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1, Introduction, It is well known, see e.g. [2, Ch.I, § 9]

that there is a close relationship between the existence problem
for invariant measures in ergodic theory and von Neumann algebra
" theory. In the present paper we shall elaborate on this rela-
tionship in order to study the partial ordering on measurable
sets defined by Hopf [5]. He showed that "finiteness" (or
boundedness) of the partial ordering was equivalent to the exist-
ence of a finite invariant measure equivalent to the given one.
Later Kawada [8] and Halmos [3] showed the equivalence of "semi-
finiteness" (or o-boundedness) and the existence of a o-finite
measure, Our main result, which is stated in the language of
von Neumann algebras, consists of two characterizations for
measurable sets to be bounded in the sense of Hopf. The result
has as a straightforward consequence the semi-finite results of
Kawada and Halmos, and gives also more inféormation on the close
relationship between the measure space in question and von Neumam
algebras (viz the canonically defined von Neumann algebra CB
below). The reader is referred to the books of Dixmier [2] and
Jacobs [6] for the theory of von Neumann algebras and ergodic

theory.

2. Hopf's equivalence relation. Let (X,g,u) be a o-finite

measure space, Suppose G is a discrete group operating on the
left on X by ¢ - s, ¢ € X, and assume W is quasi-invariant,

ice. p(s(E)) = 0 if and only if W(E) =0 for B €S . Ve
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say two sets E and F in § are eguivalent in the sense of

Hopf, written E ~ F , if there is for each s € G a set

E, €§ such that E, = ¢ except for a countable number of

s € ¢ and such that the families {Es}seG and {s(ES)]SGG
consist of pairwise disjoint sets with unions E and F respec-
tively., If E and P are in § we write E< P if there is
FO €5 such that E ~ Fo c P, We say a set F € § 1is Hopf
finite (also called bounded) if Ec< F and E ~ F implies

u(F-E) = 0. (X,8,u) is said to be Hopf finite if X ditself

is Hopf finite, It is well known and first proved by Hopf for

G cyclic, that there is a finite G-invariant measure on X
equivalent +to W 1if and only if (X,8 ,u) is Hopf finite
[1,5,8,9]. At this point it should be remarked that Yeadon's
short proof of the existence of a trace in a finite von Neumann
algebra [13] can be modified almost ad verbatim, using lemmas 2.3
and 2.4 below, to yield a new proof of the existence of a finite
invariant measure in the Hopf finite case. Hence we shall feel
free to quote the result in the finite case in the general situa-

tion we shall consider. We say (X, S,u) is Hopf semi-finite

(also called o-bounded) if every set E € & of positive measure
contains a Hopf finite subset in S of positive measure. It
was shown by Kawada [8], and independently by Halmos [3] for
cyclic groups, that (X,§,u) is Hopf semi-finite if and only
if there is a o-finite G-invariant measure on X equivalent
to M. .

We shall now translate the above discussion into the
language of von Neumann algebras. Let R = I"(X, S,p) be the
space of all essentially bounded p-measurable complex functions

on X. Then R is an abelian von Neumann algebra acting by
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left multiplication on &g: LZ(X,g ,p.). For each s € G let
rs(g) be the Radon Nikodym derivative of poes with respect
to p, di.e. dqu(sC) = r (€)au(¢). For f €3l let (U L)(C) =
rs_1(§,)%f(s'1g). Then, see [2, Ch. I. § 9, no.3], s~ U, isa
unitary representation of G on o, such that if Xg is the
characteristic function of E €§, U: xg Ug = Xg(g)+ We mow
generalize the above definitions as follows., Let R, ve an
abelian von Neumann algebra acting on a Hilbert space 93. Let
G be a discrete group gnd s - US a unitary representation on
A such that ULRAU, =R for s €G. If E and P are pro-
jections in R we say E and F are equivalent in the sense
of Hopf, written E ~ F if there is for each +t € G a projec-

k3 ~ * —
tion Et E(R, such that %EG Et = E, éeG Ut Et UJc = F, In par-

ticular the families {Et} and {U: E, Ut} consist of pairwise
orthogonal projections. If E~TPF <P we write E {<PF. P is

said to be Hopf finite if E L P and E ~ P dimplies E = F.

(R is said to be Hopf semi-finite if every non-zero projection

in 02 majorizes a non-zero Hopf finite projection.

