and NIBOR, NIBOR is chosen as our
measure of the money market rates. Figure 6 depicts the time series of NIBOR from
1985 to 2012.
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Figure 6: Time series of NIBOR from 1985 to 2012

8.1.2 Inflation

The consumer price index adjusted for tax changes and excluding energy commodi-
ties, CPIATE, will be used to construct the measure for inflation. CPIATE is often
referred to as core inflation. As stated in Skumsnes (2013): “It is reasonable to ex-
clude energy commodities for small open economies like Norway because these prices
can be taken as exogenous and say little about price changes in Norway”. The four
quarter log differential is used as the measure for 1-year inflation. In figure 7 the
time series of inflation measured by the CPIATE is drawn against the inflation target
of 2.5. It is important to note that Norges Bank didn’t receive the instruction of
targeting an inflation rate of 2.5 before 2001. The inflation target is still drawn for
the whole period, just as a comparison.
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Figure 7: Time series of inflation measured by CPIATE from 1985 to 2012.
Inflation target of 2.5 percent marked by the straight line for comparison.

8.1.3 The output gap

The output gap is unobservable. To estimate the output gap I use gross domestic
product for Mainland-Norway. Mainland-Norway consists of all domestic production
except from exploration of crude oil and natural gas, transport via pipelines and
ocean transport. First a four quarter smoothing average is constructed for mainland
GDP. Then a Hodrick Prescott filter is used to create a trend for mainland GDP.
The Hodrick Prescott filter minimizes the following equation with respect to τ

Minτ

(∑
(yt − τt)

2

+ λ
∑

[(τt+1 − τt)− (τt − τt−1)]2
)

(32)

where y is actual output and τ is the trend. λ = 0, makes the trend equal to actual
output. Increasing λ, increases the weight put on smoothing in the trend. When
λ approaches infinity the trend approaches a straight line. Hodrick and Prescott
(1997) suggested using λ = 1600 for quarterly American data. Statistics Norway
uses λ = 40000, as they argue this fits the Norwegian economy better.

The output gap (OG) is simply the percent deviation in actual output from its trend
estimated by the Hodrick Prescott filter

OG = 100

(
y − τ
τ

)
(33)
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The estimated output gap is of course sensitive to the choice of λ. Thus, choosing
the “wrong” λ could produce severe problems when estimating the Taylor rule. As
there is no observable counterpart to the estimated output gap, we are not able to
deduce the correct λ with certainty. Skumsnes (2013) finds that changing λ from
40 000 to 1600 affects the estimated parameters for inflation and the output gap.
Choosing a HP filter with λ = 1600 leads to the policy rule putting more emphasis
on the output gap and less on inflation, compared to the HP filter with λ = 40000. I
will choose λ = 40000 to compute the output gap in all regressions. Figure 8 displays
the estimated output gap.
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Figure 8: Time series of the output gap from 1985-2012
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8.2 Estimating the Taylor rule for Norwegian data

8.2.1 Lags of interest rate, inflation and the output gap as instruments

Table 2: GMM results: Using 4 lags of interest rate, inflation and output gap as
instruments.

α ρ ψπ ψx # of instruments J-stat Se of reg
(J-prob)

1.58 0.92* 2.06* 0.43 7.49 0.809
(1.31) (0.04) (0.59) (0.79) (0.59)

Estimating it = ρit−1 + (1− ρ)(ψππt+4 + ψxxt+1) + εt
Sample period: 1985Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

