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AbEl tract 

Inductive limits of ascending sequences of finite 

dimensional * C -algebras are studied. The ideals of such 

algebras are classified, and a necessary and sufficient 

condition for isomorphism of two sucL algebras is obtained. 

The results of Powers concerning factor states and represen-

tations of UHF algebras are generalized to this case. A 

study of the current algebra of the canonical anticommuta-

tion relations are then being made. 
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Introduction. 

In this paper we study ~ 
C -algebras which are the uniform 

closure of ascending sequences of finite dimensional 
!IE 

C -algebras. 

We call these algebras approximately finite dimensional (AF). 

Similar classes of c*-algebras have been studied before. In [6} 

* Glimm describes the C -algebras which are the uniform closure 

of strictly ascending sequences of full n x n matrix algebras, 

all having the same unit (uniformly hyperfinite algebras). In 

[4j Dixmier removes the assumption that the matrix algebras have 

the same unit (Matroid c*-algebras). In the study of quantum 

mechanical systems with an infinite number of degrees of freedom 

the study of unductive limits of nets of factors and their 

locally normal representations plays an important role, see e.g. 

[10] • 

The main algebraic feature which distinguishes the AF alge-

1)ras from UHF algebras and matroid c*-algebras is that the latter 

algebras are always simple, while this is not the case for the 

former in general. In fact the ideal structure, and even the 

primitive ideal structure of an AF algebra may be fairly compli­

cated, and it seems that the structure space of an AF algebra may 

have almost all kinds of topological degeneracies, see e.g. 5.9. 

The AF algebras overlap, without exhausting, a great range of 

the kinds of c*-algebras whi~h have been systematically studied, 

for example there exist nontrivial AF algebras which are liminal, 

postliminal, antiliminal, UHF etc. As the AF algebras are rela­

tively simple to handle without being trivial, they are especially 

well suited to test conjectures and to provide examples in the 
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* theory of C -algebras, and I think their principal interest 

lies herein. As shown in paragraph 5 they may also have some 

interest in physics. 

We give a brief outline of the paper. In paragraph 1 the 

major tool for analyzing an AF algebra, the diagram, is introduced, 

(1.8) and a graphical representation which easily reveals ·the-pro­

perties of a given AF algebra is devised. In paragraph 2 we 

give an alternative characterization of AF algebras (2.2), and 

prove a necessary and sufficient condition for isomorphism of two 

AF algebras (2.7). In paragraph 3 the ideal structure of an AF 

algebra is analyzed (3.3), and thus a criterion for simplicity 

appears (3.5). Then the primitive ideals of an AF algebra are 

characterized (3.8), and by means of this result and the diagram 

the topology of the structure space of a given AF algebra may be 

found. In paragraph 4 criteria for a state to be a factor state 

is given (4.4), and we find conditions for quasi equivalence of 

two factor representations (4.5). Then a necessary and sufficient 

condition for algebraic equivalence of certain representations 

of an AF algebra is proved (4.12), and a corollary to this result 

is that the automorphism group of an AF algebra acts transitively 

on those states of the algebra whobe associated Gelfand-Segal 

representation are faithful (4.15). Another corollary is a simple 

characterization of the pure states of an AF algebra (4.16). In 

paragraph 5 the results of the foregoing paragraphs are applied 

to a specific example, the current algebra or the observable 

algebra of the algebra of the c~nonical anticommutation relations. 

The most striking result obtained is a classification of all the 
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irreducible representations of the current algebra with kernel 

~ {0}. (5.6). These representations are in a natural way 

divided into two series, one of which is obtained by decomposing 

the Fock representation and the other by decomposing the anti-Fock 

representation (5.9). 

I wish to thank my supervisor Erling St¢rmer. Without his 

many helpful suggestions this work could not have been done. In 

paragraph 2 I lean heavily on the results of Glimm in [6], and 

in paragraph 4 on the work by Powers in [12] • 
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1. Definition and elementary_ properties of approximately 
finite dimensional c*-algebras. 

1.1. Definition. A * C -algebra ot is called approximately 

finite dimensional (AF) if~ has a unit e, and there exists 

an increasing (with respect to inclusion) subsequence < 07. > -'11 n=l 2 • • • 
' ' 

of finite dimensional sub algebras of ot. , such that crt is the norm 

closure of U 6l i.e. . n 
n 

c:rt= UOl 
n n 

1.2. If Gl and 6( is as in 1.1, then 
n ~ + C e trivially 

* is a finite dimensional C -subalgebra of Ol, and 6l.Ccrl-
n n 

+ «:: e S ~n+l + «:: e • We may therefore assume that each 0(. 
n 

contains the unit of Ol , and this is done in all \'Jhat follows. 

1.3. If <ct. > is a sequence of finite dimensional 
li! 

c -n n 
algebras, and an: dtn + Ol l are morphisms, and each n+ 

injective and maps the unit of OL n into the unit of 01. 

the diagram 

~ 
al m2 ~> (}7,3 --> ---> ' 

has a certain inductive limit OL by [4]. The algebras 

an are 

n+l' then 

6t may 
n 

be considered as subalgebras of Ol. Then or.. = U C'Zb, and since 
n 

each O!n has the same unit e and multiplication is norm continuous 

e is a unit in ot • Hence ~ is AF, and each diagram of the 

considered type gives rise to an AF algebra. 

1.4. In all what follows, the expression 
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(resp. J3 = U 'il vJ n 
n 

etc. ) 

" ot (res p • J3 ) is a AF algebra, a.nd t'. <Jl ) 1 2 (resp.<~ > -l 2 ) ' n n= , . . .. n n- ' o o • 

is an increasing sequ~nce of finite dimensional subalgebras of 

OZ. (resp. :Jb ) all containing the identity of or.. (resp .J3), such 

that Ol= Ult (resp. t/3= Ut8)". 
n n n n 

If (J(. = U Ol. and e is the unit of dt, we set, for convenience, n n 

0(,0 = ~e , so that Ole c orl c 0[2 c .. 0 • 0 , and 
00 

ot = u O'C.n. 
n=o 

Let (]{, = LJ cJ{ , :lJ = LJJ3 • n n n n 
verify that at..@ 53 = U (Ol 0 :;e, ) , and 

n n n 

Then it is trivial to 
~ 

ct®:J3 =UCOZ ®9.> ). n n n 

Let 0t = U 07, , 
n n 

and let p be a morphism of Ol * onto a C -algebra 

~ • Then, since II p(x)ll~ll xll for all x € Ot we have that 

f!fJ = u p( ~). Since Ot 
n is finite dimensional ~n = p(Gtn) 

n 

is a finite dimensional c*-subalgebra of 63, and since p maps the 

unit of Ol, into a unit of ~ , <J3 is AF. 

It follows that the class of AF algebras with their morphisms 

form a category which is closed under finite sums and tensor pro-

ducts. 

1.6. We introduce some notation which will be standard in what 

follows. Let 01. = U (){_ . Then each O"ln is a finite dimensional 
n n 

* C -algebra with unit e. It is then well known that 

direct sum of finite dimensional factors: 

,..,..,. is a v<. n 



ot.n 

n 
n 
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= <±> M(nk) 
k=l 

The s~rmbol (nk) serves to label the factor M(nk) c ~. 

square root of the dimension of M(nk) is denoted by [~] 

[~Jx[~] M ( nk ) ?! M [ ~ 1 ' 
matrix algebra. 

where !VIr~] is the full 

The 

such that 

complex 

·vue let e (nk) denote the maximal projection in M(nk). It is 

then well known that the e(nk). k=l·~··n are the minimal pro-
' n' 

jections of the center of 07n, anj we have that 

n n e(nk) e = I 
k=l 

V.Te will let {e ~nk)} [~} 
J.j i,J=l denote a set of matrix units for M(nk)• 

[nl n 
that {e~nk)i ~1 

n 
We will say Eot is a set of matrix units for J.j ,,) =1 k=l n 

ocn if the e(nk), span Cl{. linearly, and satisfy ij s n 

i) e(nk) e(np) = okpojs 
e(nk) 

ij sq iq 

ii) e(nk)* (nk) 
ij = e11 

'" 

We always choose the indexes such that ei~k) ~ M(nk)' i.e. such 

(nk) [~] 
that {eij }i,j=l are matrix ~nits for M(nk) in the usual sense. 

If the e ~nk) 's satisfy 
J.j i) and ii) without necessarily spanning 

or., they are said to be matrix units in OC. • n n 
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1.7. We now shall study how one finite dimensional c*-algebra 

may be embedded into another. 
n 

n 
Proposition: Let Otn = (}) M(nk)' 

k=l 
n=l,2, be two finite 

dimensional c*-algebras with the same unit e, and suppose that 

ot 1 <; 01. 2 • Let {ei~k)} be matrix units for ot,. Then there exist 

unique non-negative integers nki' 

there exist matrix units {ei~k)} 
k=l,•••;n2, i=l 

for oz such that 
2 

•• n , 1 and 

n. n k 
(lk) 2 r (2q) (1) eij = I e k-1 

q=l m=l ( I 
p=l 

[11 k-1 rlJ n +(m-l)n k+i)( In +(m-l)n k+j) qp p q p=l qp_p q 

(In unformal,but more illuminating language this proposition says: 
nn 

If we identify O(.n with <±) Mr ] and define 
k~l -~ 

pl:'-1 = M (€} (C; I 
q q a:;P 

then the e~bedding of ozl into or2 is of the form 

nl 

~(~1 
nki M[l]u k- i-1 . 

~ 

where we identify @ nki l.\1[~· J 
i=l ... 

with a subalgebra of 

Proof: Let 

8 = 

Define f3 = k 
n2 

in 0 M[~]' p=l 

be a isomorphism of ~ 

Then 8 ls an injective 

n n 
onto ~ M[n}, 

k-1 k 
na. 

morphism of (±) 
k=l 

and let 

a 2(e( 2k))8. Since a2(e(2k)) is a central projection 

n1 
8k is a morphism of 

(±) M[l1 into M[~], and we p=l 
P_ 
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n2 nl 
have (3(x) = @ f3k(x), X € (±) M[~] • k=l k=l 

From [2J' Ch.I, § 4, Th.3 it follows that f3k has the form 

p -k - <l>s 0 ¢2 0 ¢1 where ¢1 is an ampliation, <1>2 is an induction 

and ¢3 is a spatial isomorphism. There exists a Hilbert space K 

such that ¢ 1(x) = x®I 
K 

. 
' 

x E a1 (ct 1), so ¢ 1 transforms 

nl 
= <±) (M[.l] ®~I ) • 

p=l K 
p 

n1 
onto the algebra a1 (Ol.l)@ CI = C@ M[ll) @<e:I 

K p=l K 
p 

The commutant of this algebra is 

= 

As is defined by a projection in this 

n 
commutant, ¢2 o ¢1 transforms pef}l M[~] into an algebra of the form 

nl 
Since this algebra is transformed into (±) M fl] (8) ~I n • 

p=l _P <C: kp 

by the spatial isomorphism ¢ 3 , all the nkp's are finite, and in 

n1 
fact we have '\ n rll - [2] 

p~l kp_p_ - k ' 
since ~i and Gt 2 has the same 

unit e. More specifically, ¢ 2 o ¢ 1 transforms an element 

n1 n1 
:A=(±)xE..@ 

p=l p p::l 

isomorphism <l>s, 

f3 transforrr.s x 

of matrix units 

n1 
MrlJ into <.±) (x @ I ) • By using the spatial 

_ p_::l P _ nkp_ 
_P ~vie~edas ~-re~ 

this last elementYin Mr~l and doing this, we see that 

n2 n1 - -
into <±> ( G) x ® I n ) • Now by ehoosing ~set 

k=l p=l p <C: kp 

{ei~k)} for OZ1 and setting 'x = a 1 (ei~k)) above, 

and using the fact that a 2 - 1 o f3 o a 1 is the identity mapping 

one may easily define matrix units 

such that (1) is fullfilled. 

e(2k) 
ij in 
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1.8. The remark after proposition 1.7 makes the following 

definition natural: With the same notation as in the theorem we 

say that M(li) is partially embedded in M(2k) with multiplicity 

nki" If nk. > 1 we say that M(li) is 'Partially embedded in 
~-

M(2k) • These two relations are written as M(li) ~i M(2k) 

From the proof of the proposition it is easily seen that 

M(li) \.t M( 2k) iff e (li) e (2k) ~ 0, and that if we define 

a = sup{ml :tr m mutually orthogonal projections e "• • e in OZ. 2 
1' ' m 

and 

such that (li) (2k) 
ei ~ e e , i=l,•o•,m}, and b = sup{m l:tr m mutually 

orthogonal projections e 1 ," • • ,e in 0{ 1 such that e < e (li) · 
m i - ' 

i=l,•••,m} then nki =a/b. 

Let Ol. = <JO'[n. Then the diagram Q) (O'l,) of OL is defined 
n 

as the set of all ordered pairs (nk); k=l,•••,nn, n=O,l,•••, 

together with a sequence 
p 

< '\t> p=O,ooo of relations defined by 

p 
(n k) ~ (m q) iff m = n+l and M(nk) is partially embedded in 

M(mq) with multiplicity p. 