Remark 2.1. An equivalent definition of Hopf equivalsnce is as

follows., We say E and F are equivalent if there afe pro-

jections {E&} and Ex € G such that E = ZE& and

* 3
ZUtaEa th= F. But if E = :‘_‘t — E then E, € (R and
l * a 3 . . 3
E = %EG Et’ F = %EG Ut Et Ut’ so the two definitions are equi-

valent. From this equivalent definition it is immediate that
~ is indeed an equivalence relation, see e.g. [11, Lem.2.2].
Notice that since G might be uncountable it is here an advan-
tage that 0& is a von Neumann algebra, so we can conclude that

Et € 01. For measurable sets this is not clear.
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*
Let notation be as above and let Ol= {A€R: U AU =4

for s € G}. Then L is an abelian von Neumann subalgebra

of &,

Remark 2.,2. If {EE} and {Fa} are each orthogonal families

of projections in (& and E, ~F for all a then EIE ~ IF .

Furthermore, if E~F in R and H is a projection in OU

then EH ~ FH. This is immediate from definition and Remark 2.1,
The following result is quite useful, for proofs see [8,-

Lemma 16] or [11, Lemma 2,7].

Lemma 2,3. (The comparison theorem), Let E and F be two
projections in R,. Then there exists a projection H € @U such

that HE < HF and (I-H)F < (I-H)E.

Lemma 2,4, Let E be a Hopf finite projection in (R . TLet P

and Q be projections in (R, majorized by E such that P ~ Q.
Then we have

i) E-P ~ E-Q.

ii) P -PQ~Q-PQ.

Proof. By Lemma 2.3 there is a projection H € Ol such that
H(E-P) < H(E-Q) and (I-H)(E-Q) < (I-H)(E-P). Then
H(E-P) ~ F < H(E-Q). By Remark 2.2 we have

HE = H(E-P) + HP ~ F + HQ < H(E-Q) + HQ = HE.
Since E is finite so is HE, hence F = H(E-Q), and
H(E-P) ~ H(E-Q). Similarly, (I-H)(E-Q) ~ (I-H)(E-~P), and
i) follows., Since clearly PQ ~ PQ we have by i) and Remark 2,2
that E<P+PQ ~E-Q+PQ , i,e. E-(P-PQ) ~ E-(Q-PQ). By
i) P-PQ ~Q-PQ , and ii) is proved.
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3. Abelian von Neumann algebras. We recall from [2, Ch.I, § 9]

the construction of the cross product of ée and G, letting as
before (R be an abelian von Neumann algebra acting on a Hilbert
space &ﬁ, G a discrete group, and s - Us a unitary repre-
sentation of G on ()f such that U;U\),Us =02, for s € G. PFor
8 € G 1let Jlos be a Hilbert space of the same dimension as 3’8 ’
let JS be an isometry of 31? onto égs and let 9’[‘; =J‘6 ’

J, =1, where e is the identity in G. Let = :seG ® ..

We write an operator R € 03 (Jf) - the bounded operators on (’)? -
) *

as a matrix (Rs,t)s,tEG , where Rs,t =J R J, € B ). TFor

each T € 1le+ &(T) denote the element in A () with matrix

(R. ,) where R =0, s*t, and R =T for all s € G.
S,t S,

S,t S
Then ¢ 1is a *-isomorphism of @, onto a von Neumann algebra

~

& acting on . For y € G 1let Uy be the operator in
@B (f) with matrizx (R_ .) , where R_ . =0 if st7' # y,
S,t s,t

Ryt,t = Uy for t € G. Then, see~[2, Ch.I, § 91; y - Uy is a
unitary representation of G on Jf such that Uy 3(T) Uy =

@(U; 1U) ,y€6, T eR . et /3 denote the von Neumann

algebra generated by @R, and the Uy sy ¥y € G, Then each
operator in B is represented by a matrix (Rs,t)’ where

R T

o,t = Top=1 Ugg=T » T pm1 € R . B is cglled the cross product

of (R and G , and & the canonical isomorphism of @R into &.

Lemma 3.1. Let 6’ denote the set of operators V € (3 of the

*
form V = (ES -1 Ust_1), where both {Et} seq end {Ut EtUt}teG

are orthogona; families of projections in (R.. Then we have:
i) G is self-adjoint and closed under multiplication.
i) If Ve and T €R then V 3(1) VeER.
iii) If E and F are projections in A then E ~ F if

* *
and only if there is V €& such that VV =&(E),V V=3(F).
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- *
Proof. Let V=(E _490 _ € e Then V = (F U
= Fyim1 Ugpm?) €O (Fopm1 Tagm1)

* *
where P = US_1 Es“1 Us_1, 80 both {FS} and {US F US} are
orthogonal families of projections. Hence V* € GS , and GS

is self-adjoint.

