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Abstract 
Protein Kinase A (PKA) is a holoenzyme that consists of a regulatory (R) subunit dimer and 

two catalytic (C) subunits. Genes, which encode the catalytic subunit C, PRKACA and 

PRKACB, have several splice variants including Cβ2. Cβ2 subunit is highly expressed in T, B 

and Natural Killer cells. PKA regulates several functions including immune cell proliferation 

and glucose uptake and metabolism.  

We have used mice knocked out for the Cβ2 subunit of PKA. Polymerase Chain Reaction was 

used to clarify mice genotype and Western Blot analysis to verify ablation of Cβ2 protein in 

KO mice. Catalytic activity was significantly downregulated by 40 % in Cβ2 KO lymph node, 

spleen and thymus cells, suggesting that Cβ2 activity could be involved in the regulation of 

cell proliferation. We therefore used CD3/CD28 coated beads for stimulation of T cells and 

observed no difference in proliferation rates between Cβ2 KO lymphocytes and wild type 

cells from mice lymph nodes. Because the results could have been influenced by other cells, 

we repeated these experiments with positively isolated CD4
+
 T cells, which verified our 

previous result. There was, however, a significant increase in proliferation rate in Cβ2 KO 

spleen cells compared to wt and that was absent in cells isolated from lymph nodes. The 

biological significance of this observation is unclear. We also found unaltered RIα and RIIα 

subunit expressions in Cβ2 KO lymph node, spleen and thymus cells and that a mixed T cell 

population required glucose in order to proliferate. While investigating whether Cβ2 ablation 

could have an effect on glucose consumption we found this not to be the case. We did, 

however, find that Cβ2 could possess a regulatory link in the conversion and boosting effect 

of pyruvate. 

Taken into account that catalytic activity was reduced in all tissues but cells maintained their 

proliferation rate, even under different concentrations of glucose, Cβ2 does not appear to be 

important for cell proliferation or energy generation.  
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1 Introduction  

1.1 Non-Communicable Diseases  

By year 2015, it is estimated that 1.5 billion people will be obese and 41 million deaths will 

be from chronic diseases (WHO, 2014b, 2014d). A similar trend is seen in Norway. The 

definition of obesity varies but is normally considered a chronic condition defined by an 

excess amount of body fat. The normal amount of body fat (expressed as percentage of body 

fat) is between 25 % - 30 % in women and 18 % - 23 % in men (Muth, 2009). Women with 

over 30 % body fat and men with over 25 % body fat are considered obese. The calculation of 

Body Mass Index (BMI; Kg/m
2
) has also been used for definition of obesity. Since BMI 

describes body weight relative to height, it is strongly correlated with total body fat content in 

adults. "Obesity" is defined as a BMI of 30 and above (WHO, 2014a, 2014c). In 2005 The 

Norwegian Institute of Public Heath (fhi.no) estimated that about 20 % of men and 17 % of 

women in Norway were obese, with BMI above or equal to 30 (Hånes, 2014).  

 

Obesity is often associated with the metabolic syndrome also known as Syndrome X, insulin 

resistance syndrome, and dysmetabolic syndrome. These are characterized by a group of 

metabolic risk factors which include, abdominal obesity (excessive fat tissue in and around 

the abdomen (waist circumference men > 102 cm and woman > 88 cm), atherogenic 

dyslipidaemia (blood fat disorders — high triglycerides (> 150 mg/dL), low HDL (< 40 (men) 

and < 50 (women) mg/dL) cholesterol and high LDL cholesterol — that foster plaque build-

ups in artery walls), elevated blood pressure (> 140/90 mmHg), insulin resistance and glucose 

intolerance (> 100 mg/dL), and prothrombotic state (e.g. high fibrinogen or plasminogen 

activator inhibitor–1 in the blood) (Powers, 2005; Zimmet, Alberti, & Shaw, 2001). The most 

common lifestyle cause of obesity is the over-consumption of energy dense foods such as 

animal fats, cured salted meats and lack of vegetables as well as lack of physical activity 

(Bremer, Devaraj, Afify, & Jialal, 2011; Bremer & Jialal, 2013; Palomer, Salvado, Barroso, & 

Vazquez-Carrera, 2013). There is growing evidence that links obesity to chronic low-grade 

inflammation, metabolic dysregulation and cytokine production (Bremer et al., 2011; Bremer 

& Jialal, 2013; Emanuela et al., 2012; Esser, Legrand-Poels, Piette, Scheen, & Paquot, 2014; 

Johnson, Milner, & Makowski, 2012; McLaughlin et al., 2014; Palomer et al., 2013). This is 

supported by the fact that obese people show another hallmark of disease, increased levels of 
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C-reactive protein (CRP > 10 mg/L) that is indicative of a pro-inflammatory state (Yudkin, 

Stehouwer, Emeis, & Coppack, 1999). Emanuela et al., (2012) suggest that inflammatory 

factors are released into the bloodstream after a meal. Whereas these factors seem to resolve 

in slim individuals, in obese people they appear to accumulate over time and may develop 

into chronic inflammation (Emanuela et al., 2012). A state of chronic inflammation in obesity 

is also consistent with the development of several comorbidities in obesity such as diabetes 

type 2, cardiovascular disease and cancer which are all chronic non-communicable diseases 

(NCDs) (Esser et al., 2014; Johnson et al., 2012; Palomer et al., 2013).  

 

1.2 The immune system 

The ability of the immune system to successfully combat infectious agents without causing 

undue harm to the surrounding tissues depends on its capacity to distinguish between foreign 

and self. This requires high discriminatory power and tight control, that when lost may lead to 

a broad spectrum of diseases categorized as inflammatory. Pro-inflammation or low grade 

chronic inflammations which have been thought to be beneficial to the host could also 

contribute to several infectious diseases. Pro-inflammation is a causal factor in the 

development of diabetes and atherosclerosis, which are 

characteristics of metabolic syndrome (Figure 1.). The 

system is in large part divided into the innate and the 

adaptive immune system, working together to protect the 

body (Lea, 2008).  

 

Figure 1. Development of the Metabolic Syndrome X  

A representation of the cascade of immunological events, starting with 

pro-inflammatory cytokines and ending with the development of 

Metabolic Syndrome X. 
 

1.2.1 The innate immune system 

The innate immune system consists of the skin, sweat and tears, mucosa, low pH in the 

stomach and bacteria in the gut. Together they form the outer line of defence. The inner line 

of defence includes phagocytes (monocytes, macrophages, and granulocytes), dendritic cells, 

mast cells and Natural Killer cells (NK cells). If microorganisms are able to pass, a humoral 

Proinflammatory cytokines

Chronic inflammation

Insulin resistance syndrome

Hypertension, 
Hyperinsulinemia

Glucose intolerance, 

Dyslipedemia

Abdominal obesity

Metabolic Syndrome
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part is set in motion. The humoral part of the innate immune system contains all soluble 

components that exist in body fluids and function as a line of defence against infections. It 

consists of acute phase proteins, the complement system and interferons. The innate immune 

system is the first line of defence, and responds quickly. The phagocytes surround and absorb 

the microorganisms and destroy it by releasing substances that kills the microorganism. The 

macrophages are also able to assist the adaptive immune system by helping to recognize and 

react to foreign substances (Lea, 2008). 

1.2.2 The adaptive immune system 

The adaptive immune system is developed during the first year of living and consists of B and 

T lymphocytes and NK cells. The immune response is divided into two parts, the humoral and 

cellular part (Lea, 2008). The main function of the humoral part is the production of 

antibodies, and the processes that follows, like T helper cell activation but also cytokines 

production, affinity maturation and generation of memory cells (T cell development will be 

explained further). The cellular part involves activation of phagocytes, antigen specific 

cytotoxic T lymphocytes and the release of various cytokines in response to an antigen. An 

antigen is a relatively big molecule that is recognized by an antibody (Lea, 2008). An 

effective immune system requires that the innate and adaptive, the humoral and the cellular 

components function together.  

Maturation of B and T cells 

All mammals have genes that encode molecules crucial for recognition of antigen and 

subsequent immune response. The gene complex Major Histocompatibility Complex (MHC) 

is located on chromosome six in humans in an area called the Human Leukocyte Antigen 

(HLA) region. The genes from the HLA area codes for HLA antigens and HLA molecules 

and codes for class I, II and III glycoproteins. Class I and II are tissue- or transplantation 

antigens, and class III are free molecules in plasma. MHC molecules function as information 

transport proteins and present the foreign peptide structure on the cell surface, communicating 

to the surrounding cells about the inner activities of the cell (Lea, 2008). 

 

All immune cells are produced in the bone marrow. B cells then mature in secondary 

lymphoid organs such as the lymph nodes and the spleen. T cells are released as immature 
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thymocytes that populate the thymus for further maturation (figure 2). Once matured, the B 

and T lymphocytes are equipped with special membrane bound receptors, which makes them 

capable of recognizing different antigen structures that can bind antibodies. When a B 

lymphocyte antibody binds to an antigen, it differentiates. Some cells become plasma cells 

that produce new antibodies, and others become memory cells. Antibodies, known as 

immunoglobulins, are Y-shaped proteins produced by plasma cells. Their function is to bind 

to a small part of the antigen. MHC molecules are on antigen presenting dendritic cells 

(APC). T cells have T cell receptors CD4 or CD8 molecules which bind MHC II or MHC I 

respectively (Lea, 2008).  

 

 

Figure 2. The development of 

stem cells intoT and B 

lymphocytes 
A presentation of stem cells 

developing in the bone marrow, and 

becoming T and B cells as well as 

Natural Killer cells. B cells are fully 

functional when leaving the bone 

marrow while T cells develop 

further in the Thymus (Lea, 2008). 
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Tolerance and autoimmunity 

During maturation in the thymus, different genes that code for antigen receptor polypeptide 

chains cause a variety of structural differences. T cell receptors can recognize virtually any 

imaginable structure, including the body’s own. However, it should only react to foreign 

structures. T cells that interact with MHC-I or MHC-II are first selected through a process 

called positive selection, where the cells that do not bind, die. Secondly, the cells pass through 

a negative selection process where those that bind too strongly to the MHC complex receive 

an apoptotic signal, leading to cell death. A defective selection process could lead to 

immunological tolerance meaning that the immune system could attack the body´s own 

autologous antigens, causing an autoimmune disease, like diabetes type 1 (Lea, 2008). 

While B lymphocytes supervise the extracellular compartment, T cells control the 

intracellular compartment with help from the MHC molecules. From this point on, this thesis 

will primarily focus on T lymphocytes.  

Activation of T cells 

T cells need to be presented with an antigen on the surface of an APC with MHC class I 

molecules or class II. As mentioned, CD4 molecules bind to MHC II and CD8 molecules bind 

to MHC I, respectively. Further, all T cells have CD3 recognition markers on the cell surface, 

which transfer the activation signal from the T cell receptor (TCR) over the membrane and 

into the cell. The intracellular parts are then phosphorylated by protein tyrosine kinases 

(PTK), which signals the cell to start dividing. Alongside CD3 are co-receptors that contribute 

to the activation process as CD28. For T cells to evolve into effector cells, they need 

activation signals from both CD3 and CD28. The TCR recognizes the associated ligands 

presented by the MHC molecule on the APC. The signal from CD28 engages T cells 

triggering Interleukin 2 (IL-2) production, which triggers T cell activation (Lea, 2008; 

Maciolek, Pasternak, & Wilson, 2014). 

Once activated, T cells differentiate from naïve into different subsets based on their capability 

to act cytotoxic, engage in a helper or a regulatory function (figure 3). Cytotoxic cells (Tc, 

CD8
+
) when activated, results in a rapid proliferation as part of the clonal expansion phase 

(Bannard, Kraman, & Fearon, 2009). CD8
+ 

secretes pro-inflammatory cytokines (Tumor 

Necrosis Factor α and Interferon γ) and lysate targeted cells. Once the immune system has 
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eliminated the pathogens, Tc cells die. However, a small population remains as T memory 

cells which has rapid recall ability (DiSpirito & Shen, 2010). Naïve CD4
+ 

cells develop into T 

helper cells; Th1, Th2, and Th17, effector cells (Teff) and T regulatory cells (Treg). T
 
helper cells 

are essential for the adaptive immune system. They release cytokines and suppress or regulate 

an immune response. Treg cells, also known as suppressor T cells, shuts down T cell mediated 

immunity towards the end of an immune reaction and maintain tolerance to autologous 

antigens (Sakaguchi, Miyara, Costantino, & Hafler, 2010).  

 

Figure 3. Development of T cells 

A schematic presentation of T cells development into functional T helper cells (Th1, Th2, Th17) and Treg cells 

after being represented with MHCII molecules on an APC presenting cell. APCs have a high affinity to TCR on 

naïve CD4 cells. The recognition of the pathogen by CD4 T cells activates the cells, and they differentiate into T 

helper cells. Furthermore, the activation is followed by cytokine secretion and specific Th differentiation (Lea, 

2008). 

Metabolism in T cells 

A resting T cell needs primarily Adenosine Triphosphate (ATP) to maintain basal functions. 

The activation of T cells result in functional changes depending on cell phenotype, 

preconditioning and present context. This demands energetic and biosynthetic upregulation, 

http://en.wikipedia.org/wiki/Immune_tolerance
http://en.wikipedia.org/wiki/Immune_tolerance
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achieved by uptake of nutrients and increased metabolic turnover and flux. The phases of 

activation are followed by cell death and memory capabilities (Gerriets & Rathmell, 2012; 

Macintyre et al., 2014; Maciolek et al., 2014; R. Wang & Green, 2012). 

The metabolism in lymphocytes are regulated by increased glycolytic flux and lactate 

production, in addition to elevated production of lipids, proteins, nucleic acids, proteins and 

other carbohydrates. If glucose is not present in excess, the majority of glucose will flux 

towards the Tricarboxylic Acid Cycle (TCA) instead of production for biosynthesis (figure 4). 