This definition requires a couple of comments. 

It is clear that !JJ ( c~) depends not only on ot. , but on the 

particular sequence <~ > which generates OZ. This dependence 
n n 

will be implicit in what follows. 

A natural question to ask is: If bt and ~ are isomorphic 

AF algebras, what are the relation between i2J (Ol) and 9 (~) ? 
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Alternatively, if O'L = U 0{. = U J3n, what are the connection 
n n n 

between the associ~ted diagrams ? An answer to this question 

will be given in theorem 2.7. From that theorem it is in principle 

easy to deduce an algoritm which gives a method of constructing from 

a given diagram all ciagrams which define AF-algebras which are 

isomorphic with the original one. 

Another question is: Do&s really the diagram ~ (OL) define 

ot up to isomorphism ? The answer is the affirmative, for if ~ 

and 33 are two AF-algebras with the same diagram ~ , an iso­

morphism a.: Ot.. -+ ~ may be constructed inductively as follows: 

,_ Sine e Ol- 0 ::. C .;. t'5 0 

Now suppose we have 

there exists an isomorphism a. 0 : ~ -+ J3 0 

constructed isomorphisms a. :~ -+ J3 
r r r " 

r = O,l,•••,n-1, such that a.rl~r-l = ar-l" r=l,••·,n~l. 

Let {ei~-l,k)} be a set o: matrix units for otn-l" and let 

f(n-l,k) - (e(n-l,k)) be the corresponding matrix units for ij - an-1 ij 

tf3n.l" Let nqp be the non-negative integer such that 
n 

(n-1 1 p) ~p (n 1 q). Then, by definition of €/) (0[.) and prop. 1.7 

there exist matrix units {ei~~q)} for Ol.n such that equation 

(1) is fulfilled, with (lk) 
eij replaced by (n-l,k) 

eij and 

e(2k) 
ij replaced by e ~r;,k)' 

l.J 
and [~] replaced b [ n-1} y p • In the same 

way, there exist matrix units f(n,k) 
ij for ~n such that (1) holds 

with e replaced by f. 

Then may define ( (nk)) = f~J?-k)' and extend the the definition one an eij l.J 

of an to ~ by linearity. Then a. is an isomorphism n 
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dZ.n -+ :/5 n ana from (1) it follows that '::t lot 1 = a. 1" n n- n-

Now, because of the last relation we may define a *-isomorphism 

a: U01n -+ U2n by 
n n Since each a. is an isometry, 

n 

a is an isometry, and a. may therefore be extended to a mapping 

of CJr..,: U Ot. onto $ = U01.. by continuity. Since all the 
n n n n 

li! 
operations in the definition of aC -algebra are norm continuous 

this extended map is an isomorphism, so ot- ~. 

The diagram of an AF-algebra may be given a graphical represen-

tation, which we show by an example. 

01.1 

oc 
1 4 

This means that en ... M 
1 1 

d't. 3 - M @M @M @M, 
7 5 . 4 1 

IXl~ 
fxt~t~ 
7 '5 4. 1 

I~ I 111.~1 
7 12 12 5 

@M' 
1 

etc. 

I 

etc. 

ot., ;;, M ®M @M, 
2 2 3 1 

and the number of lines between 

the numbers indicate the multiplicity of the partial embedding of 

the factor above into that below. As an example, the second factor 

in the central decomposition of Dt1 is partially emb€dded with 

multiplicity 1 in the first factor of 002 , with multiplicity 2 in 

the second factor and with multiplicity 1 in the third factor. 

Given a set of ~ of ordered pairs (n,k); k=l,•••,nn, n=O,l,•••, 
n 

where n 9 = 1, and a sequence < ~> p=O ,l• •• of relations on ~ , 
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when is :Il =fiJ (OZ.) for some .AF-algebra Ol.? We list some axioms 

that ~ must satii'Jfy (Define (n ,k) '\t (m,q) <=> ]P ~ 1: (n,k) \P (m,q)) 

i) If 
c0, 

(n,k), (m,q)E:..:O and m = n+l 

there exists one and only one non-negative integer p such that 

(n,k) \Pcm,q). 

ii) If m f n+l none such integer exists. 

iii) If (n,k)~~ there exists a 

(n,k) \1 (n+l,q). 

(iv) If (n,k) EfP and n > 1 there exists a q € {1, • • • ,n 1 } 
n-

such that (n-l,q) ~(n,k). 

It is not difficult to see that the diagram of a given .AF­

algebra satisfies these axioms. We only mention that (iii) expresses 

the trivial fact that the kernel of the identity morphism ozn + arn+l 

is equal to {0}, and (iv) expresses the fact that the identity of 

ctn is mapped into the identity of atn+l by the identity morphism. 

Conversely, if £0 satisfies axioms (i)-(iv) one may by 

induction construct a sequence of finite dimensional c*-algebras 

<OL > and injective morphisms n n 

a. lot - a. 0 

n n-1 - n-1' 

units e(nk) in 
ij 

n=l,2,•o• and such that for a given set of matrix 

~~ t~ere exists a set of matrix elements '"'t...n 

e (n +1 ,k) i /'77 h th t ij n v~n+l sue a 

(n+l,q) 
• e 

k-1 
1
. 1 k-1 [ J (I n nj+(m-l)n k+i)( In n +(m-J)n k+J). 

p=l qp_p q p=l qp p q . 
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n k 
where nqk is such that (nk) \ q (n+l,q). This is done by 

choosing the dimensions [n~l] of the factorsn M(n+l,q) in an 

appropriate way; in fact we have fll+l] - I n [n] L q - p=l qp P • 

The inductive limit of the diagram 

--->, ovl ---,> •••• 

will then have diagram @ • 

1.9. We mention some examples of AF-algebras ~. 

(i) Ol finite dimensional. Then the diagram has the following 

form: 

Pl P2 • 0 0 • 0 0 0 • 0 Pn 

I l 1 
P1 P2 0 0 • 0 0 0 0 0 • Pn 

I I I 
P1 P2 • 0 0 0 0 0 0 • • Pn . 

1 

(il) or. is an UHF-algebra. Then all ot.n are factors and the 

diagram has the fo:cm: 

The number of lines between and is Pn+l" 
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(iii) We next give an example which is closely related to the 

algebra M oo studied in [4], 5.2. Let K be an infinite di-
1 ' 

mensional separable Hilbert space, and let ct = l~ K) + CCI • 
K 

Then ~is AF and has a diagram: 

This is shown as follows: 

1 1 

I ',,,J 
1 2 

l~l 
1~1 
1, 4 
I I 

I ' I 
I ..... 1 

I ' ' 

Let <~ > be an orthonormal ""n n=l ,,., 

basis in K, and let K 
n be the subspace generated by ~ 1 ···~n· 

Let En be the orthogonal projection onto Kn. Define 

otn = {xe. ~(K)jx(l-E) = (1-E )xECC:(l-E )} "'Jj(K )G}a:; ... M {±)M. n n n n n 1 

Then Oln is embedded in otn+l as indicated on the diagram, and 

since each X~ otn is a sum of an operator of finite rank and a 

multiple of the identity we have that Ol C ff(K) + C.C:I. n-

Conversely, by using the fact that the operators of finite ran~ 

are norm dense in ~(K), and that the finite linear combinations of 

~ 1 ~ 2 •o• are densen in K, it is easy to show that 

£ce(K) + CC:IK C l_)~. 
n 

1.10. An AF. * algebra is separable, but a separable C -algebra 

with unit does not need to be AF. This follows from the example 

oz = c [0 '1 J • 



- 16 -

Since [0,1] is connected, [0,1] contains no nontrivial open­

closed subsets, hence c[O,l] contains no other projections than 

0 and 1. It follows that c[o,1] contains no other finite dimen­

sional *-subalgebras than {0} and «:1, thus c[o,l] cannot be AF. 

2. New definition of AF algebras. Isomorphism of AF algebras. 

2.1. Lemma. 
lie 

Let Ol be a C -algebra on a Hilbert space K, 

let E > 0 and let n be a positive integer. Then there exists a 

o(E,n) = o > 0 such that if 

1) 

2) 

{ (k) 
eij ; i j = 1 •••n k = l.•o•,m} 

' ' k' .. 
lie 

is a family of matrix units for a finite dimensional C -algebra 

on K with unit I , such that 
K 

There exists X (k)e_ 0{. 
ij such that 

n 
L nk = n. 

k=l 

II (k) _ (k)n 
xij eij II < o, 

then there exists a family of matrix units in ~ such 

that II fi~) -e{~) II < E. 

Proof: The method of proof of chis lemma is the same as that 

Gli~~ uses in (6], lemma 1.10; thus the proof will be omitted. 

The next theorem is analoguous to theorem 1.13 in (6]. 

2.2. Theorem. Let (}'{. be a Clie-algebra with unit e. Then 

Ol is an AF algebra if and only if the following two conditions 

are fullfilled. 

i) 01. is separable. 

ii) If x 1 • • • x ~ Ol. and E > 0, then there exists a finite 
' ' n 

dimensional c*-subalgebra 6B cot and elements 
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~ x. -y. II < e 
~ ~ 

Furthermore, if en. is AF, and 
lk 

C -subalgebra of at, there exists an 

. 
' 

i = 1, •·• ,n . 

~~ is a finite dimensional 

0 0 0 

increasing sequence 

* of finite aimensional C -subalgebras such that 

and U Ol. = Ol . 
i i 

Proof. The proof is closely related to Glimms proof in [6]. 

The necessity of conditions i) and ii) is clear. 

To show sufficiency, let {d1}i=l, 2,.o• be a dense sequence 

in the open sphere of radius ~ about the origin in Ol. We may, 

without loss of generality, suppose that the subalgebras we 

consider contain e. We shall construct an increasing sequence 

<etc. > of finite dimensional subalgebras of tJt. such that for 
n n 

all n ther~ exists bke.Ol.n, k=l,•o•,n such that 

lbk-dk~ < 2-n, k=l,•oo,n. 

Since I d 1 II < ~, {)'(1 may be chosen arbitrarily. 

Suppose as:induction hypothesis that ~n has been constructed 

and has the required properties. Let {ei~k)} be matrix units 

for (}[ 
n· Define By using hypothesis 

ii) of the theorem and lemma 2,1 it follows that there exists a 

finite dimensional subalgebra 01.' of 07_ and a set of matrix units 

{f(k)} in 0!• (which does not necessarily generate 0( ') such that ij 

ll f(k)_e(nk)ll<o. 
ij ij , 1 .::. i,j ..:..[~]' where 0 is the o(e,nk) of 

[6}, lemma 1. 8, and such that there exists bk € Of..', k=l, • • o ,n+l, 

such that 
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By [6], lemma 1.8, there exists a partial isometry we at 

such that wf~~) is a partial isometry between f~~) and e~~), 

k=l ...... n 
' ' n, and ll e(k) wf(k) II 

1 1 - 1 1 k=l oeo n 
' ' n • 

Define 

u = 
[nk] 
I: (nk) wf(k) 

1=1 eil ~i ,. Then ue ~, and by trivial algebra 

(k) * e (nk). u is unitary and uf1 j u = ij • 

Define * orn+l = uO! 'u . Then ~n+l is a finite dimensional 

subalgebra of Ot. isomorphic with Ol.', and 

must find bk 6(}"(. n+l such that 

= £ + II L (f(k)b, f(q) - (nk) wf(k) b' 
kqst ss k tt esl ls k 

. 
nn 

< £ + ( I: [~] ) 2 suplf(k) b'f(q) (nk) 
k=l kqst ss k tt - esl 

Now: 

C!L cor.+l" n- n We 

k=l,•••,n+l. 

f(q) 
tl 

w* e(nq))i 
lt 

Let 

f(k) 
w ls 

b'f(q) w*e(nq)~ 
k tl lt 
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< (J[ > n n 

1 = 
2n+l 

with the required properties 
---

exists. Then {d.} E. (j07. ' 
l n n 

2. 3 Lemma. Let Cl = U"l.n and ~et ~· be a finite dimensional 
n 

subalgebra of ot. Then for all £ > 0 there exist a unitary 

operator u. £en and a positive integer n such that 

(i) 

(ii) 

II u-e II < £ 

u13u*coz 
- n 

Proof. We may assume chat e ~ :73. 
unlts· for ~, and suppose 1 ~ i,j ~ N 

Let {f~~)}m be matrix 
lJ k=l 

and let be the 

2.1 implies that there exist an 

matrix units in ot 
n 

such that 

a 
n 

for all f~~). Let 

of lemma 1.8 in [6j. 

and a family { (k) }m 
eij k=l 

(k) (k) 
II fij - e 1j II < o • 

Lemma 

of 

From [6], lemma 1.8, it follows that there exists a partial isometry 

such that e (k)w = w"·"(k) 
1 1 ..L 1 1 is a partial isometry having 

and as initial and final projection, respectively, and such 

that lie~~) - e~~) wll < £1 • Define u = 
,.. z: e (k) w f(k) Then, 6 
k i il li 

since E e ~k) 
ki li 

= Z: f(~) 
ki il 

= e, u is unitary, and we have 

(k) (k) * u.13u 
liE c OG e .. = uf ij u , thus • Furthermore: 

l.J n 
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(k) (k) 
II eii - eii u II 

- llei~) e~~) 
J.J. ei~) w fi~) II 

~lief~) - e(k) 
11 w fi~' II 

< lle(k) - fi~) II + II fi~) (k) 
w fi~) II - li - ell 

< II Ck) 
- eli 

fCk) II + ! ~Ck) 
- li -·11 

- e(k) 
11 w fi~) II 

Thus: 

I (k) (k) II e - u I = II E l: (e. . - e iJ." u) II 
k i J.J. -

2.4 Lemma. Let Ot.. liE 
be a C -algebra with unit e, let ~1 , ~ 2 

be two finite dimemdonal * -subalgebras of or. containing e. Let 

a: ~ 1 ~ g3 2 be a *-isomorphism such that: 

II a - I I~ 1 II < 1 , 

where I: at~ ot is the identity map. Then there exists a unitary 

operator u € Ol such that: 

Proof: 

define 

* a(x) = uxu . , xt-5.31. 

