
Isometries on Irreducible Triangular 

Operator Algebras 

Alan Hopenwasser 

In [1] Arveson associates a norm closed irreducible triangular 

operator algebra to each ergodic, invertible and measure preserving 

transformation of the unit interval with Lebesgue measure. He then 

proves that two such transformations are conjugate if and only if the 

associated operator algebras are unitarily equivalent. The purpose 

of this note is to describe the situation in which the associated 

operator algebras are merely assumed to be isometric. It turns out 

in this case that either one of the transformations or its inverse is 

conjugate to the other. 

Let ~ be the Hilbert space L2 [0,1] with respect to normalized 

Lebesgue measure m. Let ~ be the maximal abelian von Neumann sub­

algebra of ·~ (J{) consisting of all multiplications by bounded measurable 

functions. Since the projections in ?rL correspond to the characteris-

tic functions of measurable subsets of [0,1], we may lift the measure 

m to a measure on the Boolean algebra of projections in 110. We may 

then define a •-automorphism a of 17t to be measure preserving if 

m(a(P)) = m(P) for ea.ch projection P in f?rL and to be ergodic if 

a(P) = P only for the projections 0 and I. Two ergodic measure 

preserving ~-automorphisms a and a are conjugate if there is a 
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*-automorphism T such that 1" o a. = f3 o 1". There are other 

essentially equivalent settings for ergodic theory, but for the 

purposes of operator theory this one is particularly convenient. 

Since ~ can be identified with 1~[0,1], a measure preserving 

ergodic *-automorphism a. of m gives rise to a multiplicative 

and 1 2 -norm isometric linear mapping of L~[o,~ onto itself. 

This mapping has a unique extension to a unitary operator Ua. in 

~(~) and ua. has the property that a.(A) = Ua.Au: for all 

A£o/~. Any other unitary operator V with the property a.(A) = 

VAv* for all A E. f'J'YL is of the form V = Ua.M, where M is a 

unitary in~. See [1] for more details. 

In [4] Kadison and Singer proved that the algebra of operators 

df(a.) generated by 1n and Ua. is an irreducible triangular algebra. 

(By irreducible we mean that the only closed subspaces of ~ left 

invariant by the algebra are ':It and ( 0). An operator algebra r 
is triangular if 6{' () :.T* is a maximal abelian sub algebra of ~ edt.).) 
In [1] Arveson proved further that the norm closed algebra q{{a.) 

generated by 112 and Ua. is also triangular. He then obtained the 

following theorem 

Let a. and f3 be ergodic measure preserving *-automorphisms 

of m. Then a and 13 are conjugate if and only if there is a 

unitary operator w such that tj( a) = W o/( 13 )W:k 

We should also remark that the relation a(A) = U AU * a a 

implies that the 
k 

form i: A Un 
n ' n=O 

algebra 

where 

~(a) 

A € ?r?. • n 

consists of all elements of the 
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Lemma. Suppose v is a unitary operator in g{a) such 

that m and v generate qf(a) as a norm closed algebra. Suppose 

further that VAV*t. rm_ for each A€. 9'YL • Then there exists a unitary 

operator ME. ern such that V = U M .. 
(l 

Proof. Let cr be the automorphism of ~ into itself defined 

by * cr(A) = VAV • (That cr is surjective follows from the fact 

that v* AV~<ht whenever A EQ!n. And this in turn is shown by 

observing that both v*Av and its adjoint commute with every 

element of m' which is maximal abelian.) To prove the lemma 

it will suffice to prove that cr is freely acting in the sense 

that for each non-zero projection p in fYYl there exists a pro-

jection Q in rm, 0 '# Q ~ P, such that cr(Q) is orthogonal 

to Q. This is suffcient because the corollary to lemma 1. 7 in 

applies in exactly these circumstances to give our lemma. 

[1] 

Suppose cr is not freely acting. Then there exists a pro­

jection P '# 0 in ~ such that for each non-zero sub-projection 

Q of P, the projections Q and VQV* are not orthogonal. Since 

any sub-projection of P 

P '# I. Now P and VPv* 

retains this property we may also assume 

are a pair of 

(both lie in ftYt ) , so we may write VPV* 

both summands are projections. Let R = 

commuting projections 

= PVPV* + (I-P )VPV*, where 

(I-P)VPv* and let s = v*Rv. 

Then S is a sub-projection of P with the property that S is 

orthogonal to vsv*. Therefore we must have S = 0 and hence 

R = o. So we obtain vpv* = PVPv* and, after multiplying on the 

right by V, we finally get VP = PVP. Thus P is left invariant 

by v. Since P is left invariant by each operator of 17& and V 
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is left invariant 

U • Therefore 
a 

But a is measure preserving so we must have 

by each element of 

* a(P) = U PU < P. 
a a -

a ( P ) = P • This 

contradicts the ergodicity of a, and thus a must be freely 

acting. 

Theorem. Let ¢: f!(a) + t"(s) be a linear isometry of 

!{(a) onto ff(S) such that ¢(I) = I. Then either a is 

conjugate to s a is conjugate to -1 or s • 

Proof. Let c*<ff<a)) denote * the C -algebra generated 

by £((a). Then c*(~(a)) is the norm closure of the linear subspace 

f!'(a.) + fl(a)*. (This is seen immediately by observing that the 

algebra generated by lYY'L>, U , and U * is contained in a a. 

