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i. 

There is one serious omission in my definition of CLASSICAL TREE 
on Page 7. 

In addition to conditions i - iii one must add: 

iv) there is a well-order of the parameters such that for any 

parameter a introduced at a node \J by ... V all para­

meters occurring at nodes below v are strictly less than 

a in the well-order. 

This condition expresses in a strong way that we build the clas­

sical trees from the bottom and upwards. 

This addition does not affect the analyzing lemma and the strong 

analyzing lemma (pages 11-14). We just fix a well-order of the 

parameters in advance. Then in the constructions at each step 
where we need a new parameter, we pick the smallest parameter 
greater than all parameters used in the construction so far. 

The only place where this strengthening of 'classical trees' is 

needed is in the definition of the Skolem morphism > ~ on pages 
19-20. Let A be the set of new parameters introduced by occur­

rences of Vx in T . The point is that in going from T to 

~~(T) we want to get rid of all occurrences of elements of A 
and replace it by terms built up by using one new functionsymbol 

f • If we do the procedure described in the definition we get 
rid of all occurrences of Vx by using f and symbols possibly 

from A. Say a E A is assigned f(t 1 , ••• ,tN) • Now by the 
new condition iv on classical trees only parameters strictly 

less than a occurs in f(t 1 , ••• ,tN) • Hence by induction on 
the well-order of the parameters in A we get rid of all uses 

of symbols from A by systematically substituting their Skolem 

terms. - We end up with a tree ~ ~( T) where there are no oc­
currences of A • 



ii. 

The extra condition is needed to make the above construction go 
through. Just consider the tree below. There are no way to 
construct the result of applying ? on it : 

~ Aab ~ Aba 
~ Vy Aay ~ Vy Aby 

-, Vy Aay ~ -, 1fy Aby ... 

""Vx -, Vy Axy ... ""Vx -, Vy Axy ~ 

Vx-,Vy Axy ... 

There are two other errors: 

1. On page 9 in case v. of the definition of ANALYZING BRANCH 
instead of 'as a successor to 1fxFx' write 'as a successor 
to a formula in the same strand of formulae as VxFx'. 

2. On page 25 in the downmost lemma instead of '-- function­
symbols in T must ---' write '-- functionsymbols in 

~ x ( T) must --- ' • 
1i 
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1. INTRODUCTION 

In this paper I will give a new proof of the classical 
Skolem and Herbrand theorems. As formulated here the proofs 
belong to general proof theory and can be seen as a develop­
ment of the works of Beth [1], Hintikka [7] and Smullyan [9] 
on the completeness of the cut-free rules of classical first 
order logic. - There are a number of proofs of the Herbrand 
theorem. One could mention Herbrands original proof [5] as 
corrected by Dreben and Denton [2], Hilbert and Bernays's 
proof of the e-theorem [6], and Gentzen's proof of the mid­
se~uent theorem (4]. What do I hope to gain by giving this 
new proof ? First of all I want to give Herbrand theorems for 
other logics. So this paper will be followed by other papers 
on higher order logic, infinitary logic, and intuitionistic 
logic. Secondly I divide the Herbrand theorem up into two 
theorems - the Skolem theorem and the Herbrand theorem. The 
Skolem theorem gives the Skolem normal form of formulae. See 
Skolem [8]. The theorem I call the Herbrand theorem gives 
the usual Herbrand theorem for formulae in Skolem normal form. 
Surprisingly enough it turns out that the difficulties come 
in proving the Skolem theorem and not the Herbrand theorem. 
For example in first order intuitionistic logic the Skolem 
theorem is false while the Herbrand theorem (for formulae in 
Skolem normal form) is true. Thirdly instead of letting the 
theorems talk about connections between formulae and trans­
formed formulae, I treat them as giving connection between 
prooftrees and transformed prooftrees. In this way both the 
constructive character of the theorems and the uniformity 
between proofs of formulae and proofs of transformed formulae 
come out in a nice way. 
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2. THE FORJYU->.L SYSTEM 

We introduce our logic: 

LANGUAGE. The language is a usual one with function-symbols. 

We do not include equality yet, but will treat it later. Instead 

of just binary conjunctions we have arbitrary finite ones. Among 

the constants we have a particular one, e , which will play some 

importance later. So the language consists of 

connectives ~ (finite conjunction) .~ 

quantifier V 

parameters a 1 ,a2, ••• ,b,c, ••• 

variables x1 ,x2 , ••• ,y,z, ••• 

functionsymbols and constants e,f1,f2 , ••• ,g,h, ••• 

predicate symbols P1 ,P2, ••• ,Q,R, ••• 

In the usual way we build up 

terms 

atomic formulae A1 ,A2 , ••• ,B,C,. ~. 

formulae 

finite (and empty) sequences of formulae r 1,r2 , ••• ,~,A, ... 

sequents r- t. where r and t:. are finite or empty 

sequences of formulae; r is called the antecedent 

and t:. the succedent; for r or t:. · empty 

we may write - t:. , r- , - . 

We do not have 'WI , ==', 3 among the symbols. That is just to 

save a few cases in the definitions and the proofs below. It 

will be clear that we could have included Vl , ==' , 3 with no 

extra problems. 

In the formulae we do not have free variables. Instead we have 

parameters. To each predicate symbol and function-symbol we 
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have assigned a number which gives the number of argument places. 

We write r1 ,r2 ,r3 and r,F etc. for the obvious concatena­

tions of sequences of formulae. 

THE CALCULUS LK. On the language we build the sequential 

calculus LK in the usual way: 

Axioms .... 

STRUCTURAL RULES 

Permutation 

Thinning r .... A 

Contraction r,F,F-6 
r,F .... 6 

for A atomic 

where r* is obtained from 
r by a permutation of 
formulae, and similarly 
A* from A. 

Trivial rule r .... A ----- r .... A , 
r .... A 

where we have a finite 
number of premisses. 

LOGICAL RULES 

.... M 

.., .... 