Let {e(k)} be a set of matrix units for ~ 1 , and 
ij 

= a(ei~))" Then {fij)} is a set of matrix units for 
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ffi12 • We .have 

for all k. Lemma 1.8 in [6] implies that there exists a partial 

isometry w € or such that fi~) w ei~) is a partial isometry having 

ei~) as initial projection and fi~) · as final projection. Define 

u = I: I: f~k) w ei~) Then u is unitary and 
k i J.l 

u ei~) u* - f(k) 
- ij = a(ei~)) 

so u has the required property. 

2.5 Lemma: Let m= uar . n , 
n 

and let fJj be 

a finite dimensional liE -subalgebra of az such that 

Then there exists a positive integer n and a unitary operator 

u c 01 such that 

(i) 

(ii) 

Proof: 

tive integer 

* uxu =x; 

By lemma 2.3 there exists a unitary v60't and a posi­

n such that II v - e II < 1/3 and v ~ v* c 0(. • - n 
Define atl I : V 0'{~ V* C an and define an iSOmOrphiSm ().: (}(_ l -+ 0( l I 

by: 

a(x) 

Then, for X E ot · 1 • 

* = vx v . , 
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II a(x) - x II = II v x v* - x II ~ II v x v* v* II 
+ llxv*- xll ~ 21lxll•llv- ell<; llxll, 

thus 

By lemma 2.4 there exists a unitary wE. at n such that 

Let 

* a(x)=wxw; 

* u = w v. Then 

x t. or 
1 

since w € ozn. For X E. or;l we have: 

* * * * . 1 U X U = W V X V W = W <l ( X ) W = <l- (a( X) ) = X , 

thus u solves our problem. 

2 .6_Lemma: Let tJL = Uot.n = 
n 

ufB 
n 

exists an automorphism a of at such that: 

n Then there 

For every positive integer n there exists an positive 

integer m such that 

a(~n) C O[m 

orn <; a.(YJ m). 

Proof: By induction we shall find two strictly increasing 

positive integers, two sequences and 0 0 0 0 

of unitary operators in OL such that if ai (resp. ai) are the 

isomorphism~ ~01 implemented by u1 (resp. vi), restricted to 

fi9mi (resp.otni), then a.i <93mi)Cd0ni (Si(otni) G ~mi+l) and 

' 
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the following diagram commutes 

fh 1 
(1) 1 

(33 

1 
etc. 

Here C ~ denotes the inclusionmap. 

We construct u 1 , v 1 , u 2 , v 2 , u 3 ,o••o successively by induction. 

By lemma 8 there exists a positive integer n 1 and a unitary 

operator u 1 E 01... such that 

in the induction. 

Suppose now that 

such that the following diagram commutes 

Ci. 
~00 !h n-1 

mn-1 . nn-1 

1 <Q~,;'').. ~ an VJ 
~~ >Oln n 
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We shall construct vn. Let ~' 

a finite dimensional ~-subalgebra of 

we have {}.; C. at' . 
mn 

* = u Ol u • n nn n 
Ol, and since 

Then tJl' 

u 03 
n ~ 

By lemma 2.5 there exists a unitary v t:.. tJt.. 

vfJt' v* c ro ' 
- mn+l 

and a positive 

integer mn+l > mn such that 

~ vxv =x; 

Let 

Then 

v n or.n 
n 

and if xe'!J;; 

xefl3 • 
rrn 

* v = vu n 

mn 

n 

Bn(an(x)) = v u n n 

* Qn u 
n 

* xu vn n 

~ 
v = n 

* = v u 

Hence the following diagrai\ commutes 

a 
~m n 

n 

1 ~'('> 

~~ 
n+l 

and such that 

vOZ' 
~ cffi v 

' rnn+l 

* * ~ * un xu u v = vx v = n n n 

OLn 
n 

x. 

is then constructed in an analogous fashion by "rotating" 

into an aLgebra ~ by means of a unitary operator 
n+l 

u such that (J(, is kept fixed, and define un+l = u vn* • 
nn 

By induction we obtain the commutative diagram (1). Because of the 

commutativity \ve have an+ll §3m = 
. n 

morphism a: .U ~m -+ U ~ 
n n n n 

al~ m 
11 

by~ 

Hence, we may define a 
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a is surjective, because if y £Gtnk we have y = ak+l(Bk(y)) = 

a(Sk(y)) and Bk(y)E ~mk+l" 

Furthermore, 

C'. is an isometric 

since al~mk is injective 

isomorphism of '1/. 13. mk onto 

and hence isometric, 

U (.}[ nk• Since 
k 

these two sets are dense in Cl, a may be extended to an auto-

morphism of Ol. 

If n i:s a positive integer tmre exists an integer k such 

that n ~ mk and n ~ nk. Thus a(t(1n) C aW3mk) C (){ nk and 

tJzn ~Olnk = ak+l(Sk(O'l.nk)) ~ ak+lC&Jmk+l) = a($/3mk+l)' which 

implies the proposition. 

2.7 Theorem: Let (}{, = U 0Zn 
n 

isomorphic to fB if and only if 

and fl3 = U,'B . 
n n 

Then dt. is 

<CJt > n n contains a subsequence 

< Olnk ~ and each 

fb•k such that 

contains a finite dimensional * -subalgebra 

and 

i) <~~>n is an increasing sequence, and there exists an 

isomorphism a: u~ -+ Lf./3· such that a(~ ) =~' for all n. 
n n n n n n 

ii) For all positive integers n there exists a positive 

integer k such that 

tXn C fl> k 

Proof: Sufficiency: Suppose that there exists a sequence 

<~ '> n n * and a -isomorphism a such that i) and ii) are fulfilled. 



Since alflln is an isometry, a is an isometry. By ii) we have 

UOC. = U ~·'. Hence a is an isometric isomorphism between a n n n n 

dense subalgebra of cJ$ and a dense subalgebra of 01.. and may be 

extended by continuity to an isomorphism from £6 onto rJt . 

Necessity: Suppose that ~ and OZ are isomorphic, and let 

8: ~ -+ Ol be a *-is amorphism. Let <[/3 ~ = a (6B n) • Slnce a is 

an isometry is a dense subset of Ot so /'r-1 = uQl " ' vt. n <1J n • 

Lemma 2.6 then implies that there exist an automorphism y of Ot, 

and an increasing sequence <n.>. of positive integers such that 
J. J. 

and such that for all n there 

exists a k such that OGn c y(0k). Define ~k = y(VJk:) and 

a = yo allJ fi3 • Then i) an1 ii) of the theorem are fulfilled. n n 

2.8. Glimm has in [6], theorem 1.12, given a necessary and 

sufficient condition for isomorphism of two un.iformly hyperfinite 

algebras Ot. and ?}.; • His result is essentially that ~ and £fb 

are isomorphic if and only if the following condition is fulfilled: 

If OL contains a type In -factor with the same unit as ot, then 

flJ contains a type In-factor with the same unit as 9j and vice 

versa. One might suspect that a similar result would be true for 

an AF-algebra with the condition replaced by: If tJZ contains 

a finite dimensional *-algebra ~with same unit as ~' then 
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~ contains a *-algebra with the same unit as :2J which is 

isomorphic to ~. Such a result is however not true, and the 

reason is roughly as follows: If m 
1 

is a factor of type In, 

f'lrl.;2 is a factor of type Inm' n,m < oo, then m 
1 

can be embedded 

in ~2 in essentially only one way. By this is meant that if 

a ,a. are two injective morphisms tl1lJ + ffn; which maps the unit 
1 2 1 2 

of ~ on the unit of ~, then there exists an automorphism 
1 2 

8 of lf1U such that a. = 8 0 a. • That this is the case, follows 
2 1 2 

easily from [2 J , Ch. 1, § 4, theoreme 3. Because of this, if 

0!: urm is a UHF algebra, where all ~n's are factors, then n n the 

isomorphism class of Ol depends only on the factors themselves and 

not on the way they are embedded into each other. In fact, the 

isomorphism a. of theorem 2.7 will automatically exist if all 

the ~n are factors isomorphic to S& ',so Glimm's result is a n 

corollary to this theorem. 

* On the other hand, a finite-dimensional C -algebra ot may 
1 

in most cases be embedded into another finite dimensional c*-algebra 

Ot in essentially different ways. 
2 

iso~orphism class of an AF-algebra 

Thus we may expect that the 

01.. = U OZ depends not only on n ~1 

the ~n's, but also on the way they are embedded into each other. 

This dependence is reflected in the condition i) of the theorem. 

Of course condition i) may be replaced by the equivalent condition 

that all ~n are isomorphic to ~n'' and that corresponding fac­

tors in the central decomposition of ~n and ~n' are partially 

embedded in corresponding factors of 53n+l and flJ ~+l with the 

same partial multiplicities. This will then enable us to construct 

a. by using the method which in 1.8 is used to show that the diagram 
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of an AF-algebra determines the algebra up to isomorphism. 

and 

Lut 

We shall give an explicit example of two AF-algebras 0! = ld ~ 
~ = U$ such that .dl.n is isomorphic to n n 

tJt is not isomorphic to !J3 • 
for all n, 

sional * -subalgebra of 

By lemma 2.3, each finite dimen­

(resp.as) is isomorphic with a subalgebra 

so In and !73 contains the same finite dimen-of one {!{ (resp.$ ) n n 
sional subalgebras. Thus the condition i) of theorem 2.7 is essential. 

O'l and % have the following diagrams: 

1 1 

/"' I 
1 1 1 

1\ !\ I 
1 1 1 1 l l 1 1 1 1 1 1 1 1 

., 
J.. 1 

For all n or..--~ ~G) rJI 1 , where (t)n Ml ~is the direct sum n n 2n 
2 

of 2n replicas of Ml. From the classification of ideals to be 

given in § 3 it immediately follows . that ~ has ideals of dimension 

1 while all the ideals ¢ {0} in Ol are infinite dimensional. Since 

the dimension of an ideal is an isomorphism invariant, {)(_ and :J6 are 

not isomorphic. 

A little remark at last: At first sight it perhaps does not seem 

to be essential that the isomorphisms between finite dimensional sub­

algebras considered in lemmas 2.3 through 2.6 are unitary implemented. 

And in fact, the only use which is made of this fact is in the proof 

of 2.6, where it is important that an isomorphism between subalgebras 

may be extended to an automorphism of the algebra in which they are 

embedded. The existence of this extention is assured by the unitary 

implementation. 
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3. Algebraic structure of an approximately finite dimensional 

!k 
C -algebra. 

3 .1 Lemma: Let Ol be a C!k -algebra and let {CiJ. } 00 be an 
<.Qn rt=l 

increasing sequence of finite dimensional subalgebras of ()1. such 

that or. = U ~ n • 
n=l 

Let 1 be a closed twosided ideal in d( • Then 

00 

1 = 1-rt ( u fB ) . 
n=l n 

Proof: Set 1 = }n~ . Then n n ~ n is a closed, twosided 

ideal in fl!> and we must prove that n 

Trivially: U 1' n C. "f . 
n=l 

u'Yn ='J. 
n=l 

00 

On the other hand, suppose that X~ U ~ • 
n=l n 

liTe must prove that 

X tf 1'. 

Let p: ()(, _.. ()t I 1 be the quotient mapping. Let <x > n n be a 

sequence such that Xn€ vsn and X + X. Since xf U 1-n n 
n=l 

we have that 

inf II x-y II = e: > 0 
ye U ln 

n 

Since xn +X there exists an N such that n > N implies 

II x-x II < e:/2 n 

For n > N and y r: "~~- we therefore have "'- ,.-n 

llxn-YII ~ llx-yll - llxn-xll > e: - e:/2 = c./2. 