If there are ample amounts of glucose, there is an increased flux towards the Pentose 

Phosphate Pathway (PPP) for nucleotide synthesis, amino acid production and lipid synthesis 

in order to produce biomass (Frauwirth et al., 2002). Oleszczak, Szablewski and Pliszka 

(2012) suggest that if glucose is limited, glycolytic flux decreases to a level that supports cell 

death, but also, that excessive glucose uptake can promote a hyperactive immune response 

followed by possible pathology (Oleszczak, Szablewski, & Pliszka, 2012). Their evidence has 

later been reproduced by other researchers (Palmeira, Rolo, Berthiaume, Bjork, & Wallace, 

2007). This points out that a close regulation of glucose uptake is required to maintain 

immune homeostasis.  
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Glucose breaks down to pyruvate through the steps of glycolysis. Pyruvate is then converted 

to ATP through the glycolytic pathway (Maciolek et al., 2014). Pyruvate is by many 

researchers considered extra fuel, and Sena et al. (2013) found that adding sodium pyruvate to 

the cells could recover the cells viability (Sena et al., 2013).   

Based on the availability of oxygen, pyruvate may be converted to acetyl-CoA and enter the 

TCA cycle. Nicotinamide Adenine Dinucleotide and Flavin Adenin Dinucleotide produced by 

the TCA cycle provide electrons to the Electron Transport Chain. This process produces 32 

molecules of ATP and six molecules of Carbon Dioxide. When oxygen is limited, 

mitochondrial oxidative metabolism becomes restricted, and pyruvate converts to lactate by 

the enzyme Lactate Dehydrogenase. This production generates two ATP molecules per 

glucose molecule (Finlay & Cantrell, 2011; Jacobs et al., 2008; O'Neill & Hardie, 2013). 

Figure 4. Glycolysis and 

the tricarboxylic acid 

cycle (TCA) 

The figure illustrates the 

glycolysis and the 

breakdown of a glucose 

molecule into pyruvate and 

the entering to the TCA 

cycle. From here, the 

model shows how the 

substrate can be used 

further, such as cholesterol, 

glutamate, amino acids etc. 

(Maciolek et al., 2014). 
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THE ROLE OF GLUCOSE IN LYMPHOCYTES 

Glucose enters the lymphoid cells across the plasma membranes through the GLUT 1 glucose 

transporter, as a response to the increased demand for rapid fuel. This appears as an early 

event in T cell activation. CD28 stimulation signal acts through Phosphatidylinositol-3-OH 

kinase (PI(3)K)-Akt and the mammalian target of rapamycin (mTOR) signalling and 

promotes GLUT 1. Combined, GLUT 1 protein levels and Akt signalling enhances glucose 

uptake and T cell activation (Frauwirth et al., 2002; Jacobs et al., 2008; Macintyre et al., 

2014). 

Macintyre et al. investigated the role and mechanisms that control glucose uptake and 

metabolism in T cells. They found that GLUT 1 has a selective cell-characteristic function for 

metabolic regulation of aerobic glycolysis for optimal growth, survival, and proliferation in 

both murine and human T cells (Macintyre et al., 2014).  

 

Previous studies have also indicated that ERK, - Akt-, and mTOR-mediated signalling 

pathways are involved in T cell metabolism (Carr et al., 2010; Frauwirth et al., 2002; Pearce 

et al., 2009). Wang et al. propose that these pathways could regulate T cell metabolism 

partially through the transcription factor cMyc and Hypoxia-inducible factor 1-alpha, which 

was supported by others (Keith, Johnson, & Simon, 2012; Semenza, 2012; Shi et al., 2011; R. 

Wang et al., 2011). Wang et al. suggest that Myc is required for the induction of enhanced 

glycolytic activity and metabolic gene expression in T cells (R. Wang et al., 2011). In 

addition, Estrogen related receptor α is also proposed as a transcription factor that regulates T 

cell metabolism (Frauwirth et al., 2002; Macintyre et al., 2014; Michalek et al., 2011).  

 

Otto Warburg discovered that aerobic glycolysis predominates in cancer cells even when 

oxygen is abundant. This process is called the “Warburg effect” (Vander Heiden, Cantley, & 

Thompson, 2009; Warburg, Wind, & Negelein, 1927). There are differences and similarities 

between activated T cells and the metabolic change in tumours. The differences being that 

inflammation is driven by extracellular signals and tumour cells are caused by mutations 

(Frauwirth et al., 2002; O'Neill & Hardie, 2013) and the similarities being that both have roles 

in regards to PI3K-Akt-mTOR as a pathway for c-Myc (R. Wang et al., 2011). Activated Teff 

cells have shown a shift towards high glycolysis which could be a sign of inflammation, 

http://en.wikipedia.org/wiki/Cell_membrane
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whereas Treg cells have shown a shift towards oxidative phosphorylation and could be a sign 

of anti-inflammatory cells (O´Neill & Hardie, 2013). 

 

Insulin directly influences T cell metabolism and immunity. T cells express the insulin 

receptor in response to antigen activation (Stentz & Kitabchi, 2003). Further, activated T cells 

respond to the hormone by increasing IL-2 expression and increased phosphorylation of the 

insulin receptor substrate-1 (IRS-1) (Saucillo, Gerriets, Sheng, Rathmell, & Maciver, 2014; 

Stentz & Kitabchi, 2003; Viardot et al., 2012). Insulin triggers activated T cells to increase the 

consumption of glucose and amino acids, increase glycolytic flux and protein synthesis, 

increase flux via the PPP and promote anti-inflammatory environment by stimulating 

differentiation of more TH2-type CD4
+ 

and cytokines (Bental & Deutsch, 1993; Brown, 

Ercolani, & Ginsberg, 1983; Ercolani, Lin, & Ginsberg, 1985; Fox, Hammerman, & 

Thompson, 2005; Kaneto et al., 2001; Stentz & Kitabchi, 2003; Viardot et al., 2012; F. Wang 

et al., 2012). Insulin resistance in humans impairs T cell function (Stentz & Kitabchi, 2003). 

Obesity is characterized by insulin resistance and low grade inflammation (Viardot et al., 

2012). Viardot et al (2012) presented increased activation markers on neutrophils, monocytes, 

T lymphocytes as well as a pro-inflammatory type 1-phenotype of T cells (TH1)(Viardot et al., 

2012). This suggests that nutrient availability and an incorrect response to metabolic 

hormones could influence T cell function (Viardot et al., 2012).  

 

It is also emerging evidence that leptin, a hormone secreted by white adipocytes, is important 

for maintenance of body weight as it signals the hypothalamus about satiety (Saucillo et al., 

2014), could affect glucose homeostasis and T cell function through promoting TH1 and TH17 

cell differentiation and function while inhibiting Treg proliferation. When nutrient levels are 

adequate, leptin signals through the T cells Leptin Receptor provides for full T cell activation 

(Cham & Gajewski, 2005; Papathanassoglou et al., 2006; Procaccini, Jirillo, & Matarese, 

2012; Saucillo et al., 2014; Yu et al., 2013). 

 

There is need for further research on the topic of glucose uptake, metabolism and 

inflammatory disease. Understanding the roles and regulation of specific nutrient transporters 

in T cell activation and subsets may provide opportunities to exploit metabolic distinctions of 

cells in the immune system to control inflammatory diseases.  
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1.2.1 Protein Kinase A 

A key regulator of both glucose and lipid metabolism and lymphocyte activity is the tetramer 

holoenzyme Protein kinase A (PKA), type I and II. The enzyme is activated in response to an 

increase in cyclic Adenosine Monophosphate (cAMP) in the cell (Ane Funderud et al., 2009; 

Skalhegg et al., 2005). PKA consists of a regulatory (R) subunit dimer and two catalytic (C) 

subunits, which together constitutes of PKA in an intact form. When levels of cAMP rises, 

four molecules of cAMP bind to the R subunits, causing a conformational change that 

releases the two C subunits. There are four known R subunits designated RIα, RIβ, RIIβ, RIIα 

and RIIβ, and four C subunits designated Cα, Cβ, Cγ and PRKX (Skalhegg & Tasken, 2000). 

PKAI is composed of RIα2C2 or RIβ2C2 and PKA II is composed of RIIα2C2, RIIβ2C2. PKAI 

and PKAII are activated with an activation constant (Kact) for cAMP of 50-100 nM and of 

200-400 nM, respectively. The C subunit phosphorylates threonine and serine residues on 

target proteins (Skalhegg et al., 2005).  

 

The PRKX differs from Cα and Cβ, who are quite similar isoforms (Oksvold et al., 2008). 

The human Cα gene encodes Cα1 and Cαs/Cα2. For Cβ at 16 different splice variants have 

been identified in humans; Cβ1, Cβ2, Cβ3, Cβ4, Cβ4ab, Cβ4abc, Cβ3ab, Cβ3abc, Cβ3b and 

Cβ4b (Guthrie, Skalhegg, & McKnight, 1997; Kvissel et al., 2004; Orstavik et al., 2001; 

Uhler, Carmichael, et al., 1986; Wiemann, Kinzel, & Pyerin, 1991). The catalytic subunits Cα 

and Cβ and their splice variants are encoded by variable N-terminal ends in which the non-

identical sequences are encoded by different exons upstream of exon 2 (Figure 5) (Skalhegg 

et al., 2005).  

 

 

Figure 5. The human Cβ gene.  
The figure shows the intronic sequence with exons 1-1 and 1-10. In Cβ2 ablated mice, exon 1-2 is removed by 

Cre recombinase.  

 

Cα and Cβ and their respective splice variants are tissue specific. The isoforms Cβ3, Cβ4, 

Cβab, Cβ3b, Cβ3abc, Cβ4ab, Cβ4b, Cβ4abc are all expressed specifically in nerve cells 

(Kvissel et al., 2004; Orstavik et al., 2001). Studies by Funderud et al. show that a mutation of 

the CB gene does not result in any clear phenotype and mice appear healthy and fertile. 
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However, early postnatal lethality has been seen in mice with ablated Cα gene, and amongst 

those who grew up, male adults appears infertile. Both sexes show a reduction in size of 30 % 

(Oksvold et al., 2008). 

 

Cα1 and Cβ1 appear ubiquitously expressed, while Cα2 is only expressed in the sperm cells. 

Cβ2 is highly expressed in lymphoid tissues (Skalhegg et al., 2005; Uhler, Chrivia, & 

McKnight, 1986). Cα1 and Cβ1 isoforms and human Cβ2 have a relative molecular mass of 

approximately 40 kDa and 47 kDa, respectively, and 47 kDa was restricted to lymph nodes, 

thymus and spleen. Their study revealed that Cβ contributes significantly to PKA activity in 

mouse spleen cells (A. Funderud et al., 2006). 

PKA and regulation of the immune system 

It is established that PKAI regulates the activation of T and B lymphocytes and NK cell 

cytotoxicity (Levy et al., 1996; Skalhegg et al., 1992; Skalhegg et al., 1994; Torgersen et al., 

1997). However, Scillace et al. (2005) have suggested that the RIIα subunit is not required for 

normal immune functions and that other proteins could be compensating for lack of the 

subunit when it is ablated in mice (Schillace et al., 2005).  

 

After T and B cells are activated, several intracellular signalling molecules including PTKs, 

protein tyrosine phosphatases, G-proteins, lipid rafts and adaptor molecules are regulated as a 

response to the stimulation of TCR CD3/CD28 complex. Together they form a signalling 

cascade, which takes place in the plasma membrane of lipid rafts (Schwencke et al., 1999; 

Skalhegg et al., 2005).  

 

Extracellular hormones, like glucagon, or pro-inflammatory factors, like Phosphodiesterase’s 

(PDEs), target G-protein coupled seven-putative transmembrane segments, equipped with 

prostanoid receptors EP2 and EP4. The receptors mediate their action through activation of 

Adenylyl Cyclase (AC), which in turns ATP to cAMP, activating the cAMP pathway, 

releasing active C subunits from the holoenzyme PKA (Figure 6). These inflammatory 

mediators can decrease expression and production of IL-2, because of their inhibiting function 

on cAMP (Skalhegg et al., 2005).  
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A-kinase anchoring proteins (AKAPs) serve as essential points between a diverse set of 

signalling pathways. AKAPs contain PKA anchoring domains, which bind the R subunit. 

AKAPs bind ACs and PDEs, which allows for a close regulation of PKA activation and 

modulation of the immune system (figure 7) (Levitzki, 1988; Skalhegg et al., 2005). In T and 

B cells, 80 % and 20 % of the soluble PKAI, and the Golgi centrosomal PKAII are anchored 

through AKAPs, respectively (Skalhegg et al., 1992). 

 

 
 

Figure 7. cAMP inhibits T cell activation by PKA.  

In T-cells, cAMP have an inhibitory effect on T cell activation through the receptor G protein-AC-cAMP-PKA 

type I-Csk inhibitory pathway. This takes place in lipid rafts and acts through Src-family kinase LCk, EP-R, 

prostaglandin E2 receptor. Also, free catalytic subunits affect the production of IL-2 which regulates the T cell 

activation.  

 

Figure 6. Activation of Protein 

Kinase A (PKA) 

Protein Kinase A (PKA), a tetramer 

holoenzyme composed of a regulatory 

(R) subunit dimer bound to two 

catalytic (C) subunits is activated by 

endogenous cyclic adenosine 

monophosphate (cAMP). The purple 

and orange boxes represent the R and 

C subunits, respectively, and the blue 

dots represent cAMP.  
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PKA I phosphorylation affects several components. The inactive C-terminal of Src  

family kinase (Csk) turns active after signalling from the TCR, to Src family kinase Lck 

(Skalhegg et al., 2005; Tasken & Aandahl, 2004). Csk regulates TCR-mediated signal 

transduction as an early event of the activation cascade. Another component is the 

phosphorylation and regulation of NF-κB and CRE elements (cAMP Response Element). 

