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2.3. The technique of linkage (liaison).

In the preceding section we studied problems related to the non-

Pq

singularity of the Hilbert scheme Hilb at a rational point

(XeP) where P = Pi. It should not be difficult to understand
that this is in general a rather hard problem. Already the ques-
tion of existence a (smooth connected) curve X1 with a given
degree d1 and arithmetic genus gy sometimes with additional
requirements such as ho(gx(s)) >0 for a given s, is a non-
trivial one. We often solve it by linkage (liaison), and we link
(think that X exists) to a curve X, of low degree d2 and

1 1
arithmetic genus g, where we know existence. Reversing this

X

process, we may prove the existence of X, <IP.
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Now instesd of cansidering the problem of the non-singularity of
I;Til'bp"i at (X’i S P) directly as we did in Section 2.2, we may

sear Ifor a connection between the non-singularity of Hilbp1 at
(2, €7, oud the non-singularity of Hilbp2 at (X2 S P) where

X,! 510 3:2 are linked by a global complete intersection Y.
In thiz ::ction we answer this problem, and also when the linked
curve X.STP of a "generic" curve X,SP of some irreducible
cemponeat of Hilbp'] is itself a "generic" curve for some com-
ponent of H:'-.lbpg. To be precise we will be studying how defor-
mations ot ;S P correspond to deformations of X,SP. It is

not surpriuing that one rather have to study the connection bet-
ween defemaations of X, CYCP and of X,CYCP where Y = X,UX,
is a globalbomplete intersection of two surfaces of degree f,|

and f,. So we are situated on the Hilbert-flag scheme D(p;3f4,£5)s
ard here the connection is very nice. Indeed if D(p;_i_‘)CM is the
open subgchene of D(p3f) consisting of objects (XSYSP) such
thet X iz Cohen Macaulay and equi-dimensional and such that Y

is a gishal complete intersection in TP of type £ = (f,‘,fz),

see (1.%.411), then

D(P»] ;_-f_)CM = D(Paii)cm

are isomorphic. Now if Hilblc)u is the Hilbert scheme of curves

in P (2.2.7), we know that
. . — s 1 hP
pT, ¢ D(p,f)CM > Hilbgy

is smooth at (XSYSP) under some conditions (1.3.4) or (1.3.14),
Y

and in these cases Hilb | and Hilb 2 are closely related. In

particular (X,'E]P) is a non-singular point, resp a "generic".

point of a component, of Hil'bp" iff (XE—C- P) € Hilbp2 is
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correspondingly. As byproducts we also prove

dikaOkera'Xqu = dikaOkera'X25Y3

and the exact sequence of (1.3.1C) will therefore, in some cases,
make it easy to find hq(ﬂk ) provided we know h“(gx ). Finally
we irtroduce what we call tge postulated dimension of i reduced
compenent V  of the Hilbert scheme which is the number

4d+-52

where 62, defined in (2.2.7), belongs to a sufficiently general
curve (X CP) of V. Then we prove that V has postulated
dimension, i.e. dimV= 4d4—52, iff the "linked" cqmponent has

postulated dimension (2.3.16).

To begin with, we recall some basic facts about the notion of

liaison as proved by Peskine and Szpiro in [P.SJ.

Let k be a field and let X, CP; and X,CP_ be closed sub-
schemes whose union Y = X1L1X2 is a global complete intersection

and X, are equidimensional, without embedded

- - 1 TE v
:Ln.Rko Lr Aq 5

componernts and without common irreducible components, then X,|

and X2 are geometrically linked by Y. It follows that

Y
(1) I, o =0 I = oY

where (-)V = Homoy(—,OY). See [P.S.,(1.1)). Moreover if Xy -
and X, -are Cohen DMacaulay, one knows by Gorenstein duality that

(2) Ext"Y(o ,0y) = 0 for i=1,2.
220, %, |

Then dualizing the exact sequence

0 — ;Xi/Y —> Oy = Oxi~4> 0,



- 112 -
it follows from (1) and (2) that

(3) I,/ o = Oy , IV = Oy .

Fow let YCS ]PE be a global complete intersection and let XiSY
be ciceed subschemes for i = 1,2 such that X1 and X2 are
egiidiinsnsional and without embedded components. Then by defini-

are algebraically linked by Y if (1) holds

tion ‘X,] and X2
[P.S5.,82]. Again we deduce (2) and (3) provided the X; are

Cohen Macaulay.
Furchermore we have the following important result FP.S.,(1.3)].

Froposition 2.3.1. Let Xé&> Y be a closed embedding of equidi-
mensional projective k-~schemes of the same dimension, and
let X be Cohen Macaulay and Y be Gorenstein. If X'e> Y
is defined by the sheaf of ideals Ixv sy = O}\é in Oy, then
X' iz Cohen Macaulay and equidimensional of dimension dimY.
Meresovare (1), (2) and (3) holds if we replace X, by X

cend X, Dby X'.
2

Now we will state and prove the main theorem of this section.

For this we need to have a notion of liaison satisfying (3), and we
will therefore make the following definition of linkage used in
this paper. First note that if we define X'cY by -I-X'/Y = O;/( =

Ho 0
dualizing

m Y(OX, Y) where XCSY is given and if x" = (X')', then by

0 — -I—X/Y"> Oy = Oy => O

we find a morphism

\%
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whose cokernel is Ex-tqo (OX,OY). Correspondingly there is a mor--
Y
phism
Vv
Ogn &> Iy py

hl

with cokernel Extqo (OX. ’OY)’ and since there are natural mor-
Y
rhisms
. VV__ v _
;_X/Y—>_];X/Y >OX| —-_];XII/Y,
it follows that

.Xll CX.

Definition 2.3.2. Let X&> Y be a closed embedding of projec-

tive k-schemes, and define X' <> Y by -I-X' /Y = O;’( as
akbove. '
i) We say that X&> Y is linkable if the natural morphism '

Oy, &> IV

X =X/Y
and the composition of natural morphisms
Oy =>> Oy &> IV
X X" —X'/Y
are isomorphisms. Under these conditions we also say that

XY and X'e&> Y are linked, or link, or that X and
X' are linked by Y. '

ii) If any xeAss(-OX) satisfies

we say that X&> Y is geometrically linkable, ox that
Xe> Y and X'~ Y 1link geometrically.

Note that the definition (2.3.2i) is just (3) of (2.3%.1), from
which (2) and (1) follows easily. Moreover by (2.3.1), X< Y
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is linkable provided X is Cohen Macaulay and equidimensional,

Y 1is Gorenstein and equidimensional and dimX =dimY. And under
these conditions, together with requiring that Y is a global
corplete intersection, the notion of linkable, Tesp. geometrically
linika®le, of (2.%.2) coincides with the algebraic, resp. geometric

novien of liaison of [P.S.].

Bzicre stating the theorem, we will see how the Hilbert polynomials

of X and X' correspond.

Temma 2.%.%3. 1) Let Y = VI(F,‘,...,FI_)S]P; be a global complete

intersection of type f = (f'l""’fr) with Hilbert poly-
romial q, and let X <> Y satisfy the conditions of (2.3.1).
If X, resp. the linked scheme X', has Hilbert polynomial p,

T

resp. P', and if f ='i§,lfi, then

p(V) + (D) Tp ' (£-n-1-v) = q(v).

ii If n=3 and r = 2, and if the degree, resp. arithme-

tic genus, of X and X' is 4 and 4', resp. g and g',

da+4d' = f1f2

f +f -4
g-g' = (a-a') —tsi—.

Moreover in this case

% (Zy sy (v)) = W (O, (£448,m8-)),

n1(Zg(v) = 01 (I (£4+Em0mv)),
n'0g(W)) = BTy, y(EprE,mt-v)).



- 115 -

roof. Indeed the exact sequence

— s g St

0 — lX/Y —> 0y => 03 = O

together with
I, = Hom. (Oy,,0,) = Hom. (O YO uwll &y, ® wl)
SX/Y T =220, XNUYY T ==0, T wy/ T Ry X' Y
Y Y Oxl
see (A.K.,I,(2.3)], imply that
X(0g(v)) = x(0g()) = x (g ® 0y (V).
Using that the dualizing sheaf wy on Y satisfies wy = OY(f—n-ﬂ),

and using duality on X', we find that
X(wg @3 (V) = xlug: (a+1=£4v)) = (=1)" Ty (Og, (£-n-1-v)).

Then we easily obtain the relationship between the Hilbert polynomi-
als p and p' as above, and also the formulas for the degree
and genus. Moreover the expfessions for thEX/Y(v)) and
hq(OX(v)) are indeed easy.
Finally to prove

n(Z () = 0@y (£, 4 -4-0))

=X =X ATV

we use the exac’ sequence

O-—>1I,—=1

y > Ix > x>0

together with H (Iy(v)) = 0 and H(Iy(v)) < H'(0y(v)), and we
deduce that
0 = H'(Iy(v) = B (Ig y(v)) = B (0(v))

is exact. We have already seen that
Ix vy = wX.(AL—f,‘-fa) and Oy = wY(4-f,|-f2),

pd
P
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and so by dualizing the exact sequence above,
HO(0y (£44£,-4-v)) => H'(Og, (£,4£,-4-v)) => H ' (Iz(v))¥ = 0
is exact. However the cokernel of
H?(0y(v')) = H°(0g, (v'))

is Hq(__J;X.(v')) because Ho(O]P(\)'))—> HO(OY(\)')) is surjective.
Thus
H' (I, (v))Y & H'(Iy, (£,4F=4=v))
=X =X'‘\q727

as required.
We now come to the theorem

Theorem 2.3.4. If g is the Hilbert polynomial of a global com-

plete intersection of type £ = (f,],...,fr) in ]PE and if
p and p' are polynomials satisfying

p(v) + (1) Tpr (= £i-n-1-v) = q(v),
then there is an isomorphism
D(psDoy = D' 58 oy
Recall that D(p:f)<D(p,q) is an open subscheme (1.3.11) and

that the EK-points of D(p;_i;)CM, k <> K a field extension, are

objects (XcY<S P xSpec(X)) with X Cohen Macaulay and equi-

dimensional. Thus D(p;_i_‘)_CMED(p,q) is openj)

The key lemma of the proof of (2.%.4) is this

Lemma 2.3.5, Let TP be a projective scheme over a field ‘ k, let

(XcYcPxS) be an S-point of D(P) and assume for all

1) by well-known depth and dimension formulas. See the proof of (2.3.6)
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s €S that the corresponding Xs €Y, of the fibers is link-
able. If X'&>Y is defined by Ly, »y = Oy, then X' is
S-flat and for any s€S the fiber morphisms

X &> Y, eand (X')Sc-> Yy

are linkad, i.e. (X')S ='(XS)' where _II;(X s Ox -
'S

Furthermore

X" = Xo

Proof. Let s€S and let m Dbe the maximal ideal of O = OS s
b ]
i _ -
Put 0; = O/m~, J; = ker(0, Oi__,l) and

X. = XgSpec(Oi)EYi

5 YgSpec(Oi).

Thus 0, = k(s) and X,

X cY, = Y,. loreover let _O;éi =

s
\% :
First we prove that
\ \
Oy ® 0, , =0

i
is an isomorphism. To see this we consider the following diagram

of exact horizontel sequences

Y

v v
Jy : Ox —> Oy ®O0; —> 0

Oy

¢ i-1

1 Oi i i Oi ‘

O-Hom. (0 ,0, ©®J.)~-Hom. (04 ,0. ) - Ho (0 ,0O )= 0
=%, Xi’ Yi R Xi’ Yi —EOY. Xi, Yi-’l ’

YZL 1 1

recalling that J; is a k(s)-module, so

1 1
Ext' . (0y ,0. ®J.) = Ext) (0y .0y ) ® J. = O.
- Oyi L0y i = Oy, 1 0 k(s) &
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Now the vertical arrow to the right in the diagram above is sur-
Jjective for any i. If follows that the vertical arrow to the
left is surjective, which therefore implies that the vertical

arrow to the right is indeed an isomorphism.

Next we prove that
\Y \%
- 0,®k(s) =0
X0 XS

is an isomorphism. Note that lX'/Y = O;é and l(xs)'/Ys = Ol\és.
So the isomorphism above implies that X' —> S is flat at sé€S
and that the fiber morphism (X')S_C_:YS of X'cY at s€S coin-
cides with (XS)' c¥,, i.e. that (Xs)'. = (XS)'. Now let x€X
map to s €S via the structure morphism X-» 8, Then x€Y and

abusing the language, xGXi and xGYi as well. Put

A. = O.,( X, B = OY,X, A. = OX B. = O

Z, i i,x’ i Yi,x’
A 7 A Vv v
B = 121:, A = BﬂAi, AV = HomB(A,B) and A/ = HomBi(Ai\,Bi).

Then it will be sufficient to show

AVen, = aY,
B 1 1
Since we alrealy know

Ve _AVe Y
g Pie1 =AY Oiq % A

i i
we deduce that [EGA,OI,(7.2.9)]

. Vv ~ .V

Moreover one knows that [EGA,0;,(7.2.10)]



- 119 -

v A A v A
limA, = Hom,(A,B) = A"®B
<1—- B B

and we conclude as expected.
Finally it remains to show that

X" =X
We know X"EX, so let

O-—->IH/X'->OX'—>OX"—>O

. LA " L :
be exact. Since X is S-flat and X )s = (Xs) = X,

Ix' /x 8k(s) = 0,
"

and so by Nakayamas lemma, X = X, as required.

Note that we can easily continue the proof and we will see that,

with assumptions as in the lemma, X and X' are linked by Y.

Proof of (2.3.4)., If S =D(p;_f_)GM and if (XcYcPx S) is

the restriction of the universal object of D(p,q) to S, then
by (2.3.5) there is an object (X'SYC P x S) GE(IP)(S) which by
(2.3.3) and (2.3.1) factors via

D(psfly = S = D' 3£) oy

Starting with S = D(p' ;£)gqy and using (2.3.5), we have an in-

verse, and the proof is complete.

Note that it is not necessary for the theorem (2.3%.4) to deal
only with global complete intersection }.'_C_ZII—"{{l . Indeed let TP
be any projective k-scheme and let D(p,q)CMG be the oper;1 >sub--
scheme of D(p,q) consisting of points (XcSYcP) with X<> Y
as in (2.3%.1)., If (XcYcP) is a given k-point of D(,p’Cl)CMG’

1) Use for instance [H4,V, §9].
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and if the corresponding linked object X' &> Y has Hilbert poly-
nomial p', then the connected component of D(p,q)CMG containing
(XcYcP) and the connected component of D(p' ’Q)CMG containing
(X' cYcP) are isomorphic. This follows easily from (2.3.5) and
(2.3.1)

Now we come to the corollaries, and we restrict to the case of
curves in 1P =JP%. In the following D(p,a__)CM is the open su‘t;-
scheme of D(p,q) whose K-points are (XEYE]PI%) with X a
curve over K (2,2.7), so D(p;g)CMSD(p,q)CM is open, and abu-
sing the language, we usually look upon the first projection

morphism pr, as defined on D(p;:f_)CM,i.e. the morphism
. . 2 p
pr, ¢ D(p,_g_)CM —> Hilbpy

is the composition of D(p;_:li_‘)cr,I > D(p,q)CM and the first pro-
jection morphism D(p,q)CM - HilbgM. Note that pr, as above
is no longer in general a projective morphism. Since we work

with curves in Il?lz, we. sometimes write
HilbgM = H(d,8) gy
D(psfoy = D(4,855) oy

where p(v) = dve+l-g, If 4d' and g' are as in (2,.3.3%ii),

we let
pr} : D(d',8';£) gy == H(A',8' ) oy-

Corollary 2.%.6. Let fqi,£5,d,8,4" and g' be numbers satis-

fying the relations of (2.3.3), let UcH(d,g) be the open

subscheme whose K-points (X_C_:_]P%) satisfy

H'(Iy(£;)) = 0 and H'(Iz(£,-4)) = 0
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for i = 1,2, and let U'cH(d',g') be defined by the same

conditions, Then the schemes

U(£) = UNpr (D(a,8355) )

U'(£) = U' nprj(D(d',g";£) o)

are open subschemes of H(d,g)CM and H(d',g')CM respec-

tively, and there is a commutative diagram

D(psBgy — DO'iD)oy

N |

prz (U()) = (pry)” (U (£))

i '
v pI',] \!\4 pI'/‘
Uu(£) U@

where the restricted projection morphisms pT, and pr,']
of the diagram are irreducible, surjective and smooth of

relative dimension
dim_pr 1 (U(£)) - §h°(1 (£.))
10,PTY = pr,](x) = 121 =X/Y i’/
for any x=(XcYc® €U(L),

2
0
pri(x') =i§'1h (l:.xv/yv (£5)),

. -1
dim,, (pry)” (U'(£))
for any x' = (X' CY' cP)eU'(£).
In particular the irreducible, resp. embedded, resp. con-

nected components of U(f) and U'(f) are an one-to-one

correspondence.,

We observe by (2.3.6) that the k-points of the "linked" family

U'(£) is given by
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-

there exists Y of type f and a i
U'(E) = {(X'CP) €H(a',g" ) gy|curve (XSP) of U containing Y "
such that X' and X are linked byY|

Moreover if XcTP is a curve of U(f) contained in a global com-
plete intersection Y of type £, and if X'c P is the linked
curve of X by Y, then we easily deduce by (2.3%.6) that the local
ring OH,X of H = H(d,g) at (X<P) is non-singular (i.e. as
always smooth), resp. a complete intersection, resp. satisfies the
condition Rk’ resp. the condition Sk’ resp. is generically re-
duced (i.e. Ro), resp. is without embedded components (i.e. 8,),
resp. reduced, resp. normal (by Serre's criterion), resp. Cohen
Macaulay, resp. regular, resp. an integral domain iff the local |
ring OH',X' of H' = H(@',g') at X'cP) is"non-singular, Tresp.
a complete intersection etc. See for instance [A.K.,VII,(4.9)].
Furthermore XC is a "generic" curve for some irreducible com-
‘ponent of H(d,g)CM iff (X'<cP) is a "generic" for some compo-
nent of H(4',g' >CM' Indeed we will call a sufficiently general
point (XS of an irreducible non-embedded component V of

H(d,g)CM a "generic" curve for V.

