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Abstract

Inductive limits of ascending sequences of finite
dimensional C*-algebras are studied. The ideals of such
algebras are classified, and a necessary and sufficlent
condition fbr isomorphism of two sucl. algebras is obtained.
The results of Powers concerning factor states and represen-
tations of UHF algebras are generalized to this case. A
study of the current algebra of the canonical anticommuta-

tion relations are then being made.



Introduction.

In this paper we study C*-algebras which are the uniform
closure of ascending sequences of finite dimensional C*-algebras.
We call these algebras approximately finite dimensional (AF).
Similar classes of C*-algebras have been studied before. In [6]
Glimm describes the C*-algebras which are the uniform closure
of strictly ascending sequences of full n xn matrix algebras,
all having the same unit (uniformly hyperfinite algebras). In-
[M] Dixmier removes the assumption that the matrix algebras have
the same unit (Matroid C*-algebras). In the study of quantum
mechanical systems with an infinlte number of degrees of freedom
the study of unductive limits of nets of factors and their
locally normal representations plays an important role, see e.g.
[10]. |

The main algebraic feature which distinguishes the AF alge-
bras from UHF algebras and matroid C*-algebras is that the latter
algebras are always simple, while this 1s not the case for the
former in general. In fact the ideal structure, and even the
primitive ideal structure of an AF algebra may be fairly compli-
cated, and it seems that the structure space of en AF algebra may

have almost all kinds of topological degeneracies, see e.g. 5.9.

The AF algebras overlap, without exhausting, a great range of
the kinds of C*-algebras which have been systematically studied,
for example there exist nontrivial AF algebras which are liminal,
postliminal, antiliminal, UHF etc. As the AF algebras are rela-
tively simple to handle without being trivial, they are especially

well suited to test conjectures and to provide examples in the
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theory of C*-algebras, and I think their principal interest
lies herein. As shown in paragraph 5 they may alsc have some

interest in physics.,

We give a brief outline of the paper. In paragraph 1 the
major tool for analyzing an AF algebra, the diagram, is introduced,
(1.8) and a graphical representation which easily reveals the pro-
perties of a given AF algebra is devised. In paragraph 2 we
give an alternative characterizaticn of AF algebras (2.2), and
prove a necessary and sufficient condition for isomorphism of two
AF algebras (2.7). In paragraph 3 the ideal structure of an AF
algebra‘is analyzed (3.3), and thus a criterion for simplicity
appears (3.5). Then the primitive ideals of an AF algebra are
characterized (3.8), and by means of this result and the diagram
the topolcgy of the structure space of a given AF algebra may be
found. In paragraph 4 criteria for a state to be a factor state
is given (4.4), and we find conditions for quasi equivalence cf
two factor representations (4.5). Then a necessary and sufficilent
condition for algebraic equivalence of certain representations
of an AF algebra 1s proved (4.12), and a corollary to this result
is that the automorphism group of an AF aigebra acts transitively
on those states of the algebra whose associated Gelfand-Segal
representation are faithful (4.15). Another corollary is a simple
characterization of the pure states of an AF algebra (4.16). 1In
paragraph 5 the results of the foregoing paragraphs are applied
to a specific example, the current algebra or the observable
algebra of the algebra of the canonical anticommutation relations.

The most striking result obtained is a classification of all the



irreducible representations of the current algebra wlth kernel
# {0}. (5.6). These representations are in a natural way
divided into two series, one of which 1s obtained by decomposing

the Fock representation and the other by decomposing the anti-Fock

representation (5.9).

I wish to thank my supervisor Erling Stgrmer. Without his
many helpful suggestions this work could not have been done. In
paragraph 2 I lean heavily on the results of Glimm in [6], and

in paragraph 4 on the work by Powers in [12].
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1. Definition and elementary properties of approximately
finite dimensional C*-algebras.

1.1, Definition. A C*—algebra. Ol 1is called approximately

finite dimensional (AF) 1f ot has a unit e, and there exists
an increasing (with respect to inclusion) subsequence <(Rh>n=l,2,-°-
of finite dimensional subalgebras of OUL, such that OU is the norm

closure of U GLn i.e.
n

oL = L_}(ﬂrl

Il

1.2, If & and an is as in 1.1, then Ol + Ce trivially
is a finite dimensional C*-subalgebra of O1l, and 62n c OLn

+ Ce Eiczh+l +Ce. We may therefore assume that each Cln

contains the unit of OL , and this 1s done in all what follows.

1.3. If <<31n>n is a sequence of finite dimensional C*-

algebras, and o ¢ Gln > fﬂh+l are morphisms, and each o, are

injective and maps the unit of OLn into the unit of OTn+1’ then

the diagram

O3 Q2 '

has a certain inductive limit or by [4]. The algebras Ot =~ may

be considered as subalgebras of ¢t, Then JL=U O, and since

n
each OTn has the same unit e and multiplication 1s norm continuous
e 1s a unit in <9t . Hence Ot is AF, and each diagram of the

considered type gives rise to an AF algebra.

1,4, In all what follows, the expression



I = Uot, (resp. B = UBn ete. )
n

will mean:

" ey

Ol (resp. B) is a AF algebra, and {OZn>n=l’2__.(resp.<$n>n=l’2°°.)
is an increasing sequence of finite dimensional subalgebras of

ord (resp.«25) all containing the identity of U (resp.JB), such
that O = [J¢f (resp. %K = U g,
n n _ n n

If O = (%125 and e 1is the unit of Ol, we set, for convenience,

CZO - Ce  so that UZC __C_ OZI E Ozzg eoceo and at= nL:JOOLn.

1.5. et o =Y , B=URB . Then it is trivial to
*
verify that OLQ@® 93 =U(0Zn@53n), and ﬂév@ = (h, (Ozn®%n)-
n

Let Or = {JOU , and let p Dbe a morphism of OZ onto a C*—algebra
n n

% . Then, since le(x)|l <l x|l for all x € OT we have that

9 eg p(qu). Since Cﬂh is finite dimensional gbn = p(0L)

is a finlte dimensional C*-subalgebra of 55, and since p maps the

unic of O, into a unit of 9B, 9B is AF.

It follows that the class of AF algebras with their morphisms
form a category which is closed under finite sums and tensor pro-

ducts.

1.6. We introduce some notation which will be standard in what

follows. Let dl= (JJ[ . Then each OZn is a finite dimensional
n n

C*-algebra with unit e. It is then well known that OZn' is a

direct sum of finite dimensional factors:




M(nk)

The symbol (nk) serves to label the factor M(nk) < gy, The

‘square root of the dimension of M(nk) 1s denoted by [ﬁ] such that
L

~ . n n
M(nk) =M nl e where n is the full [k]x[k] complex
k ~ k
matrix algebra.
. _ (nk) - i
We let e denote the maximal projection in M(nk)' It is
then well known that the e(nk); k=l‘a~-nn, are the minimal pro-

Jections of the center of ag and we have that

“n
e = ) e (1K)
k=1
n
We will let {e(nk)}[k denote a set of matrix units for M
ij i,j=1 (nk)"*
ﬂ] n
We will say that e(nk)g j=1 €C% is a set of matrix units for
- ..
(nk)
6111 if the eij 's span dzn linearly, and satisfy
; o(nk) (np) _ (nk)
1 13 sq ka Jjs €
(nk)x - (nk)
11) ©13 = °n
We always choose the indexes such that e(nk) £ M » 1.e. such
n ij (nk)
(nk) .
that e 13 }1,j=l are matrix units for M(nk) in the usual sense.
If the ei?k)'s satisfy 1) and ii) without necessarily spanning
J

czn they are said to be matrix units in Ogl.
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1l.7. We now shall study how one finite dimensional C*-algebra

may be embedded into another.,

n
n
Proposition: Let ot_= ® M , h=1ly42, be two finite
n oo (nk)
dimensional C*—algebras with the same unit e, and suppose that
o, < OZZ. Let {ejg.'k)} be matrix units for C)ld. Then there exist

unique non-negative integers Ny k=1,e2°3n,, 1i=1 *esn and

(2k)
13 )

there exist matrix units {e for (ﬂ; such that

nénk
(1) efX) o gt T o(2a)

e

iJ L L k-1 k-1

q=1 m=1 1J _ . 1] _

(L SRHEE 1)nqk+1><p§lnqp[p +(m-1)ngye+)

(In unformal,but more illuminating language this proposition says:

n
k

-

nNn
If we identify < with ® M
n k=1 I- cP

] and define qu = Mq®«:1

then the embedding of 671 into 0{2 is of the form

63 n,;
n . M
k=1| 1z1 % [i]
n,
where we identify & n M with a subalgebra of M .)
iz Kol 2
i Lk
n
Proof: Let o be a isomorphism of (7 onto ® Mr ;, and let
n k=1 B
H
B =0, 00; . Then B is an injective morphism of Mp,7 into
&y
n, k)
M
- 2l
k=1 [k]
Define B, = az(e(2k))6. Since az(e(zk)} is a central projection

N, ni
in ® Mr,q, B8, 1is a morphism of & M into Mg,q7, and we
B 1 [3] H
- k




nj n;
have B(x) = @ B8, (x), xe @ Mroq.
k=1 k=1 [k]

From [2], Ch.I, § 4, Th.3 it follows that B, has the form

6k = ¢35 00, 00, where ¢; 1is an ampliation, ¢, 1s an induction
and ¢3 1is a spatial isomorphism. There exists a Hilbert space «
such that ¢,(x) = xQ® I ; x€0a,(0,), so ¢; transforms

ni
@1(0l1) onto the algebra o;(01,) @CI_= (@ M, )y ®CI =
K p=1 [_l K
o) -
= (Mp
p=1 [1

@GEIK). The commutant of this algebra~is
g

A [1] @B(K). As ¢, is defined by a projection in this
p:
clP

commutant, ¢, o ¢ transforms @ M 1] into an algebra of the form
H
P

n,
® M 1 ®CI n Since this algebra is transformed into M 5
p=d [p] ¢ P [k]

by the spatial isomorphism ¢,;, all the nkp's are finite, and in

[2], since OU; and O, has the same

1
v 1
fact we have él nkp[ ] K

D P

unit e. More specifically, ¢, o ¢; transforms an element

n;
z= ® x_¢ @ [ into @® & ® I n, ). By using the spatial
)

P
p=1
fmay be viewed as ‘Pﬁ—/éI‘ement
! isomorphism ¢35, this last elementYin M,'2] and doing this, we see that

k|

B transforms x into O (@ x ®1I ). Now by choosing a-set
k=1 p=1 C kp

of matrix units {e (ﬁk)} for O(; and setting ‘x = al(e(lk)) above,

and using the fact that o, ' o B o a; is the identity mapping

Ol, + OL, one may easily define matrix units egk) in 0,

such that (1) is fullfilled.
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1.8, The remark after proposition 1.7 makes the following
definition natural: With the same notation as in the theorem we

say that M(li) 1s partially embedded in M(2k) with multiplicity

If n > 1 we say that M(li) is partially embedded in

Ny ki
— . ki

M(Zk)' These two relations are written as M(li) \\, M(Zk) and
Me1gy WMok«

From the proof of the proposition it is easily seen that
(11) _(2k) .
M(li) \“M(2k) iff e e # 0, and that if we define

in 9,

a = sup{m]EIm mutually orthogonal projections e1,°--,em

e (11) e(2k), i=zl,ese,m}, and b = sup{m|Zm mutually

such that ey <

orthogonal jectl in 9 h th (11)
g projections €1s°° 58 n 1 suc at ei <e ;

i=1l,°*+,m} then n., = a/b.

Let OU= ;Joln. Then the diagram 4 (o) of O7r 1is defined
as the set of all ordered pairs (nk); k=1,-o-,nn, n=0,1l,ee¢,

P
together with a sequence <‘m>p=o’”° of relations defined by

p
(n k) X (mq) iff m = n+l and Mipey 1S partially embedded in
M(mq) with multiplicity p.
This definition requires a couple of comments.

It is clear that &) (¢7) depends not only on 9 , but on the

particular sequence <0Ln>n which generates 9. This dependence
will be implicit in what follows.
A natural question to ask is: If 0  and {/3 are isomorphic

AF algebras, what are the relation between @ () and G () 2
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Alternatively, if O = chzn = Lé:Bn’ what are the connection
between the associated dgagrams ? An answer to this question

will be given in theorem 2.7. From that theorem it 1s in principle
easy to deduce an algoritm which gives a method of constructing from
a given diagram all ¢iagrams which define AF-algebras which are

isomorphic¢ with the original one.

