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§ o. Introduction 

We shall work in Zermelo-Fraenkel set theory (including the 

axiom of choice) throughout, and denote this theory by ZFC. 

We shall adopt the usual, well~own, notations and conventions 

of con~emporary set theory ( e.g. an ordinal is defined to be 

the set of all smaller ordinals, cardinals are initial ordinals, 

etc.) 

The paper is entirely self-contained, but some familiarity with 

the usual definition of the constructible universe, L , in 

terms of definability, and the proof that L is a model of 

ZFC + GCH + V = L , will be helpful. 

The exposition is based, with permission, very strongly on a 

set of notes(1vritten by Ronald Jensen and entitled "The Fine 

Structure of the Constructible Hierarchy". Except where other­

wise stated, the results are entirely those of Professor Jensen. 

It is convenient at this point for us to express our apprecia­

tion of several illuminating discussions with Professor Jensen 

on his work in general. 

Previously, Jensen worked, as did most other people, with the 

usual "constructible hierarchy". Thus, one defines, inductively, 
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sets La , a E OR , by setting L0 = 0 , L). = Ua <).La if lim(A.) , 

and La+ 1 = the set of all x c La such that for some E-formula 

cp and some a 1 , ••• , an E L , x = { z E L l L '= cp [ z, a 1 , •• • , a ] 1 • a a a n 
One then defines the constructible universe as the class 

L = UaEORLa• Now, the important facts concerning this defini­

tion which one uses when studying L, are, firstly, that the 

construction is (in a strong way, to be made precise later) 

E1-definable, and thus has certain absoluteness_ properties, 

and, secondly, that La+ 1 contains all and only those subsets 

of La which are La. -definable (and which, therefore, must be 

in L if L is to be a model of ZFC). But if, indeed, these 

are the only conditions which we require (and loosely speaking 

they are), then it is clear that our above definition is un-

necessarily restrictive. For instance, there are many simply 

definable functions or sets under which L must be closed, but 

which increase rank - and these functions will lead out of the 

sets La. For instance, unless lim(a), La. will not be closed 

under the formation of ordered pairs. Since this function plays 

a central role in even the most elementary parts of set theory, 

we see that this defect becomes quite important (though not un­

avoidable) when we try to study the fine structure of L rather 

than L itself. So, following Jensen, we define a new hierarchy 

of "constructible sets", which is sufficiently like the L-hier­

archy to preserve the two properties mentioned above, but which 

has the extra property that each level in the hierarchy is 

closed under ordered pairs, etc. More precisely, we first 

define a certain class of set functions (called "rudimentary 

functions"), and then define a hierarchy (J a.1 a E OR) (the 

Jensen hierarchy) such that each Ja is closed under the rudi-
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mentary functions, L = ua EORJa , and the two properties above 

hold for this hierarchy. In most cases, Ja will be a "con­

structibly inessential" extension of La , and in fact, if 

(V \a EOR) denotes the familiar rank-hierarchy, the precise 
a 

relationship between the J- and the L-hierarchies is easily 

seen to be J 0 = L0 = 0 and Lw+a = Vw+a n J 1+a for all a. 

Hence we have J = L iff wa = a • a a 

In § 1 we give some basic definitions. In § 2 we define the 

class of rudimentary functions and develop the elementary theory 

of this class. The reader may, if he wishes, safely skip all 

the proofs in this section without affecting the reading of the 

later parts. § 3 is devoted to a very brief discussion of the 

concept of an admissible set. In § 4 the Jensen hierarchy is 

defined and its elementary properties discussed. In § 5 we 

investigate the fine structure of the Jensen hierarchy. A 

corresponding theory may also be developed for the L-hierarchy, 

the only difference being that some akward complications arise 

because of the above mentioned defects in this definition. 

§ 1. Preliminaries 

We shall be concerned with first-order structures of the form 

~ = (l\1, E ,A) , where M is a non-empty set and A c M. In 

general, we shall write (M,A) for (M,E,A). The (first-order) 

language for such structures consists of the following: 

(i) 

(ii) 

(iii) 

variables vj , j E w 

predicates = , E , A • 

bounded quantifiers 

(generally denoted by v,w,x,y,z, 
etc.) (Vbl.) 

(Vv1. E v.), (3:v. E v.), i, j E w, itj. 
J l J 



(iv) 

(v) 
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unbounded quantifiers 

connectives A, v, -,, ... , -. 

Finite strings of variables (or of elements of M) are denoted 
... ... ... 

by v, x, etc. We write a EX for a 1 EX A ••• A an EX , 

where we have Similarly for "§:v , Vv , etc. 

The notions of primitive formula (PFml), formula (Fml), free 

variable, statement, and satisfaction are assumed known. 

A formula of this language is ~ 0 (or TI 0 ) if it contains no 

unbounded quantifiers. Let n > 1 , and let Qn denote -v 

if n is even and ~ if n is odd. A formula is ~n(Tin) 

if it is of the form ~x1 Vx2 ~x3 .•• Qn xn ~(vX1 ~x2Vx3 •.• Qn+ 1 xn~) 
where ~ is ~ 0 • 

A formula in which the predicate A does not occur is called 

an E-formula. 

denotes the satisfaction relation for M. Thus, f= M is ,.., ,.., ... 
the set of all (~,(z)) such that ~ is a formula of the 

... 
above language and z E I1 

... 
( z). We generally write 

denotes the set of all 

and cp 

~ M (',0 c "ZJ 

holds in M at the point 
""' 

for (~, <~>) E f= M• ~ ~n 
..... 

such that ~ is ~n• 

M M 
Let N c M. A set R c M is ~n""'(N). ( nn"'(N)) iff there is 

... ... 
formula cp(u,v) and elements a E N such that for 

all x E M, R(x) .- I== M ~[x,a]. The set of all such R is 
M "' M 

also denoted by ~n"'(N) (nn""'(N)). 

M :rvi M M M 
Set ~ "'(N) = U E I: "'(N) , ~ ""(N) = ~ "'(N) n n;-(N). 

(.1) n w n n n 

M :[11 M 
Write I:n"' for L:n"'(0) and I:n(~) for I:n""'(M) • Similarly 

for n, 6.. 
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M 
If ~ is a formula, ~~ denotes the relation {x E Ml ~M q>[x]}. 

M .... 
Similarly, and more generally, define ~[a] -for a E M as 

~ 

(x E Ml\= M q> [x, a]). 
,..., 

Let F be a class of structures of the form M = (M,A). A 
~ 

relation R is uniformly En(~) for M E F iff there is a ,..., 

En formula cp(u,v) and elements - n(M[!:! E F) that a E such 
M .... 

whenever M E F ' R n M = cp!?![a]. 
I'Y 

§ 3. Rudimentary Functions 

A function f : Vn .... V is rudimentary (rud) iff it is generated 

by the following schemata: 

(i) f(x1,,. •• ,xn) = x. 
' 

1 < i < n. 
J. - -

(ii) f(x1 , ••• ,xn) = x.-x., 1 < i, j < n. 
J. J -

(iii) f(x 1 , ••• ,xn) = fx. ,x .) , 1 < i, j < n. 
- 1 J - -

(iv) f(x1 , ••• ,xn) = h(g1(x1 , ••• ,xn), ••• ,gk(x1 , ••• ,xn)), where 

g1 , ••• ,gk,h are rud. 

(v) h is rud. 

For example, the following functions are clearly rud: 

f(x) = ux. 
1 

f(x) = xi U xj ( = U {x. ,x .J) 
1 J 

f(x) = rxJ 

f(x) 
.... 

(( x 1 J , { x 1 ' ( x2 ,. • • 'xn) J) • = (x) = 

And if f(y,x) is rud, so is g(y,x) = (f(z,x) I z E y) ( = 

uzEy((f(z,x), z)J). 
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We say that R c vn is rudimentary (rud) iff there is a rud 

function r: vn- v such that R = ((x>lr(x) t 0}. 

For example, * is rud, since y * x ~[yJ - x + 0. 

We list some basic properties of rudimentary functions and 

relations. 

( 1 ) If f,R are rud, so is g(x) = {~(x), if R(x) 

0 , if , R(x). 

Proof: By definition, there is a rud r such that 

R(x) ~ r(x) t 0. Then g(x) = UyEr(x)f(x). 

(2) Let xR be the characteristic function of R. R is 

rud if xR is rud. 

Proof: By (1). 

(3) R is rud iff , R is rud. 

(4) Let be ru d , i = 1 , ••• , n. Let R. c Vn 
~ 

be 

rud and mutually disjoint, i = 1, ••• ,m, and such that 

~ R. = vn. Define f : vn- v by f(x) = f.;(x) iff 
. 1 ~ ..... 
~= 

Ri(x). Then f is rud. 

Proof: set !i(x) Ri(x) 

By ( 1 ) , 

(5) If R(y,x) 

f. 
~ 

Proof: Set h(y,x) = f£yJ' 

l0 ' 

, Ri(i) i = 1, ••• ,m. 

f(x) = cr f. (x). 
. 1 ~ 
~= 

f(y,x) = y n £ziR(z,x)} 

if R(y,x) 

otherwise. 

Then h is rud. But f(y,x) = uzEyh(z,x). 
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... ... 
(6) Suppose R(y,x) 

f(y,x) 

is rud and (Yx)(~!y)R(y,x). Set 

= fthe unique z E y 

l 0 , otherwise. 

such that 
if such a 

R(z,i), 

Then f is rud. 

Proof: f(y,x) = u[ynfz\R(z,x)J 

(7) If R(y,x) is rud, so is (~z Ey)R(z,x). 

Proof: Take r rud so that R(y,x) ~ r(y,x) + 0. Then 

(~z E y)R(z,x) - UzEyr(z,x)=f= 0. 

(8) If Ri(x) are rud, i = 1, ••• ,m, then so are 

m 
U R., 

. 1 l l= 

m 
n R., 

. 1 l l= 
(Trivial). 

z exists. 

(9) Let (-) 0 ,(-) 1 , denote the inverse functions to (-,-). 

Then (-) 0 , (-) 1 are rud. More generally, let (-)~ , ••• , 

(-)~_ 1 denote the inverse functions to (x1 , ••• ,xn>· 

Then (-)n (-)n 
o, ••• , n-1 are rud. 

.... 
Proof: (x) = the unique z E ux such that 

0 

0 , if no such z exists. 

etc. 

( 10) The function f(x,y) = x(y) 

is rud (By definition.) 

(11) dom and ran are rud. 

= rthe unique 
) that ( z ,y) 

l 0, if no 

Proof: dom(x) = [ z E uux 

ran(x) = [ z E UUx 

( ~W E UU X )( ( W , Z ) E x ) } 

( aw E uu x ) ( < z , w > E x ) J • 

z E UUx 
E X 

such z 

such 

exists. 
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(12) f(x,y) = X X y = uuExuvEy( (u, v) J is rud. 

(13) f(x,y) = x r y = x n (ran(x)xy) is rud. 

( 14) f(x,y) = X II y = ran(xly) is rud. 

( 15) f(x) -1 is rud. = X 

Proof: Set h(z) = ((z) 1 ,(z) 0 ). Then h is rud. But clearly, 

f(x) = x-1 = h 11 (x n (ran(x) X dom(x))). 

Recalling our preliminary discussion (§ 0), we observe that though 

rud functionsincrease rank, they only do so by a finite amount. 

* More precisely, by induction on the rud definition of a given 

rud function f , we see that there is a p E w such that for all 

x1 ,, •• ,xn' rank(f(x1 , ••• ,xn)) < maxfrank(x1 ), ••• ,rank(xn)) + p. 

* Note: In future, we shall often refer to "the rud definition 

of f", or simply "the definition of f". We mean an arbitrary 

such definition, the actual choice being irrelevant, and hence 

assumed made once and for all. 