Let V = (E U end U = (F U belong to .
( st~1 1) ( st-1 st'1) g 65
Then VU = (G U where
( t=1 gt 1)
G.=X E U F U .

Then Gs is the sum of orthogonal projections, so it is itself
a projection., A straightforward but somewhat tedious computation
now shows that {GS} and {U: GS US} are orthogonal families

of projections, hence VU € &, and i) follows.

Let V = (B Y €& and T € (.. Then another

U
gt~ st'j
straightforward computation shows

*

N « ~
1) , vV &(T)V = @(g U, E. T Ur) € R,

T

Thus ii) follows.
Let E and T Dbe projections in OQ such that E ~ F.
Then we have projections Et € 0% such that E = Z Et and

F=3xU B, U, , hence both families {E

t Tt Tt ! t}
rth a2l families of projections. Let V = (E U .
orthogon amilies proj ( =1 st'1)

a (UL E, U.}
an {Ut . U} are

*
Then it is easy to see that V € A , hence by 1) V V = &(F),
and similarly W= 3(E). Conversely if V = (Est'1 U t'1) € é;
S

and VV* = &(E) , V*V‘z $(F) then by 1) I U: Et Ut = F and
similariy z Et = BE. Hence E ~ F, and the proof is complete.
If E 1is a projection in R, we denote by (RE the von

Neuman algebra consisting of operators TE, T € ﬁl, acting on

ER . Similarly we have éié(E) = 3(RE).
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Lemma 3.,2. Let E Dbe a projection in GQ, Let @”E denote the
set of V € § such that Vv o= wt o= $(E). Then we have:
i) @;E is a group of *-automorphisms of 6i 3(E).
ii) If P and Q are projections in (RE such that there
is V € G, such that V #(P)V = 3(Q) then P ~ Q.
iii) If P and Q are orthogonal projections in RE such
that P ~ Q then there is V € By such that
V' (P)V = 3(Q).
Suppose further that E is Hopf finite. Then we have:
iv) If P and Q are projections in RE and P ~ Q then
there is V € @ such that V' 3(P)V = 2(Q).
v) 6ﬁ;§(E) is Hopf finite with respect to the group G%E

of *-automorphisms.

Proof., i) is immediate from Lemma 3,1.

If P and Q and V are as in ii) then since &(P) ¢ ®
we have from Lemma 3,1 that U = 3(P)V € @ . Since U'U = 2(Q)
and UU = 3(P) , P~ Q by Lemma 3.1. Thus ii) is proved.

Let P and Q Ybe projections in CQE such that P ~ Q.
If PQ + O assume that E is Hopf finite. Then by Lemma 2.4
P-PQ ~ Q-PQ. Hence there are projections Ft € R such that

¥*
z Ft = P~-PQ and I Ut Ft Ut = Q-PQ, Put
E,=E - (P-PQ) - (Q-PQ)
E, =F, +U ,F .U for t 4 e
= T .
L TS RS
Let V = (E 1 U _1). Then it is easy to see that V € G;E

st st
and that V. 3(P)V = 3(Q). Thus iii) and iv) are proved.
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Let P and Q De projeétions in ®®E such that &(P) and
3(Q) are equivalent in the sense of Hopf with respect to the
group 6E of *-automorphisms of @Q(E). Then there is an
orthogonal family {Ea} of projections in (R, such that Zé(ax)z
5(P), and there are V €@y such that T v a(R )V = 2(Q).
In particular {V; @(ra)va} is an orthogonal family of projec-
tions in éi,é(E). Let qx be the projection in Ci such that
8(Q,) =V (R )V . Then the Q 's are all orthogonal and
ZQ =Q. By ii) P, ~ Q,, hence by Remark 2.2, P ~ Q. 1In
particular, if Q = E then we have P ~ E, so P =E since E
is Hopf finite. Thus &(P) = (E), and v) follows. The proof

is complete,

Theorem 3.3. Let GQ be an abelian von Neumann algebra acting on

a Hilbert space af. Let G be a discrete group and t - Ut a
unitary representation of G on g"f such that U:GQUt = @for
t € G. Let (A be the cross product of (R and G and & the
canonical isomorphism of R, into B . Let E be a projection in
0@, and let ® be a faithful normal semi-finite trace on 6Q+
such that w(E) < oo Then the following conditions are equivalent,
i) E is Hopf finite,
ii) 3(E) is a finite projection in A.
iii) Given € > 0 there is & = 6(e,E) > O such that if
P is a projection in RE and w(P) < 6, then w(Q)< e
for all projections Q €AE for which Q ~ P,
Proof. We show i) => ii) => iii) => i).
i) => ii). Let E be Hopf finite, and suppose E % O, By Lemma 3.2
ﬁié(E) is Hopf finite with respect to the group GBE. Let W
be the faithful normal finite trace on OQE defined by
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wE(A) = w(AE) for A € &RE. Then GE defined by GE(Q(A))szUU
is the same on aLQ(E). The theorems on finite invariant measurss
on Hopf finite algebras now apply to give a faithful normal fi-
nite :G-invariant trace ¢ on 5&@(E) such that o(3(E)) = 1.
Let 6BE
3(E)P. For S = (1 U 4) €By aetine ¥(s) = 9(a(T,)).