Another question is: Does really the diagram 9 (0t) define
O up to isomorphism ? The answer is the affirmative, for if T
and 38 are two AF-algebras with the same diagram &, s an 1so-
morphism a:61-+38 may be constructed inductively as follows:
- Since @, =C = 5‘30 there exists an isomorphism ot 0L U/So
- Now suppose we have constructed isomorphisms ar:czr > j@r s

r = 0,1,***,nl, such that o [¢¢ . = a, _,, rsl,c<-,n-1,

Let {ei?'l’k)} be a set o matrix units for GZn 1s and let
fi?‘l3k) = 0Ln_l(e:%l":"’]'{)) be the corresponding matrix units for

Qan‘l. Let nqp be the non-negative integer such that
n
(n-l,p)'\QP (n,q). Then, by definition of &) (01) and prop. 1,7

there exist matrix units {eig’Q)} for OLn such that equation

(1) is fulfilled, with ei}k) replaced by ei?‘lsk) and
e§§k) replaced by ei?,k), and [;] replaced by[n;l]. In the same

way, there exist matrix units fé?’k) for fan such that (1) holds

with e replaced by f.

Then one may define an(eégk)) = f(nk)

i3 and extend the the definition

of o  to CEn by linearity. Then o is an isomorphism




- 12 -

S p +'53n. ana from (1) it follows that anlozn_l = o 5

Now, because of the last relation we may define a *-isomorphism
a: (O, * Ub v - . . .
= -n 2P n by oz|(3"l.n @ . Since each o is an isometry,

o is an isometry, and o may therefore be extended to a mapplng

of Ot= L)Cnh onto 33={Jcnp by continuity. Since all the
n . n -
operatiens . in the definition4ofezc*—algebra are norm continuous

this extended map is an isomorphism, so OU = §3.

The diagram of an AF-algebra may be given a graphical represen-

tation, which we show by an example.

TN
oz2 7'/ "/‘5i\\\ I\ 1
N N

This means that Of = M ® Mo, o, =M ® M C] M,

oL, =M ON BN O M , etc. and the number of lines between
the numbers indicate the multiplicity of the partial embedding of
the facﬁor above into that below. As an example, the second factor
in the central decomposition of 0& is partially embedded with
multiplicity ‘1 in the first factor of <,, with multiplicity 2 in
the second factor and with multiplicity 1 in the third factor.

Given a set of & of ordered pairs (n,k); k=l,eee,n , n=0,1,cc¢,

n
where n, = 1, and a sequence <\l> of relations on ) s

p:O’lo-o
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when is Eﬁ =P (0L) for some AF-algebra dL? We list some axioms
that @ must satisfy (Define (n,k)™(m,q) <=> Ip > 1: (n,k)V(m,q))

i) If (n,k), (m,q)E-ga and @ = n+l

there exists one and only one non-negative integer p such that

(n,k) \P(m,q).

ii) If m # n+l none such integer exists.

111) If (n,k)€& there exists a g€ {1,e++,n ..} such that

n+l
(n,k) W(n+l,q).

‘iv) If (n,k)egp and n > 1 there exists a c1€{1,---,nn_l}
such that (n-1,q) ¥(n,k).

It is not difficult to see that the diagram of a given AF-
algebra satisfies these axioms. We only mention that (iii) expresses
the trivial fact that the kernel of the identity morphism CYh > Cﬂh+i
is equal to {0}, and (iv) expresses the fact that the identity of |

CZrl is mapped into the identity of 01n+1 by the identity morphism.

Conversely, if 5@ satisfies axioms (i)-(iv) one may by
induction construct a sequence of finite dimensional C*-algebras

<dC > and injective morphisms o : o ~d( , such thatclo =@,

n n n+l
anlazn_l = _qs n=1,2,*°+ and such that for a given set of matrix
(nk)

units eij in oan there exists a set of matrix elements
(n+l1.,k)
eij s in 0Zn+l such that
n n
(nk) n+l gk (n+l,q)
Q. (e\ ) = Z °
n*-ij

k=1 i k-1
g=1l m=1 n_l _ n ‘
(pgl “qp|p)* l)nqk+i)(pzanP[p]+(““ank+32
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n
where nok is such that (nk) \:qk(n+l,q). This is done by

choosing the dimensions [n;l] of the factors

o M(n+l,q) in an
n
appropriate way; 1in fact we have [h+l] = z n [n].
a p=1 ap|p

The inductive limit of the diagram

0o 31
> dU

a‘b 1 - > 062 LI

will then have diagram & .

1.9. We mention some examples of AF-algebras OC,

(1) 07 finite dimensional. Then the diagram has the following

form:

-

TZ @0 000000 C tn
pz 0060600008 pn
|
v

|

Pz 00000000

[

n

|
i

t

DRI o TN o QRN o
L

(1i) JU 1is an UHF-algebra. Then all ¢C, are factors and the

diagram has the form:

The number of lines between Pi1eeeD, and Pi*¢*Py 41 is Pr+1°
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(1i1) We next give an example which is closely related to the

algebra M studied in [4], 5.2. Let « be an infinite di-

’® .
mensional separable Hilbert space, and let 97 =LE(k) + @IK.

Then otis AF and has a diagram:

/
=

- -_/'—‘71—'-—— et~

/

/

/
/———

This 1s shown as follows: Let <En>n=l,'~ be an orthonormal
basis in «k, and let Kn be the subspace generated by 51‘°'En°
Let En be the orthogonal projzction onto Kn* Define

o1, = {xe ﬁ(x)lx(l-En) = (1-E)x€C(1-E)} = PB(x ) B = Mn®Ml.
Then Oln is embedded in Oln+1 as indicated on the diagram, and
since each xé& ozn is a sum of an operator of finite rank and a

multiple of the identity we have that Oln <_:_§f‘€(.<> + CI.

Conversely, by using the fact that the operators of finite rank
are norm dense in Jae(K), and that the finite linear combinations of
€1 £2 °°* are densen in Kk, 1t is easy to show that

£e) + c1 car,.
n

1.10. An AF algebra is separable, but a separable C*-algebra

with unit does not need to be AF. This follows from the example

o = c[o,1].
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Since [0,1] is connected, [0,1] contains no nontrivial open-
closed subsets, hence C[O,l] contains nc other projections than

0 and 1. It follows that C[b,l] contains no other finite dimen-

sional *—subalgebras than {0} and €1, thus C[Q,l] cannot be AF.

2., New definition of AF algebras. Isomorphism of AF algebras.

2.1. Lemma. Let % be a C*—algebra on a Hilbert space «,

let € >0 and let n be a positive integer. Then there exists a

§(e,n) = § > 0 such that if

1) {eé?) 5 1,3 = 1,0e°m, k = l,°°2,m}
is a family of matrix units for a finite dimensional C*-algebra
n
on «k with unit I , such that | n_ = n.
K k=1 k

2) There exists xi?%sval such that "xig) - ei?)ﬂ < 8,

then there exists a family {f(k)} of matrix units in &2 such

1
(k) _ (k)

IIfiJ 1] I| < €.

that

Proof: The method of proof of :-his lemma is the same as that
Glimm uses in [6], lemma 1.10; thus the proof will be omitted.

The next theorem is analoguous to theorem 1.13 in t§].
2.2. Theorem. Let & be a C*-algebra with unit e. Then

dl is an AF algebra if and only if the following two conditions

are fullfilled.
i) 0l is separable.

ii) If x1,°-°,xné:01 and € > 0, then there exists a finite

dimensional C*-subalgebra B C 0U and elements
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y1,°°°,y, € B such that ﬂxi-yiﬂ <e 3 1= 1,%*,n.

Furthermore, if 9 is AF, and 9, is a finite dimensional
*
C -subalgebra of €I, there exists an increasing sequence
dl, € Ay C +o+ of finite dimensional C*-subalgebras such that

0, c X, and L{Uli=dz.

Proof. The proof is closely related to Glimms proof in [6].
The necessity of conditions i) and ii) is clear.

To show sufficiency, let {di}i=l,2,=°- be a dense sequence
in the open sphere of radius 2z about the origin in Ol. We may,
without loss of generality, suppose that the subalgebras we
conslder contain e. We shall construct an increasing sequence
<A > of finite dimensional subalgebras of OU such that for
all n there exists bkedln, k=1l,ece,n such that
|b-a, | < 277, k=1,e00,n.

Since |d,| <2, 9% may be chosen arbitrarily.

Suppose as:induction hypothesis that UZn has been constructed

and has the required properties. Let {eigk)} be matrix units

n
z . 5-n-1 : O In -1
for szl. Define e = 2 (1+4(C = [k ))~". By using hypothesis
k=1

1i) of the theorem and lemma 2.1 it Tollows that there exists a
finite dimensional subalgebra dl* of Ul and a set of matrix units

{fég)} in OU' (which does not necessarily generate & ') such that

(k)  _(nk); .
"fij - ei,j ” <6 s

(6], lemma 1.8, and such that there exists bl €T, k=l,e¢,n+l,

1< 1,5_i{§], where & is the 6(e,n,) of

such that "bi-—dkﬂ < e,
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By [6], lemma 1.8, there exists a partial isometry w € 9C

such that wf§¥) is a partial isometry between fg%) and eg?k),

k=1l,e°=,n , and He(k) - wa%)H < €; k=sl,ece,n . Define

n
u= i° u[§] e§§k) w1 {?),. Then u€c¥, and by trivial algebra
k=1 1i=1
u 1is unitary and ufig) u® = eigk)Z
* .
Define Ozn+l = uld{'u . Then 6En+l is a finite dimensional

subalgebra of Ot 1somorphic with OU', and CZr1€E CZﬁ+l° We

must find b, € such that |b - || < 27771, k=1,e¢ n+1. Let

n+l

*
bk = ubl'cu e(fln+l. Then

Io-a 1 < llay ~vpll +lpf-b, | < e+ [lby —ubtu*|
=e |z (e{Bhpy p{Q) | lul) fig) by £{3) W* (B

kqst

p

(k) ' (q) (nk) (k) ' (Q) * (HQ)
< e+ (kfl[ﬁ])kzgglf bpfic’ - ey " whj W bifey) wep, H
Now:

"f(k) b'f(q) o (k) (k) polq) * (nq)“

kTtt ~Ssl 1s kel W €1t

£ (@) U0, (@) X (ma) o 00)_ (i), Iy (@), X (ma)y

IA

"f(Q) é%)w*eEQQ)”*'“f(k) é?k) f(k)"<” f(Q) W eng)”

In

ﬂféﬁ)-eégk)wﬂ < "f(q) (gq)u+ﬂeé§q)_eégq)wu

+

"f(k)- énk)”+'|e(nk) é?k)

+

w|| < ke,
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Hence:
n

n

X

k=1

-

[EJ)ZE = 2n]:l-;]_

by =ay [l < e+ L(

By induction, a sequence <CE;>n with the required properties

exists. Then {di}ﬁUo-Cn, so Ua = d.
n n

2.3 Lemma. Let &= UOZn and let B be a finite dimensional
n
subalgebra of JU., Then for all e > 0 there exlst a unitary

operator wE€ dTl and a positive integer n such that
(1) Ju-el] < €

(11) uBu® cor

Proof. We may assume chat e E‘Q?. Let {fig)}£=l be matrix

k)

units for 53, and suppose 1 < 1,j <N for ail f§j Let

g, = §%ﬁ and let 6 be the 6(e,,m) of lemma 1.8 in [6]. Lemma

2.1 implies that there exist an 6%1 and a family {e§§)}ﬁ=l of

matrix units in ﬁln such that ﬂfig) - e§§)ﬂ < 6.

From [6], lemma 1.8, it follows that there exists a partial isometry
(k)_ (k) (k)

w€UJ[ such that e;|’'w = wi | 1s a partial isometry having £,

(k)

and e11 as initial and final projection, respectively, and such

z e(k)vvf(k)

ﬁ § €11 11 * Then,
s

that "ef%) - e§¥) wl < e,. Define u =

since zegﬁ) = 7 fé?)
ki
(k) *

ki
*
e(k) u , thus uBu g;CKh. Furthermore:

= e, u 1s unitar and we have

15 7 Uiy
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le j(Lllc) (k)u”
“lefy) - o) el w el
<leff) - el w el
< 1l - ol 12l - ol w2
slef) e e o) - e w o0y
R S S Ll I e [ TR N S
<28 + g, < 3¢,
Thus:
le - ull = Iz 3eely) - el wyj
k 1
<z 1 llefy - efflul
< meNe3e = €.