We now prove that the rud functions do in fact encompass all of 

the "simply definable" functions we spoke about in § 0. First, 

let us call a function f : Vn ~ V simple iff whenever ~(z,y) 

is a E0 E-formula, there is a E0 E-formula w such that 

Fv cp(f(x) ,y) - ~ (x,y). A useful characterisation of this concept 

is given by the following: 

Proposition 

A function f : Vn ~ V is simple iff 

(i) the predicate 

(ii) whenever A(x) is 

is Ev . 
0 ' 

and 

Ev , so is 
0 

(Yx E f(y))A(x). 
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Proof: (~) By definition. 

(~) Let f satisfy (i) and (n), and let ~(x,y) be a 

t 0 E-formula. An easy induction on the length of ~ shows 

that ~(f(x),y) is equivalent to a E0 E-formula; so f 

is simple. 

Using this proposition, and easy induction on the definition of 

f yields: 

Lemma 1 

If f is rud then f is simple. 

Now, since there are Ev 
0 

functions which increase rank by an 

infinite amount, it is clear that the converse to the above lemma 

is false. However, we do have: 

Lemma 2 

R c Vn is Ev 
0 

iff R is rud. 

Proof: c~) Let R be v 
Eo • By (3), (7), and (8) above, an easy 

induction on the Ev 
0 

definition of R shows that R is 

rud. 

(~) Let R be rud. Then XR is rud. So by lemma 1, XR is 

simple. Using our above proposition, an easy induction on the 

rud definition of XR shows that XR , and hence R, is Ev 
0 • 

We require some generalisations of these concepts, 

Let A c V. We say that a function f is rud in A iff f is 

generated by the schemata for rud functions and the function xA' 

Let p E V. We say that a function f is rud in parameter p 

iff f is generated by the schemata for rud functions and the 
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constant function h(x) = p. 

Lemma 3 

If f is rud in A c V, there are rud functions g1, .•• ,gn such 

that f is expressible (in a uniform way with respect to the rud 

definition of f) as a composition of g1 , ••• ,gn and the function 

h(x) = A n x. 

Proof: By induction on the (rud) definition of f. 

A set X is said to be rud closed if for all rud functions 

f,f"xn c: x. 

A structure M = (M,A) is said to be rud closed if for all -
functions f which are rud in A , f"Mn c: M. 

We say a structure M = (M,A) ,.... is amenable if u E M ~ A n u E M. 

Lemma 4 

A structure M = (M,A) is rud closed iff the set M is rud ,.... 

closed and M is amenable. ,.., 

Proof: By lemma 3. 

Lemma 5 

Let A c: V. If f is rud in A, then f ~ Mn is uniformly 

for all transitive, rud closed M = (M,A n M). 
"'"' 

Proof: By lemmas 2 and 3. 

The next result will be of considerable use to us later on. 
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Lemma 6 

Every rud function is a composition of some of the following rud 

functions: 

F0 (x,y) = (x,y} 

F1(x,y) = X - y 

F2(x,y) = X X y 

F3(x,y) = [(u,z,v) 1 z E X A (u,v) E Y1 
F4(x,y) = ((u,v,z) I z E X A (u,v) E yJ 

F5(x,y) = ux 

F6(x,y) = dom(x) 

F7(x,y) ~ E n x2 

F8 (x,y) = (x" ( zJ I z E y} • 

Proof: Let ~ denote the class of all functions obtainable from 

F0 , ••• ,F8 by composition. We must show that f rud ~ f E ~. 

For each E-formula ~(x1 , ••• ,xn), set 

t~ (u) = [ (x1 , ••• ,xn) I x1 , ••• ,xn E u A f(u,E) cp[x1 , ••• ,xn]}. 

By induction on cp, we show that for all ~' t E ~. (The required 
~ 

result will then be proved using this fact.) 

(a) ~ex) - x. E x. 1 < i < j ~ n. 
1 J 

Write Fx(y) for F3(x,y). Then t~(u)= ui-1x F~-i(F4 (Enu2,un-j)) 
so t cp E '· 
(b) Let cp 1(i), ••• ,cpp(x) be such that tcp , ••• ,,tcp E r$. 

1 p 

Let ~(x) be any propositional combination of ~ 1 , ••• ,cpp. 

Since x - y, x u y (= U(x,y}) , x n y (= x -(x-y)) E ~, we 

clearly have tcp E ~. 
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(c) Let cp(y,x) be such that t~ E ~. Let cp(x) = aycp(y,x) 

or ~(y,x). 

Clearly, ta~(u) = dom(~(u)) and tVycp(u) = un- dom(un- ~(u)). 

So in either case, tcp E ~. 

Let e(y,i) 

l=<u,E>cp[xJ 

(e) 

-yExi-yExj. By(a), (b), t 9 E ~. 

iff (Vy E uu)[ ~(uu(uu),E)e[y,x]J. 

1 < j < i < n. - -

But look, 

Let ~(y,z,x) = y E z A y = xi A z = xj. 

~. But cp(x) - ay az~ (y, z ,i) , so 

By (a) , (b) , (d), 

by ( c) , tcp E ~ • 

Hence, for any E-formula cp , tcp E ~. 

If f: Vn ... V, define f*: V ... V by f*(u) = f"u". Using our 

above result, we prove by induction on the rud definition of f , 

that f rud ... f* E t;. This easily implies the required result. 

(a) f(x) =xi. 

* " n 1 ) ( ) f (u) = f u = (x-y x,yEu. Let cp z,x,y = zEx-y. 

Let F(u) = tcp(uu (Uu)) n (Uux u 2 ) = ((z,x,y) lx,y Eu A z E x-y). 

Then f*(u) = F8 (F(u),u2 ) E ~. since tcp E ~-

(c) f(i) = (x.,x.}. 
1. J 

*c ) " n ( ' J 2 ...£) f u = f u = ( x,y} x,yE u = Uu E ~. 
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(d) 

Let k * G(u) = U gi(u) , H(u) * k * = h ( U gi(u)) = * h (G(u)) , and 
i=1 i=1 

K(u) = un U G(u) U H(u). By hypothesis, G, H, K E ~. By 

lemma 1, let ~(y,x) be an E-formula equivalent to the formula 

:H:z1 ••• :H:zk(z1 = g1(x)A ••• A zk = gk(x) A y = h(z 1 , ••• ,zk)). 

Clearly, f*(u) = F8 (([t~(K(u))] n [H(u) x un]), un) E t;. 

(e) f(y,x) = UzEyg(z,x). 

Let G(u)=[(z,y,x) I (:H:vEy)[zEg(v,x)]AxEu}. Asabove 
fLl * n+1 ~ G E "'. But f ( u) = F 8 ( G ( u) , u ) E fO. 

Hence f rud .... f* E fE, for all f. 

Finally, let f be rud. We show that f E ~-

Set 1((z)) = f(z) , f(y) = 0 in all other cases. Thus 1 is 

rud. So by the above, f* E ~- Let P(x) = [ (x) J. Thus P E 1:. 
But look, f(x) = UU[ff(x)JJ = UUff((x)J} = UUF8 (f*(P(x)),P(x))E t'. 

As an immediate corollary of lemmas 3 and 6 we have: 

Lemma 7 

Let A c V and define Fg by F9 (x,y) = A n x. Every function 

rud in A may be expressed as a composition of some of the 

(rud in A) functions·. F0 , ••• ,F9• 

We shall make immediate use of lemma 7 in investigating the logi-

cal complexity of the predicates ~·~n for suitable M. ,.,. We assume, 

once and for all, that we have a fixed arithmetisation of our 

language. 
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for transitive, rud closed 

Proof: Let ~ be the language consisting of: 

(i) variables wi , i E w. 

M = (M,A). ,... 

(ii) function symbols (binary) f 0 , ••• ,f9• 

We shall assu~e we have a fixed arithmetisation of ~. We also 

assume that the reader understands what is mea:r;J.t by a "term" of :£. 
Henceforth, let M = (M,A) be arbitrary, transitive, and rud ,.... 

closed. 

We first define precisely how ~ is to be interpreted in ~-

Let Q be the set of functions p mapping a finite subset of 

(wi I i E wJ into M. We may clearly assume Q is ::rud. Let C 

be the (rud) function which to each term T of ~ assigns the 

set of all component terms of T, including variables. Let Vb~ 

be the rud predicate defining the set (wi I i E wJ. 

Let P be the predicate 

P(u,g,v) - [dom(g) = u].A (Yx E u)[[x E VbL .... x E dom(v) A g(x) = v(x)] 

9 
A.A (Yt ,t1 Eu)[x=f.(t ,t1) ... g(x) = F1.(g(t0 ),g(t1 ))]]. 

J.=O 0 J. 0 

Thus P is rud in A. 

We may now define the interpretation of a term T of ~ at a 

"point" p E Q by: 

y = T !:! ( p ] - 11 T iS an ~-term 11 A p E C A 3: g ( P ( C ( T ) , g , p ) A g ( T ) = y] 

Hence the function 

M 
is (uniformly) ~1 

f(T,p) =sT~[p], if T is an ct-term and pE Q 

l0 , otherwise 
(for transitive, rud closed M). ,..., 
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Since M is rud closed we can use the above result to define 

p L:o as an M-predicate. 
M "' ,... 

2:: 
Let cp E Fml 0 • By lemma 2, J1 is rud in A. Hence the function 

r defined by 

= [~ 
M 

r(x) 
' 

if cp"'[xJ 

' 
otherwise 

M 
is rud in A. So, by lemma 7, we may assume r 

,... 
where = r , T 

is a term of £, under the above interpretation (i.e.with Fi 

interpreting fi for each i). In fact, we may clearly 
2:: 

recursive function cr mapping Fml 0 into the terms of 

pick a 

t; so 
2:: M- . M 

that whenever cp E Fml 0 , cp"'[x] ~ [cr(cp)]-[~] = 1. 

above result, this implies that I= ~o is (uniformly) 

transitive, rud closed M) • ,... 

As an immediate consequence of this result, we have 

M 

But by our 
M 

2::"' (for 1 

Lemma 9 

Let n > 1. Then is uniformly L:~ for transitive, rud 

closed M = (M,A) . ...... 

We conclude this section with a few miscellaneous results of use 

later. The first two are technical, and will often be used with-

out mention. 

Lemma 10 

Let ~ = (M,A) be rud closed. If R c M is L:n(~), there is a 

L: (M) 0,.... 

Proof: Suppose R(x) ~ I=M 8:V1 Vv2 :H:v3 ••• Qn vn cp(v,v1' ••• ,vn)[x]' 
,..., 

where cp is a L: 0 -formula. Using the rud functions 

(-, ••• ,-), (-)~, ••• ,(-):_1 , we can easily obtain, via 
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lemma 1, a ~ 0-formula w such that 

R(x) ..._ ~M 3:v1 Tv2 ••• Qn vn $(v,v1 , ••• ,vn)(x]. 
"" 

Then R(x)- 3:x1 Vx2 ••• Qnxn[~M w[x,x1 , ••• ,xn]], 
"' 

as required. 

Lemma 11 

Let ~ = (M,A) be rud closed. If R c M is ~n(~), there is 

a single elem~nt p EM such that R is ~~([p}). 
M 

Proof: If R is ~~([p 1 , ••• ,pn}), then R is also 
M 
~;(f(p1, ••• pn)})~ 

Let ~ = (M,A) n ,2: 0. Write X-(~ ~ iff X c M and for every 
n .... 

~n formula ~ and every x E X , 

~ (X,AnX) ~[iJ iff F M ~[iJ. 
"" 

Clearly, if X,M are transitive and X c M, we always have 

X.:-<~ ~ • And for n > 0, we have X1 L:n !':! iff X c M and for 
o M 

every P E L:~(X), P t 0- P n X f 0. 

Recall that if (X,E) satisfies the axiom of extensionality,there 

is a unique isomorphism n : (X,E) ~ (W,E) , where W is a unique 

transitive set. Furthermore, if Z c X is transitive, then 

n~Z = id~Z. In fact, n is defined by E-induction thus: 

n(x) = [n(y)Jy Ex n X} for each x EX. The next re~ult is of 

considerable importance. 

Lemma 12 

Let M be transitive and rud closed. Let X~~ M. Then (X,Anx> 
"-'1 ,..... 

satisfies the axiom of extensionality and is rud closed. Let 

n : (X,AnX) ~ .(w,B) , where W is transitive. Let f : M .... M 



- 17 -

be rud in A. Then for all ~ E x, TI(f(z)) = f(TI(z)). 