They regulate early and late stages of T cell activation, which are found in several genes 

(TCR, CD3 and IL2). The CREB (cAMP Response Element Binding protein) binds to CRE, 

which controls genes involved in cell growth and proliferation. Further, PLCg-1/2 is 

phosphorylated after stimulation with cAMP elevating agents such as PGE2, which leads to 

suppression of Calcium mobilization and phosphatidylinositol hydrolysis upon T cell 

activation (Skalhegg et al., 2005). 

 

Tight regulation of cAMP and PKA is important for a regulative and functioning immune 

system. Previous research has found that hypoactive PKA could be linked to Systemic Lupus 

Erythematosus
1
 and hyperactive PKA to Human Immuno-deficient virus

2
. Furthermore, the 

Cβ2 subunit was suggested to be a target for therapeutic treatment (Kammer, 2002; Skalhegg 

et al., 2005). 

PKA, cAMP and metabolic regulation in mammals 

The PKA signalling system is ubiquitously expressed and regulates cellular metabolism in 

many organs, for instance the liver, where PKA regulates both glucose and lipid metabolism. 

In addition, PKA is involved in insulin and glucagon regulation in the pancreas (London et 

al., 2014; Saltiel & Kahn, 2001; Schreyer, Cummings, McKnight, & LeBoeuf, 2001; 

Skalhegg et al., 2005; Tasken & Aandahl, 2004).  

 

Insulin is a polypeptide hormone synthesized by the β-cells in pancreas and regulated by 

blood glucose levels, which are normally in the range of 4-7 mM (Frayn, 2003; Saltiel & 

Kahn, 2001). Insulin is also released by secretion of amino acids and ketone bodies. 

Circulating insulin directs its effect on cells by binding to specific insulin receptors. The 

hormone glucagon is secreted from the α-cells in the pancreas and released by a fall in 

                                                 
1
 Systemic Lupus Erythematosus (SLE) is a chronic inflammation disease in the connective tissue, with 

symptoms in the skin and skeleton amongst others (nhi.no, 2013b). 
2
 Human Immuno-deficient virus (HIV) is a retrovirus which effects the immune system by breaking it down, 

making it accessible to other infectious diseases (nhi.no, 2013a). 
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glucose concentration in plasma, having the opposite effects of insulin (Frayn, 2003; Saltiel & 

Kahn, 2001). In response to increased gluconeogenesis in the liver, glucagon activates PKA 

(Foretz, Carling, Guichard, Ferre, & Foufelle, 1998; Jiang & Zhang, 2003; Ouedraogo et al., 

2006). Ouedraogo et al. show that glucagon signalling in the liver involves activation of a 

PKA/LKB/AMPK pathway upstream of mTOR (Ouedraogo et al., 2006). Glucagon can bind 

to the glucagon receptor (Gsα and Gq) in the membrane. The activation of Gsα is followed by 

activation of AC and an increase in cAMP, thereby activating PKA. There is also evidence 

that glucagon like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion (GSIS) 

by elevation of cAMP in pancreatic β-cells, activating PKA. Through activation of cAMP-

PKA and cAMP-Epac
3
 pathways, GLP-1 stimulates insulin secretion in β-cells at normal 

glucose concentrations (Luo et al., 2013).  

A low level of insulin is followed by an increase of glucagon and gluconeogenesis, which 

increases the hepatic production of glucose. In addition, the supply of amino acids increases 

because of net breakdown of protein. Glucose no longer enters the cells and the glucose 

concentration in plasma rises above normal levels. When a person has a poor glucose 

tolerance (< 12 mM), the diagnosis is Diabetes Mellitus, which is generally divided in two 

major forms, type 1 and type 2. Type 1 is defined by loss of insulin-producing cells and has a 

major genetic, and thus a hereditary component. Type 2 has a genetic component, however, is 

mostly regarded as a lifestyle created disease. Chronic hyperglycaemia (glucose in plasma 

above 12 mM) or glucotoxicity leads to damaged β-cell functions that may reduce insulin 

secretion in both rodents and humans (Cochran et al., 2014; Frayn, 2003).  

It is well established that PKA regulates both glucose and lipid metabolism and that PKA play 

an important role in the activation of T cells. However, the subject of PKA and glucose 

consumption in T lymphocytes is still not investigated. In order to better understand the role 

of the splice variant Cβ2 of PKA and glucose consumption; we used a Knockout line (KO) of 

Cβ2 of PKA. This allowed us to understand more about the possible effects of Cβ2 in respect 

to the immune system and glucose consumption. 

 

 

                                                 
3
 Epac is a cAMP effector protein responsible for PKA stimulatory effects of GLP-1 on insulin secretion at 

physiological glucose concentrations (Luo et al, 2013). 
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1.2.2 The Knockout approach 

The mice strain is on a C57BL/6:129SV/J genetic background and is KO for Cβ2 of PKA. 

The project was approved and registered by the National Animal Research Authority of 

Norway (NARA).  

In order to study the biological function of Cβ2, a mouse model ablated for this C subunit was 

developed by the Skålhegg laboratory in collaboration with genOway 

(http://www.genoway.com/; see attached booklet in Appendix B for details). In short, a DNA 

construct for homologous recombination was introduced to embryonic stem (ES) cells that 

were on an Agouti-129Sv/Pas background. The ES cells were selected for the mutation by 

resistance to the antibiotic neomycin (neo) and were thereby microinjected into host 

blastocysts. Blastocysts were then introduced to pseudo pregnant (hormone treated) female 

mice on a C57BL/6J background. The agouti gene was introduced to assure incorporation of 

the construct into offspring, as pups carrying this genotype would carry coat colour 

chimerism. The agouti coat colour (yellow) is dominant over the black coat color. Hence, 

offspring carrying the mutation would have a mixed yellow/brown/black coat colour. To 

ensure introduction of the mutation into the germ cell genome, further breeding was 

performed with male mice with high chimerism (> 85 %) (Figure 8).  

 

http://www.genoway.com/
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Figure 8. Principle of the conditional KO approach 
Once a DNA vector has correctly been incorporated into the genome of embryonic stem (ES) cells, they are 

injected into 3-5 days old mouse blastocysts. These blastocysts are then injected into a pseudo-pregnant foster 

mother (dark gray mouse), where the pregnancy has been induced by by hormones. The embryos are then 

allowed to come to term and because the ES cells and the blastocysts are from two different coloured mice, the 

pups with two colours (F1) are the evidence of a successful recombination. The final F1 chimeras breed mice 

with the heterozygote Flp or Cre expressing mice (black mouse) with a possibility for heterozygous pups as 

result (orange mouse). The blue boxes represents the 1β2 exon of the PKACβ2 isoform. Solid line represents 

intronic sequences. The LoxP (Cre selection site) and FRT (Flp selection site) elements are shown as green and 

light blue triangles. Antibiotic (Neo) resistance sites (red boxes) represent the neomycin positive selection 

cassette.  

 

Further development of the PKACβ2 KO by genOway was to cross these mice with flp-

deleter mice on a C57BL/6J background in order to delete the neo cassette which was 

introduced with a FRT site on each side (figure 8). These mice were heterozygote for the 1β2 

exon with a loxP site on each side (Figure 8). These mice were mated to homozygosity for the 

1β2-loxP construct followed by specific deletion of exon 1β2 by crossing with a cre-deleter 

mouse on a C57BL/6J background, which carried active Cre in all known cells and tissues. In 

this way, there were healthy and fertile mice on a > 75 % C57BL/6J background (tested by 

Norwegian Transgen Centre) carrying a homozygote null-mutation for Cβ2 (Figure 9).  

 

 

Figure 9. Generation of Cβ2 KO mice 

The figure represents the marked loxP sites flanking the exon 1β2 (orange mouse on the upper left side) allowing 

their deletion under the Cre-recombinase action. Mice breeding with the Flp deleting mice (black mouse on the 

upper right side), deleted the neomycin box from the exon, creating mice just with the floxed Cβ2 heterozygote. 

Breeding the Flp mice with the Cre-expressing mice or the floxed Cβ2 heterozygote mice generated PKACβ2 

KO animals (red mouse on the right side). 
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2 Aim and objectives 

In order to determine a potential link between Cβ2 of PKA, glucose sensitivity and 

consumption and T cells, a knockout approach was used. The major aim for this Master 

Thesis was to determine the following objectives: 

Objectives 

 Expression and activity of Cβ2 protein in KO mice. 

 Characterize PKAR- and C-specific activities for the catalytic subunit Cβ2 of PKA.  

 CD3/CD28 stimulation of wt and Cβ2 KO in T cells. 

 Glucose sensitivity and consumption in T cells. 

 Influence of pyruvate addition on CD3/CD28 stimulated Cβ2 ablated lymphocytes. 
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3 Materials and methods 

All reagents and materials are listed in Appendix A. 

3.1 Mice 

The mice KO for Cβ2 on a C57BL/6:129SV/J genetic background, were kept at Department 

of Comparative Medicine at the University of Oslo according to required conditions. Cages 

from Green line IVC (Techniplast); GM 550 cage (391 x 199 x 160 mm) and GM 900 cage 

(395 x 346 x 213 mm) W x D x H with the amounts of one to five and five to ten mice were 

used. Each cage had a separated airflow of 0.05 m/s and a temperature of 23-25 °C, the 

humidity was 55-60 %. Water and food were available at all times. The rodent diet was soya 

based and consisted of 18 % Protein (Teklad Global 18 % Halan). The project was approved 

and registered by NARA. 

3.2 Genotyping of mice 

3.2.1 DNA isolation 

Ear biopsies were mixed with a 4:1 mix of lysis buffer and Proteinase K (DNA Isolation Kit 

II Tissue, Roche, 03186229001) and incubated overnight at 56 °C in order to dissolve the 

tissues and digest proteins. The samples were vortexed, and to reduce risk of contamination, 

centrifuged at 300 x g for 30 s to remove moist in the lid. They were subsequently transferred 

to a 32 well cartridge designed for the MagNaPure machine (Roche), and isolation of DNA 

was done according to protocol provided by the manufacturer of the MagNa Pure LC DNA 

Isolation Kit (Roche, 03186229001). The DNA was stored at -20 °C until further analysis. 

3.2.2 Genotyping of WT and Cβ2 KO mice by PCR 

Ten μL of mouse DNA was mixed with 2.5 μL 5 x buffer without Magnesium Chloride 

(MgCl2), 0.2 μL 25 mM deoxyribonucleotide Triphosphate (dNTPmix), 3 μL 25mM MgCl2 

(all provided by Expand High Fidelity PCR System, Roche), 0.5 μL mM of forward primer 

for identifying KO and WT (5`TGTAGGTCCTGCTGTATGCTTGTCTACCC), and reverse 

primers for KO (5` CTTGCTCCTTAGCCATTTCTTACTCCAGC) and wild type (wt) 
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(5`TATTTGCCTGTCTACATCATGCGTGTCAG) and mixed with 7.3 μL Dnase and Rnase 

free H2O. Finally, 0.5 μL (2U/ μL) DNA polymerase (DyNAzyme, Thermo Scientific) was 

added to a total of 25 μL reaction volume. 

The Veriti Thermal Cycler from Applied Biosystems was used for PCR with an initial 

denaturation step at 94 °C for 1.50 min, followed by 30 cycles comprising of denaturation at 

94 °C for 0.50 min, annealing at 60 °C for 0.5 min and elongation at 68 °C for 3 min. A final 

elongation step at 72 °C for 2 min completed the program. The samples were kept at 4 °C 

until further analysis.  

Agarose gels 1.5 % were stained with 10 μL SybrSafe (0.01 %) (Life Technologies) for 

visualization of DNA by UV-light. A standard 1 kB DNA ladder (Life Technologies, 1.0 

μg/μL) was loaded together with a positive control. To make the PCR product denser, 5 μL of 

6 x orange loading dye (2.5 g Ficoll, VWR, 0.025 g orange G, Sigma, 10 mL dH2O) was 

added to each sample. Electrophoresis was conducted using an electrical field of 100 V for 

approximately 30 min (BIORAD POWER PAC 300).  

3.2.1 Dissection of mouse lymph nodes, thymus and spleen  

Mice were euthanized by cervical dislocation. Lymph nodes (axillary, brachial, inguinal and 

lumbar), thymus and spleen were dissected out aseptically (figure 10). The organs were 

placed in 10 mL sterile medium (Sigma).  

 

Figure 10. Diagram of Lymph nodes, 

spleen and thymus 

After opening and fastening of the 

mouse, the axillary, brachial, inguinal 

and lumbar lymph nodes were first 

removed. Then the spleen was dissected 

out. Finally the thorax was opened to 

visualize the thymus, which was 

carefully detached and removed. All 

organs were placed in 10 mL sterile 

medium.  
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The organs were dissociated on a 70 µm cell strainer (Falcon) placed on a round petri dish 

(Costar) with 10 mL of ice cold isolation buffer (Sigma; 2 mM EDTA; 2 % Fetal Bovine 

Serum (FBS) (Sigma)) using the back of a syringe (BD Plastipak). The resulting cell solution 

was transferred to a 15 mL tube and centrifuged for 10 min at 300 x g at 4 °C. Supernatant 

was removed and the cells pellet resuspended in 5 mL cold isolation buffer. Red blood cells 

from spleen samples were lysed using 1 mL of Red Blood Cell Lysing buffer (Sigma), 

incubated for 5 min and added 9 mL of cold isolation buffer to stop the process. After 

centrifugation at 300 x g for 10 min at 4 °C, and removal of the supernatant, the cell pellets 

were resuspended in 5-10 mL of isolation buffer. Equal parts of cell suspension and Trypan 

Blue Stain 0.4 % (Life Technologies) were mixed and 10 µL transferred to counting chamber 

slides (Life Technologies) and counted on an automated cell counter Countess (Life 

Technologies). Cell pellets were either directly used in further analysis or washed twice in 

PBS (Sigma), centrifuged at 300 x g at 4 °C for 10 min, the supernatant removed, and 

transferred to Safe Lock Eppendorf tubes and stored at – 80 °C.  