2.4 Lemma. Let Ol be a C*-algebra with unit e, let %1, 532

be two finite dimensional *-subalgebras of OC containing e. Let

%1 > @2 be a a'e-:‘Lsomor’ph:'Lsm such that:
lo - TIB, 0 < 1,

where I:®& + 0l 1is the identity map. Then there exists a unitary

operator u€ Ul such that:
a(x) = uxu” ; > %1

Proof: Let {e(lj{)} be a set of matrix units for %1’ and

define fi?) = a(e(g) Then {f§§)} is a set of matrix units for
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532 . We have

1255 - 801 = a1y ) < o))

for all k. Lemma 1.8 in [6] implies that there exists a partial

1sometry we€9C such that fiﬁ) w eig) is a partial isometry having

(k) 25 initial projection and fif)' as final projection. Define

e11
- £ (k) (k)
u = ﬁ ; l w el1 .

o (k) oK)
ey W =Ty S

Then u 1is unitary and

(k))

o(e

so u has the required property.

2.5 Lemma: Let 07 = U O, and let & bve
n

a finite dimensional *-subalgebra of Ol such that O, C &3,

Then there exists a positive integer n and a unitary operator

u€ 91 such that
(1) u%u*g()ln

(i1) uxu*zx; x€ UL,
Procf: By lemma 2.3 there exists a unitary vedl and a posi-
tive integer n such that |v - e]l < 1/3 and v v* ca,-
Define QL ' = va'v* - Oln and define an isomorphism a: X, » O ¢

by:

al(x) = v v ; xE.a'l.

Then, for x € JL :



latx) = || = [vxv® = x|l <[lvxv® ¥

*
*llxv - x|l < 2fxlfellv - ell < & x]l,
thus
lo - TjX 1< § <1
By lemma 2.4 there exists a unitary weal'.n such that
alx) = wxw 5 XE.OZ1
*
Let u = wv. Then

* * * #
ufBu = wvBvwcw dw= %,

since we€OZ,. For xe€ dt, we have:
* * * x . -
uxu =wvxvw=walx)w = o Hax)) = x,

thus u solves our problem.

2.6 Lemma: Let 0L = UO[ = U ,.‘Bn . Then there
n n

exists an automorphism o of OU such that:
For every positive integer n there exists an positive

integer m such that

a(%n) c
0, ca@B ).

Proof: By induction we shall find two strictly increasing
sequences m;, = 1, m,, mg, ecce , and n,, N,, N,, eoes , of
positive integers, two sequences u,, U,, cece , and V;, V,, °cce
of unitary operators in 0% such that if oy (resp. Bi) are the
isomorphism OU +» 0 implemented by us (resp. vi), restricted to

%mi (resp. L _ ), then oci~ (ﬂmi)_(;_ dﬁni (g (%)) g@mi+l) and

nj
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the following diagram commutes

o1 > 0L n,

4 Vv
=

]

V
>0Zn3
/ 1

ete.

(1)

33{—————3 5§<

<D

Here C > denotes the inclusionmap.

We construct Ups Vys Uys V,, Uy,eeee  successively by induction.

By lemma 8 there exists a positive integer n, and a unitary

operator u,e YL such that u,jgul* € 90 . This is the first step
1

in the induction.

Suppose now that Ujy Vi, Upgesce | u has been constructed

such that the following diagram commutes

% an"l » an

Mp-1

n-1
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We shall construct v,_. Let &' = un*czn u . Then Of' is

n
1 : n *
a finite dimensional *-subalgebra of ¢[, and since qnﬁqn u cd
n n
we have B_ < U,
m, =

By lemma 2.5 there exists a unitary ve U and a positive

. *
integer m ., > m  such that val'vt < qm s and such that

n+l
vxv*=1c; xefB .
My
*
Let vn = vun .
Then
* * *
v, 0L v, vu OZn u v =v02'v*C_:%m 5
: n h n © n+l
and if x€D
m
n
_ * * * % * *
Bn(an(x)) =V U Xu vyt = vuw ot u Xxuu Vo= VXV o= X,
Hence the following diagrar. commutes
P “n o
mn nn
R

ﬂ%n &

n+l

is then constructed in an analogous fashion by "rotating"

Un+1
v * R ¥ _ into an algebra aT by means of a unitary operator
n m n n
n+l n+l
%,
u such that 0%1 is kept fixed, and define wu ., =uv,

n
By induction we obtain the commutative diagram (1l). Because of the

.n

morphisni o: JB. U O by ¢
n ®n n Clnn y
algam = a .

n

comnutativity we have o +1‘93m = a,. Hence, we may define a
n
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o is surjective, because if y e.(an we have y = ak+l(8k(y)) =

a8 (y)) and B (y)€ By, .

Furthermore, since alS’j’mk is injective and hence 1sometric,

¢ 1is an isometric isomorphism of Uﬁmk onto ank‘ Since
k k

these two sets are dense in ¥, o may be extended to an auto-

morphism of A .
If n 1is a positive integer there exlsts an integer k such
that n < m and n < n, . Thus a(£/3n) c oz(&@mk) (:.’-_()[nk and

a ., Edznk = oy (B (T )) < ak+l(@mk+1) = o»(%mkﬂ), which

implies the proposition.

2,7 Theorem: Let & = UOZn and 5(3= U'ﬁn. Then 9IC is
n n
isomorphic to .6/3 if and only if <6Yn>n contains a subsequence
<0an>k and each Can contains a finite dimensional *-subalgebra

%'k such that ceP " and

i) <%h>n 1s an increasing sequence, and there exists an

isomorphism a: U@n > Lj%'n such that oc(%n) =%'n for all n.
n n
1i) For all positive integers n there exists a positive
integer k such that
a, < %,;
Proof: Sufficiency: Suppose that there exists a sequence

<63r'1>n and a *-isomorphism o such that i) and ii) are fulfilled.
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Since alﬁgn is an isometry, o 1s an isometry. By 1i) we have

%¥0§1= L%g%;, Hence o 1s an isometric isomorphism between a

dense subalgebra of Cﬁg and a dense subalgebra of 0L and may be

extended by continuity to an iscmorphism from 53 onto 9T,
Necessity: Suppose that 53’ and JU are isomorphic, and let

B:ﬁB-*CQ be a *-isomorphism. Let EB ; = B(@Bn). Since B is

an isometry Lﬁlﬁg is a dense subset of Ol , so (U =‘7}1€/3;
Lemma 2.6 then implies that there exist an automorphism vy of 0T,
and an increasing sequence <ni>i of positive integers such that

Y(gsﬂ) E}aznk 3 ko= 1,2,000, and such that for all n there

exists a k such that O c y@]). Define B = v(PH]) and

a = Yc>B|%g5%1. Then i) and ii) of the theorem are fulfilled.

2.8. Glimm has in [61, theorem 1.12, given a necessary and
sufficient condition for isomorphism of two uniformly hyperfinite
algebras Ol and 9. His result is essentially that O and 95
are isomorphic if and only if the following condition is fulfilled:

If Ol contains a type I -factor with the same unit as JC, then
Q& contains a type In-factor with the same unit as 125 and vice
versa. One might suspect that a similar result would be true for
an AF-algebra with the condition replaced by: If J{ contains

a finite dimensional *-algebra % with same unit as Ol, then
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@ contains a *-algebra with the same unilt as aﬁ which is
isomorphic to &. Such a result is however not true, and the
reason 1is roughly as follows: If 47% is a factor of type In’

Gna 1s a factor of type I , n,m < ®, then onﬁ can be embedded
in qna in essentially only one way. By this is meant that if
al,az are two injective morphisms ﬂﬂi + QWg which maps the unit

of mbl on the unit of 07%, then there exists an automorphism

B of qng such that o = Bo o . That this 1s the case, follows
easily from [2], Ch. 1, § 4, theoreme 3. Because of this, if

X = (#(n%' is a UHF algebra, where all qﬁh's are factors, then the
isomorbhism class of UL depends only on the factors themselves and
not on the way they are embedded into each other. In fact, the
isomorphism o of theorem 2.7 will automatically exist if all

the 53n are factors isomorphic to 5Bn', so Glimm's result is a
corollary to this theorem.
On the other hand, a finite-dimensional C*-algebra 071 may

in most cases be embedded into another finite dimensional C*—algebra

CEZ in essentially different ways. Thus we may expect that the

isomorphism class of an AF-algebra L= %{0€1 depends not only on
the Cln's, but also on the way they are embedded into each other.
This dependence 1is reflected in the condition i) of the theorem.

Of course condition i) may be replaced by the equivalent condition
that all ﬁan are isomorphic to 55n', and that corresponding fac-
tors in the central decomposition of 58n and an' are partially
embedded in corresponding factors of an+l and Z&r;d_ with the
same partial multiplicities. This will then enable us to construct

o Dby using the method which in 1.8 is used to show that the diagram
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of an AF-algebra determines the algebra up to isomorphilsm.

We shall give an explicit example of two AF-algebras dT-= %%CZn
and QB = T;EE; such that an is isomorphic to 6611 for all n,
but a is not isomorphic to ﬂS. By lemma 2.3, each finite dimen-
sional *-subalgebra of 0L (resp.ga) 1s isomorphic with a subalgebra
of one Ozn (resp.@n) so O and ‘@ contains the same finite dimen-

sional subalgebras. Thus the condition 1) of theorem 2.7 is essential.

d. and 9% have the following diagrams:

o B 1
/\ /\ N

1

1 1 1 1 i

H—
Ho—  —

N

For all n X = %n = (lf? My,  where @ M, 'is the direct sum
2

of 20 replicas of M,. From the classification of ldeals to be

given in § 3 it immediately follows . that ZB has ideals of dimension
1 while all the ideals # {0} in Ol are infinite dimensional. Since
the dimension of an ideal is an isomorphism invariant, U and % are

not isomorphic.

A little remark at last: At flrst sight it perhaps does not seem
to be essential that the isomorphisms between finite dimensional sub-
algebras considered in lemmas 2.3 through 2.6 are unitary implemented.
And in fact, the conly use which 1s made of this fact 1s in the proof
of 2.6, where it is important that an isomorphism between subalgebras
may be extended to an automorphism of the algebra in which they are

embedded. The existence of this extention 1s assured by the unitary

implementation.
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3. Algebraic structure of an approximately finite dimensional

C*-algebra.

3.1 Lemma: Let 9 be a C*-algebra and let {%n};___l be an

increasing sequence of finite dimensional subalgebras of & such

e T
that OU = Ul@n- Let F be a closed twosided ideal in %, Then
n=

¥ =E?f¥(t:£22?n).

Proof: Set ¥ _= 30T . mhen ¥ 1s a closed, twosided

ideal in %n and we must prove that Lcj B‘n = ?
=1

o]

Trivially: ¢J % < ¥.

On the other hand, suppose that x € (J&.. We must prove that

X € ?

Let p: O » OL/F ©bve the quotient mapping. Let <x,>, be a

O %,

sequence such that x € %n and x_ »+ x. Since x¢
n=1

n

we have that

inf lx=yll = € >0
ve U,
n

Since X, > X there exists an N such that n > N implies
"X-Xn" < g/2

For n >N and y& '@n we therefore have
Iz -yl > Ix-yll - llx x|l > e - e/2 = e/2.