Proof: Since M is transitive, M satisfies the axiom of exten-
,..,. "" 

sionality. Hence as X"<" M , so does (X,AnX). 
""'1 ,..,. 

Similarly, by 

lemma 5, (X,AnX) is rud closed. Hence, in particular, 
-t 

f(z) z E X ... E X for f l\1 ... M rud in A. By induction on the 

TI(f(z)) = f(n(z)) 
-t 

(rud in A) definition of f 
' 

for each z E 

§ 3. Admissible Sets. 

x. 

Let ~ = (M,A) be non-empty and transitive. Vie say is admiss-

ible iff M is rud closed and satisfies the ,.... 
-t 

for all !: 0 formulas ~ and all a E M , 

I= M c v x ~ y ~ ... v u ~ v c v x E u ) (a y E v ) ~ J c a: J. 

!: --~R~e.p~l~a~c~e=m~e~n~t Axiom: -o-

In case A = 0 in the above, we call M an admissible set. 

More generally, M is !: -admissible iff M is rud closed and ,..,. ,..,. 

satisfies the (analogous) fn_-~R~e.p~l~a~c~e~m~e~n~t~A~x~i~o=m. Likewise a 

!: -admissible set. We prove below that M is admissible iff M -n ,.... ,..,. 

is !: 1-admissible. All our results extend trivially from admissi­

bility to !:n-admissibility, with "!:n" everywhere replacing 

!: 1 , etc. 

Roughly speaking, an admissible set (or structure) behaves like 

the universe as far as !: 1 concepts are concerned. Vie give a 

few elementary results which set the tone for the rest of this 

exposition. 

Convention: For the whole of this paper, we shall adopt the 

following abuse of notation. Suppose M ,..., is a structure, ~(:;) 
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is a formula, and x E H. We shall write 1= 11 cp(x) rather than 
,.... 

pM ~(v) [x]. Clearly, this is purely a notational convenience. 
,.... 

Firstly, we give the promised "stronger" form of the admissibility 

definition. 

Lemma 13 (~ 1 -Replacement) 
... 

Let ~ be admissible, and let cp be a ~ 1 -formula, a E M. Then 

I= M Vx 3:y cp (x, y 'a) ... \fu 3:v(Vx E u X3:Y E v )cp (x,y 'a). 
"' 

Proof: Let w 

I=M cp(x,y,a) -

be a ~ -formula such that 
0 

:!fzw(x,y,a). 

Then I= M Vx :!fycp(x,y,a) ... Vx 3:y :!fzw (x,y,z,a) 
,.... 

... V X 3: WW ( X , ( W ) O , ( W ) 1 , a ) 

... Yu _3:v(Vx E ti) (3:w E v)w (x, (w) 0 , (w) 1 ,a), 
by ~ -Replacement 

0 ... 
... Vu 3:v(Vx E u) (3:y E v)cp(x,y,a). 

-Convention: The essentially superfluous role played by a in 

the above theorem leads us to extend our previous convention 

slightly by allowing formulas to contain members of M as para-...., 

meters. Again, this is clearly an avoidable convenience. 

Lemma 14 

Let ~ be admissible, If R(i,y) is ~ 1 (r!), so is (YyE z)R(x,y). 

Proof: Let cp be a I: 0 -formula with parameters from ("w.p.f.")M 

such that R(x,y) - FM 3:W cp (x,y) • 
...., 

Then (VyE z)R(x,y) - I=M (VyE z)~wcp(i,y) 
...., 

- PM Vy:!{ w[(yE z Acp(x,y)) v (y* z)]. 
""' 
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I: - Replacement, 
0 

(Vy E z)R(i,y) - f= M 3:v(Vy E z) (3:w E v)cp(i,y), 

which is I: 1 (!i). 

Lemma 15 (~ 1 -comprehension) 

Let !i be admissible, P E ~ 1 (~). Then u EM~ P n U EM. 

Proof: Let oo, w be I: 0 -formulas w.p.f. M such that 

P ( z) - f= M Vx ~ ( x, z) - F M g yep( y 1 z) • 
"' ,...., 

Then, 

I= M Vw 1 3: w 2 [ [ w 1 E u A ( 3:y ( \jl A w 2· = y) V 3:x (-, cpA w 2 = x) ) ] 
"' 

So by I: 1-Replacement there is v E M such that 

F M (Yw1 E u)(3:w2 E v)[3:y(tiJ A w2 = y) v 3:x(.., cpA w2 =x)]. 
,...., 

So, 

P n u = { z I F= M v x ~ ( x , z ) J n u = { z I I= M (3: y E v )tV ( y , z ) J n u. 
,..., 

But M is rud closed (so satisfies what might be called the 
"' 

I: 0 -comprehension axiom), and therefore we conclude that 

P n u = {z Eul f M(3:y E vH(y,z)) EM. 

The next result has nothing specifically to do with admissibility, 

but is of considerable value. Let f : c M ~ M mean that 

f : X ~ M for some X c M. 

Lemma 16 

Let ~ be arbitrary, f : c M- M be I: 1 (~). If dom(f) is 

rr 1(M), then in fact f and dom(f) are ~ 1 (!i). 



Proof: (a) 

(b) x E dom(f) 
Tid~) 

/ 
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~ x E dom(f) A Yz(z ! y - f(x) t z) 
n1 (~) 

- ay(f(x) = y) 
l: 1 (~) 

It was necessary to state the above result explicitly because we 

shall frequently have to deal with functions which, though defin-

able, are not total functions. A particular case of the above 

theorem would of course occur when dom(f) E M,(when dom(f) is 

l: (IVI)). 0 ,..., 

As usual, we shall use the notation g(x) ~ y(x) for partial 

functions, with its usual meaning (i.e. f(x) is defined iff 

g(x) is defined, in which case f(x) = g(x).). 

Lemma 17 

Let ~ be admissible, f: c M- M be z: 1 (~). If u EM and 

u c dom(f), then f 11 u EM. 

Proof: Since J1 is rud closed and f"u = ran(ff'u), it suffices 

to prove that fru E M. 

Then 

there 

fl'u c 

Now, as u EM, f~ is ~ 1 (J:!) by lemma 16. 

Let ~(x,y) be a z: 1-formula w.p.f. M such that 

f(x) = y - ~JYT ~(x,y). 

I= M Yx 3: y[ (X E U t\ cp (X, y)) v (X ~ u)] , so by z: 1-Replacement 
,..., 

is v E M such that I=M (VxE u)(3:yE v)cp(x,y). Hence 
"" 

V X u. So, by ~ 1 -Comprehension, f ~u = ( f ~u) n ( vx u) E 

Theorem 18 (Recursion Theorem) 

M • 

Let M be admissible. Let h: Mn+ 1 - M be a z: 1 (~) function 

such that for all i EM, [(z,y)!zE h(y,x)J is well-founded. 
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Let G = Mn+ 2 ~ M be ~ 1 (~). Then there is a unique ~ 1 (~) 
function F such that 

(i) (y,x) E dom(F)- [(z,x>lz E h(y,x)} c dom(F) 

(ii) F(y,x) ~ G(y,i , <F(z,x)lz E h(y,x)>). 

Proof: Let § be the predicate 

Q(f,x) - 11 f is a function" A (YyE dom(f))(Yz E h(y,x))(z E dom(f)) 

1\ (vy Edom(f))(fJ'y) = G(y,x, fth(y,x)). 

By lemma 16, h,G are 6 1 (!~!), so ~ is 6 1 (~). 

Let cp be a l:: 1-formula w.p.f. M such that i2(f,i) .- I=Mcp(f,x). 
,.., 

Define a ~ 1 (~) predicate F by (using notation which will later 

be justified~ 

F ( y , X ) = u - 3:f [ Q ( f , i) 1\ f ( y ) = u J 

We verify (i) for this F. Suppose first that (y,x) E dom(F). 

Then, by definition, ~'3:f[~(f,x)AyEdom(f)]. By definition of Q, 

for such an f we must have (YzE h(y,x))(z Edom(f)). Hence 

z E h(y ,x) ~ ( z ,x) E dom(F). Now suppose that z E h( y ,x)-( z ,x)Edom(F). 

Note that as M is transitive, h(y,x) c M. 

By our supposition, 

~ M Y z . 3: f [ ( z E h ( y, x) A z E d om ( f) A cp ( f, x) ) v ( z ~ h ( y , x) A f = 0 ) ] • 

so by ~ 1 -Replacement, 

~ M av ( v z E h ( y, x) ) (~f. E v )[ z E d om ( f) A cp ( f , i) ] . 
"" 

~ick sucn a v. As ~ is 6 1 (~), by 61-Comprehension we see 

that w = v n (f(§(f,x)) EM. Hence uw E M. It is easily seen 
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... 
that ~ (uw ,x). Noting that h(y,x) c dom(Uw), note that 

lJ w th ( y 'X ) E M • Set f = Uw\h(y,x) U ((G(y,x, Uwf"'b.(y,x)),y)). 

Clearly, Q(f,x), so (y,x) E dom(F). Hence (i) holds for this F. 

We now show that F is a function and is unique. By (i), dom(F) 

is already uniquely determined, so for both of these it suffices 

to prove the following: 

~ ( f , x) 1\ Q ( f 1 , i) 1\ y E d om ( f) n d om ( f ' ) - f ( y) = f 1 ( y) 

To this end, suppose not. Then P = fy!yE dom(f) n dom(f') 1\ f(y) 

+ f1 (y)) =I= 0. Let Yo be an h-minimal element of P. Since 

Yo E P, f(yo) f f'(yo)• But Q(f,x) , ~<f' ,x), so clearly . 

f(yo) = f1(yo) by the h-minimality of Yo E P. This contradic-

tion suffices (and thus justifies our notation somewhat). 

Finally, it is trivial to note that (ii) must hold, virtually by 

definition. 

In view of the many set theoretic concepts defined by a recursion 

of the above type, it is clear that admissible sets play an im-

portant role in set theory. 

Say ~ is strongly admissible iff ~ is non-empty, transitive, 

rud closed, and satisfies the Strong ~ 0-Replacement Axiom : for 

all ~ 0 formulas cp w.p.f. M, I= M Vu 3:v(Vx E u)[3:ycp(x,y) 
,..., 

.... (3:y Eu)cp(x,y)]. (Clearly, such an M will also satisfy the ,..., 

"Strong ~ 1 -Replacement Axiom".) 

Strongly admissible structures are (for reasons to be indi-

cated later) also called non-projectible admissible structures. 

The difference between admissibility and strong admissibility is 
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closely connected with the difference between ~n predicates and 

~n predicates, which is in turn closely connected with the differ­

ence between a function being partial and total. We shall have 

more to say on this matter later. 

§ 4. The Jensen Hierarchy 

Let X be a set. The rudimentary closure of X is the smallest 

set Y ~ X such that Y is rud closed. 

Lemma 19 

If U is transitive, so is its rud closure. 

Proof: Let W be the rud closure of U. Since rud functions are 

closed under composition, we clearly have 

W = [f(x) !xE UA f is rud}. An easy induction on the rud 

definition of any rud f shows that xEU-TC (f(x)) c W. 

Hence W is transitive. 

For U transitive, let rud(U) =the rud closure of U u (U]. 

Of crucial importance is: 

Lemma 20 

Let U be transitive. Then @(u) n rud(U) = ~ (U). w 

Proof: Clearly, (/J (U) n ~ 0 (Uu fU} ) = ~w (U), so it suffices to show 

that @(U) n ~ 0 (UU{U}) = (/>(U) n rud(U). 

Let X E g(U) n ~ 0 (UU(U}. Then, exactly as in the proof 

of lemma 2, X E rud(U) (by induction on the E0 definition 

of X). Now let X E ~(U) n rud(U). Then X is a 

~ 0 (rud(U)) subset of u. By lemma 1, we may in fact 



- 24 -

assume that X is ~orud(U)(UU{U}). But X c UU[U} c rud(U) and 

UUfU), rud(U) are transitive, so X is actually ~oUU[U)(UU[U}) 

= ~ 0 ( UU [UJ ) • 

Also very relevant is: 

Lemma 21 

There is a rud function S such that whenever U is transitive, ,..... 