Now~ since ker P I !1 = l n ~ = '¥ we have 
n n n 
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= inf ~x -y~ > ~ , 
o., n - 2 

yt :7 n 

because the norm on the * C -algebra p(~n) is 

pfhn; is viewed as a subalgebra of p(Ol), or 

the quotient mapping ~ n .._CfJn/'5 n • Now, since 

continuous p(x)-+- p(x). In particular 
n 

I P ( x) II = limll P ( x ) II > E I 2 
n-+-co n -

SO X f ~. 

the same whether 

as the image of 

X -+- X and p is n 

3. 2 Let flt = lJ ~. In the following the term "ideal in OC " 
n 

will mean "normclosed twosided ideal in Q{ ", while the term 

"ideal in U tJ( " will mean "twosided ideal in U Oln". The ideals 
n n n 

in U ~ are described as follows : 
n 

Lemma: Let I be an ideal in l)Oin. Then I has the form: 
n 

( 1) I = U (£) M ( nk) 
n=l k 

(nk)cA 

where A is some subset of~ =~(0!) satisfying the two condi-

tions: 

i) If (nk) (i .'1. and (nk) ~ (n+l q ) then (n+l q ) E: A 

ii) If (nk)~(n+l q) implies that (n+l q )t A; q = 1,---, 

then (nk)t: A. 
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Conversely, if AC ~ satisfies i) and ii) then the subset 

I of U !tn defined by (1) is an ideal in U CJl.n such that 
n n · 

I f1 (}[ r< = ~ M ( nk) • 

(nk)€A 

Proof: 

In = I (') C1l n • 

Suppose I 

Then I 
n 

is an ideal in U /J'r . """"n' 
n 

is an ideal of ...-1-o' v'n' 

It is well known that the ideals of ~ 
n 

and define 

and I = U I 
n n 

nn 

= @ r.1(nk) 
k=l 

is the 

subsums of this finite direct sum of factors. Hence I has the 
n 

form: 

In = GJ M(nk)' 
k 

(nk)~A 

where A is some subset of :tJ, so I has the form (1). vle show 

that A satisfies i) and ii). 

i) If (nk) E A then M(nk) C InC I. In particular e(nk)€ I. 

Now, if (nk) ~(n+l q ) then e (nk) e (n+l q ) -t 0. (see 1.8). Since 

e (n+l q ) E M we have that e (nk) e (n+l q ) ~ M Since I 
(n+l q ) (n+lq ) • 

is an ideal: e(nk) e(n+lq )E. I. Hence M(n+lq )()I-t {0}, and since 

I is an ideal and M(n+l q ) is a finite dimensional factor: 

M(n+lq)CI, i.e. (n+lq)f:A. 

ii) Suppose that (nk)'\t(n+lq) implies that (n+lq ) ~A; q = 1,---, 

nn+l" This is equivalent to say that if M(nk) is partially embedded 

in M(n+l q ) ' then M(n+l q ) C I. But since M(nk) is contained in 
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the sum of the factors M(n+l q ) in which it is partially embedded 

M(nk) S I; thus (nk)E A. 

Conversely, assume that A satisfies i) and ii), and define 

I by (1). Define: 

In = ~ ~\nk) 
(nk)£A 

From i) it follows that if M(nk) -:= In and r\nk) is partially 

embedded in M(n+lq )' 

and by this 

then M(n+l q ) € In+l. 

Hence, if X € uork' 
k 

Hence M CI (nk) - n+l 

y E I = U Ik 
k 

there 

exists an n such that X e 0Zn, y€,. In. Since I is an ideal 
n 

in Ol this implies that xy, yx € I C I. Hence I is an ideal n n-

in Uotn. 
n 

It remains to show that I-not = I . n n Clearly: I cinGl. n- n 

To show equality it is enough to show that if M(nk) C: In 0Zn' then 

M(nk) c; In. So suppose M(nk) C I. Since M(nk) has a finite basis 

(as a vector space), and the I 's are increasing linear subspaces 
m 

of I, there exists an m such that M(nk) c Im. 

If m < n there is nothing more to show, so suppose m > n. 

Suppose ad absurdum that M(nk) ~ In. From ii) it follows that there 

exists a M(n+l k 1) such that r'~(nk) is partially embedded in 

M(n+l kv and (n+l k1 ) tf A. By ii) again it follows that there exists 
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and (n+2 k 2 )~ A. As partially embedding is a transitive relation 

M(nk) then partially embedded in M(n+2 k 2). Proceeding by 

induction we find a factor M(mq) 

embedded in M(mq), but (mq) q: A. 

such that M(nk) is partially 

Hence M.( q)~ I = {0}. Therefore m · m 

M(nk) is not contained in Im' which is a contradiction. Thus 

In Oln = In. 

3.3 Theorem. Let at=UOl, 
n n 

and define 

AI = set of norm closed ideals in at 

A2 = set of ideals in u~ 
n 

As = set of subsets A of 9) (a) sati.sfying i) and 

ii) of lemma 3.2. 

Then there exists a natural 1 - 1 correspondence between the 

eldments of A1, A2 and A3• This correspondence may be defined 

by bijections : 

00 

¢29: A3 -+ A2 A -+ u 0 M(nk) 
n=l k 

(nk)EA 

¢12: A~ -+ A1 I-+ T 

Proof: From lemma 3.2 it follows that ¢23 is bijective. 

Lemma 3.1 implies immediately that <P12 is surjective. To 

show that ¢12 is injective suppose that I 1, I 2 are two ideals in 

UOtn such that II 
"' 

I2. From lemma 3.2 it follows that there 
n 

exists a factor M(nk) which is co~tained in one but not the other 

of the ideals Il and I2• Suppose that M(nk) C Il .... I2. 
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Then 

some 

e(nk) 

e (nk) 4 I 2 0 <'ll m; m = n, n+l, --- because if e (nk~IP Olm for 

m, then e (nk) €. I 2 and thus M(nk) = e (nk)M(nk) ~ I 2• Hence 

is mapped into a projection ~ 0 by the canonical mapping 

and since I2 = U (I~n otm): 
m 

while (nk) -e ~ I 1 C I 1 , thus -

Hence: inf lle(nk)_YI = 1, 
y~I2 l'l4Th 

inf lle(nk)_YII = 1. 
y~I2 

hence 4>12 is injective. 

3.4. As an example of the use of theorem 3.3 we look at the algebra 

£We K) + CI mentioned in 1.9 • 

The only ideals o'f this algebra, except for the trivial ones, is the 

algebra generated by' the factors lying inside the botmdary indicated. 

From the description of this algebra g~ven in 1.9 it follows that 

this ideal is £t(;(K), and we thus get the well known fact that the 

only nontriVial norm closed ideal in d.:~ ( K) + ~I is ce !( K). 

3. 5 Using theorem 3.3 we shall find a condition for "t = U~ 
n 

being simple: 

Corollary. 

equivalent : 

Let 07.. = LJotn. Then the following conditions are 
n 
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(](_ is simple 

or_ is algebraically simple 

If M(nk) is a factor in the central decomposition of 

an there exists an m > n such that M(nk) is 

partially embedded in all factors in the central decompo­

sition of at m' 

For all e(nk) there exists an m > n 

e(nk) e(mq) ~ 0; q = 1, 

such that 

' n • m 

(The equivalence of i) and ii) is a well known general result for 

Banach-algebras with unit, and is stated only for completeness. See 

~~' Ch. XI, prop. 1.1 and 1.2). 

Proof: By 1.8: 

iii)<-> iv) 

Now ,suppose iii) and suppose that I is an ideal of ()[ which 

is not {0}. By theorem 3.3 I contains some factor M(nk)' By 

iii) and condition i) of lemma 3.2 there exists an m > n such 

that or. cr. m- Then e € I; hence hence iii) => i). 

Now, suppose i). We show iv) by using the fact that the ideal 

generated by some M(nk) :ts (]{.. This ideal is: 

I= U , 
m>n 

as we see in the following manner, Define 
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• • m = n.., n+l, -

Then Im is an ideal of or_ 
m• and it is the least ideal which 

contains e(nk) and thus • the least ideal which contains M(nk)., 

If M(nk) is partially embedded in M(mq) and M(mq) is partially 

embedded in M(m+lp) then M(nk) is partially embedded in M(m+lp)i 

hence Im S Im+l• It follows that UI . m is an ideal of Uotm• m m 
and it is the least ideal which contains M(nk) • Thus 

I= VI 
m m 

is the least ideal of or. which contains Since 

tJl is simple. Ol.. = I. 

exists an q such that 

Now, suppose ad absurdum that for all 

e(mq)e(nk) = 0, For each m is then 

and thus inf 
XE-Im 

II e-x II = la hence inf II e-x I = 1; 
xeUim 

=I=07., which is a contradic!ion. Hence hence e ~ U I 
m m 

m > n 

i) -> iv). 

S~6 We show an example of an infinite dimensional AF algebra -
which are simple but not UHF. Its diagram is 

1 2 

1X1 
3 4 

1'\/1 
/~ 
7 10 ,w,, 
_,,//',~ 

17 24 

~~/1 
etc. 

From 3. 5 it follows that this algebra tit = U Oln is simple. 
n 
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Furthermore 

Oln ~ M~] (±) M[~] 

where [~] , [~] are defined recursively as 

[i] = 1 )I [~] = 2 ' 

[~J = [niiJ + [n21] 

[~1 = 2 [nil] + [nil J 

By the Euklidean algorithm \lle have the following equivalences: 

(~] and . [~] are relatively prime 

~ 
[~} - [~} = [nil] and [~J are relatively prime 

l 
[nl] - [nl··l] -- rn2-11. and [n-11] a1e relatively prime 

Since 1 ~nd 2 are relatively prime it follows by induction that 

[~] and [~] are relatively prime for all n. 

Now, suppose that MC. 0"[ 
- n is a factor of type I m with 

unity e. Then M e(ni) is a type I m factor in rvl(ni) with 

unit (ni) e , i = 1,2, thus m must divide [~1 and -[~} ;. thus 

m = 1, i.e. M = Ce. Nm-1 if M :ts a type I factor in dl. with m 
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unit e, then l'vl is isomorphic with a factor in some or. with n 
the same unit by lemma 2.3. Thus M = ~e • 

Hence 07_ does not contain any factor of type Im, m < 00 

' 
with unit e, except from <r.e, so d( is not UHF. 

3-7~ We now proceed to study the primitive ideals of an AF 

algebra Cl =LJ~. Sin0e the property of being primitive is not 
n 

an intrinsic property of the ideal I itself, but in fact is a 

property which solely depends on 0!/I, we first study the structure 

of Ot II, for 01... and I given. 

Proposition. Let 0[. = U 0( , and let I be an ideal of 
n n 

0Z. Index the factors in the central decompositlon of ~ n in 

such a way that the subset ACjD COl) corresponding to I has 

the form 

A = { (nk); m +1 < k < n ; 
n - - n 

n = 0,1,---} 

Let p: dt ~~/I be the quotient mapping. Then 

(in the AF-sense) and the central decomposition of 
mn 

p(C}Zn) = <±) p(M(nk))" 
k=l 

OL!I = U p((}( ) 
n n 

p(O{) is: 
n 

where p(M(r.k)) "' M(nk) for (nk) ~ A. Furthermore, the diagram 

of dl. /I consists of the pairs (nk), k = 1,--- ,mn, n = 0,1,--­

together with the relations \P inherited from "£) COl), i.e. 

(nk) \._P (mq) in ~ (Of /I) if and only if (nk) \P (mq) in ~ ( 0C). 

Proof: at=U in the AF-sense by 1.5. By theorem 
n 
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n 

InCUOZ'n> = U 
n n 

n 

n 
G) M and then by lenuna 3.2 

k=~+l (nk) 
n 

3.3 

I n (}[ = ~ IVI(nk). 
n k=~+l 

Hence Plfln has kernel Q>. M(nk) 
k=m +1 

g,nd since a 
I'J 

n 

is the 
n 

(!) M the central 
k=l (nk)m 

p 

peer > = e p(Mc k)> 
n k=l n-

n 
direct sum of this kernel and 

decomposition of p(~n) is 

where p(M(nk)) - M(nk) - MI~J for 

factor p(M(nk)) by (nk) it is k = 1, ---, m • n 
Indexing the 

clear that the underlying set of fi) ({}{/I) consist of the pairs 

(nk); k = 1, ---, m , n = 0,1, ---. n 

Now, suppose that (nk), (mq)¢A and suppose m > n. Let f 

be a minimal projection in M(nk) and let f 
1 

be a maximal 

set of mutually orthogonal minimal projections of M(mq) such 
p 

that I: fi .::_ f, i.e. 
i=l 

we r.ave 
p 
I: 

i=l 
By proposition 

1.7 p is the multiplicity of the partial embedding of M(nk) in 

M(mq)" Now, since PIM(nk) and PIM(mq) are injective, p(f) is 

a minimal projection in p(M(nk))' p(fi) are minimal in p(M(mq) 
p 

= p(e(mq))p(f). and I: P(fi) Therefore the multiplicity of the 
i=l 

partial embedding of p(M(nk)) in p(M(mq)) is also p, and the 

last assertion of the proposition follows. 

let 

3.8. Theorem. Let 

A be the subset of 

Cit. = U ~, let I be an ideal in (!(, , 
n 

fiJ (at) associated to I. Then the 

following conditions are equivalent : 
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i) I is primitive 

ii) There does not exist two ideals I 1 , I 2 in Ql such that 

Il # I t. I 2 and I=I 1 ()I 2 

iii) ... If (nk), (mq) ¢.A then there exists a p ~ n,m and a 

(pr) ct A such that M(nk) and M(mq) both are partially 

embedded in M(pr)" 

(The implication i) => ii) * is well known for an arbitrary C -algebra, 

while the implication ii) => i) is proved for separable * C -algebras 

by Dixmier in [1 J ) . 