Now, since ker p|% =% 0 %n = (:fn we have
n



s €
otz )l = inf, Iz -yl > 5 »
y n
because the norm on the C*-algebra p(QBn) is the same whether
pébrg is viewed as a subalgebra of p(9l), or as the image of
the quotient mapping 5?n +€an/@Tn‘ Now, since X, > X and p is

continuous p(xn) + p(x). In particular

lo(x)| = lim"p(xn)ﬂ > e/2
n->o
SO x:f‘?.
3.2 Let & = LJOZV In the following the term "ideal in I "
n

will mean "normclosed twosided ideal in ® ", while the term

"ideal in LJJQJ' will mean "twosided ideal in (JCln". The ideals
n
in L)0§1 are described as follows
n

Lemma: Let I be an ideal in YOL . Then I has the form:
—— o |

(1) 1= éﬁl S? M k)
(nk)€EA

where A 1is some subset of @ =@ (Jl) satisfying the two condi-

tions:
i) If (nk) € A and (nk) Ny (n+lq ) then (n+lq )€ A
ii) If (nk)~5(n+lqg) implies that (n+lq)€ A; q = 1,---,

n then (nk)€ A.

n+l
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Conversely, if AE@ satisfies 1) and i1) then the subset
I of U, defined by (1) is an ideal in \JOL such that
n n

In UZn = % IVI(nl«:)’
(nk)€A

Proof: Suppose I 1s an 1deal in [JJ[ , and define
n
= OZ i =
I,=INn0 . Then I is an ideal of o7 , and I L;)x I,
n

n
It 1s well known that the ideals of H_ = P M is the
nogsy (K

subsums of this finite direct sum of factors. Hence In has the

form:
In = C;) M(nk)’
(nk)éA

where A 1s some subset of@, so I has the form (1). We show

that A satisfies i) and ii).

e(nk)e I.

i) If (nk)&€ A then Mgy € I, € I. In particular

Now, i1f (nk)™(n+lq ) then e(nk) (ntlq) , o, (see 1.8). Since
e(nk) e(n+lq )eM Since I

(n+tl g )e
e M(n+1q ) we have that (n+lq )°

e(nk) e(n+lq )~€ I. Hence

is an ideal: NI # {0}, and since

M(n+lq )

I is an ideal and M(n+1 q) 1s a finite dimensional factor:

ii) Suppose that (nk)Ny(n+lq) dimplies that (n+lq )€A; q = 1,---,

R This is equivalent to say that 1if M(nk) is partially embedded

in M(n+lq ) then M(n+1q) C I. But since M(nk) is contained in
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the sum of the factors M(n+lq) in which it 1s partially embedded

M(nk) c_:_- I; thus (nk)E A,

Conversely, assume that A satisfies 1) and ii), and define

I by (1). Define:

I = (}{;) M(nk)
(nk)€A

From 1) it follows that if M(nk) cI, and M(nk) is partially

c
embedded in M(n+1q)’ then M(n+1q)€In+1’ Hence M(nk) -~ In+l

and by this I < 1I_,,. Hence, 1f xetlgalk, yeI = L1{ I, there
exlsts an n such that x€ 0, y€I . Since I is an ideal

in aln this implies that =xy, yx elnC_': I. Hence I 1s an ideal
in U0[n.
n

It remains to show that INOL = I . Clearly: I < INOL.
To show equality it is enough to show that if M(nk) CIn Uln, then
M(nk) C In. So suppose M(nk) C I. Since M(nk) has a finite basis
(as a vector space), and the Im's are increasing linear subspaces

of I, there exists an m such that M(nk) < IIn
If m <n there is nothing more to show, so suppose m > n.

Suppose ad absurdum that M(nk) [E In. From 1ii) it follows that there
exists a M(n+1 ) such that M(nk) is partially embedded in

Min+1 k) and (n+l k,)€ A. By 1i) again it follows that there exists

M(n+2 ) such that M(n+1 k) is partially embedded in M(n+2 X,)
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and (n+2 kp,)E A. As partially embedding is a transitive relation

M(nk) then partially embedded in M(n+2_k2). Proceeding by

induction we find a factor M(mq) such that M(nk) is partially

embedded in M(mq)’ but (mg)¢ A. Hence )(%Im = {0}. Therefore

M
(mq
M(nk) is not contained in Im, which 1s a contradiction. Thus

In OZn =I.

3.3 Theorem. Let O = L)Cﬂn, and define
n

A, = set of norm closed ideals in ot

A, = set of ideals in (JO
n

A, = set of subsets A of D (XX) satisfying 1) and
ii) of lemma 3.2.
Then there exists a natural 11- 1 correspondence between the
elements of A;, A, and A;. This correspondence may be defined

by bijections :
025 Ay > A, A U @ M.,

d12: A, > A, : I T

Proof: From lemma 3.2 it follows that ¢,3 1is bijective,

Lemma 3.1 implies immediately that ¢;1. 1is surjective. To
show that ¢,, 1s Injective suppose that I,, I, are two ideals in
Uot,, such that I, # I,. From lemma 3.2 it follows that there
egists a factor M(nk) which is contained in one but not the other

of the ideals I, and I,. Suppose that M(nkﬁ CI, ~1I,.
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Then e(nk)¢ sz')olm; m = n, ntl, --- because if e(nk)elznazm for

some m, then e(nk)€-Iz and thus M(nk) = e(nk)M(nk)éilz. Hence

e(nk) is mapped 1into a projection # 0 by the canonical mapping

0!n1+- CZn/(Igjéﬂm); m=n, ntl, ---, Hence: inf “e(nk)-yﬂ = 1,
yEI, e

(nk) _

and since I, = U (I”n Ozm): inf ”e y" = 1. Hence e(nk)t 'fz
m

vel,

while e(nk)é I, €I, thus 'I'l # 'I'z, hence ¢;, 1s injective.

3.4, As an example of the use of theorem 3.3 we look at the algebra

oee(lc) + CI mentioned in 1.9 .

\\\\
1 K1
NUR

NN
1 :2 N

RN
NE

R\. \
1 \3\

N \|

N \
I\RI\

The only ideals of this algebra, except for the trivial ones, is the
algebra generatéd by the factors lying inside the boundary 1lndicated.
From the description of this algebra given in 1.9 1t follows that
this 1deal is ee"g(K), and we thus get the well known fact that the
only nontrivial norm closed ideal in cf_’%(K) + CI 1is oe@(x).

3.5 Using theorem 3.3 we shall find a condition for X =(JO}
n

being simple:

Corollary. Let 9L = LJCﬂh. Then the following conditions are
n

equivalent
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i) OU is simple
1i) U is algebraically simple
i11) Ir M(nk) is a factor in the central deccmposition of
d_ there exists an m > n such that M) 18

n
partlally embedded in all factors in the central decompo-

sition of O'Cm,

1v) For all e™) there exists an m > n such that

e(nk) e(mQ) 4 0; q = 1’ _— nm.

(The equivalence of i) and 11) is a well known general result for

Banach-algebras with unit, and is stated only for completeness. See
[15, ch. XI, prop. 1.1 and 1.2).

Proof: By 1.8:
i1i)<=> iv)

Now,suppose 1iii) and suppose that I 1s an ideal of JU which
is not {0}. By theorem 3.3 I contains some factor M(nk)‘ By
iii) and condition 1) of lemma 3.2 there exists an m > n such

that OlmC_EI. Then e€I; hence I =O(; hence 1ii) => i).

Now, suppose 1). We show iv) by using the fact that the ideal

generated by some M(nk) is Ol. This ideal is:

‘ I = {j () M(mq) 3

m>n

e(mq)e(nk) 0

as we see in the following manner. Define



I = @ M(mq) s m = n,"n+l, -

q
e (M) (nk) 4

Then I, 1s an ideal of Ol , and it is the least ideal which

o (nk)

contains and thus the least 1ldeal which contains M(nk)p

3

If M(nk) 1s partially embedded in M(mq) and M(mq) is partially
embedded in M(m+lp) then M(nk) is partially embedded in M(m+lp)3
hence I <1 .4,
and it is the least 1ldeal which contains M(nk)' Thus

It follows that d{J Im 1s an ideal of L}O@n,
m m

I = {¥I 1is the least ideal of 9L which contains Mngys Since
m .

O is simple, ( = I, Now, suppose ad absurdum that for all m >n

(mq) (nk) _ o

exists an q such that e For each m 1is then

hence e & U Im =1I= s which is a contradicPion, Hence 1) = iv).
m

3 6 We show an example of an infinite dimensional AF algebra

——————

which are simple but not UHF. Its diagram is
1 2
X
3 \\4
ik\ |
AN
7 10
N

A\
17 24

i\t/ |

From 3.5 i1t follows that this algebra J7 = L)CQh is simple.
n
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Furthermore
0Zn=l\’ln-!®Mn
1] 2
where [g] s [g] are defined recursively as
fn 1
pl=2s [ -2

n] _ ,[n-1 n-1
[2J '2[1]+[1]
By the Euklidean algorithm we have the followlng equivalences:

[g] and .[g] are relatively prime

[gl - [2] = [nill and [?] are relatively prime

[?] - [HI%] = [ 511 and [nil] are relatively prime

Since 1 and 2 are relatively prime it follows by induction that

[?] and [g] are relatively prime for all n.

Now, suppose that M& UZn is a factor of type I with

unity e. Then M e(ni)

(ni)

1s a type Im factor in M(ni) with

1,2, thus m must divide [g] and i{gl;. thus

unit e i

m=1, 1l.e. M

Ce. Now if M 1s a type I factor in 47 with
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unit e, then M 1is 1somorphic with a factor in some Ozn with
the same unit by lemma 2.3. Thus M = Ce.
Hence Ol does not contain any factor of type Im, m < «,

with unit e, except from Ce, so & is not UHF.

3.7. We now proceed to study the primitive ideals of an AF

algebra X =L)CZV Since the property of being primitive is not

n
an intrinsic property of the ideal I 1itself, but in fact is a
property which solely depends on UZ/I, we first study the structure

of O¥/I, for UL and I given.

Proposition. Let 9= chzh, and let I be an ideal of
n
7. 1Index the factors in the central decomposition of Gzn. in

such a way that the subset AC_ZE (07) corresponding to I has
the form

A= {(nk); m+l <k <n n=0,1,---}

S Hps

Let p: OU » Ol/I be the quotient mapping. Then OL/I = U p(CVh)

n
(in the AF-sense) and the central decomposition of p(CZh) is:
m .

n

D(Cun) = ;Ea D(M(nk))’
where p(M(nk)) = M(nk) for (nk) 4% A. Furthermore, the diagram
of Ol /I consists of the pairs (nk), k = l,---,m , 0= 0,1,---

together with the relations ¥P  inherited from ) (O7), i.e.
(nk) \p (mq) in @ (O1/I) 1if and only if (nk) ¥’ (mq) in @ (0D

Proof: 0L = [J ;p(OZn) in the AF-sense by 1.5. By theorem
n
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n
n
3.3 InU&) =U @ M,y 2and then by lemma 3.2
nn n k=mn+1 n
1IN0 = é M . Hence p|& _ has kernel é M
n kem_+1 (nk) n kem_+1 (nk)

and since LG is the direct sum of this kernel and

C) My k) the central decomposition of p(OZn) is

k
k =1, ===, mn. Indexing the factor p(M(nk)) by (nk) it is

clear that the underlying set of QD(éY/I) consist of the pairs

(nk); k = 1, ===, m,n=0,1, ---.

Now, suppose that (nk), (mg)4¢ A and suppose m > n. Let f

be a minimal projection in M(nk) and let f1 -—- fp be a maximal

set of mutually orthogonal minimal projections of M(mq) such

- P D
that I f, <f, i.e. we have I f, = e(ma)e
i=1 1=1 *

1.7 p 1is the multiplicity of the partial embedding of M(nk) in

By proposition

Now, since le(nk) and p|M are injective, p(f) is

M(mq)' (mq)

a minimal projecticn in D(M(nk))’ p(fi) are minimal in p(M(mq)

p
and I oe(fy) = 0(e(Myo(£). Therefore the multiplicity of the
1=1

partial embedding of p(M(nk)) in p(M ) 1s also p, and the

(mq)

last assertion of the proposition follows.

3.8. Theorem. Let ¢ = LJG% let I be an ideal in 0T,
let A be the subset of &) (00) associated to I. Then the

following conditions are equivalent
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i) I is primitive
ii) There does not exist two 1ldeals I,, I, 1in & such that
I, #I1 #I, and I=1I,N1I,
111) ¢ If (nk), (mgq)¢ A then there exists a p > n,m and a
(pr) ¢ A such that M) @nd M(mq) both are partially

embedded in M(pr)'
(The implication 1) => 1i) 1is well known for an arbitrary C*-algebra,
while the implication ii) => 1) 1s proved for separable C*-algebras

by Dixmier in [1]).