Using 4 lags of the interest rate, output gap and inflation as instruments produce
an estimate of ψπ well within the determinancy region. Hence the results suggest
that the Taylor principle was satisified in the period 1985-2012. Both the inflation
parameter and the smoothing parameter are highly significant. The constant and
output gap parameter are, however, not significant at the 5% level. Especially the
output gap parameter has a low t-statistic. The output gap parameter is much lower
than the inflation parameter. This suggests that Norges Bank reacts much stronger
to deviations in inflation from target, than deviations in output gap from the target.
The smoothing parameter is high and highly significant. This can be seen as evidence
for Norges Bank having a high preference for gradualism when setting the nominal
interest rate. At the same time a low weight is put on the target rate from the
forward looking Taylor rule. To discuss the possible problem of weak identification
I construct the Wald ellipse from the GMM estimates and the AR-S confidence
set. The reported regression results use a sequential 1-step weighting matrix and
coefficient iteration. To construct the AR-S statistic I have to use the CUE objective
function. For my data, the CUE objective function produces lower function values
than the 1-step weighting matrix and coefficient iteration regression. Hence, the
p-values associated with the AR-S statistic are higher than those suggested by the
reported regression results.
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Figure 9: 95% Wald ellipse from GMM results and AR-S confidence set. Instrument
set: 4 lags of nominal interest rate, inflation and the output gap.
Sample period: 1985Q1 - 2012Q4.
Plot represents GMM point estimates.

In figure 9, we observe that there are huge areas of disagreement between the Wald
ellipse and the AR-S confidence set. The AR-S statistic tests a null hypothesis for
the values of the pair ψπo and ψxo. When varying our null hypothesis for the pair
ψπo and ψxo, between 0 and 10, and 0 and 2, respectively, we are unable to reject the
null hypothesis for all combinations. This could be a sign of severe problems with
weak identification in our GMM regression. The GMM ellipse lies largely within
the determinancy region. The Wald ellipse by itself suggests that Norges Bank
was conducting an acitve monetary policy in the period 1985 to 2012. The AR-
S confidence set, however, lies both within the indeterminancy and determinancy
region. These results warrant some further inspection of our regression results. In
table (3) I have reported the regression output when ψπo and ψxo are fixed at 10 and 2
respectively. We observe that the smoothing parameter is approaching 1, suggesting
very little weight is put on the target interest rate.
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Table 3: GMM results: Using 4 lags of interest rate, inflation and output gap as
instruments, and fixing ψπ and ψx

α ρ ψπ ψx # of instruments J-stat Se of reg
(J-prob)

-15.8 0.99* 10 2 9.74 0.809
(6.17) (0.004) (0.55)

Estimating it = ρit−1 + (1− ρ)(10πt+4 + 2xt+1) + εt
Sample period: 1985Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

When increasing the inflation parameter and output gap parameter, the restricted
estimate of ρ reacts by approaching unity, and the constant parameter takes a “high”
negative value. The change in the constant parameter happens almost by construc-
tion, since i∗−ψππ∗ = α̂. The unrestricted regression in table 2 implies an equilibirum
interest rate (i∗) of 6.7, while the restricted regression in table 3 implies an equilib-
rium interest rate of 9.2. Both the J-stat and SE of the unrestricted and restricted
regression are close. Based on this I want to investigate how much increasing ψπo
and ψxo actually affects the estimate of the nominal interest rate, and thereby the
residuals. This is shown in figure (10).
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Figure 10: Actual, fitted and residuals from unrestricted and restricted regression.
Instrument set: 4 lags of nominal interest rate, inflation and the output gap.
The left figure is for the unrestricted regression. The right figure is for the restricted
regression ψπo = 10 and ψxo = 2.
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When examinating the residual from the unrestricted and restricted regression, we
can see that the restricted estimation produces almost exactly the same residuals.
The “numerator part” of the objective function consists of the sample estimates of
the moment conditions on the form 1

T
ΣT
t=1Ztεt. The estimation weighting matrix

used to construct the objective function for the overidentifying restriction test is
also evaluated at the parameter values from the regression. Stock and Wright (2000)
suggested looking for the objective function being clearly non-quadratic as a possible
sign of weak identification. When concentrating out the well identified parameters
α and ρ, our objective function with respect to ψπ and ψπ would be clearly non
quadratic. In fact it would be almost flat and have no persistent rising slope when
moving away from the true parameter values, assuming that the GMM estimates are
the true parameter values.

To make the AR-S confidence set bounded for a “large” portion of my parameter
window, I have to go as low as constructing a 25% confidence set. This is shown in
figure 11.