Proof: Let p: ot + ~II be the quotient mapping. Then I 

is primitive in ct iff {0} is primitive in atii = p(O(). There 

is a one-one correspondence between the ideals in at containing I 

and the ideals of O[II given by J + p($-) ; I c '¥ C ~; '1 

ideal in ~. This mapping (and thus its inverse mapping) preserves 

inclusions, so ii) holds iff {0} is not the intersection of two 

ideals both different from {0} in OZII. By proposition 3.7, iii) 

holds iff for any two factors of the form p(M(nk)), p(M(mq))' (nk), 

(mq) If: A in OZ II there exist an p ~ n,m and an (pr) E A such 

that p(M(nk)) and p(Mmq)) both are partially embedded in p(M(pr)). 

From the remarks just stated it follows that we may assume in 

the rest of the argument that I = {0}. 

That i) => ii) follows from ~], Corollaire 2.8.4 and Lemme 

2.11.3. (ii). 
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ii) -> i): This is proved for separable c* -algebras in [1], 

Corollaire 1 to Th~or~me 2. We shall later, in 4.17, give an 

direct argument for this fact which applies for AF-algebras. 

ii) => iii): Assume ii). Then the intersection of any two 

ideals both ~ {O} is ~ {0}. Now, let (nk), (mq)C ~ (Ol). By the 

argument used in 3.5 the ideal in Uotn generated algebraically 
n 

by M(nk) (resp. M(mq)) is Il = u @ M 
p~n r 

(pr) 

e(nk)e(pr)~o 

(resp. I2 = u @ M(pr)). 
p~m r 

e(mq)e(pr)~o 

By ii) I 1n I 2 ~ {0}, and then by 3.1: {0} ~ I 1 n I 2 n <U~) = 
n 

= c r 1 n < U atn)) n (r 2 n c U Otn) ) = I 1 n I 2 
n n 

where the last equality follows from theorem 3.3. I 1 and I 2 are 

defined as the union of some subspaces indexed by p, and by the 

argument in 3.5 these subspaces are increasing with p. Since 

I 1 ni 2 ~ {0} there must exist an p such that the intersection of 

the corresponding subspaces in I 1 and I 2 are not {0}, i.e. there 

exists an (pr)€~ ((){) such that 

Then M(nk) and M(mq) are both partially embedded in 

iii) => ii). Assume iii) and let I 1 , I 2 be two ideals in 

Ol. different from { 0}. Then there exist (nk), (mq) €.~ ( <17> such 



that M(nk) <.::: I 1 , M(mq) <:;: I 2 • Then the ideal generated by M(nk) 

(resp. M(mq)) is contained in I 1 (res p • I 2 ) so : 

"j = U G> rl!(pr) c I 1 , 
1 P>n r 

and 12 = l) (£) M(pr) c I 2 
pbn r 

- e(nk)e(pr)~O e(mq)e(pr) 

By iii) there exists a p ~ n,m and a r such that 

thus Me· > c "Y n '¥ c r n I • pr - ;} 1 2 - 1 2 ' 

hence ii) holds. 

3.9. Corollary. Let 0'{ = U Gtn. Then the following 
n 

conditions are equivalent 

i) ~ is primitive 

ii) There does not exlst two ideals in Ol different from 

{0} whose intersection is {0}. 

iii) If (nk), (mq)E.S? (()1.) there exist a p ~ n,m and a 

(pr)t ~(at) such that M(nk) and M(mq) both are 

partially embedded in M(pr)" 
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4. States and representations of approximately finite 

dimensional; c* -algebras. 

4.1. In sections 4.1 - 5 we shall show under which conditions 

a state w of Of. = LJ 0{_ is a factor state, and we shall find 
n n 

necessary and sufficient conditions for two factor representations 

of ot to be quasi-equivalent. As the methods of proof are essen­

tially those used by Powers in [12] to prove the same results for 

UHF algebras, we will mostly only state the results. 

If 55 ~ * is a C -subalgebra of a C -algebra or.., then ~c 

the commutant of ~ relative to c.!. 

Lemma. Let ~ be a c*-algebra with unit e, and 

be a finite dimensional *-subalgebra of az such that 

Let n be a representation of Oc • Then 

Proof: As proof of lemma 2. 3 in [12 J. 

is 

4.2. Lemma. Let cJt. be an AF algebra, and let ?f be the set 

of finite dimensional *-subalgebras of~ with unit e. Let IT 

be a representation of ()l and let ~ = {IT ( lt)} ". Then the center 

of 6J, is: 

g: nfl' = n {IT(o/jc)}" 
Vj)f, j-

Proof: As proof of lemma 2. 4 in [12 j . 
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4. 3. Lemma: Let OZ.. be a C~ -algebra with unit e • and let 

I be an ideal in OL • Let Sf3 be a finite dimensional * -subalgebra 

of 0(. containing e. Let p-: ot. -+ tJt. I I =Or be the quotient 
0 

morphism and let ~0 = (~). Then 

~0 
c c 

= p ~CJ!:J ) 

Proof': Since p is an morphism~ 

Let be a set of matrix units for~, and let 

e 0 = p(e) = p(L L e~k) e(~))= L L p(e(k))p(e(k)) 
k i 11 11 k i il li 

be the unit of 

~ 0 .. Now, suppose that x = p(y) £0S 0 c. Then 

It is straight forward to verify that 

thus 

4k4. Theorem: Let ~ = l) Drn and suppose that w is a state 
n 

of Dt and nw the representation associated to w by the Gelfard-

Segal construction. Then the following conditions are equivalent: 

i) w is a factor state 

ii) For all x E.O[ there exists an integer r > 0 such that 

lw(xy) - w(x)w(y) I <lin (y) II 
- w 

for all y £ en c. 
r 
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iii) For all x~ at there exists a finite dimensional 

*-algebra Cif.J C 0!.. containing e such that 

lw(xy)- w(x)w(y)l <lin (y)ll for all yt:tf3c. 
- w 

Proof: Suppose first that IT is faithful, w Then 

II IT (x) II = llx I for all X E. az. and the argument which shows the w 

equivalence of (i), (ii) and (iii) is exactly the same as the 

argument Powers uses in showing theorem 2. 5 in [12] if we replace 

lemma 2.3 and 2.4 in Powers work by lemma 4.1 and 4.2. 

Then, suppose that ITw is not faithful, Let I = ker ITw, 

and let 

fJl../I = 

p: dl.-+ C!{JI be the quotient· morphism. Then by prop. 3. 7 

U .p(OC ) (in the Af-sense). We may lift w to a state 
n n 

ot/I and nw t.o a faithful representation ITw0 of 
' ( 

Of../I such that w = w o p and 
0 

IT = ITw o p. Then ITw0 is the w 0 

Gelfand-Segal representation of OT.!I associated to Therefore 

the following conditions are equivalent: 

(i)' 

(ii)' 

(iii)' 

wo is a factor state of p (0() 

For all X € p(CJZ:) there exists an integer r > 0 such 

that 

lwo(xy) - w0 (x)w0 (y) I < II ITw0 (y) II -
for all Y €. p(O(r)c 

For all x E. p(O() there exists a finite dimensional 

*-algebra ~ S. p ((}{_) such that p (e)~~ , and such that 

I w0 (xy) - w (x)w (y) I < II ITw (y) II 
0 0 - 0 

for all y €1.3 c. 
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Now, since IT(~) = II 0 (p(ot)) we have (i)' <=> (i). Since 

by lemma 4.3, (ii)' <=> (ii). If 

is finite dimensional then p (~) is finite dimensional; 

thus (iii)=> (iii)'. Furthermore, by lemma 4.3 again, we have 

that (ii)' => (iii). We have then established the following 

implications: 

(i)' <=> (i) 

! 
(ii)' <=> (ii) 

g' (iii)'<= (iii) 

Hence (i), (ii) and (iii) are equivalent. 

4.5. Theorem: Let 0T = tJ~n' and let IT 1 and II 2 be two 
n 

factor representations of CJt such that ker IT 1 = ker IT 2 • Let w1 

and w2 be vector states of II 1 and II 2 respectively. Then the 

following statements are equivalent: 

(i) IT 1 and IT 2 are quasi-equivalent 

(ii) For all £ > 0 there exists an integer r > 0 such that 

(iii) 

for all x~lt c 
r 

For all e: > 0 
~ 

there exists a finite dimentional -algebra 

~ ~ 01. containing e such that 

lw 1 (x)- w2 (x)l < e: IIIT 1 (x)ll 
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for all x e ~c. 

(iv) There exists a finite dimensional *-algebra ~c OZ 

containing e such that 

lw1(x)- w2 (x)l < 2 IIII 1 (x)~ 

for all x~~ c. 

Proof: If II 1 and II 2 is faithful1 

for all x e01 and the proof goes exactly as the proof of theorem 

2 .. 7in[l2]. 

Suppose then that ker II 1 = ker II 2 = I, and let p: 0{ -+ Ol I I 

be the quotient map. Then II 1 and II 2 may be lifted to faithful 

representations of p(Ol): Let (i) ', (ii) ', (iii)' and (iv) 1 be 

the statements (i) - (iv) expressed for these l!fted representations. 

Then, in the same way as in the proof of theorem 4.4 one may establish 

the following implications: 

( i) ' <=> (1) 

1 Y' 
(ii)' <=> (ii) 

1 ~ 
(iii) ' <=> (iii) 

l ~ 
(iv)' <= (iv) 

This proves the equivalence of (i) - (iv). 

4.6. We shall now prove a result concerning algebraic equivalence 

of representations of AF algebras (4.12) and a result concerning the 
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orbits of the automorphism group of an AF algebra 0"/... in the set 

P(Ol) of pure states of d7.. • ( 4.15). The results are analogous 

to some results obtained by Powers in the UHF case in [12] , section 

3. In the case of AF algebras the methods of Powers have to be 

modified. This is due to the following facts: 

two isomorphic AF algebras on a Hilbert space 

* 

Let l1't1 , O'Z'2 be 

K, and let .J3 1 , ~ 2 

be two isomorphic finite dimensional -sub algebras of tJt. 1' or2 resp. 

containing e. Suppose that tJt II = (}l ft = m . Then the following 
1 2 

two conditions hold if {)[i is a UHF algebra and {]~ 1 is a factor, 

but they do not hold ln general: 

i) there exists a unitary operator u~ '/?t such that 

u~l u * = 9J2 

(see [12], Lemma 3.3) 

ii) &31 'n q ~ and ~ •n(){. 
2 2 

are isomorphic. 

(see [12]' Lemma 3.2). 

These two facts play an essential role in Powers argument. Since 

they do not hold in general we must restrict the class of von Neumann 

algebras ?rL to be considered. Furthermore this class must depend 

on ~ • Roughly speaking, the simpler 0'( 1 is the more complicated 

~may be. This is reflected in the following definition. 

Definition: Let 01. be an AF algebra and let 'YYL be a 

von Neumann algebra. Then ot is permanently locally unitary equi­

valently embedded in m if there exists a faithful l'epresentation 

II of at such that II <OZ)" = ml and if for any pair II l' II2 of 

such representations and any projection f€0( we have that 
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nl(f) ~ nz(f) (i.e. the projections nl(f) and n2(f) are 

equivalent relatively to the von Neumann algebra (lnt). We then write 

oz c <YYI.. 

For explanation of the term perm. loc. un. eq. em., see 

lemma 4.8. 

4.7. 

Ol = Ocin 
n 

Proposition: For the following pairs 0Jt , f"Jn, where 

and 'frL is a von Neumann algebra we have that CJ'l C. {)'yt 

if there exists a faithful representation n of ()(_ such that 

%= IT COO": 

i) OL is a UHF algebra. 

r;n is arbitrary. 

ii) 01. is an AF algebra. 

m is a type I factor. 

iii) Ol., is an AF algebra. 

t'h'L is a type III factor. 

Proof: i) Let f E O't be a projection in tJt... Then e and 

f generate a two dimensional subalgebra ~ of tit, and by lemma 

2. 3 there exist a unitary u € OZ. and an n such that 

u C8J u* C O"'l. • Define ~ = u* 01 u. Then ~ is a finite dimen-- n -~ 

sional factor in at containing f. Let 11 1 and 11 2 be two faithful 

representations of OI such that rri (Ot)" = <rrl; i = 1, 2. Let 

<eij> be a set of matrix units for ~. Then <llk(eij)>ij is a 

set of matrix units for nk(~); k = 1,2,---. Now, by using the 

technique in the proof of lemma 3.3 in fl2) one shows that there 
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exists a partial isometry W£9-fL with initial projection II 1 (e 11 ) 

and final projection II 2 (e 11 ). Define U = iii 2 (e11 )WII 1 (e1i). Then 

U is unitary, and II 2 ( x) = UTI 1 ( x) u* for all xe. :f6 . By setting 

x = f one then see that II 1 (f)- II 2 (f). 

ii) If 17L is a type I factor, then 1'lt has the form 

~ ( K) ®~I where K is some Hilbert space and I is the identity 

mapping on some other Hilbert space. The map: 

rrn -+-~(K): X@ I -+- X 

is then an isomorphism, so we may assume 011=~(K), since equi­

valence of projections is an isomorphisminvariant property. Now let 

TI 1 and II 2 be two faithful representations of OZ such that 

IT 1 (0(.)" = II 2 (c1t)" =o/j(K), i.e. II 1 and II 2 are irreducible. 