S(U) ,.... is transitive, uu [U} c S(U) and u E Sn(U) = rud(U). ..... nw,.... 

Proof: Set 8 " 2) §(U) = (UU[U}) U ( U Fi (UIJ{U}) • The result follows 
i=o 

by lemma 6. 

Lemma 22 

There is a rud function Wo such that whenever r is a well-

ordering of u , Wo(r,u) is an end-extension of r which well-
"" 

orders S ( u) . ..... 

Proof: Define .u 
l ' 

.u 
J 1 , 

.u 
J2 by:-

iu(x) = the least i < 8 such that (ax1 ,x2 E u) [F i (x1 ,x2 ) = x] 

j~(x) = the r-least x1 E u such that (3:x2 E u) [Fju(x) (x1 ,x2 )=x] 

j~(x) = the r-least x 2 E u such that Fiu(x)(j~(x),x2 ) 

Clearly, .u 
l ' 

.u 
J 1 , 

.u 
J2 are rud functions of - u, x. 

Define Wo(r,u) = {(x,y)lx,yEu 1\ xry} ,.., 

u {(x,y)lx Eu 1\ y ~ u) 

u {(x,y)!x * u 1\ y * u A [iu(x) < iu(y) v 

iu(x) = iu(y) 1\ [j~(x):~;- j~(y) v (j~(x) = 

j~(y) 1\ j~(x) r j~(y))]]}. 

The Jensen hierarchy, 

Jo = 0 

(J Ia E OR) a. , is defined as follows: 

Ja+1 = rud(Ja) 

J A. = ua <A. Ja , if 

= x. 
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Lemma 23 

(i) Each J is transitive. a: 
( ii) a: ~ s .... J c Js a: 
(iii) rank(J ) = OR n J = w:x • a: a: 

Proof: (i) By lemma 19. 

(ii) Immediate. 

(iii) By induction: rank(Ja:+ 1 ) = rank(rud(Ja:)) = rank(Ja:) +w 

(by an earlier remark, this last step is easily verified.) 

To:fB.cilitate our handling of the hierarchy, we "stratify" the 

Ja: 's by defining an auxiliary hierarchy ( s11 I ct E OR) as follows: 

sA. = ua: <;\. sCll , if limO .. ). 

Clearly, the 

In fact: 

Lemma 24 

(i) Each 

(ii) a: ~ f3 

s a: 
..... 

J 's a: 

is 

s c 
a 

are just the limit points of this sequence. 

transitive 

ss 

(iii) J a = uv<wa: s = s w rl v 

Proof: ( i) By lemma 21. 

(ii) Immediate. 

(III) By induction: Ja+1 = rud(Ja) = UnEw §n(Ja) = 

Lemma 25 

(S lv < wa) v 

UnEw §n(Swa) = UnEw Swrr.+n = Swa+w = Sw(a+1) • 

is uniformly 
J 

L: a: 
1 for all a. 
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Proof: Set 9(f) - "f is a function" 1\ dom(f) E OR 1\ f(O) = 0 1\ 

(1fv Edom(f))[(succ(v)-+ f(v) = S(f(v-1))) 1\ 
""' 

Clearly, 

[lim ( v) .... f ( v) = U E f (a ) ] ] • a v 

is uniformly 
J 

L: a 
0 • And by definition, 

y = S - :frf(~(f) 1\ y = f(v)). Thus it suffices to show that for 
\) 

any a , v < wa , the existential quantifier here can be restricted 

to Ja. In o~her words, we must show that whenever T < wa, then 

(S \v < T) E J. This is proved by induction on a. For a = 0 v a 

it is trivial. For limit a the induction step is immediate. 

So assume a = s + 1 and that T < ws -+ (S \v < T) E Je· Then, 
\) 

< s '\) 
J 

by our above remarks, it is clear that < ws> is r:1S • \) 

So by lemma 20, (S jv < wS) E J Thus for all n < w , 
v a 

(Svlv < wS + n) = ( Sv\\) < wj3) U [(§m(J13 ),wS+m)lm<n)EJa. as 

J is rud closed.). 
ex. 

Lemma 26 

(J lv < a) 
\) 

is uniformly 
J 

L: a. 
1 

Proof: By an easy induction, 

for all a. 

<wvlv <a) is uniformly 

all a. Since Jv = Swv' the result follows by lemma 25. 

Lemma 27 

There are well-orderings < 
\) 

of the s 
\) 

such that: 

(i) 

(ii) 

(iii) 

Proof: 

\)1 < \)2 .... < 
\)1 

c < 
\)2 

< 
v+ 1 is an end-extension 

(< \v 
\) 

< wa) is uniformly 

vre use lemma 22. Set < 

< 
v+1 = Wo (< , s ) 

t'V \) \) 

<l = UvE).. < 
' 

if 
\) 

of < . 
\) ' 

J 
L: a 

1 for all a . 

0 
= 0 ' 

and by induction: 

lim()..). 

for 

(i) and (ii) are immediate and (iii) is proved like lemma 25. 
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Lemma 28 

There we well-orderings <J 
a: 

of the J a such that: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Proof: 

a. 1 <a: ... <J c <J . 
2 ' 0:1 0:2 

< is an end-extension of <J 0 

Ja:+1 ' a: 
J 

(<J Is < a:) is uniformly L: rx ; 1 
13 

J 
<J is uniformly L: a . 

1 , 
a: 

the function pra:(x) = {zlz·< J x} is uniformly 
a 

( 11 pr" stands for "predecessors" of course.) 

J 
"' (l L.o1 • 

Set <J = < 
a wa: 

(i)-(iii) are immediate by lemma 27. 

For (iv), note simply that x <J y .- 3:\J(X <\) y). Finally, 
a 

for (v), note that y = pr (x)- :trv[xE S Ay={zlz < x}] a \J \) 

(and that < E J ) , and use lemma 27. 
'J a 

Lemmas 12 and 26 enable us to prove the following extremely power­

ful result(due in its original form to Godel, the present version 

being Jensen's.): 

Theorem 29 (Condensation Lemma) 

Let J • a: Then for some 

Proof: Let X--< L: Ja. Then by lemma 12, let TT : X ~ W , where 
1 

W is transitive. We prove by induction on a that 

" W = J i3 for f3 = TT (X n a: ) • 

Assume, therefore, that whenever \} < a and X\J ~ "' J , the 
L.o 1 \) 

unique isomorphism 
\) 

TT 

Note that, as (J l\J< a) 
\) 

of onto a transitive set W\J yields 

J 
is L: 1a·, \J EX na: -J\J EX. 
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Claim 1: For all v E X n a. , n(J ) = J (.). v n v 

To see this, note first that for v E x n a 9 x n J ~ L: J • [For, 

L:~v(xnJv). 
\) 1 \) 

let A E Since J E X, A E r: 1Jtt(x). So, if A 4 0, 
\) 

then as X~" J ' An X f 0. But A c J , so An (XnJ) + 0.J 
'-'1 a \) \) 

Hence by induction hypothesis, rr': X n Jv ~ Jn'" (XnJ nv) for some 
\) 

unique n'. But look, J is an E-end extension of J , so n a v 
maps xnJ 

\) 
tsomorphically onto a transitive set also. In other 

words, n' = n ~xn Jv' and n" X nJv = Jn"(Xnv)• So, n(J ) = 
\) 

n"(Xn Jv) = Jn"(Xnv) = Jn(v)' by the definition of n, as claimed. 

For v < a , define 

To establish this claim, note that as x--< ~ J , 
'-'1 a 

X 

xn (J u(J J). 
\) \) 

is rud closed, 

so is obvious. For the converse, let x E X. Then x E J = 
a 

rud(Jv), so for some rud function f , ~J (:!rv)(3:p_~_JvXx=f(p,~): 
a . 

But X-< 2:: Ja , so 
1 

( a~ E X n a ) ( 3: p E J v n X) ( x = f ( p , J v ) ) • In other 

words. x E U rudx(Jv). vEXna Hence claim 2. 

To see this, let v E Xna. Suppose first that x E rudX(Jv). 

Then for some rud function f and some p E J nx, x = f(p,J ). 
\) \) 

By lemma 12 and claim 1, n(x) = f(n(p), Jn(v)). But p E Jvn X 

so n(p) E Jn(v)• Hence n(x) E rud(Jn(v)). This proves c • 

Conversely, suppose y E rud(Jn(v)). Then y E rud(n(Jv)), by 

claim 1, so for some rud function f and some p E n(J ), 
v 

y = f(p, n(J )). Now, n(J) = n"(J nX), so for some qEJ nx, 
\) \) \) \) 

p = n(q) and we have y = f(n(q), n(Jv)) = n(f(q,Jv)) E n"rudX(Jv). 

Hence ~ , and claim 3 is proved. 
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By claims 2 and '3, we have W = TT 11 X = n"(U'IJEXno: rudx(Jv)) = 

u v exn rt n-n rudx ( J v) = u v exn a: rud ( J n ( v) ) = u n<\3 rud ( J 11) = J 13 , 

where S = n" (Xn(f.). 

N.ote. It is easily seen that we may regard. the following as part 

of the statement of theorem 29: If Y c X is transitive, then 

nty = i~Y. And for v E Xr'\ a: , n(v) _::: v , and for all x E X t 

n(x) ~ Ja:x. 

By an argument well known to all set theorists, it is easily shown 

that J = U EOR J is a model of ZFC. (In fact, setting a ry, 

<J = U~EOR <J , <J is a J-definable well-ordering of the entire 
' a: 

class J, so J satisfies the axiom of choice in a strong way.). 

Using the condensation lemma, an equally well-known argument shows 

that J I= GCH. However, in the next section we will prove (and 

have already indicated this fact in our preamble) that J = L , 

so all that the above says is that we can use the Jensen hierar~y 

in place of the L-hierarchy in order to establish the classical 

results on the constructible universe. 

§ 5. On The Fine Structure of the Jensen Hierarchy. 

As mentioned in the introduction, a theory similar to the one 

following can be developed for the usual L-hierarchy, if desired. 

Central in our discussion will be the concept of a "uniformising 

function" for a relation, which is a sort of "choice function" for 

a given relation. Specifically, a function r is said to uni--formise a relation R iff dom(r) = dom(R) and for all x , 

~yR(y,x) -R(r(x),i). 
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Let M = (M,A), n > 1. .... We say is Ln--~u=n~i_f~o_r_m_i_s_a_b~l_e iff every 

~n(~) relation on M is uniformised by a Ln(~) function. 

A few moments reflection will reveal that Ln-uniformisability is 

a very strong condition to demand of an arbitrary structure M , 

since in the more obvious cases, the definition of a uniformisary 

function for a given relation would appear to increase the logical 

complexity by one or more quantifier switches. However, it will 

turn out that for all a , all n ~ 1, J 1§ ~n-uniformisable. 
ry 

For n = 1, this will be easy to prove, but for n > 1, the corre~ 

spending argument will only work when, J is ~ 1-admissible, rx n-
so a more indirect approach will be necessary. We shall outline 

the approach required after we dispose of some of the more easy 

results. First, L1-uniformisability. The ~ 1 (Ja) well-ordina~y 

of each J gives us this with little effort. In fact, we have a 
a: 

much stronger result, of importance in applications of ~ 1 -uni-

formisability. 

ME F , there is a ~-formula w (w.p.f. n[MI~E F}) 
"' Mn M 
for each ~ E F , W~ is a function uniformising ~-. 

Theorem 30 

(J ,A) 
rr, 

is ~ 1 -uniformisable. 

is uniformly ~ 1 -uniformisable. 