ψπ

ψ
x

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 11: 25% Wald ellipse from GMM results and AR-S confidence set. Instrument
set: 4 lags of nominal interest rate, inflation and the output gap.
Sample period: 1985Q1 - 2012Q4.
Plot represents GMM point estimates.
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8.3 Adding instruments

Norway is a small open economy. This might suggest that additional instruments are
needed to identify the parameters of our regression model. If inflation and output
are partly driven from outside factors not contained in lagged values of inflation and
output, including these factors should improve identification.

8.3.1 Adding commodity inflation and spread between short and long
term interest rates as instruments

First of all, the spread between short and long term interest rate is not an outside
factor. However, we might suspect that the spread could contain information of
expectations for inflation and output gap. Hence, I try adding it as an instrument.
Our inflation measure is based on the CPIATE, excluding energy and commodity
prices. Nonetheless, it’s not unreasonable to think that commodity prices could
affect prices elsewhere in the economy. My time series of commodity inflation only
stretches from 1993, so the estimation sample will be reduced. Table 4 reports the
estimated parameters from the regression.

Table 4: GMM results: Adding commodity inflation and spread between long and
short term interest rates as instruments

α ρ ψπ ψx # of instruments J-stat SE of reg
(J-prob)

0.06 0.87* 2.71* 0.27 21 11.91 0.63
(1.26) (0.03) (0.78) (0.28) (0.81)

Estimating it = ρit−1 + (1− ρ)(ψππt+4 + ψxxt+1) + εt
Sample period: 1993Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

Including commodity inflation and spread as instruments don’t make the inflation
parameter much more significant. The t-statistic for ψπ is almost unaltered. The t-
statistic for ψx has increased, but is still insignificant. The implied long run nominal
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interest rate is almost unaltered at 6.8, compared to 6.7 from the regression in table
2. We saw earlier that inflation parameter was significant while the AR-S condifi-
dence set was very large. Based on the GMM estimates it’s therefore not possible
to conclude that identification is unchanged even though the estimates are pretty
similar. I therefore again construct the AR-S confidence set and compare it with the
Wald ellipse from the GMM estimates. This is shown in figure 12.
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Figure 12: 95% Wald ellipse from GMM results and AR-S confidence set. Instrument
set: 4 lags of nominal interest rate, inflation, the output gap, commodity inflation
and spread beween short and long term bonds.
Sample period: 1993Q1 - 2012Q4.
Plot represents GMM point estimates.

Again we see huge disagreements between the GMM Wald ellipse and the AR-S
confidence set. The Wald ellipse again suggests that Norges Bank was conducting
an active monetary policy in the period 1993 to 2012. The identification robust
confidence set is not able to rule out the points in the indeterminancy region. Again
I show the regression results from the most extreme restricted estimation in table 5.

36



Table 5: GMM results: Adding commodity inflation and spread between long and
short term interest rates as instruments, and fixing ψπ and ψx

α ρ ψπ ψx # of instruments J-stat SE of reg
(J-prob)

-13.28* 0.97* 10 2 21 12.36 0.63
(1.63) (0.004) (0.87)

Estimating it = ρit−1 + (1− ρ)(10πt+4 + 2xt+1) + εt
Sample period: 1993Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

As in 8.2.1 the restricted estimate of ρ reacts by approaching unity when increasing
ψπo and ψxo. The implied long run equilibrium nominal interest rate is 11.72. Again
I plot the residuals in figure 13 from the unrestricted and restricted estimation. Just
as in the case with fewer instruments, the residuals are largely unchanged. This is
shown in figure 13.
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Figure 13: Actual, fitted and residuals from unrestricted and restricted regression.
Instrument set: 4 lags of nominal interest rate, inflation, the output gap, commodity
inflation and spread between short and long term bonds.
The left figure is for the unrestricted regression. The right figure is for the restricted
regression ψπo = 10 and ψxo = 2.
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8.3.2 Adding housing prices, equity return and foreign interest rate as
instruments

Table 6: GMM results: Adding housing prices, equity return and foreign interest
rate as instruments

α ρ ψπ ψx # of instruments J-stat SE of reg
0.05 0.86* 2.41* 0.38* 33 12.53 0.518
(0.49) (0.01) (0.25) (0.07) (0.997)

Estimating it = ρit−1 + (1− ρ)(ψππt+4 + ψxxt+1) + εt
Sample period: 1998Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