denote the von Neumann algebra Q(E)43§(E) acting on

-~

Then Y is a faithful normal finite trace on OSE, see proof of
(2, Ch.I, § 9, Prop.1). Therefore 05E is a finite von Neumann
algebra, in particular &(E) is a finite projection in 03.

ii) => iii). Suppose 3(E) is a finite projection in (3.

Then in particular E 1is Hopf finite in @2, cf. Lemma 3.1,

Thus by Lemma 3.2 (iv) if P and Q are projections in K E
and P~ Q then there is V €®y such that V. 3(R)V = 8(Q).
Purthermore from the proof of i) => ii) we have a faithful nor-
mal finite trace Y on d&E‘ Then Y 1is GSE—invariant, so the
conclusion in iii) follows from [12].

iii) => i). Assume given € > 0 +then there is & > 0O such
that if P is a projection in RE and w(P) < &6 then w(Q) <ce
for all projections Q € RE such that Q ~ P. Since & is a
*-isomorphism of (RE onto &iQ(E) we shall for simplicity of
notation identify RE and &VQ(E), and consider G;E as a group
of *-automorphisms of (RE. Let 0g be as above, By Lemma 3,2
(ii) and [12] there is a faithful normal finite G;E-invariant
trace p on.{RE. We show that if P and Q are projections
in RE with P ~ Q, then p(P) = p(Q). By Lemma 3,2 (iii) this
holds if P 1is orthogonal to Q. Let P and Q Dbe arbitrary
in RE and P ~Q, say P=Z P, and Q=2 U, P, U, with P,
projections in GQE. Since p is normal it suffices to show

*
p(Ut P, Ut) = p(Pt), or in general, if P is a projection in
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* . *

RE such that U, P U, €RE then p(P) = p(Uy P U,) fora
given t € 6. Let E, and F, be projections in R with
sum I such that U: TU, =T forall T E(REt,and the auto-

morphism T = U: T Ut is freely acting on CQFt, see e.g. [7].
By freely acting we mean that given a projection F % 0 then
there is a subprojection H $ O of P such that H and

U: H U, are orthogonal. Clearly p(PEt) = p(Uz P E, Ut)’ so it
suffices to consider PFt, i.e. we may assume Ui . Ut is freely
acting. Let by Zorn's Lemma {31} be a maximal orthogonal
family of subprojections of P such that U: Ra Ut is ortho=
gonal to Ia. Then T Ba = P, for if not then there is a non-
zero projection R < P-% P& such that U: R Ut is orthogonal
to R, contradicting the maximality of {I&]. Now I& ~ U: quf’
and they are orthogonal and contained in (RE. Thus p(E&) =

p(U: Pd Ut)’ and by the normality of p, p(P) = p(Z ch) = Zp(Pa}=
Z;ﬂU: E Ut) = p(U: P Ut)' Hence we have shown that if P and |
Q are projections in RE such that P ~ Q, then p(P) = p(Q).
Now suppose P is a projection in & such that F < E and
F~E, Then F €RE so p(F) = p(E), hence p(E-F) = 0. Since
p is faithful on RE, E = F, Thus E is Hopf finite. The

proof is complete.

Corollary 3.4, Let R and G be as in Theorem 3.3. Then 0{

is Hopf semi-finite if and only if there exists a faithful normal
semi-finite G-invariant trace T on 0{+. Furthermore, if E

is a non-zero Hopf finite projection in OQ then we can choose

T such that T(E) = 1.