Proof: 

In fact, the class of all 

such that 

(J ,A) 
a: 

Let ~ be a ~ 1 -formula w.p.f. Ja 

- (J ,A) 
[~(y,x)] a is a ~ 1 relation on J • By contraction 

a 

of quantifiers, we can, in a uniform way, find a ~ 0 formu-
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la w (w.p.f. Ja) such that l=(J A)cp(y,i)- _:3:z.$(z,y,x)... 
a' 

Define g by: g(x) ~ the <J-least w such that 

F(J A)$((w) 0 ,(w) 1 ,i). Then g is (uniformly) r: 1 ((Ja,A)), 
a' 

since if 

w = g(x) - ~J ,A)W((x) 0 , (w) 1 ,x) 
("(_ 

A ~t[t= prrt(w) A (Vw'E t) ,l!t_((w') 0 ,(w')vx)J 

Set r(x) ~ (g(x)) 1 w Then r is (uniformly) r: 1 ((Ja,A)). 

and clearly uniformises [cp(y,x)](Ja.,A). 

Remark. We call the above construction the· canonical r:_1-uni­

formisation procedure. Observe that if R(y,x) us a r: 1 ((Ja,A)) 

predicate, then the canonical r: 1-uniformisation of R is a func­

tion whose E1 ((J ,A)) definition involves only those parameters a 
which occur in the definition of R. 

Let us take a little time off to examine the above construction 

more closely. Suppose R(y,x) is a given r: 1 relation, say 

R(y,x) ~ :RzP(z,y,x), where P is L: 0 • To obtain the r: 1 uni­

formisation of R, we first obtain a E1 uniformisation of the 

L: 0 relation [(w,x)!P((w) 0 ,(w) 1 ,x)J, and then simply pick out 

the requisite component of the result as our required function. 

And since <J is a r: 1 well order of J the result is also ~1 • 
a 

However, returning now to the notation of theorem 30, we see that, 

if we try to extend this procedure to the case n > 1, we cannot 

conclude that the function g is L:n' the problem being the last 

conjunct in the explicit definition of g. Let ~(w,x) denote 

the predicate [., w((w) 0 ,(w) 1 ,x)](Ja,A>. For n = 1, there was 

no problem, since ~(w,x) is E0 , so is (Vw E t)'±'(w,x). However, 

for n > 1, '±'(w,x) is 

(Yw E t)'±'(w,x) is r:n_1 

L:n_1 , and we can only conclude that 

if (J A) 
a is L: 1-admissible. n- Otherwise 
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it is merely nn of course, and so the resulting uniformisation 

of the original ~n relation turns out to be ~ 1 • n+ So, in order 

to establish the general ~n-uniformisation lemma, it is not 

altogether unreasonable to try and 11 reduce 11 all ~n relations on 

an arbitrary J to 
a 

~n relations on some ~ 1-admissible n-
for which we have a ~n-uniformisation procedure. In practice, 

it will turn out that this hint is slightly off target, but in its 

general tone it is worth bearing in mind. 

Closely connected with ~n-uniformisability is the notion of a 

"~ skolem function". n 

Let M = (M,A) be transitive and rud closed. By a ~n skolem 

dom(h) c w x M, 

...... 

function for M ...... we mean a ~ (M) n ...... 

such that for some p E M, h is 

function h with 
M 
~h([p}), and whenever 

M 
P E ~~([x,p}) for some x EM, then :tryP(y) -> (~i E w)P(h(i,x)). 

(With h,p as above, we say that p is a good parameter for h.). 

Note that ~n skolem functions need not be (and in general are not) 

total! As far as existence of ~n skolem functions is concerned, 

we can get away with slightly less than might first appear. 

In fact: 

Lemma 31 

Let ~ = (M,A) be transitive and rud closed. Let h be a 
M 
~~([pJ) function with dom(h) c w x M. Suppose that whenever 

M 
P E ~~([xJ) for some x EM, then ayP(y)-> (aiEw)P(h(i,x)). 

Then ~ has a ~n skolem function. 

Proof: Set h(i,x) ~ h(i,(x,p)). It is easily seen that h is 

a ~n skolem function for M. -
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Note that in the above 1 if h is actually 

is used in establishing the following result: 

Lemma 32 

M 
L:"""' then n' 

,..., 
h = h. This 

If (Ja,A) is amenable, then it has a L: 1 skolem function. In 

fact, there is a L: 1 skolem function 

uniformly L: 1(Ja,A) for all amenable 

h for a,A 
( J ,A) • 

a 

(J ,A) 
a 

which is 

Proof: Let 
L: 

be a recursive enumeration of Fml 1 • 

Let < Ja. ,A) be amenable. 

L: 1(Ja,,A) • Let h = ha,A 

the L: (Ja.,A> relation 
1 

L:1 
By lemma 9, I=< J ,A) is (uniformly) 

rr 
be the canonical L: 1-uniformisation of 

[ < Y, i ,x) II= ~}rt ,A)cpi [y ,x]). (By lemma. 30 

h is thus uniformly L:~Ja ,A) for amen-and the ensuing remark, 

able (J ,A).). By the remark following lemma 31, it is clear 
a 

that h is a L: 1 skolem function for (Ja,A). 

We refer to h as the _c_a_n_o_n_i_c_a_l __ L:_1 skolem function for cr;,A --

(amenable) ( J ,A) • 
a 

By a similar argument, we have: 

Lemma 33 

If (Ja.,A) is amenable and L:n-uniformisable, it has a L:n skolem 

function. 

The following lemmasindicate our reason for using the word "skolem" 

here. 

Lemma 34 

Let ~ be transitive and ~ud closed, and let h be a L:n skolem 

function for !;!• Then whenever x E M, x E h" (w x (x})-<( L: !'i· 
n 
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Proof: Set X=h"(wx{xJ). Clearly, 
M 

x E X. Let P E ~~(X), 

P ~ 0. We must show that P n X ~ 0. Let p be a good parameter 
M 

for h, and pick y 1 , ••• ,ym EX with P E ~~([y 1 , ••• ,ym}). By 

definition of X, there are j 1 , ••• , jm E w such that 

y 1 = h(j 1 ,x), ••• ,ym = h(jm,x). Since h is ~~({p}), it follows 

that P E ~~((p,x} ). Hence, P f 0 .... :!IyP(y) .... ( :!Ii E w)P(h(i,x) )­

(:3: y EX) P ( y) • 

Lemma 35 

Let ~ be transitive and rud closed, and let h be a ~n skolem 

function for JYI. If X c M is closed under ordered pairs, then ,..., 

Xch"(wxx)..;,.. M. 
t...n "'"' 

M 
Proof: Set Y = h"(wx X). By lemma 34, X c Y. Let P E ~~(Y), 

P f 0. We must show that P n Y f 0. Let p be a good 

parameter for h, and pick y 1 , ••• , Ym E Y with 

M P E I:n((y1 , ••• ,ym}). Pick j 1 , ••• ,jmEw and x 1 , ••• ,xmEX 

such that y 1 = h(j 1 ,x1), ••• ,ym = h(jm,xm). Let x=(x,, ••. ,xn(. 

By assumption, x EX. But clearly, as h is I:~({p}), 
P is then I:~( (p,x}), so P + 0 -:!IyP(y) .... (:-iri E w)P(h(i,x)) 

.... ( :!Iy E y) p ( y) • 

Corollary 36 

Let !':'!' h be as above. Let X c M and suppose h" (w x X) is 

closed under ordered pairs. Then X c h" ( w x X).-{,... M. t...n ,.... 

Proof: Let Y = h"(wxX). Clearly, Y = h"(wxY), so the result 

follows by the lemma. 

Lemma 37 (Godel) 

There is a bijection ~ : OR2 ~oR such that ~(a,S) >a,~ for 

all a ,s, and ~- 1 t'wa is uniformly I: 1 Jn for all a. 
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Proof: Define a well-order <* of OR 2 by 

(a, S) <* ( y, o) - [max (a, S ) < max ( y , o ) ] v [max (a , S) = max ( y , & ) 

1\ (a < y v (a = y A S < o ) ) ] • 

Let ~ : <*~ OR. 

(uniformly). 

Lemma 38 

There is a L: (J ) 
I ll 

map 

By induction on a , 

of 2 ma onto ( (JJ t"t.) 

-1 " Q 1 wa 

for all 

is 

a • 

J 
L: a 

1 

Proof: Let Q = {cr!il?(O,a:) = a J. Thus .:p is closed and unbounded 
2 in OR. Clearly, Q = r~ 1 ~ = 'X -a)' so wcr EQ .... wa =a. 

We prove the lemma by induction on a • Assume it is true 

for all v < a. 

Case 1 : w 0'. E Q. Then suffices. 

Case 2: a = S + 1 • If S = 0, then w rt = w E Q, so we are done 

by Case 1. Hence we may assume S ~ 1. Then clearly, there is 

a L:1 (Ja) map j . wcr -ws. By hypothesis, there is a ~1(Js) 0 

map of ws onto 2 
( ws) ' so there is certainly a ~1(Js) map g 

of (ws) 2 one-one into we. Then g E rud(J6) = J 
a.' 

so for 

v,y E wcr , define 

f((v,T)) = g((j(v),j(T))). 

and f maps 2 (wa) one-one into we. Now 

ran(f) = ran(y) E J , so if we define h by (for v E wa) a 

h( v) = rf-1 ( v) 

l(O,O) , 

if v E ran(f) 

otherwise 

we see that h is ~ 1 (Ja) and h : WI'! onto> (ma) 2 • 

Case 3: lim(a) 1\ wcr * Q. In this case let (v,T) = ~- 1 (wa). 
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Thus v,,. < wa. Set c = {zlz <*(v,,.)} (E J ). 
Ct 

Thus 9 f' c maps 

c one-one onto wet, and is I: 1 (Ja). Pick y <a with v,T<wy. 

Then ~- 1 ~un is a I: 1 (Jet) map of ma one-one into wy. And 

by assumption, there is a map g E J mapping (wy) 2 one-one 
("£ 

into wy. So, setting f((t.,9)) = g((g(~-1 (t )), g(~- 1 (e)))), 

t,e < mo:, we see that f is a I: 1 (Ja) map of (wa) 2 one-one 

into d = g"(g"c) 2 • But dEJa' so we can define a I: 1 (Ja) map 

h on wa by 

h( 9) 

The lemma is proved. 

= [f-1 (e) 

(0,0) 

, if e E d 

, otherwise. 

Using this lemma, we may now establish the following important 

result: 

Theorem 39 

There is a I: 1 (J ) 
0: 

map of wa onto 

Proof: Let onto ( ) 2 f : wa -> wa be 

J for all a. 
a 

Ja 
I: 1 ( {p}), where p E J 

a 
is 

the <J-least element of Ja for which such an f exists. 

Define f 0 ,f1 by demanding that f(v) = (f0 (v),f1 (v)) 

for all 

thus: 

v E wa. By induction, define fn : wa onto> (un )n 

f 0 = id J'wa ; fn+ 1 (v) = (f 0 (v), fn of1(v)). Hence 

each 
J 

is E1 a([p}). Let h = h , the canonical a 
skolem function for J • 

a 
Set X= h"(wx (wax(pJ)). 

Claim 1: X is closed under ordered pairs. 

I:1 
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To see this, let y1,y2 EX ' 
say y1 = h(j1 ,(v1 ,p)), y2 = h(j~(v2,p)~ 

Let (v1 ,v2) = f2(T). Then {(y1,y2)) is a ~ 2:1 ({T,p}) predi-

cate, so by definition of h 
' (y1,y2) E X 

' 
as claimed. 

So by corollary 36, X""(" J • By the condensation lemma, let 
L..1 a 

n : X ~ J 13 , 13 .5 a. Since wo: c X, we clearly have i3 = ex here. 

Claim 2: For all i E w , x EX n(h(i,x)) ~ h(i,n(x)). 

To see this, observe first that as h is Jo: 2: 1 , there is a rud 

function H such that y = h(i,x) -(atE J )[H(t,i,x,y) = 1 ]. ex 
Now let i E w, x E X. Since X~" J , y = h(i,x) E X (if 

L..1 0: 

defined). Thus, by the above, since x,y Ex< 2: J , 
1 ex 

(:!J:t EX)[H(t,i 9 x,y) = 1]. By lemma 12, therefore, 

(atEX)[H(n(t),i,n(x),n(y)) = 1]. Since rr"X = J, this can be 
a -

rewritten as (atEJ )[H(t,i,n(x),rr(y)) = 1]. Thus 'rl'(y)= h(i,'r!'(x)), 
0: 

as claimed. 