.... .., 

r, ~ J. 
iEI 1 

.... 

r -F., A 

r - 1'1:1 F. ,6 
iEI 1 

r - F fl 
t,-, ' F .... A 

r 1F- A 
r-.., F,ll 

where F j is one of ihe 
conjuncts in M F .• 

iEI 1 

where we have as 
premisses r .... Fj,A 
for all jEI • 
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r,Ft ... 15. 
r ,'lxFx .... A 

r .... Fa.b. 
r .... VxFx, 15. 

t is a term. 

a is a parameter not 
in r .... VxFx,A • 

This completes the description of our formal system LK. We 

write l"'tKr .... b. for there is a derivation of r .... b. in LK. 

It is well known that 

i) \- LKr,F ... F,A 

ii) !f 1- LKr1 ,F .... 15. 1 and \- LKr2 .... F,b.2 

then t- LKr1 ,r 2 .... A1 ,~::. 2 • 
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3. COMPLETENESS THEOREM 

TREES. Below we will work with trees. All our trees are thought 

of as having a unique downmost node and are then spreading up­

wards. At the nodes we have associated sequents. The sequents 

at one node and the sequents at the successornodes will be con­

nected as premisses and conclusion of rules of LK. So the trees 

will be as the tree of sequents in a derivation except that we 

do not assume the trees to be well-founded. To talk about such 

trees we need a few notions. First consider the rules of LK. 

Observe that to each formula in one of the premisses we can in 

a natural way associate a unique formula in the conclusion. We 

say that the formula in the conclusion immediately precedes 

(or is immediately succeeded by) the formula in the premiss. 

The details should be clear by the examples below. This corre­

spondence extends to parts of formulae. So if formula F imme­

diately precedes formula G then to each part of formula G we 

associate in a natural way a part of F as immediately preceding 

it (or being immediately succeeded by it). Except for a possible 

change of terms the parts in F and G are equal. We have two 

notions of immediately precedes (or of immediately succeeds) -

one for formula and another for formula parts. vVhenever it is 

not clear from the context which of the two notions we usetwe 

will mention it explicitly. We now define "immediately precedes" 

and "immediately succeeds" in trees and take "precedes" and 

"succeeds" to be their transitive andreflexive closure. Two 

formula parts are in the same strand if they have a common pre­

decessor. They will then be equal except for a possible change 

of terms. To get better control over the terms introduced for 
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variables in a tree we define the analysis of a formula F as 

the list of terms introduced for variables in formulae which 

precedes F. 

EXAMPLES 

We write A A B for the conjunction of A and B, etc. 

The numbers above the arrows indicate the nodes. 

A,B,~yR(fa,y),R(fa,ffa) lQ> C 

A,B,YyR(fa,y),~yR(fa,y) JL> C 

A,B,VyR(fa,y) JL> C 

A,B,VyR(fa,y),R(fa,fe) 12> D 

A,B,VyR(fa,y),VyR(fa,y)ll> D 

A,B,VyR(fa,y) 11> D 

A,B,VyR(fa,y) jL> C A D 

A,B ~> ,VyR(fa,y),C AD 

A,A A B ...2...> ..., VyR(fa,y), C A D 

A A B,A .i_> -, "v"yR(fa,y), C A D 

A A B ,A A B .2._> .., VyR(fa,y).,_ C A D 

A A B,A A B _g_> \:1-, VyR(.fx,y) 1 C A !l 

A A B .1_> Vx ..., YyR ( fx, y) , C A D 

As formula A in 10 succeeds A in 9,8,7,6,5,4 

and A A B in 3 , 2 , 1 • 

As formula part A in 10 succeeds A in 9,8,7,6,5,4,3,2,1. 

All A's 

As formula 

are in the 

R(fa,fe) 

same 

in 

strand. 

13 succeeds VyR(fa,y) 

and ., 'iyR(fa,y) 

and \lx - VyR(fx,y) 

in 12,11,7 

in 6,5,4,3 

in 2' 1. 
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As formula part R(fa.fe) in 13 succeeds R(fa.y) in 12,11,7,6,5,4,3 

and R(fx,y) in 2,1. 

R(fa,fe) in 13 has as analysis a for x and fe for y. 

R(fa,ffa) in 10 has as analysis a for x and ffa for y. 

POSITIVE AND 1~GATIVE. We define positive and negative occurren-

ces in a sequent r - ~ inductively by 

i) 

ii) 

iii) 

Any 

Any 

If 

formula in ~ occurs positively in 

formula in r occurs negatively in 

fl.\ F i: occurs positively (negatively) 

r -
r -

in 

then each F. 
~-

occurs positively (negatively) 

iv) If -,F occurs positively (negatively) in 

then F occurs negatively (positively) in 

v) If VxFx occurs positively (negatively) in 
then Fx occurs positively (negatively) in 

~-

~-

r .... 1::. 
' 

in r - ~-

r .... ~, 

r ... ~-

r ... ~, 

r - ~. 

GENERAL AND RESTRICTED. A quantifier Vx in r - ~ is general 

(restricted) if it occurs as YxFx with VxFx positive (negative) 

in r - ~. 

CLASSICAL TREE. A classical tree over a sequent r ... ~ is a 

tree of sequents with r ... ~ at the downmost node and such that 

i) a sequent at any node and the sequent at its successor-

nodes are related as one of the rules of LK; 

ii) the term introduced at a node by V.... is built up from 

constants, parameters, and functionsymbols in r ... ~, 

the constant e, and from parameters introduced by - V 

somewhere in the tree; and 

iii) parameters introduced in - V are distinct if we analyze 

quantifiers not in the same strand or with distinct 

analyses. 
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The classical trees will be our working material. They are meant 

to generalize the notion of a prooftree, or rather attempted 

prooftree. In our mind iii is quite natural. It says that for 

parameters introduced by - V, for distinct quantifiers we intro­

duce distinct parameters. - It may be clear from our use of 

'introduce' that we consider a prooftree as starting with the 

downmost node and then spreading upwards. 

We now develop in a rather sketchy fashion the theory of Beth [1], 

Hintikka [7], Smullyan [9], and show where our theory starts. 

BRANCH. A branch in a tree is a path going from the downmost 

node and as far as possible upwards. 

SECURED. A node in a classical tree is secured if the sequent 

at it is an axiom. A branch is secured if it contains a secured 

node. A classical tree is secured if all its branches are secured. 

LEMMA. Given a classical tree. Then if the tree is secured, then 

there is a finite classical tree over the same sequent which is 

secured. (The finite tree can of course be taken as a subtree of 

the given tree.) 