By adding more instruments, both the inflation and output gap parameter becomes
highly significant.
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Figure 14: 95% Wald ellipse from GMM results and AR-S confidence set. Instrument
set: 4 lags of nominal interest rate, inflation, the output gap, commodity inflation,
spread beween short and long term bonds, housing prices, equity return and foreign
interest rate.
Sample period: 1998Q1 - 2012Q4.
Plot represents GMM point estimates.
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We observe that the confidene ellipse has become much smaller, and lies firmly within
the determinacy region. The AR-S confidence set, however, is still unbounded within
the parameter window. Hence, the additional instruments increase identification
little or not at all.

Table 7: GMM results: Adding housing prices, equity return and foreign interest
rate as instruments, and fixing ψπ and ψx

α ρ ψπ ψx # of instruments J-stat SE of reg
(J-prob)

-13.28* 0.97* 10 2 33 13.10 0.549
(1.63) (0.004) (0.998)

Estimating it = ρit−1 + (1− ρ)(10πt+4 + 2xt+1) + εt
Sample period: 1998Q1 - 2012Q4
Standard errors of the parameters are reported in paranthesis.
J-stat is the value of the objective function at the estimated parameter values with
a 1-step weighting matrix.
J-prob is the p-value of the test of overidentifying restrictions.
Rejection of the null hypothesis at the 5% level is denoted by *.

Again ρ approaches unity when restricting ψπ and ψx at 10 and 2, respectively.
Actual, fitted and residuals is shown in figure 15.
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Figure 15: Actual, fitted and residuals from unrestricted and restricted regression.
Instrument set: 4 lags of nominal interest rate, inflation, the output gap, commodity
inflation, spread beween short and long term bonds, housing prices, equity return
and foreign interest rate.
The left figure is for the unrestricted regression. The right figure is for the restricted
regression ψπo = 10and ψxo = 2
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8.3.3 Fixing the smoothing parameter

When the inflation parameter and output gap parameter are at its true value, the
smoothing parameter should be well identified. From the results above there is
a strong suggestion of ψπ and ψx being weakly identified. Some of the unability
to reject the null hypothesis seems to come from the weighting structure of the
Taylor rule, combined with the strong persistence in the actual nominal interest
rate. Skumsnes (2013) is not able to reject the null hypothesis of the interest rate
being an AR(1) process. He argues that this could be because of the low power
associated with the test. I am in no way suggesting that nominal interest rate is
an AR(1) process, but it’s close resemblence seems to be causing some problems in
my empirical investigation. Identification is a system property, and as seen during
simulations a higher smoothing parameter reduces identification. It should however
not completely wipe out identification. My simulated data, although including a
high smoothing parameter, produced much bigger variation in the nominal interest
rate. In this case the AR-S confidence sets were able to reject null hypothesises
far away from the GMM estimates. Although the simulated data arguably could
be unrealistic, it perhaps provides som useful insight. With the nominal interest
rate far from resembling an AR(1) process, the AR-confidence set became bounded
within relatively close proximity to the GMM wald ellipse. When fixing parameters
ψπ and ψx the regression was not able to keep the residuals almost identical when
looping through different values just by adjusting the smoothing parameter towards
1. To provide some clarity in whether this is our problem or not, I will in the
following fix the smoothing parameter to its value from the GMM estimation. This
will almost certainly change the residuals from the regression when looping through
null hypothesis for the pair ψπ and ψx. If the AR-S confidence set is still much
the same, it suggests that the adjusment of the smoothing parameter to keep the
residuals almost unchanged, is not the source of the weak identification.
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Figure 16: Fixing the smoothing parameter. 95% Wald ellipse from GMM results
and AR-S confidence set. Instrument set: 4 lags of nominal interest rate, inflation,
the output gap, commodity inflation and spread beween short and long term bonds.
Sample period: 1993Q1 - 2012Q4.
The smoothing parameter is fixed at 0.87.
Plot represents GMM point estimates.