Now, f c (wo:) 3 , so as 'r1' twa = id iwo:, n"f = f. And by isomor-
J 

phism, 'r!' 11 f is 2: 1a({n(p))). So as n(p) .::::;Jp' the choice of p 

shows that 'rl'(p) = p. 

So, by claim 2, if i E w, v E wo:, n(h(i,(v,p))) ~ h(i,(v,p)), 

which is to say n ~X = id jx. Thus X = J • 
a 

"" Now define h (wa) 3 ~ J by setting 
a 

"" h(i,v,T) 

"" 

= ry, 
l!·· 

if ( at E S )[ H ( t, i 1 ( v , p) , y) = 1 ] 
7' 

otherwise. 

Therefore, h o f 3 is as required by the theorem. 

Observe that in lemmas 38, 39, the maps constructed generally have 
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parameters in their definitions. Note also that, being total, 

these maps are in fact 61(Ja). 

Recalling the results of § 3, we now investigate those ordinals 

a for which J is an admissible set. a 

Let us call an ordinal a ad.missi ble iff a = wS and J 13 is 

an admissible set. 

Theorem 40 

wa is admissible iff there is no ~ 1 (Ja) map of any y = wa 

cofinally into wa. (Note that such a map, having domain y E J ' a 
would in fact be 6 1 (J ).) 

('J 

Proof: ( .... ). Let y < wa and suppose f : y .... wa is ~ 1 (J a). 

Then (Vs Ev)(3:C Ewa)(f(s) =C). If J is admissible, a 
then by ~ 1 -Replacement, (3:'11 Ewa)(Vs E y)(3:C E 'll)(f(s) = C), 

so f is not cofinal in w~. 

( .... ) Assume w a is not admissible. If a = 13 + 1, then the 

~ 1 (J a) map { < ws + n,n) In E wJ map w co finally into wa, so we 

are done. Assume then that lim(a). 

there must be a ~ 1 (Ja) relation R 

Since J is not admissible, 
a 

and a u E J such that 
a. 

(Vx E u) (3:y)R(x,y) 

Take y < a with 

map of wy onto 

but for all z E J , , (Vx E u) (3: y E z)R(x,y). 
ry 

u E JY. By Theorem 39, let f be a ~ 1 (Jv) 

J • y 
Thus f E J , and u c f"wy. 

ry 

Define g : wy .... wa by 

g(v) = [othe 

if 

least 'T' such that ( 3:Y E S ) R ( f ( v ) , y ) , 
- 'T' 

if f(v) E u 

Then g is a ~ 1 (J cr) map of wy cofinally into wa. 



- 39 -

Recalling our discussion at the end of § 3, let us call an 

ordinal a strongly admissible (or non-projectible admissible) 

iff a = ws and JS is strongly admissible. Imitating the 

proof of Theorem 40, we have: 

Theorem 41 

wa is strongly admissible iff there is no ~ 1 (Ja) map of a 

bounded subset of wa cofinally into wa. 

The above two results illustrate our earlier remark concerning 

the difference between a function being partial and being total, 

and the corresponding difference between a predicate being ~n and 

being 6n• The next two results, which strangthen the last two, 

and are also due to Kripke and Platek, also highlight this 

distinction. 

Theorem 42 

The following are equivalent: 

(i) wa is admissible. 

(ii) (J A) 
a is amenable for all A E t. 1 (J a). 

(iii) There is no function mapping a y < Wet onto J • a 
(Of course, any such function would in fact be t. 1 (Ja ).) 

Proof: (i) ... (ii). By lemma 15 (t. 1-Comprehension) 

(ii) ... (iii). Assume (ii) A, (iii). Let y < wa, and 

let f : Y onto> J 
a 

be E1(Ja). Then f is t.1(Jet), 

so d=f\)1\)~f(\J)} is t.1 (J ). Thus by (ii), a 
d = d n y E J • so, a d = f(\)) for some \) < y, so 

\J E f( \)) - \J E d .-. \J ~ f( \)), a contradiction. 

(iii) ... (i). Assume (iii) A~ (i). If et = S + 1, we 

c§:n easily construct a ~ 1 (Ja) map of ws onto wet , so 
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Theorem 39 yields the required contradiction. Assume lim(a). 

By Theorem 40, there must be a T < w~ and a ~ 1 (Ja) map f of 

T co finally into wa:. Let f be ~ 1 Ja: ( { p}). Pick y < a: with 

T,p E JY. Let h = ha: be the canonical ~ 1 skolem function for 

J • Set X = h" ( w x J ) • As JY is closed. under ordered pairs, 
a Y 

1 emma 3 5 t e 11 s us that X-< ~ 1 J a. Let n : X ~ J S • Thus 

1T ~ J "(, = id ~ J y. 

so X= JS. Now, 

By an argument as j n Theorem 39, n r X = id tx , 
J 

f is ~ 1 a: ( { p} ) and p E X-< ~ J , so X is 
1 a 

closed under f. But T c X and so f"T c X, which means, since 

f"T is cofinal in wa: and X = J [3 
is transitive, that wa: c JS. 

Thus S = a:, 

as follows. 

and X = J • a: 
Define a ~ 1 (J) map 

0. 
h:wxTxJ ... J 

~ a: 
Let H be a ~Ja: relation such that 

0 

y = h(i,x) - (m:t E Ja: )H(t,i,x,y). 

Set h(i,v,x) = {y, if (3:t ESf(v))H(t,i,x,y) 

0 , otherwise. 

"" Then h is total on UJ X T X Jy' and h"(wx Tx (x}) = h 11 ( W X {X} ) 

for any x, as f 11 T is co final in UJO: • Hence h"(wxTxJ )=X=J. 
Y. a 

By Theorem 39 there is g E J ' 
onto g . UJY ->wxTxJ. . 

(l 'Y 

is a ~1(Ja) map of wy onto J a' contrary to 

Theorem 43 

The following are equivalent: 

(i) wa: is strongly admissible. 

(ii) (J ,A) 
a 

is amenable for all A E ~ 1 (J ). 
('{ 

(iii). 

Then 

(iii) There is no ~ 1 (Ja) function mapping a bounded subset of 

un onto J • 
a" 

Proof: (i) ... (ii) ... (iii). Similar to the above. 

hog 
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(iii)~ (i). Assume (iii) n ~ (i) and proceed much as 

before. So, we assume lim(I'Y.), f is (by Theorem 41) a 

L:1(Jo:) map of some a c .,- < Wfl cofinally into wa , 

f E L:~a (fp}), and .,. < wy 
' 

p E J y' Y < a • As before, 

if h = h and X = h 11 ( W X J ) , then X = J o:· Now, since 
a y 

we do not need to bother about functions being total, we 

can easily contradict (iii). By Theorem 39, let g E J a 

g . WY onto> w J Set f( \)) ~ h(g(v)). Then f is a . X y• 

L:1(J ) map of a subset of wy onto J a: a,., 

Note that an immediate corollary of Theorem 42 is: 

Theorem 44 

If ~ is a cardinal, then ~ is an admissible ordinal. 

Using admissibility theory, we can give a quick proof that 

Theorem 45 

If wo: is admissible, then J 
0: 

= L • Wl"r 

Proof: If a= 1, then J 1 = Lw =the hereditarily finite sets. 

Assume a > 1. Thus w E Ja. Since Ja is admissible, 

the recursion theorem tells us that rud(x) = un<w §n(x) 

is ~ 1 (Ja)• But if u is transitive, then L:w(u) = 

~(u) n rud(u). Hence the map LY~ L:w(LY) = LY+ 1 is 

L: 1(Ja) (y < wa). So, by the recursion theorem again, we 

see that (L lv < wa) 
\) 

is Hence Lun = u< Lc:J. vunv a 
For the converse inclusion, it suffices to show that 

is admissible. (For then, by the recursion theorem, 

L wa. 

is L: 1 (L ), so J = U S c L .) wa a v<w n. v wn. 



- 42 -

Let R be ~ (L ) , x E L , and assume o wa WI'Y. 
(Yz E x)g:yR(y, z). 

Since (Lvlv<wa) 

predicate R' by 

is ~ 1 ( Jrr ) , we may define a ~ 1 ( Ja ) 

R' (v,z) - z Ex A (:!ryE L )R(y,z). 
\) 

Since J- is admissible, there is T < wa with a 
(Yz Ex)(3:\J < T)R' (v,z). Hence ('lz E x)(3:yE LT)R(y,z). 

So as L E L , L satisfies the 
T wa wa. ~ 0-Replacement axiom. 

Since lim(wa), it follows easily that L is admissible. wa 

Let a ,n ~ 0. The 

p ~ a such that 

n 
~n-projectum. of a, pa , is the largest 

(JP,A) is amenable for all A E ~n(J11)n Ol(JP). 

Roughly speaking, our reason for introducing the ~n projectum 

is this. We have seen that, for example, we can reasonably handle 

predicates when J a 
~n-admissibility is a sort 

~n predicates. For, if we 

is ~n-admissible. This is because 

of "hardness" condition on J for a 
take an arbitrary J ' a 

it may be "soft'! 

for ~n(J ) predicates; we may, for instance, find 
lf.. 

~n(Ja) sub­

sets of members of J which are not themselves members of J , a a 
or even ~ J ) functions which project a subset of a member of na 
J onto all of J • But if J is ~n-admissible, none of these a a cr 
situations can arise. Thus, we try to isolate that part of J 

a 
which is "hard" for predicates, a sort of "~n-admissible 

core" of Ja. 

provided by the 

One natural way of formalising these ideas is 

~n projectum. Clearly, Jp n is a reasonable 
-(1 

interpretation of the notion of a "~n-hard core" of Ja. We 

shall eventually give two characterisations of the ~n-projectum 

which make it appear even more reasonable - if not inevitable. 

One of these is that is the smallest p ::: Ct for which there 

onto J • Then, since we a 
clearly have, for wa admissible, that wa is strongly admissib~ 
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iff p~ ~a , we obtain some justification for our alternative 

name of "non-projectible admissible" for strong admisibility. 

It is convenient, at this point, for us to define an obvious 

generalisation of the notion of the ~n-projectum of an ordinal. 

Let (Ja 1A) be amenable. The ~n-projectum of (Ja,A), P~,A , 

is the largest p ~a such that (JP,B) is amenable for all 

B E ~n ( ( J a ,A) ) • 

Note t.hat by Theorem 43, WP~,A is always strongly admissible. 

We shall make strong use of the ~n-projectum in proving that 

every Ja is ~n-uniformisable, all n ~ 1. Since most of the 

following lemmas are directed towards this goal, it is worth 

indicating briefly our strategy. 

We already know that (J0 ,A) is ~ 1 -uniformisable for all 

(J~:,A). What we shall do is attempt to "reduce11 ~ (J ) predi-
u n a 

cates to ~ 1 ((Jpn,A)) predicates for some A c J n which is 
a Pa 

itself ~n(Ja). To carry out this reduction, we need to have at 

our disposal a ~n(Ja) map of a subset (at least) of Jpn onto 
a 

Ja. Thus, what we shall do is to simultaneously prove, by induc-

tion on n,a, the following two propositions: 

(P 1) Ja is ~n+ 1 -uniformisable 

(P 2) There is a ~n(Ja) map of a subset of 

The proof of (P 1) goes roughly as follows. 

onto J . a 
R be a 

~n+1 (Ja) 

N f -1 ow, 

predicate on Ja. Let f c wp~ onto> Ja be ~n (Ja). 

is a ~n(Ja) relation, so by assuming ~n-uniformis-

ability, can be 11 shrunk" to a ~n ( Ja) map of 

wp~. This reduces R to a ~n+ 1 (Ja) predicate R' 

J a into 
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Now find a L:n(Ja) predicate A c Jpn such that R' is in fact 
a 

L:1((J n,A)). Uniformise R' by a L:1 ((J n,A)) function, and 
Pa Pa 

then reverse the procedure to recover a L:n+1 (Ja) uniformising 

function for R. There is one doubtful point in the above out-

line. Can we in fact find a set A as required. That we can 

has to be proved as we proceed, so we shall in fact simultaneously 

prove three propositions, (P 1), (P 2), and a proposition (P 3) 

to be formulated precisely later. 