3.3 Western blotting/immunoblotting 

3.3.1 Lysing of cells  

Cell pellets from genotyped wt and KO mice were lysed in 100 μL lysis buffer (50 mM Tris 

pH 7,4, 100 mM NaCl, 5 mM EDTA, 50 mM NaF, 10 mM Napp, 1mM Na3VO4, 1 mM 

PMSF, 1% Triton) at 4 °C. The lysate was sonicated (1 s x 3 Amplitude 60 %) and incubated 

on ice for 30 min, vortexed and finally centrifuged at 16 000 x g speed for 15 min at 4 °C to 

remove debris. The supernatant was then transferred to new Eppendorf tubes and the protein 

concentration determined.  

3.3.2 BCA Protein determination (Pierce) 

BCA Protein assay is a colorimetric method for detection and quantification of total protein. 

The cell lysates were loaded on 96 well flat bottomed microtiter-plates (Greiner bio-one). 

Lysis buffer (5 μL) was added as blank and standard solutions with FBS (5 mg/mL, 2.5 

mg/mL, 1.25 mg/mL, 0.625 mg/mL, 0.312 mg/mL) were loaded on the plate to determine 

concentrations. A 1:50 mix was made with BCA Reagent A and BCA Reagent B (Pierce BCA 
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Protein Assay, Thermo Scientific) and added to all wells. The plate was incubated at 37 °C for 

30 min and then analyzed by a microplate reader (Fluostar OPTIMA, BMG LABTECH).  

3.3.3 Western Blotting/immunoblotting 

The lysates were adjusted to equal amount of protein and mixed with 3 x Sodium dodecyl 

sulphate (SDS) loading buffer (pH 8. 3) (187, 5 mM Tris HCl pH 6.8; 240 mM SDS; 30 % 

glycerol; 0.003 % bromphenol blue and 15 % 2-mercaptoethanol). The lysates were boiled for 

5 min at 96 °C and then 30-40 μg of total protein was loaded on precast 12 well 10 % SDS-

PAGE (Bio-Rad) with a 10 μL protein standard (Dual Color Standard, Bio Rad) as ladder. 

The proteins were separated by electrophoresis at 100-120 V for about 2 h (Bio Rad Power 

pack). 

Afterwards, gels were was placed on top of a polyvinylidene fluoride membrane 

(PVDF) (Immobilion-P). A sponge and three Whatman paper sheets were placed under the gel 

(GE Healthcare UK Limited) (approximately 10 x 15 cm). It was then covered with three new 

Whatman paper sheets (all sheets were soaked in cold transfer buffer; 39 mM Tris-base, 48 

mM glycine, 10 % methanol, pH 7.4), and a sponge. The “sandwich” was placed in a transfer 

tray (Bio Rad) and filled with cold buffer and an ice block for 45 min of 100 V. Afterwards, 

the PVDF membrane was blocked by drying overnight in room temperature.  

 

After blocking overnight, the membrane was soaked in methanol (Emsure) and washed in 1 x 

TBST (10 mM Tris-Base; 0.1 % Tween 20; 150 mM Sodium Chloride, (NaCl); pH 7.5) 

before incubated with primary antibody (c-mono or anti RIa and RIIa in 10 mL TBST) for 1 h 

in room temperature on a Gyratory Rocker (Stuart Scientific). The blot was washed a total of 

six times, first time in TBST for 15 min, and again 5 times each of 10 min to remove excess 

antibodies. 

The membranes were then incubated with secondary antibody for 1 h in room temperature 

and washed as previously described. 

The blot was incubated for 5 min with a mix of equal amounts of solution A and B of Pierce 

Enhanced chemiluminescence kit (Thermo Scientific, 34080). Signal detection was performed 

using a SynGene apparatus with a camera that detects the chemiluminecense.  

For western blot validation, a control antibody (GADPH, Sigma) was used. Equal amounts of 

Solution A and B of the SuperSignal West Dura Extended Duration Substrate kit (Thermo 
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Scientific, 34076) were used for detection. Procedures for washing and analysis were as 

previously described.  

3.4 Protein Kinase A phosphotransferase assay 

Ten μL of cell lysates (2 μg protein/ml) from lymph nodes, spleen and thymus were incubated 

with water (10 μL), cAMP (10 μL) or PKA-specific inhibitor (PKI) (10 μL) in 5 mL test 

tubes. To measure PKA-specific phosphotransferase activity, 30 μL Kemptide mix, with [γ-

32P] ATP was added to each tube and incubated at 30 °C. After 9 min, the samples were 

spotted on a phosphocellulose paper (1. 5 x 3 cm) and dropped into a washing solution, a 

phosphoric acid bath (Sigma), to stop the reaction. The washing solution was changed and the 

filter papers were washed for 10 min. The washing step repeated two more times. Finally, the 

filter papers were washed for 10 min in 96 % ethanol; before the filter papers were air-dried 

on a Whatman 3M paper for 20-60 min. Kemptide assay mix (5 μL) was spotted in duplicate 

on the phosphocellulose papers to determine specific activity. The filter papers were then 

counted in a scintillation counter (TriCarb 3100TR, Perkin Elmer) in counting vials 

containing 3 mL scintillation cocktail (Ultima Gold F, Perkin Elmer).  

 

3.5 Protocol for negative isolation of CD4
+
 cells 

using Dynabeads 

After counting, the lymph nodes, and spleen cells were centrifuged at 300 x g at 4 °C for 10 

min and resuspended in ice cold isolation buffer (Sigma D8537; 2mM EDTA; 2% FBS, 

Sigma) and Antibody mix from the negative isolation of CD4
+
 cell kit (Life 

Technologies,11415D). The volume of Antibody mix was adjusted according to number of 

cells, mixed well and incubated 20 min on ice. Subsequently the samples were added 10 mL 

of isolation buffer, mixed well and centrifuged at 350 x g at 4 °C for 8 min. The beads were 

resuspended and vortexed before they were washed according to manufacturer’s protocol 

(Life Technologies). Cell pellets were resuspended in cold isolation buffer (4 mL) and beads 

(1 mL) and incubated for 15 min in room temperature at a roller mixer (Stuart Scientific). 

This ensures that antibody labelled bind to the beads surface, leaving CD4
+
 cells in the 

solution (figure 11). The cells were then added 5 mL of isolation buffer and resuspended five 

times using a tip with a narrow opening, to avoid foam. The tubes were then placed on the 
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magnet for 2 min and the supernatant transferred to new tubes, containing only CD4
+
 cells 

(Figure 11). The cells were counted and then centrifuged at 300 x g at 4 °C for 10 min, and 

resuspended in medium (Sigma) to a total of 1.5 x 10
6
 cells/mL. The protocol for proliferation 

assay was then followed for further analysis.  

 

Figure 11. A representation of CD4+ isolation 

The procedure for CD4
+
 negative isolation using Dynabeads® Untouched TM Mouse CD4

+
 Cells Kit (Life 

Technologies, 11415D). First; using Antibody mix, the Dynabeads attach to antibody labelled cells. Second; 

using a magnets, the untouched CD4
+
 cells can be transferred to a new tube as the other cells remain 

(LifeTechnologies, 2014c).   

3.6 Assay for anti CD3/CD28 induced T lymphocyte 

proliferation  

After counting the cells, 50 µL of media with and without 1 % pyruvate (RPMI 1640, 1 % 

P/S, 1 % L-Glutamine, 1 % NEAA 10 % FBS, Sigma) of 1.5 x 10
5
 cells were transferred to a 

96 well plate (Costar) with round bottom. Dynabead Mouse T-Activator CD3/CD28 beads 

(Life Technologies) was vortexed, transferred to Eppendorf tubes, and washed according to 

protocol, provided by the manufacturer (Life Technologies). Incremental concentrations of 

beads were added to each sample in a 1.4 x 10
6
 bead/mL (1:0.26, 1:0.53, 1:0.80, 1:1 or 1:1.3 

bead: cell ratio). The beads activate T cells through CD3 and CD28 antibodies covalently 

bound to the bead surface which provide signals optimized for T cell activation and expansion 

(LifeTechnologies, 2014a) (figure 12). The plates were incubated for 44 - 48 h in 36.5 °C, 

with a 95 % humidity and 5 % CO2, after 44 - 48 h 25 µL of [
3
H]-Thymidine (PerkinElmer) 

(40 µCi/mL in 25 µL RPMI; 5% FBS, Sigma) was added to each well. Cells were then 

incubated for another 16 - 18 h before harvesting. 
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The [
3
H]-Thymidine is incorporated into the DNA strands for each cell division, and the 

higher the proliferation rate, the more radioactivity will be incorporated. The [
3
H]-Thymidine 

is a β-emitter with low radiation that allows for detection by the scintillation counter during 

harvesting (Härkönen, 2001). 

 

Figure 12. Representation of T cell activation 

Above: Representation of In vivo T cell activation by CD3/CD28 activation signals. Below: Representation of T 

cell activation with CD3/CD28 bound to a 3 D bead (LifeTechnologies, 2014b).  

3.6.1  Harvesting the cells 

Cells were harvested to a 96 well filter plate (PerkinElmer) using a cell harvester (Packard 

Harvester) and placed for drying at 50 °C for 1-2 h. Particles bigger than 1.5 µm are collected 

by the filter membrane. After sealing the bottom of the filter plate, 25 µL of scintillation 

liquid (PerkinElmer) was added to each well. The filter plate was then sealed on top and 

incubated for 20 min in room temperature before being placed in a scintillation counter 

(Packard).  
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3.7 Glucose assay 

Pooled samples from wt and KO mice were adjusted to a concentration of 1.5 x 10
6
 cells/mL. 

The samples were centrifuged at 300 x g at 4 °C for 10 min, supernatant removed, 

resuspended in 1 mL of glucose free media (Gibco), mixed with prewashed beads and then 

added to the wells in a round bottomed plate (Costar). 

Afterwards, media with incremental glucose concentrations were added to each well, leaving 

the end concentration in the wells to 0, 1, 5, 15 and 25 mM respectively. The glucose 

concentrations were verified by using a glucose test apparatus (ACCU-CHEK Aviva) (Roche) 

with test strips (Roche). A reliability test of the apparatus and the concentrations in the tubes 

used in the experiment was also performed. According to the manufacturer, the glucose 

apparatus does not detect values below 0.6 mM or above 33.3 mM. Therefore, in results, table 

1 and table 2; “Lo” appears for the media concentration devoid glucose and “HI” appears for 

a glucose concentration at 50 mM.  

The plates were incubated for 24 - 48 h at 36.5 °C, with a 95 % humidity and 5 % CO2, after 

24 - 48 h 25 μL [3H]-Thymidine (PerkinElmer) (40 µCi/mL in 25 mL of Gibco; 1 % P/S, 

Sigma) and incremental glucose concentrations of 0, 1, 5, 15 and 25 mM respectively. Cells 

were then incubated for another 16 - 18 h before harvesting. 

3.7.1 Filtration of Fetal Bovine Serum for glucose free media 

FBS (Sigma) was filtrated and sterilized to remove any contaminants larger than 0.2 µm. A 

big glass container with a magnet was filled with dH2O (3 L) and PBS (Sigma. 1 tbl/200 mL). 

The Slide-A-Lyzer Cassette (Thermo Scientific) was removed from its pouch and rehydrated 

in the buffer solution for two min. Without blotting the membrane the cassette was gently 

dried and filled with FBS (Sigma) using a syringe (BD Plastipak TM; Sterican) containing the 

sample, leaving very little air inside. The cassette was fastened to a buoy and was rotating 

overnight at 4 °C. To sterilize the sample, a syringe and a sterile filter (Life Sciences) (0.2 

µm) was used to withdrawing the sample.   
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3.8 Statistical analysis and evaluation of Western 

blot  

For Kinase Assay, negative isolation of CD4
+
 cells, proliferation assay and glucose assay, 

GraphPad Prism version 6.04 and Statistical Analysis for the Social Sciences version 22 was 

used for creation of bars, graphs and running statistical analysis. Data are presented as means 

± Standard Deviation (SD). Independent sample T test was used to investigate differences 

between wt and Cβ2 KO mice. Glucose consumption in T cells over time was tested with 

paired sample t-test for analysis from triplicate measurements. These data were presented with 

Statistical Error of the Mean (SEM). Because few mice and triplicate tests creates a high 

uncertainty, one takes into consideration that mice are genetically inbred, which means that 

the mice are close to genetically equal and that few mice can set indications for a bigger 

population. A p-value of ≤ 0.05 is indicated by * considered statistically significant. Further, a 

p-value of ≤ 0.005 is indicated by **.  

For RIα and RIIα WB analysis, GeneTools and GeneSnap from SynGene (VWR) were used 

for analysis and quantification.  
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4 Results 

4.1 Cβ2 ablation proved by PCR and Western blot 

To ensure the genotype of the mice, ear biopsies were analysed with PCR using specific 

primers (see Material and methods and attached booklet from genOway). Figure 13, depicts 

an example of performed PCR. Lanes 2 and 6 show PCR products of 557 and 319 bp, 

respectively, whereas lanes 3 and 5 represent a specific DNA product of 557 bp and lane 4 

DNA of 319 bp. This means that the samples came from heterozygote (wt/KO) mice (lanes 2 

and 6), homozygote Cβ2 KO mice (lane 3 and 5) and wt mouse (lane 4). The Cβ2 KO mice 

were used for further breeding and experiments.  