Tnen two cases may occur: 

1) II 1 (al) contains a compact operator. Then it follows from (3], 

Corollaire 4.1.10 that II 1 and II 2 are unitary equivalent and in 

particular II 1 (f)- II 2 (f) for all projections f€0'{. 

2) II 1 (~) contains no compact operator. Then, by using the same 

corollaire as in 1), TI 2 (0L) contains no compact operator. In 

particular, if f is an projection in ot and f ~ 0, then II 1(f) 

and II 2 (f) are infinite. Now, Ol is separable and II 1 is 

isometric and II 1 ( 0(.) iE. strongly dense in CfJJ ( K), so by applying 

II 1 of a countable dense subset of at on a fixed non zero vector 

of K one obtain a countable dense subset of K. Hence K is 
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iii) Suppose that 1n is a type III factor on a Hilbert space 
K, and that there exists a faithful representation II of OL such 

that II ( tJZ ) " = 1rl. Let l; be a non-zero vector of K. Let 

the projection onto ~l;. Since II(Ol) is norm separable, 

is separable, and since II(Ol) is strongly dense in~' 

P be 

II(Ol)l; 

Qr].l; = II(~)l; is separable. Now p~r;n_, = II(G.e')' sot'ffl is iso­

morphic to 9np• ~p is a type III factor on a separable Hilbert 

space, so all non_;_zero projections in crn.,p are equivalent{. Therefore 

Ol c 91( P , and so Ot c:::. 1n . 

4.8. Lemma: Let Ol 1 and 0( 2 be two AF algebras on a Hilbert 

Space K, let a: ot1 ~or 2 be an isomorphism, and suppose that 

Ol 1 " = 0{2 " = ffYl and that cJ{ 1 c. rtrl. Let ~ 1 ~ 0! 1 be a finite 

dimensional *-algebra containing IK, and let ~ 2 = a(~1 ). Then 

there exists a unitary operator UE: Q'J1. such that 

* UxU = a(x) . , 
Proof: Let {ei~)} te matrix units for ~ 1 • Since 0(1 c fYi2 

~ * (k) there exist partial isometries Uk€ .,,, such that ukuk = a( e 11 ) , 

and uk*uk = e~~). Define U = ~ f a(ei~))Uk ei~) Then 

uu* = a(I) = I = u*u so U is unitary, and furthermore 

U (k) u* = < (k)) eij a eij • 

4.9. Lemma: Let 

lemma 4.8. Suppose that 

07. 1 , 01..2 , a, ~ 1 , K and rrrz. be as in 

qa c I}[ 1 n (j[2 is a finite dimensional 

that ~c. ce 1 and that al~ is the * -algebra containing I ' K 

identity mapping. Let E > 0 and let {l; 1 ••• l;n} be a finite set 

of vectors in K. Then there exists a unitary operator U €: '»1 and 



- 52 -

an isomorphism (3 : Oll + 0{. 2 such that 

(i) u ~~ u* ~ (){ 2 

(ii) II Uf i - f iII < E: • i = , • • 0 n 
' -, ' 

(iii) !I! 
Ux U = x ; X~~ 

(iv) !I! 
X E: ce,l (3(x)=UxU . 

' 

Proof: By lemma 4.8 there exists a unitary operator V e.~ 

such that: 

a(x) 

In particular: 

= v x v* · 
' 

. 'II. 
x = Vx V . 

' 

X E cB1 

so V€. ~ '. Let $ c be the relative commutant of V3 in (){ 2 • 

By lemma 4.1 we have; 

fAc" =fB' n&r.2n = fr3' n m 
By f8], Theorem 2, the unitary operators in 93 c 

ti2l. c" dense in the unitary operators in q~ • Since 

i t th it t S ~ 171 c such that ex s s en a un ary opera or ~J~ 

lies strongly 

VE ~' ntJn there 

IICS 1 = 1, • • • , n. 

Define U = SV. Then, since S €0( 2 

(l) ucglu!k = sv$lv*s* = sac<B l)s* '= s0{2s!IE = Cll2 

Furthermore: 

(ii) II (U-I)~ill = II (SV-I)~ill =II (S-V!k)V~ill < E: 

Since V~ ~' and S£~ c we have for x e.~ 
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(iii) ux u'* = sv xv*s* = x 

Since s e. (){ 2 is unitary, X-+ SXS * is an automorpnism of c.t 2, 

8(x) * X £0[1 defines an isomorphism of so = Sa(x)S . , , 

Ol1 onto tJ(.2 , such that for X Et81 : 

(iv) liE liE liE liE 
8 (X) = Set (X) S = SV X V S = U X U • 

4.10. Lemma: Let Clt 1' {){2, K, a, rm, ce, 1, ce; 2 and 

U be as in lemma 4. 8. Let fb 1 <::; 0{.1 be a finite dimensional 

*-algebra such that ~~ c 'Vj 1 • Let e: > 0, and let {~ 1 ,• ••, ~n} 
be a finite set of vectors in K. Then there exists a finite 

dimensional liE -algebra 9; 2 On K , a unitary operator U 1E: rrrt_ and 

an isomorphis~ 8: cr1 -+ 012 such that 

(i) '6 2 c.132 ~ 01.2 

(ii) u1~1 ul* = ~2 

(iii) * Ux u* 
. 

X €. ~1 u1 x U1 = ' . 
' 

(iv) * ~ill < e: II u 1 u ~i - . i = l,•••,n 
' 

(v) S(x) 
liE 

xe:~ 1 = U1 X U1 
. 
' 

Proof: 

Define an isomorphism o: Ol 1 ° -+ OZ 2 by : 
!It 0 

o(x) = a(U xU) ; xE.CX 1 ·• 

If X E c-.&.2 then u*xu e ~ 1 thus 0 (X) = uu*xuu* = X. From lemma 

4.9 it follows that there exist a unitary operator ve.cnt. and an 

isomorphism y: (]l 1° -+ Ol.. 2 such that: 

v'Elov* =~2ccn2 

(vi) 

(vii) 

(viii) 

II v ~ i - ~ i II < e: ; 

* VxV =X ; 

* y(x) = V x V . 
' 

i = l,•••,n 

xe.i?>2 

xE'J?Jlo 
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Define U1 = VU. 

* S(x) = y(UxU) ; 

is a unitary operator in ~~. 

Then 13: 0! 1 -+ Ol. 1 ° -+ 0(. 2 

isomorphism. We verify (i) - (v): 

( i) : :JJ2 = v :11 1 °v* = vu,J;1 u*v* = u /h 1 u 1 * c or. 2 

This also shows (ii). By (vii) : 

'(g2 - v <g2 v* = vu eel tT=*v* c. vV'Jl 0v* = 

(iii): If x~<e 1 then Ux U!IE~~ 2 

U 1 XU 1 * = VU X U!IEV!IE = U Xu* 

so by (vii): 

Define 

is an 

(iv): Since u u* = v 
1 

is (iv) an immediate consequence of 

(vi). 

(v): If xef]j 1 then UxU*E..il?> 1 °, so by (viii): 

S(x) = y(Uxu*) = vuxult:v!IE = U1 xU 1* 

4 .11. Lenuna: Let 07.. 1 and OZ 2 be two isomorphic 

AF-algebras on a separable Hilbert space K, and assume that 

Ol 1 " = 0"[2 " = IYYL and that 0!. 1 c. rm.. Then there exists a unitary 

operator u ~ m such that 

u N u* = /l'1 V(.l Vi,. 2 

Proof: We construct U by using a method which is similar 

to that used by Powers in [12], lemma 3.6. 

Let {ail i = 1,2,•••} and {bil i = 1,2,•••} be sequences 

which are dense in the unit spheres of ot1 and 0!2 resp., and let 

{~il i = 1,2,•••} be a sequence dense in the unit sphere of K. 

By induction with respect to 

sequences < 0! 1 > and < 0'(2 > ,r r ,r r 

r we shall construct increasing 
!IE of finite dimensional -subalgebras 
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of a.1 and O"t..2 resp. 1 and a sequence <orr>r of isomorphisms from 

ot.1 onto ot.. 2 , and a sequence <lir>r of unitary operators in 111.. 
such that 

(i) For all r > 0 there exists ci€0!1 r• diE tX 2 r such 
' ' that II ci - a1 II ~ 2-r+l and II d - b II < 2-r+l for = 1 ••• r • i i - ' . . 

(ii) For all r > 0 •. 0rQl i u * = q2 i for i = O,l,•••,r, 
• r 

' and if r > 1, U xU * = u 1xu 1 * for all X€ 0(1 r-1 - r r 

(iii) 

(iv) For all r ! o, 

r- r-

* ex. (x) = U xU r r r 

• 

for xt: ct' 1 r• 
• 

For r = o, set OC 1 0 = Ot. 2 0 =CCI, and U0 =I and let , ' 
cx. 0 be an isomorphism from 0!1 onto ~ 2 • The conditions (i) - (iv) 

are then trivially satisfied, 

Suppose that O'l. 1 i, (il 2 i' Ui and cx.i are constructed for . ' 
i = l,•••,r, such that (i) - (iv) is satisfied, We shall then 

construct otl,r+l• 07 2,r+l• Ur+l and cx.r+l' From theorem 2.2 it 

follows that there exists a finite dimensional *-algebra ~ such that 

OZ:1rS~=a1 
' 

and elements 3UCh that 

llai - cill ~ 2-r for i = 1 1 •eo,r+l, By lemma 4.10 there exist a 

finite dimensional *-algebra ~ and an isomorphism 

and a unitary operator v € fYY'I.; such that 

(v) ·OL2 c.~c0{2 ,r- -
(vi) v~v* = ~ 

(vii) * U xU * for x€0Zl r VxV = r r 
' 
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(ix) * a(x) = VYV 
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for 

* By theorem 2.2 there exists a finite dimensional -algebra Gr2,r+l 

such that ~ ~ Cf 2 r+l <::;:OZ. 2 , and such that there exist elements 
' diE. or 2 r+l such thd.t II b:.i. -di II < 2-r for i = 1, ••• ,r+l. 

' 
By a new application of lemma 4.10 there exists a finite dimensional 

* cJl -1 /t7' ~ -algebra l,r+l and an isomorphism ar+l : a 2 -+ vc,. 1 and a 
* rw1 such that: unitary operator Ur+l £·"~ 

(xii) ur+l * x ur+l = v* x v for 

(xiii) 
I 

IIUr+l* v~i - ~ill< 2-r-1 for i = 1 ••• r+l J J 

Clr+ll(X) : Ur+l lt. X Ur+l for XEd[ 2 r+l• 
J 

(xiv) 

We now show that (i) - (iv) hold for r+l. 

(i) holds by the construction of a 1 r and (X 2 • 
' ,r 

(ii): By 

we have: 

* = V x V by (vi) and (xii) 

By using this and induction hypothesis, (ii) holds, 
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(iii): I (Ur+l - Ur)~ill ~ II (Ur+l-V)~ill + II (V-Ur)~ill 

= IIUr+l*<ur+l-V)~ill + II (V-Ur)~ill < 2-r-1 + 2-r-1 = 

by (viii) and (xiii). 

(iv): If xeotl,r+l' by (xiv) and (xi). 

This ends the induction. 

Now, by using (i) - (iii) one may by the method used by Powers to 

prove lemma 3.6 in [12] show that <Ur>r converges strongly towards 

a unitary operator U e. 011. which has the property which is required 

in the lemma, The details of that proof are omitted, 

4.12. Theorem: Let 0t. be an AF algebra and let rrnl and rm..2 

be von Neumann algebras such that Ol s rmi for i = 1,2. Let Ill 

and II2 be faithful representations of ot such that IIi (0( ) " = fJ1l i 

fur i = 1 1 2. Then ~1 and ~2 are isomorphic if and only if there 

exists an automorphism a. of 07.. such that II 1 and II 2 o a are 

quasi .. equ~valent.\This is proved from lemma 4.11 in the same way as 

Powers proves theorem 3. 7 from lemma 3.6 in [12J. 

4.13, Corollary: Let ot be an AF algebra and assume that 

II 1 and II 2 are two faithful type III factor representations of at, 

Then II 1 ( Ol. ) " and II coz ) II 
2 

are isomorphic if and only if there 

exists an automorphism a. of OL such that II 1 and II 2 o a are 

quasi-equivalent, 

Proof: Follows from theorem 4,12 and proposition 4.7 • (iii), 
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4.14. Corollary: Let 0( be an AF algebra and suppose that 

TI 1 and TI 2 are two faithful irreducible representations of ?r. 

Then there exists an automorphism a of 0Z such that TI 1 and TI 2 oa 

are unitary equivalent. 

Proof: Since <Jt... is separable and rri are irreducible the 

representation spaces of rr 1 must be separable for i = 1,2. If 

there exists an integer n such that the representation space of 

IT 1 is isomorphic to <e:n, then IT 1 ( Ol ) ::. Mn, thus ot :::.. Mn and 

so the representation space of TI 2 must also be isomorphic to <e:n. 