PROVABILITY THEOREM. If we have a secured classical tree over 

r - /j,, then 1- LK r - /j,. 

Proof: 

By the lemma we can assume the tree to be finite. The theorem 

follows by induction over the nodes of the tree. 

Q.E.D. 



- 9 -

ANALYZING BRANCH. A branch S in a classical tree T is an 

analyzing branch when: 

i) if MFi occurs (as a formula) in an antecedent in S, 

then each Fi occurs as a successor to A Fi in an 

antecedent in S; 

ii) if ~F .. 
~ 

occurs in a succedent in S, then at least 

one of the F. 
~ 

succedent in S; 

occurs as a successor to in a 

iii) if ~ F occurs in an antecedent in S, then F occurs 

as a successor to , F in a succedent in S; 

iv) if ~ F occurs in a succedent in s, then F occurs 

as a successor to F in an antecedent in S; 

v) if ~xFx occurs in an antecedent in s, then for every 

term t built up from constants, parameters, and func­

tionsymbols in T, Ft occurs as a successor to VxFx 

in an antecedent in s; and 

vi) if VxFx occurs in a succedent in S, then there is a 

term t such that Ft occurs as a successor to ~xFx 

in a succedent in s. 

ANALYZING TREE. A tree is analyzing if every branch is. 

Now in the classical theory we derive: 

ANALYZING LEMMA. To any sequent we can find an analyzing classi-

cal tree over it. 

Proof: 

See below. 

and then 
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FALSIFIABILITY LEMMA. If we have a not-secured analyzing branch 

B in a classical tree over r ~ ~, then we can find a falsifying 

model for r ~ ~ (i.e. a model in which all the formulae in r 

are true and all those in ~ false) 

Proof: 

Assume S as above. 

We construct the model as follows: 

The universe consists of allterms which can be built up from 

constants, parameters, and functionsymbols in formulae in s. 
An atomic formula is true if and only if it occurs in an ante­

cedent in s. 
By induction over the length of formulae we prove that every 

formula occurring in an antecedent in S is true in the model, 

every formula occurring in a succedent in S is false in the 

model. 

This gives the lemma. 

SOUNDNESS L~~\. For any sequent 
there are no falsifying models of 

Proof:. 

r ~ ~, if 
r ~ ~0 

By inductions over the derivations in LK. 

Q.E.D. 

then 

Q.E.D. 

COMPLETE1lliSS THEOREM. For any sequent r- ~ 9 ~LKr- ~ if 

and only if there are no falsifying models of r - ~. 

Proof : 

The soundness lemma gives the 'only if' part. 

Assume there are no falsifying models of r ~ ~. 

By analyzing lemma we have an analyzing classical tree over r- t. 
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By falsifiability lemma and the assumption all 

branches in the analyzing tree must be secured. 

By provability lemma 1- LKr ... t.. 

Q.E.D. 

CONSISTENCY THE0~1. For any sequent r ... t. we have exactly 

one of i and ii below 

i) a secured classical tree over r - t.. 

ii) a classical tree over r ... t. with not-secured analyzing 

branch. 

Proof: 

We have either i or ii by the analyzing lemma. 

We cannot have both since then both ~ LKr ... t. and not ~ LKr ... t.. 

Q.E.D. 

Our theory starts with the observation that the usual proofs of 

the analyzing lemma prove more than stated. We first give ~ 

proof of it: 

ANALYZING LEMMA. For any sequent we have an analyzing classical 

tree over it. 

Proof: 

We start with the one sequent tree consisting of the given 

sequent and then tack on new nodes. At each finite stage we have 

a finite tree. The limit tree will be analyzing. 

We have the following possibilities of tacking on new nodes: 



i) 

ii) r -> 

iii) 

iv) 

v) 

-

r1 ,r2,r1 ' .•• ,FN -> 

l 
i 
4 

r1,r2, If:.. Fi:,F1 -> 

r1 ,r2, MFi,&Fi -> 

r1,r2, MFi -> 

r1, If:.. Fj_, r2 -> 

12 

D. 

D. 

D. 

~ 

~ 

-

Here F1 , ••• ,FN are all the 
conjuncts of ~ F_1 • Vfe assume 
r 1 , M F i , r 2 ... 1::. to be at a top­
most node and then tack on the 
nodes to the left. 

F1 ,.ll1 '~2 --- r -> FN,~1'~2 Here F1, ••• ,FN are the 

r -> MFi,~1'~2 

r -> ~1 ' M F i' D.2 

r 1 ,r2 -> F,~ 

r 1 , r 2 , \lxFx, F t -> ~ 

r 1,r2 ,VxFx,YxFx ->D. 

->D. 

r 1 , 'VxFx,r 2 -> ~ 

conjuncts of M F_. 
-±· 

t is a term built up from 
parameters, constants, func­
tionsymbols in the tree 
constructed so far and also 
the constant e. Vle assume 
that there are noe formula 
Ft in the same strand as 
the Fx in VxFx in a node 

below r1, VxFx,r2 -> ~-



vi) r --> Fa,61 ,62 

r --> ~x,61,62 

r --> 61 ,VxFx,62 
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a is a parameter not in 

r -> VxFx,61,~2" If a is intro­
duced for .... V somewhere else, 

it is only as analysis for a for­
mula in the same strand and with 
the same analysis as VxFx. 

This completes the possibilities for tacking on new nodes. We 

come now to the construction of the analyzing classical tree. 

The construction goes by stages. It is easily seen that we tack 

on only finitely many new nodes at each stage. 

STAGE 1. Put down the given sequent as a one sequent tree. 

STAGE 3N-1. Apply possibilities i-iv above to extend the tree 

as many times as possible. 

STAGE 3N. Apply possibility v above with t a term of length 

~ N as many times as possible. 

STAGE 3N+1. Apply possibility vi above as many times as possibla 

This completes the construction. It should be clear that we get 

an analyzing classical tree. 

Q.E.D. 

We give two easy lemmata about the construction. 

L~l. Consider a topmost node in the tree we get after having 

applied one of the possibilities in one of the stages. Then for 

each strand and each analysis, there is at most one formula at 

the node in the strand with the analysis. 