 

Figure 13. Genomic characterization of Cβ2 KO and wt mice  
PCR products of ear biopsies from homozygote wt, Cβ2 KO and heterozygote (wt/KO) mice. The wt and KO 

alleles runs at 319 and 557 kb respectively. 1 Kb ladder was added to lane 1. Lane 2 and 6 represent wt/KO, 

while lane 3 and 5 represent KO and lane 4 represent wt.  

 

As mentioned, Cβ2 is expressed in immune cells of the spleen (Funderud, Henanger et al. 

2006). Using immunoblotting and a pan-C monoclonal antibody spleen was initially tested for 

the expression of Cβ2. This demonstrated that wt spleen cells express anti-C reactive proteins 

of 40 and 47 kDa (lanes 4-6, figure 14 A) and that spleen cells from Cβ2 KO lack 

immunoreactive proteins running at 47 kDa (lanes 1-3). The Skålhegg group has also 

previously shown that Cβ2 is expressed in the immune cells T, B and NK cells, which resides 

in the thymus and lymph nodes as well as the spleen (Funderud, Henanger et al. 2006). 

Hence, we tested the expression of Cβ2 in cells isolated from wt and Cβ2 KO cells of these 

tissues. Figure 14 B shows that Cβ2 immunoreactive protein of 47 kDa is ablated in cells 

from Cβ2 KO cells from lymph node (lane 2), spleen (lane 4) and thymus (lane 6).  
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A. 

 

B. 

 

Figure 14. WB analysis of PKA C subunit expression in Cβ2 KO and wt mice 
WB analysis of C subunit expression in splenocytes isolated from three KO (lanes 1-3) and wt mice (lanes 4-6) 

(A). WB analysis of C subunit expression in cells isolated from lymph node, spleen and thymus from three KO 

and wt mice (B). Lanes 1, 3 and 5 represent wt while lanes 2, 4 and 6 represent KO mice. In panel A and B cell 

extracts (15-25 µg protein/lane) were separated by 10 % SDS-PAGE and transferred to PVDF membranes. 

Immunoreactive proteins were recognized with anti-C (mouse monoclonal, 1:100 dilutions) and visualized with 

a secondary Horseradish Peroxidase (HRP)-conjugated anti-IgG antibody. 

 

 

4.2 Comparison of PKA C subunit activity in 

immune tissues from Cβ2 wt and KO mice 

To determine total PKA activity after Cβ2 ablation, thymocytes, lymph node cells and 

splenocytes were isolated and cell extracts monitored for cAMP-inducible PKA activity. 

Previous research has shown that there is a reduction in PKA activity in lymph node, spleen 

and thymus lysates in Cβ KO mice (A. Funderud et al., 2006; Orstavik et al., 2005). The 

PKA-specific kinase activity was reduced by 52 %, 39 % and 37 % in cell lysates made from 

Cβ2 KO lymph node, spleen and thymus cells, respectively, compared to wt (figure 15).  
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Figure 15. Comparison of PKA-specific phosphotransferase activity in lymph node, spleen and thymus 

cell lysates from Cβ2 KO and wt mice 

The activity was measured as incorporation of 
32

P in the PKA-specific substrate Kemptide in the presence 

(cAMP) and absence (dH2O) of cAMP and in the presence of the PKA-specific inhibitor (PKI). Activity in the 

extracts from Cβ2 KO mice were given relative to the activity in the lysates from wt mice, which were set to 1. 

Bars represent mean activity from four experiments ± S.D. Arrows indicate percentage reductions in activity, 

with a 37 - 52 % decrease in activity of lysates from KO mice.  

 

 

 

4.3 Comparison of PKA RIα and RIIα in immune 

tissues from wt and Cβ2 KO mice 

Based on PKA C subunit activity and the fact that subunits RIα and RIIα of PKA are 

expressed in T and B cells, 80 % and 10-20 % respectively (Orstavik et al., 2005), we tested 

for RIα and RIIα expression in wt and Cβ2 KO mice cells from the lymph node, spleen and 

thymus. Figure 16 panels A and C show the level of immune reactive RIα and RIIα in lymph 

nodes, spleen and thymus, and figure 16 B and D show the quantification of protein 

expression when normalized to Glyceraldehyde 3-poshphate dehydrogenase (GADPH). There 

were no significant differences in RIα or RIIα expression from wt and KO mice amongst the 

tissues, which implies an R to C ratio above 1 in Cβ2 ablated lymphocytes. This could further 

indicate that PKA holoenzyme is less sensitive to cAMP in Cβ2 ablated cells.  
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A.           B. 

  
C                                    D.  

 
 

 

Figure 16. Identification and quantification of RIα and RIIα expression from lymph node, spleen and 

thymus cell lysates (30 μg) from three Cβ2 KO and wt mice 
Proteins were separated by 10 % SDS-PAGE followed by transfer to PVDF membranes. Identical blots were 

incubated with anti-human RI, (mouse monoclonal, 1:100 dilution) (A) anti- human RII (mouse monoclonal, 

1:100 dilution) (C) or anti-GADPH (rabbit polyclonal, 1:100 dilution) (A and C). Secondary HRP-conjugated 

anti-IgG antibody was used for detection. Lanes 1, 3 and 5 represent wt mice and lanes 2, 4 and 6 represent KO 

mice. Arrows to the left indicate molecular size, arrows to the right indicate protein identity (RIα, RIIα and 

GADPH). Analysis in GeneSnap provided values for quantification of WB by using GADPH as loading control. 

Values were normalized to GADPH (B and D).  
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4.4 Anti-CD3/CD28 induced proliferation in 

lymph node and spleen cells  

As mentioned in the introduction, a rise in endogenous cAMP inhibits T and B cell 

proliferation and clonal expansion, as well as NK cell cytotoxicity (Torgersen, Vang, 

Abrahamsen, Yaqub, & Tasken, 2002). To determine if the decreased PKA activity observed 

in Cβ2 KO immune tissues influence T cell proliferation, we use anti-CD3/CD28 antibodies 

attached to magnetic beads. These beads are known to mimic a situation of APC-dependent 

activation of T cells. Lymph node, spleen and thymus cells from Cβ2 KO and wt mice were 

stimulated with different ratio of anti-CD3/CD28 coated beads to find the optimal ratio for 

maximal proliferation. Cells from both lymph node and spleen show optimal proliferation 

between 8 x 10
4
 and 2 x 10

7
 bead/mL (panels A and B). A repeatedly observed low 

proliferation rate in thymocytes with values close to non-stimulated cells (data not shown), 

excluded the thymocytes from future inclusion in this thesis.  

 

 A.                                                          B. 

  

Figure 17. Dose-dependent anti-CD3/CD28 induced lymphocyte and splenocyte proliferation  
Pooled cells of 1.5 x 10

6
 cells/mL, isolated from Cβ2 KO and wt mice, were stimulated with anti-CD3/CD28 

coated beads at a ratio of 1:0.26, 1:0.53, 1:0.8, 1:1 or 1:1.3, for 72 h. [
3
H]-thymidine (40 µCi/mL) was added the 

last 18 h of incubation before harvesting. Figures A and B represent normalized proliferation rates in 

lymphocytes, and splenocytes from eight and six KO and wt mice, respectively. The highest proliferation rate 

was set to 1 and other results set relative to 1. Bars in A and B represent the mean from triplicate values ± S.D.  
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4.5 Induced CD3/CD28 cell proliferation 

influences CD4+ Cβ2 ablation in splenocytes, but 

not in lymph node cells  

Experiments depicted in figures 17 A and B demonstrated dose-dependent CD3/CD28 

induced proliferation of a mixed cell population. Hence, our results may have been influenced 

by the presence and action of a number of non-T cells, such as NK cells, monocytes, 

macrophages and dendritic cells. To more precisely define the effect of Cβ2 ablation on T cell 

proliferation we isolated CD4
+
 T cells as described in Material and methods. We used 1.4 x 

10
6
 bead/mL that demonstrated no apparent difference in anti-CD3/CD28 induced 

proliferation between wt and Cβ2 KO CD4
+
 lymph node cells (panel A). However, a 

significantly higher proliferation rate was observed in CD4
+
 spleen cells from Cβ2 KO 

compared to wt (p-value 0.03, panel B). The significant increase in proliferation in CD4
+
 

spleen cells could imply that Cβ2 could influence CD4
+
 cells in splenocytes or that other 

mechanisms in the spleen are at work. 

A.                                                                             B. 

     
 
 

Figure 18. Cβ2 ablation influence anti-CD3/CD28 specific CD4
+
 splenocyte but not lymphocyte 

proliferation  

Cβ2 KO, wt and wt CD4
+
 cells (1.5 x 10

6
 cells/mL) were stimulated with anti-CD3/CD28 of 1.4 x 10

6 
beads/mL 

for 72 h. [
3
H]-thymidine (40 µCi/mL) was added the last 18 h of incubation before harvesting. A Present 

normalized lymphocyte proliferation rate from 10 KO and wt mice from two experiments. B Present normalized 

splenocyte proliferation rate from four KO and wt mice. A significantly higher proliferation rate was found in 

splenocytes for Cβ2 KO compared to wt (p-value < 0.03 (C) and p-value < 0.003(D)). The highest proliferation 

rate was set to 1 and other results set relative to 1. Dots represent the mean from triplicate and sixtuplicate values 

± S.D (A and C).  
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4.6 Glucose consumption and proliferation in 

lymph node and spleen cells. 

 

4.6.1 Reliability test of glucose apparatus and confirmation of 

glucose concentrations used in glucose assay  

As immune cell proliferation requires increased uptake of glucose and PKA inhibits immune 

cell proliferation as well glucose uptake and metabolism in the liver and muscle, we 

investigated if glucose uptake by Cβ2 KO immune cells and CD4
+
 T cells were altered 

compared to wt cells.  

First, an equilibration test of the glucose test apparatus was performed to assure that 

theoretical glucose concentrations were comparable to glucose concentrations used in the 

assays (panels A and B, table 1 and 2). The glucose dependence and consumption was studied 

in proliferating T cells stimulated through their CD3/CD28 cell surface markers. Panels A and 

B depicts concentrations used in the glucose assays ± S.D. Data indicate that the measured 

values (0 - 30 mM and 0 - 25 mM) are almost according to theoretical values.  

A.          B.  

 

Figure 19. Actual versus measured glucose concentrations 
Concentrations of glucose were made in order to provide cells with incremental glucose concentrations (0-25 

mM) provided by the glucose test apparatus (ACCU-CHEK Aviva). It ascertains that the apparatus was 

equilibrated correctly and verifies the concentrations used in the research. Figure A presents concentrations that 

were diluted 50 % in each sample when added. Figure B presents concentrations that contained [
3
H] thymidine 

(40 µCi/mL). Bars in panel A and B represent the mean from measured triplicate values ± S.D. 
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Table 1 and 2 present theoretical values of incremental concentrations of glucose, the mean 

from measured values and the percentage deviation from theoretical values to measured 

concentrations.  

 

 

Table 1: Theoretical versus measured concentrations of glucose. Deviations from theoretical 

values are presented as percentage. 

Glucose concentrations [mM] 

Concentration (theoretical values)  0 2 10 30 50  

Measured average concentration  LO* 1.8 11.0 28.1 HI*  

Deviation (%)  - 10 % 10 % 6.3 % -  
 

*”LO” < 0.6 mM, **”HI” > 33.3 mM.  

 

 

 

Table 2: Theoretical versus measured concentrations of glucose. Deviations from theoretical 

values are presented as percentage. 

Glucose concentrations with [3H]-thymidine [mM] 

Concentration (theoretical values) 0 1 5 15 25   

Measured average concentration LO* 1.0 5.6 15.9 26.5   

Deviation (%) - - 12.0 % 6.0% 6.0 %   
 

*"LO" < 0.6 mM.  
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4.6.2 Glucose-dependent anti-CD3/CD28 induced proliferation 

of Cβ2 KO and wt lymph node and spleen cells 

To investigate the dependence of the glucose concentration on immune cell proliferation, 

lymph node and spleen cells from Cβ2 KO and wt mice were stimulated with anti-CD3/CD28 

coated beads in media with incremental concentrations of glucose (0 - 25 mM). This 

demonstrated that glucose concentrations below 1 mM are incompatible with cell 

proliferation (panels A and B). It was no apparent difference in the rate of proliferation if the 

cells were grown in the presence of 1 or 5 mM glucose in lymphocytes after 72 h. Further, 

there was no observed difference in glucose dependence between wt and Cβ2 KO cells. 

A.        B.  

 

Figure 20. Glucose-dependent anti-CD3/CD28 induced proliferation of Cβ2 KO and wt lymphocytes and 

splenocytes  
Pooled cells from six Cβ2 KO and six wt mice with 1.5 x 10

6
 cells/mL were stimulated with anti-CD3/CD28 of 

1.4 x 10
6
 beads/mL for 72 h in the presence of incremental concentrations of glucose (0-25 mM). [

3
H] thymidine 

(40 µCi/mL) was added the last 18 h of incubation before harvesting. Normalized proliferation rate for 

lymphocytes and splenocytes in media with glucose concentrations of 0, 1, 5, 15 and 25 mM are presented (A 

and B). Highest proliferation rate was set to 1 and other results given relative to 1. Bars in panel A and B 

represent the mean from triplicate values ± S.D. 
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4.6.3 Time-dependent glucose consumption by lymph node 

cells stimulated with anti-CD3/CD28  

Next, the glucose consumption of CD3/CD28 stimulated lymph node cells at various time 

points 0, 24 and 72 h was monitored. Only a significant increase in glucose consumption for 

lymph node cells grown in 5 mM, panel A, in the time interval 0 to 24 h (p-value < 0.004) 

was observed. There appeared to be no difference in glucose consumption between Cβ2 KO 

and wt mice, at any fixed concentrations of glucose (5, 15, 25 mM) or at any time of 

measurements (0, 24 and 72 h). 