Proof., Note that U is an open subscheme of H(d,g) by semi-
continuity [H1, IIT,(12.8)], and that the restriction of the pro-
jection pr,: D(p,f)CM - Hilbgm to prf{ll (U) is smooth by (1.3.4).
It follows that U(E), which indeed is equal to pr,(pr; (U)), is
open, and that

pr, : pri (U(L)) = U = U(L)

is smooth and surjective. By (1.3.13) it is irreducible, the same

arguments apply to prh: (pr}l)"l(U'(g‘_)) - U'(£) as well,
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To see that we have
e (U(2)) = (pry(U' (£))

under the isomorphism D(p;g)CM = D(p';g)CM of (2.3.4), it will
be sufficient to show that

1 . 1
H (IX\Ii)) =0 and H (lx(fi—4)) =0
for i =1,2 iff

H' (Iy (£5))=0 and H (Iy (£;-4))=0

for i = 1,2, where X and X' aré linked by some Y of type f.
This equivalence follows from (2.3.3). Moreover the dimension

formulas for the fibers are a direct consequence of (1.%.12).

Finally for any irreducible morphism p:D —> H of finite type

of noetherian schemes, we easily see by the discussion of (1.3.13)
that the inverse image of a decomposition of H into connected
components, resp; a topological decomposition of H into irre-
ducible components gives a corresponding decomposition of D.
Moreover if we take the inverse image of a decomposition of H
into irreducible and embedded components, i.e. H = UH. as a

i
scheme, we obtain a decomposition

D= Up—ll (Hi)

into irreducible subschemes where the inverse image of the non-
embedded components are non-embedded by the topological argument.
However, if p is smooth and if x€D is the generic point of
p—q(Hi) where H. is an embedded component, we deduce by the

depth~formula

depth oD,x = depth oH,p(x) + depth(OD,X@’ k(p(x)))
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and the corresponding dimension formula that
depth OD,x <dim OD,X
because depth(OD,X@k(p(x))) = dim(OD’X® k(p(x))), and we are done.

Sometimes we just want to know when we can deduce the non-singu-
larity of H(d',g') at (X'cP) from the non-singularity of
H(d,g) at (X<P), and we have

Remark 2.%.7. Let XCP-= ZIPI?c be a curve contained in a Y of

type £ such that the morphisms y of (1.%.1C),

. 170
Yecy P B (My)

2 4 ,

. =X i

1=1
is surjective, and the corresponding morphism of the linked
curve

2
/]
YX'EY : HO(N_X. ) —>j_(i>’lH (_:!:_Xt (fi))

is the zero map. Then if H(d,g) is non-singular (i.e. as
always smooth) at (XcP), theﬁ H(4d',g') is non-singular
at (X'cSP). This follows easily from (1.3.3), (2.3.4) and
from [EGA,IV,(17.11.1)] since, according to the exact se-
quence of (1.3.1C), Yyiey = O iff the tangent map of

pr; at (X'cYcP) is surjective.

Before giving examples, we observe that we via (2.3.3%ii) can
replace U(f) and U'(f) by some smaller open subschemes and

still conclude as in (2.3.6). Indeed if

e, f,g:2 = Z+

are maps where 2 + is the positive integers, we can consider the
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open subscheme U, of U(f) of curves XCTP where
By y(v)) Se(v), BN (Iy(v) <£(v) and B'(0g(v))<e(v)

for all v. Then by (2.3.3ii) we transform these conditions into
corresponding conditions for the linked curves, and these define
a subscheme U4jCU'(£f). Then (2.3.6) holds if we replace U(f)

and U(f) by U, and U) respectively.

Note also that if XE]P=IP}2 is a curve which is generically a
complete intersecticn over an algebraically closed field of
characteristic zero, then by [P.S.,(4.1)] there is a global com-
plete intersection Y of type £ = (i‘,],fg) containing X with
fjjmaxn,‘i for j = 1,2 such that the linked curve X' of X
by Y is reduced and the linkage is geometric. Moreover X' is
non-singular, resp. locally a complete intersection, provided X
is non-singular, resp. locally a complete intersection. Observe
that

12%11113._ < maxge(X)+§,c(X)+2}.
Indeed c(X)>e(X) implies maxn,; < maxn51-2 = c(X)+2, and

c(X)>e(X) dimplies max n,‘if_maxngi—’l = e(X)+3.

Examnles 2.%.8. We (_:onsider the Hilbert scheme H(9,‘8)S over an alge-

braically closed field k of characteristic zero, and we review
the family of (2.2.10i) which is the subset U,NH(9,8)g where
U,I_C_I-I(9,8)CM consists of curves (XSP) satisfying

- (1 for wv=2

' (Zy(v))
O for v#£2

hq(OX(v)) 0 for vZ2a.
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Since ¥(Ix(2)) = =1, h'(Ix(2))>1, and so U, is open by semi-
continuity. We have in (2.2.10i) seen that for any smooth
curve XCP of U,, h'(Ng) = O, and this is equivalent to
saying that U,N H(9,8)S is smooth of dimension 44 = 36.
We will now illustrate (2.%.6) by giving another proof for

this, from which we also deduce some further informations.

Since the resolution of I = ®H°(Iy(v)) must be of the
form as in (2,2.,10i), any Xc TP of U, is contained in a
global complete intersection Y of type (4,4) where

4 = maxn,;. This gives by (2.3.3) that the linked curves
X'cTP satisfy

a' = 7, g' = 47

, . ]
h,] (;_Xl (V)) = h’](lx(q‘—\’)) = { for v 2
0 otherwise,

h%(Tys p(v)) = 11 (0g(4-v)) = 0 for v=2,

and that by [P.S.,(4.1)], if X is non-singular, there
exists Y of type (4,4) such that X' is non-singular. Now
we consider the open set U; of H(’7,4)CM of curves (X'cPP)

satisfying
ho(;_X.(v)) =0 for wv<2
1 1 for v = 2,
h ' (Tg (V) = 1o otherwise,

and we observe that for any (X'cP) € U,']n H(7,4)g there
is a Y of type (4,4) such that the linked curve Xc P
of X'cl by Y is non-singular. This follows from

max(c(X')+2, e(X')+3) = 4
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and [P.S.,(4.1)]. Then by (2.3.6) U,]nH(9,8)S is smooth,
resp. irreducible, iff U,']nH('?,LL)S is smooth, resp. _irre—
ducible. And it_ is easy to see that U} nH(’7,4.)S is smooth
of dimension #4d4' = 28 because d4'>2g'-2 implies H1(0X|(1))
= 0. Hence Hq(ﬁ ) = 0. Thus by (2.3.6)

dim(U, NH(9,8)g) + 2h°(_I_X/Y(4)) = aim(U4 N H(7,4)g) + 2h°(_1_X. /Y(4) )y
and since ho(_q;X,/Y(#)) = h/‘(ox) =8 by (2,5.3ii),
din(U, N H(9,8)g) = 26.

Furthermore if we accept that U,'Iﬂ H('7,4)S. is irreducible
(Recall d'>g'+3 should imply H(7,4)S integral, see
[N,§2]), it follows that U,]('\H(9,8)S is smooth and con-

nected.

Example 2.3.9. Let k Dbe algebraically closed. Then there is‘ a

non-embedded non-reduced component V of H(14,24) and an
open subset U of H(14,24), UcV, of smooth connected
curves lying on smooth cubic surfaces. See (3.2.4) or

[(M2]. By (3.1, 3) ’

H (Iy(v)) = 0 for v£ {3,4,5]
for any XcP of U, and one may also prove (use (3.1.,61iii))
1 L 1

Using x(_:lg_y(v)) = x(O]P(v)) - x(OX(v)) and Riemann-Roch,
we find that any X< PP of U is contained in a global
complete intersection Y of type (6,6). By (2.3%.3ii)

the linked curve X'cIP is of degree d4' = 22 and arith-
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metic genus g' = 56. Moreover any XCIP of U is con~

tained in U(6,6) of (2.3.6) since
5N (1.(6)) = 0 1
*x = and H (E_X(2)) = 0,

and (2.3.6) applies. Thus the linked curves X'<CTP belong
to a non-embedded non-reduced component V' of H(22,56).
Finally by using [P.S.,(4.1)], V' contains smooth connec-
ted curves. Indeed it will be sufficient to prove maxn,; =6
where the nji belong to the graded resolution of I =
@H’(I(v)) for XSP in U. We omit proving this.
Our next corollary is concerned with a family V of Hilb® ana
its corresponding "linked" family V' of HilbP , and it relates
the dimension of .V' to the dimension of V. First to défine
- V', we will here just consider those closed irreducible families V
of Hilbp, which appear as the image, via the first projection
morphism pPT,, of some irreducible non-embedded component
WeD(p;E) oy where D(p;f)yy is the closure of D(pjflyy in
D(p,a). Now start with such an irreducible closed subset V of
Hilb® ana give V thé reduced scheme structure unless V 1is an
irreducible component of Hilb® in which case we always endow V
with the scheme structure induced from the scheme stnicture of
HilbP?. Anyway by generic flatness [M1, Lect 8] and by the smooth-
ness and connectedness of the fibers of pry 2 D(p3L) gy —> HilbEy,

see (1.%.12), there is an open subscheme UEVred such that the

N - -1
restriction of pr,; to pr, (U)SD(P§£)CM»

T, pr',"/| (U) = U

is irreducible and smooth of relative dimension
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.

§h°(1 (£.))
i=1 =X/

dimpr> (V) - dinT =

where (XCYCP) ¢ pr:]"/l (U). In particular there is only one irre-
ducible component W of DZp;{SCM whose image via the first pro-
jection morphism is V, and using the isomorphism D(p;ngM==D(p;§)CM
of (2.3.4), W corresponds to an irreducible component W' of

1
D 3I) - Then we define the "linked" family V' of Hilb®? by
V' = pr%(W')

1
where pr) : D(p',q) = HilbP , and we give V' the reduced scheme
1
structure unless it is an irreducible component of Hilb® . Now
starting with V', then since there is only one irreducible compo-

nent W' of ﬁlp;iiCM whose image is V', we deduce

(vr)r = V.

Moreover there is an open subset U'<cV' such that

n

2
dim W' - Aim V' =i§1ho(;§_x./¥(fi)) =i£1hq(OX(fi-4))

for any (X'SYS® of U' where X'&>7Y and X%=> Y are linked.
Note that when we talk about (irreducible) componehts of HilbP,

or of D(p,q), or of some open subschemes of these, we always

mean, unless expliéitely mentioning the contrary, a non-embedded
irreducible component endowed with the scheme structure inherited
from the scheme of which it is a component. It follows that the
dimension of the corresponding local ring at the generic point of

W 1is zero, and such a component is reduced iff this local ring is

a field.
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Corollary 2.3.10. i) Let VSHilbgM be a closed irreducible

subset of Hil“b:gM which is the image1 %i‘ some irreducible

component of D(p;;‘_)cm. Then there is a well-defined "linked"
T

irreducible closed subset V' of Hilbf, such that (V')'=V

and such that

2
.y . 1,
dim V' = dimV +i§q[ho(£ /Y(fi)) ~-h (QX(fi_u,))]

where XCIP is a sufficiently general point of V and
where Y 1is a global complete intersection of type £ con-
taining X.

ii) Moreover if

B (Iy(£;,-4)) = 0

for i = 1,2, then V' 4is an irreducible component of Hilbp,
and in this case, if V itself is a reduced component, then

so is V',

Proof. ii) By (2.3.3ii), H (Iz(£;)) =0 for i =1,2, and so
V' is a component by (1.3.5). Now if V is reduced, then the
component W of m which maps to V wvia the first pro-
jectién is reduced. Indeed this follows from the smoothness of
o :pr‘,?/l(U) —> U, Thus W' is reduced, and so is V' since pr,'i
is smooth at points (X' SYSP) satisfying H (Iy,(£;)) = O.

This proves (ii).

Our final corollary is concerned with the relétionship between
the algebra cohomology associated to x = (XSYCSP) and the
corresponding linked object x' = (X'cYcD).

1) More precisely, the closure of the image.
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Corollary 2.%3.11. Let X be a curve in TP =IP12, let Y be a

global complete intersection of type (f,‘,fz) containing X,

and let X' ©be linked to X by Y. Then

dim coker CtXEY - dim coker l}EIEY = dim coker Qi EY- dim coker 1)2(' cY

2

where o and 1 are as in (1.3.1C). Moreover if the

linkage is geometric, then

. 2 2
COLeI‘ lXEY = O = COkeI' lX'_C_:Y‘

Proof. If d(x) is the category associated to x = (XcYcP),
see the discussion before (1.2.5), and if x' = (XfSYg_]P), then
by (2.2.14)

x(a(x)) = x(d(x"))

because (4—f,]—f2)d+2g = (4-f,|-f2)d' +2g' by (2.3.3ii). Using
that the isomorphism D(p;g)cM = D(p' ;;‘_)CM induces an isomorphism
of tangent spaces, we have the first part of the conclusion of
(2.3.11). Finally suppose that f:X <> Y is generically an
isomorphism, and let g:Yé> P be the embedding. To show

coker 1}2CCY= 0, it will, by the big diagram of (1.%.1), be suffi-
cient to —show that AB(f,OX) - Aa(gf,OX) is injective. According

to the spectral sequence of (1.2.3), there is a commutative diagram

45(£,04) —> 3(gr,0y)

EE

HO(A2(£,05)) —> HEO(A%(gf,04))

where the vertical morphism to the left is an isomorphism because
_.@;'(f,OX) and Ag(f,OX) have support in XN X', Moreover the

local version of the exact sequence of (1.2.3) shows
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.é?(f,ox) = _A_B(gf,OX)

and we are done.

We may use (2.3.11) to compute h“(gx), and for this we consider

the exact sequence of (1.3.1C)3
: 2

% 1
I o n(1,(2,)) = coker oy y = H'(My) X0 (04(£,)) =,

and we review (2.2.10ii) where now k .is an algebraically closed

field of characteristic zero.

Example 2.3.12. Let X be as in (2.2.10ii). We want to prove

H'(Ng) = 0. Since

maxn,lif_max(c(X)+2, e(X)+3) =5

and since s(X) = 3, we may link X by a global complete
intersection Y of type (3,5) such that the linked curve .
X' is reduced.(Indeed since X is smooth, we may essentially
by [P.S.,(4#.1)] find a Y of type (£,,f;) such that the
linked curve X' 1is reduced, where fy = maxn,; OT larger
and where f, 1is the degree of a surface V(Fq) for which

X &> V(Fq) is generically a divisor.) Using (2.3.31ii) it

follows that Yxicy is surjective because

1 1 1 1 |
h (I .(3)) = h (lx(/])) = O, h (E_XI(B)) =h (lx(-q)) = 09

and that Hq(EX,) = 0 because X' is reduced and
1
h (0g: (1)) = ho(lX/Y(B)) = 0. Thus coke:roax,gY = 0 by the

exact sequence of (1.3.1C), and by (2.3.11), cokeror.Xc:Y = 0.
Then again by the exact sequence of (1.3%.1C), Ygoy 18

surjective and

H (i) B (0g(3))®H (05(5)) = 0.
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The remaining part of this section deals with the problem of find-
ing a good formula for the dimension of a reduced component V of
HilbgM which holds in most cases. Indeed the formula of (2.2.13)
is not always easy to use. So we postulate a dimension formula

of V, and our main contribution is that, under some conditions,
the dimension of V 1is as postulated iff the dimension of the
"linked" component V' is as postulated. Technically the whole
point is to generalize (2.3.11) together with the exact sequence

of (1.3.1C), i.e. we will construct an exact sequence

2 Y 2
0 =9 H(Ty (£, )) = 47(a,09) = By 5w (1y(r;)) =

C(XeY) = H'(fy) > Homy(I,H2(I)) —> Exta(I,H(I)) => 0

where C(XcY) cCcoker Oyxcy @and where 4 = R/I 1is the minimal cone
of X in TP, and we will show that C(XSY) and  Ext3(I,HI(I))
is invariant under linkage. Now if Xc PP is a sufficiently gene-

ral curve of a reduced component, one knows that
aimV = 4d+h"(Xy).
The number
14 + di 3
i + dim Homp (I,H-(I)) |

which we can show is equal to Ll-d‘+ 62 with 62 as in (2.,2.7), is

the postulated dimension of V. Therefore V has postulated

dimension provided

O(XSY) = 0 and JExbR(I,HE(1)) = o.

We expect these conditions to be weak for a "generic" point XcCP

of a reduced component.
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To motivate we consider the problem of whether it is reasonable
to expect coker QXE_Y =0 if Y = V(F,I,F2) is chosen in the

following minimal way:

HO(Ix(£4,-1)) = O for f, = degPF,

o
H (_I_X/V(F/l)(fg—’l))= Q for f, = degF,.
Indeed (2.3.11) makes it easy to produce special examples where

cokeray—y # O as proposed by M. Noether [N,§12.4]. On the other

hand we may prove that the conditions

Su,v = o“,v (;.L:f,I and v=f2)

appearing in [N] is equivalent to
Vcoker O'XSY =0

provided D(p,q) is non-singular at (XSYcP). And the whole

S =0
M,V LY,
of [N, §12.4]. 8o we expect that cokeray ., = O is a weak claim

list of curves in [N] satisfies except for those
for large classes of curves provided £, and f, are small, and
that C(XCSY) = O for large classes without requiring f, and

f2 small,

Example 2.3.13. There are curves X of degree d = 21 and genus
g = 54 in IP:]P;’: whose ideals Iy possess a resolution of

the form

3
0 —=> 0p(=9) @0 (-6) = D 0p(-5) = Iy = O,
1=

Thus for any such curve, e(X) = maxX Noy -4 = 5, and since

the cone of X is Cohen Macaulay,

Hq(y_X) = OHomR(I,HZ(I)) = Hq(OX(B))%
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by (2.2.9). Therefore if Y is a global complete inter-

section of type (5,5) containing X, then the exact

sequence
1 12 2 1
0 -> coker Oxcy = H (Ny) _>iE-B’lH (04(5)) = ©
implies
2 .
8leg = dim coker Oyey = 1.