LEMMA. If we have two occurrences in the resulting analyzing 

tree of a non-atomic formula in the same strand and with the same 

analysis, then in the construction of the tree the two formulae 

will be analyzed at the same stage. 
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Both lemmata are obvious by inspection of the construction. 

Now consider the definition of a classical tree. We strengthen 

it to define: 

STRONG CLASSICAL TREE. A classical tree is a strong classical 

tree if: 

parameters introduced by ~ V are equal if and only if we analyze 

quantifiers in the same strand and with the same analysis. 

The lemmata above enables us to strengthen the construction of 

the analyzing tree to get: 

STRONG ANALYZING LE~1A. To any sequent we can find a strong, 

analyzing, classical tree over it. 

Proof: 

We change the construction by: 

* STAGE 3N+1. Apply possibility vi with the extra proviso that 

formulae in the same strand and with the same 

analyses are analyzed by the same parameter. 

t 
The other~ages as before. 

The lemmata tell us that we can perform this construction. 

We clearly get an analyzing classical tree which is strong. 

Q.E.D. 
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4. SKOLEM THEOREM 

We come now to the Skolem theorem. First an example. 

EXAMPLE. We give a secured classical tree for 

-> -, Yx .., Vy ..., [Ay 1\ ..., Bx 1\ -, (Ax 1\ -,By)]. 

To save space we perform more than one rule in a step in a 

few obvious places below. 

The most important point about the example is to get some 

grasp on the function of the quantifiers. We indicate the 

nodes by numbers above the arrows. 



-, Bb ' -1 

Bb .11> Bb 

Aa 1..2.> Aa .1§.> Bb ' -, Bb 

Aa ll> Bb, .A.a A -, Bb 

(Aa A -, Bb) ,Aa ..12> 

Ac A-, Bb A .., (Ab A -, Be) ,1:: b A .., BaA , (Aa A-, Bb) ,AaA -, Be A-, (Ae 1\ -; Ba) .:!1_> 

1\ b A -, BaA -, (.Aa A .., Bb) ,Aa 1\-; Be A -, (Ae A --. Ba) ..l.l> 1 [Ac A -, Bb A , (.A.bA -, Be)] 

Ab A-, Ba 1\-, (Aa/\-, Bb) ,Aa 1\-, Be A-, (Ae 1\-, Ba) .:!..Q> \ly -; [Ay A-, Bb A-, (Ab A-, By)] 
~ 

-,\ly-, [AyA-,BbA 1 (AbA-,By)],AaA-,BeA-, (AeA-,Ba) _2_>-, [AbA-,BaA-, (AaA-,Bb)] 

\:lx-, \ly-, ~AyA.., BxA-, (AxA-, By)] ,Aa A-, Be A-, (Ae A.., Ba) ...§_> r [Ab A-j BaA-, (Aa A-iBb)] 
-

I _. 
0"1 

Yx..., Vy ~ [Ay,\., Bx/\-, (Ax/\-, By)] ,AaA.., Be 1\., (Ae/\-, Ba) l> Vy-, [Ay A-, BaA"":" (AaA.., By)] 

Vx -t Vy 1 [Ay A-, BxA ..., (Ax 1\ -, By)],·-, "ffy .., [Ay A -, BaA..., (Aa 1\-, By)] _§_> ., [Aa A.., Be A-, (Ae A-, Ba)] 

Vx .., Vy ..., [Ay A-, Bx 1\ -, (Ax A-, By)] 2...> ., [Aa A.., .Be A ..., (Ae 1\., Ba)] 

Vx ..., \ly -, [Ay A-, Bx A--, (Ax 1\-, By)] j_>'Vy-, [A.y A .., Be A-, (Ae A -, By)] 

t/x -; lty-, [Ay A.., BxA -, (Ax A..., By)], -, V'y -r [Ay 1\ -r Be A-, (Ae A .., By)] .2_> 

Vx .,. Vy 1 [Ay A.., Bx 1\..., (Ax/\ ., By)] _1_?: 

- 1->-, Vx~\/y..., [Ay A.:O.,Bx A-, (A.:x:A-,By)] 
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We will discuss our example informally. In the bottomsequent 1 

we have a restricted quantifier Vx and a general quantifier 

~y. The classical tree is strong, but certainly not analyzing. 

We do not analyze Vx with respect to c. The Vy's are used 

to introduce new parameters. We are allowed to have a new para­

meter whenever we have a new analysis of Vx. We introduce new 

terms for Vx in 2,5,8. Corresponding to these we introduce 

new parameters in 4,7,10. That is e.g. we introduce c for y 

in 10 to get , [Ac A~ Bb A~ (Ab A, Be)]. This formula 

succeeds ~ Vy, [Ay A 1 Bb A~ (Ab A ~By)] in 9 which we 

have got by introducing b for x. 

In 2 e for x and then in 4 

In 5 a for x and then in 7 

We can summarize. 

a for y. 

b for y. 

In 8 b for x and then in 10 c for y. 

We only introduce new parameters for general quantifiers in a 

formula when we have a new analysis of the formula. This will 

be made precise with the Skolem-functions we define below. There 

are two ways of regarding Skolem-functions, either as indices 

for parameters or as new terms. We do the latter. We will 

develop the Skolem theorem in a more general setting than usual -

not only as about transformations of sequents (or formulae) but 

as about transformations of classical trees. To do this we need 

a little notation. 

MORPHISM. A classical morphism is a transformation of classical 

trees into classical trees preserving the tree structure. A 

provability morphism is a classical morphism which transforms 

secured trees into secured trees. An analyzing morphism trans­

forms analyzing trees into analyzing treeso A falsifiability 



i) 

ii) 
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morphism transforms analyzing not-secured trees into analyzing 

not-secured trees. A classical isomorphism is a classical mor-

phism which is both a provability and a falsifiability morphism. 

The classical morphisms we use below will be simple. 

It will be clear that we preserve more than the tree-structure. 

Most of the rules are also preserved. The transformations will 

also be Quite constructive. We do not think it worthwhile here 

to express these things with a sharper definition of classical 

morphism. 

Our main example of a non-trivial classical isomorphism will be 

the Skolem morphism, ~ , defined below. For a one sequent tree 
.... 

it coincides with the usual Skolem transformation. Skolem de­

fined originally his transformation as a transformation to get 

rid of general quantifiers [8]. It is now more common to treat 

it as a transformation to get rid of restricted Quantifiers. 