If {}(. is not finite dimensional the representation spaces of TI 1 

and TI 2 must be infinite dimensional, and so isomorphic to 

In all cases, IT ( tJt ) II .:f. IT ( (j'Y ) II 1 2 '(. (= all bounded operators 

on the representation space). Hence, by theorem 4.12 and proposi-

tion 4.7, ii), there exists an automorphism a of OZ such that 

TI 1 and IT 2 oa are quasi-equivalent. Since II 2 (a({)()) =TI 2 (0z'), 

IT 2 oa is irreducible, and then by [3}, prop. 5.3.3. TI 1 and IT 2 oa 

are unitary equivalent. 

4.15. Corollary: Let (}[ be an AF algebra and let w1 and 

w2 be pure states of Ot such that the associated representations 

TI 1 and IT 2 are faithful. Then there exists an automorphism a 

of (JZ such that 

Proof: By corollary 4.14 there exists an automorphism S of 

oz. such that TI 1 and TI 2 o S are unitary equivalent. Therefore 

w1 and w2 o B are vector states of the same irreducible represen­

tation, and so by [8], Corollary 8, there exists a unitary operator 
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such that for all x C:.O(. Then 

a(x) = va(x)v* is the desired automorphism. 

4.16. Corollary: Let 0L be an AF algebra and let w be 

a state of Ol such that the associated representation rrw is 

faithful. Then w is pure if and only if there exists an increasing 

sequence <tn > n n * of finite dimensional -subalgebras of Q' 
1 

all 

oontaining e, such that 

all n. 

0(: ua and 
n n 

wldtn is pure for 

Proof: Suppose first that 

pure for all n. We show that w 

O"l. = U Ol'n 
n 

is pure. 

and that 

Suppose w = >.w +(1->.)w 
1 2 

where w1 and w2 are states of ~ and 0 < >. < 1. Then 

wldt n 

thus 

= >.w 1 10tn + (l->.)w210ln, thus 

w I U 0tn = w 1 I U an = w 2l U t-r , 
n n n n 

wl ot.n = wlla n = w21Ltn, 

and so, by the norm continuity 

of w, w1 and w2 : w = (Jl 1 = w2 , i.e. w is pure. 

Conversely, suppose that w is pure and that rrw is faithful. 

Then II is irreducible, and so 0( is primitive. Let tJt. = \.) 2n 
w n 

where e E ® n C ()(, and <~n>n is an increasing sequence of 

finite dimensional *-subalgebras. Let {eijk)}ijk be matrix units 

for ~ n. We shall construct a pure state p of fJt 1 by defining 

inductively 

increasing sequence of integers which are chosen in the course of 

the induction. 

Let n = 1 
1 and define 

p(e(lq)) {~ if q=i=j= 1 
= in other cases. ij 

Then PI~ is pure. 
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Now, suppose that the matrix units for ~nk has been chosen 

in such a way that: 

~ D: q = i = j = 1 

other cases. 

Since OL is primitive it follows by repeated application of 

corollary 3.9 that there exists an nk+l > 

M( in the central decomposition of 
nk+l'p) 

nk and a factor 

fh such that 
nk+l 

all factors in the central decomposition of ~ are partially 
nk 

embedded in By a suitable choice of indices one may 

ass11me p = 1, and by a suitable choice of matrix units in ~n 
k+l 

one obtains 

(1) 
Ulk+ll) 

e 11 = 

Now, define 

(nk+lq) {~ 
if i = j = q 

p(eij ) = 
in other cases. 

Then PI ~n is a pure state, and for XE~ we have: 
k+l nk+l 

p(x) = 
(nk+ll) (nk+ll) 

p(ell x ell ). By combining this with (1) we see 

that Pl~n 
k+l 

is really an extention of PI~ • For simplicity 
nk 

we now write 93k instead of Then CJL = L_JJJk • Since 

I p (x) I ~ II x II for x E. l)L'{jk p may be extended by continuity to 
k 

a state of 01. Since Pl~k is pure for all k, p is pure by 

first part of the proof. 
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We now show that TIP is faithful. By lemma 3.1 it is enough 

to show that ker TIPn ~n = {0} , n = 1,2,eo• • We show this 

by showing that for each minimal projection e(nk) in the center 

of ~n there exists an x~~n+l such that p(x e(nk) x*) ~ 0. 

Then, by definition of Gelfand-Segal representation, e(nk) ~ ker TI 

and the result is obtained. 

Now, by construction of 93n+l we have that e(nk) e(n+l,l) 

p 

is a non-zero projection. This is included in the factor M(n+l,l)' 
so there exists a partial isometry xe.M(n+l,l) 

* _ e(n+l,l) and liE ~ e(nk) e(n+l,l). XX X X 
- 1 1 ' 

p(x e(nk) x*) = p(x e(n+l,l) e(nk) e<n+l,l) x*) 

Pce<n+l,l)) = 1 ~ 0 . 
1 1 ' 

thus TIP is faithful. 

such that 

Thus . . 

* = p(xx ) = 

By corollary 4.15 there exists an automorphism ~ of ~ such 

that 

p=wo~. 

Let ~ = ~(~ ). Since a is an isometry, n n or= u~. 
f(nk) = 
ij 

( (nk)) 
~ eij are matrix units for 

w<r£:t') = p(eiJk)) = { ~ 
thus w I bt. n is pure • 

n 

{)[n and 

if i = j = k = 1 

in other cases 

4.17. In the course of the proof of 4.16 we gave in fact 

a. proof for the implication ii) => i) in corollary 3.9 which 

is independent of Dixmiers proof in [1], i.e. we proved that if 

the intersection of any two non-zero ideals in an AF Algebra ct 
is non-zero, then ~ is primitive. This is because the equivalence 
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ii) <-> iii) in 3.9 was established independently of Dixmiers 

result, and the only property of ot which was used in the con­

struction of the pure state p in the proof of 4.16 was iii). 

Since TIP is faithful, iii) implies that Qt is primitive. 

4.18. By using techniques closely related to tnose in 4.16 

one may give a direct p1oof for the fact that if dt = U 6"fn is 
n 

a simple, infinite dimensional AF algebra then the closure of the 

set of pure states of 01: in the w* -topology is the set of all 

states of ~. This is proved in general for simple, antiliminal 

c* -algebras by Glimm in [7] , se also [3] Lemme 11.2. 4. The 

argument is roughly as follows: Since tit is simple, t)-(. is 

primitive. By using the characterization of these two concepts 

given in 3.5 and 3.9 resp., and an induction argument one may prove 

that for any n there exists a m > n such that all the factors 

in the central decomposition of Ol.. n are partially embedded in 

one single factor M(mk) in the central decomposition on 6tm in 

such a way that M(nq) is embedded in M(mk) with partial multi­

plicity ~ [~]. Then it is not difficult to show by methods similar 

to those in [6) Theorem 2.8, that if w is a state of otn there 

exists a pure state p of M(mk) such that w(x) = p(e(mk)x) for 

x €(1 n. p may be extended to a pure state of ot m by 

p(x) = p(e(mk)x) for X E ozm, and still PIOZn = w. Then p. 

may be extended to a pure state of ot by 1)1, Lemme 2.10.1. In 

short, each state of Ctn has a pure extent ion to OL • Since 

U at is dense in ot it then follows that the set of pure states 
n n 

of Dt is w* -dense in the set of states of ()'(_. 
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5. An example. The current algebra, 

5.1. - In this section we shall apply the machinery developed 

in sections 1 to 4 to one specific AF algebra, This will be the 

algeb:>a of all g·auge invariant elements of the algebra of the 

canonical anticommutation relations. This algebra is named the 

fermion current algebra in 19]. 

We recall some basi(.. facts from [11]. Let X' be a separable 

infinite dimensional complex Hilbert Space. Then OZ(JG), the 

CAR algebra of )C , is the C~-algebra generated by elements a(f), 

where f ~ a(f) is a linear map of ~ into Ot (>() satisfying 

the canonical anticommutation relations 

a(f)a(g) + a(g)a(f) = 0 

~ * a(f) a(g) + a(g)a(f) = (g,f)I 

(We adapt the convention that the inner product on ~ is linear in 

the first factor). If U is a unitary operator on ~' then by 

rll] there exists a unique automorphism <P of Ot. ( ~) such that 
- -
<P(a(f)) = a(Uf), and this defines a homomorphism from the unitary 

group on~ into the automorphism group of u1 (~). The unitary 

group on Jt has a subgroup isomorphic to the circle group, namely 

the unitaries of the form f ~ ei8f, 0 < e < 2II. The corresponding 

automorphisms of OZ (~),which we shall denote by x8 , are called 

the gauge group of automorphisms. The elements x€~ (~) such that 

for all e' [o ,2II> * form a C -algebra which we shall 

denote by (}'(. o eX), 
~ 

If X = a(f 1 ) 

and call the current algebra. 

t • 0 
~ a(fn) a(g 1 ) ott a(gm) one has that 

Xe(x) = ei8(m-~)x, so x E Of. 0 c:-i ) if and only if m = n t We shall 
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see in 5.4 that the linear span of the x's of this form with 

m = n lies dense in ot 0 (X). 

We shall now use the fact that or c yC) is a UHF algebra to 

deduce that Ol O(Jt) is an AF algebra. We use the description 

of Ol(~) given in [11]. Let {fn}n=l,2 be an orthonormal 

basis in :t: . Define: 

v = I 
0 

n-1 
* vn = TI (l-2a(fi) a(fi)) . n > 1 

' i=l . 

e(n) ~ (n) 
a(fn)Vn = a(fn)a(fn) el2 = l l 

e(n) a(fn)lkVn e(n) ~ 
= = a(fn) a(fn) 21 22 

Then it follows from the ar.ticon~utation relations that the 

{ei~)} form a set of 2 x 2 matrix units, which commute for 

different n's. The set of all ef~j 1 ei:j 2 einj , where 
n n 

(il, jl, i2, aoo ,jn) runs through all 2n-tuples consisting of 

the elements 1 and 2, therefore constitutes,by suitable indexing, 

a set of 2n x 2n matrix units. 'rhese matrix units generate the 

algebra of all polynomials in the field operators a(f) and ~ a(f) , 

where f runs through the linear span of fl, • 0 0 fn. We denote 

this algebra by otn. Then ozcX> =U~, so 01. <X> is a 
n 

Ot..o UHF algebra. Let be the gauge invariant elements in a. n n 
In the next lemmas we shall study the structure of d( ~, and 

the embedding of m_ ~ into Ol ~+l" ·rhen we shall show that 
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U {)l 0 , and thus establish that t)L 0 (~) 
n n 

is AF. 

5.2. Lemma: (]T_ 0 has the central decomposition n 

n 
O(.o = (t) M 

n k=O (nk) 

n! where M(nk) are factors of type I 
( n) ' 

where ( n) 
k· = kt (n-k): 

k 
is the binomial coefficient. M(nk) is partially embedded in 

{~ 
if q = k or q = k+l 

M(n+l q) with partial multiplicity 
in other cases. 

Proof: It is easily verified that the matrix units 

mentioned in 5.1 transform under the gauge-group by the formula 

X (e (n)) _ ei(j-k)8 e(n) 
e kj - · · kj • Hence 

n n 
i ( E j k - E i k) 8 

(n) k=l k=l 
ei j ) = e 

n n 

Since the elements {e (l) • • • 
iljl 

einj ( 
n nj ik,jk = 1,2 

basis for the vector space OZ:n. It follows that 0{ ~ 

form a 

is the 

algebra spanned by those elements e(l) e( 2) ••• e(3) 
iljl i2j2 injn 

n 
for which E i 

k=l k 
= 

Now, define A as the set of functions n,k <P from . { 1, 2, • • o , n} 

into {1,2} such that ¢ assumes the value 1 exactly k times; 

k = O,l,•••,n. If 

(1) (2) 
e<P(l)w(l) e¢(2)w(2) 

<P,w € Ank' define 
(n) 

----- e¢(n)¢(n)" 

f (nk) _ 
<Pw -

Then f~~k) E Gf ~. 
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Define M(nk) as the linear span of ¢,$ E. A k}. n, 
n 

It is then clear that ot 0 = @ M( k) as a direct sum of vector 
n k=O n 

spaces. If <P,lJJ are functions from {1 •oo n} 
' ' 

into {1 ,2}, we 

define 

if <P = til 
if <P .;. t/J • 

By straight forward computations one verifies 

o f(nk) f(nk)'* = f(nk) 
n 

okq ' 
and I: 

\jJX <Pw ' <PlJJ t/J<P k=O 

Thus the f(nk) 's form a 
<Pt/J 

set of matrix units 

f(nk) f(nq) = 
<PlJJ Xw 

f(nk) _ I: e. 
¢€A k 

<P<P -

n, 
for 0(~. The 

M(nk) 's are factors, and the square root of their dimensions are 

equal to the number of elements in An k' which is 
' 

n! 
kHn-k)] 

Thus the first part of the lemma is established. To prove the 

second part, assume <;>,$~An k" Since e(n+l) + e(n+l) = e we 
' 1 1 2 2 

have 

where ~ "' E A are defined by·. '~'r' '~'r n+l,k+l 

for q = l,•••,n 

for q = n+l 

f(:) f'or q = l,•••,n 
lJ;r(q) = 

for q = n+l 

where r = 1,2. 
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Thus a matrix unit in M(nk) is a sum of one matrix unit in 

M(n+l,k+l) and one in M(n+l,k)' hence the lemma follows. 