A.                                           

 

B.    

 

C.                                      

 

Figure 21. Time-dependent 

glucose consumption in lymph 

node cells  

Lymph node cells (1.5 x 10
6
 

cells/mL) were isolated from six 

Cβ2 KO and six wt mice and 

stimulated with anti-CD3/CD28 

coated beads (1.4 x 10
6
 beads/mL) in 

the presence of 5 (A), 15 (B) and 25 

mM glucose (C). Proliferation was 

measured after 24 and 72 h. Cells 

harvested after 24 h were added [
3
H] 

thymidine (40 µCi/mL) at 0 h, while 

cells harvested after 72 h were added 

[
3
H]-thymidine (40 µCi/mL) the last 

18 h of incubation. Figures A show a 

significant increase in glucose 

consumption for both Cβ2 KO and 

wt from 0 to 24 h (p-value < 0.004). 

Figures B and C show glucose 

consumption in a concentration of 

15 and 25 mM, over time. Dots 

represent the mean from triplicate 

values ± SEM. 

  

 

* 
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4.6.4 Time-dependent glucose consumption by splenocytes 

stimulated with anti-CD3/CD28       

Then, glucose consumption of CD3/CD28 stimulated splenocytes at 0, 24 and 72 h was 

monitored. There was no difference in glucose consumption (panels A - C), and no difference 

in consumption between Cβ2 KO and wt mice, at any fixed concentrations of glucose (5, 15, 

25 mM) or at any time of measurements (0, 24 and 72 h). 

A.                                               

 
B.                                              

 
C. 

 

Figure 22. Time-dependent 

glucose consumption in spleen 

cells 

Spleen cells from six Cβ2 KO and 

six wt mice and stimulated (1.5 x 

10
6
 cells/mL) with anti-CD3/CD28 

coated beads (1.4 x 10
6
 beads/mL) 

in the presence of 5 (A), 15 (B) and 

25 mM glucose (C). Proliferation 

was measured after 24 and 72 h. 

Cells harvested after 24 h were 

added [
3
H]-thymidine (40 µCi/mL) 

at 0 h, while cells harvested after 

72 h were added [
3
H]-thymidine 

(40 µCi/mL) the last 18 h of 

incubation. No significant increase 

was detected. Figures A, B and C 

show glucose consumption in a 

concentration of 5, 15 and 25 mM, 

over time. Dots represent the mean 

from triplicate values ± SEM. 
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4.6.5 Anti-CD3/CD28 induced proliferation at different glucose 

concentrations in lymph node and spleen cells 

We next measured anti-CD3/CD28-dependent cell proliferation of lymph node cells (panels A 

- C) and splenocytes (panels D - F) at concentration of glucose (0-25 mM). This revealed no 

proliferation at time 0 and high levels of proliferation at 72 h at glucose concentrations 

between 1 and 25 mM. It appeared that proliferation was optimal at 1-15 mM glucose and no 

apparent differences were observed between Cβ2 KO and wt mice when cells are given 

incremental concentrations of glucose. 

A.                             B.                                C.  

   
 

 

D.     E.                          F.  

 
 

 

Figure 23. Anti-CD3/CD28 induced lymphocyte and splenocyte proliferation at incremental glucose 

concentrations (0-25 mM) Cells from six Cβ2 KO and wt mice (1.5 x 10
6
 cells/mL) were stimulated with anti-

CD3/CD28 (14 x 10
6
 beads/mL) for 72 h. [

3
H]-thymidine (40 µCi/mL) was added the last 18 h of incubation 

before harvesting. Proliferation (cpm) of cells in media without glucose at 0 hours (A and D). Incremental 

concentrations of glucose (0-25 mM) at 24 h (B and E) and 72 h (C and F). Bars represent the mean from 

triplicate values ± SD. 
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4.7 Pyruvate induces proliferation rate in lymph 

node and spleen cells  

As explained in the introduction, pyruvate is a metabolic intermediate from glycolysis, where 

one molecule of glucose is converted into two molecules of pyruvate. Based on the 

availability of O2, it may be converted to acetyl-CoA and enter the TCA cycle or converted to 

lactate by lactate dehydrogenase. As pyruvate is a down-stream product of glucose in the 

glycolysis it has been suggested as a potent and”fast” source of energy for proliferating cells. 

The fact that PKA is involved in regulating glycolysis in the liver and muscle cells, made it 

interesting to investigate if knockout of Cβ2 of PKA would influence pyruvate consumption 

in proliferating T cells.  

CD3/CD28 stimulated wt and Cβ2 KO cells from both lymph nodes and spleen proliferate at 

a significantly higher rate than the same cells ablated for Cβ2 (p-value < 0.005, panel A; p-

value < 0.001, panel B). The same pattern was observed when cells were grown in media with 

pyruvate. It should also be noted that cell proliferation by wt cells were more influenced by 

pyruvate addition than Cβ2 KO, and cells from wt proliferated at a significantly higher rate 

than Cβ2 KO cells when cells were in medium with pyruvate (p-value < 0.005, panel A; p-

value < 0.007, panel B).  

A.                                 B.  

 
 

 

Figure 24. Anti-CD3/CD28 induced normalized proliferation rate in lymphocytes and splenocytes  
Three Cβ2 KO and wt mice with cells from lymphocytes and splenocytes of 1.5 x 10

6
 cells/mL were stimulated 

with anti-CD3/CD28 of 1.4 x 10
6
 beads/mL for 72 h. [

3
H]-thymidine (40 µCi/mL) was added the last 18 h of 

incubation before harvesting. A significantly higher proliferation rate for lymphocytes and splenocytes from wt 
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compared to KO (p-value < 0.005 (A); p-value < 0.001 (B)) were found. For cells in media with pyruvate, there 

was a significantly higher proliferation rate for lymphocytes and splenocytes from wt compared to KO (p-value 

< 0.005 (A); p-value < 0.007 (B)). The highest proliferation rate was set to 1 and other results set relative to 1. 

Bars represent the mean from triplicate values ± S.D. 
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5 Discussion  

In an approach to understand the role and function of Cβ2 in regulating immune cell function, 

we studied T cell proliferation and glucose consumption in wild type mouse T cells and 

compared the results to T cells ablated for the catalytic subunit Cβ2 of Protein Kinase A.  

5.1 The mouse as a model to study molecular function 

5.1.1 Mice as models 

When performing experimental research on whole organisms, animal mice models are widely 

used and well-established as a method. Animal models can help us understand how a single 

gene or clusters of genes can influence, numerous biochemical and physiological processes in 

various biological systems, including how nutrition and metabolism of nutrients such as 

glucose and amino acids are required for optimal and correct immune responses. Furthermore, 

the method may allow us to follow genetic disease-processes over time (even generations) (S. 

Feil, Valtcheva, & Feil, 2009). Mouse models are often used because of the similarities in the 

mouse genome with other mammals including humans. Results from mouse studies have been 

transferred to humans on a number of occasions with success. Despite this it´s important to be 

aware of important differences (Mestas & Hughes, 2004). For example most mice lines used 

in research are genetically inbred, which means that they show a high degree of genetic 

identity. Hence, laboratory mice do normally resemble wild type mice if the laboratory mice 

are not bred as F1 generations which represent the first filial generation of offspring of 

distinctly different parental types (Runge&Patterson, 2006). The results in this thesis are 

obtained from mice which are born with a constitutive KO on an inbred strain made by 

mixing C57BL/6J and 129Sv/Pas mice. The mice used in the present study were generated to 

carry a genetically null mutation of the Cβ2 subunit of PKA (in Appendix B is a final report 

on the Cβ2 KO phenotype by Genoway).  

5.1.2 INDUCEBLE KO APPROACH 

As explained in the introduction, the gene we wanted to investigate was removed by targeted 

mutation of exon 1-2 in the PRKACB gene. Exon 1-2 is used by the PRKACB gene to 

introduce a unique N-terminal end to Cβ2. Targeting this exon was done to produce mice that 
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were born without the Cβ2 protein (Moen, Eriksen and Skålhegg, unpublished). According to 

Feil and coworkers (2009) and others, the technique on Inducible Cre Mice, by Cre lox 

recombination by tamoxifen-induce Cre recombinase activity is the most successful 

CreERversion per 2009 (R. Feil, Wagner, Metzger, & Chambon, 1997; S. Feil et al., 2009; 

Indra et al., 1999). In many ways, it is similar to the KO approach used to delete the 

PRKACB exon 1-2. It uses a conditional gene targeting site-specific recombinase Cre 

(cyclization recombination), which catalyzes two floxed loxP DNA recognition sites. 

However, the in vivo Inducibility method ligand-dependent chimeric Cre recombinases, a so-

called CreER recombinase, is developed because of activation of the synthetic estrogen 

receptor ligand 4-hydroxytamoxifen (OHT) (R. Feil et al., 1996; R. Feil et al., 1997; Metzger, 

Clifford, Chiba, & Chambon, 1995; Zhang et al., 1996) Cre is in this case fused with a 

mutated hormone-binding domain by the estrogen receptor. Cre ER is inactive and can be 

activated both spatially and temporally by tamoxifen, as tamoxifen metabolizes to OHT (or by 

use of tetracycline as inducer (St-Onge, Furth, & Gruss, 1996). This ability makes it possible 

to control floxed chromosomal DNA combined with tissue-specific expression of a CreER 

recombinase. As this is an instrument for controlling gene activity in space, time and tissue, it 

can provide information regarding the gene product at a certain developmental stage (Branda 

& Dymecki, 2004; R. Feil, 2007). 

 
 

Figure 25. Inducible knockout model 

Inducible gene inactivation is based on a mouse carrying a targeted exon (e.g. Cβ2) by loxP in cells expressing 

tamoxifen-dependent CreER recombinase (TC). CreER is fused with a mutated ligand binding domain (LDB) of 

the estrogain receptor (ER) and when tamoxifen (OHT) is absent CreER is present in the cytoplasm (mouse on 

the left). When the mouse is fed OHT (image in the middle), the binding to LBD results in the translocation of 

the recombinase into the nucleus, where it can recombine its loxP-flanked DNA substrate. This way mutagenesis 

can be achieved at any time in any specific tissue (mouse on the right).  
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The instrument is useful in gene studies and regarding human disease and is therefore a 

potential alternative to the approach used in this thesis. However, this technique can also 

allow for unwanted Cre activity and associated side effects, such as ectopic recombination 

based on transient Cre expression during development or potential toxic effects due to 

prolonged values of Cre activity (Loonstra et al., 2001; Schmidt, Taylor, Prigge, Barnett, & 

Capecchi, 2000). Nevertheless, the Inducible model has the ability to avoid results which may 

be typical for the constitutive KO approach, such as embryonic lethality, compensatory 

mechanisms or a complex phenotype (Coumoul & Deng, 2006; Deng, 2002; Friedberg & 

Meira, 2006; Weinstein, Yang, & Deng, 2000). However, the Inducible model is in a larger 

scale used as a strategy to enable the study of gene inactivation at various defined 

developmental stages, and as our mice appear healthy without the target gene present, the 

Induced KO approach may not be required to study Cβ2 function. Further, our mice line 

carries active Cre in all cells and tissues, creating KO in all cells when crossed with Flp delete 

mice. Having a mice line with Cre allows for a versatile use regarding future projects. For 

instance, there is the possibility of crossing Cre with delete mice linked to a promoter specific 

to T or B lymphocytes. This would allow us to study Cβ2 ablation in either T cells, B cells or 

other cells of interest (figure 26). In addition, if the mice with a promoter specific to T or B 

lymphocytes were crossed with CreER mice, and fed OHT, it would KO Cβ2 specifically in 

time (when fed OHT) and space (in particular cells such as T or B lymphocytes).  

 

Figure 26. Possible model for knockout of T lymphocytes 
A simplified scheme of a loxP hetrozygous mouse (upper mouse on the left) which is crossed with a mouse 

carrying a specific promoter for T and B lymhocytes (TC) (upper mouse on the right). Crossed together, these 

mice would get pups KO of Cβ2 specific for T and B lymphocytes.  
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5.2 Discussion of results 

PKA is a main regulator of T and B cell growth and proliferation (Skalhegg et al., 2005). This 

together with the fact that Cβ2 is highly expressed in T, B and NK cells (A. Funderud et al., 

2006; Orstavik et al., 2001) may suggest that Cβ2 holds a role in the regulation of immune 

cell activity and function and hence immune responses to various antigens. As a KO approach 

was used in order to study the role of Cβ2, we initially performed experiments to confirm 

ablation of Cβ2 DNA and protein. We showed that the Cβ2-specific DNA sequence was 

deleted in lymph node-, spleen- and thymus-cells. This was done by performing PCR with 

Cβ2 specific DNA primers. The primers were designed to detect Cβ2 wild type-, 

heterozygous or homozygous alleles and enabled us to decide which mice to use in the 

various experiments. To further assure that Cβ2 protein was ablated we performed 

immunoblotting using a pan anti-C subunit antibody. As Cβ2 runs with a relatively higher 

molecular mass, 47 kDa, in polyacrylamide (PAG) gels compared to other C subunits such as 

Cα1 and Cβ1 which runs at 40 kDa, it was possible to determine if the Cβ2 protein was 

expressed or not. This showed that the antiserum recognized both 40 kDa (Cα1/Cβ1) and 47 

kDa (Cβ2) immunoreactive bands, while Cβ2 ablated cells only expressed the 40 kDa 

(Cα1/Cβ1) protein band. This demonstrated that Cβ2 protein in various immune cell tissues 

was deleted. In previous studies by Funderud et al., (2006, 2009) it was also found that the 47 

kDa band was deleted in Cβall mice (ablation of all Cβ splice variants). This together with our 

results concluded that Cβ2 in lymphocytes is expressed as a 47 kDa protein. 