This is more natural when one treats the Skolem theorem semanti-

cally. We will follow Skolem, but the other way can be read into 

our treatment by stressing the falsifiability aspect of the 

theorem. 

We assume that we have a way of denoting positions in sequents. 

SKOLEM TRANSFORM. Given a seQuent r- n. The Skolem transform 

Of r - n ·with .respect to the variable X and the pbsition TI, 

denoted by is defined as: 

if X does not appear as general variable Vx in position TI 

in r - t:., then sxcr- n) = r - n. 
TI 

Say X appears as general variable Vx in position TI in r-n. 

Let y 1 ' •. • 'YN (N ~ 0) be the variables such that the restricted 
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variables Vy1 , ••• ,VyN bind Vx in r ~ ~. Then get a new 

functionsymbol f with N argumentplaces, called the Skolem-

function of x in position n in r ~ ~- Vie get 

putting f(y1 , ••• ,yN) for x in the range of Vx and then 

delete Vx. 

by 

We get S(r~ ~), the Skolem transform of r ~ ~, by repeatedly 

applying Sx for various x and n until we get a sequent 
n 

without general variables. It is easily seen to be well defined 

except for the names of the Skolem-functions. 

SKOLEM,MORPHISM. Given a classical tree T over r ~ ~ we 

define ;:.: ~( T), the Skolem m~rphism of T with respect to x 

and n, by 

If X does not appear as general variable Vx in position n 

in r ~ ~, then ? ~(T) = T. 

Say X appears as general variable Yx in position n in r~ ~. 

Let f be the Skolem-function and say it has N arguments. 

To each occurrence of Vx in T in the same strand as n in 

r ~ ~ we assign a term f(t 1 , ••• ,tN) called Skolem term. Now 

fix such an Vx. Say that in the sequeni~ it occurs, it is 

bound by the restricted variables \lyM+1 , ••• ,VyN and that the 

Vx in position n is bound by the restricted variables 

Vy1 , ••• ,VyM' VyM+1 , ••• ,VyN. Now consider the analysis of the 

formula with the fixed Vx. Say we have analyzed y 1 as 

s 1 , •.• ,yM as sM. Then to the fixed Vx we assign the Skolem 

term f(s 1 , ••• ,sM' Y:rvr+ 1 ,.~.yN). We now get ~~(T) from T 

by putting the Skolem terms for x in the range of any occurrenre 

of Vx (in the same strand as n); then delete each such Vx; 

and lastly for each parameter a introduced by analysis of such 
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an Vx we put the Skolem term of the Vx for a whenever a 

occurs. 

EXAMPLE. Consider the sequent r ... b.= ... Vx , Vy ., \lz -,\tUR(x, y' z 'u) 

Say X appears as Vx in position 1T in r 

and z appears as Vz in position p in r 

Let X have Skolem-function f and y have 

respectively 0 and 1 argument. 

Then 

sx(r ... b.) = -> -, \/y ..., Yz .., \lu R(f,.y,z,u) 
1T 

szcr- a) = -> Vx ..., Vy , .., Vu R(x,y,gy,u) p 

s~(r- a) = sz(r- a) = sY(r- a) = r- a 
1T iT 

s (r ... a) = sx sz(r ... b.) = sz sx(r ... t.) 
1T' p p' iT 

= -> ..., Vy .., .., \IU R(f,y,gy,u). 

1T I iS the pOSitiOn Of 'o'x in s; ( r -o a) 

p 1 is the position of Vz in S~(r ... a). 

... b. 

... b.. 

g with 

Let T be the classical tree over r ... a below. To save space 

we have omitted some of the nodes. We indicate the nodes by 

numbers above the arrows. 



\ ... L 13 R(a,e,b,a), R(a,b,c,c), vu R(a,a,d.,u) -> 

12 Vu R(a,e,b,a), R(a,b,c,c) -->, R(a,a,d,u) 

VU R(a,e,b,u), ~ R(a,b,c,u) 11> ~~u R(a,a,d,u) 

~ R(a,e,b,u), ~ R(a,b,c,u) 12> Vz -,YU R(a,a,z,u) 

-, Vz -, Vu R (a, a, z, u) l> ., Vu R (a, e , b, u) , -, Yu R (a, b, c , u) 

., Vz -, Vu R (a, a, z, u) .§.._> ., Vu R (a ,-e, b, u) , \/z -, ~u R (a, b, z, u) 

-, Vz -, Vu R(a,b,z,u), -, Yz --.Vu R(a,a,z,u) ]_> 1 Yu R(a,e,b,u) 

Yy -, Yz ""1 Yu R ( a , y, z , u) _§_> -, Yu R ( a , e , b , u) 

Vy -,Yz ,\fu R(a,y,z,u) ~ Vz-, VU R(a,e,z,u) 

1 Vz-, ~ R(a,e,z,u), Yy, Yz., Vu R(a,y,z,u) .!..> 

Vy ., Yz 1 'Vii R ( a, y, z , u) l> 

1....>., Vy, Yz-, Yu R(a,y,z,u) 

-1-> Vx ..., Vy ., Yz ..., \/u R ( x, y, z , u) 

1\) 
....... 



We then get ~ z(T) 
p 

l/ 13 R(a,e,ge,a), R(a,ge,gge,gge), ~u R(a,a,ga,u) --> 

12 R(e,e,ge,a) , R(a,ge,gge,gge) -> -, \-U R(a,a,ga,u) 

Vu R(a,e,ge,u), YU R(a,ge,gge,u) l!> ,Vu R(a,a,ga,u) 

\ifu R(a,e,ge,u), \lu R(a,ge,gge,u) lQ> ,\lu R(a,a,ga,u) 

11 Vu R(a,a,ga,u) JL>, ~ R(a,e,ge,u), 1 Yu R(a,ge,gge,u) 

11 Yu R(a,a,ga,u) ~> ~ 'lu R(a,e,ge,u), ,\/u R(a,ge,gge,u) 

1, Vu R(a,ge,gge,u),, 1 Vu R(a,a,ga,u) ]_> ~~ R(a,e,ge,u) 