Note that to construct curves X as above we take a plan
curve X' with d' =4, g' = 3% and a global complete
intersection Y of type (5,5) containing X', and we let
X Dbe the linked curve of X' by VY. Sincé X' is of
type (1,4), H (My) = H (0g (1))@H (0g,(4)) =k because
wgr = 0y (1). Thus |

dim coker ey = n My) =1
by (1.3.1C) and by (2.3.11)

dim coker QXE_Y = 1,
Moreover using (2.3.3), d =21 and g = 54.

This example of coker Oyey £# 0 1is minimal with respect to the

number s(X) among the :urves whose cone is Cohen Macaulay. How-
ever by @.3.14) and (2.2.9), all curves satisfying the conditions
of (2.2.9) have C(X<Y) = 0. In particular all curves whose cone

is Cohen Macaulay satisfy C(XSY) = O.

Lemma 2.3.14. Let XcP = ]Plb; be a curve of degree d and let

Y be a global complete intersection of type (f,,f,) con-
taining X such that X & Y is generically an isomor-

phism (as in (2.3.2ii)). Then there is a group C(XCSY)
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and exact sequences

2
- () 2L 3541{“ (Ig(£;)) = C(XST) —
1=

— H'(Ny) ~> Homp(I,H(I)) = Ext5(I,H-(I)) > 0,

and

0= C(XSY) ~ cokerayey = (Homp(I/Ip,H2(I)) = Ext2(I,HS(I))~0

where A =R/I and B = R/IB is the minimal cone of X
and Y 1in IP respectively. Moreover all groups of the
second exact sequence are invariant under linkage, and if &

is the number introduced in (2.2.7),

2 2 Voo
44 + 6 +i§1[h°(;[_X/Y(fi))—h (Ix(£:))]

is also invariant under linkage.

Proof. We consider the diagram of exact horizontal and vertical

sequences

) |
- H () 1_>@H"(0X(f_i)) - 0
0 = _Homp(I/Iy,HO(I)) = Homp(I,H2(I)) =@ H (Og(f;))

I
2
oExR(T,H5(I))

'Y .
XX 5 H) @-X(fi )) —=> coker Ayey

b
0.

For the vertical sequence, see the spectral sequence of (2.1.2),
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and combine with Hﬂ(ﬂx) —> oExtg(I,I) surjective. It follows

easily that there is a well-defined morphism
— 3
cokeraXEEY > 0HomR(I/”IB,Hm(I))
whose cokernel is _Exto(I,HS(I)) by the five-lemma . Let C(XcY)

be the kernel. Then both sequences of (2.3.14) is easily seen to

be exact, and it will therefore be sufficient to prove that
Hom (I, ;1 ,H2(I)) and  Exto(I,Ho(I))
o0y B/A*m e} RV '"'m

are invariant under linkage where IB/A = I/IB. To see this, let
A' = R/I' be the minimal cone of the linked curve X' of X

by Y. Then by Gorenstein duaiity the pairing
2(A) x Homy (A,B) —> HA(B)
Hy g (4, m

induces isomorphisms

20ny = 1V 2,23V ~ 2

because Iy, =®@H(Iy, y(v)) =@HogoY(oX,oY(v)) = Homp (4,B).

((-)" is completion with respect to the maximal ideal of B).

Correspondingly

HO(A') & Ip,) and HE(A")Y -“-'/I\B/A.
Recalling that

HX(I) & Bo(A) and HO(T') S HC(A'),
we deduce isomorphisms

JHoms (T (1)) = Homg(Ty /y ,,HO(T'))



- 138 -

since to any B-linear map

Ig/n == HJ(T)

there is a map

Ia/mr o> (DY — 1, ) = BT
and conversely.
Next to prove that

EXtE(T,H(T)) = Bxt5(T',Ho(I'))

we use the duality theorem (2.1.5), and it will therefore be suf-

ficient to prove
_EE(HE(T),I) =, Exto(HE(I'), 1),
Now the spectral sequence of (2.1.2) implies that
_uBx6E(BE(T),1) = _,Homp (H2(T),HA(T))

and correspondingly for _4Exti(H§(I'),I'). So it suffices to

prove that there is a perfect pairing
2 241 2
Hm(I)><Hm(I ) = Hm(B),
This follows from the usual Gorenstein duality concerning
52(I. ) x Hom (L. ,, .B) —> H2(B)
m "B/A "B*"B/A? m
if we combine with the exact sequences
2 2
0 —> HL(I) = H-(Iy ) —> Ho(B),
2
B —> HomB(IB/A,B) - H_(I') = 0,

see the proof of Hq(lx(v)) 21H1(LX,(f1+f2-4—v))V of (2.3.3ii)
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which is similar. Thus
2 ~ 172 v
Ho(I) = H(I')
as required.
Finally using the first exact sequence of (2.3.14), we get that
1 . - 2
a -dimC(XcY) + d:LmoExtR(I,Hm(I)) =
: 1 .
E[0° (Ly ry(£5)) = 0" (Ty(£;))1 + 4 + dim Homp(T,H(T)).
Therefore it will be sufficient to prove
o . 3.
8 = dlmOHomR(I,H;(I))
since it then will follow that

ZL0®(Zg y(£5)) - b (Ty(£;))] + 4 + 6°

is invariant under linkage by the part of this lemma which already
is proved. Now using the graded resolution of I appearing in

(2.1.6), we find a complex
I‘,] I‘2 r

>
0 = JHomp (I, H; (1)) -i§1H"coX<nqi>> -iq__aqn" (0g(npy)) Eﬂﬂ“(o}((nﬁ)) -0,

and it is enough to prove that this complex is exact. So we must

prove

1 3 2
Extp(L,H (I)) = 0 and JExbS(I,H2(I)) = 0.
Now by the duality theorem (2.1.5) we easily see
Ext*(I,I) = 0 and Ext>(I,I) = O
o m? B o m? T

and so by one of the spectral sequences of (2.1.2), we conclude as

required.
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Then we make the following definition.

Definition 2.3.15. ILet V be a reduced component of H(d,g)cM

and let XcIP be a sufficiently general curve of V.

With 6°

as in (2.2.7), we say that V has postulated
dimension provided |

dimV = 44 + §°.

- Then we easily prove

Proposition 2.%.16. Let V be a reduced component of H(d,g;)CM
and suppose there is a curve (X< ) of V and a global complete

intersection Y of type (f’l’f2) containing X such that
H'(I,(£.)) =0 and H' (I (f.-4)) =0
=X i B =X i -

for i =1,2. If V' 4is the linked component, then V' has

postulated dimension iff V has postulated dimension.
Proof. If (X,l_g:_]P) is the "generic" curve of V, then
HW(I, (£:)) = 0 = H'(I, (£,=4))
-—X,I i = - —X,| i

for i = 1,2 by semicontinuity and by the assumption on (XcCP).
If Y, is a global complete intersection of type (f,],f2) con-
taining X,, then by (2.3.6)

. Or~+ . (o}

and we conclude by the last part of (2.3.14).

\
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We have introduced the notion of postulated dimension only for
reduced components., For the non-reduced components we usually

expect

AimV<4d + 8°

since we for a sufficiently general curve XcPP of V expect

2, See (2.2.9) and the discussion after the proof,

/'
h (Ny) =8
Anyway we will in Section 3.2 give classes of non-reduced compo-
nents, all of which satisfy

dimV = d+g+18<4d+h (04(3)) = 4a+8°.
Once having such a non-reduced component, we can find other non-
reduced components by using (2.3.6) as illustrated in (2.3.9).
Combining the conditions of (2.%.6) with the last part of the

conclusion of (2.3.14) we see that

dimV <24d + 6°

for all the non-reduced components obtained in this way.

Observe also that the number 62 is easily found provided =
s(X) = minn,h._ is small, Indeed if X is a smooth connected
curve and if s = s(X), then

2

1) - s<3 implies 5° = h'(0g(s)),

2) s=4 implies 6% = h'(0g(s))

unless X is a global complete intersection in which case

2

62 = n'(0g(s)) + 1,

2

3) s=5 implies &° = h'(0g(s))

unless the cone of XS is Cohen Macaulay. In fact if X is

2

a global complete intersection, then & is immediately found,
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and otherwise we link the curve X to a curve X' by a global
complete intersection Y of type (s,f) where f is as small

as possible. By (2.3.3 ii)r
h1(0g(£)) = h%(Iy, syls-4)) = O

unless X'is plane and s =5 which implies that the cone of XcP

is Cohen Macaulay by (2.3.3ii) . See also (2.3.13).

Remark 2.3.17. (Components of the Hilbert-flag scheme of postu-

lated dimension,)
Let W be a reduced component of the Hilbert-flag scheme
D(p,q)CM = D(d,g;_i_‘_)CM. We say that W has postulated

dimension provided

r
"4 B nO(Tyy(ry) -1 (Ty(e;)]

i="1

dimW = 44+ 6

where XcYC P is a sufficiently general point of W and
where Y is a global complete intersection of type
(f,],.",fr), r<2, In view of (2.2.14) we deduce that W

has postulated dimension iff

2 : 2
are.s-coker 17 =96

2 .1
- h (04(f.).
i= X1
Compare with (2.2.9ii) . If W has postulated dimension,
we observe that

T
2.3 " (Ze(;))

dim pr, (W) = 4d+ 56
: i=1

Moreover if r = 2 we get by (2.3.14) that a reduced com-
ponent WED(d,g;f,l,f2)CM has postulated dimension iff

the "linked" component W' < D(d',g*;f,],f2)CM has postu-
lated dimension. If r =1, say f, = s, we find that W
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has postulated dimension iff
aimW = 44+8°+0°(Ly(8))-h" (Iy(s)) = (4=8)a+ (°37) + g-2+6°-h" (0y(s))

by (2.2.714). In particular for small s,

dimW s(X) = 2,

]
I
]

2d+g+8 if s

dimW = d+g+18 if s s(X)

i
1}

5,

and unless X 1is a global complete intersection,

dimW = g+ 33 if s =s8(X) = 4.

We prove the validity of these formulas in Svection 3.1

under some conditions. In fact the dimension of W is as
postulated prow‘rided X is a smooth connected curve which
is a divisor on Y where (XCYCP) is the "generic" point

of W.

Finally observe that a reduced component V of the Hilbert scheme
H(d,g) has postulated dimension in the féllowing cases, First if
XcIP is a sufficiently general point of V, we know that V has
postulated dimension provided the curve XC P satisfies the con-
ditions of (2.2.91i) . Next we claim that if X is a smooth con-
nected curve which is a divisor on some surface Y of degree
s<4 , then V has postulated dimension and Hq(LX(s)) = 0, To
see this, let WcD(d,g;8) be a component such that pr, (W) = V.
Then pr,, restricted to prqq(V) , 1is generically smooth by
generic flatness and by the smoothness of the fibers of pr,](’l.3.12)o
In particular W is a reduced component of postulated dimension,

and the tangent map of pT, ,

p] + 47(8,09) = E(ly)
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is surjective. This implies the injectivity of

1 2
H (Ix(s))e=> A7(d,04) ng = cokeroXEy

by using the exact sequence of (1.3.,1C) . By the discussion of
(%3.1.1) which essentially uses (1.3.9B) , coker aXéY = 0, unless
s =4 and X 1is a global complete intersection i; . Com--
bining with |

dimpr (W) = 4d+ 6°

1
-h (-];X(S))
we conclude easily. | |

Example 2.3%,18., We claim that there is a reduced component

V' cH(10,14) of dimension 43 which does not have postu-
lated dimension, and we will indicate why. In fact there

is a reduced component V of H(4,-1) whose general

member X_CE_ZIP3 is a disjoint union of two conics. (Apply
(3.1.10) to the component W(é,m) = W(2,2,0,0,0,0,0) of
D(4,-133) and let V = pr,‘(W(é,g))). Now if W< D(4,-132,7)
is a component such that V = pr, (W), then there is' a "linked"
irreducible subset V' of H(10,14) which by (2.3.10) is

a reduced component of H(10,14) of dimension 43, The

2

number 44 + & which belongs to V', is

2

43+ 6% = 43 +1"(04,(2)) = 4a +1°(Zy y(3)) = 42

where X' and X are linked by a sufficiently general Y

of type (2,7). The dimension of the groups C(X'CY) is

'
seen to be 1, and V contains reduced curves,
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3.1, The Hilbert--i‘iag scheme of curves and low degree surfaces.

In this chapter k is algebraically closed, and the components
are irreducible and non-embedded unless explicitely stating

"connected component" or "embedded component'.

Let D(d,g;s)S be the Hilbert-flag scheme of smooth connected
curves X of degree d and arithmetic genus g and surfaces Y
of degree s, XcYCP = IPB. We describe in this section the
irreducible components W of D(d,g;s)S for s<3 which contain
points (XCYSP) where X is a divisor on Y. Indeed D(d,g;2)g
is a smooth connected scheme, and it contains points x = (X_C_YE]P)‘
where X is a divisor on a smooth quadric surface Y if it is
non-empty. And the main theorem of this section (3.1.4) implies
that there is a one-to-one correspondence between components of
D(d,g;3)g as above and tuples (&,m) = (8,mq...,m ) € 227 satis-
fying

6 2 04+ 0y + Iy, My 20s2e.0 2m 20,

N o

d = 36 =

6 mn.
Tm and g=(°3N- T (5,
1 i="1

41
‘with two exceptions, If (5,8,0,0,0,0,0) for & £ 1 is a solu-

tion, then the corresponding component does not contain smooth

connected curves, and D(1,O;3)S corresponds to (0,0,0,0,0,0,-1).

Tet W(é,m) be the component of- D(d,g;3)g corresponding to a
solution (&,m) of the system above, and let S(&,m)<cW(d,m) con-
sist of curves X and smooth surfaces Y, XSY<cP. Then S(8,m)
is an open smooth subscheme of D(d,g;3)g, hence irreducible, and
we can describe S(6,m) as follows., To each geometric K-point

(XEYEIP}%) of S5(8,m), kCSK a field extension, there are six
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mutually skew lines E1’°°°»E6 on Y ipnducing an isomorphism
Pic(Y) = 2%/ under which the invertible sheaf OY(X) maps to (&6,m)

As corollaries we study the image in H(d4,g)g of the components- W

of D(d,g;s)s via the first projection morphism
prg 3 D(d183s)s -— H(dag)s .

According to conventions earlier made in this paper, the image
is the scheme-theoretic one unless prq(W) is a non-embedded irre-
ducible (resp. connected) component in which case pr,(W) has a
scheme structure inherited from the scheme structure of H(4,8)g,
i.e.

Opr, (W), = %H(4,8),t
for most points % € pr, (W) (resp. for all points t € prq(W)).
Then we show that pr,(D(d,s;2)g) is a smooth connected component
of H(d,g)s provided g £#0 and g # d-3 The exceptional
cases are treated separately. If s = 3, then (3.1.10) states
that pr,(W(s,m)) is a reduced irreducible component of H(4,g)g

provided

B'(14(3)) = 0

for some (XcYcP)e€ S(6,m). The condition H/'(_I_X(B)) =0 1is
usually equivalent to m >3, see (3.1.3) for precise information.

Moreover if

H'(04(3)) = 0,

then prq(W(b,g)) < H(d,g)s is a closed subscheme of codimension
hq(;X(B)), and H(d,g)g is non-singular along pr,(5(5,m)).

Finally for the remaining cases where we in particular have
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H/'(I_[_X(B)) ;é.O, we prove that if pr,‘(W(é,E)) is an irreducible
component of H(d,g)s, it is necessarily non-reduced. A necessary
condition for pr,l(W(é,_r_q)) to be a non-reduced component is seen
to be | | | |

0 # 1'(Zx(3)) <n"(0g(3)) .

We conjecture that this condition is sufficient, and Section 3.2

is devoted to a closer study of what happens in this case.

Furthermore we determine the dimension of the components of
D(d,g;s)s for s<4 and of H(d,g),.3 obtained as above, and we
can see that the components involved have postulated dimension

(2.3.15) and (2.3.17).

We will begin by determining the dimension of the irreducible

components of D(d,z3s) for s<4,

Let X be a divisor on a surface Y, and let x = (XSYCP) €

D(d,g3;s). Recall (1.%.9) that if X is reduced and s <3, then

cokera = 0O and coker l2 = 0,

It follows that D = D(d,g;s) is non-singular at x = (XSYcSP)
and that |

dim O al - (4-s)d + (825) +8-2,

D,z ”
see (1.2.9) and (2.2.14)., In particular if W<D(d,g;s) is any

irreducible component containing x, then W is reduced and

, 2d+g+8 for s=2,
dimW = -
L d+g+18 for s=3%.

If X 1s integral and s = 4, then

dimW = g + 34
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if W contains a point x = (XSYcP) where X is a global
complete intersection of Y and some other surface, and
dimW = g+ 33 otherwise.

To see this, we will use a result of Noether, here stated as

follows.

Lemma 3.1.1. Let W be an irreducible component of D(d_,g;s)

with s>4. Then the following conditions are equivalent

i) There is a closed point x = (XSYSP) of W where

a =0 and D(d,g3s) is non-singular.

ii) There is a closed point x, = (¥,SY,SP) of W where
X’l is a global complete intersection of Y,l with some

other surface.

Now the dimension formula for W in case s = 4 follows from
(3.1.1). Indeed if x = (XSYCSP) is a sufficiently general point
of W, then
. 170 1
as H (HY) -> H (y_x/Y)

is either zero or surjective since H/l(_l\IX/Y) = HO(OX)V —-k by |

(1.3.9). Consider the following three cases

1) a surjective, .
2) a =0 and D(4,g;4) is singular at x,

3) a

O and D(d,g;4) is non-singular at x.