From figure 16 we see that fixing the smoothing parameter does not lead to any
combinations of parameters being rejected in my window. This seems to suggest
that the source of weak identification is not the resemblance of the interest rate series
with a unit root series alone. Figure 17 shows that residuals are now considerably
different, driven by the change in ψπ and ψx. But this does not change the value of
the CUE objective function evaluated at the estimated and fixed parameters much.
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Figure 17: Fixing the smoothing parameter. Actual, fitted and residuals from un-
restricted and restricted regression. Instrument set: 4 lags of nominal interest rate,
inflation, the output gap, commodity inflation and spread beween short and long
term bonds.
The left figure is for the unrestricted regression. The right figure is for the restricted
regression ψπo = 10 and ψxo = 2

From the analysis above it seems reasonable to conclude that the parameters for the
Taylor rule are weakly identified. The identification robust inference confidence set
is unbounded within the region explored, and differs substantially from the GMM
Wald ellipse.

42



9 Conclusion: Why is the Taylor rule weakly iden-

tified for the Norwegian economy?

This thesis has investigated identification in a forward-looking Taylor rule. Using a
New Keynesian sticky price model, necessary conditions for identification is stated.
In the model version used in this thesis, persistence in the inflation and output gap
shocks is necessary for identification. Estimation of simulated data illustrates this
point. Methods for detecting weak identification are presented and applied to both
simulated data and Norwegian data. Results on Norwegian data suggest that the
parameters of the Taylor rule are weakly identified.

For the last decade much emphasis has been put on transparency in monetary policy.
Every three months Norges Bank publishes a monetary policy report. Since 2005 an
interest rate forecast has been included in this report. One of the reasons behind
publishing the forecast is to improve the general understanding of the bank’s reac-
tion pattern. To produce the forecasts, Norges Bank uses a medium sized small open
economy model, named NEMO. The interest rate path is derived by minimizing a
loss function representing the monetary policy mandate and the Board’s policy pref-
erence. A potential source of weak identification of the Taylor rule is inconsistency,
or change, in the Board’s policy preferences. In monetary policy this is often referred
to as discretion. If the board’s preferences lead to large deviations from the interest
rate suggested by simple interest rate rules, the rule obviously becomes harder to
identify.

Theory on monetary economics shows that gains can be made when the central
bank conducts a credible monetary policy. One example of a credible policy could
simply be to strictly follow a Taylor rule. Through the monetary policy report and
other communication, Norges Bank tries to make the public aware of how it bases
its interest rate decisions. Evidence seems to suggest that this communication has
been highly succesful. In terms of estimating the Taylor rule this could potentially
be a bad thing. By clear communication, Norges bank could be inconsistent but
still credible. Translating this to the Taylor rule setting, Norges Bank can be seen
as following different Taylor rules for different scenarios. As long as this is well
communicated in advance, it will most likely not lead to a loss of credibility.

Another possible source of weak identification is that expectations vary too little.
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When monetary policy is effective this will likely be the result. As stated in Mavroei-
dis (2010): “Good policy removes the possibility of sunspot dynamics, and mitigates
the effects of shocks on future inflation and output. As a result, the expectations
of these variables become less variable than they might otherwise be”. This point
was illustrated when comparing confidence sets for a determinate and indeterminate
equilibrium in section 7. Expectations are not directly observable, and hence cause us
some problems in verifying this claim. Epinion, on behalf of Norges Bank, conducts
a survey on inflation expectations. In the survey economic experts, social partners,
corporate executives and households are asked about their inflation expectations for
different time horizons.

Figure 18: Five year inflation horizon expectations for economic experts.
Source: Epinion, “Forventningsundersøkelse for Norges Bank 1. kvartal 2015.
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Figure 19: Five year inflation horizon expectations for social partners.
Source: Epinion, “Forventningsundersøkelse for Norges Bank 1. kvartal 2015.

Figures 18 and 19 illustrates how well anchored inflation expectations are in the
medium term. Expectations lie firmly anchored around the inflation target of 2.5 for
most periods in the time span 2002 to 2015. Thus, the survey conducted by Epinion
supports the claim of inflation expectations having low variation.