Vy, ~~ R(a,y,gy,u) ~> ,Vu R(a,e,ge,u) 

~ 1 ,Yu R(a,y,gy,u) ~> ,\fu R(a,e,ge,u) 

-, -, Vu R (a, e, ge, u) , Yy , -, Vu R (a, y, gy, u) j_> 

Vy , -, ~ R(a,y,gy,u) ~> 

_g_> -, Vy -, , Vu R(a,y,gy,u) 

..L> Vx .., Vy .., ""'\ Vu R ( x, y, gy, u) 

1\) 
f\) 
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Let us see how this fits the definition. Consider the occurrence 

of Vz in the antecedent of node 8. It has assigned Skolem 

term ga. It has as predecessor \lz in node 7 with Skolem 

term ga, Vz in nodes 6,5,4,3,2,1 with Skolem term gy. Now 

follow the \/z upwards from node 8. In nodes 9 and 10 it 

has Skolem term ga. In node 11 it has vanished. Instead we 

have the new parameter d. In going from T to ~~(T) we put 

ga for d. Similarly with the other parameters: 

the parameter 

the parameter 

the parameter 

a 

b 

c 

a 

ge 

gge. 

We delete all \lz and for each occurrence of z we put the 

Skolem term. 

We get ~(T) by deleting Vx and putting f for a and x 

in ~ ~( T). 

LEMMA. Let T be a classical tree over r ~ A. Consider the 

formulae containing no Yx in the same strand as an Vx in 

position n in r ~ 6. We get the corresponding formulae in 

~~(T) by a transformation of terms. If T is a strong classi­

cal tree, the transformation is 1-1. 

Proof: 

We only need to consider the new parameters introduced by an Vx 

(in the same strand as a general ~x in position n in r ~ 6). 

Since T is classical, the parameters introduced by the Vx 

are distinct from the parameters introduced by analysis of other 

variables. Parameters introduced by analysis of two occurrences 

are distinct if the occurrences have different analyses. If T 

is strong we get if and only if the occurrences have different 
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analyses. 

Since it is clear that the only difference between the formulae 

in T described and those in > ~( T) is the terms, we have the 

lemma. 

Q.E.D. 

LEMMA. 5 ~ is a classical morphism for all x and TT. 

Proof: 

Let T be a classical tree. 

~~(T) have the same treestructure. We must prove that it is 

a classical tree. 

The only problem comes in the applications of ~ Y. 
So say we have sequents below some place in T: 

r ~ Fa,!l 
r ~ \/yFy,ll 

a is a new parameter 

with y a variable not being affected by 2 x ?n· 
Since T is classical, a is only introduced by variables not 

being affected by ~~· Hence a is not being changed in going 

to ~~(T). r,F,~ must be changed in the same way in premiss 

and conclusion. So we have still an application of ~ V in 

~ ~( T). 

Now consider the sequents 

r ~ Gb,~ b is a new paramter 
r ... VxGx,!l 

with X a variable being affected. by ~ ~-
Say t is the Skolem term of Vx in the conclusion above, and 

r ~ VxGx, 6. is transformed to r* -o G*t,f:l*o Then r ... Gb,ll is 

also transformed to r* _, G*t,~* and we get an application of 
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the trivial rule. 

So the applications of ... Y are OK. ~ ~(T) is a classical tree. 

Q.E.D. 

LEJ.Vll'IIA $ ~ is a provability morphism for all x and rr. 

Proof: 

From the lemmata above we get that the secured nodes in T are 
.1 

transformed into secured nodes in S~(T). 

Q.E.D. 

LEMMA. Let T be an analyzing classical tree containing at 

least one restricted variable. Then every term built up from 

parameters, constants, and functionsymbols in T must actually 

occur in ~~(T). (For every x and rr). 

Proof: 

Assume not. 

Let T be an analyzing classical tree containmg at least one 

restricted variable. Then every term built up from paramters, 

constants, and functionsymbols in T must occur as an analysis 

of the restricted variable in T. 
-t: 

Let t be a term built up from parameters, constan~s,and func-

tionsymbols in ~ ~( T), and not occurring itself in ~ ~( T), and 

of minimal length. 

Then t must be of the form f(t 1 , ••• ,tN) when f is the Skolem 

function of \/x and N 

must occur in ~ ~(T). 
> o. By the minimality of t, 

There must be terms 

which are transformed over into t 1 , ••• ,tN 

is analyzing there must be a formula \lxFx 

s1, ••• ,sN in T 

in ~~(T) • Since 

in succedent with 

analysis s 1 , ••• ,eN of the restricted variables binding ~ in 

T 
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the bottom sequent. We analyze YxFx with Fa in T where a 

is a new parameter. In going from T to ~ ~(T) a is trans­

formed into f(t 1 , ••• ,tN) and hence t = f(t 1 , ••• ,tN) does 

occur in ~ ~( T). Contradiction. 

Q.E.D. 

LEMMA. ~ ~ is an analyzing morphism for all x and IT. 

Proof: 

Let T be an analyzing classical tree and assume we have a 

c'!(T). branch S which is not analyzing in ~ " There must be a 

term t built up from parameters, constants, and functionsymbols 

in ;;~(T) and a formula 'iyF*y in an antecedent in S in 

~ ~(T) but with not F*t in an antecedent in s. In T say 

the formula corresponds to ~yFy. 

By the lemma above t must actually occur in S ~( T). Hence 

there is a term s in T which are transformed over into t 

in $ ~(T). 
Since T is analyzing Fs occurs in an antecedent in S in T. 

In the transformation to >~(T) Fs gets over into F*t. Hence 

F*t ooccurs in an antecedent in S in T. 

Contradiction. And we get ;;~(T) analyzing~ 
Q.E.D. 

LE~WUt. Let T be a classical tree which is strong, not-secured 

and analyzing. Then for every x and IT ;;~(T) is not-secured. 

Proof: 

Assume s is ~ branch which is not secured in T but secured 

in $ ~(T) • 
Let \) be a secured node in 13 in ~ x(T). 

IT 

~~(T). Say at \) we have the sequent r*,At ... At,6* in 
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Then in T either both At's correspond to atomic formula or 

the one in the succedent is ~xAx while the one in the ante-

cedent is atomic. 

Take the first case. 