Using (1.2.9) and {(2.2.14) and observing that

2

coker 17 = 0O

by the discussion of (1.3.9C), we find

e o 1 2
< =
g+ 55<dimW< a _g+35+ares,
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Since the inequality to the right is strict provided D(d,g;4) 1is
singular at x and since aies = dimcokera <1, we deduce

dimW= g+ 3% in the first two cases and dimW = g+ 34 in the

case (3). Moreover (%.,1.1) characterizes the case(?) in a nice

way, thus giving the desired description of when dimW = g+ 34,

Proof of (3.1.1). Suppose (i). Since the second projection

pT, * b{d,g;s) = D(p,q) = Hilpb?
is smuoth at x (1.3.7),and since Hilb? is irreducible, prz(W)=Hilbq.,
Using a theorem of Noether, see [Le, page 396] or [SGA,7II, exp XIX],

there is a smooth surface Y,l of degree s with
Pic(Y,) —Z.
We deduce that every effective ¢ivisor on Y, is a global complete

intersection as done in [SGA, 7II, exp XIX], and (ii) follows from
pro(W) = Hilb® becanse (¥, CP)e€ Hilb%.

Conversely if x, = (X,€Y,SP) is as in (ii), then D(d,g3s) is

non-singular at =, by (1.4.7), and Oy ~y =0 by the fact that the
1="1

sequence

-> N

Ny, —> Oy (s) == 0

N,
~X) X 4

/'[
is split. So (i) holds.
Now we want to describe the components of D(d,g3s) for s<3,

We begin with s = % and a remark which describe the curves X

which are divisors on a fixed smooth cubic surface Y.

Remark %.1.2., (Y &a smooth cubic surface). Recall that any smooth

cubic surface is obtained by blowing up six points

2
PyyeeesPg € P in "general position" [H1,V, §4]. Fix six



- 150 -

2

points PiyecesPg € P, let E,],..,.,E6 be the exceptional

lines, and let H be the inverse image of a line in 11?2

via the blowing up morphism T3 Y-~ F° . If hyeq,eee,8g €Pic(Y)

are the linear equivalence classes of H,E,],‘,.H,,E6 respec-—

tively, then {h,e,l,,.,.,,e6} is a 2-basis for Pic(Y). In

the following we will always identify Pic(Y) and 2% via

the isomorphism

o2 297 > Pic(Y)

given by . 6
p(8,My,000,M-) = =% m.e. &
L '76 19 +1

Moreover if X 1is a given curve on Y, then there exist six
mutually skew lines E,],”.,E6 giving rise to an isomor-
phism B8 257 Pic(Y) such that the tuple (&,m) =
(8,m4,0..,m) corresponding to L = OY(X) satisfies

G © m.
Z/]( 21) [}

J‘ d = 36 "'Z”lmi’ g (651)—.
1=
)

I

i
‘i

LB 2 Mg+ 1y + 0y, 5 > m,']F and my2my2 ... 20
where m, = me*c(o,m,l). This follows from the proof of (4.2)
in [H1,V,§4], and as in Peskines lectures (University of
Oslo, 1978), we call the corresponding basis {h,e,,ses,6g]}

of Pic(Y) on adequate basis with respect to L = OY(X>°
Different adequate basis define the same tuple (5,m),

Conversely given six mutually skew lines on Y, iv.e., an
isomorphism B3 26'7 = Pic(Y), and a tuple (&,m) € 77 satis-
fying (*) and the additional condition m >0, then the
corresponding invertible sheaf L € Pic(Y) has sections,

and if we exclude tuples of the form (%,5,0,0,0,0,0) where

8 #1, then there are irreducible non-singular curves among
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the sections of L. These tuples together with (0,0,0,0,0,0,-1)
give precisely the tuples whose corresponding L's have non-
singular irreducible curves among its sections. For a proof

of this, see [H1,V,(4.13)] and the exercise (4.8).

Now if X is a reduced curve on Y, it is easy to see that
the tuple (8,:1) which corresponds to L = OY(X) must
satisfy
6 6 m,
-7 6-/| 1
d=;>6-—2m- g=( )-Z( )
joq b ! 2 i1 2
(**)
, +
L& > Mg+ Iy, 6>2m, and qumgz--ezmgz—ﬂ °
Indeed if m-<-2, then X will contain E;, at least
2 times. And conversely one may prove that an invertible

sheaf L ‘with a tuple (6,m) as in (**) has sections among

which there are reduced curves,

For later use we will include the following result, pointed out

to us by Peskine-Gruson, and indicate the proof.

Proposition %.1.3, Let X be an effective divisor on a smooth

cubic surface Y, and let L = Oy(X) correspond to a tuple
(6,m) where
5 > Mgt lo+ Mz, My2Mg>ees 20
i) Then
6

B (Lg(2)) £0 <=> 0 €ng,20 - my = 1)

provided (8,m) is not of the form

(8,m) = (A+3t,A+t,t,8,t,5,t) for some r>2
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in which case
6

Hq(L,.(n)_) A0 <=>n¢€ [m6,26 -Z m, -1,
=y . 1
i=2
or not of the form
(8,m) = (3b,t,t,t,5,t,t=-1) for some Ar>2
in which case
6

H'(I,(n)) #0 <=>né€(m.,26 -5 m, - 1]
"'“ i=2 *

ii) Moreover
n'(0y(n)) = n°(L(-n-1)) for nzo0.
Proof. ii) Indeed there is an exact sequence
0= 0y = L => Ny y => 0 |
and an isomorphism (1.%.9)
EX/Y = wy (1),
and we conclude eésily by duality on X.
i) Assume H/I(_l_;X(v)) # 0 for some integer wv.

Step 1. Computing the intersection numbers X-E for every line

ECY, we find

. = X-Eg = min(X-E) ,
6

26 - T m; = nax(X-E) ,
i=2

If we can prove

win{a|H' (Iz(a)) #0} = mg + 1

(except in one special case), we deduce by duality on Y and the

expression of mex(X*E) above, recalling Hq(gi_x(n))=H/l(_I_X/Y(n)),
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that

» o
max{n}}lq(lx(n)) £0} = 28 - ngi -2
1=

(except in one special case).

Step 2. We claim that it will be sufficient to find
§ ,
nin{n|H ‘(__I_X(n)) £0} if L = OY(X) satisfies

H°(L) # 0 and HO(L(-1)) = 0.

Indeed if L is as in (3.1.3), then there is an integer v such
that
H°(L(~v)) # 0 and HP(L(-v-1)) = O.

~

If D 1is a section of L(-v), considered as a curve, then

' (Iy(n) = ' (L(-0) ®uy) = b (@-v)Enmv) Suy) = 1 (Zpla-v)).
50 :
min{nlH (I(n)) #0} = min{n|H (Iy(n)) £0}-v.

Bince L = OY(X) and L(-v) = OY(D) correspond to (é,m,],.a.,m6)

and  (8-3V,m,~V,...,0--V) respectively, the claim follows easily.

Step 3. Since m~1>0 implies H°(L(-1)) # O by the discussion
of (3.1.2), m6_<_O° We can by (3.1.2) find a section X of the
invertible sheaf L' defined by (8,m7,...,m}) which is a smooth
connected curve unless (é,gf') = (A\,2,0,0,0,0,0) for some X £ 1.
If A=>2, then ¥ is a smooth non-connected curve. Since

6

Z Vv.E

X=X .
tIl.:L

+
i
are linearly equivalent where v; = -mg and where the number +t

is defined by
- O d < O
m‘"c-—’“l Z An Dy
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i

(t

we deduce

1 if mi<O for a1l i and t =7 if miZO for all 1),

6
' (Iy(n)) =HO(04(n)) 2E(0g(n)) 2H(0g, (1)) = B HO(O, 5 (n))
171 i=t 171

if n<0 and a slightly modified result if n = 0. Now let
ECY be a line and let v>1 be an integer. Using that there

is an exact sequence
0 —> OE(v—’l) ~> 0 p —> O(V_1 \E - 0,
we find ‘
min{niHo(OVE(n)) A0} = =v+1,
Thus if mg <-1, then
min{n|E (Iy()) £0} = mg+1,

and if m; = 0, we do heve X = X, ice. L=1%. Since ¥ is

smooth and connectzd (resp. non-connected if L corresponds

to (X,1,0,0,0,0,0) for A>2), H(ILy) = 0 (resp. H (Iy) £0),

i.e.
min{n'iI-Iq(_I_X(n));éo}zﬂ = mg + 1
(resp. min{n|H (Iz(n))#£0}=0 = m.).

X are rational curves by (3.1.3ii), and it follows

Ll

Moreover X

that
min{n|H'(Iy(n)) £0} = 1 = mg+1.

Finally, reviewing the proof, we will see that Hq(_I_X(n)) =0
for every integer n iff L(-v) = Oy (step 2), or X = Eg

(m6=-’l of stel? %) or X-= X are rational curves of degree
d<% (mg = O of step 3). The conclusion of (3.1.31) holds

for these cases as well. In fact for these cases L corresponds
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to (3v,v,v,v,v,v,v), (3v,v,v,v,v,v,v=1), (3v+1,v,v,v,v,V,v) or

(Bv+1,v+1,V,V,V,V,V ).

Now we aim at describing the irreducible components of D(d,g3;3%).
We restrict, however, to those components containing points

(XcYcP) where X is a reduced curve and a divisor on Y. 1In

fact let
( ) r( ) ( ; X is a divisor on Y1
U(d,g;3) = {(XSYCP) € D(d,g;3
=0 L =77 ana B (04(-1)) = 0 J and
S(d,g;3) = {(XSYCP) € U(d,g3;3)|Y is a smooth surfacel,

Then 8(d,g;3) < U(d,z3%) are both open in D(d,g;%3) and the
composition
pro o
U(d,g33) ~ D(4,g33) —> Hilb
is smooth because Hq(EX/Y) =~ HO(OX(—ﬂ))V = 0, BSee (1.%3.7). It

follows that U(d,g3;3) is non-singular, so there is a decomposi-

Ttion

u(a,g;3) = 11 U;
ie1

into connected components. By the smoothness of PTH, Prg(Ui)
is open in Hilbq, and pr2(Ui) will therefore contain a smooth
cubic surface. Thus Si = S(d,g;E)FIUi is smooth and non-empty
and

s(d,g;3) = |1 S, .

fer *
Take the closure W, of 8; in D(d,g;%). Then W, is a reduced
(i.e. generically smooth) irreducible component of D(d,g;3%).
Since for reduced curves X, HO(OX(-ﬂ)) = 0, all irreducible
components containing points (XSYSP) with X reduced and

X&>7Y a divisor are among the Wi's (and there are no more wi's,
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We skip the details since otherwise we can redefine S(d,g33) by
throwing away the Si's which do not contain reduced curves).
Now the main theorem of this section determines the index set 'I,

and describes the S; in a nice way.

Theorem %.7.4. i) Any irreducible component WcD(d,g33) con-

taining points (XSYCSP) where X is reduced and where X

is a divisor on Y is a reduced component of dimension
dimW = d+g+18.

ii) There is a one-to-one correspondence between the com-
ponents of (i) and tuples (b,m) € 297 satisfying (3.1.2%*).
Put _

W(d,m) =W and S(6,m) = S

if W corresponds to (&,m) and W = gi’ Then to each
geometric K-point (XCYCS ]Pé) of 8(8,m), there is an
isomorphism £ : 29 = Pic(Y) such that the invertible sheaf

L = OY(X) corresponds to (&,m).

Proof. i) is already proved, and for ii) we will construct a

nice scheme T = T(d,g;3) and a smooth surjective morphism
y ¢+ T = 5(d4,g;3)

where, over T, the pullback KEEYTE]P xT of the universal object
of D(d,g;3) and the family of six mutually skew lines are de-
fined. Using intersection number theory we can describe easily

the connected components of T as we now shall see.

First we will define T and (. Let

R' = S(1,053) % ... X _S5(1,033) (six times)
Hilb?  Hilpd
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Then any point of R' is just six times Eq""”EG and a smooth
cubic surface Y, ;€Y for i = Ty00e,0. If we denote by
Hilb% the scheme of smooth surfaces in Hilb%, then the obvious
morphism R' —> Hilbg-‘ is smooth and surjective (it is in fact
étale) since pT, ¢ S5(1,033) => Hilbg*' is. Moreover since the
intersection numbers E:i.'Ej is defined in terms of Hilbert poly-
nomials [M1, Lect 12], and since these Hilbert polynomials are
"constant on the connected components of R'", there is a sub-

scheme R og R', open and closed in R', defined by
E' °E- = O fOI‘ i # j’
i.e. a point of R is Jjust six mutually skew lines E,I,...,E6

and a surface Y, E.cY for i =1,...,6. Then we define

T = 7(d,g3;3) by the cartesian diagram

p
7 —25> R
0

s(d,g;3) T Hilbd

and the morphisms of this diagram are smooth, hence dominating
provided 8S(d,g3;3) is non-empty. They are surjective if we can
show that

pr, : 5(d,g;3) —> Hilbd
is surjective. To see this, pick (X<YcP) € 5(d,g;3) and let
(Y'cPp) ¢ Hilbg. be arbitrary. To prove that there is a point
(X*cYy'cP) € 8(4,8;3), choose isomorphisms

Pic(y) = 227 = pic(T')

as in (3.1.2**), and let L = OY(X) €Pic(Y) map to L' € Pic(Y').,
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Then L and L' correspond to the same tuple (6,m), a tuple
which satisfies (3.1.2**). So L' has sections, and a section
X' of L' considered as a divisor on Y' defines a point

X'cY'cP) € S(d,g33).

To study the components of T, let for any te€T

mi(t) = X'Ei

19, 8
8(t) = 3—(d- z mi(t))

i=1
where the t = Spec(k(t))=-point of T is the six lines Ejyees By
and the curve X of degree d and the smooth surface Y, EiSY
and Xc¥. Again the intersection numbers XoEi are constant on

each connected component Tj of T. Put

(8(24),m(5)) = (8(£),m(%)) ¥l

for some ¢ eTj. Moreover we claim that different components of T
correspond to different tuples. To see this, let T(6,m) be the

disjoint union of those connected components TJ.ET such that

Then consider the geometric fibers of the composition

P
T(6,m) € T —2> R,

If r€R 1is a given geometric K-point of R, which means that

a smooth surface Y and six mutually skew lines Eqv""’E@ over
an algebraically closed field K are given, then the fiber
pé‘q(r)ﬂT(ﬁ,g) consists of curves X on Y satisfying XoEi=mi

for all i = 1,2,444,6. This is a linear system, see [M1, Lect 13].

Thus p'/l(r)ﬂT(é m) is connected. Since the composition
2 o2
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p
T(8,m) € T —2-> R

is smooth and surjective, it is also connected. Using the next
lemma which states that R is connected, we deduce that T(6,m)

is connected.

We have now a smooth surjective morphism
T —> 8(d4,g;3)

of smooth schemes. For each connected component SiEES(d,g;B),
w"q(Si) cénsists of a certain number of the connected components
of T. Choosing a geometric K-point x = (XEYE]P%) of 8,

we see by the constiuction of T that the fiber w"q(x)giT is x
together with all possible choices of six mutually skew lines on Y.
Observing that (3.1.2**) is obtained by a special choice of six
mutually skew lines, we easily see that among the components of T
which map to S., there is a component T(é,g) whose corresponding

i
tuple (6,m) satisfies (3.1.2**). This (6,m) is unique. More-

over v D(s,m) = Si

is a surjective morphism since the composition T(é,g).—>.T-—§> R
is surjective. Let this S; be S(s8,m) . Now putting all this

together we easily get the theorem.

Lemma %,1.5. R 1is a connected scheme.

Proof. Let r and »' be k-points of R corresponding to two
choices of six mutuslly skew lines on smooth surfaces, E4’°‘°’E6
on Y& P’ and 13," geee ,Eé on Y' E]PB, respectively. If we can

prove that there are connected schemes

X, Xypeee,X

o? n
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over R and morphisms

L == X4 or X <X

over R for each 1 = 0,...,n-1, such that

Xo = Bpec(k) => R and Xn = Spec(k) = R

are the k-points r and r', then R is connected . See

[H3, Chap I] or use that each time there is a commutative diagram
X ——>Y
\R N
where X and Y are connected schemes, then the images of X

and Y in R are contained in the same connected component of R.

Recall that the lines E,,...,Eg on YSP’ are obtained by blow-

ing up six points P,,...,Pg€ P° in "general position", and that

if ®° is the blowing up of P2 along Z =P4U...UP;, then

the linear system of curves of degree % in ]P2 passing through

Pryeee ,P6 defines an embedding
B = P2

whose image is YC IP3 . If I, = ker(O 5= OZ), then the linear
P ‘
system above is given as the k-vector space Ho(lz(B)). And it

is a choice of a basis of HO(LZ(B)) which defines ]52—>IP5,

or more precisely, if

i PP 12

is the blowing up morphism, we know that the inverse ideal sheaf

. -1 o s .
:I:Z_C_O],Eg given by m -I-Z'OIE,? is invertible. Indeed

~

=O (‘-E )'8...@0 (»-'E °
2 ]52 1 1’52 6)

H
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Hence i[:Z@n*O 2(5) is invertible, and any choice of a basis of
r

el

Ho(iz S mu*0 2(3)) defines an embedding TP —>IE’3. However
P

H2(L,(3)) = HO(T;® mo_o(3)) -

In the same way the lines E}‘,...,Eé correspond to six points

2

'P,'],...,Pé € P in "general position" etc.

To prove that R dis connected, it suffices, heuristicaliy speak-
ing, to prove that the scheme W whose k-points are ordered
tuples (P1’°'-’P6a§) where (Pq,...,P6) are points in "general
position" and where s = {50’81’32’53} is a choice of a basis

of HO(IZ(B)); is oconnected. We shéll prove that W is connected
(or since we do not prove representability, we will prove that

he corresponding functor is connected). Hence R 1is a connected

scheme since W-—R is surjective.