Proof': Let p: 9% » /I be the quotient mapping. Then I

1s primitive in X iff {0} is primitive in OL/I = p(0C). There

is a one-one correspondence between the ideals in OU containing I
and the ideals of CO[/I givenby ¥~ p(#) ; 1c9¥C O; ¥

ideal in 67. This mapping (and thus its inverse mapping) preserves
inclusions, so 11) holds iff {0} 1s not the intersection of two
ideals both different from {0} in JU{/I. By proposition 3.7, iii)

holds iff for any two factors of the form p(M(nk))’ Q(M(mq))’ (nk),
(mg)£A in L /I there exist an p > n,m and an (pr)EA such

that D(M(nk)) and p(Mmq)) both are partially embedded in p(M(pr)).
From the remarks Jjust stated it follows that we may assume in
the rest of the argument that I = {0}.

That 1) => 1i) follows from [3], Corollaire 2.8.l4 and Lemme

2,11.3. (11).
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i1) => 1): This is proved for separable C*-algebras in El],
Corollaire 1 to Théor&me 2. We shall later, in 4,17, give an

direct argument for this fact which applies for AF-algebras.

1i) => 1ii1): Assume ii). Then the intersection of any two
ideals both # {0} is # {0}. Now, let (nk), (mq)€'§D(GZ)- By the
argument used in 3,5 the ideal in LjCRh generated algebraically
n

by My (resp. M(mq)) is I, = één S? M(pr)
e(nk) o (pr) 4o
(resp. I, = U €} M ).
R e S, (pr)
e(mq)e(pr‘)¢0

By 11) I,NI, # {0}, and then by 3.1: {0} # I, N I,N (YJL) =
n

= (T, (UAL )N (TN (UJR)) = 1,0 1,

n n
where the last equality follows from theorem 3.3. I, and I, are
defined as the union of some subspaces indexed by p, and by the
argument in 3.5 these subspaces are increasing with p. Since
I,NI, # {0} there must exist an p such that the intersection of
the corresponding subspaces in I1 and I, are not {0}, i.e. there

exists an (pr)€:®(§l) such that e(mq)e(pr) # 0 # e(nk)e(pr).

d i .
Then M(nk) an M are both partlally embedded in M(pr)

(mq)

111) => 1i). Assume 1il) and let I,, I, be two ideals in

Ol gifferent from {0}. Then there exist (nk), (mq)EhﬁD(OT) such
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C
that M(nk) — 11’ M(mq)szilz. Then the ideal generated by M(nk)

(resp. M(mq)) is contained in I, (resp. 12) so:

gx = I;L;)n ? Mpr) € 1, and 9’z = égm (:? Mipry € 1,
T o (nk) (pr) g c(ma), (pr)

By 11i) there exists a p > n,m and a r such that

e(ma)e(pr) 4 ¢ # e(nk)e(pr); thus M'(pr) < 9'1 n’%{z - 11{] I,

hence 1ii) holds.

3.9. Corollary. Let O = L)CZh. Then the following
n

conditions are equivalent

i) O( 1s primitive

ii) There does not exist two ideals in X different from

{0} whose intersection is {0}.

1i1) If (nk), (mq)é@ (d7) there exist ap >n,m and a
(pr)e 5(02') such that M(nk) and M(mq) both are

partially embedded in M(pr)‘
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L, States and representations of approximately finite

dimensional, C*-algebras.

J,1., In sections 4.1 - 5 we shall show under which conditions

a state w of O = UJ{  is a factor state, and we shall find

necessary and sufficieﬁt conditions for two‘factor representations
of &t to be quasi-equivalent. As the methods of proof are essen-
tially those used by Powers in [12] to prove the same results for

UHF algebras, we will mostly only state the results.

c
If 53 is a C*—subalgebra of a C*-algebra Ol, then 53 is

the commutant of QE' relative to CZ.

Lemma. Let O be a C*-algebra with unit e, and let €B c g
be a finite dimensional -subalgebra of JI such that ee%.

Iet @ be a representation of 0. Then
(A% = N e

Proof: As proof of lemma 2.3 in [12].

4.2. Lemma. Let ¢ be an AF algebra, and let % ve the set

of finite dimensional *-subalgebras of O with unit e. Let I
be a representation of JU and let g&?= {n(Z)}". Then the center

of QQ is:

R AR =) @By
ﬂseﬁf

Proof: As proof of lemma 2.4 in f12].
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4.3, Lemma: Let L be a C*-algebra with unit e, and let

I be an ideal in Ol . Let J9 be a finite dimensional *—subalgebra
of L containing e. Let p: 07 » H/I = ﬁ(o be the quotient
morphism and let %o = (B). Then

Bz o)
Proo¥: Since p 1is an morphisms
BT C
Let {eﬁj{) be a set of matrix units for '%, and let
e = o(e) = p(2 eif) e$k)y - Iz p(e{¥)pelE))  pe the unit of

% o+ Now, suppose that x = p(y)e:%O .« Then

(e(k))xp(e( ))

(e(k))p(e(k))x = 11

x=eox=):z z
k i k

2 ze(eiPy eff) = 002 3 e(ﬁ)y e

o) | (OggB e,

It is straight forward to verify that 11 Y ey

L I
k 1
thus x€p(eﬁc); i,e, %oc‘g p(%c).

4,4, Theorem: Let (X = U OZn and suppose that w 1s a state
n

of OL anad I, the representation assoclated to w by the Gelfard-

Segal construction. Then the following conditions are equivalent:

1) w 1s a factor state

i1) For all xeO[ there exists an integer r > 0 such that
lo(zy) = w(x)o(y)] < 1T (]
for all yé& OZrc.



- 45 -

i1i) For all x € 0U there exists a finite dimensilonal
*_algebra %_C_Ul contalning e such that
lo(xy) - w(x)w(y)| < Hnw(y)n for all ye58<ﬁ

Proof: Suppose first that Hm is faithful, Then
"Hw(x)H = |x] for all xedZ, and the argument which shows the
equivalence of (1), (ii) and (1ii) 1s exactly the same as the
argument Powers uses in showilng theorem 2.5 in [12] if we replace

lemma 2.3 and 2.4 in Powers work by lemma 4,1 and 4.2,

Then, suppose that I =~ 1s not faithful, Let I = ker I ,

and let p:67-+ 0l1/I be the quotient morphism. Then by prop. 3.7

OL/1 = L).p(azn) (in the Af-sense). We may 1lift o to a state

n
w, of OU/I and N to a faithful representation Iy, of

Ol/I such that w = w,opand M =T, op. Then I, 1s the

Gelfand-Segal representation of OU/I associated to Wy Therefore

the following conditions are equivalent:

(1) w, 1s a factor state of p(O7)
(11)° For all x€p@7) there exists an integer r > 0 such
that

lw, (xy) - wo(x)wo(y)| < "Hwo(y)"
for all ye p(O{r)C

(111)! For all x€ p(d7) there exists a finite dimensional
*-algebra % C p(0]) such that p(e)é% , and such that
log(xy) = w (Ko (¥)] < [Ty ()]
for all ye@c.
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Now, since I(®) = Ho(p(OT)) we have (1)' <=> (1). Since
T )¢ = o(ar %) by lemma 4.3, (11)' <=> (i1). If

A € ¢J7 1s finite dimensional then p(% ) 1is finite dimensional;
thus (ii1) => (11i)'. Furthermore, by lemma 4.3 again, we have
that (i1)' = (iii). We have then established the following

implications:

(1)' <==> (1)

{

(11yr <= (11)

(115/)' t:——\(iii)

Hence (i), (ii) and (iii) are equivalent.

4,5, Theorem: Let 07 = (%an, and let 1, and I, be two
factor representations of Ol such that ker I, = ker MN,. Let W,
and w, be vector states of I, and II2 respectively. Then the

following statemerits are equivalent:

(1) I, and 1, are quasi-equivalent

(ii) For all ¢ > 0 there exists an integer r > 0 such that
lo (x) = w,(x)] < e [T (x) ]
for all :xé.dzrc ’
*
(ii1) For all € > 0 there exists a finite dimentional " -algebra
9B c 01 containing e such that

lw, (%) - w,(x)] < e M (x)|



- 47 -

for all xe@c.

(iv) There exists a finite dimensional *-algebra 4c r
containing e such that
lw, (x) - wz(x)l <2 HHl(x)H
for all xc@éc.

Proof: If I, and I, dis faithful, o, (x)]=|1,(x)|l= [x]
for all x €Y7 and the proof goes exactly as the proof of theorem
2.7 in [12].

Suppose then that ker I, = ker T, = I, and let p: 07 +U/1I
be the quotient map. Then @I, and 1, may be lifted to faithful
representations of ,p(07): Let (i)', (11)', (141)' and (iv)' be
the statements (1) - (iv) expressed for these lifted representations.

Then, in the same way as in the proof of theorem 4.4 one may establish

the following implications:

(1)' <= (1)

(11)' <==> (11)

N

(111) ' <=> (1ii)

N

(iv)' <= (iv)

This proves the equivalence of (1) - (iv).

4,6, We shall now prove a result concerning algebraic equivalence

of representations of AF algebras (4.12) and a result concerning the



- 48 -

orbits of the automorphism group of an AF algebra Of in the set
P(Q¢Z ) of pure states of JT . (4.15), The results are analogous

to some results obtained by Powers in the UHF case in [12], section
3. In the case of AF algebras the methods of Powers have to be
modified. This is due to the followlng facts: Let 0'(1, 02'2 be
two isomorphic AF algebras on a Hilbert space «, and let :/31, '{/52
be two 1isomorphic flnite dimensional *-subalgebras of UZI, 0(2 resp.
containing e. Suppose that J7 " = 072" =7 . Then the following
two conditions hold if J{, 1s a UHF algebra and gf)i is a factor,

but they do not hold 1n general:

i) there exists a unitary operator uem such that
*
ufy u* =B,
(see [12], Lemma 3.3)
i1) %1'0 CZI and .@2'() 022 are isomorphic.
(see [12], Lemma 3.2).

These two facts play an essentlal role in Powers argument. Since
they do not hold in general we must restrict the class of von Neumann
algebras M. to be considered. Furthermore this class must depend

on UA. Roughly speaking, the simpler ckl is the more complicated
qqlmay be. This is reflected in the following definition.

Definition: Let J{ be an AF algebra and let M ve a

von Neumann algebra. Then 672, is permanently locally unitary equi-

valently embedded in f}’n, 1f there exists a faithful representation

I of OU such that T(J])" = ml and if for any pair 0,, I, of

such representations and any projection fe&d7 we have that
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I,(f) ~ I,(f) (i.e. the projections N,(f) and I,(f) are
equivalent relatively to the von Neumann algebra M). We then write
I <M.

For explanation of the term perm. loc. un. eq. em., see

lemma 4.8,

4.7. Proposition: For the following pairs %, M, where
I = ja‘i"n and M 1s a von Neumann algebra we have that CTLCEWL
if the?e exists a faithful representation 1 of O such that
M= 1 (JU":

i) Ol 1is a UHF algebra.
M is arbitrary.

i1) 01l is an AF algebra.
N is a type I factor.

11i) O, 1s an AF algebra.
O is a type III factor.

Proof: 1) Let fedt be a projection in 7. Then e and
f generate a two dimensional subalgebra % of 0"(‘, and by lemma
2.3 there exist a unitary u€dl and an n such that
u % u* < dzn. Define {}3 = um”Zn u. Then 75 is a finite dimen-
sional factor in O containing f. Let 1, and 1, be two faithful
representations of Ul such that I, (00" =M, 1:=1,2, Let
<eij> be a set of matrix units for % . Then <nk(eij)>ij is a
set of matrix units for Hk(%); k = 1,2,---. Now, by using the
technique in the proof of lemma 3.3 in [12] one shows that there
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exists a partial isometry W£97L with initial projection H1(311)

and final projection M,(e,,). Define U = znz(eil)wnl(eli)' Then
1

U 1s unitary, and 10 _(x) = U]Il(x)U* for all xeZ. By setting

X = f one then see that Hl(f) ~ Hz(f).

11) If MM is a type I factor, then M has the form
f/-))(K) ®CI where «k 1is some Hilbert space and I 1s the identity
mapping on some other Hilbert space. The map: |

%-»"Jb(x): x®I > x

is then an isomorphism, so we may assume 072=@6(K), since equi-
valence of projections is an isomorphisminvariant property. Now let
I, and 1, be two faithful representations of JU such that
o ()" = o (87)" =€B(K), i1.e. N, and 1, ere irreducible.