The GMM results based on Norwegian data suggest a high degree of policy intertia.
As shown in section 7 and 8, this leads to problems in identifying the parameters
for the target interest rates. The high degree of smoothing by Norges Bank is likely
part of the reason for the observed weak identification of the forward-looking Taylor
rule.

As a final note: The Taylor rule does a good job of describing monetary policy
in Norway. The consequence of weak identification is simply that many different
parameter values provide almost equally good fits. Thus the estimated Taylor rule
still suggests that Norges Bank conducts monetary policy robust to simple interest
rate rules. The estimated parameters, however, should be treated with care. They
should be seen as one possible specification describing monetary policy, rather than
a definitive answer to how Norges Bank sets the interest rate.
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Appendix A: Data sources

The dataset in this thesis is mainly the same dataset as used in Skumsnes (2013).
For some variables the time series has been completed to allow for bigger samples in
estimations.

i - Quarterly average of the 3-month Norwegian interbank offered rate, in annual
percentages. Source: OECD Database.

π - Core inflation in Norway. Expressed as a 4 quarter log difference from the price
index CPIJAE, in percentages. Source: Statbank, Statistics Norway.

x - Output gap for mainland Norway. Measures as a percentage deviation from a
trend. The trend is a HP-trend with a smoothing parameter of 40 000. Source:
Statbank, Statistics Norway.

Long-short spread in Norway - The difference between 10 year Norwegian bonds and
the NIBOR. Source: OECD database.

World commodity price inflation - Expressed as a 4 quartler log difference from a
price index in percentages. Source: IMF’s International financial Statistics database.

Housing price gap in Norway - Measured as a percentage deviation from a trend.
The trend is a HP-trend with a smoothing parameter of 40 000. Source: Statbank,
Statistics Norway.

Foreign interest rates - The 4 quarter percentage difference of the euro-area 3 month
interbank rate. Source: OECD database.

Equity return - The 4 quarter log difference of the OSEBX. Source: OECD database.
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Appendix B

Method of undetermined coefficients calculation for equation (22)

πt = d11zt + d12vt (34)

xt = d21zt + d22vt (35)

πt = β (d11ρπzt + d12ρxvt) + λ (d21zt + d22vt) + zt (36)

xt = (d21ρπzt + d22ρxvt)− ((ψπ − 1) (d11ρπzt + d12ρxvt) + ψx (d21zt + d22vt)) + vt

(37)

πt = (βd11ρπ + λd21 + 1) zt + (d12ρx + λd22) vt (38)

xt = (d21ρπ − (ψπ − 1) d11ρπ + ψxd21) zt + (d22ρx − (ψπ − 1) (d12ρx) + ψxd22 + 1) vt

(39)

d12 = d12ρx + λd22 (40)

d22 = d22ρx − (ψπ − 1) (d12ρx) + ψxd+ 1 (41)

d11 = βd11ρπ + λd21 + 1 (42)

d21 = d21ρπ − (ψπ − 1) d11ρπ + ψxd21 (43)
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d21 =
− (ψπ − 1) d11ρπ

1− ψx − ρπ
(44)

d11 =

(
1− ψx − ρπ

(1− βρπ)(1− ψx − ρπ) + λ (ψπ − 1) ρπ

)
(45)

d21 =
− (ψπ − 1)

(
1−ψx−ρπ

(1−βρπ)(1−ψx−ρπ)+λ(ψπ−1)ρπ

)
ρπ

1− ψx − ρπ
(46)

d22 = d22ρx − (ψπ − 1)

(
λd22

1− ρx

)
ρ+ ψxd22 + 1 (47)

d12 =
λd22

1− ρx
(48)

(
πt

xt

)
= D

(
zt

vt

)
(49)

where D = (D1;D2) which can be rewritten

(
πt

xt

)
= D

(
ρπzt−1

ρxvt−1

)
+D

(
επ,t

εx,t − εi,t

)
(50)

Substituting for zt−1 and vt−1 and evaluating (28) at t− 1

(
πt

xt

)
=

(
ρπ ρx

ρπ ρx

)
D

Ddet

(
d22πt−1 − d12xt−1
−d21πt−1 + d11xt−1

)
+D

(
επ,t

εx,t − εi,t

)
(51)
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