Lemma 46 

Let n 2:1, and assume Ja is L:n-uniformisable. Let y .$.a: be 

the least ordinal such that tY(wy) n L:n(Ja) ~ Ja. Then there is 

a L:n(Ja) map of a subset of wy onto Ja • 

Proof: By lemma 33, J has a L: a n skolem function, h. Let h 
J 

be L:n:rr. u pJ ) , We may assume p is the <J-1east element 

of J for which such an h exists. a 
Let a c wy 

' 
a E L: (J ) 

' a * J . Let q be the <J-n l"t a: 
J 

least element of J such that a E L:na: ([q}). Define 
a 

,-ow 

h by h ( i , X) ~ h ( i, (X, p, q) ) • It is easily seen that h 

is a L:n skolem function for J a: and that ( p' q) is a 

"" good parameter for h. 

Set 

g : 

X = h" ( W X J ) • y 

wy onto> J so 
y' 

Now, there is a L: 1 (Jy) map 
rw 

h o g is a L:n(Ja) map of a subset 

of wy onto X. Hence it suffices to show that X= J • a: 

Clearly, x--<_L: J • Let TT . X~ JS' s ~a • Then rr ~ J = id t' J ' . 
na J y y 

so in particular, rr"a = a. Also rr"a is L:ns ([ rr ( q) J ) • But 

look, this implies that a = rr"a E JS+1" Hence we must have 

S =a (and here we have used our hypothesis that 

(j)(wy) n L:n(J ) ~ J !). a a: 
Thus, in particular, a = rr"a is 
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~~ry([n(q)J), so by the choice of q, we see that n(q) = q. Again, 

it is easy to see that h' = noho n-1 is a ~~O'(fn(p)J) ~n 
skolem function for J , so by choice of p , n(p) = p. But then 

a 

h, h 1 are both defined by the same ~n formula (with parameter p) 

"" "" hI • -1 in J ' so h = It follows immediately that n 0 h 0 n = h, a 

of course. So for i E w, X E J y' n • h(i,x) ~ h o n(i,x) ~ h(i,x). 

Thus ntx = id ~X, and X = J • 
a 

Lemma 46 plays a direct part in the proof of (P 1)-(P 3). The 

next lemma, however, is only used during the proof of the lemma 

which follows it, and may, on first sight, appear somewhat un-

inspiring. 

Lemma 47 

Let 1 
( Ja ,A) be amenable, p = pa. ,A. If is ~1((Ja,A)), 

then ~1((Jp,B)) c ~2((Ja,A)). 

Proof: Case 1. There is a ~ 1 ((Ja,A)) map of some y < wp 

cofinally into wa. 

Let g be such a map, and let B be ~ ((J ,A)) such that o a 

B(x) ~ ~zE(z,x) for each x E JP. Define B1 by 

(~zE S ( )B(z,x), for \J E y, x E J. Thus B1 is g .\) p 

B'((v,x))­

t.1 ((Ja. ,A))· 

And since B(x)- (~vEy)B 1 ((v,x)), ~ 1 ((JP,B)) c ~ 1 ((Jp,B 1 )). 

Thus, we need only prove that ~ 1 ((J ,B 1 ) c ~ 2 ((J ,A)). It clearly P a 

suffices to prove that ~ 0 ((JP,B')) c ~ 2 ((Ja,A)). 

Let R be ~ 0 ((JP 1B')). Thus R is rud in B' and some para-

meter p E JP. By choice of 

lemmas 3 and 4, there is a 

p , (J ,B') is amenable, so by p 

~ 0 (JP) predicate P and functions 

f 1 , ••• ,fm+k, rud in parameter p, such that R(x) ~ 

( ~ (~) (~) I (~) I (~)) P x,f1 X , ••• ,fm X, B n fm+ 1 X , ••• ,B n fm+k X • Hence 
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R(x) -r __ ay1 , ••• ayk[y1 = B' n fm+ 1 (x)A ••• Ayk= B' n fm+k(x) A 

P(x,f1(x),w •• ,fm(x),y1 , •• etYk)]. Now P is certainly ~ 0 (Ja), 

and f 1 , ••• fm+k are rud in parameter p, so it suffices to show 

that the function b(u) = B1 n u is ~ 2 ((Jry ,A)). It is in fact 

n1 ((Ja ,A)), because: y = b(u) - Yx[x E y- x E u A B' (x)], and 

B' is ~ 1 ((Ja,A)). 

Case 2. Other.vise, 

As before, we must show that ~ 0 ((JP,B)) c ~ 2 ((Ja,A)). Again as 

before, this reduces, by the amenability of (JP,B), to proving 

that the function b(u) = B n u is ~ 2 ((Ja,A)) on Jp. Now, 

we clearly have 

y = b(u) - (Vx E y) (x E uA B(x)) A (Vx E u) (B(x) .... x E y). 

Now, the second conjunct here is n1(<Ja,A)). We show that the 

first conjunct is ~ 1 (<Jn,A)), 

to showing that (Vx E y)B(x) 

which is sufficient. It reduces 

is ~ 1 ((J ,A)). But look, we know 
I'J. 

that Case 1 fails to hold, so this is proved just as in lemma 14. 

The next lemma is the key step involved in proving, by induction, 

the as yet unformulated (P 3). 

Lemma 48 
1 Let (J~,,A> be amenable, p = p A" Suppose there is a 
a ' 

~ 1 ( (Jcr. ,A)) map of a subset of wp onto Ja. Then there is a 

B c JP, BE ~ 1 ((Ja,A)), such that ~n((JP,B))=@(JP)n~n+ 1 ((Jo:,A)) 

for all n .2: 1. 

Proof: Let uc wp, and let f u onto> J be ~1((J ,A)). a a . 
Pick p E J a such that f is L:1 (Ja ,A) ( (p}) • Let 

(epi li < w) be a recursive enumeration of l!,ml~1. 
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?.::1 
B= f<i,x)!iEwAxEJ AI=(J A)~i[x,p]}. 

P a , 

Now, (J ,A) is amenable, and hence rud closecl., so by lemma 9, a. 

BE ~ 1 ((Ja,A)). And of course B c Jp. 

Commencing with lemma 47, an easy induction shows that for all 

.... 
For the converse, let R(x) be a ~n+ 1 ((Ja,A)) relation on Jp' 

n > 1. Assume, for the sake of argument, that n is even. Let 

~1(<J ,A)) 
.... 

p be a relation such that, for X E J 
' a. p 

R ( i ) .- 3:y 1 if y 2 • . • if y n P ( y , x ) . Define 
..... 
p by :P(i,x) - (z ,x E J p A 

PC f(z) ,x) J. By choice of f , any X E Ja is ~1 (Jrr ,A) ( [p,vJ) 
,..., 

for some v < wp , so by definition of B , P is rud in B and 
,..., 

some parameter v < wp. In particular, Pis 61((Jp,B)). 

Again, D = dom(f) is rud in B and some parameter ~ < wp, so 

D is also 61((JP,B)). 

But for x E J P , R(x) .- (az 1 ED) (Vz 2 E D) ••• (Vzn E D)P(z,xL 

which is thus ~n((Jp,B)). 

We are now ready to formulate (P 3) and prove our promised uni-

formisation theorem. 

Let rx , n ~ 0. A ~n master. code for 

A E ~n(Ja) , such that whenever m ~ 1 , 

~(J n) n ~n+m(J ). 
Po: a 

Theorem 49 

Let a, n ~ 0. Then: 

(P 1 ) 

(P 2) 

(P 3) 

J is ~n+ 1 -uniformisable. 0: 

There is a ~n(J ) map of a subset of 
0'. 

J has a ~n master code. a. 

n wp a onto 
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Proof: We prove the theorem (for all n) by induction on a. 

For a = 0, it is trivial. So assume a. > 0 and that 

(P 1)-(P 2) hold (for all n) for all S <a. We prove 

(P 1)-(P 3) at a by induction on n. 

Case 1: n = 0. (P 1) is already proved (Theorem 30) 

(P 2) 

(P 3) 

p 0 =a. , so (P 2) is already proved (Theorem 
~ 39) 

0 Since Pa =a, A= 0 is a E0 master 
code for J • a 

Case 2: n = m + 1 , m ~ 0. Let for convenience. 

We first prove that p is the least ordinal such that some En(Ja) 

function maps a subset of wp onto J • 
0: 

To this end, let 6 be the least such ordinal. Suppose first 

that 6 < p. Then B = [s Ew6 l s ~ f(s)J is a En(Ja) subset of 

J p' so by definition of p 
' ( J P ,B) is amenable. Thus, as 0 < p' 

B = B n w6 E Jp c J • 
0: 

So B = f(s) for some s E wo, whence 

s E f(s) - s E B- s * f(s), which is absurd. Hence p ~ o. 

Suppose p < o. By definition of p, this means that for some 

En(J11) set Be J 0, (J0 ,B)_ is not amenable. Since (J1 ,B) must be 

amenable, 6 > 1. If 6 = y + 1, then since there is a E1 (Ja.) 

map of wy onto wo, there is a En(J~) map of a subset of wy 

onto J , contrary to the choice of 6. Hence lim(6). It follows, a 
since (J6 ,B) is not amenable, that there is T < 6 with 

B n JT ~ J 6 • By induction hypothesis, Ja is En-uniformisable. 

So as T < 6, lemma 46 implies that ~(wT) n En(Ja) c Ja. But 

there is h E J , h : t\JT onto> J , so this implies {)>(J ) n En(J) c J. 
a. T T a a 

In particular, B n JT E Ja.• Hence for some S <a , B n JT is 

J8-de£inable. Let 

such that B n JT 

s 
is 

be the least such, and let r be least 

is 
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amenable, so if ,. < r then B n J = (Bn J ) n J E J r c JS' Ps ' ,. . ,. ,. 
Ps 

contrary to the choice of s. Hence > r ,. - Ps· By induction 

hypothesis, there is a L:r(Js) map from a subset of r onto g wps 

Js. And since B n J,. E JS+1 and B n J,. ~ Jo , !3 + 1 > 6' or 
T' s ~ 0 • Hence there is a L:r(JS) map 

I from a subset of g wps 

onto wo. Then fo g' is a L:n(Ja) map of a subset of r 
wps 

onto J But we have established that r < ,. < 6' this . Ps so 
a 

contradicts the choice of 0. Hence 0 = p. 

(P 2) follows immediately from the above result of course. 

We turn now to (P 3). By induction hypothesis, let A be a L:m 

master code for J • Set ~ = pm for convenience. a ,.., 

By the above, let f be a L:n(Ja) map of a subset of wp onto 

A f I f tc f-1 II J ) -Is a ( >) Ja. By choice of , = ~ ~ ~ 1 (J~,A map of 

a subset of wp onto J • BY- choice of A, it is clear that 
~ 

P = P~ = P~,A· Finally, of cource, 

we may apply lemma 48 to (J~,A) to 

B c J such that L:r(<J ,B))= ~(J ) p p p 

r > 1. By choice of A, B E L:n(Ja) 

(J~,A) is amenable. So, 

obtain a ~1(<J~,A)) set 

n t:r+1((J~,A)) for all 

and L:r((JP,B)) = 

{f( J ) n L: ( J ) for all ·r 2: 1 . p ' n+r a Hence B is a ~n master 

code for J • a 

Finally we prove (P 1 ). Let B be, as above, a L:n master code 

for Ja. Let R(y,x) be a L:n+ 1(J,..,.) relation on Ja. Define, 

with f as above, a relation R on JP by R(y,x) - [y,xE JP A 

R(f(y),f(x))]. Then R is L:n+ 1 (Ja), and hence L: 1 ((JP,B)). 