Then two cases may occur:

1) HI(CY) contains a compact operator. Then it follows from [3],
Corollaire 4.1.10 that I, and I, are unitary equivalent and in
particular I, (f) ~ Hz(f) for all projections f&OF.

2) N,(0) contains no compact operator. Then, by using the same
corollaire as in 1), 1,(J9L) contains no compact operator. In
particular, 1f f 1is an projection in O and f # 0, then Hl(f)
and T1,(f) are infinite. Now, ¢T is separable and 1, is
isometric and T1,(Ol) is strongly dense in QES(Kj, so by applying
I, of a countable dense subset of J{ on a fixed non zero vector

of K one obtain a countable dense subset of k. Hence «k 1is

separable, so I, (f) ~ I, (f).
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iii1) Suppose that M 1s a type III factor on a Hilbert space

K, and that there exists a faithful representation 1 of JC such
that N(IL)" = M. Let & be a non-zero vector of k. Let P Dbe
the projection onto Me. Since N(O7) 1is norm separable, I(J)E

1s separable, and since N(Y]) 1is strongly dense in M,

ME = M(0] )¢ 1s separable. Now PeM' = N(f)' so 1is iso-
morphic to an. ChQP 1s a type III factor on a separable Hilbert

space, so all non-zero projections in mmP are equivalent. Therefore

o EMyp, and so JEM.

4.8. Lemma: Let U, and /, be two AF algebras on a Hilbert

Space k, let «a: Ofl - 012 be an isomorphism, and suppose that
Q"= O0," =P and that O, EM. Let G, < O, be a finite
dimensional *-algebra containing I _, and let qu = aCZZ). Then

there exists a unitary operator U€®”? such that

Ux 0¥ = a(x) R Vxe‘.‘él.

Proof: Let {e(k)} te matrix units for %1. Since O, 'g-m

1]
there exlst partial isometries UEE‘WQ such that UkUk* = a(e$¥) s
*o _ (k) _ (k) (k)
and U, U = e/ " Define U = ﬁ § a(eil )Uk €14 - Then

uu* - a(I) = I = u*u so U 1is unitary, and furthermore
(k) % _ (k)
U ey U = a(eij ).
4,9, Lemma: Let d1,, 01,, «, @%1, k and M be as in

lemma 4.8. Suppose that %EUZIQUZZ is a finite dimensional
*-algebra containing IK, that @)c_: Cél and that al% is the
identity mapping. Let € > 0 and let {g&; s-- En} be a finite set

of vectors in k. Then there exists a unitary operator U€Pl and
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an isomorphism 8: &C - ()ZZ such that

(1) U iglu* c 7,
(11) IIUfi -fyll<e; 1=1, 00, n
(111) UxU* = x 4 xe 73
(iv) B(x) = UxU* 5 xG:*f@‘1
Proof': By lemma 4.8 there exists a unitary operator Ve
such that:

alx) = Vxv* 3 xé.g1

In particular:
X = VxV* 5 xE%
so Ve%'. Let ,(/30 be the relative commutant of 93 in OZZ.

By lemma 4.1 we have:
%C" ___%,(]0‘(211 = {f3vn on.

By [8] » Theorem 2, the unitary operators in 530 lies strongly
"
dense in the unltary operators in %c . Since Vé%'nm there

exlsts then a unitary operator S€%c such that
(s - vYvED] < € ; 1 =1, soe , n.
Define U = SV. Then, since SE€Q,
(1) U, u* = svB v*s* = sa(¥B,)s* ¢ sA,s* = a4,
Furthermore:
(11)  lU-DEgll = [ (sv-D)g, |l = [1(8-v)vE | < e .

Since VE{B' and Se%c we have for xe%
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(1i1) uxu® = svxv¥s* = x

Since S€J{, 1is unitary, x =+ S xS* is an automorphism of X,
*
so B(x) = Sa(x)S x€d/, , defines an isomorphism of

&, onto 4J,, such that for xe@l:

(1v) B(x) = So(x)S* = svxv*s* = uxu*.

4,10, Lemma: Let dZ,, d7,, «x, o, m,‘él,@z and
U be as in lemma 4.8. Let B, < OF, be a finite dimensional

*_algebra such that €, <9D,. Let € > 0, and let {E;,°**, E,}

be a finite set of vectors in k. Then there exlsts a finite
dimensional *-algebra %2 on k , a unitary operator Ule")’)Z and

an 1somorphi$in B: “1 + 07, such that
1 G,eB,ca,
* ,
(11)  u, B, u* = B,

(111) u, xU,* = ux0* 3, xe¥g
%
(iv) ”U1U Ei - Ei" < ? H 1=1,¢¢°,n
*
(v) B(x) = U, xU, H xe R

Proof: Defilne Ollo = UOZIU*, and f@lo = U.%lu*g U@IUH 62,
Define an isomorphism 6&: & ,° > &, by : 6&(x) = a(U*x0) ; xe ..

Ir xe %, then U*U€®, thus &(x) = UU*xUU* = x. From lemma
4,9 1t follows that there exist a unitary operator VEY and an
isomorphism vy: O] 1° -+ ()lz such that:
viovt = R, < 012
(vi) ||V€i - &l <e; i=1,¢*,n
(vii) vavi = x xe@z
(vii1) y(x) = Vx V" 5 xef(371°
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Define U, = VU. Then U, 41s a unitary operator in 7. Define
B(x) = y(UxU*) 3 x€ ,. Then B8: a, » (JZIO + 0, 1is an
isomorphism. We verify (1) - (v):

(1): B, = vB,v* = AUVt s v P v Fea,
This also shows (1i). By (vii)

G, =vE,V = wg v vB, v = D

(1i1): 1If xqul then Ux U*¢ @ , 5o by (vii):

2

U, xUl* = vu x u*v*

uxu*

(iv): Since UIU*

V 1s {iv) an immediate consequence of

(vi).
(v): Ir xefﬁl then UxU*egslo, so by (viii):

B(x) = y(UxU*) = vuxu*v* = u, xu,* .

4.11. Lemma: Let @, and O, be two isomorphic
AF-algebras on a separable Hilbert space «, and assume that
C," = 0," =M and that (¢, EM. Then there exists a unitary
operator UeEM such that

*
UX,U" =,
Proof: We construct U by using a method which is similar

to that used by Powers in [12], lemma 3.6.

Let { ai| 1 =1,2,+¢¢} and {bil 1 = 1,2,°**} be sequences
which are dense in the unit spheres of O, and 9, resp., and let

{g;] 1 =1,2,-++} be a sequence dense in the unit sphere of «.

By inductlon with respect to r we shall construct increasing

sequences < and <0’[2’r>r of finite dimensional *-subalgebras

>
l,r'r
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of 011 and C’Zz resp., and a sequence <op>p of isomorphisms from

0'11 onto 0(2, and a sequence <U_>. of unitary operators in M

r’r

such that

(1) For all r > 0 there exists °1€°‘1,r» d,€ Ozz,r such
that Je, - a,ll < 2-r+1. and [d; - bl £ 27T por = 1,e00,r,

*
(i1) For all r > 0, UrCZl,i U, = 0z2,i for 1 = 0,1,ece,r,
x _ *
and if r > 1, UxU -~ =0, .xU ," for all xe:OZl’r_l
(111) For all r > 0, lI(Ur+l - Ur)gi“ < 2% for 1= 1’...,#,
*
(iv) For all r > 0, o (x) = UxU,~ for xedll’r.

For r = 0, set 0(10=012’0=©I, and U =1 and let

]

o, be an isomorphism from 0(1 onto dr,. The conditions (1) - (iv)

are then trivially satisfied,

Suppose that X al U, and o, are constructed for

) 1,1° 2,1»

i = 1l,°°*,r, such that (1) - (iv) 1s satisfied, We shall then

construct 011’r+1, 072,r+1’ Upnyqp and On4ps From theorem 2,2 1t

follows that there exists a finite dimensional *-algebra 6% such that
ZEn cPBec O , and eclements cyedd such that

lay - 4l 2 2" for 4 = 1,++e,r+l, By lemma 4.10 there exist a

finite dimenslional *—algebra Q%' and an isomorphism o: CZI -+ 0Z2

and a unitary operator VEML such that

(v) Ao SESaA,
(vi) VAV - &
(vii) vxv* = Uerr* for xéazl,r
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-1

(vi11) v U - DUED = (VU Il < 277 for 1= 1,ee0,r41,

(1x) a(x) = V?V* for xe B

By theorem 2,2 there exists a finlte dimensional *-algebra L¥2 r+l
4
such that ¢ < 0{2’r+l<_‘—_‘07.2, and such that there exist elements

, : -r -
d;€0t 2 r+l such that b -d, | < 2 for 1 = 1,e+-,r+l,

By a new application of lemma 4,10 there exists a finite dimensional

and an isomorphism a l'lzéfz + 0{, and a

r+l r+

unitary operator U,,,

¥ _algebra Czl
’ *c g such that:

(x) B ecd; 1S

*
(x1) Ur+l 012,r+1Ur+1' OZl'r+l
* *
(x11) Uppy XUpyy =V xV for x€ &
(Xi)ii) "UI"*'].* Vgi - Ei" < 2 r-l for 1 = l’coo,r-l-l
-1 - *
(x1iv) 0,1 (x) = U " xU o for xEdz2’r+l,

We now show that (1) - (iv) hold for r+l,

(1) holds by the construction of X and JU. ..
l,r Z’r

*—
(11): By (x1), Ur+10(l,r+l Upsp = Xy pape I xey

we have:

e
»
(e

'

¥ ¥
p#1 ¥Upsy T Uppy VV XV VU4 ‘

vxV* by (vi) and (xii)

%* .
Urx Ur by (vii).

By using this and induction hypothesis, (ii) holds,
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(112): Wy = UEL Nl < | Uy =00Eg Il + (V-0 0E, |

*

= U MU=V |+ v-u g | < 27770« 27T 2 2T

r+l

by (viii) and (xiiil).

(iv): 1If =xedt by (xiv) and (x1).

*
1,r+1s Op+1(X) = Upyy XUy

This ends the induction.

Now, by using (i) - (i1ii) one may by the method used by Powers to
prove lemma 3.6 in [12] show that <Ur>r converges strongly towards
a unitary operator U€ M which has the property which is required

in the lemma, The detalls of that proof are omitted,

4,12, Theorem: Let JU be an AF algebra and let Onu and fan

be von Neumann algebras such that & € 0771 for 1 = 1,2, Let I,
and T, be falthful representations of 0l such that M (" = ¢Qi
for 1 = 1,2. Then‘m.1 and Onz are lsomorphic if and only if there
exists an automorphism o of Ol such that 1, and N,oa are
quasi»qu}valent.SThis is proved from lemma 4.11 in the same way as

Powers proves theorem 3.7 from lemma 3.6 in [12].

4,13, Corollary: Let OU be an AF algebra and assume that

I, and @, are two faithful type III factor representations of at
Then N, (OU)" and 1,(07)" are isomorphic if and only if there
exlsts an automorphism a of Ol such that I, and N,oa are

quasi-equivalent,

Proof: Follows from theorem 4,12 and proposition 4.7 , (iii).
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4,14, Ccrollary: Let (07 be an AF algebra and suppose that

I and II2 are two faithful irreducible representations of az .

1
Then there exists an automorphism o of ¢ such that I, and TI,on

are unitary equlvalent.

Proof: Since 9 1is separable and Hi are irreducible the
representation spaces of Hi must be separable for i = 1,2, If
there exists an integer n such that the representation space of
I, is isomorphic to @n, then I,(01) = M, thus ¢ Z-Mn and
so the representation space of I, must also be isomorphic to c”.
If 0t 1s not finite dimensional the representation spaces of I,
and I, must be infinite dimensional, and so 1somorphic to
12(Z). In all cases, I (&))" =1T,(¢)" (= all bounded operators
on the representation space). Hence, by theorem 4.12 and proposi-
tion 4.7, 1i), there exists an automorphism o of O7 such that
I, and 1, oa are quasi-equivalent. Since T,(a(d)) =I,6(d7),
MI,o0a 1s irreducible, and then by [3], prop. 5.3.3. I, and 0, 00

are unitary equivalent.