To be precise, the ordered tuples x = (P’I"""P6) and

x' = (P%,...,Pé) are k-points of

oV
x IP (six times)
k k k

Vv
where T° is the Hilbert scheme of points in P°. If

and A' =0

A =0 V,x'

V,x

and if K 1is the quotient field of A or of A', then, over

Spec(4), there exists an ordered tuple (P’IA""’P6A) of A-flat

schemes PiA-c-sz Spec(4d) = ]Pﬁ whose fiber at the closed

point of Spec(d) is P, €, 1<i<6. By simply blowing up
IPE along ZA = P,lAU coe UP6A’ we claim that there is a flat

family of six mutually skew lines over Spec(A) and an embedding



- 162 -

of A-flat schemes

5 — P2 x Spec(a) = B?
= x Spec = Py

whose image is YAE]P5 « It will follow that there exists a map
y : Spec(A) —> R
such that ¢(Spec(k)) = r. Correspondingly there will be a map
y' s Spec(A') "R such that ¢'(Spec(k)) =r1r'.
Now define
a

C="TT1 and C, = I
= asel = a0

where l‘zi is the ith power of IZ and lg = OIP2 .
Then let

1'52 = Proj(C) and ﬁi = Prog'(gA) .

By the universal property of blowing up, there is a commutative

diagram
~D A 2
Py —— ¥y
A A
| ° |
B2 T . P

Moreover ]Ei is A~flat since the sheaf _I_Z is.
A

To prove that there is an embedding

whose fiber at the closed point of Spec(d) is 11’152—»2[95 , We

claim that

o} ® ~ 170
192G (3)) 9% = B(L;(5))
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and that HO(;E_Z (3)) is A-free. Indeed counting dimensions of
A

the vector space appearing in the exact sequence

0 = H(I;(3)) = H°(0P2<3)) ~> H°(0,4(3))

we get that H°(0 ~(3))—= HO(OZ(B)) is surjective, so
]PC.
B'(1,(3)) = 0

and we conclude as claimed by base change theoremn.

Next if
_ , 1
=m, I, *0 A
A 7

quHl

then we claim that
HO(I, ©n%0 ,(3))® k = H(L, ®m*0 ,(3))
Ty A2 =2 PP

and that

HO(T, cmr0o o(3))=H°(Z, (3)).
("5A A]Pi( =z

Indeed there is a commutative diagram

H°<;ZA<5>> ->H°(iZA3n;o]P2<s>>

A
Y b

\4

H(1,(3)) =H(T,® mo_2(3))

so the vertical map to the right is surjective. We conclude by

base change theorem and Nakayama's lemma. Now since the mor-

phism 7 -+’ is defined by a basis of HO(I, @ m*0pa(3)),

we can 1lift the basis to a basis of Ho(iz ®n10 2(3))., thus
A ]PA

defining a morphism i’i -'IPE making a commutative diagram
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~D 3
A A
l o |
P - P

~

Moreover _'f_ZA\@nzO]PE(B) is very ample because }_Z®n*O]P2(5) is.
A

"If n:Spec(K)~R is the composition of the natural map
Spec(K) = Spec(A) with ¢, and if n' is correspondingly defined,

then we have commutative diagrams

Spec(k) —> Spec(4) <— Spec(K) Spec(K) —> Spec(A') <~ Spec(k)
) AN

NbA NS

R R
Moreover there is a commutative diagram
Spec(A) <— Spec(K) —> Spec(A')
\')
The latter diagram implies that the restriction of the tuples

(P’IA""’PGA) and (P,']A.,...,PéA.) to Spec(K) are the same

tuple (P’IK’ ces ’P6K)’ So

I, ®K =T, ®K =T
=Ly Zp g g

and we deduce

ﬁi X Spec(K) = i"i.x Spec(K) = i’}%.
Spec(4) Spec(A')

However the restriction of the embeddings

Ei — P; and 2, = P2,
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to Spec(X) need not be the same. Over Spec(X) they correspond
to two choices {So""’SB} and {sé,...,s%} of a basis of

HO(Z_[_ZK(B)). We therefore let
B = KMt]

be a polynomial ring in one variable, and if we 1lift (P’IK""’P6K)

and P2 trivially to Spec(B), i.e.
Pip = Pig X Spec(B) < ]Pla{x Spec(B) = ]Pg and
2 Spec(k) Spec(K)
]P% = ]E:E- xSpec(B)

we can define a morphicm
B~ Fp

using the basis {s_+ ’c(s(') =5)se0e 1Sz + t(s'3 - 83)] of Ho(_I_ZB(B)) =
HO(EZK(E))®B . It follows that there is a morphism
K

Snec(B) =/ﬁ£ - R,

8nd the K-points +t =0 and t =1 of Spec(B) composed with
Spec(B) R are just the K-points nn and n' of R. Thus the
diagram

Spec(K) =0, Spec(B) &= Spec(K)

I
R

commutes, and the proof is complete.

Examples 3.1.6. i) Solving (3.1.2**) for 4 =9 and g = 8,

there is only one solution

(7’5’292’2’211)‘
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Thus D(9,83;%) contains oniy one irreducible component of
the form described in (3.1.4), and its dimension is

d+g+18 = 35. Compare with (2.2.10ii) and (2.3.12).

ii) BSolving (3.1.2**) for 4 =8 and g = 5 there are
two solutions (5,2,1,1,1,1,1) and (6,2,2,2,2,2,0). 5o
D(8,5;3) contains two irreducible components of the form
- described in (3.1.4), both of dimension 31. Compare with
(2.2.16)

iii) Solving (3.1.2**) for 4 = 14 and g = 24 under
the condition mg>0, there are two solutions (11,4,3,3,3,3,3)
and (12,4,4,4,4,4,2). The corresponding components are of
dimension 5&6. For later use we will compute hq(OX(B)).
Indeed if L corresponds to (6,m1,...,m6), then L(n)
corresponds o (6-+5n,m14-n,...,m6-+n) since OY(ﬂ) corre-
sponds to (%,1,1,1,1,1,1). Thus if L 1is given by

(11,4,%,3,%,3,3), then
1 - (o}
n1(04(3)) = hO(L(-4)) = o,
by (3.1.3), and if L is given by (12,4,4,4,4,4,2), then
1 o)
n1(0g(3)) = BO(L(-4)) = 1,
iv) For d =15 and g = 27 there are three solutions

(11,3,3,3,3,3,3), (12,5,4,3,3,3,3) and (12,4,4,4,4,3,2)

satisfying m;>0. Computing hq(OX(B)) as in (iii), we
find
0O for the first two cases

n(04(3)) ={
1 for the case (12,4,4,4,4,3,2).

So there are tiree components of D(15,273;3) of dimension 60.
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v

v) For d =16 and g = 31 there are two components
of dimension 65 given by (12,4,4,3,3,3,3) and
(13,5,4,4,4,4.,2) containing smooth connected curves.
Moreover
h1(OX(5)) i {1 in the case (12,4,4,3,3,3,3)

2 in the case (13,5,4,4,4,4,2)

vi) For d =16 and g = 29 we find three components

of dimension 63 containing smooth connected curves. They

correspond to tuples
(11’5’5’575,5?2)’ (12’5$4,5’39312) and (12’4,4‘)4’492,2)‘

This time
r O in the first two cases

n'(0y(3)) = !
in the case (12,4,4,4,4,2,2).

If we consider the irreducible components WcD(d,g;2) containing
points (X cYc P) where X is a reduced curve and. a divisor

on Y, we can by the discussion right before (3.1.4) conclude that
W contains points where in addition Y is a smooth quadric sur-

face. Moreover, slightly modifying the proof of (3.1.4) we claim

that there is a one-to-one correspondence between such components

and tuples (qq,qg)e 8@2 satisfying

Indeed this time a k-point of R 1is two intersecting lines E,‘,E2
and a smooth quadric surface Y, E;cY. And to see that R 1is
connected, which is the main point of a proof of the claim above,

we use that to any k-point of R, there is a morphism
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p: P xIP @1:>:P ¢2:>:P

where P4 is the morphism of Segree and ¥, an automorphism

of B°, ¢ = p,0,, such that (P ' xP') = Y and

1

i}

9*E, = B x {pt}, o'E, = {pt}xP

for some point {pt} € ]}?’I . Furthermore since deformations obtained
via automorphism of IP5 lie in the same connected component of R,
see the last part of the proof of (3.1.5), we conclude that R is

connected.

Since there is at most one solution of the system above, there is
only one component W< D(d,g;2). Note also that a solution
(q,l,qz) of positive integers together with the solution (0,1)
if d =1 corresponds to a component which contain irreducible

non-singular curves on smooth quadrics.

If we also study D(d,g;2) at points x = (XSYCSP) where X
is smooth and connected, but not necessarily a divisor on Y,

we can determine the structure of D(d,g;E)S completely. Indeed
we claim that D(d,g;E)S is non-singular at such points =x.

To see this, we use [H1, IV, (6.4.1)] which states that if X is
a smooth connected curve on a singular quadric surface Y, then
Q =gy or g, = q2-’l . If Q= o, then X is a global com-
plete intersection, and in the final case, the cone of XC I’5

is Cohen Macaualy. D(d,g;2)g will therefore be non-singular

at x by (1.4.7) and (2.2.8). Finally if W is a component of
D(d,g3;2)g which contains x, then W contains points Xtcy'cP)

where Y' is a smooth quadric surface. Indeed if we make the
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deformations of the cone of X¢C ZIP3 explicitely which is easy
since the cone is determinantiel,we will see that there is a de-

formation X' which is contained in a smooth quadric surface

Y 5:_193. This gives

P;'ox)osifio'n; 3.'1.]. D(d,g‘§2)s is a smooth connected scheme of

dimension 2d+g+8 if it is non-empty. Moreover D(&,g;2)g;
in case d>1, is non-empty iff there is a tuple (q,l,qg)
satisfying
d =aqq+d, g =(a4=1)(qx-1) and 0<q =q,

in which case D(4,g;2)g contain points x = (XCYCP)
where Y is a smooth quadric surface. Finally to any such
point x +there are two intersection lines E,| ,E2 contained
in Y inducing an isomorphism

Pic(Y) = 222

which maps Oy(X) onto (a4,95)-

As applications of (3.1.4) and (3.1.7) we will study the Hilbert
scheme H(d,g) and certain subfamilies which correspond to the

image of some component of D(d,g;s) via the morphism
pT, ¢ D(a,g;s) — H(4,g) .
Start with s =2 and D(d,g;2)g non-empty. Then we have a well-
defined tuple (q,,d,) and there are two cases to consider.
1) H'(L(2)) = 0 for some (XSYCSP) ¢ D(d,g32)g

2) H'(Izx(2)) £0 for all (XSYSP)e€ D(d,g;2) -

Note that any point (XCYCP)€ D(d,g;2)g satisfies H (Iy(2))=0



- 170 -

if one point dbes. ‘This follows from the fact that we can charac-
terize the vanishing of H1(£X(2)) in terms of the integers Q4
and g5, seer(’l.B.’lO) if Y is a smooth quadric surface and ob-
serve that H’](I_[_X(2)) =0 if Y is singular. Using Kunneth's
formula as we did in (1.3.10), we can easily see that

1) H"(LX(E)) =0 iff 9423 or gy53

2') H'(Iz(2)) #0 iff q,<3 and gy>3

in which case

B(Zg(2) = (p-3)(3-q,).

In general »
pr, : D(d,g;2)g = H(d,g)g

is proper, hence closed. Moreover in the first case (1), pTy is
a smooth morphism by (1.%.4), hence open. We deduce that

pr,l(D(d,g;E)S) is a smooth connected component of H(d,g)g of

dimension

{ 44 + (q-3)(qy-3) = 2d+g+8 if q423

‘44 if  @y,<3,
again by (1.3.10). Note that the dimension of pr,(D(d,g;2)g) is
not given by 2d+g+3 if q2<3, i.e. if d<4., Otherwise it
is, see (1.3.7) and use that ho(_Z[Z.X(E)) =1 for d4>4.

In the last case (2) or (2')
HN(I,) = H'(04(2)) =0
=7 X =

for any (XSYCSP)c¢ D(d,g;2)s by (1.3.10) since Y is necessarily
smooth. In particular H(4,g)g 1is non-singular along

pr,](D(d,g;2)S), and we have the following corollad:'y in which (i)
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corresponds to (1') with a,<3, and (ii) and (iii) correspond to

Qq =1 and g, =2 of (2') respectively.

Corollary 3.1.8. The scheme prq(D(d,g;E)S) of smooth connected

curves which are contained in some surface of degrec 2 form

a smooth connected component of H(d,g)S of dimension
2d+g + 8
except in the following three cases

i) d<4 in which case prq(D(d,g;2)S) is a smooth con-
nected component of H(d,g)S of dimension 44

ii) d>5 and g = O in which case pr,l(D(d,O;Z)S)—’:D(d,O,2)S
is a smooth connected scheme which is of codimension

2(a-4) in H(4,0)g.

iii) d>6 and g = d-3 in which case pr,(D(4d,g;2)g)

= D(d,g;Z)S is a smooth connected scheme of codimension

d-5 in H(d,g)s, end H(d,g)S is non-singular along
D(d,g32)so

Compare (3.1.8 iii) with (2.2.16E) .

Using the corollary above, we find that H(d,g)g is sometimés
‘disconnected. A classical example is H(9,’IO)S which is a smooth
scheme consisting of two connected components, both of dimension 36.
See [N, §15] or [1I1, IV,(6.4.3)] or [T]. Another example is the

following.

Example 3.19. H(ﬂO,ﬂE)S is a smooth scheme consisting of two

connected components, both of dimension #40. Indeed

D(10,12;2)g 1is non-empty since q, =3 and g, =7 is a
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solution of

10 = gq+4dp, 12 = (a4-1)(gp=1).
By (3.1.8), pr,l(D(’lO,’IL?;E)S) is a smooth connected component
of H(10,12)g. Moreover any curve XCP° of H(10,12)g
for which s(X)>3% 1is easily seen to be contained in a
global complete intersection Y of type (3,4). The linked
curve X'CY is therefore a plane curve since x(_];X(E)) = ’l‘

implies h/](OX(2)) #Z 0 and since
h°(Ly (1)) = n'(04(2)) £ 0

by (2.3.3). The cone of Xg‘-'_IIP5 is Cohen Macaulay, again

by (2.3.3), so
H(10,12)g - pr,(D(10,12;2)g)

is smooth and connected by (2.3.6) of dimension 40 by (2.2.9)

because 3d > 2g-2 implies 62 = 0.

We now study the images of the components W(5,m) < D(d,g33)
appearing in (3.1.4) via the first projection pT,, and there are

three cases to consider.

O for some x (X_C_Y_C_Z_]P) € W(é,m),

1) H'(Ig(3))

2) H'(Ix(3)) 40 for any x

(XcYcP) e W(s,m) and

]

O for some x € W(8,m),

I‘
H1(04(3))
3) H'(Iy(3)) #0 and H'(0y(3)) #0 for any x € W(5,m).
The case 3) did not occur in the discussion of s = 2 since

H'(1z(2)) # 0 implied H'(0g(2)) = 0. Observe that if H'(Izx(3)=0,

resp. Hq(OX(B)) = 0, for some x € W(8,m), then the groups vanish
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for any x = (XEYEI’) € 3(s,m), i.e. for any (XSYcP) such that
X is a divisor on a smooth cdubic surface Y. This is a con-~

sequence of (3.1.3) and of the last part of the theorem (3.1.4).

Moreover what is the codimension of pr,](W(b,g_l_)) in H(4,g)?

To answer this, let V 2 prq(W(B,E)) be any irreducible component
of H(d,g). Since the fiber of pr, 1is of dimension ho(_];X/Y(B))
by (1.3.79) for (XcYCP)€ S(s8,m), we deduce

]

dim pr, (W(s ,Q_)) dinW(é,m) —h°(_J_C_X/Y(5))

d:rg+ 18—h°(_I_X/Y(5))

as in the discussion of (2.3.10i) . Using ‘(2.2.’14) we find
dimpr,;(W(6,m)) = 44+ v(3)

where v(3) = hq(OX(B))-hq(lX(})). Combining with
43 <dinV<hO(Wy) = 4a+h"(04(3))

(recall h"(y_x) = hq(OX(B)), see (1.3.9C)) and observing that the
inequality to the right is strict iff H(d,g) is singular at
(Xc®), see (1.2.9), we get that

30 - g = 18 - 1°(Iy y(3)) = ~v(3) <dinV - dimpry(W(6,m)) <h"(Ig(3))

where the inequality to the right is strict iff H(4d,g) is singu-

lar along pr,(W(s,m)). This gives
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Corollary 3.1.10. i) If

HII(_]_Z_X(':")) = 0 for some x = (XSYcP)e€ S(6,m),

then pr,(W(s,m)) is a reduced irreducible component of

H(d,g) of dimension

d+g+18-ho(;[_X/Y(5)) .

Indeed pr,](S(é,_I_q)) is an open smooth subscheme of H(4,g),
and if 4d>10, s(X) =3 (2.2.7) and if X is integral,
then
1°(Iy y(3)) = 0.
ii) If
Hq(OX('j)) = 0 for some x € S(6,m),
then prq(ﬁ-l(a,_r_a_)) is a reduced subscheme of H(d,g) of

codimension

1

n1(1,(3))

and H(d,g) is non-singular along pr,(8(5,m)).

iii) If V is an irreducible component of H(4d,g) con-
taining pr,(W(é,m)), then

n"(Z1;(3)) - 11 (0g(3)) < aimV - dim pr,(W(6,m)) <h” (Tx(3))

for any x = (X<YS®) € 5(6,m)). Moreover H(d,g) 1is
singular along pr (W(8,m)) iff the inequality to the right

is strict, and we have

h'(Ly(3)) -0 (0y(3)) = 3d~g =18 +h°(Ty y(3)).

iv) In particular if prq(w(b,g)) is an irreducible com-

ponent, then
| 01(Zy(3)) <0 (04(3)),
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and prq(W(a,E)) is non-reduced iff hq(lx(B)) # O.

We now ask:

- Does there always exist an irreducibie component V EH(d,g)

containing prq(w(é,g)) such that
. . 1
aimV - dinpr, (W(8,m)) = [h'(Lx(3)) -h"(04(3))7*
where (XSYcP)€ S(8,m) and where nt = max(0,m) for
me&, |
We know by (3.1.101,1i) that the answer is yes if H (I;(3)) = 0
or Hq(OX(B)) = O. Suppose therefore that
1 -
H'(Ig(3)) £0 and H'(0yx(3)) # 0
which is equivalent to

[0 (Z4(3)) - 8" (0x(3)) 1% < (14(3)).