Since T is strong, atomic formulae in T are transformed into 

formulae in ~ ~(T) by a 1-1 transformation of terms. Hence 

~ is secured in T in this case. 

Now the second case. 

We will prove that this cannot occur. The sequent at ~ in T 

must be of the form r,Ab ~ VxAx,6. By the assumption YxAx 

must be analyzed with a formula succeding it and using the para­

meter b since T is strong. But this contradicts the parameter­

condition in ~ Y. 
We get ~ secured in T which is a contradiction. 

Hence $ ~(T) is not secured. 

Q.E.D. 

LEMMA. S~ is a falsifiability morphism for every x and rr. 

Proof: 

Let T be a not-secured analyzing tree over r ~ 6. 

Then >~(T) is analyzing. 

By the strong analyzing lemma and the lemma above we can find an 

analyzing classical tree T* over r ~ 6 with Sx(T*) not-
rr 

secured if T* is not-secured. 

By consistency theorem T* must be not-secured. 

Hence ~x(T*) not-secured. 
- TT 

It is also analyzing since T* is. 

We have an analyzing not-secured tree over 

By consistency theorem ~ ~( T) must be not-secured. 

Q.E.D. 
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Putting the lemmata together. 

THEOREM 

We can also 

~x is a classical isomorphism for every x and 
1i 

define a morphism >' by repeated applications of 

n. 

>~ for various X and n. It is well defined except for the 

names of the Skolem functions. Using % we get rid of all 

general quantifiers in a classical tree. 

THEOREM. ~ is a classical isomorphism. 

We get the ordinary Skolem theorem by considering what happens 

with the bottom sequent. By the completeness theorem and the 

analyzing lemma we get 

THEOREM. For any r,~ 9 x,rr 
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5. HERBR.fl.ND THEOREM 

Now having got rid of the general quantifiers we try to get rid 

of the restricted quantifiers. To do this we construct the 

Herbrand morphisms. It is certainly impossible to get a classi­

cal isomorphism to get rid of all restricted quantifiers. We 

would then get a decisionprocedure for provability in LK. We 

will construct a sequence of falsifiability morphisms which "in 

the limit 11 is a provability morphism. 

HERBR.L\.ND DOMAIN. A set fb of terms is an Herbrand domain if 

for any finite set of parameters, cons~ants and functionsymbols 

the set of terms built up from them and in fJ is finite. 

HERBRAND TRANSFORM. Let [i) be an Herbrand domain, x a vari-

able, n a position. We then define the Herbrand transform of 

a sequent r ~ 6 with respect to ~,x, and n, denoted by 

Hxm(r--t::.), as n, ou 

i) If r ~ !::. contains a general variable or if ~x does not 

occur as a restricted variable in position n then 

Hx a-. ( r~ t::. ) = r ~ 6 • 
n' ..u 

ii) Now assume r~ 6 contains no general variables and Vx 

occurs as a restricted variable in position n in r _. t::.. 

Let ~ be the finite subset of iJ of terms built up from 

parameters, constants, and functionsymbols in r _. 6. We get 

Hx ~ (r_. !::.) from r ~ 6 by replacing \lx in position n by 
n' QI.J 

HERBRAND MORPHISM. Let !lJ be an Herbrand domain, x a variable 

and n a position. For T a classical tree over r- !::., we 
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define the Herbrand morphism on T, J£X 01 ( T) , by: 
,. , oi.J 

i) If either r ~ ~ contains a general variable or 'lx does 

not occur as ·a restricted variable in position rr in 

r ~ ~, then Jtx a-. (T) = T. 
,. '&J 

ii) Now assume r ~ ~ (and hence also T) contains no 

general variables and that ~x occurs as a restricted 

variable in position rr in r ~ ~. Let ~0 be the 

finite sub set of &D built up from constants, variables 

and functionsymbols in r - ~- vle then get Je~,~ by 

a) Replace every Vx in T in the same strand as the 

Vx in position TT in r - ~ by If.\ 
xE o:§l>0 

b) If a formula F in T succeeds a formula Gt which 

again immediately succeeds VxGx with Vx in the 

same strand as the 'rlx in position TT in r - ~ and 

t ~ i:Jo' then delete F. 

c) For every other formula not affected by a or b 

we do not change it. 

Jf9J is the morphism and 
. - . 

H~ the transform we get by repeated 

applications of J€ x 0"\ and Hx "' for various x and rr. Let 
TT , .;v TT , cy.j 

)Dn be the set of terms of length $ n. &On is an Herbrand 

domain. We write Hx H 117X 10 
TT n ' n' ~TT n ' ~n 
' ' 

for 

J{~ ~ ' 'oun 
JE~. 

n 

EXAMPLE. This is a continuation of an old example we had on a 

Skolem morphism. We had a classical tree T over 

- \lx .., Vy -, Vz -., Vu R ( x 9 y, z, u) • Let T* be tree over 

--, Vy 1 -, Vu R(f,y,gy,u). T* = ~ ( T). Say Yy have ppsition 

(j in -, ~y..,, VU R(f,y,gy,u). 
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We .then have Jf"fr, ( e, f} ( T*) = Jf "fr, 1 ( T*) = 

( ) "' 13 R f,e,ge,f , ~u R(£,f,gf,u) --> 

R(f,e,ge,f) 12 
--> ~ Vu R(f,f,gf,u) 

Yu R(f,e,ge,u) 11 v -->, u R(f,f,gf,u) 

-, -, 'Ju R(f,f,gf,u) 10 ~ -->-, u R(f,e,ge,u) 

M ., , Vu R(f,y,gy,u) JL> -,Vu R(f,e,ge,u) 
yE(e,f1 

1'1:1. -, -,Vu R(f,y,gy,u) ~>-, Vu R(f,e,ge,u) 
yE(e,f1 

, , Vu R(f,y,gy,u) 
7 . 