4,15, Corollary: Let ¢ be an AF algebra and let w, and

w be pure states of ¢ such that the associated representations

and I, are faithful. Then there exists an automorphism o

'

of g¢ such that

(J.)1 = Ww,00

Proof': By corollary U4.14 there exists an automorphism B8 of
(¢ such that I, and 1,08 are unitary equivalent. Therefore
w, and w,o0f are vector states of the same irreducible represen-

tation, and so by [8], Corollary 8, there exists a unitary operator
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ve€J? such that wl(x) = wz(vB(x)v*) for all x€d7. Then

a(x) = vB(x)v* is the desired automorphism.

4,16. Corollary: Let ¢ be an AF algebra and let w be

a state of JL such that the associated representation IIm is
faithful. Then w 1s pure if and only 1f there exists an increasing

sequence <01n>n of finite dimensional *-subalgebras of 6?1 all

containing e, such that = UJd  and w|dl, 1is pure for
n
all n.

Proof: Suppose first that O¢ = Ljéﬁh and that wlOTn is
pure for all n. We show that w 1is pu?e. Suppose w = Aw1+(l->\)w2
where w, and w, are states of Ol and 0 < A < 1. Then
wlﬂ{n = Aw1|02n + (l-A)wZICZn, thus w00, = w'llan = wzl&n,
thus w] Lican = w1|L%CYn = w2|L36?n, and so, by‘the norm continuilty

of w, w, and w,: w =00, = w,, l.e. w 1is pure.

Conversely, suppose that w 1s pure and that Hw is faithful.

Then N~ 1s irreducible, and so UU is primitive. Let J7 = U?zn
n

where e€'5611§£ OZ, and <53n>n is an increasing sequence of

finite dimensional *—subalgebras. Let {ei?k)}ijk be matrix units

for 6%11. We shall construct a pure state p of -071 by defining
inductively p|95n1s 1=1,2,-+c where <n,> 1is a strictly

increasing sequence of integers which are chosen in the course of

the 1nduction.

Let n, = 1 and define
(e(lq)) i l if gq=1=J =1
P ij 0 in other cases.

Then D|931 is pure.
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Now, suppose that the matrix units for ZBnk has been chosen

in such a way that:

(nkq) 1 {1f qgq=1 =3 =1

p(eiJ ) =
0 in other cases.

Since Ol 1is primitive it follows by repeated application of
corollary 3.9 that there exists an Ny > Oy and a factor

M( ) in the central decomposition of 53 such that
U431 sP Og+1

all factors in the central decomposition of an are partially
k

embedded in M(n By a suitable choice of indices one may

100
assume p = 1, and by a sultable choice of matrix units in 63

D+l
one obtains
(n1) @  .1) (n,,.1)
k + +
(1) €1 e1¥ Vs ellk 1
Now, define p|53 by :
fy+1
(nk+1q) ) 1 if 1 =J =4
p(ei,j -
0 in other cases.
Then plﬂ%n is a pure state, and for x.ejg we have:
k+l U+l
(n .1 (n _..1)
p(x) = p(e“k+l X e11k+l ). By combining this with (1) we see

that plﬂbn is really an extention of plgsn . For simplicity
k+1 k

we now write 96k instead of <55nk. Then O = ngik +« Since

lo(x)] < ||| for =xe L)jgk p may be extended by continuity to
k
a state of Ol. Since p|j5k is pure for all k, p is pure by

first part of the proof.
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We now show that Hp is faithful. By lemma 3.1 it 1s enough

to show that ker I N P, =10} , n=1,2,00+ . We show this

e(nk) in the center

(nk) %y 4 9.

by showing that for each minimal projection
of ﬁ‘jn there exists an xe:-%n_'_l such that p(x e

Then, by definition of Gelfand-Segal representation, e(nkj € ker Hp

and the result 1s obtained.

Now, by construction of 93n+1 we have that e(nk) e(n+l’l)
is a non-zero projection. This i1s included in the factor M(n+l,1)’
so there exists a partial isometry xe&M(n+l,l) such that

* e$?+1,1)’ (nk) e(n+l,1). Thus

%
XX and X X <e

(nk) %y _ (n+1,1) (nk) (n+1,1)}

o(x e p(x e x¥) = p(xx™) =

(?+1,1)) =1 # 0

p(e; 3 thus 1 is faithful.

By corollary 4.15 there exists an automorphism o of ¢ such
that
p = WOoO .
Let 67n = a(ﬁ%n). Since a is an isometry, (7 = I;ZE;.

f(nk) - (nk)

13 = oz(ei'j ) are matrix units for CYn and

1 if 1 =3 =k =1
(nk)y _ (nk)y _

w(f ) = p(e ) =
13 ij 0 in other cases

thus wldin is pure.

4,17. In the course of the proof of 4.16 we gave in fact
a . proof for the implication ii) => 1) in corollary 3.9 which
is independent of Dixmiers proof in [1], i.e. we proved that if
the intersection of any two non-zero ideals in an AF Algebra 24

is non-zero, then T 1s primitive. This 1s because the equivalence
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11) <=> 111) in 3.9 was established independently of Dixmiers
result, and the only property of U which was used in the con-
struction of the pure state o in~the proof of 4,16 was 1ii).
Since Hp is faithful, 1ii) implies that dC 1s primitive.

4,18. By using techniques closely related to tnose in 4.16

one may give a direct proof for the fact that if OY =y o6y, 1s

a simple, infinite dimensional AF algebra then the closﬁre of the
set of pure states of JU in the w*—topology 1s the set of all
states of @Y. This is proved in general for simple, antiliminal
c*-algebras by Glimm in [7], se also [3] Lemme 11.2.4. The
argument 1s roughly as follows: Since JC 1is simple, 0T 1is
primitive. By using the characterization of these two concepts
given in 3.5 and 3.9 resp., and an induction argument one may prove
that for any n there exists a m > n such that all the factors
in the central decomposition of ozrl are partially embedded in

one single factor M(mk) in the central decomposition on é?}n in
such a way that M(nq) is embedded in M(mk) with partial multi-
plicity > [n]. Then it 1s not difficult to show by methods similar

q
to those in [6] Theorem 2.8, that if w 1s a state of ([ there

exists a pure state p of M(mk) such that w(x) = p(e(mk)x) for

X 66211. p may be extended to a pure state of Cnln by

p(x) = p(e(mk)x) for XGOZm, and still : pIOZn = w. Then p-
may be extended to a pure state of Ol by [3], Lemme 2.10.1. 1In
short, each state of Cln has a pure extention to 0L . Since

%goel is dense in Ol 1t then follows that the set of pure states

of Ol 1is w -dense in the set of states of OC.
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5. e e The rent algebr

2.1, In this section we shall apply the machinery developed
in sections 1 to U4 to one specific AF algebra, This will be the
algebra of all gauge invariant elements of the algebra of the
canonical anticommutation relations. This algebfa is named the

fermion current algebra in [9].

We recall some basic facts from [11]. Let 35 be a separable
infinite dimensional complex Hilbert Space. Then OZ(3<), the
CAR algebra of 36 s 1s the C*-algebra generated by elements a(f),
where f + a(f) 1s a linear map of jﬁ into 01 (X) satisfying

the canonlcal anticommutation relations

a(f)a(g) + a(gla(f) =0

a(£)*a(g) + a(g)a()* = (g,£)I

(We adapt the convention that the inner product on 3&’ is linear in
the first factor). If U 1is a unitary operator on St?, then by
[1;] there exlsts a unique automorphism ¢ of 0%(113 such that
¢(a(f)) = a(Uf), and this defines a homomorphism from the unitary
group on % into the automorphism group of O (%). The unitary
group on jﬁ has a subgroup l1lsomorphic to the circle group, namely
the unitaries of the form f - eiaf, 0 <6 < 2I, The corresponding
automorphisms of LE (ﬁf), which we shall denote by Xe, are called
the gauge group of automorphisms. The elements xedt OXf) such that
Xg(%) = x for all 6¢ [0,2N> form a C¥-algebra which we shall
denote by IL °(7{), and call the current algebra.

If x = a(fl)* coo a(fn)*a(g,) XX a(gm) one has that
Xe(x) = eie(m’n)x, Yo) xEUZO('%) if and 6nly if m = n. We shall
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see in 5.4 that the linear span of the x's of this form with
m=n 1lies dense in OL°(¥).

We shall now use the fact that 01(36) is a UHF algebra to
deduce that X o(%f) is an AF algebra. We use the description
of OL(¥) glven in [11]. Let {fn}n=1,2 be an orthonormal
basis in % . Define:

VvV =1
(o]
n-1 *
v, = iEl(l-Za(fi) a(fi)) 3 n>1
e{™ = a(r dalr ) o™ = aqe v
e = a(r )*v_ el = a(r )*a(r)

Then it follows from the articommutation relations that the

{eé?)} form a set of 2 x 2 matrix units, which commute for

~different n's. The set of all e(l) e(2) - e(n) R
1,5 T"1i.d:2 130

(1,, Jys 1,y oc° ,jn) runs through all 2n-tuples consisting of

where

the elements 1 and 2, therefore constitutes,by sultable indexing,

a set of 2" x 2" matrix units. These matrix units generate the
algebra of all polynomials in the fileld operators a(f) and a(f)*,
where f runs(through the linear span of £f,, ee- fn. We denote
this aigebra by Uln. Then JI (%) = LJG'Cn, so OU &) 1s a

UHF algebra. Let 0{3‘ be the gauge igvariant elements in Czn.

In the next lemmas we shall study the structure of Ca'g, and

the embedding of Of g into g+l‘ Then we shall show that
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OOy = Ul , and thus establish that JLO(%K) 1s AF.
n

5.2. Lemma: Cﬂlg has the central decomposition :

n
Xy = D Minp)

] . ] ny _
where M ..y are factors of type I where (k) R E
k .
1s the binomial coefficient. M(nk) is partially embedded in
1 if g =k or q = k+l
with partial multiplicity <

M
+
(n+l q) 0 1in other cases.

Proof: It is easily verified that the matrix units eé?)

mentioned in 5.1 transform under the gauge-group by the formula

Kooy = 13100 ()

kJ . Hence
n n
i(z 3, - Z 1,.)6
(1) (n) y _ o k1'% k=1 K (1) (n)
X (el AN ei J ) = e 1 J eee ei j
141 n 1 n“n
Since the elements L) . (n) form a
i3 °13, 5
1v1 ,Jk- 2
basis for the vector space OZn. It follows that CYC’ is the
algebra spanned by those elements (l) (2) cae e(3)
1,3, i232 i j
n n
for which r i, = I Ji,»
k=1 ¥ k=1 ‘K
Now, define A , as the set of functions ¢ from. {1,2,+°°,n}
]

into {1,2} such that ¢ assumes the value 1 exactly k times;

k = 0,1,ece,n. If 6,0 € A define féﬁk) -

"t
i Then f(nk)e "Z °

€o(n)y(n)*

o (1) o (2)
¢(1)p(1) “¢(2)y(2)
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(nk)
as the linear span of {f¢¢ : 9,0 € An,k}‘

n
It is then clear that JL° = @ M as a direct sum of vector
n - 20 (nk)

Define M(nk)

spaces, If ¢,y are functions from {1l,¢¢-,n} into {1,2}, we

1 if ¢ =y
5. =
oY 0 if ¢ £ ¢ .

define

By stralght fcrward computations one verifies f(nk) f(nq) =

oY Xw
n
6, 6, £lBR) o plnk)k p(nk) gy g (0K g
H]
Thus the fé$k)'s form a set of matrix units for dzg. The

M(nk)'s are factors, and the square root of thelr dimensions are

n! _¢n
equal to the number of elements in An,k’ which is T n-K)7 (k
Thus the first part of the lemma is established. To prove the
second part, assume ¢,¢J€Ah’k. Since e$?+1) + eﬁ?*l) = e Wwe
have
(nk) (nk) _(n+l) | ~(nk) _(n+l) (n+1,k+1) (n+1 ,k)
- f - 3 + 3
Tov " = Top  ©n ov G2z T To oy To0,

where ¢r’ wr € An+l,k+l are defined by:

$(q) for q = l,°*°,n

¢,(q) =
r for q = ntl
¢(q) for q = l,*e°,n
b.(q) = |
r for q = n+l

where r = 1,2.

e
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Thus a matrix unit in M(nk) is a sum of one matrix unit in

M(p+1 x+1) @nd one in Mip+1 k) hence the lemma follows.
3 3

5.3. Lemma: Let Of-= UUZn be an AF algebra, G compact
group, o a strongly continuoﬁs representation of G as a group
of automorphisms of ¢Z, Suppose that ag(&Zn) cor,, for all
g€EG and n > 1. Let 0[8 be the G-invariant elements in <€

and 0L° the G-invariant elements in X . Then

o ° =Lr{dzg
Proof: Since g -+ ag(x) is continuous, the Bochner integral
P(x) = fag(x)dg exist for all x €dr, where dg is normalized
Haar megsure on G. (See [15], V, 5). Since a, is isometric

g
for all g |P(x)]l < éﬂcg(x)ﬂdg = [|x]|, so

(1) Iell <2

Furthermore, 1f geG, xed? then agP(x) = ag fozk(x)dk =
G

= é agk(x)dk = é a (x)dk = P(x).

sSO
(2) p@r) c °
If xe& J°, then:

(3) P(x) = dek = X .
G
If x€0'Cp, then ag(x)éOZn for all g€ G, and so by combining

with (2) and (3)

(4) PO ) =0C2 .