Note that if the answer to the question above is positive, then

H(d,g) is singular along pr,(W(8,m)). We divide into two cases
8) 0 An'(Zy(3))<n7(04(3)), (XSYSP) € 8(6,m) .

If pr,(W(8,m)) is a non-reduced component of H(d,g), then (4)

holds by (3.1.10iv) ; the question above deals with the converse

which we think is true:

Conjecture 3%.1.11. prq(W(é,g)) is a non-reduced irreducible

component iff (A) holds.
Also in the case
/‘
B) h'(Ix(3))>h"(0g(3)) £0, (XSYSP) e S(b,m)

we expect that the answer to the question above is positive.
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In the next section (3.2) we discuss the conjecturé, and (B) is

considered in the last section of this paper.

Remark 3.1.12. If WcD(d,g;s) is an irreducible component

satisfying

coker Oyey = C and coker l}%cy = 0
for some (XSYSTP), then (3.1.10) is true with obvious
modifications, i.e.

i) If Hq(;[_X(s)) = 0, then pr,(W) is a reduced component

of H(4,g) of dimension
| s+3 o)
(4-s)d+g+ (737) - 2-h"(Ix sy(s)) .
ii) If H/I(OX(S)) = 0, then pr,](w') is a reduced sub-

scheme of H(d,g) of codimension h'(0yx(s)), and H(d,g)
is generically non-singular along pr, (W).
iii)

" (Zy(s)) -1 (0g(s)) < ainV - dimpr, (W) <h1 (Iy(s))

for any component V of H(4d,g) containing pr,l(W) etc.

%.2. Non-reduced components of H(d,g).

In the preceding section we conjectured that pr, (W(é,m)) was a

non-reduced irreducible component of H(a,g) iff
8) 0 A0 (Zg(3)) <0 (0g(3)), (XSYSP)) € S(s8,m).

One way is true by (3.1.10iv) , the unproven part is whether (4)
implies that pr, (W(6,m)) is an irreducible component of H(d,g).

If so, pr,l(W(é,gl_)) is automatically non-reduced (3.1.10iv).
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We are for the time beiné not able to pfove the conjecture, so we
illustrate by considering examples. These leads to a partially
proof of the conjecture, namely that the images prq(W(é,g)) of
the components W(s,m)<D(d,g;3) of "maximal genus under the
condition (A)", see (3.2.2), are non-reduced irreducible components

of H(d,g). We end this section by a short discussion.

To begin with, we give bounds for the degree d and genus g

for curves X which satisfy (4).

Lemna 3.2.1. Let (XSYSP2)c 8(5,m) and suppose that X is a

smooth connected curve of degree d and arithmetic genus g.

Then the following conditions are equivalent

A) 0 # h1(Zy(3)) < n'(0g(3))

2
') a>s, za-18gs[E=2],
8
0 1
H (lX/Y(B)) =0 and H (Iz(3)) #0
where [m] denotes the greatest integer such that [m]<m.

Proof. Assume (A). Then h'(Izx(3)) #0 implies that s(X)32
since the cone of a plane curve is Cohen Macaulay. Moreover we

must have s(X) # 2 since the implication
Hq(,I_X(B)) £O => H"(oX(a)) =0

is true for smooth connected curves on surfaces of degree 2.
Indeed the discussion for s = 2 just before (3.1.8) reveals that
if s(X) = 2, then X 1lies on a smooth quadric surface Y 2Pxp’
because Hq(lX(B)) #Z O. We easily deduce Hq(OX(B)) =0 by

Kiinneth's formula, see (1,3.10).
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We now have s(X) = 3 and e(X)>3. Using the theorem of speci-

-

ality of Peskine-Gruson [G.P] which states that
. d_
e(X) +4 < S(X)+m ’
we deduce d>12., It follows that

B(Ix y(3)) =0 by (3.1.101) and

g > 3d-18 by (3.1.10iii) and (A),

To prove
2
ra=-4
g = |

8

IO

it will be sufficient to find the maximum of the genus g of
curves of degree d satisfying H (Iyx(3)) £ 0 which are con-
tained in a smooth cubic surface. Consider the related problem
of determining the largest genus g for which the degree d
where d>12 and the number m, are constants (under the rela-

tions of (3.1.2*)). Let therefore

g:]R®5—>IR

]

IR the real numbers, be defined by

>
1 1, 1
8(Xq,e00,%5) = 5(6-1)(8-2) -Eiiqxi(xi-’n) -5a(a=1)
where '

1 5
5 = g(d +i§- xi+cx)

and where o 1is a constant. ©Straightforward calculas shows that

g(x) has a maximum at the point (x,l,...,x5) given by
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Moreover

8(x) o = g((d+0-2)% +4 - fa(a=1)) .

max
Varying o Dbetween O and 2, we find that a = 2 gives the

largest g(x) This number is

max®
1,2
In view of (3.1.3) we find that if X is any curve of degree

d>12 satisfying Hq(gi_X(B)) # 0, then m6_<_2 or OY(X) corre-~

sponds to (6+9,8+3,3,3,3,3,3) for some 8>2. If m <2, then

a2
rac_4
BNl

by the maximum of the function g(x), and in the second case

g = 5(54-25).

Since %(5d-25) < 4(a°-4) provided d>12, we find

g < [d2-4
8
in both cases. Thus
2 .
sa-18 < g < [

Finally solving the inequality 3d-18 < %(d‘e-#), we deduce

d>14, and (A') is proved. For the converse, we use (3.1.101iii).
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Geometric nicture of %d-18 < g < %(d2-4).
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In particular the g's which satisfy (A') for some given d's

are:
d = 14 g = 24
d =15 : g =27
d = 16 30 < g < 31
a =17 : 55 <8 < 35.

a°u
Remark 3.2.2. For every d>14 the maximum g = [T] is

achieved by some smooth connected curve satisfying (A').
So there is a component W(6,m) < D(d,[%(dE—LL)];B) con-

taining points (XSYSP) satisfying (A'). Letting
d =4 +r where a>4 and r = -2,-1,0,1,

we have the following four types of components W(é,m)

of "maximal genus under the condition )"
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i) ro=-2, (6,m) = (30,a,a,0,0,a,2) and g = g(a°-4)
1) =1, (8,m) = (30,0,a,a,0,0-1,2)  and g = g(d°-9)
i11) =0, (6,m) = (3041,a+1,0,0,a,0,2) and g = g(a°-8)

iv) =1, (5,m) = (3a+l,a,a,a,a,a,2) and g = %(d2-9)._‘

[

Next we consider the u.nproved part of the conjecture, i.e. the
problem of determining whether pr,(W(&,m)) is an irreducible
component of H(d,g). For these considerations, classical in
nature, we can as well suppose HO(LX/Y(B)) = 0 in view of

(3.2.1A") .

More generally fix an irreducible component W < D(d,g;s) con-
taining points where X is a divisor on Y 'a.nd where

HO(_I_X ,y(8)) = 0, and let V be any irreducible component con-
taining pr,(W). Using (1.3.2), (1.3.12) and (2.2.14) we get

iy 2 . . .
a' -a_ <dimW = dlmprq(W)f_dlmV
where ’
1
al-al g = 4a+07(0y(s)) -0 (Iy(s)) = (4=-s)a+g-2+ (%)

for (XcYcP) sufficiently general in W. Now suppose that
pr (W) 1is not a component of H(d,g). Then we claim that

s(Xq) > s

for some point (X,]E]P) € V, i.e. that Ho(lX (s)) = 0. To see

/]
this, suppose ho(_I_X (s))>1 for all (X,]E]P) € V. Then there is
an irreducible component W' of D(d,g';s) such that

pr,(W') = V.

By assumption, ho(_I_X/Y(s)) =0, i.e. ho(;[_X(s)) =1 for some

(XcYcP) € W, so by semicontinuity, there is an open subset UCW
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such that
h%(Igz(s)) =1 for all (XSYCSP)E U.

It follows that there is only one surface Y of degree s con-
taining X provided (XSYCSTP) € U, and this combined with

pr,l(W') =V leads to the inclusion
Ucw'

of .subsets of D(d,g3;s). So WEW' and since W is an irreduci-

ble component of D(d,g3s), W = W'. We deduce
pr,i(W) = pr,l(W') =V
contradicting pr, (W) ; V.
In particular if Y’I is a surface of degree r containing the
"generic point" (X,I_C_]P) of V, then

r>s,

and we deduce easily

dimV = dim W(z) -h°(;_X1/Yq(r))

for some component W(r) < D(d,g;r), see the discussion of

(2.3.101i) . This leads to

Lemma %.,2.,3. i) Let W c D(d,g;s) be an irreducible component

containing points (XSYSP) where X is a smooth con-

nected curve and a divisor on Y and where
o)
h (EX(S)) = 1.

Then pr/I(W) < H(d,g) 1is an irreducible component provided

the inequality

449 +h/|(OX(s)) - hq(_I_X(s))ZdimV
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holds for those components V < H(d,g)g whose"generic

point" (X,SP) satisfies

s(X,]) > s

0 (Zy (V) < b (Zg(v) for all i and v,
1

oty (v)) < nh (g (v)) for all i and v.
/‘

Moreover

4a +1(0g(8)) =1 (Ig(s)) = (4-s)a+g-2+ (%) .

ii) If all curves of V, V a component of H(d,g), are
contained in some surface of degree 1, then there is a
component W(r) ¢ D(d,g;r) satisfying pr,(W(r)) =7V such
that
. . o
dimV = dimW(r)-h (LX,'/Yq(r))

where (X,SY,CP) is a sufficiently general point of W(r).

iii) If V contains an open subset U c V of curves
X, € P which are contained in global complete intersec-

tions Y, of type (£f,,f5), then
_. | -
dimV = dlmW(f,l,fg) -Th (_I_X Vs (f,]))
l=’| 1 1
where W(f,],fg) is some component of D(d,g;f) satisfying
pr,(W(£) =V, and (X,€Y,SP) is "generic" in W(L).

To use lemma (3.2.3) for s =3 and W = W(&,m) in the situa-
tion of (A) or (A') to see that pr/I(W(é,;n_)) is a component of
H(d,g), it will be sufficient to prove

40 +11(04(3)) - 0" (1x(3)) 2 n°QWy )
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or equivalently

Ry ) <n"(04(3)) -h"(Ig(3)) = -3d+g+18
1
for any smooth connected curve X,l C P satisfying
s(X,) >4 and hM(Iy (v)) S hM(Iy(v)), 120 end allv,
/‘

We now give four examples of components W(&,m) satisfying (A)

where we prove i (Ny ) = 0.
1

Example 3.2,4, [M2], Let d = 14 and g = 24. In view of

| (3.1.6iii) there are two components of D(14,243;3) of the
form W(&,m). The image pr,(W(é,m)) of the component
W(s,m) where (6§,m) = (11,4,3,3,3,3,3) is a reduced irre-
ducible component of H(14,24) by (3.1.3) and (3.1.101i) .
For (8,m) = (12,4,4,4,4,4,2) we claim that the image
pr,l(W(é,_xy_)) is an irreducible component of H(14,24), hence

non-reduced.
To prove this, let (X,]EIP)E H(14,24)S be any curve satis-
fying s(X,l)ZL!- and e(X,])f_B, It will be sufficient to

prove Hq(_lfT_Xq) =0 by (3.2.3i). By Riemann-Roch,

X(Ig, () = ('3) - (ava1-2m),

o) x(_I_XA('ﬁ)) = ahd x(_ILX,](LL)) = 2 and we deduce

n'(0g (3)) 40 ena %Iy ()22

If Yq is a global complete intersection of type (4.4)
containing X,], then the linked curve X,'l is a plane curve

because
o} 1
n%(Zy: sy (1) = B(0g (3)) 40
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by (2.3.3). The cone of X,']_C_]P will therefore be Cohen
Macaulay, hence the cone of X,lg_]P will also be, again by

(2.3.3). We deduce H/‘(_I\lx,l) =0 by (2.2.9), and we are done.

(Once having that the cone of X’IEP is Cohen Macaulay, we
conclude easily. Without using this, we give another parti-
ally independent proof to illustrafe (3.2.3ii) . With nota-
tions as in (3.2.3) it will be sufficient to show

dimV <d+g+18 = 56. Since ho(_]_ZX/l(/-L))22, (3.2.31ii)

applies with r = 4, and we get

dimV = dimW(4) - n°(I

Iy sy, () Zaimis) -1,

Moreover since X,] is a divisor on Y,l for some surface

Y, of degree 4 (see [M2] for a short proof),
AinW(4) = g+ 33 = 57,

see the discussion of (3.1.1), and we are done).

Example 3.2.5. Let d =15 and g = 27 and observe that the

image pr,(W(8,m)) of the components W(6,m) corresponding
to (8,m) = (11,3,3,3,3,3,3) and (8,m) = (12,5,4,3,3,3,3),
see (3.1.6 iv), form reduced and irreducible components of
H(15,27) by (3.1.3) and (3.1.101). The final component to
consider corresponds to (’12,4,4,4,4,5,2). We claim that
the image og this component is an irreducible non-reduced

component of H(15,27).

To see this we apply (3.1.3) and (3.1.61iv), and we get
h'(Ix(v)) = 0 for v£{3,4,5}, b'(0x(3)) =1 and e(X) = 3.

In view of (3.2.%1i), 1let (X,I_C_]P) € H(15,27)g be any curve
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satisfying
s(X;)>4 and hi(_I_X,](v)) <pl(@e(v)) for i,vez
where (XCP) € pr,(8(s,m)). We need to prove h/l(l\I_X ) = 0.
1
First we claim

h"(;_xq(v)) -0  for v £5.

In fact using Riemann-Roch's theorem, we get
x(Iy (V) = (V32) - (15v+1-27),
/I
so x(Ix (3)) =1 and x(Iy (4)) = 1. Since s(X;)24,
1 1

X(Ix, (3)) = -2'(Lg (3))+1"(0g (3)) = 1, and since

n'(0g (3))20"(0y(3)) = 1, it follows that
1 |
n'(Ly (3)) = o.

Moreover since x(_l_[_Xq(ll-)) - ho(_I_X/‘(LL))-h,I(I_[_Xq(LL)) =1,

we find ho(;[_X (#))>1, and we must in fact have
/l
ho(Iy (#)) =1
M1

from which we deduce h/l(_]_Z_X (4)) = 0. Indeed if ho(;[_X 4n=>2,
1 1 '

then there is a global complete intersection of type (4,4)
containing X,. By (2.3%.3) the linked curve has degree
and arithmetic genus -1, and such a curve does not exist.
The claim follows therefore from h'(Iy(v)) = 0 for

v £ {3,4,5},

Next since x(_I_X (5)) = 7 there is a global complete
1
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intersection Y, of type (4,5) containing X,. The

linked curve X,'] is of degree 5 and genus 2 and satisfies
n'(Zyr (v)) = 0 for v £0
t]

by (2.3.3). Then we claim that the cone of X,']_C_:_]P is

Cohen Macaulay. Suppose not. Since x(_I_Xo(B)) =1, we
i

deduce h° (I l(2)) = 1. It follows that mixé >4 where

the integers n. belong to the minimal reduction of

Ji
I,'] = @HO(;[_}{ (v)). So m:.n:n5 >5 which contradicts

1
maX ng; = c(X )+ 4 = 4,
and the claim follows.

Finally, since the cone of X,'I_C_JP is Cohen Macaulay, the
cone of X,CP will also be by (2.3.3). We deduce

q (N ) =0 by (2.2.9) because e(X )<3. (Using (2.2.9)
we can prove il (NX ) = 0 directly in an easier way without
using liaison, Indeed we must also in this case prove

H (;X (3)) =0 and h"(;X (4)) = 1. Then (2.2.9) applies

without difficulties if we observe that h° (IX 4)) =

implies m1nn21_>_6 with s as in (2.2.9)).

Before giving the last examples we want to add a remark which we

will use in the following and frequently in Section 3.3.

Remark 3.2.6. Let R = k[XO,.,.,.,X5], mCR be the irrelevant

maximal ideal, and let XS P = ]Pf{ . be a curve. Put
I .-.@Ho(lX(v)), and consider the graded resolution (2.1.6)

of I which we now suppose is minimal. It is easy to
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prove that
T r
1 > .3 e 3
1= 1=

is exact for v €2, By dualizing this sequence we get

2 by 3 1,4V
? R(ngi-v-#) —_ ? R(DBi"v°4) - %(A) -0

too)

where H;(A)V = & Homk(H/](_ZlZ_X(\))),k), Clearly H;l(A)V is
\):-&;

of finite length, and if IO(N)_C_R is the fitting ideal

defined by the rz-minors of Py , then it is well nown that
o] 1 \%
Supp(R/I°(N)) = Supp Hm(A) = {m},

i.e. that the radical r(I°(N)) = m provided 1‘3?.1' More-

t

over if Nj is the Jj-th row of “N, then IO(NJ) is the

ideal generated by the elements of this row-vector.

Clearly IO(N)SEIO(NJ), so

r(Io(Nj)) =m = (XQ,...,XB).

Recall also the following result which is a consequence of theorem

(3.1)in [B.E].

Proposition 3.2.7. Let ICR = k[Xo’Xﬂ’X?XB] be an ideal possess-

ing a minimal resolution
r s r,

2 N M iy
0 =P R(-nz;) =—>P R(-ny;) =D R(-n,;) =—>1I -0,
121 R P R

let KS({1,2,000,75} be any subset of cardinality r, and
let Np Dbe the corresponding ra-minor of N, If

T = [F’I""’Frq] and MK,i is the (r2—r5)-minor of M obtained

by throwing away the i-;th row and the columns which corre-
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spond to K, then up to sign we have

Mg ;= NgFy -

Example %3.2.8. Let d =16 and g = 31, and there are two compo-
nents W(8,m) of D(16,31;3) given by (12,4,4,%,3,3,3)
and (13,5,4,4,4.4.2) by (3.1.6v). The first one has an

image in H(16,31) which is a reduced irreducible component
by (3.1.3) and (3.,1.10i). We claim that the image of the

second one is an irreducible non-reduced component of H(’|6,5’I).