Proof. If such a trace T exists it is well known and easy to

semi-~
see that a{ is Hopf /finite. Conversely, assume G{ is Hopf
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semi-finite, and let E be a non-zero Hopf finite projection

in 01. Let Dy be the smallest projection in Cl, the fixed
point algebra in 0& such that DE > E. If we can find a faith-
ful normal semi-finite G-invariant trace ¢ on CQ+DE such

that ®(E) = 1, we can by Zorn's Lemma find a family {E&} con-

taining E with X DE = 1 and a faithful normal semi-finite
a
G-invariant trace Ty OR 0@%3. Then T = Z'% is the desired
a

trace. We may therefore assume DE = I. By Theorem 3.3 3(E)
is finite in 65. Suppose F 1is any non-zero projection in 0{.
Then it is easy to see, see e.g. [11; Lem. 2.3], that there is

a non-zero subprojection FO of F in 02 such that FO'< E.
By Lemma 3,1 Q(FO) j’é(E) (in the usual sense for projections
in a von Neumann algebra). In particular Q(FO) is finite in
05, and the identity in B is the sup of finite projections, so
() is semi-finite. TLet Y be a faithful normal semi-finite
trace on (B such that Y(3(E)) = 1. Let (7)) = ¥(3(T)) for

T € GU. Then T 1is a faithful normal trace on R* such that
T(E) = 1, PFrom the argument with P and FO above we see that

T is semi-finite, and if t € G and T EO{ we have
} L = ¥(T a(m) Tp) =¥(2(1) = 7(1)
(U T UL) = ¥(2(U, T U)) = ¥(Uy 3 £) = = .
Hence T is G-invariant. The proof is complete.

Remark 3.5. Theorem 3.3 and its corollary can be generalized as

follows. Let @L be an abelian von Neumann algebra and G a
discrete group. Suppose t - a is a representation of G as
*¥—gutomorphisms of (. Generalize the definition of equivalence
in the sense of Hopf for two projections E and F in R, to,

E~PF if E = géG Et for Et projections in fi, and
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F = %EG at(Et)° Then ~ 1is an equivalence relation and both

Theorem 3.3 and Corollary 3.4 generalize, Indeed, R is *-iso-
morphic to a maximal abelian von Neumann algebra g , see [2,
¢h. I, § 7, no.3]. Since every group of *-automorphisms of a
maximal abelian von Neumann algebra is implemented by a group of
unitary operators, see [4], Theorem 3.3 and Corollary 3%.4 hold

for 5, and thus the generalized versions hold for CQ.

4, Invariant measures. Theorem 3.3 and Corollary 3.4 are

immediately applicable to the case of o-finite measures. We
shall do it for Corollary 3.4 and leave the application of

Theorem 3.3 to the reader,

Corollarvy 4.,1. (Kawada, Halmos). Let (X,S,p) be a o-finite

measure space, sSuppose G 1is a discrete group operating on the
left on X such that Wy is quasi-invariant, Then (X,S b )
is Hopf semi~finite if and only if there is a G-invariant
o-finite measure \;‘ on (X,S) which is equivalent to W.
Proof. Since p 1is o-finite there is a finite measure on

and quasi-invariant
(X,§) equivalent to p./. We may therefore assume ¢ is finite.
Let R= LOO(X, S ,p.). Then /.Q is an abelian von Neumann algebra
acting on L°(X,5,u), and there is a faithful normal finite
trace w on (R such that w(xE) = p(E) for E eSS . In parti-
cular Jﬂ is countably decomposable, hence if {Ea} is an ortho-~
gonal family of projections in ﬂa then Ea =0 for all «
except a countable number of a«a's. We can therefore use any one
of the different definitions of equivalence in the sense of Hopf.
Therefore by the discussion in § 2,Corollary 3.4 is directly
applicable. Thus if (X, S,};) is Hopf semi-finite then there

is a faithful normal semi-finite G-invariant trace T on R7¥.
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Let E €8 and define v(E) = T(XE). Then v 1is a countably
additive, G-invariant measure on (X,$ ). v is equivalent to

. because if E € § , then v(E) = 0 if and only if T(xg) = 0.
if and only if xgp = O if and only if u(E) = O.

- Pinally, v is o-finite because (K. is countably decomposable,
so there is an orthogonal sequence of projections Eﬁ-.in

R with (B ) <co such that £ E_ = I. If E, = Xg_ with

X € S,, then UX =X (except perhaps for a null set) and

v(Xn) < o, The proof is complete.

Remark 4.,2. In order to obtain a G-invariant measure it is

unnecessary to assume (X,qg,u) is o-finite. 1Indeed, it
suffices to assume the measure space is localizable, i.e, is a
direct sum of finite measure spaces. Under this assumption
ﬁx%X,S ﬁ;) is a maximal abelian von Neumann algebra acting by
left multiplication on LQ(XQ‘Q,p), see [10, 2.,93]. Then the
transformations of X defined by elements in G define ¥-auto-
morphisms of ﬁx?X,éf,u), so an application of Remark 3.5 com-
pletes the argument. This remark is also applicable to the

application of Theorem 3.3 to measure spaces.,
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