~(a) +~(a)* and is dense in the c*-algebra.) We may therefore 

apply proposition 1.2.8 of [2] to conclude that ¢ has a unique 

extension to a positive linear map w from c*(~(a)) into 

c*<eT<s)). In the same fashion <P 
-1 has a unique extension to a 

positive linear map e of c*< ~-< s)) into c*<fr'<a)). Since 

e ow is a bounded self-adjoint linear map of c* (~(a)) into 

itself which agrees with the identity mapping on gCa) + fi(a)*, 

8 oW is the identity mapping. Likewise W o 8 is the identity 

on c*(~(S)). Therefore 8 = w-l and w is an order isomorphism 

of c*(~(a)) onto the irreducible c*-algebra c*(~(S)). By a 

theorem of St¢rmer, (3, Theorem 6.4j, it follows that ~ is either 

a *-isomorphism or a *-anti-isomorphism. 

In either case ¢(flirt.) = 'WI.. Indeed, since ¢ preserves 

adjoints, ¢('h(.) is a self-adjoint sub-algebra of ~(S). But 
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then the triangularity of frc a) implies that 

the same argument ¢-1 cm.) c.rrfl. also, and hence 

¢(rrt) c rm. 
¢('17L) = ~. 

By 

We also have, regardless of whether w is a *-isomorphism 

or a ~-anti-isomorphism, that ¢(Ua) 

rg( a) with the property that ()?'L and 

is a unitary element in 

¢(U ) generate ~(S) 
a 

as 

a norm closed algebra. We may apply the lemma as soon as we observe 

that ¢(U )A ¢(U ) !k lies in m for each A in tn1. But a a 

Ua¢-1 (A)U * = a(¢-1 (A)) is in~ for each A in 1rt, and 
a 

hence ¢(Ua)A¢(Ua)~ = w(Ua)w(¢-1 (A))w(Ua)~ = w(Ua¢-1 (A)Ua*) 

= ¢(U ¢-1 (A)U *> is in0#L. So, applying the lemma, we obtain a a 

¢(Ua) = UaM for some unitary M in~. 

We now treat separately the isomorphism and anti-isomorphism 

cases. 

Case 1. w is an isomorphism. Then ¢I?YV implements the 

conjugacy of a and a. Indeed, for any A€. ?r1, 

= w(U )w(A)w(U )*= ¢(U )¢(A)¢(U )~ a a a a 

Thus ¢ o a = !3 o ¢ on ~ and a is conjugate to a. 

Case 2. w is an anti-isomorphism. Then ¢1'1'11 implements 

the conjugacy of a and s-1 • Again, for any Ae~ 

¢ oa(A) = ¢(UctAUa*) = lJi(UaAUa*) = w(Ua.)*t/J(A)w(Ua) 

= ¢(Ua)~¢(A)¢(Ua) = M*u 8*¢(A)USM 
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Since u8*¢(A)US belongs to 1rt it cownutes with M, hence 

¢ o a(A) = US *cp(A)US = S-l o ¢(A). Thus ¢ o a. = s-1 o¢ on 'Yrit and 

a. is conjugate to -1 a • 

Remark 1. ~(a) is always isometric and anti-isomorphic 

to rca.-1 ). Indeed, if for each f in L00 [0,1) we let Lf 

denote the operator "multiplication by f" then 1n= {Lflft: L00 [0,1] }. 

Transfer a to an L2 -norm isometry of L00 [0,1] onto itself by 

letting a(f) be the unique element of L00 [0,1J such that 

La(f) = a(Lf). Then a(f) = a(f) 

f € 1 00 [o ,1]. Consequently we have 

and U (f) = a(f) for each 
a 

u (f) = -u-(~f~) and, by 
a a 

iteration, for each positive integer n. 

No\<! suppose 
k 

T = I: 
n=O 

with We claim that 

R = 

that 

k 
!: 

n=O 

* R = 

has the same norm as T. 

1~ Un has the same norm as 
gn a 

It will suffice to prove 

T. But for any vector 

f in 1 2 [0,1] o. routine calculation shows that IIT(f)ll = IIR*(f) II, 

and hence II T II = II R~ II· 

Define a linear mapping ¢ from the algebra Sc a.) onto the 

algebra :fc a. -l) by the formula 

(Ua.)-1 u 1 U * -1( ) we see that Since = u and = a. Lg 
-1 a.-l g a.-1 a. 

k k 
¢( I: L un) = E u-n Lgn· Therefore ¢ is an isometry and 

n=O gn a. n=O a. 
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consequently has an extension to a linear isometry of V'(a) onto 

g-ca-1 ). To prove that the extension is an anti-isomorphism we 

need merely show that ¢ is an anti-isomorphism and this follows 

easily once we show that for any 

A, B £W1 and m,n positive integers. But 

Remark 2. Anzai [3] has constructed an example of an ergodic 

measure preserving *-automorphism a with the property that a is 

-1 not conjugate to a As a consequence of this and the remark 

above the possibility that a might be conjugate to s-1 but not 

conjugate to S cannot be eliminated. 
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