Cβ2 protein ablation prompted us next to monitor catalytic activity, which was shown to be 

significantly reduced by 52, 39 and 37 %, in the Cβ2, ablated lymphocytes, splenocytes and 

thymocytes, respectively. This result was in line with Funderud et al. (2006; 2009) who 

showed that catalytic activity in Cβall KO was down-regulated by > 50 % (Ane Funderud et 

al., 2009; A. Funderud et al., 2006). When comparing Funderuds results with our findings we 

suggest that Cβ2 is the major PKA Cβ subunit in lymphocytes. Judging by quantity, it may 

further mean that the Cβ2 protein is involved in the regulation of immune cell growth and 

proliferation. Moreover, based on the role of cAMP and PKA in regulating T cell activation 

and proliferation, we speculated if Cβ2 ablation would be associated with spontaneous 

lymphocyte proliferation and hyper-activation upon stimulation through the antigen receptor 

complex. According to our results, this was not always the case. We initially stimulated a 

mixed population of cells with anti-CD3/CD28 coated beads. Whereas we did not monitor 
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any differences for lymph node cells, Cβ2 ablated splenocytes proliferated significantly more 

than wt cells in response to anti-CD3/CD28. As a mixed population of lymphocytes contains 

a variety of cells including NK cells, monocytes, macrophages and dendritic cells, these cells 

could together or alone influence our results on lymph node cells. Thus, to more precisely 

define the effect of Cβ2 ablation on lymph node cells we isolated and stimulated CD4
+
 T cells 

from lymph nodes and spleen by CD3/CD28 coated beads. These experiments confirmed the 

results from the mixed cell population from lymph nodes and from spleen. We do not have 

any explanation for the discrepancy between the results obtained from mixed and CD4
+
 

splenocytes. Our results are also in line with the finding of Funderud et al., (2009) who did 

not observe any difference between splenocytes and lymph node cell proliferation upon anti-

CD3/CD28 stimulation when isolated from Cβall KO. Moreover, Funderud could only 

identify hyper reactivity in Cα KO T cells, and not Cβall KO T cells suggesting that the two 

subunits may possess different roles in regulating immune cell responses. That Cβ may not be 

involved in the regulation of proliferation was further supported in that the activation marker 

CD69 was only increased in the Cα but not Cβ KO cells (Ane Funderud et al., 2009). 

Considering the results of Funderud and our results together, it may be suggested that Cβ2 

does not play a vital role in regulating anti-CD3/CD28 induced proliferation in cells from 

neither lymph nodes nor spleen.   

Why we observed that lymphocytes did not proliferate spontaneously nor show any hyper-

reactivity to stimulation through the CD3/CD28 markers is not known. This was not expected 

based on the relative abundance of Cβ2 and the regulatory role of cAMP and PKA on 

lymphocyte activation. Considering the PKA holoenzyme as such in lymphocytes, previous 

research has demonstrated that the R to C subunit ratio is close to 1/1 in resting T 

lymphocytes (Skalhegg et al., 1994). When we monitored relative R subunit levels in Cβ2 

ablated lymphocytes we found that immune reactive levels of RIα and RIIα were unaltered by 

Cβ2 ablation compared to wt lymphocytes. This may suggest that Cβ2 KO lymphocytes have 

an R to C ratio far above 1 as Cβ2 which makes up ^ 50 % of the C subunit in T cells (This 

thesis and Funderud et al 2009). This is indicative of a large overshoot of R subunit, which 

physiologically implies the Cβ2 KO lymphocytes contain PKA holoenzyme less sensitive to 

cAMP. As neither the protein levels for RIα nor RIIα were influenced by Cβ2 ablation this 

may further suggest that Cβ2 ablation renders both PKAI and PKAII insensitive to 

physiological levels of cAMP. To what extent this is the case and if it has a biological 

consequence remains to be verified. Finally, the fact that the R to C ratio is skewed upon Cβ2 
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KO may suggest that these lymphocytes are protected against the effect of cAMP and 

activation of PKA. Thus, if Cβ2 KO does not affect lymphocyte proliferation it may imply 

that Cβ2 possess activities that are not associated with regulating cell growth and division. 

This needs to be investigated further.  

Incremental concentrations of glucose stimulates growth and proliferation independent 

of Cβ2 expression 

Several studies have demonstrated that T cells deprived of glucose or T cells that do not 

possess normal glucose metabolism during activation are unable to proliferate normally 

(Bental & Deutsch, 1993; Fox et al., 2005; Macintyre et al., 2014; Oleszczak et al., 2012; 

Sena et al., 2013). PKA holds an important role in regulating glucose metabolism in liver and 

muscle cells (London et al., 2014; Schreyer et al., 2001). This combined with the results in 

this thesis prompted the idea that Cβ2 of PKA could hold a function in regulating glucose 

consumption.  

Glucose concentrations (0 mM, 5 mM and 15 mM) and the rate of anti-CD3/CD28 induced 

proliferation were measured at 0 h, 24 h and 72 h after stimulation. We found that anti-

CD3/CD28 stimulated Cβ2 KO and wt cells, grown in media absent of glucose, failed to 

increase their glucose uptake and had a proliferation rate close to non-stimulated cells. This 

was expected and in agreement with McIntyre et al., (2014) who published a similar result 

with T cells KO for GLUT 1 (Macintyre et al., 2014). It was also in line with McIver et al., 

(2008) who showed that T cells grown in media deprived of glucose would fail to proliferate 

unless the amino acid Glutamine was used as an alternate carbon source (MacIver et al., 

2008).   

As was demonstrated in the result, proliferation rate appeared low at 24 h for activated wt 

lymphocytes. The same observation was made for Cβ2 KO lymphocytes as well. A low 

proliferation rate was expected as it could indicate that cells were in the early stages of growth 

and proliferation (Carr et al., 2010; Frauwirth et al., 2002; Jacobs et al., 2008; R. Wang et al., 

2011). The highest proliferation rate in wt lymphocytes was observed at 72 h. The same 

observation was made for Cβ2 KO lymphocytes. At this time point, glucose concentrations 

were 1 - 5 mM and we observed that the cells consumed the highest amount of glucose, even 

though it was not significant. Because this was observed in both wt and Cβ2 KO 

lymphocytes, it indicates that there were no differences between the groups regarding 
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proliferation rate and glucose consumption. We should have been able to see a spontaneous 

reaction in proliferation rate for lymphocytes KO for Cβ2 when compared to wt. This could 

have indicated that Cβ2 could have a function in regulation of glucose metabolism. However, 

this was not the case and unexpected given the role of PKA in regulation of glucose 

metabolism in liver and muscle cells. In light of our results, demonstrating that Cβ2 KO did 

not appear to influence lymphocyte proliferation it was not a surprise and may suggest that 

Cβ2 of PKA do not influence processes involving regulation such as energy formation 

through ATP formation by metabolism of glucose. Hence, it is tempting to speculate that Cβ2 

is involved in other processes or that Cβ2 ablation is compensated by other C subunits. This is 

supported by Funderud et al., (2009) who showed that Cα most probably compensated for the 

ablation of Cβ as Cα and Cβ2 can form parts of the same PKAI holoenzyme (Funderud et al., 

2009). However, to what extent this holds true needs further investigation. 

Furthermore, we have confirmed a link between proliferation rate and glucose consumption in 

T cells. The highest proliferation rate for both wt and Cβ2 KO lymphocytes was at 72 h, when 

glucose concentration was 5 mM. This was not as a surprise as normal blood glucose levels in 

mammals are approximately 4 - 7 mM (Frayn, 2003; Saltiel & Kahn, 2001). This could 

indicate that activated T cells, even though in a stage of the clonal expansion phase and in 

need of glucose, prefer this level of glucose concentration for optimal function. This further 

highlights that a correct maintenance of glucose homeostasis is important for a functional 

immune system. According to MacIver et al., (2008), cells started proliferating at a very low 

concentration (0.1 mM) (MacIver et al., 2008). Our results demonstrate that a glucose 

concentration of 1 mM was sufficient to make both wt and Cβ2 KO lymphocytes proliferate 

and indicates that activated T cells have the ability to fully proliferate even at low glucose 

concentrations, like situations of hypoglycemia, and still being fully functional.   

Furthermore, we showed that lymphocytes grown in 15 - 25 mM proliferated at the 

approximately same rate as cells grown in 1 - 5 mM glucose concentrations. According to 

Oleszcak et al., (2011), a blood glucose concentration of 200 mg/dL (11 mM) and 1000 

mg/dL (55 mM) could cause apoptosis of lymphocytes (Oleszczak et al., 2012). And 

according to Otton et al., (2004) hyperglycemia in rats with 582 mg/dL (32.3 mM) showed 

apoptosis in lymphocytes (Otton, Soriano, Veriengia, & Curi, 2004). This could explain why 

our cells did not proliferate at a higher rate in higher concentrations of glucose, as it may be 

that they were on the edge of apoptosis. However, the level of proliferation could indicate that 
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the cells did not go through apoptosis, but that there are inhibiting factors that limit the 

proliferation rate when cells are grown in high glucose concentrations. Oleszcak et al., (2011) 

and others suggest that there could be mechanisms, which enables the cells to withstand 

harmful glucose concentrations, and that this could be linked to transport expression. They 

observed a drop in GLUT 1 and GLUT 3 expressions and an increase in GLUT 4 and suggest 

this to be a protective mechanism (Oleszczak et al., 2012; Stentz & Kitabchi, 2005). In our 

study we did not check for surface markers, but this would have been an interesting follow-

up. Furthermore, Sena et al., (2012) found that glucose metabolism is only required for T cell 

activation so that pyruvate could fuel the mitochondria (Sena et al., 2013). This is in line with 

our results as we have shown that a glucose concentration of 1 – 5 mM appears as the optimal 

condition for proliferating T cells.   

Pyruvate promotes cell proliferation in wt but not Cβ2 ablated T cells 

When T cells are activated to proliferate, the glucose transporter Glut1 is upregulated and 

glucose is taken up. Glucose is converted to the 3-carbon pyruvate through the glycolysis 

(Maciolek et al., 2014). Sena et al (2013) and others also showed that pyruvate works as an 

extra nutrient source the cell can take advantage of (Maciolek et al., 2014; Sena et al., 2013). 

This prompted us to add pyruvate to the growth media and to investigate if this would 

influence T cell proliferation. Both wt and Cβ2 KO lymphocytes and splenocytes were 

stimulated with CD3/CD28 coated beads. Results showed that both lymphocytes and 

splenocytes from wt proliferated at a significantly higher rate than Cβ2 KO cells, in the 

presence of pyruvate. Our results were consistent with the observations by Sena et al., (2013) 

and others that pyruvate may act as a “quick” fuel (Sena et al. 2013: Maciolek et al., 2014). 

The fact that Cβ2 ablated lymphocytes and spenocytes proliferated at a significantly lower 

rate may indicate that Cβ2 possesses a regulatory link in the conversion and boosting effect of 

Pyruvate. The mechanism by which this occurs needs more investigation. 
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5.3 Conclusions 

With our research as basis, this thesis demonstrates that:  

 Cβ2 of PKA is ablated in lymph nodes, spleen and thymus from KO mice 

 RIα and RIIα expressions are unaltered in Cβ2 KO cells from lymph nodes, spleen and 

thymus when compared to wt cells. 

 There is a decreased cAMP-induced activity of PKA in Cβ2 KO lymphocytes, 

splenocytes and thymocytes.  

 Cβ2 ablation influence CD3/CD28 stimulated proliferation rate in splenocytes but not 

lymphocytes 

 Cβ2 ablation does not influence CD3/CD28 stimulated proliferation rate in 

splenocytes and lymphocytes, when cells are grown in incremental concentrations of 

glucose 

 Cβ2 ablation does not influence CD3/CD28 stimulated proliferation rate in 

splenocytes and lymphocytes, when cells are grown inn media with pyruvate 
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Appendix A - List of Reagents and Materials 
 

Name Supplier Catalog # 

1 Kb DNA ladder stock Life Technologies  15615-024 

[
3
H]-Thymidine (5 mCi/mL) Nærliens NET027X005MC 

Antibody: Mouse c-mono: 1:100 BD Transduction 

Laboratories  

610980/81 

Antibody: RIα Mouse monoclonal  1:100 BD Transduction 

Laboratories 

610166 

Antibody: RIIα Mouse monoclonal  1:100 BD Transduction 

Laboratories 

612243 

Antibody: GADPH rabbit polyclonal 1:1000 Sigma  G9545 

Criterion Precast Gels SDS-PAGE 12.5 % Bio-Rad 345-0014 

cyclic Adenosine Monophosphate (cAMP) Sigma   A9501 

Deoxyribonucleotide Triphosphate (dNTPmix)  Finnzymes F-560XL 

Dulbecco`s Phosphate Buffered Saline Sigma D8537 

DyNAzyme Thermo Scientific F-501L 

Dynabeads Mouse T-Activator CD3/CD28 Life Technologies 11452D 

Dynabeads Untouched
TM

 Mouse C cells Life Technologies 11415D 

D-(+)-Glucose Solution 45 % 2. 5 stock Sigma G8769 

Ethidium Bromide Sigma E8751 

Ethylenediaminetetraacetic acid (EDTA) BDH Biochemical 443885J 

Expand High Fidelity PCR System Roche 03300226001 

Fetal Bovine Serum (FBS) Sigma F7524 

Ficoll VWR 437092S 

HRP conjugate anti-mouse secondary antibody BP Biomedicals  

Kemptide peptide Sigma 60645 

L-Glutamine 200mM Sigma G7513 

MagNa Pure LC DNA Isolation Kit   Roche 05197686001 

MagNa Pure LC DNA Isolation Kit II Tissue Roche  03186229001 

Methanol Emsure 603-001-00-X 

Microscint 
TM

 O PerkinElmer 6013611 

Molecular Biology Grade Agarose DNA Pure Grade 500g VWR 443666A 

Non essential amino acids Gibco BRL 11140-035 

Optifluor PerkinElmer 6013199 



   