M --> ~ Vu R(f,e,ge,u) 
yE(e,fl 

ti 
~ -,-, Vu R(f,y,gy,u) --> -, Vu R(f,e,ge,u) 

yE(e,f} 
1'1:1. ..., , Vu R(f,y,gy,u) ~> -,\/u R(f,e,ge,u) 

yE(e,f} 
., -, VuR(f,e,ge,u), ~ · ., ~ Vu R(f,y,gy,u) .±._> 

yE·{e,~} . 
~ -,-, Vu R(f,y,gy,u) ~> 

yE (e,f} 
2 y, -> -, IJ\ -, ..., u R ( f, y, gy, u) 

yE(e,f] 
_!_> -, lA ~ ., 'v/u R ( f, y, gy, u) 

yE ( e, f} 

LEMMA. Ji~,5:1, ~' Jf~ 1 n and Jin are classical morphisms. 

Proof: 

Obvious from definition. 
Q.E.D. 

LENMA. Je. ~, 3J , JfJ) , J£ ~, n and Jf,n are analyzing morphisms. 

Proof: 
Obvious. 

Q.E.D. 

The following obvious lemma is the crucial step towards the 

Herbrand theorem. 
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LEMMA. Let ~1 ~ £02 , T,y,n be given. Consider the formulae 

not containing a part in the same strand as the position n in 

the bottom sequent. Call those n-formulae. Then for any node v-

the n-formulae in antecedent (succedent) at v in JE Y f) (T) 
n, 1 

c the n-formulae in antecedent (succedent) at v in JR. Y 0\ ( T ) 
TI I ft/2 

c the n-formulae in antecedent (succedent) at v in T. 

There is a finite set of terms ~3 such that 

the n-formulae in antecedent (succedent) at v in Je~,~(T) 

= the IT-formulae in antecedent (succedent) at v in T. 

From the lemma 

THEOREM. For any x, y, n, !JJ , i)1 ~ ~2 
1. J..f~ /!) is a falsifiability morphism. , 
2. J-f~, g) 1 (T) secured => x (T) secured 

n,flJ2 

3. If T is secured we can find finite 

secured. 

[ Similarly for J£ 3J , J-en, }f,~, n] . 

with ;ex a., ( T ) 
TIt QU3 

For the proof of 3 in the theorem we only need to note that if 

T is secured we can find a finite secured subtree of T over 

the same sequent. 

Using the completeness theorem and disregarding everything except 

the bottom sequent we get the usual Herbrand theorem. 

THEOREM. For any sequent r - ~ 
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6. EQUALITY 

We come now to LK with equality, LK -. We add = to the 

language and as extra axioms 

r= s, Arr- Ars and r= s, Ass -Ars 

with Ars atomic. We have written Arr, Ass, Ars to indicate 

that we substitute r for s or s for r in some but not 

necessarily all occurrences. We write I for derivability r LK= 
in LK=. 

Now we can develop the theories above for LK= with very few 

changes from LK. We define secured in LK = as an extension of 

secured in LK to include the new axioms. The morphisms are 

defined as before. To show that 5 is a provability morphism 

in LK = we only need to note that the axioms are still axioms 

after a transformation of terms. 

THEOREM. ~ (and ~ ~) is a provability morphism in LK = • 

Since we do not change the rules, >is an analyzing classical 

morphism in LK= • As in LK the following is the crucial step 

to prove that ~ is a falsifiability morphism in LK = • 

LEMMA. Let T be a strong analyzing tree such to every general 

quantifier formula VxFx in T, there is an Fa with a para-

meter in T and YxFx precedes Fa. Then if T is not secured 

in LK= ' 
then also ~ ~(T) for any y,n. 

Proof: 

Assume we have a branch S , not-secured 

secured (LK=) in ?~(T). 
( LK = ) in T but 

Let v be a secured (LK = ) node in S 
) 

in ? ~ (T). 
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Say at v we have a sequent in S~(T): 

r = s , Arr .... Ar s • 

If the sequent in T only had atomic formulae, we would have v 

secured (LK= ) in T, since atomic formulae in T go over into 

atomic formulae in > ~(T) by a 1-1 transformation of terms. 

So suppose the sequent in v in T not only had atomic formulae. 

The only possibilities are 

r'= s', Ar'r' .... Vy Ar'y 

or 
r'= s', Ar' r' .... \/y Ays'. 

But then either r' or s' must be the parameter which we are 

supposed to use in the analysis of Yy further up in T. This 

clearly contradicts the parameter condition in .... Y. 
So we have a contradiction. 

We conclude 5 ~(T) not-secured. 

And we get 

THEOREM. >is a falsifiability morphism in LK=. 

(The same with ~ ~·) 

THEORID1. > and 5 ~ are classical isomorphisms in LK= 

Q.E.D. 

The whole chapter on Herbrand theorem in LK can be carried over 

without change. 

THEOREI'-1. In LK = we have 

1. Jf~,3J, JPJJ, Jf~,n , J.ln are falsifiability morphisms. 

2. If J£3)(T) is secured and :iO ~ e: then Jfe:(T) also. 

(Similarly with JDX wx LiJ ) 
rf[ TT , :f) ' t1L TT , n ' 4'-n • 

3. If T is secured, we can find finite g) with J.£JJ ( T) 

secured. 
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7. CONCLUSION 

In their paper on Herbrand-style consistency proofs [3] Dreben 

and Denton formulated the Herbrand therorem as: 

(a) There is a uniform way to find (primitive recursively) a 

tautologous validity expansion for any logical theorem A 

from any logical proof of A. 

(b) There is a uniform way to find (primitive recursively) a 

logical proof for a formula A from any tautologous 

validity expansion of A. 

I think that the notion of morphism explains this uniformity in 

a nice way. By a slight change of the theory above the construe-

tive aspect becomes more transparent. Namely change ii in the 

definition of classical tree to become "--- somewhere in the 

branch through the node;u instead of"--- somewhere in the tree". 

The morphisms defined will then be such that the transformation 

of a node depends constructively on the node and the nodes below 

it. - Our reason for not doing that is that the theory of the 

Herbrand morphism becomes slightly more clumsy. J{ will then 

not necessarily be a falsifiability morphism. Instead we could 

prove that for any sequent r ~ 6 if ~ is a secured tree over 

HID (r ~ 6), then we can find a secured tree J over r .... 6 

with Jt~ ( T) = tj*. 

The Herbrand theorem is usually formulated by the Herbrand expan­

sions. We get those by taking the prenex normalform of the 

Skolem transform and then taking the Herbrand transforms of that. 

The reason for not working with Herbrand expansions is of course 

that it destroys the uniformity expressed by the morphisms. 
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