- 68 -

Now, let x€U°. Then there exists a sequence <X, >, with

xn€ZOZn, such that x = 1m x_. Then, by (3) and (1),

n-+»o

x = P(x) = lim P(x.). Then, by (4): x€LLJOIg
: n

n=-c

o)

and ' so: e Uoig. Since trivially Uqg c and
n n

al° 1s a C*-algebra, thé lemma 1s obtained.

5.4, Corollary: 0z°(X) = U2 .
n

Proof': The circle group is compact and in the proof of
lemma 5.2 we verified that Xe(qrn)<§_07n for all n, so by
lemma 5.3 we have only to prove that if xiéﬂ(gf) then

8 » xe(x) is continuous. In the proof of lemma 5.2 we saw that
n

n
1(k§1 It e ® e(l) ces e§n§
nvn

(n)

1an) =€ 1,0 )

(1) L 4
Xoled g, e @

and since each element yeacwn is a finite linear combination of
such matrix elements, 6 - xe(y) is in fact uniformly continuous
for yeor . Let erZ(%) and let € > 0. Then there exists
an O and e y'eCH£ such that ||x-y|| < 3+ and then there
exlsts a 6 > 0 such that [6, - 6, < 6 dimplies

”Xel(y) - Xez(y)H < §.. Then, since all X, are isometries,

6, - 6,] < 6 dimplies:

1
€
X, (1% (R <IXg (Rl ()X, DI+, (xopl<2llmsliee.

thus 6 -» Xe(x) is continuous, l1.e. 6 = Xe is strongly continuous.

5.5. From 5.2 and 5.4 it follows that the current algebra is

and AF algebra with diagram looking like Pascals triangle:
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This may now be used to reveal the algebralc structure of
Olo(%.), Theorem 3.3 implies that the ideals of UL°(X) except
{0} are represented by "pyramids" on the diagram, starting from

one point in ED(CZO(ﬁﬁ)). I.e. the most general ideal in t9Z°(3€)

except {0} is:

L k~-m
I = U ® u

n,m = 0,1,2, e ,
nom k=m+n J=n ’ ’

(k3) 3
These 1deals are all distinct. On the figure we have indicated the

Ideal ,I,. The ideal nIm may be characterized in a couple of

other ways.

1) I, 1is the ideal in O°(%&) generated by M This is

(n+m,n)*
immediate from the definition.

11) We may also describe the ideal nIm directly in terms of the
annihilators a(f) and the creators a(g)® of the field
algebra OU (M). Let p be a polynomial in the field

operators such that each addend in p contains
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equally many creators and annihilators. Then p 1s gauge
invariant. Using the anticommutation relations one may order
each addend in p such that all creators are standing to the

left of all annihilators. We then say that p 1s in normal

form. If the creators and annihilators are in reverse order in
each addend we say that p 1is in anormal form. Now, if p 1s

a gauge invariant polynomial 1n the field operators, we may’by
integrating over the gauge group as in the proof of lemma 5.3
assume that each addend of p contalns equally many creators

and annihilators. Conslder the set of gauge invariant polynomials
p such that each addend of p 1n the normal form contains at
least m creators, and each addend of p 1in the anormal form
contains at least n creators. From the anticommutation relations

it follows that this set is an ideal in the algebra of gauge

invariant polynomials. The matrix units fégr) for M(qr) con-
structed in 5.2 are polynomials in the fleld operators and it is

(qr)
oY

of minimal "degree" in the field operators which contains q-r

not difficult to verify that ¢ in normal form has an addend

(
creators, while f\qr) in anocrmal form has A term of minimal

v
"degree" r 1n the creators. It follows that the closure of the
ideal of *he algebra of field operators described above 1is nIm.

5.6. Proposition: The primitive ideals of (z°(X ) are

the following

(i) I 3 n

nto 1,2, ceoo

(i1) I ; n

oln 1’2’ cooe

(111) {0}
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One has that

e

1A O ~
o (9‘5)/1IO oKy I, =C,

and
nIo/n+IIo - oIn/oIn+l =L G,
for n= 1,2,%0c¢,
Within unitary equivalence there exists for each n only one

irreducible representation ond with kernel OIn and only one

irreducible representation nno with kernel nIo'

Proof: From the figure in 5.5 and theorem 3.8 it follows
that the list (1), (i1), (iii) exhausts the set of primitive
ideals in 97 °%(X)).

Using proposition 3.7 we see that both OZO(Vd)/;IO and
o .
@ °K)/ 1, have the diagram
1

1

so they are both isomorphic to M, = C.

By proposition 3.7 again CHO(ﬁi)/;+IIO has the diagram
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1 1
@ b
----------- ('ﬁ"\'?'\"\—"\—"':
n n n W (n y
() (1) === (1) (n) E

;s

/.//7// A
Pl PR PR A,

./
i

o
ol /oe1ls  ©f at (%{)/;+110 is then represented

by that part of the diagram which 1s lying 1lnside the shaded

The ideal

boundary. By using exactly the same kind of argument as in 1.10

LG(K). Bya

_ n-o n+lIo -
similar argument, oIn//oIn+l = LEGK).

example (iil), we then show that _I

Now, if 1T is an irreducible representation of OL°(¥) with
kernel nIO, then 1 may be lifted to a faithful irreducible repre-
sentation of Cﬁo(ﬁf)/glo =% . As shown above, 9B contains an
1deal isomorphic to the compact operators on some Hllbert space
(which is € if n =1 and X 1f n > 1). Since the only
ilrreducible representation of the compact operators 1s the identity
representation (except for unitary equivalence) (see [3], Carollaire
4,1.5), and there is a one-one correspondence between falthful
irreducible representations of 5% and faithful irreducible repre-
sentations of the ideal given simply by restriction of representa-

tions ([3], Lemme 2.11.3, and the fact that the ideal is minimal),
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Jrreducibley
1t follows from [3], Corollaire 4.,1.10, that eachYrepresentation
of OL°(X ) with kernel oI, 1s unitary equivalent to I. An

analogous argument for the ideals OIn establishes the proposition.

5.7. We shall now prove that the representations onn and

nno are subrepresentations of the Foch representation On and
the anti-Foch representation Ho resp. (See [;1], 1.3 for defini-
tions). For the sake of completeness we state a lemma, the

constltuents of which are well known.

Lemma: Let Jt be a C*-algebra, G a compact abelian group,
o a strongly continuous representation of G as a group of auto-
morphisms of OZ, Jt°  the algebra of G-invariant elements in
o, w a pure G-invariant state of JdC, T the irreducible repre-
sentation of ¢ assoclated wiith w, k the Hilbert space of 1,
£ a cyclic vector in « such that w(x) = (I(x)£,£) for all
x € O, & the character group of G, dg normalized Haar measure

on G, T the restriction of T to o ®.

Then there exists a unique strongly continuous representation

U of G on «k such that
*
1 U U =1
(1) gﬂx)g (aéxn

for all ge€G and x€& d7, and such that UgE = £ for all ggEaG.
A
If X&€G define:

(2 E, = g X(g) U, de.
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(the integral being taken in strong topology). Then EX is an

orthogonal projection such that

(3) U = ZA X(g)E ’
€  xea X

A
for all g€ G. Moreover the projections EX’ X€e G from a set
of mutually orthogonal minimal projections in HO(¢?*D)' such that

A E = I, Hence
XE€ G

E I
X o

() 1 = &

°  xe
E #
X

o Q>

is a decomposition of Ho into irreducible subrepresentations.

Proof': The exlstence of the representation U with the given
properties 1is a wellknown result of Segal, see [13]. Since G 1s
compact and abelian, U has the decomposition (3), see [3],
Thécréme 15.1.3, and (2) then follows from the orthogonality
relations for characters, sce [3], Théoréme 14.3.7. From [5],
Lemma 3.1 and Lemma 3.2 1t follows that the weak closure of m(or ©)
1s equal to the commutant of UG’ and hence the commutant of
Ho(éQO) is equal to the von-Neumann algebra generated by Uge
By (3) the projections EX are minimal in this algebra, and thus

the last assertion of the lemma follows.

5.8. We now study the decomposition of the Fock and anti-
Fock representatlion, when these representations are restricted to
d°(K). We remind the reader of some facts from [11]. The Fock
representation OH and anti-Fock repreéentation HO are both

[+
operating on the Hilbert space k = @ A"Y , where ACY =,
n=0
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and A"X consists of those vectors in X ® '3(@— --® X

(n-times) which lie in the closure of those vectors in the

algebralc tensorproduct of * with itself n times, which are
antisymmetric under permutation of the factors in Jo, ol (Ho)

then have the property that  N(a(f))(A°¥) = 0, m_(a*(£))(a%%)=0

and

Jal)): ARty AN

Jialn) ) ARK > A" K
(1)

n(a(f)) : A% > Al e,

m(a(e)®): A™R > A" %
for n = 0,1, se¢ , and feX.

OH and Ho are 1lrreducible, and if @ 1is a unit vector in

AOJ%, then the assoclated vector state is gauge invariant and

pure in both representations. This state 1s called respectively

the Fock state o¥ and the anti-Fock state W, in the two re-
presentations. We shall soon see that oY and Wy s restricted

to azoeﬁi) are the multiplicative linear functionals corresponding

to the two ideals 011 and ’Io rerp., both having codimension
1 in X O(K).

The hcomogeneous polynomials of degree n 1n the creators
a(f)*, applied to £ 1in the Fock representation generate a dense
subset of ARY. Since X acts on these polynomials by multi-
plication by e'ine, it follows that if U, 1is the unitary

operator on «k associated Xe by lemma 5.7, then:
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UGE = e 10 for E£e AR,

It follows from lemma 5.7 that the subspace A" 1s invariant
and irreducible under I restricted to (X)), Using (1),
one easily deduces that the kernel of the corresponding sub-
representation 1s generated by those gauge invariant polynomials
for which each addend 1n thelr normal form contains at least

n+l annihilators, thus this kernel is oIn+1 and thus by
proposition 5.6 the subrepresentation is unitarily equivalent

To onn+l' Using analogous arguments for the anti-Fock represen-
tation we obtain

Proposition: Let oH (resp. HO) be the Fock representation

(resp. the anti-Fock representation) restricted to 0Z°(3f),

©0

acting on the direct sum «k = ® An:tf of n-particle subspaces.
n=0
Then each subspace Anjﬁ is invariant and irreducible in both

representations, and the corresponding decomposition into irredu-

cible subrepresentations is

I= & onn+l

© n=0

[+ <]

n = m.
o n=0 ntl o

5.9. In [1], Théoréme 3, Dixmier gives an example of a
primitive separable C*-algebra Ol such that its structure space
Prim(O¥) contains no nonempty open sets which is separated.

(U 1s separated if for each point p € U we have that for all

points q not lying in the closure of {p} that p and q have
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a pair of disjolnt neighbourhoods). 010(35) provides another
such example. Indeed, from the diagram of ZL°(¥) we see
that the open nonempty sets of Prim(dZ°(¥ )) are of the form
{ I,in > no}u{oImIm >m }v{0}. Thus all neighbourhoods of

I contain I although I does not lie in the

no n+l~o n+l~ o
closure of I , which is {mIoll <m < n}.
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