Orange G Sigma 16230 

Penicillin Streptomycin Solution Stabilized Sigma P4458 

Phenylmethanesulfonylfluoride Sigma P7626 

Phosphate Buffered Saline Sigma P4417 

Phosphate Buffered Saline Sigma SLBG4621V 

Phosphocellulose paper  P81 Whatman 3698915 

Phosphoric Acid Sigma 79622 

Pierce BCA Protein Assay Prod A Thermo Scientific 23223 

Pierce BCA Protein Assay Prod B Thermo Scientific 23224 

Pierce Enhanced chemiluminescence (ECL) kit Thermo Scientific 34080 

PKA-specific inhibitor (PKI)  Sigma P-6062 

PKA-specific phosphotransferase [γ-32P] ATP 

 

PerkinElmer NEG508X250UC 

Precision Plus Protein Standards, Dual Color Standard Bio-Rad 161-0374 

Primer (forward): 5’ tgtaggtcctgctgtatgcttgtctaccc   

Primer (reverse): 5’ cttgctccttagccatttcttactccagc   

Primer (reverse): 5’ tatttgcctgtctacatcatgcgtgtcag   

Polyvinylidene Fluoride Membrane (PVDF) Immobilion-P IPV00010 

Proteinase Inhibitor Sigma P8340 

Red Blood Cell Lysing buffer Sigma R7757 

RPMI 1640 Gibco 11879-020 

RPMI 1640 Sigma R0883 

Scintillation liquid PerkinElmer 6013611 

Secondary antibodies anti-mouse to C-mono  Cappel 55563 

Sodium Duodecyl Sulfate Bio-Rad 161-0302 

Sodium Fluoride VWR International 56420-250 

Sodium Pyrophosphate VWR International 16591-25 

Sodium pyruvate 100 mM Gibco BRL 11360-039 

Sodium Vanadate Sigma 6508 

SuperSignal West Dura Extended Duration Substrate kit Thermo Scientific 34076 

SuperSignal West Pico Chemiluminescent Thermo Scientific 34080 

SuperSignal West Dura Extended Duration Substrate kit Thermo Sientific 34076 

SybrSafe  Life Technologies  s33102 

Tris (hydroxymethyl) aminomethane pH 7.4 VWR International TD12024319 



   

Triton Sigma 69H0147 

Trypan Blue Stain 0.4 % Life Technologies T10282 

Whatman paper sheets Sigma  1003-917 

   

Materials   

96 well plate Costar 3799 

96 well filter plate Perkin Elmer 6005174 

Cell strainer (70 µm) Falcon 352350 

Cell harvester PerkinElmer C961241 

Countess® automated cell counter Life Technologies C10227 

Countess®Cell counting chamber slides Life Technologies C10228 

Filter (0, 2 µm) Life Sciences PN 4612 

Glucose test apparatus ACCU-CHEK Aviva Roche 03532321004 

Round bottomed plate Costar 3799 

Scintillation counter Packard 1282 

Slide-A-Lyzer Cassette Thermo Scientific 66130 

Syringe BD Plastipak 300185 

Syringe  Sterican 4657527 

Syringe Filter Life Sciences 7936179E 

Test strips Roche 06453970 
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1 GENOTYPING OF THE PKACβ2 CONDITIONAL AND CONSTUTUTIVE KNOCK-
OUT MOUSE LINES

The Flp-mediated excision enables the deletion of the neomycin cassette, resulting in a PKACβ2
conditional Knock-out allele or PKACβ2 floxed allele. This deletion has been performed in vivo, by
breeding the recombined animals with ubiquitous Flp-recombinase expressing deleter mice (see Final
report sent on 30 November 2007).

The Cre-mediated excision enables the deletion of the exon 1β2, resulting in a PKACβ2 constitutive
Knock-out allele. This deletion can been performed in vivo, by breeding the recombined animals with
Cre-recombinase expressing deleter mice.

PCR and Southern blot screening have been established to enable the wild type, the Neo-deleted allele
(PKACβ2 floxed allele) and the Knock-out allele to be clearly distinguished.

1-1 PCR SCREENING STRATEGY FOR THE GENOTYPING OF THE PKACβ2 CONDITIONAL

KNOCK-OUT LINE

This PCR is performed using a forward primer GX4475 hybridizing upstream the FRT flanked
neomycin cassette and a reverse primer GX4476 hybridizing downstream of the FRT flanked
neomycin selection cassette (see figure 1). Because of its localisation, this primer pair allows allows
the distinction of the Flp-mediated neomycin-deleted floxed allele from the wild-type allele.

The conditional Knock-out allele (or floxed allele) should yield an amplification product of 767 pb
using the above primer pair whereas the wild-type allele should yield an amplification product of 660
pb.

The sequence of the primers and the optimised PCR conditions are listed in tables 1 and 2.

Expected size of PCR product inPrimer
name

Primer sequence 5’-3’
Wild-type allele Flp-excised allele

GX4475-
SKA1-R

GAGAGCCAGTCAAGGGAACTGAATGC

GX4476-
SKA1-S

TGTTGCTTGGCTAATGACTGTCAAAGC
660 bp 767 bp

Table 1: Primers for the PCR screening for the detection of the PKACβ2 floxed allele

Reaction mix Reaction conditions
Genomic DNA 10 ng Step Temp. Time Cycles
Primers each 15 pmol Denaturing 94°C 120s    1 x

dNTPs 0.5 mM Denaturing 94°C 30s

Reaction buffer 3 0.1 Vol Annealing 65°C 30s    35 x

Taq Long expand (Roche) 2.6 U Extension 68°C 300s

Reaction Volume 50.0 µl Completion 68°C 480s    1 x

Table 2: Optimised PCR conditions for the detection of the PKACβ2 floxed allele
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Figure 1: PCR genotyping of the PKACβ2 floxed mouse line. Schematic representation of the PKACβ2
alleles with the binding sites of the screening primers is shown.

1-2 PCR SCREENING STRATEGY FOR THE GENOTYPING OF THE PKACβ2
CONSTITUTIVE KNOCK-OUT LINE

This PCR is performed using a forward primer GX4473 hybridizing upstream of the targeting vector
homology sequence and a reverse primer GX4474 hybridizing downstream of the loxP site (see
figure 2). Because of its localization, this primer pair allows to distinguish the PKACβ2 Cre-deleted
Knock-out allele from the PKACβ2 wild-type allele.

The Knock-out allele should yield an amplification product of 2.6 kb using the above primer pair
whereas the wild-type allele should yield an amplification product of 5.3 kb.

The sequence of the primers and the optimised PCR conditions are listed in tables 3 and 4.

Expected size of PCR product inPrimer
name

Primer sequence 5’-3’
Wild-type allele Knock-out allele

GX4473 AAGGTCCGACCATCTGAAGGAAAGC

GX4474 TGCTCCTTAGCCATTTCTTACTCCAGC
5346 bp 2551 bp

Table 3: Primers for the PCR screening for the detection of the PKACβ2 Knock-out allele

Reaction mix Reaction conditions
Genomic DNA 10 ng Step Temp. Time Cycles
Primers each 15 pmol Denaturing 94°C 120s    1 x

dNTPs 0.5 mM Denaturing 94°C 30s

Reaction buffer 3 0.1 Vol Annealing 65°C 30s    35 x

Expand HF Polymerase (Roche) 2.6 U Extension 68°C 420s

Reaction Volume 50.0 µl Completion 72°C 480s    1 x

Table 4: Optimised PCR conditions for the detection of the PKACβ2 Knock-out allele

Figure 2: PCR genotyping of the PKACβ2 Knock-out mouse line. (A) Schematic representation of the
PKACβ2 alleles with the binding sites of the screening primers shown.
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1-3 DETECTION OF HOMOZYGOUS KNOCK-OUT ANIMALS BY PCR

To screen for the homozygous animals, the F2 progeny will be screened using a PCR specific to wild-
type PKACβ2 allele (figure 3).

Figure 3: PCR identification of homozygous animals. The figure indicates the PCR screening strategy
for the detection of the knock-out PKACβ2 locus versus wild-type PKACβ2 locus. Green arrows illustrate
the primers localisation.

The primer pair GX4467/GX4476 has been designed and validated by genOway for the specific
detection of the wild-type allele.

The forward primer GX4467 hybridises upstream of the short 5’ homology arm. The reverse primer
GX4476 is located within the 3’ long homology arm in a region, which is deleted in Knock-out locus.

This set gives rise to a PCR product of 2.4 kb for the wild-type animals and the heterozygous animals
and no product for the homozygous knock-out animals.

The sequence of the primers and the optimised PCR conditions are listed in tables 5 and 6.

Expected size of PCR product inPrimer
name

Primer sequence 5’-3’
Wild-type allele Knock-out allele

GX4467 CAATAGGTCCAACAGCCCATCTTGC

GX4476 TGTTGCTTGGCTAATGACTGTCAAAGC
2411 bp -

Table 5: Primers for the PCR screening for the detection of the PKACβ2 wild type allele
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Reaction mix Reaction conditions
Genomic DNA 10 ng Step Temp. Time Cycles
Primers each 15 pmol Denaturing 94°C 120s    1 x
dNTPs 0.5 mM Denaturing 94°C 30s
Reaction buffer 3 0.1 Vol Annealing 65°C 30s    35 x
Expand HF Polymerase (Roche) 2.6 U Extension 68°C 300s
Reaction Volume 50.0 µl Completion 68°C 480s    1 x

Table 6: Optimised PCR conditions for the detection of the PKACβ2 wild type allele

Consequently, after F2 progeny PCR screening, signals are expected as shown on table 7:

Genotype of animals PCR
Wild type

allele
Knock-Out

allele

GX4467/GX4476 2411 bp /
Wild-type

GX4473/ GX4474 5346 bp /

GX4467/GX4476 2411 bp --
Heterozygous

GX4473/ GX4474 5346 bp 2551 bp

GX4467/GX4476 / --
Homozygous

GX4473/ GX4474 / 2551 bp

Table 7: Primers of the screening PCR

Altogether, the establishment of robust screening conditions secure the outcome of the project and
provide the complete set of tools necessary for screening of animals along the development of the
project.

Furthermore, as a general rule, once robust PCR screening is established, animals can be exclusively
screened by PCR. However, as PCR remains a technique susceptible to produce artfactual signals, and
in order not to loose the transgenic line, we would recommend to genotype by Southern blot all the
animals used for breeding purpose.

1-4 SOUTHERN BLOT STRATEGY FOR THE GENOTYPING OF THE PKACβ2 CONDITIONAL

AND CONSTITUTIVE KNOCK-OUT LINES

The standard hybridisation conditions used at genOway are indicated below:

• Pre-hybridisation and hybridisation: 4 x SSC, 1 % SDS, 0.5 % skimmed milk, 20 mM EDTA,
100 µg/ ml hering sperm, at 65°C for 18 h.

• Washings: 2 times 3 x SSC, 1 % SDS at 65 °C for 15 min, then 2 times 0.5 x SSC, 1 % SDS at
65 °C for 15 min.

• Exposure: 3 days on BioMax MS films with BioMax intensifying screens.

As presented in the report sent on 25 August 2006, designed probes were BLASTed against murine
genomic databases in order to select the probes with the best specificity based on in silico analysis.
Moreover, in order to validate probe specificity, Southern blots were established using wild-type
genomic DNA.
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The strategy for Southern blot analysis is based on a BamHI/AflII digestion of the genomic DNA and
hybridization with an internal 5’ probe 5I-K, which leads to the detection of the following specific
DNA fragments:

Allele Expected size of BamHI/AflII fragment
Wild-type 9100 bp

Floxed 6435 bp
Knock-out 3482 bp

Table 8: Expected fragment sizes in Southern blot analysis

The 5’ probe is generated by PCR on genomic DNA using the following primer pairs:

Primer name Primer sequence 5’ - 3’ Size of the probe

GX4643 GATAGACAGCCAGTATTAGTGTGACG
GX4644 AGTAATACCACCAGGGTAGACAAGC

380 bp

Table 9: Primer pairs for the generation of the 5’ probe

The Southern blot strategy as well as a representative example of a Southern blot analysis is
documented in figure 4.

Figure 4: Southern blot analysis of the PKACβ2 floxed and constitutive Knock-out lines. (A)
Schematic representation of the PKACβ2 wild-type, floxed and Cre-excised Knock-out allele with the
relevant restriction sites for the 5’ Southern blot strategy shown. (B) Result of the Southern blot tested with
genomic wild-type DNA of 129Sv/Pas ES cells and C57BL/6 mouse tail DNA, each digested with
BamHI/AflII. The digested DNA was blotted on nylon membrane and hybridised with the 5’ probe detecting
the BamHI/AflII -fragment of expected size in wild-type DNA. M: 1 kb DNA-Ladder (NEB)
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2 CONCLUSION

This report details the genotyping strategy for the generated PKACβ2 floxed mouse line, carrying the
PKACβ2 exon 1β2 flanked by loxP sites, allowing the generation of a conditional Knock out line as
well as the genotyping strategy for the constitutive PKACβ2 Knock-out line, carrying the deletion of
PKACβ2 exon 1β2.

Should you encounter any difficulties in any of the proposed PCR and Southern blot experiments,
please do not hesitate to let us know, so that we can assist you in the troubleshooting.

genOway successfully fulfilled its commitment with the generation of more than 2 conditional
PKACβ2 Knock-out mice. We would like to remind you that as stated in the general conditions of
sales, genOway must be quoted in the "Materials and Methods" section for any publications related to
the transgenic animal models developed by genOway services.

Should you have any comments when receiving this report, please let us know.