To prove this, let (X,I_C_JP) € H(16,31 )S be any curve satis-

fying s(X,I)_>_4 and
p(Zy (v)) < BN (Zg(v)) for i,v € 3
1

where (XEP) ¢ pI‘,](S(b,E)). We must prove h/l(__N_X ) <A
/‘
by (3.2.3). First we prove
H“(_I_Xqun =0 for v £ (5,6)
in exactly the same way as we did in (3.2.5). Moreover
since X(-‘T=X (5))>6 there is a global complete intersection
1
Y, of type (4,5) containing X,, and the linked curve X,']
which is of degree 4 and genus 1 satisfies
t
H'(Zy' (W) = 0 for v £ {1,0} and e(X;) =0
1
by (2.3.3). Then we claim that the minimal resolution of
I,'I =® Ho(_i_[_Xt (v)) must be of the form
1

0 = R(-1)% l-\T;)R(-u)@“*Y@ R(-3)%* > R(-3)oRr(-2)% > I =0

for some non-negative integers x and y. Indeed c(X,']) <0
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and c(X:‘)f_e(X,'l) O implies

MAX N c(X,'I) +4<4

1

1]

1
max Ny e(X,]) +4=4,

see the discussion after (2.2.7). Moreover since the reso-
lution is minimal,
mi .<mj . <mi .
inng;<minng; <minng;
and combining with Riemann-Roch which implies

B%(Ly (1)) = 0, B°(Ig () =2, %Iy (3)) = 8,

we find a resolution as required.

Suppose y = O, Then the cone of X%E]P and therefore the

cone of X,CT will be Cohen Macaulay. We deduce H/I(L\T_X )=0
I‘

by (2.2.9) because e(X,)<3.

Suppose y>1, and let (0,...,0,H;,...,H) be the trans-
pose of say the first column-vector of N. By (3.2.6) it

follows that r((H,',..,.,HX)) = (X

PERRRS ,X3) which implies

x>4. This is impossible since if we consider the resolu-
tion of I,'I above, we observe that x is the number of
the relations among the generators of I,'] of degree 2.

Since there are just two such generators, x<1.

Example 3.2.9. Let d =17 and g = 35. We claim that

pr (W(8,m)) where (8,m) = (13,4,4,4,4,4,2) is an irre-
ducible non-reduced component of H(17,3%5). To see this,

we observe that

e(X) = 3, H'(Iz(v)) =0 for v<3
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for (XcSP)€pr, (S(s,m)) by (3.1.3). If (X,SP)e€ H(17,35)g
satisfies
s(X,) >4 and hi(}_X (V))f_hi(l_x(v)) for all i,v € 3,
1
then we easily prove that H/](_];_X (v)) =0 for v<5, and
/‘

that there is a global complete intersection Yq of type
(4,5) containing X, in exactly the same way as we did

in (3.2.5). The linked curve X% which is of degree 3

and genus O satisfies

c(X;) 0 and e(X;)Z0,

and arguing as in (3.2.8), we find that I, =@H(Iy'(v))
/‘

admits a resolution of the form

0 = R(-+)% &> p(c)® o r(-3)®2** Ik r(-3)™ o r(-2)® > 1)~ 0.

Again if we can prove y = 0, we deduce H,](_li_X ) =0 as in
1 -

(3.2.8) and we are done. Assume therefore y>1 and let

r O :
N = |y
where O is the zero matrix and N' is a (24x) Xy matrix.

N' induces a map
!
R(-4)®P A p(-3)%

where p =y and q = 2+x and we have I°(N) = IO(N'),
say equal to I. Since depthiR = 4 by (3.2.6), we deduce

X >2y+71 by using the formula
depth R < (p-y+1)(a-y+1) ,

see [E.N]. Taking a non-vanishing y-minor NK of N and
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orne of the three generators F of I," of degree 2, then

up to sign we have

for some minor Mg+ of 1M (3.,2.7). Since there are
matrices A,B,C,0 where O is the zero matrix of size

x X (2+x) such that

s [59).

we find, after throwing away y columns and one of the last
three rows and taking the determinant, that MK' =0 be-

cause x>y+71. This gives a contradiction.

The four examples of non-reduced components we now have considered
correspond to a =4 in (3.2.2). We claim that, extending the
analysis of these examples, it will cover all the components of

"maximal genus for a non-vanishing Hq(_I_X(B))" of (3.2,2). Hence

Theorem 3.2.10. The image pr,l(W(é,y_l_)) of any component W(d,m)

described in (3.2.2) is a non-reduced irreducible component
-a2-y
of H(4,g) of dimension d+g+ 18 where g = \-—-8-_]°

Proof. Let d =4a+r where a>4 and r = -2,-1,0,1. We have
four types of components W(6,m) described in (3.2.2), and the

components which correspond to a = 4 is already treated.
Start with r = -2, d = 40 -2 and the component W(3d,m) given
by (6,m) = (30,a,a,a,a,0,2). It follows that

g = %(dg-q-) - 2a° - 2q .
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We will first, for (XSY<cP) € S(é,m), prove that

r 2(a-1-v)(a=v) +1 for 1=v<a

/l
h (0g(v)) = -
X - 0 for V=0,

Indeed by using (3.1.5ii) ,
0" (04(v)) = KO(L(-v-1))

where L = OY(X)' As explained in (3.1.61ii) we see that L(-v-1)
corresponds to (%n,n,n,n,n,n,1-v) for n=a-v-1, and if L'

corresponds to (Zn,n,n,n,n,n,0), then we clearly have
h%(L(-v-1)) = h°(E') for v=1.
Moreover one knows that
n°(@" = (°4%)
provided' ;_" corresponds to a tuple (6,m) satisfying (3.1.2%*).

In fact combining the exact sequence of the proof of (3.1.3%ii)

with Riemann-Roch, we get
RO(L") = 1+0%wp(1)) = 1-x(0p(=1)) = a(D) + (D)

provided D is a section of Q" which we can consider as a
reduced curve of degree d(D) and arithmetic genus g(D). The

~ dimension formula for h°(L"') follows easily from
aD) = 36-zm, , gd) = (°31)-z(d
= 2 i g = 2 27 ¢
Using this formula we get

20 = %2 - 54" - 2l eznan,
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and we deduce casily the required formula for hq(OX(v)).

Next we claim that if (X CP)E€ H(d,g)s is any curve satisfying
s(X )>4 and h (I (v))<h (IX(v)) for all i and v, then
there is a global complete intersection Y, of type (4,a) con-

taining -X,]., Indeed

1 1 2(a-4)(a=-5) +1 = 2a2 - 180 + 41 for a >4
n'(0y () <n"(0g(#)) = {
1 0 for a=4,

and since

X(Ig (#)) = (£) - (4d+1-g) = 20° - 180 + 42
1

we deduce

hO(-];X (4)) Z { 1 for a >4
1 2 for a =4

i.e. that there is a surface 7Z of degree 4 containing X’I'
Now it will be sufficient to prove h° (IX /Z(a))> O. For this,

we use the exactness of

O=lp = Iy iz

together with I, = O]P(-LL) , and we deduce

Ry /() = 2Ty @) - 5D

cx-’l

Finally we find that h°(Iy (a)) > (*Z") because

n%(Zy () 2x(Zy @) = (*37) - (aav1-g)> (3,

where the first inequality follows from h"(oX (a)) = O and the
/]

second from

2

3= 5 = 2a®+2, ad+1-g - 24241,
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If we now follow the analysis for o = 4 in (3.2.4), then it is
straightforward to see that pr,(W(s,m)) is a component of H(d,g).
Indeed the linked curve X,'] of X,1 by Y,| is a plane curve because
the degree d' = 2 and the genus g' = O, or because

,
B°(Ly! yy (1) = B(0g (a=1)) £ 0

by (2.3.3). It follows that the cone of X,CP is Cohen Macaulay.
Therefore any component V_f;_H(d,g)S as in (3.2.3i), i.e. with
"generic point" (X,]SJP) , must have postulated dimension (2.3.15)

by (2.2.9) (By (2.2.12), V is a reduced component.) Hence

by (2.3.17). Since dimpr,(W(8,m))>dimV we deduce from (%3.2.31)

that pr, (W(s,m)) is a component, hence non-reduced.

Next let r = -1, d = 40-1 and consider the component W(&,m)
given by (6,m) = (3a,x,a,a,a,0-1,2). In this case g = %(d2—9) =
20°-a-1. If (XSYCP)e€ 5(6,m), then we first prove

hq(OX(\))) = (a=-v)(2(a=-v)+1) for 1%a<v

in exactly the same way as for the case r = -2, d = 40-2,

"

Moreover if (X,l_C_-'_]P) is the '"generic poin of a component

VcH(d,g)g satisfying
s(X,) 24 and hl(LX (v)) < hl(_I_X(v)) for any iand v,
1

then we prove that X,‘ is contained in a global complete inter-
section Y, of type (4,a+1) Dby the same proof as for the case

r = -2, Furthermore we claim that

H/'(IX (v)) =0 for v<a.
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To prove this, let Z be a surface of degree 4 containing X,|

and consider the exact sequence

where I, = O]P(-4,) . We deduce

B%(Ly (1)) = h°(0p (v-4)) +1°(Ly_/7(V)) = ;) for 15v<a

since we easily prove ho(lX /Z(v)) =0 for v<a by liaison.
/I

This gives

h%(I, (V) +h1(05 (V) < (V31 + (a=v)(2(a-v) = 1) .
=X, X, =03
On the other hand we have the identities

X(Zg, () = 3= (@v1-g) = (V31 + (=) (2(ev) - 1),

the last equality is seen by using 4 = 4a-1, g = 2a2—2a

and (v%&) - (v;') = 2\)2 +2. Combining we get
H/l(lX (v)) =0 for 1<v=<a
1 _

as required.

If we now follow the analysis for a =4 in (3.2.5), then we
easily prove that pr,(W(é,m)) is a component of H(&,g).
/

Indeed the linked curve X; of X, by Y, is of degree 5 and
genus 2 and satisfies c(X,'])f_O by (2.3.3). Moreover

1
ho(}_X:](Z)) = lj.o(;x/-lm(z)) = b (0y (a-1)) = 1,

and by arguing as in (3.2.5), the cone of X,SP is Cohen Macaulay.
We deduce that pr,(W(d,m)) is a component by the last part of
the proof of the case r = -2,
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The remaining cases r =0 and r = -1 is treated in a similar
way as the case r = -1, using the same proof. Indeed with

(X,€P) €V as in (3.2.31i) we prove

1) X,SY, for some global complete intersection Y, of

type (4,0+1),
2) H/](lx (v)) =0 for v<a .
1
And as a byproduct of the proof of (2),

3) H'(Iy spe=1)) = 0

where Z 1is the surface of degree 4 containing - X,. Then the

linked curve X,'l must satisfy

c(X,'])f_O and e(X:‘)_fO.

We prove this by combining (2) and (3) with (2.3.3). If = = 1,

X,'I is of degree % and genus O, and we have precisely the Same
situation as in (3.2.9) from which we deduced that the cone of
X,&P was Cohen Macaulay. Moreover if r = 0, X,'| is of

degree 4 and genus 1, and since the genus is positive, e(X,'l) = 0.
Again we have precisely the same numerical situation as in (3.2.8).

The cone of X,l cP ié therefore Cohen Macaulay. It follows that
dimV = g+ 3%
by (2.3.17), and pr,(W(6,m)) is a component by (3.2.3i), hence

non-reduced. The proof is now complete.

Recall the theorem on the majorization of the genus of curves of
degree d stated in [G.P]. It says that the genus g of a

smooth connected curve X’l of degree d which is not contained
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in a surface of degree <s, is given by

———

r(s-re)s(s-’u , provided d4d>s(s-1),

g:g(s)max = ’1+%(s+-§--4) -

where O0<r<s and d+r =0 (modulo s). Moreover g = g(s)mElx
iff X,] is linked to a plane curve of degree r by a global
complete intersection of type. (s,d—;z). Using this_for s = 4
and r =2, i.e. for d = 4a -2 where a>4, we find -

2
() pax = Qg-ﬁt .

Compare with (3.2.21i). Now if V :,'2! pr,(W(30,a,0,a,a,0,2)) is
any component with "generic point" X,c P, then s(X,l) >3 by
(3.2.31) , and by the theorem [G,P] above it follows that the
cone of X,S¥®P is Cohen Macaulay. As in the proof of (3.2.10),

if Y, dis a surface of degree 4, Y,.2X,, we easily deduce
. _ _ 10
dinV = g+ 33-h (£X1/Y1(4>)‘

In view of (3.2.%i) we thus have a simple proof of (3.2.10) for
one of the four classes of components of D(d,g;3) of "maximal
genus under the condition (A)". However we have not been able to
find such a simple proof for the other three classes, and the
details of the proof of (3.2.10) seem . therefore necessary at

least for these cases.

Observe one more fact which follows from the theorem in [G.P].

Indeed solving the inequality

- 32
5] > €y

we find d>22. The curve X,cP appearing in the proof of
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(3.2.10) is therefore contained in a surface of degree 4 provided
d>22 (confirming with what we proved in (3.2.10)). We think it
should be "easy" to prove the conjecture for all components
W(s,m)<D(d,g3;3) =catisfying (A) where g>g(5)max. Indeed in |
this case, with V as in (3.2.3i), V = pr,'(w(lt)) for some
component W(4)<D(d,g34), and we know that W(4) has postulated
dimension (2.3.17) by (3.1.1) in "most" cases. And if W(4) has
postulated dimension, then it is easy to prove the conjecture by
using (3.2.31i). Even if dimW(4) = g+33+§& for some integer
E<d-15, (3.2.31i) applies, and the conjecture follows. We have
worked out the details for one more class of componeﬁts, namely
the components of the form W(s,m = W(3a+2,a+1,a+1,0,0,a,2) for
a>4. In this case if V?pr,l(W(é,z_n_)) is a component of

ac-u

H(4,
the analysis follows the lines of the proof of (3.2.10). We find

~1) with "generic" point X,cP, then s(Xy) = 4, and

that the conjecture holds for this class as well. (We can also
proxfe the conjecture for the component W(13,5,4,4,4,3%,2)cD(17,34;3)
where we also need to consider components V?pr,l(W(b,g)) satis-
fying s(X;l) = 5, and this makes the computations more complicated.

Compare with the example of Section 3.3) .

Therefore trying to produce counterexamples to the conjecture,

one should perhaps consider components where g is not far from
%24 -18. For instance if g = 3d-18 and if we want to apply
(3.2.3), ﬁe must prove dimV = 44 or H’l(_l\lxq) = 0. However, if

g =318, e =e(X,) .is small because of ed<2g-2 which .
implies e=<5. In many cases e = 3, and at least for these cases

dimV = 44 provided V has postulated dimension, see (2.3.15)
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and (2.3.17). So having confidence to the assertion that compo-
nents usually have postulated dimension, it should not be easy

to find counterexamples near the line g = 3d-18 either. More-
over if e is 4 or 5, it looks like s(X,|)>e(X,|) if (X,]S]P)
is a "generic curve”. If so, and if V has postulated dimension,
dimV = 44 for all the cases where g = 3d-18. (In fact there

is only a finite number of components W(d,m) having g = 3d-18
since e(X)ZB implies d <90, see the discuésion at the end of

Section 3.3) .

1)
3.%. _Singularities of codimension 1 of H(16,29).

In Section 3.2 wefound non-reduced (i.e. generically non-smooth
components of the Hilbert scheme H(d,g) which were of the form
pr,(W(8,m)) for (&,m) suitably chosen. They satisfied

4) 0 #10'(Zx(3))<nM(04(3)) for some (XSYCP)e S(5,m).

As mentioned in the discussion of (3.1.11), we might also in

the case

B) 0 £1"(0g(3)) <n'(I4(3)) for some (XSYSP)e S(s,m),

expect that prq(w(b,g)) consists of singular points of H(d,g).

Note that if X is a smooth connected curve, then (B) is equi-

valent to

B') g<3d-18, HO(EX)Y(ﬁ)) =0 and H"(OX(B)) £0

by the first part of the proof of (3.2.1). We can establish

1) The characteristic of the field is zero.
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some further inecdualities for the degree and genus deduced from

(B), see the discussion at the end of this section.

The following example deals with the Hilbert scheme H = H(16,29).

In fact we shall prove that

there is an irreducible closed subset 2ZSH(16,29) of
dimension 44«1 = 63 of the form pr,(W(s,m)) where

(3.2) (&,m)
of H

(12,4, 4,4,4,2,2), consisting of singular points

H(16,29). Moreover if V is any irreducible
component containing Z, then V 1is a reduced component
of dimension 44 = 64, and a sufficiently general point

X,€P of V satisfies

2

1 if v = 4
/'

n'(Zy (V) = {

1 0 if v #£ 4.
Recall the question from the discussion of (3.1.11): Does there
always; exist a component V<H(d,g) containing pr,‘(W(s,g))
for which '
. . 1
dim V - dinpr, (W(6,m)) = [h"(I(3)) -h"(0x(3))1* 2

since h'(Iz(3))-n"(04(3)) = 3a-g-18 = 1, we conclude that the
answer is the affirmative in this case, not only for one. compo-

nent V<CH(16,29), but for any component V27,

Unfortunately we have not been able to prove completely the (at
least for this example) expected assertion that there is only one
. component 7 of H(16,29) which contains Z. If there are two

or more components, then by the characterization of the ‘generic
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point" X,cP of V appearing in (3.3), it is impossible to
distinguish their "generic points" by the dimension of the groups

B'(Iy (v)) for any i and v. Indeed if V, and V, are two
/]

components which contains Z with "generic points" X,]C]P and

X, &P respectively, then
hi(_I_X (v)) = hi(LXZ(v)) for any i and wv.
1 :

It follows that the corresponding Hilbert functions hO(OX/](v))
and ho(OX (v)) are the same. In view of (2.3.6) we will further
motivate w121y we expect that 2 is contained in a unique compo-
nent VCH(16,29). Indeed if V, and V, are different compo-
nents containing 7, then there are different components V‘,'l
and V)
and Xé_C_l” are the "generic points" of V,'l and Vé respecti-

of H(9,8) obtained by liaison. Moreover if X,"EJP

vely, then
0t (Zy' (v)) = b (T () for all i and v.
( 2

and the resolutions of I, =®HO(I,'(v)) and I, =@®@H°(I, (v))
1 —X’I 2 . --X2

are numerically the same, see (2.2.101i) and (2.3.8). Further-

more one may prove, by using [P.S.,(4.1)] as explained in (2.3.12),

1
there are two components of H(7,4) containing reduced curves

that V, and Vé contain reduced curves. By further liaison,

as well. We certainly do not think H(7,4), or equivalently

H(9,8), contains two such non-distinguishable components.