"' Let r be a 

so is 

L:1((Jp,B)) 
-1 f • But 

function uniformising R. Since f is 

Ja is L:n-uniformisable, by induction 

hypothesis, so we can let f be a L:n(Ja) function uniformising 
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Set "' -1 r=forof. It is clear that r is a L:n+1(Ja) 

function which uniformises R. The proof is complete. 

·The above results give us two (intuitive) equivalent formulations 

of the L:n-projectum: 

Theorem 50 

Let a., n > 0. Let 0 be the least ordinal such that some L:n(J ) 
0. 

function maps a subset of wo onto J • Let y be the least 

ordinal 

Proof: 

a 

such that @( wy) n L:n(J ) ¢: J Then • 0. a 

That 0 = n 
Pa was actually proved during 

Theorem 49. Since we now know that J a 

0 n = y = p • a 

the proof of 

is L:n-uniformis-

able, lemma 46 tells us that · o ~ y. Assume o < y. Now by 

definition, let u c wo, and let f : u onto> J 
a be 

L:n(J ). Let z = [s I~$ f(s)}. Then z c wo and 
a. 

Z E rn(J ), so by definition of y , Z E J • Thus Z = ~~) a a 
for some s, so s E f(s) ~ s f f(s), which is absurd. 

Hence I) = y. 

There is, of course, a concept which, for ~n predicates, plays 

the role that the L:n projectum plays for L:n predicates. And, 

as might be expected, there is a corresponding "total function" 

or ~n equivalent of Theorem 50 for this concept. 

Let a ,n 2: 0. The ~n-proj ectum of ('( (sometimes called the 

weak L:n-projectum), ~' is the largest ~~a such that 

is amenable for all 

Thus the 

sets A c J • 
~ 

represent the "hard core" of J a. 
with regards to ~n predicates on J • a. 

Clearly, ~n ~ pn. We do not, however, necessarily have equality a ('J, 
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here. For example, let a be the first admissible ordinal > w. 

Then it is easily seen that 1 
Y) = a , whereas 

ry 

Corresponding to lemma 46, we have: 

Lemma 51 

1 
p = w. a 

Let n ~ 1, and let y be the least ordinal such that 

Then there is a ~ (J ) (and hence n a 

onto J • 
a 

Proof: Let n.= m+1, > n- 0. Since lh(Ja)··c An(J(Y) c ~n (Jd' 

50 implies that Pn :;: Y < n Theorem 50 also - p • a. a 

that there is a of a subset of m 
l:m ( J a: ) map wp 

(Y 

m So, we can clearly define a ~n (Ja) map of wpa 

onto Ja. This reduces our problem to showing 

is a ~n ( Ja) map of onto m As a first wy wp • 
a: 

have the: 

Claim: There is a ~n(J ) map from cofinally g wy 
a 

Let A be a ~ master code for J . By hypothesis, m a 
b c wy ' b E 6n (Ja) , b * J • By choice 

C'J, 

Suppose b is in fact defined by: 

\) E b - . :.trYB 0 ( y, \) ) , 

where B0 ,B 1 are ~ 0 ((Jpm,A)). Then 
a 

of A, b is 

But (J m,A) 
Pa 

is amenable, and hence rud closed, so as 

there can be no m 
'T" < wp 

a. 
such that 

Theorem 

implies 

onto J a . 

itself 

that there 

step, we 

into m 
wpa • 

let 

61 (.( Jpm ,A)). 
a 

J m ' Pa 
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Define m g : wy ..... wpct by 

g( \)) = the least 'T such that ( 3: y E S 'T )[ B 0 ( y 1 \J ) V B 1 ( y , \J )] • 

Clearly, g is L:n (Jet) and cofinal in m proving the claim. wpa:' 

We now prove the lemma. Since n < there must be a l:n(Ja:) PO'. - y, 

map f from a subset of wy onto wp~ (~ wa), and of course 

such an f will then be 2: 1 ( < J m ,A> ) • Define f : ( wy) 2 ont<i:. wpm 
Pa a 

as follows. Let f be given by f(,J) = 'T -ayF(y,T,,J), where 

F is 2: 0 ((J m,A)). Set 
Pa. 

if (a y E sy ( 'T) ) F ( y, e , \)) 

otherwise. 

Then f is 

maps (wy) 2 

2: 1 ((J m,A)), and hence l:n(J~ ). 
Po: '""' 

onto wp:, as g is ccfinal in 

Since we have (by lemma 38) a 

the lemma follows. 

2: 1 (J ) map of 
0: 

Corresponding to Theorem 50, we have: 

Theorem 52 

And f 
m wp • a 

wy onto 

clearly 

2 
(wy) ' 

Let a ,n > 0. Let 6 be the least ordinal such that some l:n(Ja) 

(and hence 6n(Ja:)) function maps w5 onto J • Let y be a 
the least ordinal such that cP(wv) n 6n(Ja) ¢ Ja .• Then n 

5=y=~· 

Proof: Suppose n Let B c B E 6n ( Ja: ) ' B ~ J Then y < 11a • wy 
' • a 

WY n B = B ~ J~ , contrary to (J~,B) being amenable. 

Suppose now that n Then the:J;"e is A c J , A E 6n (Jet ) ' Ttt < y. y 

such that (J ,A) is not amenable. In particular, y > 1 • a 
Suppose y = s + 1. There is then a r: 1(JY) map of ws onto wy, 
so by lemma 51 there is a 2:: n ( J a ) rna p ' f , of ws onto J • a 
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Then Z = [t E ws J t ~ f(t)} is a 6n(J11 ) subset of ws. Clearly, 

Z ~ J , so this contradicts the choice of y. Hence lim(y). 
a 

Thus as (J ,A) is not amenable, there must be T < y with 
y 

A n J ~ J • 
T y 

But by choice of y, T < y ~ A n JT E J , so for 
a. 

some 9 < a, 

such. Then 

A n JT is J 9-definable. Let 

An J E ~(J ) n 6 (J9 ) for some 
T T ID 

9 be the least 

m E w, and 

An JT ~ J 9 , Thus by lernma 51 there is a l:m(J9 ) map f of WT 

onto J 9 • (Actually the hypotheses of lemma 51 require that we 

have a 6m(J9) subset of WT not in J 9 , whereas we have only 

exhibited a subset of JT with these properties. However, since 

there is available a 2: 1(JT) map of WT onto J , this point 
T 

causes no problem.) Since 8 < ry , f E J • 
a But A n JT ~ Jy' 

and An JT E J 8+1 , 

of WT onto wv. 

so e ~ y, and there is thus a map f 1 E J a 
By lemma 51, again, this gives us a l:n(Ja) 

map k of WT onto J. Then, clearly, K = [dt ~ K(t)} is a a 
6n(Ja) subset of WT not lying in J11 , contrary to T < y. 

Hence n y = rtr.. Now, by lemma 51, we have o :5 y. Suppose 

Let f wo on!.Q> J11 . be l:n(Ja). Let Z = fvlv ~ f(v)J. 

0 < y ~ 

Then 

Z E Ol(wo) n 6n(Ja:) - Ja. But this contradicts the choice of y. 

Hence 6 = y. 

Remark: Lemmas 46 and 51 can be regarded as much sharper versions 

of the following, much earlier theorem of Putman~ 

Suppose {jJ( y) n La+ 1 ¢ La. Then L11 +1 contains a 

well-ordering of y of order type a. (For y ~ w.) 

Putman actually proved this result for the case p = w, but his 

proof works in the general case. 

The methods described above have, of course, many uses. We give 

just one, very general, example, showing that (in certain cirum­
stances) it is possible to carry out Lowenheim-Skolem arguments 
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for non-regular ordinals a which can generally only be done 

when a is actually a regular cardinal. 

More precisely, the following theorem, is well-known: 

Theorem 53 

Let K be a regular cardinal. Let y < K ~ ws, and suppose that 

Y c J 8 , !YI < x. Then there is X~ J 8 such that Y U y c X 

and K n X E ?<. 

To prove this, one simply forms an w-chain X0 -< X1 -< ••• -( Xn-< .... '( J S 

of elementary submodels of J 8 , taking X0 as the skolem hull 

of 

in 

Y u y in J 8 , and Xn+ 1 

J 0 , and then X= U X 
f-' n<w n 

as the skolem hull of ~IJ sup(K n ~) 

ia the re~uired submodel of J 8 • 

By construction, K n X is transitive, and hence an ordinal, and 

since x is regular, \XI < K, so x n X E K. 

It should be observed that x being regular is a necessary con­

dition for the above procedure to work (in general). 

However, providing we can, in some way, ensure that for each n, 

sup(KnXn) < x, then we can, of course, get by with just cf(K)>w. 

The theorem below shows that, in certain cases we can do just 

this, providing we relax our demands somewhat. 

Let ri 2: 1 , a :S wS. We say that a is L:n -regular at S iff 

there is no L:n(J8 ) map of a bounded subset of a cofinally 

into a. 

For example, by Theorem 43, w~ is strongly admissible iff wa 

is L: 1-regular at rx • 

Theorem 54 

Let n 2 1, rJJS ~ a ::=: 1 o Suppose a is L:n-regular at 13 o Let 

Y c J 8 , w :S !Y\ < cf(a), and let y <a. Then there is an 
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X<; 2:- J 8 such that Y u y c X and ex n X E a. 
n . 

Proof: Since cf(a) > w, it clearly sufaces to prove that, under 

the stated hypotheses, there is X-< 'E J 13 such that 
n 

.Y U y c X and sup (a n X) < rr • 

Let h be a 'En skolem function for JS (by Theorem 49 and 

lemma 33). Since w::; \YI <cf(a:), we may, without loss of gene­

rality, assume that Y is closed under ordered pairs. Further­

more, let ~ be the function defined in lemma 37. Since cr is 

'En-regular at s, a is certainly strongly admissible. Hence, 

by lemma 37' [ s E a I Q" s2 c s J is unbounded in a. It follows 

that we may also, without loss of generality, assume that 

~"v 2 c y. Recall that ~ t v2 is 'E 1.:ff3. 

Let X = h" ( w x (Y x y)). Then we claim that X is closed under 

ordered pairs. To see this, let x 1 ,x2 EX, say 

x 1 = h(i1'(Ypv 1 )), x2 = 

and v = Q((v 1,v 2))E y. 

h(i2 ,(y2 ,,; 2)). Let 

Clearly f(x 1,x2)} 

y = (y1,y2) E y 

is L: 1JS([p,(y,v)}), 

where p is a good parameter for h. Thus for some i E w, 

(x1 ,x2) = h(i,(y,v)) EX, as required. So, by corollary 36, 

X ~'EnJS~ And of course, we clearly have Y u y c X. We show 

that sup(a n X) < a. 

For y E Y , i E w, define h. : c y .... a 
J.,y 

by 

hi,y(v) = h(i,(y,v)). Thus hi,y is 'En(J8 ), and so as a is 

'En-regular at S -, sup(hi,y"y) ""'y(i,y)< a. Since IY! < cf(cx ), 

it follows that supyEY y(i,y) ~ y(i) <a. Since cf(a) > w, 

we eonclude finally that sup iE w y(t) <a. But clearly, 

supiEw y(i) = sup(a nx), so we are done. 
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The above lemma may be used to prove that if V = L and ~ is 

a regular uncountable, non-weakly compact cardinal, then there is 

a Souslin x-tree. (Jensen.) 
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Footnote for Page 1 

(1) Since we wrote this paper, a slightly revised version of 

these notes has been published as a research paper. See 

R.B. Jensen, "The Fine Structure of the Constructible 

Hierarchy11 , Annals of Mathematical Logic, Vol 4 [1972], 

p 227. The present paper represents a lengthy discourse 

on an expansion of the earlier parts of Jensen's paper, 

and it is hoped that the somewhat more leisurely pace 

adopt here (as opposed to Jensen's paper) will be of 

benefit to those not predominantly interested in the set 

theoretical consequences of the Fine Structure Theory. 

For those who are so inclined, the notation we use is 

almost identical to that of Jensen, so this paper should 

provide a good introduction to Jensen's. 