5.3. Lemma: Let Ol: Uot be an AF algebra, G compact 
n n 

group, a a strongly continuous representation of G as a group 

of automorphisms of Cl!... Suppose that a (&Zn) c..ot for all 
g - n 

g€. G and n > 1. Let (){. ~ be the G-invariant elements in Otn 

and (){. 0 the G-invariant elements in Of. • Then 

oz. 0 = u c}(~ 
n 

Proof: Since g + a (x) is continuous, the Bochner integral g 

P(x) = fa. (x)dg exist for all x ff:.Clr, where dg is normalized 
G g 

Haar measure 

for all g 

(1) 

Furthermore, 

so 

(2) 

If X~ C/[0' 

(3) 

If X£ 0t , 
n 

with (2) and 

(4) 

on G. (See (15], 

II p ( X ) II ~ ~ II \ ( X H dg 

II P II ~ 1 

if . g€. G, X E.O( 

f a.k(x)dk = P(x). 
G 

P(O{,) C Ol0 

then: 

P(x) : f X dk : X 
G 

v, 5). 

= II X II, 

then 

. 
then a.g(x)~Otn for all 

(3) . . 

Since a.g is isometric 

so 

g~ G, and so by combining 
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Now, let xe.Ol0 • Then there exists a sequence <x > , with n n 

xn€ Of.n, 

X = P(x) 

and· .so: 

= 

such that X : 

lim P(xn). 
n+oo 

oz.o£UO(~. 
n 

lim X • Then, by (3) and (1), 
n+co n 

Then, by ( 4 ) : x€. uor~ 
n 

Since trivially uq~ ~qo 
n 

cno * is a C -algebra: the lemma is obtained. 

'5. 4. Corollary: 

and 

Proof: The circle group is compact and in the proof of 

lemma 5. 2 we verified that x6((( ) Cot for all n, so by 
n - n 

lemma 5.3 we have only to prove that if xE01(~) then 

is continuous. In the proof of lemma 5.2 we saw that 

(1) 
••• 

and since each element y €. Ot11 is a finite linear combination of 

such matrix elements, a + x6 (y) is in fact uniformly continuous 

for y €.. ~. Let x e O[(yC) and let E > 0. Then there exists 

an and a such that II x-y II < £ 
3 and then there 

exists a o > 0 such that je 1 - 62 1 < o implies 

IIXel<y)- Xa2<Y>II < i. 
16 1 - e2 1 < o implies: 

Then, since all x8 are isometries, 

~x 6 (x)-x8 (x)I<~X 8 (x-y)~•llx 8 (y)-x8 
1 2 - 1 1 2 

thus a + x6(x) is continuous, i.e. 6 + X6 is strongly continuous. 

5.5. From 5.2 and 5.4 it follows that the current algebra is 

and AF algebra with diagram looking like Pascals triangle: 
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CJlO 
I 

oro 
2 

OLO 
4 

This may now be used to reveal the algebraic structure of 

(}'LO(':JG). Theorem 3. 3 implies that the ideals of 0{_ 0 (,X) except 

{0} are represented by "pyramids" on the diagram, starting from 

one point in ~(Clt0 (~)). I.e. the most general ideal in 0L 0 (~) 

except {0} is: 

u . , n ,m = 0 , 1 , 2 , o • • • 

k=m+n 

These ideals are all distinct. On the figure we have indicated the 

ideal The ideal I may be characterized in a couple of n m 
other ways. 

i) I is the ideal in ct 0 (~ ) n m generated by M(n+m,n)" 

immediate from the definition. 

This is 

ii) We may also describe the ideal nim directly in terms of the 

annihilators a(f) and the creators a(g)* of the field 

algebra Ot eX). Let p be a polynomial in the field 

operators such that each addend in p contains 
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equally many creators and annihilators. 'I'hen p is gauge 

invariant. Using the anticornrnutation relations one may order 

each addend in p such that all creators are standing to the 

left of all annihilators. 1•!e then cay that p is in normal 

form. If the creators and annihilators are in reverse order in 

each addend we say that p is in anormal form. Now, if p is 

a gauge invariant polynomial in the field operators, we may by 

integ~ating over the gauge group as in the proof of lemma 5.3 

assume that each addend of p contains equally many creators 

and annihilators. Consider the set of gauge invariant polynomials 

p such that each addend of p in the normal form contains at 

least m creators, and each addend of p in the anormal form 

contains at least n creators. From the anticornrnutation relations 

it follows that this set is an ideal in the algebra of gauge 

invariant polynomials. The matrix units f~~r) for M(qr) con­

structed in 5.2 are polynomials in the field operators and it is 

not difficult to verify that f~~r) in normal form has an addend 

of minimal "degree" in the field operators which contains q-r 

creators, while f(qr) in anormal form haa a term of minimal 
<Pl/J 

"degree" r in the creators. It follows that the closure of the 

ideal of ~he algebra of field operators described above is nim. 

5.6. Proposition: 

the following 

(i) nio 

(ii) o1n 

(iii) {0} 

. 
' 
. 
' 

The primitive ideals of Ol 0 (JC) are 

n = 1,2, 0. 0 0 

n = 1,2, 0 • • • 
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One has that 

and 

Within unitary equivalence there exists for each n only one 

irreducible representation 0 nri with kernel 0 In and only one 

irreducible representation nno with kernel I . n o 

Proof: From the figure in 5.5 and theorem 3.8 it follows 

that the list (i), (ii), (iii) exhausts the set of primitive 

ideals in oz. 0 c:YG) • 
Using proposition 3.7 we see that both 0L 0 (~)/1r0 and 

ot 0 (~)/0r1 have the diagram 

1 

1 

1 

so they are both isomorphic to M1 = II:. 

By proposition 3.7 again 0! 0 (~)/n+lio has the diagram 
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n n <o> <1> ----

1~1\ 
n+l n+l ( 0 ) ( 1 ) ____ _ 

'~'\ 
cn+2) cn+2) ----

0 1 
cn+2) 
n-1 
,~ 

.~ 

\ 

·' '! 
The ideal nio /n+l I 0 of ('/[ 0 (~ )/n+l I 0 is then represented 

by that part of the diagram which is lying inside the shaded 

boundary. By using exactly the same kind of argument as in 1.10 

example (iii), we then show that I~ +li. ~ £ ~ ('f{_). By a n o n o 

similar az·gument, 0 In j o::;:n+l :: £ C'X) • · 

Now, if TI is an irreducible representation of 01°(~) with 

kernel ni0 , then TI may be lifted to a faithful irreducible repre­

sentation of 01. 0 ("j() /nro = 9J. As shown above, ~ contains an 

ideal isomorphic to the compact operators on some Hilbert space 

(which is ~ if n = 1 and X if n > 1). Since the only 

irreducible representation of the compact operators is the identity 

representation (except for unitary equivalence) (see [3], Corollaire 

4.1.5), and there is a one-one correspondence between faithful 

irreducible representations of 55 and faithful irreducible repre­

sentations of the ideal given simply by restriction of representa­

tions ([3], Lemme 2.11.3, and the fact that the ideal is minimal), 
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J,rreducibl~ 
it follows from [3], Corollaire 4.1.10, that eachYrepresentation 

of Ol 0 (X ) with kernel nio is unitary equivalent to II. An 

analogous argument for the ideals I establishes the proposition. o n 

5.7. We shall now prove that the representations II and o n 

nrro are subrepresentations of the Foch representation orr and 

the anti-Foch representation no resp. (See [11] ' 1. 3 for defini-

tions). For the sake of completeness we state a lemma, the 

constituents of which are we 11 known. 

Lemma: * Let OL be a C -algebra, G a compact abelian group, 

a a strongly continuous representation of G as a group of auto-

morphisms of the algebra of G-invariant elements in 

/)(, , w a pure G-invariant state of or. , II the irreducible repre-

sentation of ~ associated wi~h w, K the Hilbert space of II, 

~ a cyclic vector in K such that w(x) = (II(x)~,~) for all 

x C. ot, G the character group of G, dg normalized Haar measure 

on G, II 0 the restriction of II to ot 0 • 

Then there exists a unique strongly continuous representation 

u of G on K such that 

(1) * II (a g(x)) U II(x)U = g g 

for all g£G and x€ or, and such that ug~ = ~ for all g€ G. 

"' If X£ G define: 

(2) E = r X(g) U dg. 
X G g 
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(the integral being taken in strong topology). 

orthogonal projection such that 

(3) U = E~ X(g)EX, 
g XEG 

Then E is an 
X 

~ 

for all g~ G. Moreover the projections E 
X' 

X t. G from a set 

of mutually orthogonal minimal projections in such that 

E~ E = I. Hence 
XE: G X 

(4) II = $A E II 
0 X 0 X£ G 

E ~0 
X 

is a dec.omposi tion of TI 0 into irreducible subrepresentations. 

Proof: The existence of the representation U with the given 

properties is a wellknown result of Segal, see (13]. Since G is 

compact and abelian, U has the decomposition (3), see [3], 

Theoreme 15.1.3, and (2) then follows from the orthogonality 

relations for characters, see (3] , Theoreme 14.3. 7. From [5] , 

Lemma 3.1 and Lemma 3.2 it follows that the weak closure of TI(~ 0 ) 

is equal to the commutant of UG' and hence the commutant of 

n <IJt. o) is equal to the von-Neumann algebra generated by UG. 0 

By (3) the projections E 
X 

are minimal in this algebra, and thus 

the last assertion of the lemma follows. 

We now study the decomposition of the Fock and anti-

Fock representation, when these representations are restricted to 

0£ 0 (1(). We remind the reader of some facts from [11]. The Fock 

representation and anti-Fock representation 
00 

IT 
0 

are both 

operating on the Hilbert space K = (f) Anl::, where A0 YG ~cc, 
n=O 
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and An~ consists of those vectors in ~ ® ':i ®- - -®% 
(n-times) which lie in the closure of those vectors in the 

algebraic tensorproduct of ~ with itself n times, which are 

antisymmetric under permutation of the factors in ~' IT (TI ) 
0 0 

then have the property that 0 II(a(f))(A0 Jt) = o, n 0 (a 111 (f) )(A 0% ) = o 

and 

0 
II(a(f)): An+lJ(_ _. An% 

~ 

0 IT(a(f) ): An X -+ An+l ~ 

(l) 

IT (a(f)) . AnY(, + An+l 'Y6 . 
0 

~ IT 0 (a(f) ) : An+l Yl + An~ 

for n = 0,1, ••• , and f E .YC: • 

0 TI and IT 0 are irreducible, and if n is a unit vector in 

A0:H,, then the associated vector state is gauge invariant and 

pure in both representations. This state is called respectively 

the Fock state 0 w and the anti-Fock state in the two re-

presentations. We shall soon see that 0 w and w0 , restricted 

to ~ 0 (JG) are the multiplicative linear ~unctionals corresponding 

to the two ideals ,I rerp., both having codimension 
.... 0 

The homogeneous polynomials of degree n in the creators 
~ a(f) , applied to n in the Fock representation generate a dense 

subset of AnJG. Since x6 acts on these polynomials by multi-

plication by -inS e 
' 

it follows that if is the unitary 

operator on K associated x6 by lemma 5.7, then: 
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It fo~lows from lemma 5.7 that the subspace An~ is invariant 

and irreducible under 0 TI restricted to Ot 0 (~). Using (1), 

one easily deduces that the kernel of the corresponding sub­

representation is generated by those gauge invariant polynomials 

for which each add8nd in their normal form contains at least 

n+l annihilators, thus this kernel is 0 In+l and thus by 

proposition 5.6 the subrepresentation is unitarily equivalent 

~o 0 Tin+l" Using analogous arguments for the anti-Fock represen­

tation '.'le obtain 

Proposition: Let TI (resp. TI ) be the Fock representation 
0 0 

(resp. the anti-Fock representation) restricted to ot. 0 (YC), 

acting on the direct sum K = @ An X of n-particle sub spaces. 
n=O 

Then each subspace Anj(, is invariant and irreducible in both 

representations, and the corresponding decomposition into irredu-

cible subrepresentations is 

5.9. In [1], Theor~me 3, Dixmier gives an example of a 

* primitive separable C -algebra ot such that its structure space 

Prim(O() contains no nonempty open sets which is separated. 

(U is separated if for each point p ~ U we have that for all 

points q not lying in the closure of {p} that p and q have 
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a pair of disjoint neighbourhoods). 0L 0 (~) provides another 

such example. Indeed, from the diagram of OC 0 (YL') we see 

that the open nonempty sets of Prim(Ot 0 (yC)) are of the form 

{ni0 in ~ n0 }u{ 0 Imlm ~ m0 }U{O}. Thus all neighbourhoods of 

I contain +li although +li does not lie in the n o n o n o 

closure of I , which is { I 11 < m < n}. 
n o m o - -
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