We shall prove 3.3 as follows. First with (6,m) = (M12,4,4,4,4,2,2) ~

we observe that if (XcYcP) € S(6,m) where X is a smooth
connected curve, then d = 16 and g = 29 by (3.1.2%),

H(Igy(3)) = 0 by (3.1.101) end 1'(0x(3)) = 1, e(X) =3
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by (3.1.6vi). Since g<3d-18, (B ) holds. In fact, by

(3.1.101iii), since
(P 1
h (Ix(3)) =h (0g(3)) = 3d-g-18 = 1,

n'(Zx(3)) = 2, and H = H(16,29) is singular along pr,(W(s,m)) =2

if there is an irreducible component VESH, Zc<V such that-

dinV -ain% = 1" (Z;(3)) -1 (04(3)) = 1.
We know that
dimpr,(W(s,m)) = dimW(S,m) = d+g+18 = 63,

and it will therefore be sufficient to show dimV = 4d = 64,
Indeed if VCH 1is any component which contains Z, and if

X,SP is a sufficiently geheral point of V, then we will show

/I
H(I\_qu) =0 .

It follows that V is a reduced component of dimension 4d.
Furthermore we can by the proof of (3.2.3) suppose s(X,) =4 in
which case there is an irreducible component W(r)<D(d,g;r)

for r = s(X,])_?_/-L such that V = pr,](W(r)). Since X(;[-X,|(5)) =4,
s(X,) £5. The proof which now follows is long and technical,

and we will therefore first givé the ideas.

In 1) we discuss the case s(X,]) = 5, i.e. we study components V
of H of the form V = pr,(W(5)) which is not of the form V =

prq(W(/-L)), and we divide into two cases
i) e(X)z=2
ii) e(X/‘) = 5 e

In (i) we quickly see e(X,]) = 2, and to show Hq(.ly_xq) = 0, we
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use (2.2.9) after having proved

1 1 if v =4
n'(Iy (V) = {
1 0O if v £ 4

by liaison and by using (3.2.6). In the case (ii) we first prove
2Ly (V) =0 for v £ (3,4)

by liaison and (3.2.6). Then we use (2.3.6) which implies that
if ¥, is a global complete intersection of type (5,5) contain-

ing X,, then the linked curve X,'l is a "generic point" of some

component of H(9,8). We then prove that this is impossible, and

we have a contraction, We have by this proved that the family of

curves given by (1,ii), if it exists, does not form a dense subset

of any component V of H(16,29), V2Z,

In 2) we analyse the case V = pr,](w(/-k)), and we consider three
subcases

i) (X4

ii) c(X,])>4 and e(Xq) <2

iii) c(X,')>4 and e(X,I) =3

For all three cases we prove that dim PT, (W(4)) <44 which implies
that there are no component V of H(16,29) which contains 2
and satisfies s(X,]) = 4, This contradicts V = pr,l(w(t#)).

1) As always (XCP)€ pr (S(8(m)) €2 and X SP is a suffi-
ciently general point of some component V containing Z. Using

(3.1.3) and (3.1.6vi)

hq(_I_X(v)) =0 for v£{3,4,5,6}, h'(0g(3)) = 1 and e(X) = 3.
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Combining with

H°(1X1(4>) =0, x(Zg (@) =6, x(Iy (3)) =0 and x(Iyg () =-1,

and for later use X(-I-X (5)) = 4, we deduce
/l .

H'(Zy (W) =0 for v £ (3,4,5,6]
h4(;Xq<5>> - n'(0g (3)) 21
h/l(_J;_X/I(LL)) -1 and e(X))>2,

1,i) Suppose e(X;) =2 and let Y, be a global complete inter-
section of type (5,5) containing X,. The linked curve X,'] =1,

is of degree d' =9 and g' =8 and satisfies
n° (I, - 210y (6-v)), BI(T, - v'(Z, (6-v)) and
(—X’]/Y’l(v)) h ' ( X’I( v)) (_X’](\))) (—X’I v an
d o) '
h O ' =h I 6-' .
(Og: (M) =1°(Iy_yy (6-¥))

We deduce s(X,'l) = 4, C(X:I) =2, e(X,']) = 1, and knowing this we
find by the arguing of (2.2.10i) that the resolution of the ideal
I, =®H°(I,'(v)) must be

1 —X,‘

0 = R(-6) &> R(-5)" —> R(-1)® > 1} =0,

]

where R k[Xo’X’l’Xz’Xa] is a polynomial ring. If the trans-
pose of N is

t
N = [qu°-¢aL6]a

then by (3.2.6) and by the fact that deg L; =1 for all i, we
deduce

(Xyreeesz) = T((Tseeaslg)) = (Tyseeesg).
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It follows that the cokernel of

t
@6 N,
Ry =™ R,

is zero except for v = 2, and by (3.2.6),this cokernel is pre-

cisely H’I(;Xc(v))v. Thus
/I
= 0z (v)) = BTy (6-v))
= =X = =X,
for v<1 and c(X,) = 4. We deduce H (Ny ) = 0 by (2.2.9).
/l

1,ii) Suppose h“(;_xqca)) =h1(OX,|(3)-) = 1. If Y, =V(F,,F,)2%,

is a global complete intersection such that deg Fi =5 for i=1,2
and if X, > Y, is the linked curve, then I} =®H°(Iy'(v)) has
/l

a resolution of the following form
0= R(~7) @ R(-6)% &> R(-6 P7*%0 R(-5)% ~ R(-5)"X @ R(-4)®2 D R(-3) ~ T, = 0

for some non-negative integers x and y. We deduce such a reso-
lution from s(X,']) = 3, c(X,") = 3 and e(X,'I) =1 and by com-
puting x(_];X (v)) for different v's.

/‘

Suppose y = 0 and let by - [L’I’I'2’L3'S’l"'°’sxj where degL, =1
for i€[1,3] and degS; =2 for all i€([1,x]. Since

&
Ry @ RE > R, , = H"(_:gx%(v))" -0

is exact by (3.2.6) and since h/'(g:_X'(2)) = 1, it follows that the

codimension of the vector space (L,],L2,L3),‘ in R, is 1,
where (I”I’I’E’LB)’I is graded piece of the ideal (quLg’L3)ER
of degree 1. Moreover by (3.2.6)

r((L,l,L2, % 19°'°aS )) = (X 1 Xq,%5 X5)
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which proves that

(84100058405 & (Lq,L5,L5),

considered as subvector spaces of R2. Since the k-vector space
(L,],Lg,LB)2 is 9 dimensional and R, is 10 dimensional, we
deduce

(Bq3D0sLz)p + (8450 2438,)5 = By
which proves that h/l(;[_X-(v)) =0 for v<1, i,e. that c(X,‘)=LI-.
1

Note that h'(Iyz1(2)) = 1 implies y<1. In fact since the
/l .

sequence

&
(*) BSep®x N.o g

2=\ 1=y

5y ORS, —> H’l(_I_X/"(v))V =0

is8 exact and since the composition

_ %
Ve p®x N, p

oYy By &y
2=V 1-v v&)R -V > R

3= 2=V

is the zero map for v =2 where P is the projection onto its Yy

last factors, it follows that
d . [y _
- h (-;-X%(Z))ZdlmkRo = Y.

Suppose y =1 and let

17273471 “"x

L,L,L.L,S 5
[OOOOH :]
/'0..Hx

tN =

where deg Li =1 = degHi and deg Si =2 for all i. TUsing
(*) for y =1 and v =2 we deduce (L,|,L2,L§‘,L4),l = Ry,
Moreover by (3.2.6) and the linearity of the H;'s,

(X X XE,XB) = I‘((H,«',...,H

01 x)) = (H’I"“’Hx)

t

from which the surjectivity of the morphism ~N for 1-v>0 is
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easily deduced. It follows that
1 1
0 =h (Ix'(v)) = h (Ix (6-v))
1 1
for \):1, i.e. tlla.t C(Xq) = 40

Now since H/‘(_I_X/‘(B)) -0 and H’I(;_Xq(’l)) - 0, (2.3.6) applies.
It follows that X,'l €P is a "generic point" of some component
V'_C_Z_H(9,8), and since s(X,") =3, V = pr,(W) for some irre-
ducible component W<SD(9,8;3). Observe that it is not clear that
we can use (3.1.10ii) since we do not know whether the surface Y,l
of degree 3 which contains X,'] is non-singular. However we

can apply (3.1.121ii) because

2

EY1 =0 and coker lX 0

coker onX'

' L=
1 1=R

by (2.2.9). It follows that pr, (W) is not a component of H(9,8)
because Hq(le,lg)) # G. Hence X,'l is not "generic", and we have
a contradiction (or we can use the discussion concerning the example
(2.2.101i) appearing right before (2.2.13) to see that X,'] is

not "generic").

2) Let V be an irreducible component of H(16,29) containing Z,
and suppose that V = pr,(W(4)) for some component . W(4)<D(16,29;4).
This time h°(Iy (3)) = 0 and h°(Iy (#)) =1, so

1 1

n'(Iy (#)) =2 and hb'(Iy (3)) = 0y (3)) 21,
1 1 1
Moreover let Y,] be a surface of degree 4 which contains Xq.
24i) Suppose c(X,)Z4. By the discussion just before (2.3.8),

maxn,]if_ma.x(c(X,l) + 2,e(X,I) +3)) <6,
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and the conditions of (2.2.9) are satisfied. Thus

2
COkeraX,ISY,] = 0 and coker 1X,]CY o .

sy

Using (3.1.12ii) , we find

dimpr, (W(4)) = dimV-h"(Iy (#)),
/]
contradicting pr,l(W(iL)) = V.

2,i1) Suppose c(X,)>4 and e(X,;)<2. Since the surjectivity
of

H“(,I_X,]Cv))gzx%qpmn > ' (Zy (1)
is implied by the surjectivity of

H°(0X1(v>>§H°(qP(1>) - H°(oX1(v+1))

which is true by Castelnuove 's lemma, if H"(Oxll(v—’l)) =0, i.e.

if v-1>e(X,), see [M, Lect 1], we deduce that if Hq(;[_X/I(B)):O,

then H/l(_];X (v)) =0 for wv=>5. Hence since c(X,|)>4-, it follows
1

that H'(Iy (5)) # 0, and since x(Ix (5)) = 4, h°(Iy (5))>5
—-X,I -X,] X,l —
which proves that there is a global complete intersection
Y,'] = V(F’I’FE) containing X,‘ such that degF, = 4 and deg F2=5.

4 and genus

The linked curve X,'] <> Y"l is of degree 4a'

g' = -1 and satisfies e(X;)<0 and

2 for v =1
{

1 1
h (I =h I - =
<—X,1(V)> (“Xq(s v)) 0 for v £ {-1,0,1}

by (2.3.3). This gives c(X,'l) =’I>e(X,'l), So
. -~
(X )+4 =5 = maani >maxn2i/maxn,]i

where the integers n,; belong to the resolution of I,'I =®I—I°(1X'(v)).
/'
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In particular using [P.S.,(4.1)] there is a global complete inter-
section Y,] = V(G,,, 2) containing X,'1 such that deg Gi = 3 for
i = 1,2 and such that the linked curve X, by Y, is reduced

and of degree d" =5 and genus g" = 0. Moreover
B (Zyn(v) =0 for v£{1,2,5)

and hq(_I_Xn(’l)) = 2. Now a result of Castelnuovo says that

n’ (I "(v)) is decreasing for v?_[%] -1 =1 and strictly de-

crea81ng for v > [-2—] -1 = 1. We deduce

- h“(_J;X:(mzh“(;xg<2)>>hqczx;;(3>>.

And this is all we need; the general theory will now produce a
contradiction. In fact since X:]' is reduced and since e(Xi]') <1,
it follows that Hq(_le_Xl;) = 0. By the exact sequence of (1.3.1C),
see the discussion right before (2.2.14) for further details, we

have a surjective map

v H (I (3))% —> cokerayteyy

and this combined with (2.3.11) leads to

dim coker aann = dim coker oy! CYl; <2.

—

Using c(X,")_<_2 and e(Xl')f_Z and the exact sequence of (1.3.1C),

we deduce that
coker a noes gl (N ) <= cokera
XSy, % Xyex, *
Thus

dim coker G'X,]EY:] < .
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| Observing that there is an irreducible component W(4,5)<D(16,29;4,5)

such that pr,|CW(4-,5)) =V = pr,](W(4)) we get

8impry(W(4,5)) =ainW(4,5) - 0°(Zy ,y! (D) -2(Ly py! (5))

by (3.2,31iii). Moreover if chg,od) is the tangent space of
W(4,5) at (X,SY,SP), then by (2.2.14)

.
dimA (8,0) -1 (Zy sy (4)) =0Ty sy!(5)) =

44 - h"(lxq (4)) - h"(;[_x/l(5)) + dim coker anEY:] <43-1

which gives a contradiction.

2,iii) The final case is c(X )>4 and e(X,]) = 3, As in (2,ii)
we conclude that il (IX (5)) # 0, so there is a global complete
intersection Y,l = V(F,],Fz)DX such that degF, = 4 and

degF, = 5. The linked curve X,] ¢->. Y"I is of degree 4' =4

and genus g' = =1 and satisfies
h“(;X:'(e)) - 1, h,](_];X/'](’l)) - 2, Hq(_I_X/'I(\))) -0 for v£{-1,0,1,2}.

Easy computations show that the resolution of I,'l =@H°(£Xv(v))
f]

must be of the form
0~ R(=6) @ R(-5) 5 B(-5)%*T @ R(-4)®** 5 r(-4)®* O R(-3)* © R(-2) = I, ~ 0.

t
Assume y = O and let °N = [L,,L,,S ’I’°°°’ S4,x] Wwhere degL, =1
and degS; =2 for all i. Since h’ (lX-(’l)) = 2, the k-vector
| \ 1
space (L,I,L2),'_C_R is of dimension 2, and since we know that
r((Tqy Lpy 8q5eees8,,,0) = (X ,X,,X ’XB) by (3.2.6), x>1.
However if x>2, the (2+x)-minor M, 3.5 See (3.2.7) for
, .

notations, given as
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(10 eee O]
10 ees O

det | ¢ . )
1 eeo O
21 oo 1
21 vee 1]

is zero (the numbers in the matrix above denote the degrees of
the elements at that place, the elements of degree zero is how-
ever zero since the resolution is minimal). By (3.2.7) this is

impossible., So x = 1 and since

it follows that {S’,Eé} form a regular sequence in the ring
R/(Lq,L2). Hence

4,

dimk(ga,Sé)e = 2 and dimk(E',‘,S'g)3
This gives

n (_I_X;I"(_ﬂ)) = aimR5/(Lq,T5,5,,5,)5

Unfortunately the assumption H/I(;_X,(n,li-LL)) =0 of (2.2.9) is
/‘I

not satisfied. We used this assumption in the proof of (2.2.9)

to conclude that oExtl%(I,'],I,']) = 0. However combining (2.1.6)

with x = 1, we find
. 1,40 '
dim Extp(I,,I5)<1.
Following the first part of the proof of (2.2.9), we find
1 . 1,4+ +1 2
h QT_XJ])f_dlmoExtR(I,' ,I,|) + 8

' : 1
because c¢(X,;) <minn,; . Thus h (EX:])gﬂ, and now the argu-
ments at the end of (2,ii) apply and we get

0 and h“(;X}]) =1.
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dimcoker ay _y! = dimcokeray!oy! = hq(y_)q)f_'l .
= 1SY5
and

which gives the contradiction.

Suppose y=>1 and let

oy = (25
0O N

where L,5,0 and N' are matrices of size 1x(2+y), 1x (14x),
yXx (2+y) and yx (1+x) respectively. Since h/'(_];X-(’l)) =2,

L = [L,],...,L,|+X] # 0, say L, #Z 0. Observe that th?a ideal I°(N)
generated by the (1+y)-minors of N and the ideal generated by

the y-minors of N' satisfy I°(W)<SI%(N') and also

Q
@
3
ct
=
o)
]

= 4

by (3.2.6). On the other hand it is well known that

depth  , R=(M+x-y+1)(y-y+1) = x-y+2,
°’)

see (3.2.9). Thus x>y+2. Now choose a non-vanishing y-minor
NI'{' of N’, and let Np be the (1+y)-minor given by

'
NK = L,]NKl °

If ® 1is a generator of I,'] of degree 2, then

MK,X+3 = I NgF .

However if we throw away the last row, the first column and y of
the last (1+x) columns of M, and take the determinant, we will

see MK,x+5 = 0 because x>y+2 (the matrix M has too many

. . . . . . . !
entries which are zerc). This gives a contradiction, i.e. curves X,]
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as above having y>1 do not exist, and the proof of the claims

of (3.3) is complete.

Without going into the details, we will mention that if W(é,m)
is any component of D(d,gj;3) which contains smooth connected
curves such that
1 o
H'(Iy(3)) #0 and H'(04(3)) # 0
for some (XSYcP) € S(é,m), then
g2 %(d—ﬂé%)
provided d>46, There are a few exceptions to this lower bound
in the range 332<d4<45,, and they satisfy
6

12<8<15- Z m

i="1 1

Moreover since Hq(OX(B)) # 0 implies 3d<2g-2, we also have
g 2 'g'd +1,

and this gives a better bound provided d <32, Using these
inequalities, we find that if W(é,m) is any component which
contains smooth connected curves and which satisfies the condi-
tion (B), then the degree 4 and the genus g must belong to

the closed region indicated by the following diagram
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In fact the component W(12,4,4,4,4,4,1) < D(15,2533) is mini-
mal under the condition (B) both with respect to the degree

and the genus.
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